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ABSTRACT

ISOSPIN MIXING AND THE 30P(p, γ)31S REACTION RATE

By

Michael Bennett

The 30P(p, γ)31S reaction rate is critical for modeling the final elemental and isotopic

abundance of ONe nova nucleosynthesis, the calibration of proposed nova thermometers,

and the identification of presolar nova candidate grains. Unfortunately, the rate is essen-

tially unconstrained experimentally, despite numerous studies using a variety of experimental

techniques, largely due to uncertainties in the spins and parities of the narrow, isolated 31S

proton capture resonance states that likely govern the proton capture reaction rate.

The beta decay of 31Cl, which preferentially populates important l = 0 30P proton

capture resonances in 31S, is a useful tool for studying the properties of these states. Using

an accelerated beam of 31Cl, we have observed the beta-delayed gamma decay of a number

of 31S states up to excitation energy Ex = 7200, including states within the 30P(p, γ)31S

Gamow window for peak nova temperatures. Herein we report the results of this study,

including: the production of a 31Cl beta decay scheme with over twice as many 31S gamma

transitions as the most recent literature scheme; the observation of isospin mixing of a

resonance with isospin T = 1/2 at Ex = 6390.2(7) keV with the nearby T = 3/2 31S

isobaric analog state (IAS), giving it an unambiguous spin and parity of 3/2+; and the clear

identification of the second T = 3/2 31S state and the results of several tests of the isobaric

multiplet mass equation for both the lowest and second-lowest A = 31, T = 3/2 quartets.
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Of making many books there is no end,
and much study is a weariness of the flesh.

Eccl. 12:12

This dissertation is dedicated to H. Michael Sommermann
and Warren F. Rogers, the first people to teach me that being

a good physicist is more than the making of many books.

iv



ACKNOWLEDGMENTS

Of course, none of this could have been possible without the work of my advisor, Dr.

Chris Wrede. Chris has a tremendous ability to seek out important problems in nuclear

astrophysics and conceive of new ways to answer those questions, and I am very grateful

for the opportunity to have been involved in multiple important projects as his graduate

student. Chris was patient with me as I made basically every mistake it is possible to make

as a grad student, and continuously encouraged me to become the best researcher I could.

I am truly indebted to him for helping me develop as much as I did during my time at

Michigan State.

I also have to thank my incredible thesis committee: B. Alex Brown, Laura Chomiuk,

Carl Schmidt, Hendrik Schatz, and Ulrike Hager. Their insights throughout the process of

planning, executing, and analyzing the results of my thesis experiment helped to make me a

better and more thoughtful scientist. Ulrike especially deserves special thanks for exhibiting

superhuman flexibility and stepping in at the last moment to witness my dissertation defense

when a committee member was unavailable.

In addition to my advisor Chris, I am indebted to the other members of the Wrede group
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Chapter 1

Introduction

1.1 Overview of Pertinent Physics

1.1.1 An Introduction to Nuclear Physics

The periodic table of elements is organized according to the increasing number Z of protons

in an atom of each element, but for each element, multiple isotopes exist with identical Z

but differing numbers N of neutrons. These isotopes are commonly organized according

to the so-called chart of nuclides (Fig. 1.1), with the number of protons in the nucleus

increasing along the vertical axis and the number of neutrons in the nucleus increasing along

the horizontal axis. As shown in Fig. 1.1, isotopes of an element are arranged in horizontal

rows and, because they share the proton number Z, have identical chemistry while possessing

different nuclear properties. Nuclei with identical neutron number N are called isotones, and

nuclei with the same total number of nucleons (so-called “mass number” A = Z + N) are

called isobars.

Only a small fraction of all known nuclei are stable; these are represented in the chart of

nuclides (Fig. 1.1) by the black squares. The remaining nuclei are radioactive and undergo

some form of nuclear decay, transforming sequentially into stable nuclei. The two primary

forms of decay for light nuclei are particle emission and beta decay (commonly abbreviated

with the Greek symbol β). For example, neutron-deficient nuclei to the left of stability on
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Figure 1.1: The chart of nuclides. The vertical axis represents the number of protons Z in a
given nucleus and the horizontal axis represents the number of neutrons N in the nucleus. All
isotopes of a given Z possess identical chemical properties, but the nuclear physics properties
of a given element are different from one isotope to the next. The black squares along the
center of the distribution are the stable nuclei; the green region represents unstable nuclei
that have been observed, while the yellow region represents nuclei expected to exist but as
of yet unobserved.
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the N axis of the chart of nuclides decay either via proton or alpha-particle emission, or by

