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ABSTRACT

CONSTRAINING NUCLEAR WEAK INTERACTIONS IN ASTROPHYSICS AND
NEW MANY-CORE ALGORITHMS FOR NEUROEVOLUTION

By

Christopher James Sullivan

Weak interactions involving atomic nuclei are critical components in a broad range of as-

trophysical phenomenon. As allowed Gamow-Teller transitions are the primary path through

which weak interactions in nuclei operate in astrophysical contexts, the constraint of these

nuclear transitions is an important goal of nuclear astrophysics.

In this work, the charged current nuclear weak interaction known as electron capture is

studied in the context of stellar core-collapse supernovae (CCSNe). Specifically, the sensitiv-

ity of the core-collapse and early post-bounce phases of CCSNe to nuclear electron capture

rates are examined. Electron capture rates are adjusted by factors consistent with uncer-

tainties indicated by comparing theoretical rates to those deduced from charge-exchange and

β-decay measurements. With the aide of such sensitivity studies, the diverse role of electron

capture on thousands of nuclear species is constrained to a few tens of nuclei near N ∼ 50

and A ∼ 80 which dictate the primary response of CCSNe to nuclear electron capture. As

electron capture is shown to be a leading order uncertainty during the core-collapse phase

of CCSNe, future experimental and theoretical efforts should seek to constrain the rates of

nuclei in this region.

Furthermore, neutral current neutrino-nuclear interactions in the tens-of-MeV energy

range are important in a variety of astrophysical environments including core-collapse super-

novae as well as in the synthesis of some of the solar systems rarest elements. Estimates for

inelastic neutrino scattering on nuclei are also important for neutrino detector construction



aimed at the detection of astrophysical neutrinos. Due to the small cross sections involved,

direct measurements are rare and have only been performed on a few nuclei. For this rea-

son, indirect measurements provide a unique opportunity to constrain the nuclear transition

strength needed to infer inelastic neutrino-nucleus cross sections. Herein the (6Li, 6Li′) inelas-

tic scattering reaction at 100 MeV/u is shown to indirectly select the relevant transitions for

inelastic neutrino-nucleus scattering. Specifically, the probes unique selectivity of isovector-

spin transfer excitations (∆S = 1, ∆T = 1, ∆Tz = 0) is demonstrated, thereby allowing the

extraction of Gamow-Teller transition strength in the inelastic channel.

Finally, the development and performance of a newly established technique for the sub-

field of artificial intelligence known as neuroevolution is described. While separate from the

physics that is discussed, these algorithmic advancements seek to improve the adoption of

machine learning in the scientific domain by enabling neuroevolution to take advantage of

modern heterogeneous compute architectures. Because the evolution of neural network pop-

ulations offloads the choice of specific details about the neural networks to an evolutionary

search algorithm, neuroevolution can increase the accessibility of machine learning. However,

the evolution of neural networks through parameter and structural space presents a novel di-

vergence problem when mapping the evaluation of these networks to many-core architectures.

The principal focus of the algorithm optimizations described herein are on improving the

feed-forward evaluation time when tens-to-hundreds of thousands of heterogeneous neural

networks are evaluated concurrently.
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PREFACE

The fence we walked between the years
Did balance us serene
It was a place half in the sky where
In the green of leaf and promising of peach
We’d reach our hands to touch and almost touch the sky
If we could reach and touch, we said,
’Twould teach us, not to, never to, be dead

We ached and almost touched that stuff;
Our reach was never quite enough.
If only we had taller been
And touched God’s cuff, His hem,
We would not have to go with them
Who’ve gone before,
Who, short as us, stood as they could stand
And hoped by stretching tall that they might keep their land
Their home, their hearth, their flesh and soul.
But they, like us, were standing in a hole

O, Thomas, will a Race one day stand really tall
Across the Void, across the Universe and all?
And, measured out with rocket fire,
At last put Adam’s finger forth
As on the Sistine Ceiling,
And God’s hand come down the other way
To measure man and find him Good
And Gift him with Forever’s Day?
I work for that

Short man, Large dream
I send my rockets forth between my ears
Hoping an inch of Good is worth a pound of years
Aching to hear a voice cry back along the universal mall:
We’ve reached Alpha Centauri!
We’re tall, O God, we’re tall!

Ray Bradbury
NASA Mariner 9 Symposium
Nov. 12, 1971, Caltech
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reactions. This implies that charge-exchange can be used as a surrogate or
indirect measurement of the nuclear matrix element relevant for electron
capture. Similarly, in the Neutral-Current (NC) channel, nuclear probes
can be used to estimate the response of nuclei to inelastic excitation via
neutrinos, if the GT0, component of the M1 operator can be extracted.
This is the case for certain proton inelastic scattering measurements, and
in chapter 3, 6Li inelastic scattering is shown to be directly sensitive to
these weak NC transitions. . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1: Chart of the nuclear species depicting the nuclei included in each rate
tabulation as well as the full reach of the weak rate library presented in
this work. The table to which a species belongs is given by the color and
legend in the figure. The Oda set contains rates for lower mass sd-shell
nuclei (light blue), the LMP set contains rates for the intermediate mass
pf -shell nuclei (green), and the LMSH set contains rates for the heavier
mass pfg/sdg-shell nuclei near stability (red). The FFN tabulation pro-
vides rates across the sd and pf -shells (dark blue). Squares individually
bordered in black are stable nuclei. The tables are mutually exclusive
except for FFN which spans many nuclear shells. To distinguish between
nuclei with rates from FFN and another table, the border of the FFN set
has been outlined with a black and white line. . . . . . . . . . . . . . . 19

Figure 2.2: Panel (a): Q-value dependence of electron-capture rates at two points
along a core-collapse trajectory. The scattered points are tabulated (shell-
model and SMMC) rates for each electron-capture reaction, while the
black points are the approximate rates given by Eq. 2.1. Panel (b): The
residual differences between log10 of the shell-model rates and the approx-
imate rates for each nucleus in the weak-rate library. An example residual
is indicated on panel (a). When the density and temperature of a simula-
tion evolve outside the range of the rate tables (see Table 2.1), rates are
calculated via the approximate routines in order to avoid an artificial cut
off imposed by the table boundaries. Rates are estimated between density
and temperature grid points via monotonic cubic-spline interpolation as
described by Steffen [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xii



Figure 2.3: The average nuclear mass (divided by two), charge, and electron-capture
rate versus central density for the three EOS utilized in this study. The
colors indicate different EOS, while the line style indicate which quantity
is plotted. All three EOS have nearly identical abundance distributions
up to densities of 2·1012 g cm−3. Beyond this point the TMA EOS has a
heavier and slightly more neutron rich mass distribution compared to both
SFHo and DD2, but maintains a comparable average electron capture rate
overall. These simulations each utilize the s15WW95 progenitor. . . . . . 32

Figure 2.4: The contribution of nuclear electron capture to the change of the matter
electron-fraction with time. The contours are the binned sums of |Ẏe| for
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Chapter 1

Introduction

Advances in computational capabilities, astrophysical observations, nuclear theory and ex-

perimental methods over the past two decades have enabled a new era of multidisciplinary

research in the fields of nuclear science and computational astrophysics. For example, we

now have the capability of probing the impact of specific nuclear processes to large-scale as-

trophysical events via sensitivity studies, which can direct new experimental and theoretical

efforts [1, 2, 3].

Ultimately, the interdisciplinary nature of these efforts is fundamentally self-sustaining.

Experimental measurements for all nuclei relevant to a specific astrophysical context are

often unfeasible due to the large number of nuclei that are involved. Therefore, nuclear

theory must be relied upon for the majority of the relevant nuclear information, where key

measurements can help to constrain theoretical calculations. Then, astrophysical sensitivity

studies–which probe the impact of specific nuclear reactions to astrophysical simulations–can

reveal the key nuclei that should be studied experimentally and theoretically. These new

measurements and calculations then feed back into the astrophysical simulations, constrain-

ing the uncertainty of the nuclear physics inputs to the astrophysical phenomenon. Finally,

with high fidelity astrophysical simulations, predictions about multi-messenger astronomi-

cal observations from such events can be made and verified at earth based electromagnetic,

neutrino, and gravitational wave observatories.
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In addition, the dramatic increase in computational capabilities and the increasingly

large amounts of data that have enabled the above cycle are also fueling growth in the

fields of artificial intelligence and machine learning. Specifically, the development of novel

algorithmic techniques in machine learning, which take advantage of these computational

advancements, are beginning to provide new and less expensive solutions to challenging

scientific problems [4, 5].

The research described in this work embodies these principle advancements. In the

following sections, the motivation of the projects that compose this body of work are outlined.

Each subsequent chapter will focus on the specific implementation of what is presented here,

as well as the the scientific results and conclusions that can be drawn. The three research

directions that will be discussed are,

Chapter 2. An investigation into the sensitivity of core-collapse supernovae (CCSNe) to

the nuclear reaction known as electron capture,

Chapter 3. The establishment of a new experimental method, the (6Li,6Li’) reaction,

which can provide access to astrophysically relevant neutrino-nucleus reactions,

Chapter 4. The development of many-core algorithms for topologically divergent neural

networks which better enable neuroevolution to compete in the automated machine-

learning ecosystem.

While these are quantitatively distinct focuses, each of these projects principally explore

new ways to accelerate the process of scientific discovery: sensitivity analyses can direct

experimental and theoretical efforts; new experimental techniques can replace or supplement

previously difficult-to-study avenues of research; and novel high-performance automated
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machine-learning algorithms can reduce the implementation barrier of artificial intelligence

in the scientific domain.

1.1 Nuclear weak interactions

The physics motivation of the research presented in this work is largely rooted in the topic

of weak interactions with atomic nuclei. The weak interaction is one of the four fundamental

physical forces in nature. Weak interactions that involve nuclei include β±-decay (positron/-

electron emission), forward and inverse neutrino interactions (nuclear capture of neutrinos

and heavy leptons, respectively), and neutrino-nucleus scattering.

In a terrestrial context, weak-processes play an important role in modern technology.

For example, beta emitting isotopes are commonly used in medical diagnostics, nuclear

medicine, imaging (positron emission tomography; PET-scans), portable energy generation,

natural gas production, and radioactive dating [6].

In astrophysics, however, the influence of the weak interaction is pervasive. This is his-

torically evident in that nearly every new insight that has arisen about the weak interaction

over the course of the past century has been coupled with significant changes in our under-

standing of astrophysical processes [7]. For example, after the existence of the neutrino was

proposed by Pauli and the first weak-interaction theory was developed by Fermi [8], it was

not long before it was suggested and established that the production of weakly-interacting

neutrinos is the primary source of energy loss in stars [9]. Following the theory of neutral-

current neutrino interactions with nucleons [10], it was recognized that neutrino scattering in

core-collapse supernovae would create the phenomenon known as neutrino-trapping, which

prevents neutrinos from escaping the collapsing core of a massive star [11, 12] and has a
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dramatic impact on the evolution of the supernovae.

The class of weak interactions focused on in this work (those involving interactions

with atomic nuclei) are known as semi-leptonic weak interactions, and they fall into two

categories: charged- and neutral-current interactions. Subatomic particles interacting via

charged-current (CC) and neutral-current (NC) weak interactions are mediated by the W±

and Z0 bosons of the standard model, respectively. Both types of interactions are studied

in this work, where electron-capture (a CC reaction) is discussed in chapter 2, and inelastic

neutrino-nucleus scattering (a NC reaction) is discussed in chapter 3.

Whereas the unified model for the electro-weak theory can accurately predict weak-

interaction cross-sections involving elementary particles, for semi-leptonic weak interactions

involving nuclei, the problem is more complex. By treating the weak-interaction with nuclei

perturbatively, the calculation of weak-interaction cross-sections can be reduced to the many-

body nuclear-structure problem well within the domain of nuclear physics. Unfortunately, the

difficulties that arise when solving the many-body nuclear-structure problem often introduce

large uncertainties into the weak reaction rates that are important for astrophysics [7, 13].

This suggests that experimental input is necessary. While measurements cannot be made

for all of the nuclear weak interactions that are important, they can provide invaluable

constraints on theoretical models. This will be discussed in detail in chapter 2.

The complication in the nuclear weak-interaction (the semi-leptonic case) arises princi-

pally from the need for detailed information about the nuclear transitions and states that

are involved. However, this relationship also implies that if one is able to attain infor-

mation about the nuclear many-body configurations and transitions involved in the weak

reaction, the weak-interaction cross-section and reaction rate can be indirectly constrained.

Experimentally, this means that if the direct weak-interaction measurement is difficult or
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impossible, as is the case for many astrophysically relevant weak reactions, an indirect mea-

surement which probes the same nuclear transitions can be utilized. The ability to indirectly

extract the necessary information to constrain weak reaction rates and cross-sections form

the basis for the experimental programs discussed in the following two chapters.

Nuclear charge-exchange and inelastic scattering, as shown in Figure 1.1, are two inde-

pendent accelerator-based experimental techniques which are capable of inducing the same

nuclear transitions as CC and NC weak interactions, but are induced via reactions mediated

by the strong force. Also shown in the figure are the two weak reactions studied in this work,

electron capture and inelastic neutrino-nucleus scattering.

The similarity between reactions mediated by the weak and the strong force is evident

when considering the interaction diagrams, also shown in Figure 1.1. In the case of the

electron-capture process, the mediating particle is the W+ boson, and in charge-exchange

reactions the mediating particles are mesons (such as the π+ meson, and others). In both

cases, the interacting nucleus undergoes the same transition between initial and final states,

and so both processes probe the same nuclear matrix elements, albeit with separate couplings

(weak vs strong). An analogous argument can be made for the inelastic neutrino scattering

and the hadronic inelastic scattering shown in the figure; that is, instead of a mediating

Z0 boson, a π0 meson (for example) is exchanged and the same nuclear transition occurs.

However, a few subtleties arise in the NC channel that are reserved for discussion in chapter 3.

These indirect techniques are of immense value primarily because the direct measure-

ments are often extremely challenging. For example, very few neutrino-inelastic scattering

measurements on nuclei have been performed to date because of the very small cross-sections

involved (∼ 10−42mb/sr). This specific example is the primary motivation for the develop-

ment of the (6Li,6Li′) reaction probe, and is discussed at length in chapter 3. Even so,
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strong-force reactions that were utilized to indirectly extract the relevant nuclear transi-
tions. As can be seen in the Charged-Current (CC) column of the diagram, even though
nuclear charge-exchange is mediated by a π+ meson instead of the weak W+ boson for
electron capture, the operator responsible for the nuclear transition, Ô(GT+), is the same
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measurements of all the astrophysically relevant nuclei for which weak reactions are impor-

tant is an impossible task. Thus, those nuclei which are the most important in astrophysical

simulations should be measured, providing the best possible constraints for the theoretical

methods which are needed to estimate the majority of the weak reactions. It is for this reason

that in chapter 2, a sensitivity analysis of core-collapse supernovae to nuclear electron-capture

rates is described, and the important weakly interacting nuclei are identified.

While chapters 2 & 3 have fundamentally different focuses, together they represent a

coordinated effort to constrain the nuclear weak-response of nuclei through both the charged

and neutral current channels. As weak interactions with nuclei are critical components of

many astrophysical processes, these constraints strongly impact the field of nuclear astro-

physics.

The final chapter of this work departs from discussion of weak interactions in nuclear

astrophysics, and instead focuses on algorithmic advancements in artificial intelligence re-

search. This work aims to lower the accessibility barrier of machine learning, and in chap-

ter 4 evidence will be provided that suggest the application of these methods will improve

the applicability of modern neural-network classification techniques in experimental nuclear

astrophysics.

1.2 Accessible machine learning via neuroevolution

Many efforts in recent years have been directed toward increasing the accessibility of machine

learning, through new university programs, internet-based educational opportunities, as well
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as the development of high-level programming interfaces that abstract away the mathemat-

ical details of building machine-learning models [14, 15, 16, 17]. These efforts have been

driven by an increased demand for machine-learning tools and models that can be applied

by users with limited machine-learning knowledge, as a result of its numerous successes in a

variety of industrial, scientific, and engineering domains.

Unfortunately, while machine learning has the capability to provide novel insights for

an extremely diverse set of problem domains, most applications require in-depth knowledge

of machine learning techniques in order to arrive at suitable solutions. The reason for this

is that the application of machine learning to any problem domain requires at least three

principle choices:

1. The choice of the optimal machine learning model for the application;

2. How to pre-process the data for consumption by the chosen model;

3. How the model training parameters (known as the hyperparameters) should be set for

a particular dataset.

For the general domain scientist and engineer that wishes to focus on their field of exper-

tise, (1-3) can present a significant obstacle [18]. Even if the scope of (1) is limited specifically

to artificial neural networks (ANNs; hereafter simply referred to as neural networks), picking

the correct network hyperparameters such as the neural-network topology, learning rate, and

others, is a task for which there is no scientifically rigorous method [19]. Instead, hyper-

parameter searches are often performed manually via rules-of-thumb and by testing large

sets of models with a predefined grid of parameter values [20]. While grid-based searches

are effective, they are very computationally expensive, and manual searches by hand often

require considerable expertise and can lead to poor reproducibility [21]. As methodological
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reproducibility is a core tenant of the scientific method, such implementations of machine

learning are not viable in scientific applications.

The essence of the hyperparameter problem can be captured in a rudimentary description

of supervised learning with neural networks. Supervised learning is a class of machine-

learning algorithms which make use of a set of training data (x,y), where the vector of

inputs x are transformed into output estimates ŷ that approximate the true outputs y. The

process is supervised by the provision of data where the expected output response is known,

and thus the model itself can be adjusted so that the output response is closely representative

of the true desired output response. Mathematically, the problem can simply stated as,

F(x,w; C) = ŷ, (1.1)

where F is the neural network (or other machine learning model), w are learned parameters

of the neural network which are adjusted so that ŷ approaches the true outputs y, and C

are the model hyperparameters (e.g. the fixed structure of the network, the learning rate,

et cetera).

Typically, supervised learning with neural networks follows three steps, a learning phase

with training data, a validation phase with testing data, and a prediction phase. In the

learning phase, a set of training data is used to solve an optimization problem, where the

set of learned parameters are adjusted so that a loss or error function–which represents the

difference between the true output response (y) and the inferred output response (ŷ)–is

minimized. After this process is complete, two conclusions and consequent actions can be

reached: (1) if the neural network performs well on the training data (the loss function is

sufficiently minimized), it is then validated with the testing data to see if the model has been
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over fit; or (2) the neural-network was unable to sufficiently reproduce the desired output

response of the training data (could not minimize the loss function sufficiently). Ascertaining

the reason for training failure, as in (2), is a particularly difficult problem to asses, as it may

have occurred because of bias in the training data, or the machine-learning model of choice

may not be well suited to the application, or the model hyperparameters were ill-chosen,

such as the choice of a non-optimal neural-network structure.

In this context, the role of a data scientist [22] is clear: identifying the machine-learning

models which will generalize well to a given dataset, and knowing how to increase the model

complexity in cases of training failure. However, for the domain scientist who wishes to

employ machine-learning as a tool, these choices are not immediately obvious. Furthermore,

the process of trial and error is arduous because of the long feedback cycles: in most appli-

cations, the training phase takes a non-trivial amount of time. The potentially long delay in

feedback regarding the model adjustments makes manually searching the model complexity

space excessively burdensome for new users.

The concept of automated machine-learning seeks to remove these complexities, by au-

tomating the process of model choice, data processing, and hyperparameter tuning [23]. By

doing so, automated methods seek to lower the machine-learning implementation barrier for

novice users.

One method that is beginning to see more use in the automated machine-learning space

is Neuroevolution [24, 25]. Neuroevolution is a form of artificial intelligence that utilizes evo-

lutionary genetic algorithms to evolve neural networks for specific applications [26]. Instead

of requiring human input to refine a single neural-network model, neuroevolution automat-

ically performs the search process by allowing a population of many neural networks to

evolve, where only those networks which improve in performance survive. In this way, man-
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ually tuned hyperparameters of a neural network are transformed into learned parameters.

The application of neuroevolution as a method for automated machine learning has a few

important consequences. Because the neural network model complexity search is done across

a population of many networks, the speed to convergence for an optimal solution scales with

the number of neural networks in the population. The more networks that are employed,

the faster the space can be searched. This thereby increases the computational complexity

significantly. If population sizes are in the tens to hundreds of thousands, the evaluation com-

plexity is large enough to motivate the transition to modern multi- and many-core compute

architectures. As will be described in chapter 4, one of the hallmarks of neuroevolution–its

ability to evolve neural networks of diverse structure–has so far prevented the development

of generalized many-core algorithms which scale well with the network population size. This

is primarily because the diversity in the evolved neural network structure leads directly to

divergent evaluation graphs for these networks. On the one hand, many-core architectures–

which employ single-instruction-multiple-data (SIMD) processors–perform optimally when

execution branching is minimal. On the other hand, evolving neural networks with differing

topologies has the opposite effect, execution branching is enhanced.

Presented in chapter 4 is a novel many-core algorithm for the concurrent evaluation of

entire populations of topologically-divergent neural networks. This work represents the first

general-purpose mapping of large numbers of heterogeneous neural networks to many-core

architectures. The achieved evaluation speed up is a step toward enabling neuroevolution to

play a more competitive role in the automated machine-learning space. Given the abundant

computational resources available in most scientific laboratories, this work has the potential

to lower the barrier of entry for domain scientists interested in achieving meaningful results

from machine learning with neural networks.
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Chapter 2

The sensitivity of core-collapse

supernovae to nuclear electron

capture

The study of interactions mediated via the weak nuclear force is of importance to a large

number of fields in physics. However, it is of particular importance to the field of astrophysics

because of the longer timescale on which weak interactions operate as compared to the

strong and electromagnetic interactions. This is evidenced by the impact that new insights

into weak reaction physics have on astrophysical models [7]. Specifically, electron-capture

reactions play a prominent role in high-density environments such as those found in the late

stages of massive star evolution [27, 28], thermonuclear [29, 30] and core-collapse supernovae

(CCSNe) [31, 32], neutron stars [33, 34], and compact object merger events [35]. Realistic

simulations of these environments rely on accurate nuclear physics inputs including electron-

capture rates.

Electron-capture rates depend sensitively on allowed Gamow-Teller (GT) transition-

strength distributions in the β+ direction. These transition strengths characterize nuclear

excitations in which a single unit of spin and isospin are transferred (∆S = ∆T = 1), with
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no transfer of orbital angular momentum (∆L = 0).1 While the main component of electron

capture occurs on the ground state configuration of a nucleus, in high temperature stellar

environments electron captures on thermally-populated excited states of the parent nucleus

can also contribute significantly to the overall rate [36]. Unfortunately, it is difficult to ob-

tain information about transitions from excited states in the laboratory. Compounding the

problem is the fact that in order to accurately include electron capture in simulations, one

must include electron captures on a wide range of nuclei. Hence, in general one must rely on

theoretical models for a complete description of stellar electron-capture rates. On the other

hand, measurements of Gamow-Teller strength distributions in a representative set of nuclei

are important for the development and benchmarking of robust theories. At the same time,

it is critical that theoretical and computational efforts provide guidance to experimenters on

which measurements to perform.

Presently, configuration-interaction (shell-model) calculations are the primary method

for producing reliable GT strength distributions near stability in the sd- and pf - shells

(8 < [N,Z] < 20 and 20 < [N,Z] < 40, respectively) for electron capture on both ground

and excited states [37, 38]. Quasi-particle random-phase approximation (QRPA) calcula-

tions have also been utilized to estimate GT strengths for large sets of nuclei, but only

where transitions from the ground state are considered [39, 40, 41, 42, 43]. Furthermore,

comprehensive sets of electron-capture rates (as a function of density and temperature) for

a large number of nuclei based on QRPA calculations have not been published.

Direct and indirect experiments, such as β-decay and charge-exchange (CE) measure-

ments respectively, provide robust benchmarks for theoretical GT strengths and therefore

1Transitions which follow these selection rules are referred to as “allowed” transitions, and those which
do not–for example, transitions with ∆L > 0–are known as “forbidden” transitions which typically proceed
at a much reduced rate as compared to allowed transitions.
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are crucial to understanding astrophysical electron-capture rates. Unfortunately, electron-

capture and β-decay experiments can only access states in a limited Q-value window. Fur-

thermore, for neutron-rich nuclei β-decay only provides information in the β− direction,

which is of limited use for electron-capture studies. Intermediate energy (& 100 MeV/u) CE

reactions in the β+ direction, however, connect the same initial and final states as electron

capture, providing information about transitions up to high excitation energies, and are thus

well suited to study the full Gamow-Teller strength distribution of interest. At these ener-

gies, CE measurements have been emperically established to be accurate at the ∼10% level

and are therefore able to provide rigorous tests of theoretical Gamow-Teller strengths and

derived electron-capture rates [13].

Recently, the results from (n,p), (d,2He), and (t,3He) CE reactions on nuclei in the

pf -shell were systematically compared [13, 44, 45] with shell-model calculations using the

KB3G [46] and GXPF1a [47] effective interactions in the pf -model space, and with cal-

culations based on the QRPA formalism of Möller and Randrup [40]. The authors com-

pared shell-model and QRPA derived electron-capture rates against those derived from CE

measurements. It was found that the QRPA calculations systematically overestimate the

electron-capture rates (∼100-3000%, depending on density and temperature), whereas the

shell-model estimates produce rates similar to those measured experimentally (∼1-50%) [13].

Unfortunately, shell-model calculations are computationally challenging for nuclei beyond the

pf -shell, and therefore weak rates used in high-density astrophysical calculations most com-

monly rely on less accurate methods. In each of these cases, systematic and random error

exist, and it is therefore important to understand the sensitivity of astrophysical simulations

to uncertainties in these rates.