undergoing beta-plus decay. Beta-plus decay, in which the nucleus transforms a proton into

a neutron and emits a positron (a beta-plus particle, β+) and electron neutrino, occurs via

the weak interaction. A nucleus, like an atom, may exist in one of a number of quantized

energy states; particle emission such as proton decay requires the parent nucleus (that is,

the nucleus that is undergoing decay) to be in a state with mass greater than that of the

daughter nucleus (that is, the nucleus into which the parent decays) plus the particle. This

is true for all nuclei including those beyond the edge of the chart of nuclides, the “drip line,”

investigation of which is an active field in nuclear science and is beyond the scope of this work.

If the energy of this state is higher than the ground state, it may be attained, for example,

by the absorption of a gamma-ray γ that adds its energy to that of the parent nucleus. For

proton emission of, for example, 16O, this process would be notated: 16O(γ, p)15N.

In principle, in an environment with an abundance of protons, the reverse also happens:

such proton capture is notated in a very similar fashion: 15N(p, γ)16O represents the combi-

nation of a 15N nucleus and a proton to form 16O; the resulting photon carries away energy

given off in the capture reaction (more details in Section 3.2). On the neutron-rich side of

the chart of nuclides, neutron emission and beta-minus decay occur to mirror the decay of

unstable nuclei on the neutron-deficient side. And, in some circumstances, a nucleus may

emit an alpha particle (α), a 4He nucleus. In each of the above cases of decay, the nucleus

changes in Z, N , and/or A. A heavier nucleus (A > 56) may also fission, breaking into

constituent daughter products such that the binding energy per nucleon in each daughter

nucleus is higher.

These various decay processes all move the nucleus toward stability. Since beta-decay

preserves mass number A, a lighter nucleus could conceivably be transformed to a heavier
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one via a series of particle captures and beta decays. However, since most unstable nuclei

are extremely short-lived, it has historically been difficult to study their properties. The

field of nuclear astrophysics originated through attempts to answer this and other large-

scale questions: What is the origin of the elements? How do stars generate their energy?

And how do the energetic stellar events observed throughout the galaxy such as supernovae,

neutron star mergers, and other cataclysmic events contribute to the observed distribution

of isotopes throughout the galaxy?

1.1.2 Nuclear Astrophysics and the Lives of Stars

The modern field of nuclear astrophysics was born from work culminating in the late 1950s

with the publication of the treatise Synthesis of the Elements in Stars [1] and the independent

formation of the lecture series Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis

[2]. In these works, both the origin of the elements and the energy generation of stars were

proposed as the consequences of nucleosynthesis: the building up of protons and neutrons

into light elements, and the subsequent building of heavy elements from those lighter pieces.

Various galactic sources were proposed as sites for nucleosynthesis. The Big Bang produced

hydrogen (protons), neutrons, and, through nucleosynthesis of these two building blocks, the

additional light nuclei 3He, 4He, and 7Li [3]. With few exceptions originating from processes

like cosmic ray interactions, all elements besides hydrogen, helium, and lithium are produced

in stars.

Stars are categorized according to their composition. “Population I” stars like our Sun

have compositions affected by the materials ejected in the death throes of older “Population

II” stars. But even these ancient stars exhibit some metallicity – in fact, every star that

has ever been observed has some metals in it. A proposed first generation of stars, the
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Figure 1.2: The pp-I chain, which produces 4He from fusion of four protons (1H). The
arrows indicate the order of processes, while the times noted at the bottom of each section
(demarcated by the dashed gray lines) denote the time for the reaction to occur in a stellar
environment like that of the Sun. The extremely long timescale of the first reaction, p+p→
2H + e+ + ν, is due to the repulsive Coulomb barrier between the two protons. This long
timescale is offset by the colossal number of protons in the Sun, ∼ 1057. The pp chain
dominates energy production in stars as massive as the Sun.

“Population III” stars, was formed out of hydrogen and helium within about 109 years after

the Big Bang [4].