Sensitivity studies are useful tools for guiding theoretical and experimental efforts because
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they highlight nuclei that should be given particular focus, and they indicate the accuracy

with which the parameters of interest need to be known. They also illustrate how strongly

the current parameter uncertainties affect the outcome of the astrophysical simulations. In

this chapter, results from a recent sensitivity study are examined in which ∼ 150 collapse

simulations were performed with systematic and statistical variations of the electron-capture

rates [2]. The impact these rate variations have on the collapse, bounce and pre-explosion

phases of core-collapse supernovae simulations for a range of presupernova progenitors and

equations of state (EOS) will be described.

As part of this work, a modular and open-source weak reaction rate library1 was devel-

oped for use in astrophysical simulations. For the simulations described in this work it was

implemented in the stellar core-collapse code GR1D [48], but has also since been used in the

multi-dimensional CCSNe codes FLASH [49, 50], and COCONUT [51, 52]. 2

In the following sections, the inner core of the protoneutron star (PNS) and the observable

peak neutrino-luminosity from core bounce are shown to depend sensitively on the electron-

capture rates of neutron-rich nuclei (+16/-4 % and ±20%, respectively). As variations on

this level are not easily reproduced from uncertainties in other inputs to the simulations,

they motivate the development of new theoretical models for electron-capture rates as well

as relevant measurements, which together will constrain these and other key parameters

discussed in this work.

2http://www.jinaweb.org/weakrates
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2.1 Astrophysical weak interaction rates

The weak nuclear force is important for a number of processes that influence the evolution

of massive stars [7]. For example, interactions mediated by the weak force are important

ingredients for nucleosynthesis and also for the internal structure of evolving stars, as they

sensitively determine the electron-to-baryon ratio Ye and the iron-core mass just prior to core-

collapse [27]. Unlike the conditions present during quasi-static stellar evolution, however,

in the core of a collapsing star the density and temperature are high enough that nuclear

and electromagnetic reactions equilibrate [53]. This is not the case for weak reactions which

operate much more slowly and thus continue to affect the nuclear composition, the neutrino

emission, and ultimately the dynamics of the entire event.

As compared to other semi-leptonic weak interactions (weak interactions with nuclei),

electron capture has a particularly remarkable impact on the core-collapse environment [54].

In the final stages of a star’s life, the nuclear-energy generation rate of the core that normally

sustains a star against gravitational collapse is absent because the core is composed of highly

stable iron-group nuclei. Instead, at these late times the electron-degeneracy pressure pro-

vides the primary stability against collapse. It is therefore apparent that electron captures

that remove electrons from the system will have dramatic consequences for this environment.

Furthermore, the electron chemical potential µe is sufficiently large to overcome Q-value3

restrictions, and so the electron-capture rates are significant.

Just prior to and during the early moments of collapse, other weak interactions can also

play a role. Mart́ınez-Pinedo et al. [55] have shown that β− decay can temporarily compete

3The Q-value refers to the rest mass energy difference between the final and initial nucleus, Q = Mf−Mi,
and describes either the energy required for the reaction to occur (Q < 0), or the energy deposited by the
reaction (Q > 0). For stellar electron-capture on neutron rich nuclei, Q < 0.
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with electron capture when Ye=0.42-0.46, which can occur during Si shell burning and the

early stages of collapse. However, as collapse ensues, µe quickly becomes large enough that

β-decay electrons are energetically blocked due to degeneracy. Similarly, β+ decay can

also compete with electron capture for nuclei with Qe+ > 2mec
2, but in the core-collapse

environment neutron-rich conditions are favored, and Qe+ is below this threshold.

The importance of reactions mediated by the weak nuclear force, and specifically electron

capture, as it pertains to core-collapse was first demonstrated by Bethe et al. [56]. Not long

after, the theory of stellar electron capture was formalized by Fuller, Fowler, and Newman

(FFN) [57]. In their pioneering work they published the first tabulation of weak interaction

rates (β±-decay and e±-capture) considering presupernova conditions where allowed Fermi

and Gamow-Teller (GT) transitions dominate. Since then, advancements in computational

resources have allowed for detailed nuclear shell-model calculations that have increased the

accuracy of the weak-interaction theory first outlined by FFN. Major weak-interaction rate

tabulations that derive from a combination of experimental data and shell-model effective

interactions are the Oda et al. [37] and Langanke and Mart́ınez-Pinedo [36] tabulations for sd-

(A=17-39) and pf -shell (A=45-65) nuclei respectively. For heavier nuclei, where full shell-

model calculations are computationally unfeasible, the Shell Model Monte Carlo (SMMC)

approach has been employed which preserves nuclear properties in very large model spaces.

Langanke et al. [38] have combined this method with an RPA technique to estimate electron-

capture rates at densities and temperatures relevant during core-collapse for nuclei in the

pfg/sdg-shell (A=65-112), which have come to be known as the LMSH rates. Juodagalvis

et al. [58] have also produced a set of more than 2200 additional rates based on the same RPA

technique but utilizing a Fermi–Dirac parameterization instead of the more computationally

expensive SMMC calculations. The individual rates were not released, but instead these
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rates were averaged over NSE abundances and reported along a characteristic core-collapse

(ρ, T, Ye) trajectory. However, such a prescription is not suitable for sensitivity studies in

which the detailed response of simulations to individual nuclei is desired.

The rate tabulations listed in Table 2.1 have been implemented into the weak rate library

used in this work. Together these tabulations contain 445 rates for 304 unique nuclei over a

large density and temperature grid. This library has been built as a standalone module and

has also been implemented into the neutrino-interaction library NuLib [59] for use in neutrino-

transport routines employed by the spherically-symmetric, general-relativistic stellar collapse

code GR1D [59]–see Section 2.3 for more information. Details on the density and temperature

range for each of the included rate tabulations are shown in Table 2.1. The mass coverage

of each rate table is shown in Figure 2.1.

Table 2.1: Density, temperature and mass ranges for the compiled weak rate set

Model space

Table s p sd pf pfg/sdg T (GK) Log10(ρYe g cm−3) Ref.

FFN x x x 0.01 - 100 1.0 - 11 Fuller et al. [57]
ODA x x 0.01 - 30 1.0 - 11 Oda et al. [37]
LMP x x 0.01 - 100 1.0 - 11 Langanke et al. [38]

LMSH x 8.12 - 39.1 9.22 - 12.4 Hix et al. [31], Langanke et al. [60]
Approx. x x x x x - - Langanke et al. [38]

The LMP+LMSH rates were first implemented into a spherically-symmetric core-collapse

simulation by Hix et al. [31]. They compared simulations with this set of shell-model based

electron-capture rates against simulations that utilized the Bruenn [61] prescription for elec-

tron capture. The evolution of the core-collapse phase and the structural differences in the

core at bounce seen in that work were significant. In light of the differences that exist

between theoretical estimates for electron-capture rates and those inferred from CE experi-

ments, these results motivate the need for a detailed sensitivity study.
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Figure 2.1: Chart of the nuclear species depicting the nuclei included in each rate tabulation
as well as the full reach of the weak rate library presented in this work. The table to which a
species belongs is given by the color and legend in the figure. The Oda set contains rates for
lower mass sd-shell nuclei (light blue), the LMP set contains rates for the intermediate mass
pf -shell nuclei (green), and the LMSH set contains rates for the heavier mass pfg/sdg-shell
nuclei near stability (red). The FFN tabulation provides rates across the sd and pf -shells
(dark blue). Squares individually bordered in black are stable nuclei. The tables are mutually
exclusive except for FFN which spans many nuclear shells. To distinguish between nuclei
with rates from FFN and another table, the border of the FFN set has been outlined with
a black and white line.
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To handle the large number of nuclei not included in the tables, Hix et al. [31] utilized an

average electron-capture neutrino emissivity for all nuclei which lacked a shell-model based

rate. In this work, instead of performing averaging, the approximate routine of Langanke

et al. [38] is employed, which is based on the parameterization of the electron-capture rate

as a function of the ground state to ground state Q-value. This approximation was first

described by Fuller et al. [62] and was later parameterized and fit to shell-model calculations

in the pf -shell by Langanke et al. [38]. In this approximation, the electron-capture rate is,

λEC =
ln2 ·B
K

(
T

mec2

)5

[F4(η)− 2χF3(η) + χ2F2(η)] (2.1)

and the neutrino-energy loss rate is,

λνe =
ln2 ·B
K

(
T

mec2

)6

[F5(η)− 2χF4(η) + χ2F3(η)], (2.2)

where me is the electron mass, K = 6146 s, Fk are Fermi integrals of rank k and degeneracy

η, χ = (Q−∆E)/T , η = χ+µe/T , and T and µe are the temperature and electron chemical

potential. B (= 4.6) and ∆E (= 2.5 MeV) are fit parameters taken from Langanke et al. [38]

and respectively represent effective values for the transition strength and energy difference

between final and initial excited states.

Figure 2.2 compares the rate estimates from this approximation and from the shell-model

rate tabulations in Table 2.1. As is easily seen from the figure, the variance of the shell-model

rates depends sensitively on the density of the environment. At lower densities, where the

electron chemical-potential and electron capture Q-value are comparable (µe ≈ QEC), the

location of excited states in the daughter nucleus, and the associated Gamow-Teller transition
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Figure 2.2: Panel (a): Q-value dependence of electron-capture rates at two points along a
core-collapse trajectory. The scattered points are tabulated (shell-model and SMMC) rates
for each electron-capture reaction, while the black points are the approximate rates given by
Eq. 2.1. Panel (b): The residual differences between log10 of the shell-model rates and the
approximate rates for each nucleus in the weak-rate library. An example residual is indicated
on panel (a). When the density and temperature of a simulation evolve outside the range
of the rate tables (see Table 2.1), rates are calculated via the approximate routines in order
to avoid an artificial cut off imposed by the table boundaries. Rates are estimated between
density and temperature grid points via monotonic cubic-spline interpolation as described
by Steffen [63].
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strength, sensitively determine the total electron-capture rate for a nucleus. New final states

in the daughter nucleus become accessible as the electron Fermi-energy, which scales with

µe, increases beyond the energy required to populate them via allowed electron capture. The

large scatter of the electron-capture rates at lower densities (Fig. 2.2) is because the Fermi

energy is comparable to the excited state energies of the daughter nuclei and the internal

structure of each nucleus varies significantly. During collapse, as the density increases and the

material becomes more neutron rich due to successive electron captures, both the magnitude

of the average electron capture Q-value and µe increase. However, µe increases more quickly

with density than the reaction Q-values do, and eventually µe � QEC implying that the

majority of the electron-capture channels are open. In this regime the rate is less sensitive to

the excitation energy spectrum of the daughter nucleus, and instead depends more strongly

on the total GT strength across all possible final states. The decrease in the variance of the

shell-model electron-capture rates in the higher density case of Figure 2.2 is a result of this.

While the parameters of Eqs. 2.1 and 2.2 were originally fit from the LMP nuclei, there is

reasonable agreement of the approximation with the other tabulated rates. Outside of these

tables, significant deviations from the estimates of this approximation may exist, specifi-

cally for heavier neutron rich nuclei [64]. But for the purpose of a sensitivity study, this

approximation—from which the majority of the rates are calculated—is used as a base esti-

mate off which the electron-capture rates may be varied. Given this set of rates, it is shown

in section 2.4.2 that the simulations are most sensitive to intermediate mass neutron-rich

nuclei. However, electron-capture rates developed from sophisticated theoretical models do

not exist for individual nuclei in this region, and thus cannot be benchmarked against exper-

imental measurements. Therefore, the estimates provided by the approximation of Eqs. 2.1

and 2.2 may be systematically off by a considerable amount. As will be shown, changes in the
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predicted rates for these nuclei have significant consequences for the simulations, motivating

the need for experimental and theoretical efforts to constrain the rates of these species.

2.2 Core collapse and the role of electron capture

Just prior to collapse, the temperature of the stellar core becomes high enough (T & 0.5 MeV)

that the photon gas has sufficient energy to photodissociate nuclei into alpha particles and

free nucleons. However, the density is also high (ρ & 109g cm−3) resulting in large nuclear

reaction rates that rapidly form nuclei from these light particles. The balance reached

between these competing processes is known as Nuclear Statistical Equilibrium (NSE). If

the entropy is sufficiently low and the mass fraction of free nucleons is small compared to

that of nuclei, the most abundant nucleus in NSE is the species with the highest binding

energy for a given electron-fraction, Ye(= Z/A) [55]. A broad distribution of abundant nuclei

forms due to finite temperatures which distribute the abundances around these peak nuclei.

As collapse ensues and the central density increases through the first few decades, electron

captures are the primary engine of deleptonization. Electrons are removed from the system

and the produced electron-neutrinos (νe) are able to freely stream out of the core, decreasing

both Ye and total lepton fraction Yl. As Ye decreases, peak abundances move toward neutron-

rich nuclei, and the core begins to cool as νe’s carry away energy and entropy. Electron

captures continue to dominate the neutrino transport during collapse until the last few

milliseconds before core bounce. In these final moments, the central density reaches a few

times 1012 g cm−3, which is large enough that the neutrino mean free path begins to shorten

due to coherent scattering on nucleons and heavy nuclei. This increase in the νe-scattering

cross section results in a neutrino diffusion time that exceeds the collapse time, thereby
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trapping the electron neutrinos in the inward flow of matter. After this occurs, the conversion

of electrons into electron-neutrinos via electron captures no longer removes leptons from the

core. Instead, further electron captures increase the electron-neutrino fraction Yνe in order

to conserve the now constant lepton fraction and bring the system of electrons and electron

neutrinos into equilibrium.

Prior to the work of Langanke et al. [60] it was believed that electron captures on free

protons were of greater importance than captures on nuclei during collapse. The main

considerations involved were that electron capture on free protons has a higher rate owing

to a smaller in magnitude Q-value. Additionally, nuclei with neutron number N ≥ 40 have

full pf -shell single particle states and so the addition of another neutron via an allowed

electron-capture transition would be Fermi-blocked. Langanke et al. [60] recognized that the

many-body nuclear states have mixed configurations and do not follow a simple Hartree-Fock

filling of single particle orbitals. They also suggested that thermal excitation of nucleons to

the g9/2 orbital creates vacancies in the pf -shell, and together with configuration mixing,

electron capture on bound protons is unblocked. Furthermore, because of the low entropy

in the core, and the neutron-rich conditions, the abundance of heavy nuclei is several orders

of magnitude higher than that of free protons, resulting in a higher overall electron-capture

rate. Thus, because electron captures on nuclei dominate, it is of great value to future

experimental and theoretical efforts to investigate the contribution each species has, and to

identify which nuclei are most important, as these efforts would provide direct constraints

to CCSNe simulations.
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2.3 Codes & Methods

2.3.1 NuLib

In addition to electron-capture rates, other rates are needed to perform core-collapse sim-

ulations. The collection of rates used is contained in NuLib [59], an open-source, neutrino-

interaction library.1 NuLib contains routines for calculating electron-type neutrino/antineu-

trino charged-current absorption opacities on nucleons with corrections for weak magnetism

and nucleon recoil based on the formalism of Burrows et al. [65] and Horowitz [66]. Neu-

trino emissivities for these processes are determined via Kirchhoff’s law which equates the

absorption rate of a equilibrium neutrino distribution to the emission rate of the underlying

matter. Elastic scattering of neutrinos on nucleons, and coherent scattering of neutrons on

alpha particles and heavy nuclei is also included in NuLib. For the former, corrections for

weak magnetism and nucleon recoil are included, and for the latter, corrections from ion-ion

correlations [67], electron polarization, and the nuclear form factor are employed. Inelastic

scattering of neutrinos on electrons is included based on the expressions of Bruenn [61].

Emissivities of heavy-lepton neutrino/antineutrino pairs via electron-positron annihilation

and nucleon-nucleon Bremsstrahlung are computed ignoring final state neutrino blocking.

For neutrino-antineutrino annihilation, instead of computing the non-linear absorption opac-

ity during the simulation, an effective absorption opacity is used which has been shown to

be an excellent approximation for core-collapse supernovae [59]. 4

4http://www.NuLib.org
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2.3.2 GR1D

The electron-capture rate implementation described in the previous sections is used to study

the sensitivities of the core-collapse phase to these rates using the code GR1D [48, 59]. GR1D

is an open-source spherically-symmetric general-relativistic neutrino-transport and hydro-

dynamics code used for studying stellar collapse and the early stages of a core-collapse su-

pernova. For details of the hydrodynamics module of GR1D see reference [48]. The neutrino

transport is handled though a general-relativistic, energy-dependent two-moment formalism

for which extensive details can be found in O’Connor [59]. The employed scheme numerically

solves for the time evolution of the first two moments of the neutrino distribution function:

the neutrino energy density and the neutrino momentum density. The simulations utilize 18

energy groups logarithmically spaced between 0 and 250 MeV. Only electron type neutrinos

are evolved until the central density reaches 1012 g cm−3, after which electron anti-neutrinos

and a characteristic heavy lepton neutrino are included. However, these latter two neutrinos

do not become important until core bounce has occurred. Spatial fluxes of the neutrino

moments are treated explicitly. Inelastic neutrino-electron scattering is handled explicitly

until the central density reaches 1012 g cm−3 at which point an implicit treatment is used.

Simulations in spherical symmetry (one dimension) such as those facilitated by GR1D,

afford the computational resources needed for the inclusion of a highly detailed and com-

plete set of microphysics. The same is not true for multidimensional simulations, as the

computational requirements are more extensive, forcing the inclusion of only a small subset

of the physical interactions. Fortunately, the core-collapse and early post-bounce phases of

core-collapse supernovae are well represented in one dimension due to the lack of turbulent

convection in the core. Thus, together NuLib and GR1D are able to provide a robust and
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extendable code base for CCSNe simulations with state of the art microphysics.

2.3.3 Neutrino emission via electron capture

Electron capture is associated with the emission of electron neutrinos and so the electron-

capture rate is proportional to the integrated spectrum of νe emitted per second. The rate

for a particular nuclide, as tabulated in the implemented rate tables, is defined as the sum

of the rates for each of the individual nuclear transitions

λ =
∑
ij

λij , (2.3)

where indices i and j correspond to levels in the parent and daughter nucleus respectively.

The spectra of emitted neutrinos from the electrons capturing on nuclei, described by the

matter temperature T and electron chemical potential µe, will vary based on the initial and

final states involved owing to a different reaction Q-value,

QEC
ij = Qg.s. + Ei − Ej (2.4)

where Qg.s. is the atomic mass difference of the initial and final nuclei, and Ei and Ej are the

excitation energies of the populated states in the parent and daughter nucleus respectively.

The most comprehensive solution to constructing neutrino spectra would be to coherently

sum the spectra of neutrinos emitted from each nuclear transition. However this would rely

upon rate tabulations for individual transitions which are not presently available. Thus, an

effective neutrino spectra is implemented in terms of a single reaction Q-value, q, that is

chosen to constrain the average energy of the spectrum to match that from the tabulated
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rates [68],

n(Eν , q) = E2
ν(Eν − q)2 N

1 + exp{(Eν − q − µe)/kT}
(2.5)

〈Eν〉 =

∞∫
0
Eνn(Eν , q)dEν

∞∫
0
n(Eν , q)dEν

=
λν

λEC + λβ+
, (2.6)

where n(Eν , q) is the neutrino distribution function and is normalized to the total electron-

capture rate for a particular nuclear species. λν , λβ+ , and λEC are the neutrino energy

loss, positron emission, and electron-capture rates respectively. Eq. 2.6 is solved numerically

for the effective Q-value, q = qeff, which then defines the effective neutrino spectrum for

the electron-capture reaction of interest at a given ρ, T , and Ye. The approximate neutrino

spectra generated in this way are unable to reproduce complex structure such as double

peaking in the true neutrino distribution, which may occur when there is a resonant allowed

transition (QEC
ij ∼ 0) between an excited parent state and the daughter-nucleus ground

state. However, it approximates singly-peaked neutrino distributions quite well [68]. The

spectrum is normalized to the total electron-capture rate via Gaussian-Legendre quadrature

with an adaptive algorithm, developed in this work, that adjusts the range of integration to

the full width of the spectrum.

Utilizing these spectra, the electron-capture neutrino emissivity for a given nuclear species

is calculated as

ηi(Ek) =
1

4π
Eknin(Ek, qeff), (2.7)
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where the νe’s are assumed to be emitted isotropically, ni is the number density for the

i-th nucleus, n(Ek, qeff) is the neutrino spectra evaluated at the effective Q-value that solves

Eq. 2.6, and Ek indicates the energy of energy group k. Evaluation of the emissivity is done

point wise at the centroid of each energy bin, and has units erg/(cm3·sr·s·MeV).

For estimates of the NSE number densities used above, several EOS from Hempel and

Schaffner-Bielich [69] were used. In particular, the SFHo EOS and internally consistent NSE

distribution developed by Steiner et al. [70] was the primary EOS employed. Results were also

compared against the DD2 [71] and TMA [72] EOS, each with self-consistent, but different,

NSEs. The SFHo and DD2 EOS were chosen because they currently best satisfy both

nuclear and astrophysical constraints [73]. Instead of meson self-interactions, the DD2 EOS

implements density-dependent meson-nucleon couplings which have been used successfully

to describe nuclear structure in a wide region of the nuclear chart and have also been tested

in heavy-ion collisions [71]. For nuclear masses, the SFHo and DD2 NSE distributions rely

on the Finite Range Drop Model (FRDM) from [74] and [75], whereas the TMA EOS utilizes

a mass table calculated by Geng et al. [76]. Both mass tables incorporate experimentally

determined masses from Audi et al. [77] and only resort to theoretical estimates where no

experimental measurements are available. For consistency, in addition to NSE abundances,

these mass distributions are also utilized in the calculation of reaction Q-values for use in

Eq. 2.1.
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2.4 Sensitivity study

2.4.1 Reference simulations

In order to establish reference simulations off which variations are performed, the widely

studied 15 solar mass, solar metallicity progenitor star s15WW95 [78] was used, as well

as s12, s20, and s40 from WH07 [79], which span the range of stellar compactness ξ2.5[80]

in this model set. The core compactness, ξM , is the ratio of the mass enclosed M to its

enclosing radius, and for this model set, s12 (s40) has the least (most) compact core. This

variety in compactness is an important factor for assessing the global sensitivity of core-

collapse supernovae to detailed microphysics, as progenitors with similar compactness will

likely have similar sensitivities to microphysical variations. More details on the progenitor

model set utilized in this work can be found in the progenitor sensitivity subsection 2.4.3.1.

For each simulation the SFHo EOS is utilized, and in addition, for simulations with the

s15WW95 progenitor star the DD2 and TMA EOS, and NSE distributions, are employed.

A full complement of neutrino-interaction microphysics is incorporated via NuLib in each

reference simulation, which includes the newly implemented weak rates library described

here. The weak-rate tables were included using the following priority hierarchy: LMP >

LMSH > Oda > Approx., ensuring that rates from sources with higher priority are utilized

where rate estimates from multiple sources exist. Approx. indicates the parameterized rate

approximation of Eqs. 2.1 and 2.2, which is used for nuclei not included in the tables and

for regions of density and temperature which are beyond the limits found in Table 2.1. For

consistency, only tables that derive from shell-model calculations are utilized.

For each progenitor and EOS collapse simulations are performed in GR1D and follow the

evolution until at least ∼ 100 ms after bounce. The collapse proceeds as described in Section
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2.2. Differences in the collapse evolution for different progenitors stem from the hydrostatic

conditions in the cores of these massive stars at the onset of collapse. For stars with large ξ2.5,

larger central5 temperatures are needed to balance gravity. This gives lower central densities,

and therefore less electron capture during the final stages of stellar evolution. The range

of initial central Ye goes from ∼0.422 for the s15WW95 model to ∼0.447 for the s40WH07

model, or a range of ∼6%. After neutrino trapping sets in, a range of trapped lepton-

fraction of ∼0.288 – 0.297 is observed, where s40WH07 and s12WH07 have the minimum

and maximum trapped Yl, respectively. The overall higher deleptonization rate for the more

compact progenitors is due to both longer collapse times and larger matter temperatures,

which enhance the electron-capture rates.

Simulations utilizing different EOS, while holding all else constant, demonstrate only

small variations in the density, temperature, and Ye central-zone trajectories up to bounce.

Figure 2.3 details the abundance distributions for each EOS, as well as the resulting average

electron capture rate along a collapse trajectory. The NSE distributions of all three EOS

are largely similar early on, but differences in the mass table of the TMA EOS cause it to

diverge from the others starting around 1−2×1012g cm−3. However, differences are seen in

the electron-capture rate only after central densities of 2× 1012g cm−3, where any effect on

the evolution is suppressed because of neutrino trapping. Near nuclear saturation density,

however, the differences in EOS begin to play a more important role. The density-dependent

couplings of the DD2 EOS, for instance, result in higher central temperatures at bounce.

However, since the average rate in simulations utilizing each of the EOS are nearly identical,

they result in a difference of trapped lepton-fraction of only a fraction of a percent. For

more information on the sensitivity of the electron and lepton fractions to the EOS during

5Central used in this context refers to the inner most zone of the core-collapse simulation.
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Figure 2.3: The average nuclear mass (divided by two), charge, and electron-capture rate
versus central density for the three EOS utilized in this study. The colors indicate different
EOS, while the line style indicate which quantity is plotted. All three EOS have nearly
identical abundance distributions up to densities of 2·1012 g cm−3. Beyond this point the
TMA EOS has a heavier and slightly more neutron rich mass distribution compared to both
SFHo and DD2, but maintains a comparable average electron capture rate overall. These
simulations each utilize the s15WW95 progenitor.
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collapse see Fischer et al. [73].

Together, these reference calculations span a wide range of progenitor and EOS depen-

dences that ensure a configuration-independent assessment of the core-collapse sensitivity to

electron capture on nuclei, and furthermore demonstrate the universality of collapse. In what

follows, results are discussed for variations on the s15WW95+SFHo reference simulation but

any significant differences in relation to variations on the other progenitor+EOS reference

simulations are pointed out.

2.4.2 Species dependent sensitivity

To understand the sensitivity of core-collapse to different regions of electron capturing nuclei,

the central zone collapse profile from the reference simulation is used to decompose the

change of the electron fraction with time, Ẏe, into the electron captures of each nuclear

species. While using only the central zone is an approximation, it is justified by noting the

observation by Liebendorfer [81] that the electron fraction profiles typically correlate quite

well with density during the collapse phase. Therefore, matter will generally have the same

electron capture history. The rate of change of the electron fraction with time, Ẏe, that is

estimated accounts for νe re-absorption in an energy-dependent way,

Ẏ ie =
4πα

ρNa

∑
k

∆εk · ηi(εk)

εk
·
(

1− Ek
Bk

)
(2.8)

where Ẏ ie is the time derivative of the electron fraction due to electron captures on the

ith nuclear species, α accounts for the general relativistic time dilation, Na is Avogadro’s

constant, ρ is the density, εk is the energy of the kth energy bin, ∆εk is the kth energy

bin width, ηi is the emissivity of species i and 1 − Ek
Bk

is the neutrino blocking factor that
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accounts for re-absorption as collapse approaches weak equilibrium. Along with a hydro-

dynamical correction due to advection of electrons into the central zone, the time integral

of Eq. 2.8 added for all nuclei reproduces the full time dependent Ye profile of the central

zone during collapse, indicating that electron captures on heavy nuclei singularly drive the

deleptonization of the central zone.

With this method, the deleptonization history due to each nucleus can be individually

investigated. At these densities and temperatures, NSE diversifies the abundant nuclei,

ensuring that no single nucleus dominates the deleptonization. There are, however, subsets

of nuclei that contribute more than others to the reduction of Ye. A nuclear-mass dependence

can be studied by binning the the contribution to |Ẏe| from each nuclide into nuclear mass

bins and tracking the evolution of each region up to neutrino trapping. Figure 2.4 plots the

deleptonization rate in the core for different nuclear mass bins, as the central Ye progresses

from its progenitor value to its value when weak equilibrium is achieved, just prior to bounce.

Early on, before the collapse becomes strongly dynamical, nuclei in both the mass range

25<A<65 (sd+pf -shell) and those in the 65<A<105 (pfg/sdg-shell) comprise the main

component of the deleptonization. However, during the strongest push toward neutron-rich

conditions, where Ye rapidly changes from ∼0.41 to ∼0.28, nuclei with mass A >65 dominate

the evolution as seen by the red and light blue curves in Figure 2.4. Unfortunately, the most

precise electron-capture rate estimates fall below this region and instead, the rates are set

primarily by the approximation of Eq. 2.1.

It is also useful to understand the specific nuclei that have the largest integrated contribu-

tion to core deleptonization up to neutrino trapping. Shown in Figure 2.5 are the 500 nuclei

with the largest integrated |Ẏe| from t = 0 to the trapping time—when densities are in excess

of 2 · 1012 g cm−3. This reveals the channel through which the bulk of electron captures
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Figure 2.5: Top 500 electron capturing nuclei with the largest absolute change to the electron
fraction up to neutrino trapping. The color scale indicates |Ẏe| integrated up to the trapping
time, occurring when ρc ∼ 2 · 1012 g cm−3, such that the total electron-fraction at this
point is equal to its initial value less the sum of ∆Ye, the plotted quantity, over all nuclides.
Calculations are based on the s15WW95+SFHo reference simulation. The black contour
that runs parallel to the valley of stability on the neutron-rich side is the boundary between
measured [77] and theoretical masses used in the approximate rate estimates of Eqs. 2.1
and 2.2. The rectangular outline indicates the size of the sampling region used in the
statistical resampling study, and also the set of nuclei which exhibited the largest changes
to the simulations when excluded from the electron-capture calculations.
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operate. The central electron-fraction at the trapping density is reproduced by subtracting

the sum of this quantity over all nuclear species from the initial electron-fraction,

Ye(t = ttrapping) ' Ye(t = 0)−
∑
i

∆Y ie , (2.9)

where ∆Y ie is shown in Figure 2.5, and the component of Ye due to advection of electrons

into the central zone (otherwise making this relation exact) is left out for simplicity. Within

the pfg and sdg-shells the primary contributors to the deleptonization phase of collapse are

neutron rich nuclei near the N=50 and N=82 closed neutron shells (see the dashed vertical

lines in the figure).

To confirm these results, they are gauged against the sensitivity of the collapse phase to

localized groups of nuclei by employing a statistical resampling technique where sets of nuclei

are removed from the simulation. This method is based on well known statistical resampling

methods such as bootstrap and jackknife resampling [82]. Specifically, a rectangular region

centered on a nucleus and spanning all nuclei within ±3 isobars and ±5 isobaric chains is

removed from the calculation of the electron-capture neutrino emissivity. An example of

such a removed region is drawn on Figure 2.5. This technique is employed in 48 simulations

with resampling performed uniformly across the nuclear chart.6 Using this technique the

simulations are found to be most sensitive to nuclei in the mass range 74-84 with Z/A (= Ye)

between 0.36-0.44, corresponding to nuclei near 78Ni, 79Cu, and 79Zn. These results agree

with the Ẏe calculations performed above, and indicate that species near the N=50 magic

number have the largest contribution in magnitude to the change in the electron fraction

overall. The impact of removing these species from the simulation corresponded to a change

6The resampling regions were allowed to overlap, but were chosen such that uniform coverage accross
the nuclear chart was achieved in the resampling study.
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of inner-core mass at bounce of & 10%, whereas resampling in other regions resulted in

variations of only a few percent.

The electron-capture rates for these nuclides rely entirely on the approximation of Eqs. 2.1

and 2.2, which were fit originally to rates of lower-mass mid-shell nuclei near stability. There-

fore, in the region indicated by the above two studies, the approximation is largely uncertain

and may be systematically off by a significant amount. For instance, these estimates do not

account for nuclear structure effects that may occur near the N=50 closed neutron shell.

Depending on the nuclear configurations, thermal excitations, and increasing dependence on

forbidden transitions, Pauli blocking7 may considerably reduce the electron-capture rates in

this area. Given that the change of inner-core mass at bounce was largest when the rates

of these nuclides were decreased to zero as compared to any other set, and that without

any evaluative measurements the uncertainties in these rates remain large, experimental and

theoretical work should focus here. Any substantial changes to the electron-capture rate es-

timates for these nuclei will likely have a relatively large impact on simulation predictions for

the PNS formation, and will therefore help to constrain important collapse and pre-explosion

phase quantities.

2.4.3 Systematic variations

To study the strongest impact of variations in the electron-capture rates, simulations in

which the rate for each A>4 nuclide is systematically scaled by factors of 10, 4, 2, 0.5,

0.25, and 0.1. In this way, the structure of the rates as seen in Figure 2.2 is preserved (the

7Pauli blocking arises as a result of the Pauli exclusion principle in which identical fermions are unable
to occupy the same quantum mechanical state. In the case of neutron-rich nuclei, N=50 represents a g9/2
orbital fully occupied by neutrons. Unless the electron capturing nuclei are highly excited such that there
are holes in this or other lower energy orbitals, allowed Gamow-Teller transitions cannot occur.
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Figure 2.6: Projection of the (trapped) lepton fraction at ρc = 4 · 1012 g cm−3 as a function
of the electron-capture rate scaling factor for progenitor+EOS reference simulation. In all
the cases the lepton fraction begins to increase if the capture rate becomes too high because
of a dramatic increase in the electron neutrino absorption cross section. The asymmetry seen
here indicates that those quantities which depend on Yl/e are likely to be more sensitive to
a reduction of the electron-capture rates due to a systematic overestimate in the base rates,
than they are to an increase due to an underestimate.
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lower panel of residuals is unaffected), but the distribution of rates is shifted to larger or

smaller values depending on the scaling factor. Systematic shifts of the rates emphasize

the role of electron capture as a regulator for entropy and temperature in the simulations.

By increasing the rates, more neutrinos are emitted and escape during the initial stages

of collapse, thereby increasing the evaporative neutrino-cooling. Furthermore, because the

dominant source of matter pressure is electron degeneracy, increased electron-capture rates

accelerate the collapse. This impacts the matter profiles outside the shock in the early post-

bounce phase. Decreasing the rates has the opposite effect, the entropy, temperature, and

electron fraction of the core are significantly higher because less cooling takes place.

The evolution prior to and right at ρc = 2 ·1012 g cm−3 (which is the density that defines

neutrino trapping) is what sets the final value of the trapped lepton and electron fractions,

which are important due to their direct impact on the formation of the PNS. For all the

reference simulations, a minimum in the trapped lepton fraction was found to occur with a

systematic scaling factor of approximately four. The minimum that forms can be seen in

Figure 2.6. Scaling by ten slightly reverses the downward trend, and increases the trapped

lepton-fraction from its minimum value. This behavior is the result of electron-neutrino

capture on heavy nuclei becoming the primary source of opacity, exceeding what is typical

as a result of coherent νe-scattering. When the rates have been enhanced by a factor of

ten, the ratio of the absorption and scattering opacities, κa/κs, surpasses unity already by

central densities of 3 · 1011 g cm−3 and κa ∼ 4κs by the time ρc = 1012g cm−3. Absorption

cross sections are then large enough to trigger an early onset of neutrino trapping at densities

lower than what is found for the reference rates. The consequence is that electron capture

has a smaller window of deleptonization, leading ultimately to a higher Yl overall.

The range of electron fractions near core bounce is commensurate with the range of
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fractions in which the nuclear electron-capture rate for every species has been scaled by
factors shown in the legend. Warmer colors indicate a higher overall electron capture
rate, and cooler colors indicate a lower rate. The dashed black line indicates the reference
s15WW95+SFHo simulation.

trapped lepton-fractions so far described, see Figure 2.7. As mentioned above, variations of

Ye (and Yl) on this level are of importance due to its direct impact on the formation of the

PNS and the supernova shock. Electron fraction, entropy, density and velocity profiles are

shown in Figure 2.8 for s15WW95+SFHo at -1, 0, 1, and 5 milliseconds relative to bounce.

Of particular interest, the mass of the forming PNS inner-core at bounce, seen as the mass

behind the steep velocity gradient in panel (b), was found to vary on the order of ∼0.1 M�,

and up to ∼0.2 M� five milliseconds after bounce. The asymmetry observed in the trapped-

lepton fraction, where scaling the rates by 0.1 had a more dramatic effect than scaling by

10, translates directly to the variation of the inner-core mass at bounce (+16/-4 % from the

reference). The result is that the forming PNS has a lower bound on the inner-core mass at

bounce over the range of electron-capture rates explored. Because the rates are already high,

and therefore the absorption opacity is already almost comparable to the scattering opacity,
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the range of inner-core mass at bounce comes mainly from simulations with decreased rates

relative to the base simulation.

Such variations in the homologous inner-core mass will translate directly to the kinetic

energy of the emergent shock that eventually detonates the star. Furthermore, the one to

two orders of magnitude range of density outside the shock (see Fig. 2.8) will likely play

an important role during the shock propagation and explosion phases of multidimensional

CCSNe simulations. Therefore, further investigations into the impact of these variations in

the late stages of two and three dimensional CCSNe simulations are warranted.

In addition to the direct impact on core dynamics and structure, the neutrino emission

at bounce is found to be very sensitive to these variations. Figure 2.9 shows the neutrino

luminosity 500 km from the center for the different neutrino species as a function of time.

Prior to bounce the νe-luminosity begins to rise from electron captures on bound protons in

nuclei, but is quickly regulated by neutrino trapping, causing a down turn in the luminosity.

During this time the core is very sensitive to the nuclear electron-capture rates as the entropy

is low enough that heavy nuclei dominate the available mass. Scaling the rates for each

nucleus using the same systematic factors results in a 40% variation of the νe-luminosity

before bounce. During bounce, the electron-neutrino burst—seen as the peak luminosity

in the left panel of Figure 2.9—is powered primarily by electron capture on free protons.

The core-bounce and shock liberates nucleons from their bound states and the entropy rises

causing a significant increase in the nucleon and light particle abundances. That said, while

the electron-capture rate on free protons, λEC
p , is not adjusted in these simulations, a range

of ±20% relative to the reference peak νe-luminosity is observed.

These dramatic variations of the peak electron neutrino luminosity are a result of alter-

ations to the neutrinosphere and shock convergence-timescale. Specifically, when electron
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Figure 2.9: The neutrino luminosity as measured at a radius of 500 km as a function of
time after bounce in the s15WW95+SFHo simulation set. Electron-capture rate scaling
factors are shown in the legend, where contours with warmer colors have higher rates, and
cooler colors have lower rates. While the peak electron-neutrino luminosity is considered
particularly stable across core-collapse simulations, it varies significantly with variations of
the electron-capture rates on medium-heavy nuclei. When the rates are at their lowest (×0.1
case), the shock reaches the neutrinosphere more quickly than in the other simulations. This
results in a larger luminosity in the peak electron-neutrino burst because more νes are able
stream out of the core at early times. The opposite is true when the rates are higher, the
neutrinosphere and shock converge much more slowly, and so the neutrinos spend more time
diffusing out of the inner core, reducing the peak luminosity but distributing it out to later
times.
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captures on nuclei are weaker (scaling by 0.1), the inner-core mass that forms at bounce is

significantly larger. This results in more kinetic energy transferred to the shock, allowing

it to sweep up mass more quickly. In Figure 2.8 this can be seen by the broadening of the

distribution of shock locations in mass between the different simulations in the velocity plot

5 ms after bounce (bottom-right) as compared to t− tb = 0. Also, with a weaker overall rate

the opacity will be lower, allowing the neutrinosphere to move in to lower radii more quickly.

The combination of these effects result in the shock and neutrinosphere radii converging

earlier for the simulations with lower electron-capture rates, and later for simulations with

higher rates, up to a difference on the order of 3.5 ms. Thus, electron capture on protons

liberated by the shock produce neutrinos that are able to reach the neutrinosphere earlier

and freely stream away, contributing to a larger νe peak luminosity when the nuclear electron

capture rate is systematically lower. On the other hand, when the nuclear electron capture

rate is high, the emitted neutrinos diffuse more slowly through the core, and reach the neu-

trinosphere at later times, thus strongly quenching the peak luminosity but spreading out

the emission to later times. Due to the high luminosity of the electron-neutrino burst near

the time of bounce, it is a candidate for detection from a galactic core-collapse supernovae

in Earth-based detectors sensitive to electron neutrinos, e.g. those with a detector volume

composed of liquid Argon. And while such measurements are not presently of high enough

precision to resolve each variation seen here, they may indicate the total amount of electron

capture occurring at core bounce.

2.4.3.1 Progenitor model sensitivity

In order to evaluate the significance of the electron-capture systematic sensitivity studies,

they were tested against a study of the progenitor dependence of the core-collapse phase.
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Figure 2.10: The full range of sensitivity of the PNS inner-core mass, central entropy, and
central temperature at bounce as well as the peak νe-luminosity, the peak average νe energy,
and the average νe energy prior to neutrino trapping, owing to variations of the progenitor
model and electron-capture rates. Thirty two progenitors were utilized from the WH07 model
set of Woosley and Heger [79] for producing the progenitor bars (red) in the figure. Each bar
of the electron-capture rate variations derives from simulations where the rates have been
systematically scaled by factors of 10, 4, 2, 0.5, 0.25, and 0.1. The horizontal tick represents
the value of the reference simulation for the tested Progenitor + EOS combination. The
window ranges are chosen so that the progenitor sensitivity bars are of equal size across each
of the plotted parameters.
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Drawing from the larger set of progenitors from which the reference progenitors of the

electron-capture study belong, the 2007 non-rotating solar-metallicity single-star model set

from the stellar evolution code KEPLER [79] was utilized. This model set contains the pre-

supernova configuration of 32 stars ranging in zero-age-main-sequence (ZAMS) mass from

12 M� to 120 M�– s12WH07 and s120WH07 respectively. Simulations of these progenitors

exhibit a ∼3.5% range of trapped lepton-fraction (0.288 - 0.298), a ∼4% range of inner-core

mass at bounce (0.473 – 0.491M�), and a ∼9% range of electron-neutrino peak luminosity

(5.19− 5.65 · 1053 erg s−1) during the neutrino flash occurring just after core bounce.

Figure 2.10 compares the stellar progenitor model and electron-capture rate dependence

of several structural and neutrino quantities during collapse. The range of inner-core mass

and peak νe luminosity seen from employing the WH07 progenitor model set are each ap-

proximately a factor of 5 smaller than the ranges seen from varying the electron-capture rates

across all progenitor+EOS references. On the other hand, the range of central entropies and

temperatures at bounce are comparable between the two sensitivity studies. The νe aver-

age energies just prior to neutrino trapping and during the deleptonization burst are also

compared in Fig. 2.10. The neutrinos emitted during the luminous burst just following core

bounce are of higher energy than those emitted earlier because they arise primarily from

electron capture on free protons. They also decouple from the core at a much hotter and

denser neutrinosphere than prior to bounce, yielding higher energy neutrinos. In both of the

sensitivity studies, variations of the electron-capture rates and of the initial stellar models,

the range of average neutrino energy during peak emission is comparable (≈ ±0.5 MeV).

While captures on free protons contribute only marginally to deleptonization in the cen-

tral zone, further out in the iron core, where the densities are lower (and Ye’s are higher),

electron captures on protons contribute to the deleptonization, especially in cases where
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electron captures on nuclei are suppressed. The capture of electrons on these free protons

produces neutrinos of a higher average energy, commensurate with the large spread seen in

the bottom panel of Fig. 2.10 (which is taken when the central density is 3 × 1011 g cm−3,

but present from the onset of collapse). Another contribution to the energy spread is the

systematic shift of electron captures to more neutron rich nuclei as the electron-capture rates

are increased and the matter becomes more neutron rich. These neutron-rich nuclei have

more negative Q-values, yielding lower energy neutrino emission. Both of these effects result

in a dispersion of average neutrino energies early on that is several factors larger than what

is seen in the progenitor simulations.

Finally, note that while the peak luminosity is only weakly dependent on the progeni-

tor model, the post-bounce pre-explosion luminosity of all six neutrino species have strong

progenitor dependences [83]. On the other hand, the pre-explosion luminosities investigated

here are much less sensitive to the nuclear electron-capture rates comparatively–see panel

(b) of Figure 2.9. The diverging of the luminosities seen at t − tb = 120 ms is due only to

the difference in collapse times between the simulations which carries over to the evolution

of the mass accretion rate after bounce.

2.4.4 Monte-Carlo variations

In addition to the possibility of systematic errors in the electron-capture rates, the effect

of statistically distributed variations are also explored. Such an investigation is of great

importance if the effect of an approximation such as Eq. 2.1 is to be understood. The main

flaw in a continuous function for rate estimation across many nuclear species is the loss

of structure, which would otherwise serve to statistically distribute the rates on a reaction

by reaction basis (see Fig 2.2). To study this effect, Monte-Carlo (MC) variations of the
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electron-capture rates were performed. Using an analytic description of the electron-capture

rate distributions, such as a Gaussian or Poisson distribution, is likely to be inaccurate.

Instead, the approximate rate is adjusted via MC for each species by adding to its log10(λEC)

a value randomly chosen from a distribution created from the residuals of the tabulated rates

and the approximate rates, i.e.

log10(λ
i,table
EC )− log10(λ

i,Eq.1
EC ) (2.10)

where i is an index running over all the tabulated reactions.

In constructing this distribution, it is important also to preserve the Q-value dependence

of the residuals that can be seen in Figure 2.2b. This is done by separating the residual

distribution into subsets so that the reaction-rate residuals in each subset have similar Q-

values. To do so a Q-value binning of 2.5 MeV was chosen, but this method was also tested

with binnings of 5.0 MeV and 10.0 MeV which resolve the Q-dependence less, but have more

counts per bin from which to sample. From these samples, pseudo electron-capture rates

were MC generated such that they retain the Q-value dependence of Eq. 2.1, but statistically

distribute the approximate rate according to the variance of the rates calculated in the shell-

model. Seven simulations for each binning were performed.

As mentioned before, at low densities the electron-capture rate depends strongly on

the energy levels of the initial and final nuclides because the electron chemical potential

is comparable to the excitation energies of the allowed Gamow-Teller transitions. As the

electron chemical potential increases, it encompasses a larger range of excitation energies

which results in the electron-capture rate becoming sensitive primarily to the total strength.

In the low-density case of Figure 2.2a the approximation of Eq. 2.1 while appearing to
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decently reproduce the mean of the shell-model rates, actually has a mean approximately a

factor of two lower than the tabulated rates. As the density increases, this difference between

the mean electron-capture rate estimated by the approximation and the shell-model rates

decrease. Thus, the approximation better reproduces the mean rate in the high density

case of Figure 2.2a. Because the MC simulations are based on residual distributions of the

tabulated rates and the approximation, the average rate produced in each MC trial also has

this bias.

Plotted in Figure 2.11 is the min-to-max band representing the range of lepton fraction

observed from all of the MC simulations. The band drawn corresponds to a 2.5 MeV binning

of the residual distributions from which the MC sampling was performed. For the reasons

just described, the band has lower electron and lepton fractions than the reference at low

densities, but becomes more statistically distributed around the reference at higher densities,

near 5·1011g cm−3. The lepton fraction band width varies from about a half percent initially,

to its largest value of ∼2.5% just before neutrino trapping, and then decreases back to ∼1.5%

before bounce. Altogether, no significant impact on the core dynamics or the neutrino

transport were observed and therefore it can be conclude that any statistically distributed

scatter in the estimations of the electron-capture rates, such as those seen in Figure 2.2, will

likely not impact the models.

2.5 Conclusion

Nuclear electron capture has long been understood to play an important role in the dynamics

of core-collapse supernovae and large efforts have been undertaken to produce reliable esti-

mates of electron-capture rates for astrophysical contexts. Although significant progress has
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been made in benchmarking theoretical electron-capture rates by comparison with charge-

exchange experiments (especially using shell-model calculations) [13], large uncertainties

remain for neutron-rich nuclei and nuclei beyond A=65. Furthermore, sophisticated shell-

model estimates for electron-capture rates exist only for a small subset of the large number

of nuclei that contribute strongly. The implications of uncertainties in the electron-capture

rate estimates for the core-collapse and early post-bounce phases of fully self consistent, gen-

eral relativistic, core-collapse supernova simulations with comprehensive neutrino transport

are explored in this work.

2.5.1 Most important nuclei

For the reference simulation, the contribution of each nucleus to core deleptonization is

calculated, and a statistical resampling study is also performed. Both of these studies identify

the nuclear species whose rate should be known most precisely due to their significance in

the simulations. With the given set of electron capture rates—from shell-model estimates

to the approximate estimates of Eqs. 2.1 and 2.2—the simulations are found to be most

sensitive to neutron rich nuclei in the upper pf and pfg/sdg-shells.

Specifically, in these simulations nuclei near the A∼80, N∼50 closed neutron shell con-

tribute the bulk of core deleptonization, and when removed from the simulations result in

noticeable changes to the protoneutron star formation, with a significantly larger impact

than when any other group of nuclei are removed. However, because sophisticated estimates

from nuclear theory are not available for individual nuclei in this region, the electron-capture

rates for these species have been accounted for in the past via simple averaging techniques

and in this work via an approximation that has been fit to the LMP rate set. While this

approximation reasonably reproduces the average electron capture rate for sd and pf shell
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nuclei near stability, rates for heavier neutron-rich nuclides will likely diverge from what is

predicted by this parameterization.

2.5.2 Impact of uncertainties

The impact such uncertainties may have are evaluated by varying the electron-capture rates

for more than 6000 nuclei statistically, about the approximate prediction, and also system-

atically. On one hand, it is found that statistical variations of electron-capture rates effect

the overall dynamics and neutrino emission only weakly, producing marginal changes to the

simulations. These findings indicate that the lack of structural variation that distributes the

rate estimates from one species to the next is not crucial to the simulations.

On the other hand, the average electron capture rate across a region of nuclei strongly

determines the overall impact of those constituent nuclei. By systematically varying the

electron-capture rates by factors between 10 and 0.1, dramatic variations in the inner-core

mass (+16/-4 %) and the electron-neutrino luminosity (± 20%) at and near bounce, respec-

tively, are observed. Comparing with 32 simulations utilizing different progenitor models,

this range of inner-core mass and peak neutrino-luminosity is found to be 5 times as large

as that seen when varying the progenitor models.

In addition, the nuclear electron-capture rates are found to be already large enough in

the reference simulations that increasing them beyond their base values has a considerably

smaller effect than decreasing them. This has compelling implications. Rates for A∼80

nuclei near the N=50 shell gap, which have been shown to be the primary contributors

to the overall impact of electron captures during core collapse, may be overestimated by

Eq. 2.1 due to Pauli blocking at the closed neutron shell. Combined with a greater overall

sensitivity to the systematic decrease in electron-capture rates, changes to the collapse and
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early post-bounce phases of the simulations may be as significant as those seen in this study

if the current rates of these nuclei are found to be overestimated.