Stellar nucleosynthesis is the process of fusing the nuclei that make up the initial com-

position of a star into progressively heavier nuclei. Stars spend the majority of their life

burning hydrogen into helium because this fusion yields more energy than subsequent reac-

tions. Through nucleosynthetic processes such as the pp chain (Fig. 1.2) and the CNO cycle

(Fig. 1.3), 1H is fused into 4He, proceeding through the nuclei 2H and 3He in the process.

Beyond these elements, stars produce heavier elements via nucleosynthetic processes such as

the triple-α process, which combines three 4He nuclei into 12C, and the 12C(α, γ) reaction,

which produces 16O. These reactions release energy, causing the star to expand and cool,

and keeping it in so-called hydrostatic equilibrium against gravitational collapse.

In principle, a star may generate energy by fusing successively heavier elements in its
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Figure 1.3: The CNO-I cycle, which, similar to the pp chain (Fig. 1.2), produces a 4He
nucleus from the fusion of four protons. Unlike the pp-chain, however, the CNO cycle is
catalytic, consuming the four protons necesary for 4He production but not the 12C nucleus
through which the 4He is created. The CNO cycle dominates energy production in stars of
greater than about 1.5 M⊙.

core until it produces 56Fe and 56Ni, after which the energy released from nuclear fusion is

less than the release from fission of heavier nuclei into lighter constituent pieces. A star’s

nucleosynthetic endpoint is determined primarily by its mass; less massive stars, on the order

of the mass of the sun (M⊙), do not reach sufficient internal temperatures for fusion beyond

oxygen, while stars less than about 0.3 M⊙ will not even fuse to carbon. Stars of mass about

8-10 M⊙ will produce neon. Despite the variance in nucleosynthetic endpoint, however, these

stars all have the same fate: they will run out of fuel, shed their outer layers, and collapse

into a compact star known as a white dwarf. Stars with mass greater than about 10 M⊙,

however, produce elements up to A = 56 via fusion of neon, oxygen, and silicon and will

eventually end their lives as a neutron star or black hole.

Elements heavier than A = 56 are produced either via the “slow neutron-capture process”

which is believed to occur mostly in giant stars, or in cataclysmic events such as mergers
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of neutron stars or the death of stars much more massive than the Sun. In the latter

case, the core of the massive star can no longer produce additional thermal energy through

nucleosynthesis and is consequently unable to fight off gravity. It therefore collapses, releasing

gravitational potential energy that powers an explosion known as a supernova, during which

nucleosynthesis of heavy elements can occur in the ejected material. The core simultaneously

collapses into a neutron star or black hole, depending upon the mass of the progenitor star.

The ejected material, including a mix of heavier elements, is jettisoned off into space in

a core-collapse supernova; the material may then eventually become part of a gas cloud

where new stars may form. In this way, stellar material is recycled for use as fuel in future

generations of these nuclear furnaces.

1.2 Classical Novae

As mentioned above, stars with masses on the order of one solar mass M⊙ do not fuse

elements heavier than neon, or possibly magnesium [5]. As such a star finishes the main

sequence of its life and runs out of hydrogen in its core, it expands to become a red giant.

During this time, the star’s core contracts until it becomes hot enough to fuse helium into

carbon and oxygen, while hydrogen burning continues in a shell surrounding the core. When

the star runs out of helium in its core, the core, which depending upon the mass of the

star is now composed predominantly of either carbon and oxygen (for less massive stars)

or of oxygen and neon (for more massive stars), contracts yet again. At this point, the

star jettisons its outer layers into a cloud known as a planetary nebula. The hot core of

the star becomes a white dwarf, a small star of mass up to 1.4 M⊙ with a composition

dependent upon the composition of the core of the progenitor, again either carbon-oxygen
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(a “”CO” white dwarf) or oxygen-neon (an “ONe” white dwarf). Lighter stars than the Sun

will produce white dwarfs composed of helium, while stars with mass 8-10 M⊙ will produce

white dwarfs composed of oxygen and neon. No fusion occurs in the white dwarf; instead,

further collapse is prevented by electron degeneracy pressure. White dwarfs radiate their

stored thermal energy, becoming less hot and less visible over time.