2.5.3 Goals for future studies

For these reasons, it is important that experimental and theoretical efforts be aimed at

nuclei which span the region on the chart of isotopes between stability and the neutron

drip line in both the pf and pfg/sdg model spaces, and further expand on the work that

has been carried out for (near-)stable nuclei in the pf -shell. Since data from (n,p)-type

charge-exchange experiments for nuclei in the pfg/sdg-shell and for neutron-rich nuclei in

the pf and pfg/sdg-shell are scarce, new experiments are required to obtain a sufficient

set of data to benchmark current and future theoretical estimates. To this end, presently

feasible experiments on neutron-rich nuclei at and near stability with 60<A<120 should add

to the few cases that have been measured in this region. With the higher beam intensities

that will be available at next generation rare isotope facilities, future experimental programs

should focus on the neutron-rich component of the primary electron-capture channel shown

in Figure 2.5. In particular, investigation of nuclei in the A∼80 and N∼50 region should

take precedence, as changes to their electron-capture rates will significantly constrain the

core-collapse dependence on nuclear electron-capture.

2.6 Updates

The weak-interaction rate library which was developed in this work in order to characterize

the sensitivity of CCSNe to nuclear electron capture, has seen a number of updates and

continues to be an active research component of the Joint Institute for Nuclear Astrophysics
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Figure 2.12: Updated version of Figure 2.1 showing the addition of the recently added rate
tabulations since the libraries first implementation in [2].

– Center for the Evolution of the Elements (JINA-CEE). Recently released rate tabulations

for nuclei in the sd- and pf -shells have been added to the weak rate library. The sd-shell

tabulation includes rates calculated on nuclei with A=17-28 using the USDB configuration-

interaction including coloumb effects [84]. The pf -shell tabulation was developed using the

GXPF1J configuration-interaction by Honma et al. [85] for nuclei with masses between A=42-

65. In addition, rates for a large number of proton-rich nuclei from the older empirically

derived single-particle model calculations of Pruet and Fuller [86] have also been added to the

weak rate library. The addition of these new tables can be seen in the updated library mass

coverage of Figure 2.12. In addition to these rate tables, the approximate electron-capture

rate parameterization described by Eq. 2.1–which is used for the majority of the electron-

capture rate estimates in the sensitivity study–has been updated. Raduta et al. [87] extended

this simple analytic parameterization to allow for temperature, electron density, isospin, and
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nuclear odd-even dependencies. They found that the extra degrees of freedom introduced

by the inclusion of isospin and odd-even effects considerably improved the agreement with

electron-capture rate calculations from large-scale microscopic rate calculations [87]. While

these advancements may improve the estimates of electron capture rates near the pf -shell,

shell effects such as Pauli blocking–which as mentioned previously, can significantly suppress

the rate–are not accounted for in the updated model. These methods have been incorporated

and are currently maintained in the official version of the weak rate library.

In addition to the above theoretical updates that have been incorporated, a few sub-

sequent computational and experimental investigations involving electron capture in core-

collapse supernovae have been completed.

A follow up sensitivity study investigating the importance of the N=50 nuclei, described

in section 2.4.2, was recently undertaken by Titus et al. [88]. In that work it was demon-

strated that even though thousands of electron-capturing nuclei are included, variations in

key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy,

stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture

rates on nuclei in the region above 78Ni near N=50. Because of the significance of early results

of this study, two of the first charge-exchange measurements in this region were performed:

the 86Kr(t, 3He) and 88Sr(t, 3He) measurements. As 86Kr and 88Sr are the two most proton

deficient, stable, N=50 nuclei, the results of these measurements will give a good indication

of the allowed Gamow-Teller strength in nuclei with a full g9/2 neutron shell and will help

to constrain the electron capture rates in this region.

Concurrent with the above efforts, Richers et al. [3] investigated the impact various

equations of state have on gravitational waves generated from axisymmetric rotating core-

collapse simulations. As part of that work, various systematic variations of the electron
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capture rates (comparable to what was performed in this work) were also utilized. It was

found that the gravitational waves from post-bounce core oscillation had near equivalent

dependence on the nuclear equations of state and the electron capture rates on heavy nuclei.

Moreover, both influenced the expected gravitational wave signals that can be detected

in current-generation gravitational wave detectors. If the electron capture rates were to be

better constrained, detection of such gravitational waves may be able to untangle information

about the nature of the nuclear matter equation of state.

As both the early post-bounce neutrino emission and gravitational-wave multi-messenger

signals will be significantly constrained should improved experimental and theoretical esti-

mates for the relevant electron capture rates become available, continued effort along this

axis should be a top priority in the field of nuclear astrophysics.

2.6.1 Implementation procedure for future updates

The weak-rate library codebase is maintained on the web based Git version control repository

hosting service GitHub. It is currently implemented as a Git submodule in the neutrino-

interaction library NuLib. This organization allows for updates to the weak rate library to

be easily propagated to NuLib without source code duplication. When future updates to the

weak rate library are desired, the following steps should be followed,

1. The most up-to-date GitHub repository for the weak rate library (currently

https://github.com/csullivan/weakrates) should be forked to a different user account.

2. Development and updates can be made using Git on this new GitHub fork of the weak

rate library.

3. To propagate these changes to NuLib, a fork should be made of the most up-to-date
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repository of NuLib (currently https://github.com/evanoconnor/NuLib).

4. This new GitHub fork of NuLib should then be updated so that its weak rate library

submodule is pointing to the remote commit of the new weak rate library fork created

above in step 2.

5. Finally, a GitHub pull request should be made to bring this change, of the weak rate

library submodule link, into the main NuLib repository. This way NuLib users can

simply update the NuLib submodules and receive the new weak rate library code.

After following these steps, the officially hosted version of the weak rate library will become

the newly created fork, and NuLib will depend on it, rather than the csullivan/weakrates

fork.
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Chapter 3

The (6Li, 6Li′ + γ) reaction

Nuclear excitations by neutral-current neutrino scattering play an important role in neutrino-

nuclear astrophysics. The accurate knowledge of neutral-current neutrino-nucleus cross sec-

tions is also important for the observation of astrophysical neutrinos in earth-based neutrino

detectors [89].

In a recent review of weak interactions in core-collapse supernovae (CCSNe) and nucle-

osynthesis, Langanke and Martnez-Pinedo [90] discuss the importance of the comparison of

shell-model and RPA calculations with inelastic neutrino-nucleus scattering (INNS) cross

section estimates from experimental data. Because astrophysical models rely on theoreti-

cal calculations of these kind, and because the available data for comparison is limited at

present, the establishment of a new indirect technique to constrain these important theoret-

ical estimates is of high value.

INNS has been argued to be a dissipative mechanism by which neutrinos deposit their en-

ergy in nuclear matter during CCSNe [91]. Furthermore, successful CCSNe produce a strong

neutrino signal in the tens-of-MeV range which can be detected via the products of charged-

current (CC) and neutral-current (NC) weak interactions with nuclei in various detector

media. However, measurements relevant for supernovae neutrino detection do not exist for

most nuclei, and are highly uncertain where available due to their small cross sections [89].

One method for studying neutrino-nucleus reactions is via direct measurements through neu-
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trino spallation at reactor [92] and synchrotron [93] facilities. Only a few measurements have

been performed so far, such as the neutrino irradiation of 12C [94, 93].

An alternative approach is via indirect measurements that involve inelastic scattering of

other probes, such as (p, p′) [95, 96, 97] and (e, e′) [98, 99]. Such measurements are much

more feasible, and have been used to infer neutral-current neutrino inelastic scattering cross

sections in the past [100].

This inference is possible principally because inelastic scattering cross-sections are sen-

sitive to the probe-independent nuclear transition strength. For example, the dominant

component of the INNS cross section at astrophysical energies is directly related to the

Gamow-Teller (GT) transition strength. The cross section for a transition from an initial (i)

and final (f) state is given by [101]

σi,f (Eν) =
GF

2

π
(Eν −∆Efi)2B(GT0)fi, (3.1)

where GF is the Fermi constant, and Eν and ∆Efi are the energy of the scattered neutrino

and the difference between final and initial nuclear energies, respectively. B(GT0)fi is the

reduced GT strength in the inelastic channel (∆S = 1, ∆T = 1, and ∆Tz = 0),

B(GT0)fi =
g2
A

2Ji + 1
|〈f‖Ô(GT0)‖i〉|2, (3.2)

where gA is the axial vector coupling constant, Ji the spin of the initial nucleus. Ô(GT0) is

the corresponding GT operator,

Ô(GT0) =
1

2

∑
k

σ̂(k)τ̂0(k), (3.3)
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where σ̂ = 2ŝ and τ̂ = 2t̂ are the spin and isospin operators, respectively, and the sum

runs over all nucleons in the target. Thus, the allowed component of neutrino-induced

nuclear excitations are isovector spin-transfer excitations, with no change in orbital angular

momentum.

On the other hand, reactions mediated by hadronic inelastic scattering induce M1 tran-

sitions whose operator is given by

Ô(M1) =

√
3

4π

∑
k

[g`(k)ˆ̀(k) +
1

2
gs(k)σ̂(k)]µN , (3.4)

where ˆ̀ is the orbital angular momentum operator, and g` (gs) is the orbital (spin) gyromag-

netic factor. Thus, both isovector and isoscalar transitions contribute, as well as non–spin-

transfer transitions (transitions that involve only change in orbital angular momentum).

The isovector (IV) component of the M1 operator can be rewritten as

Ô(M1)IV =
∑
k

√
3

4π

(
gIV
`

ˆ̀(k)τ̂0(k) +
1

2
gIV
s σ̂(k)τ̂0(k)

)
µN , (3.5)

with the IV gyromagnetic factors gIV
α = (gnα − g

p
α)/2 (α = ` or s). The spin part of the

above isovector M1 operator (Eq. (3.5)) is the same as that of the GT0 operator (Eq. (3.3))

except for a constant factor. This indicates that the GT0 strength, which is needed to

infer the inelastic neutrino-nucleus cross-sections, can be extracted from hadronic probes

such as (p, p′) under certain circumstances. Specifically, because the (p, p′) probe constitutes

a transition of Jπi = 1/2+ → Jπf = 1/2+, and Ti = 1/2 → Tf = 1/2, it can induce

isovector transitions (∆T = 1) as well as isoscalar transitions (∆T = 0), both with various

contributions of total spin transfer. Therefore, (p, p′) is capable of extracting GT0 strength
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where the orbital and isoscalar contributions are negligible [100]. These assumptions are

valid primarily for spherically symmetric nuclei with weak or separable isoscalar responses.

In general, it would be ideal to have a probe which is capable of extracting the GT0 strength

from inelastic excitations, without consideration of these properties. In this work, a different

reaction probe is tested in which isovector spin-transfer excitations can be directly isolated.

The (6Li, 6Li′[T = 1, Tz = 0, Jπ = 0+, 3.56 MeV]) reaction, first suggested by Austin

et al. [102], provides direct access to the GT0 response of nuclei in an unambiguous manner,

as the quantum numbers of the initial and final states guarantee the induced transition of

∆S = 1, ∆T = 1, and ∆Tz = 0. This selectivity is a distinct feature of the (6Li, 6Li′)

probe. A simplified level diagram of 6Li is shown in Fig. 3.1, which is drawn based on

Ref. [103]. This reaction channel can be identified by tagging the de-excitation γ ray with

Eγ = 3.56 MeV. Although the α threshold is located below this state (Qα = −1.47 MeV),

the α decay from the 3.56 MeV state is forbidden, unlike for other excited states, as it

violates parity invariance [103]. Instead, this state decays directly to the ground state via

γ emission. Since it has Jπ = 0+, the branching ratio to the 3+ state at 2.19 MeV, as well

as feeding from other higher excited states is negligible [103]. Therefore, the coincidence

measurement with 3.56-MeV γ rays provides clean identification of the reaction.

In order to establish (6Li, 6Li′) as a viable indirect probe of INNS cross sections, direct

measurements are a necessary benchmark. For this purpose, the 12C(6Li, 6Li′) measurement

was performed as long-baseline direct neutrino measurement data exists [93]. Furthermore,

measurements on 24Mg and 93Nb were also performed. For these latter measurements the

3.56 MeV de-excitation γ-rays were not resolvable. As the tagging of this gamma is the basis

for the proposed technique, the gamma background due to the decay of the isoscalar giant

resonances must not dominate. In this work it is demonstrated that for heavier nuclei, this
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Figure 3.1: A simplified level diagram of 6Li based on Ref. [103]. The α decay of the Jπ = 0+,
T = 1 state at Ex = 3.56 MeV is parity-forbidden, and thus this state mainly decays to the
ground state via γ emission.

background is much stronger than the isovector signal. Thus, the proposed method is likely

only applicable for light nuclei due to the proportionally significant contribution of gamma

emission from the isoscalar giant resonances in heavier systems.

3.1 Experiment

The 12C(6Li, 6Li′) measurement was carried out at the Research Center For Nuclear Physics,

Osaka University, Japan. A layout of the RCNP facility is shown in Fig. 3.2. A 100-MeV/u

6Li beam was accelerated via the coupled operation of the azimuthally varying field (AVF)

and ring cyclotrons with a measured resolution of ∼1.75 MeV in FWHM. The beam energy

of 100-MeV/u is well suited for the present study of the spin-isospin response because at

this energy the reaction mechanism is simple with small momentum transfer at 0◦ scattering

angle [104].

The 6Li beam was transported achromatically to the WS experimental hall (see Fig. 3.2)
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Figure 3.2: The primary facility beam line layout for the Research Center for Nuclear Physics
(RCNP) located at Osaka University, Japan. In this experiment, the 6Li beam was trans-
ported from the ring cyclotron (shown in green) into the WS hall. It was then transported
achromatically to the Grand Raiden target position. See text for details.
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where it was impinged upon a 15.21 mg/cm2 natC target oriented at 22.5◦ relative to the

horizontal plane (yielding an effective thickness of 16.46 mg/cm2). The beam intensity was

measured to be ∼1 pnA.

3.1.1 The CAGRA+Grand Raiden Coincidence Setup

3.1.1.1 Grand Raiden Spectrometer

The 6Li ejectiles were momentum-analyzed and detected at the focal plane of the Grand

Raiden spectrometer [105] in the 0◦ setting. Figure 3.3 illustrates the layout of the Grand

Raiden spectrometer and the end station focal plane detectors. The Grand Raiden focal

plane consisted of two Multi-Wire Drift Chambers (MWDCs) and three plastic scintillators

of thickness 3 mm, 10 mm, and 10 mm, respectively. Positioned between the two 10-mm

plastic scintillators was a 12-mm aluminum plate (shown in red in the bottom panel of

Fig. 3.3), which was used to stop the residual 6Li nuclei so that the final scintillator could

serve as a veto on the d and 4He products from 6Li breakup. Each MWDC featured two

anode wire planes so that positions in both the horizontal and vertical directions could be

determined, while the horizontal and vertical angles were inferred using the positions from

both MWDCs together. The entire set of focal plane detectors were oriented at a 45◦ angle

relative to the beam axis.

The unreacted beam was dumped through the holes of the MWDCs into the 0-degree

Faraday cup located at ∼12 m downstream of the focal plane and was shielded to reduce

background for the γ-ray measurement at the target position. The distance between the

center of the hole and the edge of the active area of the MWDC was ∼20 cm. This distance

corresponds to a momentum range which could not be measured with respect to the unre-
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acted beam at 0 degree and was ∼1%, corresponding to ∼10 MeV for 100 MeV/u 6Li. The

resulting excitation-energy spectrum was studied up to 40 MeV.

The plastic scintillators were used for energy-loss measurements and served as a time-of-

flight (TOF) start signal, with the cyclotron RF as the stop. Together, the energy loss in

the scintillators and the TOF provided the particle identification with which the d, 4He, and

6Li could be separated.

As the horizontal scattering angle at the target is determined primarily from the hori-

zontal incident angle at the focal plane, a slight under-focus mode was employed, in which

the ion-optical focus of Grand Raiden was placed upstream of the focal-plane MWDCs. In

focused mode, the small vertical angular magnification in Grand Raiden results in poor res-

olution of the reconstructed vertical scattering angle. However, by slightly under-focusing

the ion optics the vertical scattering angle at the target becomes strongly dependent on the

vertical position in the MWDCs. As the under-focusing is increased, the vertical position

range in the focal-plane detectors will span a smaller range of scattering angles at the tar-

get and thereby improve the angular resolution [95]. Further details regarding the nominal

acceptance, magnification, and resolution of the Grand Raiden spectrometer can be found

in reference [106].

3.1.1.2 CAGRA

The target was placed in a scattering chamber which was surrounded by 11 high-purity Ger-

manium (HPGe) clover detectors in the “Clover Array Gamma-ray spectrometer at RCNP

for Advanced research”, CAGRA. The CAGRA array of HPGe detectors were of critical

importance for the success of the measurement, as they detected the 3.56 MeV γ-ray from

6Li which is emitted when an inelastically induced GT0 transitions occur in the target. The
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Figure 3.3: Top panel: Layout of the Grand Raiden Spectrometer which was used to mo-
mentum analyze the inelastically scattered 6Li nuclei. The spectrometer was configured with
seven magnets in the QSQDMDD configuration (where Q, D, S, and M are Quadrupole,
Dipole, Sextupole, and Multipole magnets, respectively). Bottom panel: configuration of
the spectrometer end station and focal-plane detectors. Figure adapted from [106, 95]. See
text for details.
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Figure 3.4: The CAGRA array of HPGe clover detectors. CAGRA consisted of two rings of
clover detectors with 8 detector slots at 90 degrees and 4 at 135 degrees. There were also 4
forward slots for LaBr3 detectors at 45 degrees, but they were not used in this work due to
their large angular coverage which made Doppler reconstruction challenging.
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Figure 3.5: The range of energies the 3.56 MeV γ-ray from 6Li in the laboratory frame. The
γ-ray emitted from the de-excitation of the 6Li[0+;T = 1; 3.56MeV ] state is 3.56 MeV in
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in red are the clover crystal positions in the CAGRA array. Each clover has crystals at two
distinct azimuthal angles. Thus, the two rings of clover detectors span for separate angular
ranges. For the purpose of Doppler reconstruction, the centroid of the clover crystal is used
as the gamma interaction point.

HPGe clover detectors were configured in the CAGRA array with a ring of 8 detector slots

at 90◦ and 4 at 135◦, as shown in Figure 3.4 . Only seven of the eight 90◦ slots were utilized

in this measurement.

Because the 6Li ejectile was moving at a velocity of β ∼ 0.43, the energy of the γ-ray,

which is 3.56 MeV in the rest frame, varied from 2.25 MeV to 5.63 MeV in the laboratory

frame as shown in Fig. 3.5. Each ring of clovers had two forward crystals and two backward

crystals. Thus, the entire array spanned four scattering-angle ranges, the centroids of each

(coinciding with the HPGe crystal center) were used as the gamma-ray interaction point for

the purpose of Doppler-reconstruction, and are shown as red points in Fig. 3.5. The angular

coverage of each clover crystal in the CAGRA array was ∼ 12◦, and the distance between
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the target and a germanium crystal was ∼20.8 cm.

3.2 Methods & Analysis

3.2.1 Data acquisition and analysis framework

In this measurement, Grand Raiden and CAGRA were instrumented with separate data

acquisition (DAQ) systems. The Grand Raiden DAQ was run as the master trigger, and

thus all singles data were saved, while the CAGRA DAQ was run as a slave, only validating

when a trigger in both CAGRA and Grand Raiden were present.

The Grand Raiden DAQ is an analog system that was developed and maintained by Tamii

et al. [107]. Signals from the left and right photomultiplier tubes (PMTs), attached to either

side of the focal plane plastic scintillators, were divided into two signals in order determine

the pulse height (for energy loss information), as well as time discrimination via a CFD

(constant fraction discriminator). The output of the CFD was then split and used for time-

of-flight information, as well as for a coincidence trigger with the other PMT associated

with the same plastic scintillator. The measured live-time ratio for the Grand Raiden DAQ

during the 12C(6Li,6Li′) measurement was ∼0.82.

The CAGRA DAQ was newly formed for the campaign of measurements, in which the

6Li experiment was a part, the details of which will be described in a forthcoming pub-

lication. The CAGRA DAQ was instrumented with the same 14bit, 100MHz flash ADCs

(analog-to-digital) utilized by the GRETINA tracking-detectors [108] developed at Lawrence

Berkeley National Laboratory (LBNL). However, in this campaign, these digitizers were in-

strumented with customized firmware by Argonne National Laboratory’s (ANL) Gammas-

phere team [109]. This firmware was designed to be highly customizable in order to interface
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Figure 3.6: The analysis software stack that was used in the RCNP CAGRA+Grand Raiden
campaign. Dashed blue lines show application and library boundaries. Solid arrows that
cross these boundaries represent communication by local memory, shared memory or disk
I/O. See text for details.

with a variety of different detector systems, and to be able to handle very high count rates.

The total deadtime of the CAGRA DAQ was measured to be ∼4.5µs.

The separate DAQs were synchronized using a MyRIAD module developed at ANL,

which was inserted into the Grand Raiden DAQ. The MyRIAD (Multipurpose γ-ray Interface

to Auxiliary Detectors) module provided a general purpose interface and clock that could

be used in concert with the digital DAQ system utilized by CAGRA. After synchronizing

the MyRIAD clock in the Grand Raiden DAQ with the clock in the CAGRA digitizers,

timestamps from the separate data streams could be correlated with a sampling resolution

of ten nanoseconds.
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Since the data streams from each system were written to disk separately, a modular data

analysis framework that could accommodate raw data events from a variety of sources was

developed. The block-diagram software stack used in this work is shown in Fig. 3.6. The

core components were,

· Tamii-analyzer: A Grand-Raiden raw event processing and analysis framework [110]

· GRUTinizer: Online and offline framework for time-sorting, unpacking, and analyzing

events from generic sources [111, 112]

· MPIEventLoop: An MPI mapreduce implementation for distributed data processing.

The GRUTinizer analysis framework, which was originally developed for online and offline

analysis at the National Superconducting Cyclotron Laboratory (NSCL), was used for the

primary event correlation and unpacking of data from both CAGRA and Grand Raiden.

First, raw events were extracted directly from CAGRA and indirectly from Grand Raiden

(via the Tamii-analyzer) and were time ordered by the data thread of GRUTinizer. These

heterogeneous event types were then stored in a thread-safe queue from which the next

thread, the building loop, could access. The building thread then time-correlated events

according to a user-defined time window. Then, these time-correlated events were passed

to the unpacking thread (via a threadsafe queue) which was responsible for transforming

the binary time-correlated data into user-defined C++ objects. These unpacked events were

then written to disk via an I/O thread, and then processed by an analysis thread. The

results of which could be displayed via a graphical user interface in real time.

Alternatively, the I/O thread could be used to distribute the processing of the unpacked

events to the high performance computing (HPC) center at RCNP. In this mode of operation,

the events were mapped to an allocation of CPU nodes which each maintained its own
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analysis thread that reduced the events according to a user-defined analysis library. This

map-reduce functionality was achieved using the Message Passing Interface (MPI) and was

built into a generic library for distributed event processing, known as MPIEventLoop. In

addition to this analysis framework, MPIEventLoop has also been implemented into the

ATTPCROOTv2 analysis framework for distributed processing of events from the active target

time projections chamber (ATTPC) at NSCL.

Utilizing the above described DAQ and analysis framework, the following sections de-

scribe the analysis techniques and transformations used to extract physical quantities from

raw experimental observables.

3.2.2 Grand Raiden calibrations

3.2.2.1 Sieve-slit scattering angle reconstruction

In order to infer trajectories of the 12C recoil and 6Li ejectile at the target position, the

scattering angles at the interaction point must be reconstructed from the image in the Grand

Raiden focal-plane detectors. Because no calculable ion-optical inverse map from the position

and angles in the focal plane exists for Grand Raiden, a calibration measurement with a sieve

slit was performed. A perforated block (known as a sieve slit) with regularly placed holes was

inserted 60 cm downstream from the target position. This ensured that scattered 6Li nuclei

of only very specific scattering angles would be transported to the focal plane detectors.

Because the holes in the sieve slit are known, the scattering angles at the target can then be

reconstructed from their image in the focal plane.

The horizontal (dispersive) and vertical (non-dispersive) scattering angles at the target,

θx and θy, were determined via a multivariate fit that depended on the horizontal and vertical
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Figure 3.7: The image of the sieve slit in the focal plane for 3 separate magnetic rigidity
settings (left) and the reconstructed scattering angles at the target using a least squares fit
to Eqs. 3.6 & 3.7 (right).

positions (xfp, yfp) and angles (θfp, φfp) in the focal plane as,

θx = c0 + c1xfp + c2θfp (3.6)

θy =
3∑
i=0

1∑
j=0

1∑
k=0

1∑
l=0

bijklx
i
fpy

j
fpθ

k
fpφ

l
fp (3.7)

where coefficients ci and bijkl are the adjusted fit parameters.

Measurements of the sieve-slit image in the focal plane of Grand Raiden were done at

several magnetic rigidities, so that the central ray of the elastically scattered 6Li would be

incident on different horizontal positions (xfp) in the focal plane. The left panel of Figure 3.7

is an illustration of the sieve-slit image at various horizontal positions in the focal plane.

Using the hole centroids of the horizontal and vertical positions and scattering angles in the

focal plane, a global least-squares fit was performed using Eqs. 3.6 & 3.7. The coefficients

of the best fit were then used in these equations and the result was applied on an event-by-
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event basis to the primary measurement data in order to deduce the scattering angles at the

target. An image of the reconstructed horizontal and vertical angles at the target for the

sieve-slit measurements is shown in the right panel of Figure 3.7. From these, the scattering

angles θ and φ at the target can be deduced from,

θ = tan−1
(√

tan(θx)2 + tan(θy)2

)
≈
√
θ2
x + θ2

y (3.8)

φ = tan−1
(

tan(θy)

tan(θx)

)
≈
θy
θx

(3.9)

where the small-angle approximation is used for the RHS of Eqs. 3.8 & 3.9.

With the scattering angles calibrated, the angular resolutions for the horizontal and

vertical scattering angles at the target were found to be 2.8 mrad and 10.3 mrad, respectively.

This yielded a resolution of ∼10.6 mrad in the scattering angle θ, suggesting that half-degree

bins are a reasonable choice for the angular distributions discussed in later sections.

3.2.2.2 Energy calibration

The slope of the momentum calibration for the dispersive (horizontal) position in the focal

plane was performed by measuring the elastic scattering peak from the 93Nb(6Li,6Li) reaction

at several magnetic rigidities. The offset was then calibrated using known states in 12C.

In addition, it was found that the energy calibration of Grand Raiden varied as a function

of time as can be seen in Figure 3.8. The centroid of the isovector 12C[2-;T=1;19.4 MeV]

state was analyzed in 15 minute intervals and it was found that it varied by 500 keV (on

average) over the course of the measurement, as shown in the top panel of Figure 3.8. This

time-varying offset in the energy calibration was corrected as shown in the bottom panel.
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corrected
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Figure 3.8: The time-dependence of the Grand Raiden energy calibration for the centroid
of the 12C[2-;T=1;19.4 MeV] state in the 12C(6Li,6Li’) excitation energy spectrum. Due to
the coincident excitation of the 6Li ejectile to its 3.56 MeV state, this isovector state in 12C
appears at ∼23 MeV (=19.4 MeV + 3.56 MeV).
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3.2.3 CAGRA calibrations

3.2.3.1 Energy calibration

When instrumented with the ANL firmware, the CAGRA digitizers perform minimal anal-

ysis, instead choosing to offload processing such as pole-zero and asymptotic baseline cor-

rections to software. The primary energy information saved for each digitizer firing are the

pre and post-rise integration windows. In the case of high rates, the gamma-ray energy is

calculated as,

Eγ = slope ∗
(
Σpost − Σpre · pz

)
M

+ offset(rate), (3.10)

where slope and offset are the energy calibration fit parameters, the Σ’s are the pre and

post-rise ADC integration sums, pz is the constant pole-zero correction to the pre-rise energy

integration, and M is the shaping time or the width of the integration regions (3.5µs in this

measurement). The energy calibration slope, offset, and pole-zero corrections were initially

determined with standard calibration sources such as (60Co, 152Eu and 56Co).

However, it was found that during production runs with beam, the offset in the energy

calibration of Eq. 3.10 varied linearly with the count rate in each crystal. This rate depen-

dence of a specific HPGe crystal signal is demonstrated in Figure 3.9. Panel (a) shows an

example count rate as a function of time for the CAGRA array. The centroid of the 511 keV

γ-ray was tracked for various count rates and plotted as a function rate in panel (b). Panels

(c) and (d) show the response of a specific crystal in the array to variations in the rate. A

least squares fit of a linear trend for the gamma energy calibration offset as a function of rate

was performed for each HPGe crystal in the array, and then applied on a second-by-second

basis to determine the correct gamma-ray energy calibration offset during the production

runs. With this method, the rate dependence was corrected as shown in panel (d), and the
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Figure 3.9: Rate dependence of the CAGRA clover crystals. Panel (a) shows an example
count rate spectrum as a function of time for the CAGRA array. Panel (b) details the rate
dependence of the energy calibration offset for a specific HPGe crystal in the array. This
trend was established for each crystal and then used to correct the energy calibration on a
second-by-second basis. Panels (c) and (d) show the rate dependent gamma-ray energy and
(corrected) rate independent gamma-ray energy for the 511 keV line, respectively.
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energy resolution was greatly improved. After having applied this technique, staff at ANL

suggested an alternative corrective method that applie the rate dependence to the post- and

pre-rise sums individually [113]. This method was applied and was found to provide results

comparable to the method described in this work.

3.2.4 Invariant missing mass reconstruction

The reconstruction of the 12C excitation energies for isovector requires two steps: an invariant-

mass reconstruction, and a missing-mass reconstruction. Figure 3.10 illustrates the full kine-

matics for the system, as well as the two intermediate steps. Physically, this occurs because

after inducing an isovector transition in the 12C target nucleus, the 6Li will itself be ex-

cited into the 0+; T=1 excited state at 3.56 MeV. This intermediate particle, known as

the invariant will decay via gamma emission into the 6Li ground state, which will receive a

momentum-kick from the de-excitation γ-ray. Thus, the first step in the reconstruction is to

combine the measurements of 6Li ejectile and its de-excitation γ-ray to infer the momentum

four-vector of the 6Li′ invariant as,

P
6Li′(inv.)
µ = P

6Li
µ + P

γ
µ , (3.11)

where each of the four-vectors are in the laboratory reference frame. By inferring the 6Li′

invariant in this way, it can then be combined with knowledge of the 6Li incident beam to

perform a missing-mass reconstruction of the excited 12C recoil. The missing mass of the

12C′ is found from the missing energy and missing momentum as,

mmissing =
√
E2

missing − p
2
missing. (3.12)
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Figure 3.10: The kinematics of the 6Li reaction.

The excitation energy of the recoil is then derived as,

Ex(12C) = mmissing −m(12C). (3.13)

The missing momentum and missing energy are calculated from the 6Li invariant of Eq. 3.11

and the incident beam four-vector via standard conservation laws,

P
6Li(beam)
µ + P

12C(target)
µ = P

12C′(missing)
µ + P

6Li′(inv.)
µ . (3.14)
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However, as the incident beam is not monitored on an event by event basis, uncertainty in

the energy and the incident angles of the 6Li primary beam contribute to the resolution of

the reconstructed missing-mass excitation energy and scattering angle. From Eq. 3.14 the

missing energy and momentum are apparent,

Emissing = Ebeam +mtarget − Einv. (3.15)

and,

pmissing = pprojectile − pinv.. (3.16)

As the invariant 6Li′ is inferred via the measurement of the 6Li ejectile and the de-excitation

γ-ray, the missing excitation energy of the 12C is fully determined.

It should be noted that in the 12C(6Li,6Li′)12C′ measurement, only transition in 12C

which are isovector in nature will cause 6Li to emit the characteristic 3.56 MeV γ-ray.

Therefore, the above mentioned invariant-mass + missing-mass spectroscopy only applies to

isovector transitions. For the case of isoscalar transitions, the excitation energy in 12C can

be deduced via a standard missing-mass technique without consideration of any intermediate

invariant. (Because isovector transitions in the target necessitate that the 3.56MeV state in

6Li was also populated, energies of the isovector states will be shifted in energy relative to

the isoscalar transitions by 3.56 MeV.)
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Figure 3.11: (a) A comparison of the contribution of the intrinsic energy resolution, opening
angle uncertainty, and velocity spread of the ejectile, to the overall uncertainty in the Doppler
reconstructed gamma-ray energy for the detection of the 3.56 MeV de-excitation gamma from
6Li in CAGRA. The uncertainty in the emission angle of the γ-ray is the dominant component
of the overall resolution. (b) The resulting estimated resolution of the reconstructed invariant
6Li ejectile given the resolution of the measured de-excitation gamma.

3.2.5 Doppler reconstruction

The Doppler-reconstructed γ-ray energy in the rest frame (cm) of the incident particle, Ecm
γ ,

was obtained from that in the laboratory frame (lab), Elab
γ , as

Ecm
γ = γ(1− β cos θlab

γ )Elab
γ , (3.17)

where β is the velocity of the projectile, and θlab
γ is the γ-ray emission angle in the laboratory

frame. This reconstructed γ-ray energy peak is broadened compared with the intrinsic energy
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resolution of the detector as,

(
∆Ecm

γ

Ecm
γ

)2

=

(
∆Elab

γ

Elab
γ

)2

+

(
β sin θlab

γ

1− β cos θlab
γ

)2

(∆θlab
γ )2 +

(
βγ2(β − cos θlab

γ )

1− β cos θlab
γ

)2(
∆β

β

)2

.

(3.18)

The first term in Eq. 3.18 corresponds to the intrinsic energy resolution of the HPGe clover

detectors and the third term corresponds to the velocity spread of the ejectile, which arises

from the unknown reaction point in the target thickness, and is ∆β/β ≈ 0.03%. Both of these

contributions to the uncertainty are marginal compared to the uncertainty of the detection

angle due to the finite size (corresponding to an angular coverage of ∆θlab
γ ) of a single crystal

in the CAGRA clover detectors. Figure 3.11a compares the estimated contributions of each

component of Eq. 3.18 to the total resolution. Panel (b) of the same figure shows the net

effect on the energy resolution of the reconstructed 6Li invariant.

The effect this resolution has on the signal-to-noise of the Doppler-reconstructed de-

excitation gamma is significant. As will be described in later sections, the resolvability of

this transition above a significant high-energy background due to statistical γ-ray emission

from the isoscalar excitations (in particular, the isoscalar giant monopole/dipole resonances

(ISGMR/ISGDR)) necessitates high precision angular resolution for the gamma detectors.

The large angular coverage of each clover crystal in the CAGRA array (∼ 12◦), significantly

limited the achievable signal-to-noise in this measurement.

3.2.6 Excitation energy resolution

As the energy of this de-excitation gamma is a component in the reconstruction of the

invariant (as described by Eq. 3.11), it thereby also contributes to the resolution of the

reconstructed excitation energy in 12C. If one ignores the momentum-kick imparted to the
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6Li′ ejectile during its decay, the best resolution that can be achieved is analogous to the

full width of the Doppler reconstructed gamma energy, ∆E=5.5-2.2=3.3 MeV.1 This was

confirmed via a monte-carlo Geant4 simulation, which included,

• Realistic beam profile and inelastic scattering reaction mechanism

• Nuclear inelastic excitation of the target/recoil 12C and projectile/ejectile 6Li systems

• The decay of the 6Li′[3.56 MeV] invariant inflight to the 6Li[0.0 MeV] ground state

and the emission of the γ[3.56MeV ].

By analyzing the simulated reaction data and ignoring the decay of the invariant (the

momentum-kick of the de-excitation gamma, as mentioned above) the purple line in the left

panel of Figure 3.12 represents the simulated best-case reconstruction of the 12C[15.1 MeV]

excited state. The square shape is a direct result of uniform emission of the de-excitation

γ-ray’s according to cos
(
θlab
γ

)
.

However, when compared with the shape of the missing-mass reconstructed excitation

energy in the 12C(6Li,6Li’) measurement (right panel of Fig. 3.12), the data was found to

have a much broader shape. To reproduce this shape, a gaussian beam energy resolution of

1.75 MeV in FWHM was required to smear out the simulated shape (shown as the black

crosses in the left panel of Fig. 3.12). This width was determined by fitting simulations

with different beam energy resolutions to the data. The red line in the left and right panels

of the same figure produced the best fit to the data and corresponds to an intrinsic beam

energy resolution of 1.75 MeV. Prior to the measurement, the beam energy resolution was

expected to be on the order of a few hundred keV, but due to problems with the cyclotrons

and difficulty tuning the 6Li beam, the resolution was much worse.

1The square purple line shape in Fig. 3.12 has exactly this width.
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Figure 3.12: Comparison of the simulated reconstruction of the 12C[1+;T=1;15.1 MeV]
excited state with the measured result. In the left panel, the purple line represents the
(simulated) best-case scenario for the missing mass reconstruction of the 15.1 MeV peak,
if the invariant 6Li[0+;T=1;3.56 MeV] is ignored. By comparing this with the data in the
right panel, it is apparent that the data follows a much broader distribution. In order to
reproduce the data, the simulated missing mass reconstruction of this state in 12C (purple)
had to be smeared with a gaussian of a variety of widths. The shape of the smeared state
was interpolated and fit to the data using a normalization factor. The best fit was found
with a gaussian smearing of FWHM=1.75 MeV (shown by the black scatter crosses and red
line in the left and right panels, respectively). The smearing that was required suggests that
the intrinsic beam energy resolution was 1.75 MeV.
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3.2.7 Cross-section calculations

The final step in the data analysis procedure was to evaluate the excitation-energy and

center-of-mass scattering-angle dependent differential cross sections for states populated in

12C. The differential cross section for the 12C(6Li,6Li’) singles and coincidence data was

calculated as,

dσ

dΩ
=

Y

NbNtLηdΩεγ
, (3.19)

where Y is the yield (integrated number of counts over a given energy and angular range),

Nb,t are the number of incident 6Li beam particles and 12C nuclei in the target, L is the

average live-time of the DAQ (82%), η is the efficiency of the MWDCs, dΩ is the solid-

angle corrected for the angular acceptance of Grand Raiden, and εγ is the efficiency of the

CAGRA array at detecting the Eγ = 3.56 MeV γ-ray in the laboratory frame (note that the

CAGRA efficiency was only used in the the calculation of the coincident 12C(6Li,6Li’+γ)

cross-section). The evaluation of each component in Eq. 3.19 is detailed in the following list,

• Y : The yield was measured by integrating the number of counts in each energy and

angular bin after applying the 6Li gamma-coincidence of the prompt events (prompt-

random ratio of 3.3±0.3) and background subtraction. The background subtraction is

described in section 3.3.1.

• Nt: The number of 12C nuclei in the 15.21 mg/cm2 natC target, positioned at an angle

of 22.5 degrees, was calculated as,

Nt =
15.21mg/cm2

cos(22.5◦)
98.9%(12C/natC)

1.9926 · 10−20mg/12C
= 8.17 · 1020cm−2 (3.20)

• Nb: The normalization of the number of incident 6Li beam particles was the leading
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order uncertainty in this measurement and is described in section 3.2.7.1.

• dΩ: The acceptance corrected opening angle for each angular bin was calculated as,

dΩ = 2π C ·
∫ θf

θi

sinθ · dθ (3.21)

where θi,f are the boundaries of the center-of-mass angular bin. C is the angle depen-

dent acceptance correction factor for the Grand Raiden spectrometer. The nominal

acceptance of Grand Raiden in the horizontal and vertical angles is ±20 mrad and

±70 mrad, respectively. Therefore, in order to extract angular distributions beyond

20 mrad in laboratory scattering angle, an acceptance correction to dΩ is required.

Because the angular distributions are azimuthally invariant (constant with respect to

φ), and because the acceptance in the vertical (non-dispersive) angle was much greater

than the horizontal angle, the full acceptance angular distribution along θ = θy (where

θx ≈ 0) was used to determine the shape of the angular distribution. From this shape,

the required acceptance correction could be determined for horizontal and vertical

scattering angles where the acceptance was cut.

• L: The average live-time ratio of the Grand Raiden DAQ determined from the readout;

the live-time ratio was 82% for the 12C measurement.

• η: The voltage of the four anode wire planes in the MWDCs was optimized for peak

efficiency using a pilot 6Li beam at the beginning of the experiment. The total efficiency

η was then estimated as η = η1η2η3η4 = 0.74 where ηi was between 91-93% for the

approximate efficiency of each anode plane.

• εγ : The efficiency of the CAGRA HPGe clover array to the 6Li 3.56 MeV de-excitation
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γ-ray, which is Doppler boosted to the energies shown in Fig. 3.5 for the four distinct

crystal positions in the CAGRA array. The energy dependency of the efficiencies for

each clover were determined via a Geant4 simulation and were then fit to absolute

efficiency measurements made with the CAGRA array using calibrated sources. The

measured intensity was corrected for the deadtime of the clover crystal readout (4.5µs),

which was only a ∼1.5% effect given a rate of 3.4 kHz. The non-uniform angular

distribution of the gamma-emission from the moving frame was also accounted for on

a per crystal basis using Geant4. Altogether, the uncertainty in the estimated gamma

efficiency calibrations were much smaller than that of the incident beam normalization.

The aggregated efficiency of the CAGRA array to the 3.56 MeV gamma was found to

be ∼(0.44±0.03)%.

3.2.7.1 Normalization of the number of incident particles

Following the primary measurement, absolute normalization measurements were made in

which the incident beam intensity was measured with a Faraday cup at the entrance of the

WS experimental hall. The differential cross section for the singles data in this normalization

run was then used to normalized the summed spectra of all the 12C(6Li,6Li’) data. This

method was chosen because it was believed that the transmission to the faraday cup at 0◦

was not constant over the course of measurement, nor during the normalization runs, and

thus a run-by-run, or instantaneous normalization using the scalar data would not have been

reliable.

The uncertainty in the normalization produced in this way was dominated by the uncer-

tainty in the 6Li beam intensity during the normalization runs. The primary component of

this uncertainty came from the relatively low rate which was near the tolerance of the beam
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monitor, and which appeared to fluctuate on the ∼20% level between normalization runs.

The uncertainty in the incident particle normalization, as well as the time-dependent

energy variation discussed in the previous section, together lend evidence that variations in

the 6Li beam integrity may have been present throughout the experiment.

3.2.7.2 Multipole Decomposition Analysis

Various multipole contributions to the cross sections were extracted via a multipole decom-

position analysis (MDA) [114]. In the MDA, a linear combination of theoretical angular

distributions, each with different units of angular momentum transfer, were fit to the mea-

sured differential cross section,

[
dσ

dΩ

]
Total

= c1 ·
[
dσ

dΩ

]
∆L=0

+ c2 ·
[
dσ

dΩ

]
∆L=1

+ c3 ·
[
dσ

dΩ

]
∆L=2

. (3.22)

The theoretical differential cross sections for the (6Li, 6Li′) reactions that are utilized in

the MDA have been estimated by means of Distorted Wave Born Approximation (DWBA)

calculations. The theoretical angular distributions chosen for the MDA were the combination

of ∆L = 0, 1 and 2 components that provided the best overall fit. The microscopic DWBA

code fold/dwhi [115] was used to estimate differential cross-sections by double-folding a

nucleon-nucleon (NN) interaction, in the form of a t-matrix, over transition densities of

the projectile-ejectile and target-residual systems. This calculation requires five principle

components,

1. An effective nucleon-nucleon (NN) interaction which describes the coupling of the

projectile (6Li) and target (12C) nuclei.

2. One-body transition densities (OBTDs), which describe the overlap of the initial and
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final nuclear many-body states in the projectile/ejectile (6Li-6Li) and target/recoil

(12C-12C) systems.2

3. Single particle radial wave functions of the participant nucleons in the presence of a

many-body core.

4. Optical model potentials which describe the distortion of the incoming and outgoing

nuclear wave functions by the target/recoil system.

5. Kinematics and spin variables describing the incident projectile energy, the reaction

Q-value, as well as the spin, isospin, and parity quantum numbers of the projectile and

target systems.

By the virtue of performing the inelastic scattering measurement at 100 MeV/u, many of

the complicated reaction mechanisms known to obscure the nucleon-nucleus interaction are

circumvented via the impulse approximation [104]. The requirement of calculation inputs

1. – 5. above can been seen in a straightforward derivation of the NN t-matrix.

For elastic scattering, the exact t-matrix can be written as,

T =
〈
χ+
∣∣V ∣∣ψ−〉 (3.23)

where ψ− is the full incoming wave function, χ+ is an outgoing distorted plane-wave, and V

is the interaction potential (+ and − indicate outgoing and incoming, respectively). In first

order DWBA, the full incoming wave function is approximated by an incoming plane-wave

2One-body transition densities weight the contribution of one-particle one-hole (1p-1h) transitions be-
tween single-particle orbits, and thus provide a way to connect the single-particle wave functions (and nucleon
operators) to the many-body system.

90



that is distorted by an optical model potential (4. from above),

T =
〈
χ+
∣∣V ∣∣χ−〉 . (3.24)

However, for inelastic scattering and charge-exchange reactions in which isospin transfer

occurs, the elastic scattering potential V must be replaced by a form factor that contains

information about the structure of the participant nuclei (OBTDs, 2. from above) and the

nature of the NN -interaction (1. from above). The t-matrix is then,

T =
〈
χ+
∣∣F [R]

∣∣χ−〉 (3.25)

F [R] = 〈B, b| V |A, a〉 (3.26)

where F [R] is the form-factor, and V is a many-body potential acting on the many-body

states of the projectile (a), target (A), ejectile (b) and recoil (B). In general, many-body

operators, such as V , can be expanded in second-quantized form to make its action on each

nucleon in the composite many-body state explicit,

V =
∑
pq

〈
φp
∣∣Veff

∣∣φq〉 â†pâq. (3.27)

Here, Veff is the effective NN interaction, the φ’s are the single particle wave functions of the

nucleons in the reaction system (3. from above), âq/â
†
p are 1p-1h creation and annihilation

operators, and the sum runs over all 1p-1h excitations.

By applying second quantization as in Eq. 3.27 for the two-body operator which acts on

the target/recoil and projectile/ejectile systems, the form-factor in Eq. 3.26 can be written
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as,

F [R] = 〈B, b|
∑
pqrs

〈
φBp φ

b
q

∣∣∣Veff

∣∣∣φAr φas〉 â†pâ†qârâs |A, a〉 , (3.28)

where the sum over indices p, q, r, and s refers to 1p-1h excitations in the recoil, ejectile, target

and ejectile systems, respectively This second quantized expression for the form-factor can

then be factored into densities, which represent the overlap of the initial and final many-body

states (the one-body transition densities, OBTDs),

F [R] =
∑
pqrs

〈B| [â†pâr] |A〉 〈b| [â†qâs] |a〉
〈
φBp φ

b
q

∣∣∣Veff

∣∣∣φAr φas〉 (3.29)

=
∑
pqrs

OBTD(AqBp)OBTD(asbr)
〈
φBp φ

b
q

∣∣∣Veff

∣∣∣φAr φas〉 , (3.30)

where the OBTD(AqBp) and OBTD(asbr) are the one-body transition densities for the

target/recoil and projectile/ejectile systems, respectively. Letting ρpq = OBTD(p, q)φpφq

it’s then readily apparent that this form-factor is simply double folding the target-recoil and

projectile-ejectile densities over the nucleon-nucleon effective interaction,

F [R] =
∑
pqrs

〈ρAB |Veff |ρab〉 (3.31)

=
∑
pqrs

∫ ∫
dξAB · dξab · ρAB(ξAB)Veffρab(ξab), (3.32)

where ξab (ξAB) are the relative spatial coordinates between the projectile and the ejectile

(target and recoil).
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Figure 3.13: Calculated angular distributions for isovector spin-transfer excitations of dif-
ferent orbital angular momentum transfer for the 12C(6Li,6Li′) inelastic scattering measure-
ment. Each panel is the angular distribution for a particular angular momentum multipole,
and the different color lines are the excitation energy (Q-value) dependence of the angular
distribution.

Finally, the optical-model potentials are used to calculate the incoming and outgoing

distorted waves χ , and are then used with the double-folded effective NN t-matrix as,

Tfi =
〈
χ+
f (~kf , ~R)

∣∣∣F [R]
∣∣∣χ−i (~ki, ~R)

〉
, (3.33)

where ki,f is the initial and final momentum vector for the distorted wave (5. from above).

The angular distributions are calculated via the standard t-matrix formalism as,

dσ

dΩ
= (

µ

2π~2
)2kf
ki
|Tfi|2,

where µ is the reduced mass of the outgoing particle.

Thus, items 1. – 4. in the above list are necessary and sufficient for DWBA estimates

that can be used to extract the multipole components of the 12C(6Li,6Li′) differential cross

section. For this particular analysis, these items were chosen as follows,

• NN-interaction: The effective interaction used in the t-matrix parameterization was
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the effective NN interaction by Franey and Love at 140 MeV [104], which has been

very successfully applied to heavy-ion induced charge-exchange and inelastic scattering

reactions in the past [116, 117, 118].

• OBTDs: The one-body transition densities for the 6Li and 12C systems were calcu-

lated with the configuration-interaction shell-model code oxbash [119]. The Cohen-

Kurath (6-16)CKI interaction [120] was used in the p-shell model space to calculate the

transition densities for 6Li, and the WBP interaction [121] was used in the spsdpf -shell

model space to calculate the transition densities for the 12C system.

• Single-particle wave functions: The single-particle radial wave functions were cal-

culated with the program WSAW [115] by matching the binding energy of a single-particle

wave-function outside a closed-core, to the single-particle binding energies calculated

in oxbash with the subprogram dens. These calculations employed the SkX skyrme

interaction [122].

• Optical Model Potential: The optical model potential (OMP) used to compute the

6Li−12C entrance and exit channels were fit from 12C(6Li,6Li) elastic scattering data

taken at 600 MeV [123]. The OMP parameters were fit utilizing the ecis [124] code

and the resulting best fit parameters were -60.94 MeV, 1.3725 fm, and 0.9142 fm for

the depth (V ), radius (rv), and diffuseness (ar) of the real Wood-Saxon potential and

-22.529 MeV, 1.610 fm, and 0.693 fm for the depth (W ), radius (rw), and diffuseness

(aw) of the imaginary Wood-Saxon potential.

• Kinematics & quantum numbers The reaction calculations were performed using

an incident total kinetic energy of 600 MeV/u for the 6Li projectile. Furthermore, the

projectile-ejectile system underwent the transition from Jπ = 1+(T = 0) → 0+(T =

94



1), while the target-recoil system underwent the Jπ = 0+(T = 0) → 1+(T = 1)

transition. Since parity (π) is unchanging in these transitions, the change in total

angular momentum J is due purely to spin-transfer reactions ∆S = 1. The quantum

numbers for Jπ and T for each system were the final component necessary for the

reaction calculations described in this section.

Angular distributions for isovector spin-transfer excitations of different orbital angular

momentum transfer for the 12C(6Li,6Li′) inelastic scattering reaction are shown in Fig-

ure 3.13. Angular distributions for separate angular momentum multipoles are shown, and

the calculations are performed over a range of excitation energies, corresponding to the

excitation energy range measured in the experiment. The multipole decomposition of the

measured cross-section with these angular distributions is discussed in the following section.