For isolated stars, this represents the end of nucleosynthesis. However, it has been es-

timated that up to a third of stars exist as binaries – systems where two stars orbit a

gravitational center [6]. In these cases, the stars may gravitationally interact and can have

profound effects on each other’s evolution. In a system where a white dwarf star co-orbits

a less-massive main sequence star, the hydrogen-rich star may overflow its own Roche lobe,

the region of space, bound by a gravitational equipotential surface, within which the star’s

gravity attracts nearby material. The hydrogen-rich material may then flow into the Roche

lobe of the white dwarf via a process known as accretion, slowly spiraling onto the surface

of the white dwarf in a disk orbiting the star. This accretion slowly builds up an envelope

of hydrogen-rich material on the surface of the white dwarf [7].

Because the white dwarf surface is so much more dense than the hydrogen, the incoming

material does not fully mix with the material that forms the white dwarf. While some

mixing does occur in the bottom-most layer of the hydrogen envelope [8], the majority of

the envelope remains hydrogen-rich and becomes increasingly hotter as it is compressed.

This continues until the hydrogen-rich material becomes electron degenerate itself. At some

point after this, the material becomes hot enough that hydrogen burning occurs, but because

the material is degenerate, it cannot expand to cool itself off and maintain equilibrium [9].

Consequently, the envelope becomes hotter and hotter in a so-called thermonuclear runaway,

which continues unabated until the degeneracy is lifted. In the process, the material accreted
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Figure 1.4: An artist’s depiction of a classical nova in a binary system. The accretion
disk, consisting of hydrogen-rich material flowing from the main sequence companion star
(right), is shown at the equator of the white dwarf (left). Image copyright David A. Hardy,
www.astroart.org

onto the white dwarf blows off in an explosion known as a classical nova [10]. Novae are

categorized according to the type of white dwarf on which they occur: CO novae occur on

the less massive white dwarfs composed primarily of carbon and oxygen, while ONe novae

occur on the heaviest white dwarves, composed of oxygen and neon. An artist’s depiction of

a nova in a binary system is shown in Fig. 1.4.

Novae are powerful explosions, releasing ∼ 1045 ergs of energy [11] and causing the white

dwarf to increase in brightness by factors anywhere from 1,600 to 107, with peak luminosities

between 104 and 105 L⊙ [12]. Unlike the more powerful supernovae, however, classical novae

do not destroy the star on which they occur, meaning that they can be recurrent, with a

period equal to the amount of time before accreted matter onto the white dwarf explodes
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again. They occur far more frequently than supernovae in our galaxy, with an expected

occurrence rate of 30 ± 10 per year [13], compared with an expected supernova rate of one

every 40 ± 10 years [14].

Approximately 10 novae are observed in our galaxy per year (the difference between

expected and observed number is due to interstellar dust in the galactic plane, which obscures

the light emitted from the nova, as well as the lack of systematic survey techniques), allowing

for observational study using both ground and space-based telescopes. Light curves, which

measure the brightness of a nova as a function of time, have been recorded for novae in radio,

infrared, optical, ultraviolet, X-ray, and gamma-ray regions of the electromagnetic spectrum.

These different measurements of novae have helped to determine various properties of these

stellar explosions: the rate and duration of the energy output, the nova’s distance from

Earth, and the density and temperature of the ejected material throughout the explosion.

Spectroscopy has also been used to partially determine the elemental composition of the

nova ejecta.

Similar to supernovae, material from the explosion is jettisoned out into space; novae

however are less energetic than supernovae and release a smaller amount of matter, between

10−7 and 10−3 M⊙ [15, 10], compared to between 1 and 10 M⊙ for supernovae. As this

material expands outward from the white dwarf, it cools, forming dust grains that preserve

the specific composition of the nova material at the time it condenses. These grains, carrying

a record of the nova conditions, travel throughout the galaxy and may in time be caught up

in the formation of a new star or planetary system. Thus, these cataclysmic explosions may

leave a distinct – and measurable – imprint on nascent stars and their attendant systems.
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Chapter 2

Nuclear Astrophysics: Motivation for

Study of 30P(p, γ)31S

2.1 Elemental and Isotopic Abundances

As discussed in Chapter 1, the distribution of elements is the result of nucleosynthesis at

various sites throughout the Universe’s lifetime. It is possible to quantify this distribution

both observationally and theoretically. For example, temperature and density models of the

early Universe have been used to explain the currently-observed distribution of roughly 75%

hydrogen and 25% helium by mass as a result of the relative numbers of protons and neutrons

produced in the Big Bang. [4]. The distribution of the remaining elements is mainly due to

stellar nucleosynthesis; however, because stars of different ages contain different amounts of

heavy elements to begin with, the relative distribution of elements may differ between any

two given stars or planetary systems in the galaxy, or even between two galaxies [16].