3.3 Results

3.3.1 The 12C(6Li, 6Li′ + γ) measurement

The coincident particle–gamma-ray spectroscopy measurement achieved via the use of the

Grand Raiden spectrometer and the CAGRA clover array is illustrated in Figure 3.14 in

which the coincident gamma-rays are shown as a function of excitation energy in 12C. Both

the laboratory and center-of-mass frame gamma-ray energies are shown (top and bottom

panels, respectively), from which a comparison of the 15.1 MeV state in 12C reveals the

Compton edge and photopeak of the 3.56 MeV gamma-ray emitted in-flight from 6Li. With-

out performing the doppler reconstruction, gammas from this state are spread out in the lab

frame as can be seen in the top panel of Fig. 3.14.
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Figure 3.14: The gamma-ray energy and target excitation energy matrix for the
12C(6Li, 6Li′ + γ) reaction. In the top panel, the gamma energies shown are those mea-
sured in the detectors, without any transformation applied and in the bottom panel, the
gamma energies have been Doppler reconstructed according to the clover crystal angular
positions. Both panels are drawn as a function of the excitation energy in 12C which is cal-
culated via the missing mass formalism. The red arrow in the top panel indicates the width
of the 12C(15.1 MeV) state owing to the momentum kick that is imparted to the 6Li and
which is not accounted for in the missing-mass–only reconstruction. This width is analogous
to the FWHM of the excitation energy spectrum shown in Figure 3.12. By comparing the
two panels, the effect of the doppler reconstruction can be seen, where the photopeak and
Compton edge owing to the 3.56 MeV gamma from 6Li is more prominent in the bottom
panel after reconstruction. In addition, gamma decay from the strong isoscalar resonance
(occurring above 20 MeV in excitation energy) is clearly evident.
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Figure 3.15: The Doppler-corrected γ-ray energy gated on the 12C[15.1 MeV; T=1] state for
emphasis. The 3.56 MeV γ-line from the 6Li[0+; T=1] excited state is clearly evident. The
resolvability of this γ-ray is crucial for tagging isovector spin-transfer reactions in the target
nucleus. The inset plot compares the signal to noise achieved with the clover detectors to
what is expected were a gamma-ray tracking detector was utilized. See text for details.

The Doppler reconstructed γ-ray energy spectra in coincidence with the population of

the 12C[15.1 MeV; T=1] state is shown in Figure 3.15. The yellow line shape shown in

the spectrum is the simulated response of the CAGRA array to the 3.56 MeV Doppler

reconstructed gamma, fit to the measured data. The blue line is the double exponential

background component of the fit. Shown in the red cross-hatched region is the 3.56 MeV

photopeak. Just below this region in energy, a convolution of the Compton distribution and

escape peaks for the 3.56 MeV gamma can be clearly seen. The four distinct peaks in the

region below the photopeak are from a single gamma transition at rest, in the target, that

has been distributed in energy according to the four angular ranges covered by the CAGRA

array.
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Figure 3.16: The reconstructed excitation energy spectrum of 12C, for different angular
bins, when applying the two gates shown in the Doppler-reconstructed gamma energy spec-
trum (Fig. 3.15). The red spectrum corresponds to the 3.56 MeV photopeak gate, and the
blue spectrum corresponds to the sideband, representative of the gamma background in the
photopeak gate. The 12C[1+;T=1;15.1 MeV] state, which is populated via an isovector spin-
transfer reaction, is clearly seen in the photopeak gated spectra, but not in the sideband
data.
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By gating on the region shown in red (E
γ
cm = 3.4 MeV - 3.8 MeV) and subtracting a

scaled sideband representative of the background contribution (shown in blue; E
γ
cm = 3.9

MeV - 4.3 MeV) 3, the coincident invariant missing-mass excitation energy for pure isovector

(∆T = 1) spin-transfer (∆S = 1) transitions in 12C can be extracted. The excitation energy

spectrum for each of these gamma gates is shown in Fig. 3.16. Even without performing

the sideband subtraction, the Gamow-Teller transition to the (1+;T=1;15.1 MeV) state and

the isovector spin-dipole transition to the (2-; T=1; 19.4 MeV) can be easily seen as excess

counts in the 6Li[0+;T=1;3.56 MeV] gated spectra (red) over the sideband (blue).

Figure 3.17 compares inelastic scattering for the 12C(6Li, 6Li′) singles cross section to

the 12C(6Li, 6Li′+γ) coincident cross section (the subtraction of the red and blue spectra in

Fig. 3.16). The singles data is dominated by the isoscalar resonances in 12C, shown in grey.

Making the coincidence measurement with the ∆S = ∆T = 1 transition in 6Li by gating

on the corresponding de-excitation gamma, the isovector spin-transfer excitations in 12C are

identified (black).4

The novelty of the 6Li probe is its ability to separate the proportionally weak isovector

spin-transfer excitations from the strong isoscalar excitations. Figure 3.17 displays this

selectivity. Whereas the 12C′[1+;T = 1; 15.1 MeV] is located in the shoulder of the isoscalar

resonances in the singles data, this state is easily resolved using the gamma-coincidence tag

3A wide sideband of ∼ 400 keV, as shown in Fig. 3.15, was often not practical due to contamination
from other gamma lines in this region. In practice, a narrower sideband from 3.8 - 3.9 MeV was used.
Furthermore, the counts from the sideband must be scaled to match the expected background in the region
of the 3.56 MeV photopeak. This was done by using the ratio of the integral of the double exponential
background fit, an example of which can be seen as the blue dashed line in Fig. 3.15. As this ratio changes

with the amount of background gamma contamination (which is a function of excitation energy of 12C), an
excitation energy dependent sideband scaling factor was utilized.

4The difference in energy scales shown in Fig. 3.17 is an offset of 3.56 MeV, where the reaction Q-value
for isovector spin-flip transitions includes the the excitation energy of the target nucleus and the commen-

surate excitation of the 6Li nucleus. Therefore, in order to recover the excitation energy spectrum for the
12C(6Li, 6Li′ + γ) coincident measurement, the 6Li′[0+;T = 1; 3.56 MeV] invariant must be reconstructed
prior to the missing mass reconstruction (see section 3.2.4).
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Figure 3.17: Comparison of the 12C inelastic scattering singles and coincidence exci-
tation energy dependent double differential cross section for the 12C(6Li, 6Li′) and the
12C(6Li, 6Li′ + γ) reactions, respectively. The coincidence spectrum shown is the result
of the subtraction of the differential cross section resulting from a gate on the photopeak
of the 3.56 MeV γ-ray and a sideband in the region directly above this gamma (shown as
the red and blue cross-hatched regions in Fig 3.15, respectively). The coincidence spectrum
corresponds to the isovector spin-transfer excitations in 12C, whereas the singles spectrum
contains all types of transitions but is primarily dominated by isoscalar excitations. See text
for details.
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proposed in this work.

With the methods described in section 3.2.7.2, theoretical cross sections for the 6Li-12C

system were calculated for excitations of isovector, spin-transfer reactions (∆T = 1,∆S = 1)

with multipoles of ∆L =0,1, and 2. The calculated angular distributions with distinct orbital

angular momentum transfer are shown in Fig. 3.13. To decompose the entire excitation

energy spectrum of 12C, angular distributions for each of these multipole components were

calculated in a range from 0-40 MeV (indicated by the colored lines in Fig. 3.13). These

energy dependent theoretical cross-sections were then fit to the angular distributions for each

excitation energy bin of the data, according to equation 3.22.

The multipole-decomposed double differential cross section for the 12C(6Li, 6Li′ + γ)

reaction as a function of excitation energy in 12C and center-of-mass scattering angle, is

shown in Fig. 3.18. The differential cross sections were corrected for the acceptance of

Grand Raiden, the detector live-time ratios, as well as the efficiency of the CAGRA array

for the 3.56 MeV γ detection (see section 3.2.7). The angular distributions for the 15.1 MeV

Gamow-Teller transition and the 19.4 MeV spin-dipole transition are shown in the right

panel of Fig. 3.18. With the aide of the multipole decomposition analysis described above,

the different multipole components of the 12C excitation energy are extracted.

Shown in red in left panel of Fig. 3.18 are the (∆T = 1,∆S = 1,∆L = 0) components

of the 12C spectra at different scattering angles. As expected, the strong transition to the

12C[15.1 MeV; T=1] state can be clearly identified and is dominated by ∆L = 0. This

is also clearly seen in the top right panel of Fig. 3.18 which illustrates that the angular

distribution for this state is primarily ∆L = 0. Thus, the 6Li probe’s unique selectivity

together with a multipole decomposition can uniquely identify states populated via GT0

transitions (∆T = 1,∆S = 1,∆L = 0). The extracted angular distribution for this state
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Figure 3.18: Double differential cross section for the 12C(6Li, 6Li′ + γ) reaction as a func-
tion of excitation energy and center of mass scattering angle, in which the 3.56 MeV state
was measured in coincidence. Due to conservation of spin and isospin, this coincidence
measurement extracts the isovector spin-transfer response of 12C. In addition, a multipole
decomposition analysis (MDA) has been performed utilizing DWBA angular distributions
to extract the components of orbital angular momentum transfer. Shown in the right panel
are the angular distributions for states in 12C dominated by Gamow-Teller transitions (top
panel) and spin-dipole transitions (bottom panel). The absolute scale has a systematic un-
certainty of ±20% due to uncertainty in the beam normalization which is not depicted in
the statistical error bars.
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is shown in the upper right panel of Fig. 3.18 in which the three components of the MDA

fit, and their sum, are shown. This state is almost purely ∆L = 0, with a small ∆L = 2

component at larger scattering angles.

This result compares well to the analogous angular distribution excited through charge-

exchange reactions on 12C into 12B populated via the 12C(t,3He) reaction [125]. For the

case of N=Z nuclei such as 12C, charge-exchange provides equivalent selectivity. In general,

however, it is difficult to select the analogous inelastic isovector spin-transfer excitations

via charge-exchange for N 6=Z nuclei. This is because the analog states in the charged-

exchange channel (∆Tz = ±1) are suppressed due to the large Clebsch-Gordan coefficients

that occur when the ground state isospin (which scales roughly with the isospin projection

T ≈ Tz = 1
2(N − Z)) is non-zero.

From the results for 12C shown in Fig. 3.18, is it clear the (6Li,6Li∗[3.56MeV]) reac-

tion is suitable for isolating the isovector-spin excitation energy spectrum in the inelastic

channel which establishes this probe as the inelastic analog to spin-transfer charge-exchange

reactions. Furthermore, with comparison to the direct 12C(ν, ν′) neutrino measurement of

Ref. [126], we see that the (6Li,6Li∗[3.56MeV]) reaction populates the same states thereby

confirming this probes utility as an indirect technique for constraining INNS cross sections.

3.3.2 The (6Li,6Li’) unit cross-section

The proportionality between Gamow-Teller transition strength and reaction cross sections

at scattering angle θ = 0◦, has been well established in the context charge-exchange reac-

tions [127, 125]. In a similar way, the inelastic Gamow-Teller (GT0) matrix elements can be

deduced from the measured differential cross sections by applying the empirically established

unit cross-sections from charge-exchange under the assumption of isospin symmetry [128].
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For charge-exchange, this proportionality relation has been written as,

dσ

dΩ
(0◦) = σ̂GTF (q, ω)B(GT), (3.34)

where σGT is the unit cross section, F (q, ω) is a kinematical factor correcting for non-zero

momentum and energy transfer, and B(GT) is the reduced GT transition strength. This

relationship was originally established for (p, n)/(n, p) reactions [129] and subsequently ap-

plied to many inelastic and charge-exchange reactions at medium energy [130]. Analogously,

the corresponding relation for the present (6Li, 6Li′) reaction is,

dσ(6Li,6Li′)

dΩ
(0◦) = σ̂

(6Li,6Li′)
GT0

F (q, ω)B(GT0), (3.35)

with σ̂
(6Li,6Li′)
GT0

the Gamow-Teller unit cross section (UCS) for this reaction and B(GT0) is

the ∆Tz = 0 (inelastic) Gamow-Teller transition strength.

From the β-decay data of 12B and 12N, the GT transition strengths for the transitions

from the 12C ground state to the ground states of 12B and 12N, which are both analogs of

the transitions from 12C ground state to the 15.1 MeV state in 12C, are determined to be

0.99 and 0.88, respectively. For the determination of the unit cross section σ̂
(6Li,6Li′)
GT0

, the

average of these measurements was adopted. The Gamow-Teller strength for the transition

to the 15.1 MeV analog state of the 12B ground state was also calculated via oxbash [119]

using the Cohen-Kurath (8-16)POT interaction in the p-shell-model space [120], and found

to be 0.921, which agrees well with the average strength of the beta-decay measurements.

Utilizing Eq. 3.35, the 12C(6Li, 6Li∗[3.56MeV]) unit cross section was found to be 11.3± 2.7

mb/sr. The unit cross section was also determined from the DWBA calculation and found
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to be in agreement (11.325 mb/sr) with the data. Finally, the unit cross section was also

determined from the analog transition in the 12C(6Li,6He) data [? ] with a value of ∼ 10

mb/sr. Although it was not possible to determine an error from the data presented in Ref.

[? ], this value is also in good agreement with the present results.

Following the established mass dependence of the unit-cross section for (t,3He) and

(3He,t) reactions [125], it is postulated here that the 6Li Gamow-Teller unit cross section

decreases with target mass as

σ̂
(6Li,6Li′)
GT0

(A) = N exp(−xA1/3). (3.36)

where N , and x are fit parameters. The original intention of this work was to use the

24Mg and 93Nb measurements to constrain the above fit parameters with data, thereby

determining the mass dependence of the UCS fully. However, it was found that the signal-

to-noise (S/N) for the 6Li 3.56 MeV γ-ray was low enough to be unresolvable for the 24Mg

and 93Nb measurements (see section 3.3.3). Thus, to infer the mass dependences of the

Gamow-Teller UCS, the experimentally determined UCS for 12C was supplemented with

theoretical DWBA calculations.

Theoretical DWBA estimates for 12C and 26Mg, as well as four heavier doubly-closed

nuclei, 48Ca, 78Ni, 132Sn, and 208Pb were made, as well as calculations for their Gamow-

Teller transition strengths. One-body transition densities (OBTDs) for 12C were calculated

using the same interaction as described previously and were calculated for 26Mg using the

USDA interaction in the sd-shell-model space [131]. The OBTDs for the heavier nuclei were

obtained via normal-mode calculations with the code NORMOD [132]. Optical-model potentials

(OMP) for the DWBA calculations were taken from Refs. [133, 134].
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Figure 3.19: The mass dependence of the Gamow-Teller unit cross-section for 6Li calcu-
lated from theoretical estimates of the inelastic GT strength and DWBA estimates for
the cross section of several nuclei (black). Filled circles indicate that the underlying GT
strengths were estimated via shell-model or normal-modes calculations. A postulated unit
cross section mass-dependence for heavy-ion reactions (Eq. 3.36) is fit to these theoretical
unit cross-sections and is shown in the plot (dashed black line). In addition, the experi-
mentally derived Gamow-Teller UCS for the inelastic (6Li,6Li’) reaction established in this
work is shown alongside an estimated unit cross section from data available for the (6Li,6He)
charge-exchange reaction [135]. The error bar shown for the inelastic UCS includes system-
atic and statistical uncertainties, while no error on the charge-exchange data was available.
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The theoretical estimates for the 6Li UCS are shown in Figure 3.19. Performing a least

squares fit of equation 3.36 to these calculations, the fit parameters N and x are found to be

80.4 mb/sr and 0.840, respectively, and the fit result is shown as the dashed blue line in the

figure. The theoretical DWBA estimates follow the postulated mass dependence very well.

Furthermore, for 12C, the theoretical Gamow-Teller unit cross-section (11.3 mb/sr) agrees

well with the measured unit cross-section for the (6Li,6Li′) probe as can be seen in Fig. 3.19.

In addition, Laurent et al. [135] investigated the 12C(6Li,6He)12N charge-exchange reac-

tion where they found a cross section of ∼7.2 mb/sr for the population of the 12N ground

state at 100 AMeV and (θ = 0 ± 1.3)◦. Under the assumption of isospin symmetry, the

charge-exchange transition to the 12N ground state is analogous to the inelastic population

of the 15.1 MeV state in 12C that is discussed above.5 Indeed, comparing the charge-

exchange differential cross section of [135] with the (6Li,6Li′ + γ) inelastic differential cross

section for this state at zero-degrees (8.84 mb/sr), we see that the measurements agree within

the systematic uncertainty of the present study. A rough estimate of the unit cross section

for the (6Li,6He) reaction is made assuming pure (L=0) and is shown in Fig. 3.19. Given

this agreement, and the good agreement of both measurements with the calculations, the

inelastic Gamow-Teller unit cross section for the (6Li,6Li′ + γ) reaction is reasonably well

constrained.

Finally, it should be further noted that the conclusion of equation 3.36 and the above

described measurements and calculations, is that the isovector spin-transfer cross-sections

will decay exponentially with the nuclear mass number. This fact, and the discussion in the

next section, illustrate why the 6Li de-excitation gamma was ultimately not resolvable in

5The Clebsch-Gordan coefficients are also the same for the 12C(6Li,6Li′) and 12C(6Li,6He) measure-
ments.
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the heavier systems that were investigated.

3.3.3 Competition with isoscalar resonances

The utility of the 6Li probe relies on the resolvability of the 3.56 MeV γ-ray from the de-

excitation of its 0+;T=1 excited state. As this γ-ray is Doppler boosted from the decay in

flight, significant improvement in the signal-to-noise (S/N) could be achieved by using a γ-ray

tracking detector such as GRETINA where the nominal interaction position in the HPGe

crystals can be deduced to within 2-mm [136, 137, 138]. Assuming equivalent efficiency,

shown in the inset plot of Fig. 3.15, the yellow and red line-shapes compare the simulated

response of the CAGRA clover detectors and a tracking detector with 2 mm resolution,

respectively. As illustrated in Eq. 3.18, the resolution of the reconstructed center of mass

gamma energy is directly proportional to the angular resolution of the detector. For this

reason, the resolution of the tracking-detector is estimated to be an order of magnitude better

than what was achievable using the clover-type HPGe detectors in CAGRA, due primarily

to the large angular coverage of the clover crystals. While the S/N in the 12C measurement

was sufficient to resolve the 3.56 MeV γ-ray of interest, for the measurements of 24Mg and

93Nb the signal could not be resolved.

The number of resolved counts in the 3.56 MeV peak for the 12C measurement (∼19250)

can be used to estimate the S/N that would be observed in heavier systems. Assuming

a B(GT0) ∼1, as is the case for the transition to the 12C[1+;T = 1; 15.1 MeV] state,

over a similar excitation energy range (5 MeV), only ∼ 3700 counts are estimated to be

measured in 24Mg, and only ∼ 300 in 93Nb for comparable run times and target thicknesses.

Figure 3.20 compares the expected signal-to-noise for the 3.56 MeV gamma in the 24Mg and

93Nb measurements, given the measured unit cross-section for 12C. The purple line in the
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Figure 3.20: Comparison of the achievable signal-to-noise for the 3.56 MeV γ-ray emitted
from inelastic scattering of 6Li on 12C (top panel), 24Mg (middle panel), and 93Nb (bottom
panel). The Doppler reconstructed gamma is resolvable in the 12C measurement but not in
the 24Mg other measurements. The purple and red line-shapes are the simulated response
of the clover and tracking detectors, respectively. In the 12Ccase, the purple line shape is
fit to the data, and used to estimate the number of counts in the 3.56 MeV peak. The
excitation energy was gated on the 15.1 MeV state in 12C which has a B(GT)∼1. Assuming
a comparable B(GT) in 24Mg and 93Nb, over an equal-width range in excitation energy, and
accounting for the change in the unit cross-section with mass, the purple and red line-shapes
have been scaled to reproduce the expected number of isovector counts in the other two
measurements. This clearly illustrates that resolving the 6Li 3.56 MeV gamma becomes
increasingly difficult in heavier systems where the isoscalar giant resonances remain strong.
Decay from these resonances contribute a significant background in the region of the 3.56
MeV γ-ray from 6Li, and this background increases in magnitude with increasing nuclear
mass.
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Figure 3.21: The differential cross sections for the 24Mg(6Li,6Li′) and the 93Nb(6Li,6Li′)
singles measurements. The cross sections in both cases are dominated by isoscalar giant
resonances which become larger with heavier mass systems.

middle panel shows the expected signal (of ∼ 3700 counts) for the 24Mg measurement using

CAGRA. The isovector signal decreases significantly due to the exponential decrease of the

GT unit cross-section as a function of mass. Unfortunately, at the same time the theoretical

estimates of the 0◦ cross-section for 100% exhaustion of the isoscalar giant resonance energy-

weighted sum-rule increases monotonically with nuclear mass as can be seen in Figure 3.22.

These estimates are in line with what was observed in the 24Mg and 93Nb measurement.

In Figure 3.21, the singles differential cross section for 24Mg and 93Nb are shown to both

be larger than that seen for the 12C measurement (Fig. 3.17). A larger overall cross-section

due to the increase of the isoscalar strength with nuclear mass implies that a proportionally

larger number of de-excitation gamma-rays from the decay of the isoscalar resonances will

be observed. This is clearly the case for 93Nb, where the background in the region of
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Figure 3.22: Mass dependence of the calculated zero-degree differential cross section for
the isoscalar giant monopole and dipole resonances (IVGMR and IVGDR, respectively)
corresponding to 100% exhaustion of the energy weighted sum-rule. These calculations
illustrate the increase in the isoscalar cross-section as a function of nuclear mass number and
were provided at the courtesy of Umesh Garg [139].

the 3.56 MeV gamma increased considerably relative to the gamma-background in 12C; see

Figure 3.20, bottom panel. At the same time, the estimated Gamow-Teller unit cross-section

for these nuclei decreases exponentially with mass, implying that the gamma-ray signal from

6Li should become proportionally weaker with mass.

Unfortunately, this effect can only be partially mitigated by improved detector resolu-

tion. Using the above estimates for 24Mg and 93Nb with the available angular resolution

of advanced HPGe tracking detectors, the red line in the bottom two panels of Figure 3.20

demonstrates that the achievable S/N would be barely sufficient for detection for 24Mg and
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impossible for 93Nb. The background is simply too strong in the latter case.6 Therefore,

unless there is a strong localization of isovector strength–in many discrete states–this large

systematic background in the gamma spectrum makes identifying the increasingly weak

isovector signal from the 6Li 3.56 MeV γ-ray very challenging.

3.4 Conclusion

In this work, the (6Li, 6Li′[T = 1, Tz = 0, Jπ = 0+, 3.56 MeV]) reaction probe has been

shown to be capable of directly selecting the isovector spin-transfer transitions in 12C via

inelastic excitation. In this way the 6Li reaction probe is the neutral-current analog to spin

transfer charge-exchange reactions. The mass-dependent Gamow-Teller unit cross-section for

6Li has been inferred from the data and configuration-interaction shell-model calculations.

Hence, Gamow-Teller transition strength in the inelastic channel can now be extracted with

this probe, and used to indirectly infer inelastic neutrino-nucleus scattering cross-sections.

However, it was found that in addition to providing an isovector spin-transfer tag in the

form of the de-excitation 3.56 MeV γ-ray, 6Li strongly excites the isoscalar giant resonances.

Specifically, while the isovector cross-section decreases exponentially with mass number, no

commensurate decrease in the isoscalar cross-section was observed. Thus, the resolvability of

the isovector de-excitation γ-ray from 6Li is extremely challenging for all but light nuclei due

to a large high-energy γ-ray background from the decay of the isoscalar resonances. If the

isoscalar and isovector responses were near-equivalent in cross section as a function of nuclear

6An additional effect introduced via the use of a tracking detector is that instead of discrete angular
positions (e.g. the four angular positions covered by the clover detectors in this measurement, see Fig. 3.5),
an approximately continuous coverage of emission angles is achieved. This has the result of smoothing out
the background from gamma-rays emitted at rest (from the target). This would make a difference for the

lighter nuclei, such as 24Mg where the background in the sideband and photopeak regions are not smooth
(see the middle panel of Fig. 3.20).
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mass, this challenge would be overcome by utilizing modern HPGe tracking detectors which

could provide a significant increase in the resolvability of the Doppler-boosted de-excitation

gamma. As this is not the case for the (6Li, 6Li′[T = 1, Tz = 0, Jπ = 0+, 3.56 MeV]) reaction,

it remains a viable isovector spin-transfer probe only for light nuclei.
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Chapter 4

Many-core algorithms for

topologically divergent neural

networks

Early research into artificial neural networks was inspired by the kinds of computational

processing found in nature [140]. It was motivated by the computational paradox presented

by the human brain: while comparatively inadequate in speed of serial calculations, the

brain is capable of performing highly complex cognitive tasks with trivial effort compared

to that of a modern computer [141]. It was suggested that the primary difference in the

mode of processing performed by the brain is its distributed nature. Consisting of ∼ 1011

neurons, with a connectivity across ∼ 1014 synapses [141], the computational power of the

brain appears to come from its massively parallel organization and execution.

Every neuron can be connected to many other neurons, can undergo activation, and can

induce activations in neurons to which it is connected. These fundamental components com-

prise the core structure and operations within biological neural systems, as well as artificial

neural networks (ANNs). Shown in Figure 4.1 are the typical components of an artificial

neural network. The basic components of a neural network are inbound and outbound

connections, a node, and its corresponding activation function.
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Figure 4.1: The basic components an artificial neural network. Each node (shown as the circle
in the figure) accumulates inputs modulated by the weights of its inbound connections. After
all of the inbound connections have been accumulated into the node, a non-linear activation
function, such as a logistic sigmoid, transforms the nodes value. The transformed node value
is then used as an output along outbound connections to other nodes in the network.

Input values (xj) are fed forward via inbound connections, shown as grey arrows on the

left of Fig. 4.1, which modulate the inbound signal by connection weight factors (wij). These

connection weights represent the strength of each connection and are the principle degrees

of freedom in a neural network. By adjusting these weights, a neural network can be trained

to yield the desired response given the inputs.

The product of the inputs and the weights are accumulated into a floating point number

known as the node. When all of the inbound connections have been fed into the node, a

non-linear function is applied to the node’s value, and it then can be used as the source for

any outbound connections, see the right side of Fig. 4.1. This non-linear transformation is

a unique characteristic of the ANN neuron and is analogous to the activation potential in

biological systems: the capability of a neuron to fire (or not) given its accumulated input

signal. In neural networks, this function is referred to as the activation function and is often

chosen as a smoothly varying function that can represent both final states of the node (active

or inactive)–for example, a logistic sigmoid [142]. Finally, the activated node value (yi in
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the figure) is then output via the outbound connections which feed into other nodes.

Together, the above described neural-network components form a structure resembling

a biological neuron. Neural networks are formed by combining many such neurons together

into a larger network. Panels (a) and (b) of Figure 4.2 detail two simple neural networks,

where each circle is a network node, and each arrow between nodes is a network connection.

Nodes with no inbound connections are known as input nodes (left most set of nodes in

Fig. 4.2), and they are loaded with the user input data, and output nodes are nodes with no

outbound connections. The output of a neural network are the values of its output nodes.

The network shown in (a) is representative of the kinds of neural networks found in modern

shallow and deep learning applications, and is known as a hidden-layer neural network or a

multi-layer perceptron.

It has been shown [143] that a neural network with a single hidden layer (similar to

network (a) in Fig. 4.2) can approximate any function given arbitrarily many nodes in the

hidden layer. It is because of this capability that neural networks have been applied so

successfully to diverse applications. Furthermore, the use of additional hidden layers, as in

deep neural networks, increases the non-linearity and can capture higher-level abstractions

of the data more easily [144]. However, while these points have been known for the past

decades, it wasn’t until the advent of modern computational capabilities and enormous

datasets, known as “big data”, that it would become possible to train neural networks with

such large numbers of degrees of freedom. As more hidden nodes and hidden layers are

added, more free parameters in the form of connection weights are introduced.

Neuroevolution, on the other hand, is an approach that has developed in parallel to com-

plex layered neural networks, and has instead drawn on biological inspiration to describe the

complexification process of neural networks [26]. In addition to modeling artificial neural
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network behavior from the way in which complex systems of neurons operate, neuroevolution

seeks to model how these systems are formed. It does so by applying evolutionary algorithms

(EAs) to large populations of neural networks in order to search for the optimal network

structure and hyperparameters [26]. Similar to biological evolution, these networks compete

for limited resources and in each generation, only the best performing neural networks sur-

vive. The concept of limited resources in neuroevolution arises from the limited compute

cycles available and is often represented by penalizing networks which evolve large struc-

tures that do not benefit the overall performance of the network. In this way, populations

of neural networks with minimally complex structure, evolve new nodes and connectivity

only if the structural changes represent innovations that improve overall performance. This

concept strictly contrasts that of complex layered neural networks. With hidden-layer neural

networks, few a priori constraints are placed on the network size. Even though the number

of connection weights (degrees of freedom) in the these models are large, enormous datasets

are often available which can be used to train these weights, albeit at large computational

cost.

Unfortunately, in many scientific domains, data sizes are not comparable to what is

collected in industrial big data applications, and so the utility of arbitrary network complex-

ification is limited. The method of evolving neural networks through augmenting topolo-

gies [145] on the other hand, seeks to find the best performing neural network by minimizing

the search space and only increasing the network complexity when doing so improves the

neural network. For this reason, neuroevolution is able to generate neural networks with

complexities that scale with the size of the training data, making it generally applicable to

scientific applications, regardless of data size.
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Figure 4.2: (a) A common feedforward neural-network structure with a single hidden layer.
x0
i , x

1
i , and x2

i correspond to the input, hidden and output layers respectively, while w0
ij , 1

refer to the connection weight matrices between two layers. (b) An unstructured neural net-
work in which the connections are not constrained to specific layers. Such network structure
is common in neuroevolution populations. Each connection in (b) is labeled with an integer
indicating the lock-free set in which it can be evaluated. See section 4.3.1 for details.

4.1 Applications in physics

While neural networks have been employed in a variety of physics domains for the past few

decades [146], their utility has been increasingly significant in experimental high-energy [147]

and neutrino [148] physics. In these physics applications, neural networks have almost ex-

clusively been employed as classification tools as a means to separate signal and background

events. The most commonly employed classification techniques in these fields are neural

networks with a single hidden layer (shallow ANNs), boosted decision trees, and as of the

past few years, deep neural networks. Until the work of [147], physicists reluctantly ac-

cepted the limitations of shallow neural networks, and guided the networks by hand toward

better event selection by manually constructing nonlinear input feature combinations that

helped the training processes. However, with the availability of large datasets in high energy

physics, Baldi et al. [147] showed that recent advances in deep neural networks lift these
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limitations by automatically discovering nonlinear feature combinations that provide better

event discrimination than shallow neural networks even with manually constructed input

combinations.

The ability of deep neural networks to circumvent the need for manual data preprocess-

ing comes from the large number of hidden layers, and the correspondingly large available

datasets. Without sufficient data, however, the feasibility of deep learning is limited. On

the other hand, as discussed previously, neuroevolution generates neural networks with com-

plexities that scale with the size of the training data, making it more generally applicable. In

this way, complicated data preprocessing can be evolved according to the constraints of the

data, regardless of data size. Indeed, neuroevolution has been previously used in this way

to provide high precision selection of dilepton events for the measurement of the top-quark

mass at CDF [149].

Recently, researchers involved with the NEXT neutrino physics experiments, which em-

ploy high pressure xenon time projection chambers (TPCs), have shown that deep convolu-

tional neural networks, presently the state-of-the-art deep machine learning technique for the

analysis of image data, can be 60% more efficient at the selection of neutrinoless double beta

decay events as compared to traditional techniques [150]. Because TPCs produce volumetric

images of particle tracks within the detector, convolutional neural networks are effective at

event selection based on the difference in tracks for signal and background events. However,

as neural networks become increasingly complex, as is the case for convolutional networks,

they are endowed with additional hyperparameters that increase the burden of tuning that

must occur prior to training [151].

Very recently neuroevolution techniques have been employed to evolve minimally com-

plex convolutional neural networks [24]. Similarly, Fernando et al. [25] have shown that by
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using neuroevolution to evolve network topologies, the resulting network had two orders of

magnitude fewer free parameters and was able to achieve the same accuracy as a comparable

fully connected convolutional network. With far fewer connections, the evolved convolutional

networks have fewer free parameters to be learned, and are therefore able to be trained with

significantly smaller datasets as compared to their fully connected counterparts. Therefore,

neuroevolution extends the utility of deep-learning methods to application domains in which

the datasets are smaller in magnitude than what is required for traditional deep neural

networks.

For this reason, the experimental nuclear astrophysics program discussed in chapters 2

and 3 may significantly benefit from neuroevolution since the available training datasets are

likely to be of intermediate size. In chapter 5, a new experimental technique in which a TPC

is utilized to image recoil particle tracks after they undergo β+ charge-exchange reactions

will be discussed. Similar to the NEXT experiment previously described, convolutional

neural networks may be capable of efficient event selection for TPC-based charge-exchange

experiments in inverse kinematics. By utilizing neuroevolution and the methods described in

this work, even though the available training data will be smaller than in experimental high

energy physics applications, the evolved networks will be tuned in structure to the available

data and are therefore likely to have comparable performance.1

1It should also be noted that in experimental physics, a viable option for the application of deep learning
techniques is to utilize physics simulations to generate the required training data. In this case, the per-
formance of networks trained on simulated data will depend significantly on the accuracy of the simulated
data.
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4.2 Network Structures & Evaluation

One hallmark of neuroevolution is its ability to develop populations of structurally diverse

neural networks, which do not necessarily have strict layer boundaries. For example Fig. 4.2b

demonstrates a neural network that could evolve, wherein the concept of a hidden-layer no

longer applies due to the connections from the two input nodes directly to the output node.

That said, this functionality can be reproduced in a hidden-layer neural network (such as

panel (a) in the same figure) if the connection weights are tuned correctly. While networks

(a) and (b) in Fig. 4.2 are capable of producing the same network output, given the larger

number of nodes and connections involved, the hidden-layer network (a) would be more

computationally expensive to evaluate. This is easily seen when considering the feedforward

evaluation pattern for hidden-layer neural networks which can be written as [152],

x(1) = σ
(
W (0)x(0) + b(0)

)
, (4.1)

x(2) = σ
(
W (1)x(1) + b(1)

)
. (4.2)

Here, evaluation is performed by feeding forward the network inputs, x(0) into consecutive

layers by multiplication of the connection weight matrix, W (0), to this input vector, the

addition of a bias vector, b(0), and the activation of the result. σ is the activation function

and is often chosen to be a smooth function that is bounded between two values, one of

which represents a neuron firing (activated) and the other which represents quiescence (not

active). The result of Eq. 4.1 are the values of the nodes in the next layer, x(1), which then

become the input vector for the next feedforward iteration, shown in Eq. 4.2. This process is

repeated until the inputs have been fed through to the final output layer. Thus, feedforward
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evaluation of layered neural networks is simply the repeated application of matrix-vector

multiplication, and so it is evident that the more nodes and connections a network has, the

more floating point operations (FLOPs) will be required.

While network (a) in Figure 4.2 requires more total FLOPs than network (b), the method

of evaluation described by Eq. 4.1 is highly parallelizable as it is simply repeated matrix

operations [153]. Neural networks which do not conform to the layered description, on

the other hand, cannot be described by matrix multiplication. Principally, this is because

the calculation of the neural-network output is no longer divisible into a series of linear

computations. Instead, as for network (b), the evaluation must follow a graph traversal in

which connections are applied consecutively, and node activations occur for each node once

all inputs to the node have been computed.

As mentioned in the beginning of this section, the novelty of neuroevolution is its capa-

bility to produce highly topologically diverse neural network structures, which can reproduce

inherent symmetries in the underlying datasets [154]. However, such diversity in the neural

network population implies that the computational graphs of each neural network can be

extremely divergent. At the same time, because the search capability of the evolutionary al-

gorithm scales with the population size, using as many networks as computationally feasible

is ideal. If population sizes are in the tens to hundreds of thousands, the evaluation com-

plexity warrants the use of modern multi- and many-core compute architectures. However,

the divergence that arises in evaluating neural networks of diverse structure, has so far pre-

vented the development of generalized many-core algorithms for neuroevolution which scale

well with the population size. This is because many-core architectures, such as general pur-

pose graphics processing units (GPGPUs), employ single-instruction-multiple-data (SIMD)

vector processors. These kinds of processors perform optimally when execution branching is
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Figure 4.3: An illustration of the structural divergence than can exist in populations of
neural networks evolved via neuroevolution. In this case, each network has a fixed number
of input and output nodes (3 and 1, respectively).

minimal. Unfortunately, the parallel evaluation of neural networks with differing structures

has the opposite effect, execution branching is enhanced.

Presented in this work is a novel many-core algorithm for the concurrent evaluation of

entire populations of topologically-divergent neural networks. These algorithms represent the

first general-purpose mapping of large numbers (100k+) of heterogeneous neural networks

to many-core architectures.2 By harnessing modern many-core processors, this work aims

to enable neuroevolution to be a more competitive player in the modern machine learning

ecosystem.

2An open source implementation of the described methods are freely available online at
http://www.github.com/csullivan/Entendre.
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4.3 Directed acyclic graph concurrency

An example of the structural diversity within populations of neural networks is shown in

Figure 4.3, where each network has exactly 3 input nodes and 1 output node. The hidden

node structure of the networks is then evolved during many generations of neuroevolution.

While all of the networks in the figure have standard connections which feed forward, neu-

roevolution can also evolve recurrent connections.3 This is worth noting as the algorithm

proposed in this section performs equally well with recurrent neural networks.

The naive feedforward evaluation of a network population, such as that shown in the

figure, would be to distribute each network to a different processor or thread. For multi-core

processors this is not a necessarily bad approach, particularly if the networks involved are

large in size and can take advantage of the heterogeneous cache-memory layouts of modern

multi-core processors. However, if the population size is much larger than the number

of available processors, or the networks themselves are relatively small, cache-coherence is

likely unattainable. This is because a population of neural networks is essentially an array-

of-structures (AoS) organization of data, and so consecutive neural networks are loaded from

RAM neglecting any benefits of hierarchical memory.

For many-core SIMD coprocessors, distributing neural networks across threads has far

worse performance. There are three principal considerations to be made in SIMD parallelism

by distributing neural networks across threads:

1. Branch divergence from differing neural network topologies (a result of neuroevolution

as previously discussed).

3Recurrent connections in a neural network are connections which form a directed cycle in the network.
However, instead of actually producing a cycle, they function by acting as external inputs into the network,
which pass the value of a node from the previous feedforward evaluation into the destination node of the
recurrent connection in the current evaluation. In this way, recurrent connections act as a kind of neural
network memory.
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2. Lack of memory access coalescing requiring each network to be loaded from device

RAM (DRAM).4

3. The input data and output node values must be communicated from the Host (CPU)

to the Device (GPU) for each neural network separately.

The three items above can be summarized as a lack of optimization in instruction execution,

memory access, and communication, respectively.

Instead of seeking to parallelize over individual neural networks, this work establishes

a sorting algorithm that organizes the evaluation of many neural networks into a problem

of parallelism over the directed acyclic dependency graphs of each neural network. By

reformulating the problem in this way, optimizations for items 1–3 are naturally attained:

instruction branching is removed, memory accesses are coalesced, and the communication

between the host and device is minimized.

4.3.1 Topological connection sort

In order to avoid hierarchical data structures, which typically rely on many heap-allocated

blocks of memory and thereby reduce the utility of memory caching, the network structure

is stored as flat arrays of the connection components5. Here, each connection consists of the

index of the origin node, the destination node, and the weight of the connection. Using an

array of floating point numbers to store the values of the nodes, or their partially computed

intermediate values, each connection then represents a single uniform action to be applied

4Memory access coalescing, or the lack thereof, is similar to cache-coherence on a CPU. Whereas during
a memory load for a CPU, a block of memory (ABC) is brought from RAM and stored into the CPU cache,
for a GPU, a memory request from DRAM coalesces a cycle of memory to each thread, so that threads 1,
2, & 3 receive floats A, B & C. A lack of memory coalescing indicates that data utilized by threads in the
GPU are not spatially colocated, and so each thread must make individual memory loads [155].

5A structure of arrays (SoA) memory layout as opposed to an AoS layout
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Figure 4.4: An example neural network and two directed acyclic dependency graphs for the
evaluation of the neural network’s connections. The left dependency graph includes only
logical dependencies whereas the graph on the right includes both logical & memory de-
pendencies. Each circle in the dependency graphs represent connections in the top neural
network figure. The arrows in the two dependency graphs indicate the dependency rela-
tionship between the connections . For example, the arrow between A1 and B1 indicates
that connection A1 must be evaluated prior to B1. By inspecting the neural network, this
relationship is evident as connection B1 relies on node 1, which in turn relies on connection
A1 (as well as other connections).
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on the array of nodes. In this way, the neural network is organized by its connections instead

of via its nodes.

The key algorithmic insight in the proposed method is the sorting of neural network

connections into evaluatable sets based on their dependencies. The directed acyclic graph

(DAG) for an example neural network’s connections is shown in Figure 4.4. Every circle

in the DAG represents a connection in the neural network, and every arrow in the DAG

implies a dependency relationship. For example J→K implies that K depends on J, and

so if these represent connections it implies that connection J must be evaluated first in the

neural network. These relationships arise from the fact that connections in a neural network

have direct and transitive dependencies–connections earlier in the neural network must be

evaluated before those that come later. For example, A1 must be evaluated before B1 in the

example neural network shown on the top of panel Figure 4.4. Dependencies of this type can

be referred to as logical dependencies. Memory dependencies can also exist if the employed

algorithm is to be lock-free.6 These type of dependencies occur when two connections which

are not logically dependent, affect the same destination node.

The algorithm described in this work topologically sorts connections into ordered sets that

respect both of these dependencies. That is, within each set, all constituent connections have

different destination nodes (lock-free) and are logically independent. If the algorithm need

not be lock-free, the adherence to connection memory dependencies can be relaxed. The two

graphs in Figure 4.4 illustrate the relationships between connections in an example neural

network when only logical dependencies are considered (left) as well as when logical-and-

memory dependencies are considered (right). Determining the order of connection evaluation

6Lock-free in this context implies that no memory synchronization or exclusions are required, such that
no two threads will attempt to write to the same memory space simultaneously.
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1 for (i=0; i<num_connections ; i++) {
2 for (j=i+1; j<num_connections ; j++) {
3 a = connections [ i ] ;
4 b = connections [ j ] ;
5 switch ( compare_connections (a , b ) ) {
6 case a > b :
7 a . num_dependencies++;
8 break ;
9

10 case a < b :
11 b . num_dependencies++;
12 break ;
13
14 // (a , b ) not ad jacen t
15 case Unknown :
16 break ;
17 }
18 }
19 }
20
21 topological_sort ( connections ) ;

Figure 4.5: Prototype of sorting connections into concurrent lock-free sets. For n connections,
scales as O(n2).

of the neural network is then straightforward from these dependency graphs, and concurrency

is immediately evident. Consider the left graph in Fig. 4.4. Any connection (circle in the

DAGs) which has no inbound dependencies (shown as the grey arrows), can be evaluated

immediately. Thus, one can see that connections A1 and A2 can be evaluated in parallel at

the first step. The next step is to remove A1 and A2 from the dependency graph, and to

again search for connections which now have no inbound dependencies. After A1 and A2 are

evaluated, we see from the DAG that connections B1 and B2 have no dependencies, and so

are able to be evaluated next and in parallel. Finally connection C1 can be evaluated. This

sorting technique is known as a topological sort of a directed acyclic graph and is often used

in determining the order of tasks [156].

Algorithmically, the dependencies each connection has is determined using the compara-

tor scheme shown in Table 4.1. With this comparison, if two connections are adjacent and
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Table 4.1: Neural network connection dependency comparator

Type Condition Dependency

Connection pair (a,b) with differing output nodes

a recurrent a.origin = b.destination a < b
b recurrent b.origin = a.destination a > b
a normal a.destination = b.origin a < b
b normal b.destination = a.origin a > b

Connection pair (a,b) with the same output node

a self-recurrent a.origin = a.destination a < b
b self-recurrent b.origin = b.destination a > b
arbitrary choice a.origin < b.origin a < b
arbitrary choice b.origin < a.origin a > b

a & b not adjacent - unknown

The neural network connection dependency comparator. There are three subsections in
the above, when connections a and b (1) are adjacent and have different output nodes, (2)
are adjacent and have the same output nodes, and (3) are not adjacent. If the algorithm
need not be lock-free (does not respect memory dependencies) then the second subsection
(connections with the same output node) can be dropped and the rules of the first subsection
are used exclusively for adjacent connections. Each connection has an origin and destination
node, which are what is referred to in the Condition column. The less-than and greater-than
symbols in the Dependency column imply the ordering of the two connections; if b > a, then
the evaluation of connection a must come prior to b. In the case of an unknown relationship
between non-adjacent connections, transitive relationships will enforce and ordering if one
exists. This comparator handles both normal and recurrent connections.
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one connection depends on the other, the dependent connection’s number of dependencies is

incremented. This comparator can then be applied to any neural network regardless of its

structure and a topological sort, as described previously, can determine the sets of concur-

rently evaluatable connections. An example implementation of this is shown in Figure 4.5.

4.3.2 Neural network operations

The ordering of connections into concurrently evaluatable sets, as described in the previous

section, provides the scaffolding off which the rest of the neural network operations are built.

Fundamentally, three operations are required in the feedforward evaluation of an arbitrary

neural network,

1. Apply connection: The application of a connection A1 from node 1 to node 2:

x2 = x2 +wA1 ·x1, where xi is the floating point value of node i, and wA1 is the weight

of the connection A1.

2. Zero/Reset node: Setting the memory address of a node’s floating point value to

zero, xi = 0.

3. Activate node: Applying the activation function to a node’s value, xi = σ(xi).

In the previous section, connections within a neural network were grouped into ordered sets,

such that the application of the connections within each set could be performed simulta-

neously. In this way, parallelism over the directed acyclic dependency graph of a neural

network boils down to the bulk synchronous evaluation of operations 1–3 above on differ-

ent connections and nodes within the network. Using the ordered sets of connections, the

zeroing and activation of nodes can be deduced from the following observation: given the
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above neural network operations, a strict order-of-operations can be defined such that the

neural network’s full directed acyclic dependency graph can be established. Specifically this

operation order is,

Activate origin nodes < Zero destination nodes < Apply connections.

Therefore, given a set of connections which are to be applied, any origin node that has not

been previously fed forward must be activated, any destination node which has not yet been

fed into must be zeroed/reset, and then all connections in the set can be applied.

By building the dependency graph from the connections DAG previously discussed, and

by employing the above order of operations, this algorithm guarantees that at every step,

the performed operations will be homogeneous. That is, many nodes will be activated

concurrently, then many nodes will be zeroed concurrently, and finally many connections

will be applied concurrently. In this way the evaluation of a neural network is factored into

steps that can be easily mapped to SIMD processors. This will be discussed in detail in

section 4.3.3.

4.3.2.1 Neural network node lifecycle

While the order of operations proposed captures the general method requirements of the feed

forward evaluation of arbitrary neural networks, it misses a few subtleties that are apparent

when considering the lifecycle of a node in a neural network.

Thus, let us consider the lifecycle of a single node in a network. At the start of neural

network evaluation, a node holds its activated value as determined in the previous evaluation

of that network. The first step that must be taken is that all recurrent connections must

be applied which use this node’s value as an origin. This is because a recurrent connection
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is meant to act as a type of memory, feeding information from previous network evaluation

into the current evaluation.

Next, the node must be zeroed out. Following this, there is a phase when the node is

used as a destination, with its value being the weighted cumulative sum of all incoming

connections that have been applied. Once all connections inbound to this node have been

applied, the activation function transforms the node’s value. Then, the node can be used as

an origin for normal connections, and finally, the output value is left untouched, so that it

can be used for any recurrent connections in the next evaluation.

These steps are fundamentally what impose the ordering conditions described in the

previous section,

• The zero/reset must occur after the last use of the node as an origin of a recurrent

connection, and before the first use of the node as a destination.

• The activation function must be applied after the last use of the node as a destination,

and before the first use of the node as an origin of a normal connection.

Thus, these actions are performed between the evaluation of each set of connections.

Together with the connection ordering described in section 4.3.1, we arrive at a general

distribution of tasks which follow the basic life cycle of a node and which are constrained by

the parallelism of the evaluatable connection sets.

4.3.3 Generalized concurrent neural network evaluation

By applying the topological sort of network connections and enforcing the order of operations

described above, the full neural network evaluation graph can be built. Figure 4.6 shows

the directed acyclic dependency graphs for two neural networks with different structures.
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Figure 4.6: The full directed acyclic dependency graphs for two structurally different neu-
ral networks. The different symbols in the graph, squares, circles, and triangles, represent
the three neural network operations: zero-node, apply-connection, and activate-node, respec-
tively. Even though the two networks have very different structure, the algorithm proposed in
this work organizes the network evaluation graphs into evaluations steps that are component-
wise parallel. On the right of the figure, each evaluation step is shown with the number of
SIMD operations that can be performed simultaneously.
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The neural network label network 2 in the figure is the same network shown in Fig. 4.4.

However, instead of just showing the DAG for the application of connections, it includes

the other operations as well: squares represent the zero-node operation, circles represent the

apply-connection operation, and triangles represent the activate-node operation; see the key

in Fig. 4.6 for more details.

Factoring the neural network evaluation into these component operations, the individual

structure of different neural networks is no longer a consideration. Each network has some

number of nodes which must be zeroed and activated, as well as some number of connections

that must be applied. Starting at the top of the DAGs shown in Figure 4.6, the first step in

evaluating both networks 1 and 2 is to zero out four nodes (see the axis to the right of both

networks). Therefore, in this first step, an operation concurrency of four is achieved. In the

second step of evaluation, five connections must be applied across the two separate networks.

This process continues until all evaluation steps in the shown DAGs have been performed,

at which point the inputs have been fully fed through both networks, and evaluation is

complete.

Thus, the algorithms presented here are completely agnostic to the macroscopic structure

of the constituent neural networks. At the same time, these algorithms order the tasks to

be performed into homogeneous sets of operations which map very well to SIMD processors.

This effectively resolves the instruction branching problem described in section 4.3. Further-

more, as can be seen in Fig. 4.6, this algorithm will scale with the neural network population

size. Since instruction branching is removed, the more networks that are utilized, the greater

the concurrency at each evaluation step. This indicates that the performance gain should
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scale at least linearly with the number of neural networks.7

4.4 Composite population evaluation

While the DAG based algorithms described in the previous section solves the problem of

evaluating structurally diverse neural networks on SIMD-based processors, it doesn’t allevi-

ate the lack of optimization in memory access and Host-Device communication described in

section 4.3. In this section, both of these latter issues are resolved via a simple reordering

of the memory layout for the neural network population.

Instead of storing each network individually, a refactoring of a population of N networks

into a single composite network, consisting internally of all the nodes and connections of the

sub-networks, is employed. In this way, the resulting neural network will have at minimum N

connections per evaluation step that can be processed concurrently using the evaluation algo-

rithm described in section 4.3.3. An example of two such refactorizations are demonstrated

in Figure 4.7.