An important concept in nuclear astrophysics is the idea of abundance, the relative mea-

sure of the amount of a given element found in a specific location. The abundances of

elements in a given system play an important role in its construction. Because our own solar

system formed around an Nth-generation star, for example, it contained heavy elements such

as iron, and was able to form terrestrial planets. Figure 2.1 depicts the elemental abundances
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Figure 2.1: Solar system elemental abundances 4.56 billion years ago as a function of ele-
mental number Z, plotted from data in Ref. [16]. The vertical axis has been normalized
so that the hydrogen abundance value is set at 1012. The other elemental abundances are
relative to that number.

present in our solar system at the time of its formation. Of interest to nuclear astrophysics

is the related concept of isotopic abundance; measuring the relative amounts of carbon-12 to

carbon-14, for example, allows for radioactive carbon dating of ancient organic compounds

on Earth’s surface.

In principle, solar system abundances may be determined in several ways. Solar absorp-

tion and emission spectra (Fig. 2.2) may be used to determine the elemental makeup of the

Sun, which is presumed to have undergone very little elemental change from the formation

of the Sun out of the presolar nebula. Unfortunately, these spectra are based on atomic

transitions and do not yield information about isotopic solar system abundances. Terrestrial

materials, on the other hand, are readily accessible and may be studied in depth, allowing

for the direct determination of precise isotopic abundances. However, because of the high

temperatures and pressures present during the formation of Earth, chemical fractionation

of terrestrial materials means that abundances determined from terrestrial sources do not

12



Figure 2.2: A solar photosphere absorption spectrum taken in the visible region of the
electromagnetic spectrum between 392 nm (blue) and 692 nm (red). The dark lines at
particular wavelengths throughout the spectrum are due to atomic absorption of photons
of that wavelength, corresponding to a transition to an excited atomic state of that atom.
Since each atomic element possesses its own energy scale, the pattern of absorption lines in
the solar spectrum may be used to infer the elemental makeup of the photosphere.

typically match the composition of the solar system at large. A promising method to deter-

mine isotopic abundances is thus direct study of material formed in the presolar nebula that

was unexposed to the high temperatures and pressures that resulted in the formation of the

planets. Such material exists in the form of ancient meteorites, comets, and asteroids.

2.1.1 Meteorites and Their Analysis

Over 50 thousand meteorites have been discovered on Earth. Of these, the vast majority

originated in primordial asteroids formed in the nascent solar system. Thus, meteorites

comprise a promising path to data on the composition of the solar system as it was 4.6

billion years ago, as well as the processes that occurred as it formed.

Meteorites are classified into three categories based on their compositions: iron, stony-
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iron, and stony. Both the iron and stony-iron meteorites, which together comprise only

approximately 6% of meteorite falls, have undergone significant melting, making them un-

suitable for abundance determination. Stony meteorites, which contain the highest amount

of organic compounds, are themselves split into two broad categories, chondrites and achon-

drites, based on the presence or absence of small, round grains comprised mostly of silicate

material called chondrules. Achondrites, like stony-iron and iron meteorites, have also been

subject to igneous processes; however, these comprise only 8% of meteorite falls. The re-

maining 86% of meteorites are chondrites [17]. Examples of each of these meteorite types

are shown in Fig. 2.3.

Chondrites are thought to have originated in primordial asteroids which formed in the

protostellar disk but never grew large enough to heat up and undergo the chemical differ-

entiation present in planetary bodies. As such, the chondrules present in them are thought

to have remained largely unchanged from the formation of the solar system as well. Chon-

drites themselves are classified into three groups; of these, the carbonaceous chondrites are

of greater importance to studies of abundances than the enstatite and ordinary chondrites

[16] because a subset of the group, the Ivuna-type carbonaceous chondrites (CI chondrites),

were never heated above 323 K [18]. CI chondrites exhibit the closest agreement overall

with solar abundances, with the exception of H, C, N, O [19], and the noble gases[16]. These

meteorites can thus be used to obtain not only primordial elemental abundances but isotopic

abundances as well, giving a window onto the composition of the solar system in its infancy.