The construction of the composite net is straightforward. First, all network input nodes

are added, then all output nodes, and finally all hidden nodes. Following this, each con-

nection of each sub-network is reindexed according to the position of its nodes in the larger

set of nodes of all networks in the population. After all connections are added, the connec-

tion sort described in section 4.3.1 and detailed in Figure 4.5 is applied to each subset of

connections in the composite neural network. As these populations can grow quite large,

it is computationally most efficient to sort based on these unconnected sub-structures (the

7The performance scaling with the neural-network population size can be less than linear if the population
contains a subset of outlier networks which have much larger network topologies than the majority of the
population. In this case, the majority of networks will finish their final step of evaluation while the evaluation
of the subset will only be partially completed. Thus, in the remaining steps of evaluation for the outlier
networks, the concurrency will be dramatically reduced.
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Figure 4.7: Top panel: A representative example population of neural networks consisting
of three members. In classic neuroevolution simulations, each of these neural networks are
separately evaluated, and the correctness of their outputs is used to judge their fitness.
Bottom panel: The same population as in the top panel, but constructed as nodes and
connections of a single composite neural network. On the left, the resulting composite
network in which each of the constituting sub-networks requires heterogeneous inputs for
evaluation. On the right, a composite network in which each of the sub-networks will process
the same inputs.

136



individual networks) instead of the composite network, as the sorting algorithm shown above

scales as O(N2) with respect to the number of connections. Finally, the connections of the

composite network are globally sorted according to their evaluation set index. Following this

procedure then guarantees that connections which can be evaluated together are colocated

in contiguous memory space. This then allows the origin and destination node indices and

connection weights to be perfectly coalesced from DRAM to the individual threads. The

resulting population-level composite network is then ready to be evaluated on a GPU or

other SIMD coprocessor.

In constructing a composite network from a population of neural networks, an additional

optimization that can be made is to refactor all of the input nodes into a single set of inputs.

This can occur if each network in the population will be evaluated given homogeneous sets of

inputs. If on the other hand, each network will receive heterogeneous inputs, this refactoring

cannot be performed. In the bottom panel of Figure 4.7 both possible composite networks

are shown, one in which all inputs are explicitly specified (heterogeneous inputs), and one

in which a single set of input nodes are fed to the rest of the sub-networks (homogeneous

inputs).

In both cases, to evaluate the resulting neural network, a single memory transfer of

the input node array (consisting of nodes for all the networks) is copied to the device, the

evaluation proceeds concurrently, and finally a single copy of the outputs (again in contiguous

memory) finishes the calculation. This is possible because, the input and output nodes of

all the networks are positioned in continuous memory space.

Since this network is quite large and has many unconnected regions, the DAG-based

algorithm described previously takes maximal advantage of the available component-wise

concurrency in the evaluation. Furthermore, the connection weights and node indices are
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memory access coalesced for each connection, and the interaction between the host and

device occurs only twice (on the boundaries of the evaluation), minimizing any possible

communication contention. In summary, by combining the DAG-based concurrent evaluation

described in section 4.3.3 with the composite organization of a population of neural networks

into a single composite network, instruction execution, memory access, and communication,

are fully optimized for execution on many-core processors.

4.5 CUDA implementation

The DAG-based connection sort and construction of the composite neural network described

in the previous sections are performed on the host CPU, after which the network connections

and nodes are copied to the many-core device for evaluation. The network evaluation per-

formance is benchmarked using the compute unified device architecture (CUDA) [157]. The

implemented CUDA kernels can be found in Figure 4.8. There are a total of three kernels

for the three necessary actions to be performed: resetting a node to zero, activating a node,

and applying a network connection.

As a result of the presorting of operations on the host, the CUDA kernels are extremely

simple, bringing the possibility of (thread) branch divergence to an absolute minimum. The

only possible divergence that exists is seen on line 43 of Figure 4.8 in which a self-recurrent

connection8 is handled as a special case. In the case of neural networks with no self-recurrent

connections, this algorithm is GPU thread divergence free.

8A self-recurrent connection is a connection whose origin node is also its destination node. These connec-
tions function as memory in the neural network, returning the output the node from the previous network
evaluation.
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1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 __global__

3 void device_clear_nodes ( uint32_t∗ list , float∗ nodes , uint32_t n )
4 {
5 int i = threadIdx . x + blockIdx . x ∗ blockDim . x ;
6 if (i<n ) {
7 nodes [ list [ i ] ] = 0 ;
8 }
9 }

10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 __global__

12 void device_activate_nodes ( uint32_t∗ list , float∗ nodes , uint32_t n )
13 {
14 int i = threadIdx . x + blockIdx . x ∗ blockDim . x ;
15 if (i<n ) {
16 nodes [ list [ i ] ] =
17 device_activate ( nodes [ list [ i ] ] ) ;
18 }
19 }
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 __global__

22 void device_apply_connections (
23 float∗ node ,
24 uint32_t∗ origin ,
25 uint32_t∗ dest ,
26 float∗ weight ,
27 uint32_t n )
28 {
29 int i = threadIdx . x + blockIdx . x ∗ blockDim . x ;
30 if (i<n ) {
31 auto& conn_origin = origin [ i ] ;
32 auto& conn_dest = dest [ i ] ;
33 auto& conn_weight = weight [ i ] ;
34 if ( conn_origin == conn_dest ) { // Spec i a l case : s e l f −recur ren t node
35 node [ conn_origin ] ∗= conn_weight ;
36 } else {
37 node [ conn_dest ] += conn_weight∗node [ conn_origin ] ;
38 }
39 }
40 }
41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 4.8: NVIDIA CUDA kernels for the proposed concurrent neural network evaluation.
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Figure 4.9: GPU speed up factor when evaluating a population of N evolved neural networks
concurrently. The ratio of time taken for the sequential evaluation of each network on a single
CPU thread to the time for transferring inputs to the device, evaluation on the GPU, and
transferring the outputs back to the host. With a population of approximately 65k networks,
a performance boost of 50x relative to the serial implementation is observed.

4.5.1 Performance results

In the performance tests that follow, the primary machine on which these algorithms were

tested was equipped with a 3800MHz i7-2600 CPU, along with a NVIDIA GTX 1070 GPU.

In addition, these results were also verified on a system with a 2400MHz E5-2680v4 CPU

and a NVIDIA Tesla k80 GPU. The results reported are those for the former system, as the

results from the later system were found to be comparable.

To illustrate the performance of the methods described in this work, a population of neu-

ral networks was evolved according to the Neuroevolution of Augmenting Topologies (NEAT)

technique. NEAT is an evolutionary algorithm (EA) introduced by Stanley and Miikkulainen

[145]. The principle components of NEAT are (1) a method of crossover (mating) to effi-

ciently combine network structures into resulting child networks, (2) the introduction of
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speciation to protect new topological innovations that arise, and (3) incrementally growing

networks from minimal structure, allowing the networks that form to both optimize and

complexify solutions simultaneously [145].

Using NEAT, a populations of neural networks of arbitrary size were evolved. Each of

these populations was seeded with a topologically minimal network: the seed network had

three input nodes, and one output node. Initially, the three input nodes (two inputs for

the XOR plus a bias/offset node) were connected directly to the output node making for a

total of 3 connections. These networks were then evolved to solve the exclusive-or operation

(XOR).

The simplest solution to the XOR operation is a network of only 5 nodes and 7 connec-

tions, which is quite quickly evolved by NEAT. However for the purpose of this test, the

networks were allowed to continue evolve, thereby increasing in complexity past the mini-

mal solution, so as to have a larger network structures on average. After 30 generations of

evolution, networks with an average of 11±2 connections and 8±1 nodes were produced. As

many as 1 million (220) networks were evolved and evaluated.

Each network was then individually evaluated on the host machine, and the evaluation

time tracked for 100 trials. Additionally this population was built into a homogenous-input

composite neural network and evaluated on the GPU for an equivalent number of trials

using the many-core methods described in this work. In Figure 4.9, the ratio of the time

for the separate evaluation on a single CPU core to the composite evaluation on the GPU

is compared. Beginning with small populations of 1024 networks, a modest speedup factor

of ∼ 2.5 is observed. As the number of neural networks evaluated is increased, the GPU

utilization increases and strong scaling up to ∼ 65k networks is observed with a maximal

performance speed up of ∼50x.
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In Fig. 4.9, the number of neural networks evaluated concurrently (the horizontal axis)

is essentially a metric for operational intensity. The larger the neural network population

(bigger problem size) the more arithmetic operations are performed per DRAM memory load

(burst). This is principally due to the memory access coalescing of the network connections

that is achieved by organizing the population of networks into a single composite network.

Each memory access of the stored connections brings with it the needed information for all

the neighboring GPU threads, minimizing the number of loads and increasing the amount

of floating point operations per memory access.

The behavior observed in Figure 4.9 is well described by the roofline model [158]. The

roofline model sets an upper bound on the performance of a compute kernel (network popu-

lation evaluation, in this case) depending on the kernel’s operational intensity. Because the

operational intensity scales with the neural network population size, the performance speedup

shown in Fig. 4.9 traces out the effective performance roofline for this system. There are

three identifiable performance regions that are observed. Specifically, the algorithm is

• communication-bound with population sizes between 210–212 neural networks,

• memory-bound with population sizes between 212–216 neural networks, and

• compute-bound with population sizes larger than 216 neural networks.

With few neural networks in the genetic population, the peak performance is dominated by

the time it takes to transfer the input and output data from the host to device and back.

Even though only two memory transfers are required, the time required to evaluate the

population of neural networks is comparable to this communication time and is therefore

communication-bound.
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However, as the number of networks increase, the peak performance gradually becomes

memory-bound by the architecture. That is, the evaluation time is now much greater than

the communication time, but the performance is dominated by the memory bandwidth. In

this region, the more neural networks that are used, the more connections can be memory

access coalesced, which means the GPU threads spend less time waiting for data to arrive

from DRAM. Thus, in this region the performance increases with the operational intensity,

or the number of neural networks evaluated concurrently.

Beyond 216 neural networks, however, the performance reaches the compute-bound roofline

in which it no longer improves with increasing computational load. This is reflective of the

underlying algorithms utilization of the hardware. In this region, the number of operations

per memory load no longer increases with increasing network population size. In this way,

the time each GPU thread waits for connection data to arrive from DRAM has been mini-

mized as much as achievable by the architecture. Thus, increasing the amount of connections

to evaluate in parallel (increasing the population size), no longer improves the performance.

While the roofline or performance-plateau seen in Figure 4.9 is dictated by the architec-

ture, the roofline could potentially be improved (a higher speedup achieved) if the underlying

algorithm were improved to better utilize features of the architectures. For example, while

the DAG-based algorithm described in this work takes great care to ensure memory access

coalescing for the evaluated neural network connections, the application of each connection

requires the load and store of node memory (the connection origin and destination nodes).

Without optimization, these loads and stores are essentially random access, thus requir-

ing a separate memory operation for each node. With consideration of the temporal node

access–by, for example, determining an efficient ordering of nodes used in each evaluatable

connection set–the compute-bound performance roofline could be improved. Furthermore,
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temporal consideration for both nodes and connections could be used to take advantage of

shared memory on the GPU to further reduce memory latency.

4.6 Conclusion

In this work, new algorithms designed to optimize the concurrent evaluation of topologi-

cally divergent neural networks on many-core architectures are introduced. By pre-sorting

the connections into evaluatable sets, and parallelizing over the networks directed acyclic

dependency graphs, nearly all branch divergence is eliminated from execution on SIMD pro-

cessors. Furthermore, the factorization of many neural networks into a single composite

network optimizes the memory access for network connections, and minimizes the host-

device communication. When applying these techniques to populations of neural networks

that were evolved via neuroevolution, the feedforward evaluation of these networks was sig-

nificantly accelerated, with peak performance reaching 50 times the evaluation speed for each

neural network on a single CPU thread. While this algorithm has been targeted principally

for many-core SIMD architectures, multi-core CPUs would likely also greatly benefit from

these methods. The refactorization described in section 4.4 is essentially a transposition of

the population of neural networks from an array-of-structures into a stucture-of-arrays data

organization, which will take maximum advantage of per-core CPU cache. Moreover, the

DAG-based algorithm described in section 4.3 would be well suited to a CPU thread pool

or other task-based concurrency paradigm.

The novel algorithms presented in this work represent the first general-purpose mapping

of large numbers of topologically heterogeneous neural networks to many-core architectures.

Moreover, the achieved feedforward evaluation speedup is of particular importance to the
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field of neuroevolution. The methods described here enable the networks evolved via neu-

roevolution to harness the compute capabilities of modern many-core architectures. Evolu-

tionary algorithms are easily distributable across many compute nodes (for example, placing

a population of neural networks on each node), and the algorithms presented here enable the

evaluation of tens-to-hundreds of thousands of structurally diverse neural networks to now

be offloaded to many-core accelerators available on these nodes. As the ability to harness

distributed heterogeneous computing is a primary feature of modern machine learning frame-

works, this work represents a step forward in enabling neuroevolution to better compete in

this space.
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Chapter 5

Summary & Outlook

Over the past two decades, there has been an impressive number of experimental programs

studying Gamow-Teller distributions in pf -shell nuclei. Importantly, it has been found that

the nuclear shell model appears to be able to describe the measurements in this region par-

ticularly well [13, 90]. This is a significant experimental, theoretical, and computational

achievement, as it implies that allowed weak reactions for most iron-group nuclei near sta-

bility can be reliably estimated. As many astrophysical phenomenon rely on weak rates for

these nuclei, significant constraints on the nuclear physics can now be placed, and other

more significant uncertainties pursued. However, weak interaction rates for nuclei beyond

the pf -shell, such as the neutron rich nuclei that have been shown to dominate the total

electron capture rate in core-collapse supernovae, as well as heavier nuclei that also play an

important role, remain poorly constrained. To date, weak interaction rates for these nuclei

are often estimated by simple single-particle methods, and in many cases, phenomenological

parameterizations which reproduce the data in the pf -shell but likely have orders of mag-

nitude error for heavier and more neutron rich systems [31, 38, 64, 2, 88]. The impact that

such uncertainties have on a variety of astrophysical environments remains an important

open question in nuclear astrophysics.

As a logical continuation of the efforts of Cole et al. [13], where the authors systemati-

cally compared the inferred electron capture rates from many measurements and theoretical
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calculations for nuclei in the pf -shell, the sensitivity study efforts I led investigated how the

errors in this region (and more significantly, those outside the pf -shell) impact the early

phases of core-collapse supernovae. This effort allowed us to understand on which nuclei

experimental and theoretical efforts should focus. Furthermore, it is continuing to lend in-

sight on how significantly these nuclei determine key characteristics of the events, such as

the neutrino emission signal at core bounce, and the gravitational wave signal that would be

emitted from a rotating star undergoing core-collapse [2, 3].

Ultimately, this work motivates a systematic study similar to that performed by Cole

et al. [13] but for neutron-rich nuclei in the sdg-shell. As such an investigation relies on

the availability of measurements and theoretical calculations for these nuclei, future efforts

should focus in this region. Moving to heavier neutron rich nuclei, however, provides a unique

experimental challenge, as there currently is no established method for studying β+ Gamow-

Teller distributions for radioactive nuclei. It is therefore of critical importance to develop

new techniques that take advantage of inverse kinematics, where the investigated radioactive

nuclei are formed as secondary beams at fast-fragmentation facilities. A promising method is

the (d, 2He) charge-exchange reaction, wherein a rare isotope beam is produced and impinged

on an active target time projection chamber (TPC) filled with deuterium gas. In such a

measurement the time projection chamber would be utilized to track the position and energy

of the recoiling protons (which are emitted from the 2He system). As the (d, 2He) reaction will

induce β+ transitions in the neutron-rich rare isotope beam, these astrophysically important

nuclei would be accessible for the first time. Similarly, neutron rich nuclei in the sdg-shell,

as well as the very neutron rich systems on the border of the pf and sdg-shells, represent a

significant theoretical challenge due to the large many-body configuration space.

Moreover, forbidden transitions (non zero orbital angular momentum transfer) also play
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an important role in astrophysical environments, specifically in the case of core-collapse

supernovae where the electron chemical potential is large enough that electrons can in-

duce non-negligible rates for these transitions [38]. Unfortunately, configuration-interaction

shell model methods for estimating these rates are not presently available, because the ex-

tremely large model spaces. Popular alternatives such as quasi-random phase approximations

(QRPA) are able to estimate rates for forbidden transitions in large sets of nuclei, however

there are also no measurements available from which such estimates can be evaluated. Fur-

thermore, QRPA estimates have been shown to reproduce the data for allowed Gamow-Teller

transitions only poorly [13]. Because of the astrophysical importance of forbidden weak in-

teractions in nuclei, significant experimental and theoretical investments should be made in

this area.

Computationally, the weak interaction rate library that has been produced as part of this

work has received several updates since its implementation described in chapter 2. As it is the

first comprehensive set of weak rates across many different nuclear species, its incorporation

into the simulation of other astrophysical phenomenon–where weak interactions on nuclei

are suspected to play an important role–presents a unique opportunity to learn more about

the impact of the weak interaction in nuclear astrophysics.

In chapter 3, a new method for extracting Gamow-Teller transition strengths in the

inelastic neutral-current channel was presented. This work runs parallel to the above charged-

current weak interaction investigations, as it allows for the indirect constraint of the neutral-

current weak response of nuclei which is also of importance in astrophysics. The (6Li,6Li′+γ)

reaction has been established as a probe of inelastic isovector-spin transfer excitations in

nuclei. Furthermore, the Gamow-Teller unit cross section for 6Li inelastic scattering was

extracted and agrees well with estimates from charge-exchange and theoretical calculations.
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While the method has limited reach due to being experimentally challenging, it enables

the direct extraction of inelastic Gamow-Teller transition strength for light nuclei. As the

Gamow-Teller transition strength is the primary ingredient to inelastic neutrino-nucleus

scattering cross sections, the (6Li,6Li′ + γ) reaction provides a novel indirect technique that

can supplement, and in some cases replace, the need for multi-year direct measurements with

neutrino beams [159].

In the final chapter of this work, the development and performance of a newly established

technique in artificial intelligence is described. While wholly separate from the physics pre-

viously discussed, these algorithmic advancements seek to enable neuroevolution to take

advantage of modern heterogeneous compute architectures, so that scientists with HPC cen-

ters at their disposal may better employ machine learning in their respective domains. The

principal focus of the algorithm optimizations described in chapter 4 were on improving the

feed-forward evaluation time when tens-to-hundreds of thousands of heterogeneous neural

networks are evaluated concurrently. The evolution of these neural networks through hy-

perparameter and structural space presents a novel divergence problem when mapping the

evaluation of these networks to many-core architectures. Because the evolution of neural

network populations offloads the model choice and refinement process to an evolutionary

search algorithm, neuroevolution increases the accessibility of machine learning to novice

users, and thus motivates the need for a solution to the above described divergence problem.

The algorithms described in chapter 4 provide a new evaluation paradigm which enables

the processing of many heterogeneous neural networks concurrently on many-core archi-

tectures. By pre-sorting the connections into evaluatable sets, and parallelizing over the

network’s directed acyclic dependency graphs, nearly all branch divergence is eliminated.

Principally, this is because the relationships between operations in network evaluation can
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be ordered so that heterogeneity in network structure is ignored, and that at each step,

SIMD parallelism is maximized. Thus, these methods represent a general-purpose mapping

of large numbers of structurally diverse neural networks, including recurrent neural networks,

to many-core architectures. As the ability to harness distributed heterogeneous computing is

a primary feature of modern machine-learning frameworks, these algorithms represent a few

of the needed steps toward enabling neuroevolution to lower the machine learning barrier for

use in scientific endeavors. Moving forward, the application of this DAG-based method in

reverse-mode differentiation for neural-network training would be the next logical step. Fur-

thermore, as evolutionary algorithms employed in neuroevolution can be easily distributed

across many CPUs, a distributed implementation of neuroevolution which harnesses the het-

erogeneous network evaluation described in this work should be developed, as it will greatly

increase the search capability of neural-network evolution.
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[75] P. Möller, J. Nix, and K.-L. Kratz, Atomic Data and Nuclear Data Tables 66, 131
(1997).

[76] L. Geng, H. Toki, and J. Meng, Progress of Theoretical Physics 113, 785 (2005).

[77] G. Audi, A. Wapstra, and C. Thibault, Nuclear Physics A 729, 337 (2003).

[78] S. E. Woosley and T. A. Weaver, The Astrophysical Journal Supplement Series 101,
181 (1995).

[79] S. Woosley and A. Heger, Physics Reports 442, 269 (2007).

[80] E. O’Connor and C. D. Ott, The Astrophysical Journal 730, 70 (2011).

[81] M. Liebendorfer, The Astrophysical Journal 633, 1042 (2005).

[82] C. F. J. Wu, The Annals of Statistics 14, 1261 (1986).

157

http://dx.doi.org/10.1103/PhysRevD.65.043001
http://dx.doi.org/10.1103/PhysRevD.55.4577
http://dx.doi.org/10.1103/PhysRevC.64.055801
http://dx.doi.org/10.1103/PhysRevC.64.055801
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.010
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://dx.doi.org/ 10.1103/PhysRevC.81.015803
http://dx.doi.org/ 10.1103/PhysRevC.81.015803
http://dx.doi.org/ 10.1016/0375-9474(95)00161-S
http://dx.doi.org/ 10.1016/0375-9474(95)00161-S
http://dx.doi.org/ 10.1140/epja/i2014-14046-5
http://dx.doi.org/ 10.1140/epja/i2014-14046-5
http://dx.doi.org/ 10.1006/adnd.1995.1002
http://dx.doi.org/ 10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1997.0746
http://dx.doi.org/10.1006/adnd.1997.0746
http://dx.doi.org/ 10.1143/PTP.113.785
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1086/192237
http://dx.doi.org/10.1086/192237
http://dx.doi.org/10.1016/j.physrep.2007.02.009
http://dx.doi.org/10.1088/0004-637X/730/2/70
http://dx.doi.org/10.1086/466517
http://projecteuclid.org/euclid.aos/1176350142


[83] E. O’Connor and C. D. Ott, The Astrophysical Journal 762, 126 (2013).

[84] T. Suzuki, H. Toki, and K. Nomoto, The Astrophysical Journal 817, 163 (2016).

[85] M. Honma, T. Otsuka, T. Mizusaki, M. Hjorth-Jensen, and B. A. Brown, Journal of
Physics: Conference Series 20, 7 (2005).

[86] J. Pruet and G. M. Fuller, The Astrophysical Journal Supplement Series 149, 189
(2003).

[87] A. R. Raduta, F. Gulminelli, and M. Oertel, Physical Review C 95, 025805 (2017).

[88] R. Titus, C. Sullivan, R. G. T. Zegers, B. A. Brown, and B. Gao, Journal of Physics
G: Nuclear and Particle Physics (2017).

[89] K. Scholberg, Annual Review of Nuclear and Particle Science 62, 81 (2012).

[90] K. Langanke and G. Martnez-Pinedo, Nuclear Physics A 928, 305 (2014), special
Issue Dedicated to the Memory of Gerald E Brown (1926-2013).

[91] W. C. Haxton, Physical Review Letters 60, 1999 (1988).

[92] W. R. Hix, A. Mezzacappa, O. E. B. Messer, and S. W. Bruenn, Journal of Physics
G: Nuclear and Particle Physics 29, 2523 (2003).

[93] B. Bodmann, N. Booth, F. Burtak, A. Dodd, G. Drexlin, V. Eberhard, K. Ei-
tel, J. Edgington, E. Finckh, H. Gemmeke, G. Giorginis, A. Glombik, T. Gorringe,
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J. Wochele, J. Wolf, S. Wölfle, and B. Zeitnitz, Physics Letters B 280, 198 (1992).

[94] R. Imlay, Nuclear Physics A A629, 531 (1998).

[95] A. Tamii, Y. Fujita, H. Matsubara, T. Adachi, J. Carter, M. Dozono, H. Fujita, K. Fu-
jita, H. Hashimoto, K. Hatanaka, T. Itahashi, M. Itoh, T. Kawabata, K. Nakan-
ishi, S. Ninomiya, A. Perez-Cerdan, L. Popescu, B. Rubio, T. Saito, H. Sakaguchi,
Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F. Smit, Y. Tameshige, M. Yosoi,
and J. Zenhiro, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 605, 326 (2009).

158

http://dx.doi.org/10.1088/0004-637X/762/2/126
http://stacks.iop.org/0004-637X/817/i=2/a=163
http://stacks.iop.org/1742-6596/20/i=1/a=002
http://stacks.iop.org/1742-6596/20/i=1/a=002
http://stacks.iop.org/0067-0049/149/i=1/a=189
http://stacks.iop.org/0067-0049/149/i=1/a=189
http://dx.doi.org/10.1103/PhysRevC.95.025805
http://iopscience.iop.org/10.1088/1361-6471/aa98c1
http://iopscience.iop.org/10.1088/1361-6471/aa98c1
http://dx.doi.org/10.1146/annurev-nucl-102711-095006
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysa.2014.04.015
http://dx.doi.org/10.1103/PhysRevLett.60.1999
http://stacks.iop.org/0954-3899/29/i=11/a=008
http://stacks.iop.org/0954-3899/29/i=11/a=008
http://dx.doi.org/ 10.1016/0370-2693(92)90055-9
http://dx.doi.org/10.1016/S0375-9474(97)00733-1
http://dx.doi.org/https://doi.org/10.1016/j.nima.2009.03.248
http://dx.doi.org/https://doi.org/10.1016/j.nima.2009.03.248


[96] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertu-
lani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa, M. Itoh,
T. Kawabata, Y. Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsubara, K. Nakan-
ishi, R. Neveling, H. Okamura, H. J. Ong, B. Özel-Tashenov, V. Y. Ponomarev,
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