2.1.2 Isotopic Abundances in Classical Novae

Like stellar nucleosynthesis of the Sun and most other stars, the thermonuclear runaway of

a classical nova is powered primarily by hydrogen burning. The initial burning is spurred by

14



Figure 2.3: Iron (top left), stony-iron (top-right), achondrite (bottom-left), and chondrite
(bottom-right) meteorites. All of the meteorites with the exception of the chondrite have
undergone varying degrees of chemical differentiation as a result of heating. Photo Credits:
Ji-Elle, Doug Bowman, Captmondo, and H. Raab
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Figure 2.4: An excerpt of the chart of nuclides showing the “hot” CNO cycle. As illustrated
here, the hot CNO cycle breaks out from the “cold” cycle when 13N captures a proton instead
of undergoing beta decay; this is due to the increased temperature in the stellar environment,
making the relative time for proton capture shorter than the 13N beta-decay half-life of 10
minutes.

the pp chain, but the explosive burning that occurs as the nova reaches its peak temperatures

is powered by the hot CNO-cycle (Fig. 2.4). In this environment, nucleosynthesis on “seed

nuclei” such as 17O can occur, fusing heavier elements up to A ≈ 40 via a series of (p, γ) and

(p, α) reactions and β+ decays. This process is known as nova nucleosynthesis (Fig. 2.5).

As with any nuclear process, nova nucleosynthesis yields a distribution of isotopes pro-

duced by the burning. These final abundances characterize the nova and are themselves

dependent upon environmental factors in the nova: for instance, maximum temperature

achieved. As with the Sun, the presence of specific lines in nova spectra are clues to the final

elemental abundances [20]. However, the same problem exists as with solar spectra: only

elemental abundances may be inferred. For novae, a comprehensive investigation of isotopic

abundances is even more difficult, since it is not possible to sample the system in which the

nova occurs from across the galaxy beyond spectral lines (carbon and oxygen isotopic ratios
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Figure 2.5: A section of the chart of nuclides showing the extent of classical nova nucle-
osynthesis. The dark blue boxes represent stable isotopes, and each arrow represents either
a proton capture, beta decay, or (p, α) reaction. The red circle near the top of the figure
denotes the endpoint of nova nucleosynthesis, around calcium. Figure credit: Ref. [20].
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can be inferred from molecular lines from CO novae).

Typically, theoretical models are used by astrophysicists to estimate nova isotopic abun-

dances. Such models may, for example, use a one-dimensional hydrodynamic code to simulate

the evolution of the nova environment integrated with a nuclear reaction network to simu-

late the nucleosynthesis [21]. These nuclear reaction networks take input abundances of seed

nuclei and, given tabulated rates as a function of temperature of each reaction involved in

nucleosynthesis, produce theoretical isotopic abundances for the nova. Because only a few

hundred nuclear reactions are involved, and those reactions lie close to the line of stability, it

is possible to use mostly experimentally-determined reaction rates in the models [10]. Thanks

to experimental work to measure and characterize the various reactions involved in nucle-

osynthesis, most reactions of importance to nova yields have been experimentally measured

and characterized sufficiently. Until recently, only three reactions stood out as challenges to

constraining nova abundances: 25Al(p, γ)26Si, 18F(p, α)15O, and 30P(p, γ)31S, and a 2013

study provided an experimentally determined 25Al(p, γ)26Si reaction rate [22, 23]. However,

experimentally constraining at least the 30P(p, γ)31S reaction rate has been challenging. In

fact, a recent evaluation of reaction rate uncertainties [24] concluded that attempting to cal-

culate a meaningful 30P(p, γ)31S reaction rate from the available experimental information

was futile because the nuclear physics was so poorly understood.

2.1.3 More Nucleosynthesis: Nova Thermometers

In addition to affecting the final isotopic abundances of nova nucleosynthesis of the isotopes

in the mass range 30 ≤ A ≤ 40, the 30P(p, γ)31S reaction rate also affects the calibration of

so-called nova thermometers. A recent study [25] proposed the use of relationships between

simulated abundance ratios of various elements and peak nova temperatures as a means to
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Figure 2.6: The eight nova thermometers proposed as the most useful for constraining peak
nova temperatures in Ref. [25]. Each line represents the ratio of the notated elemental
abundances as a function of temperature. The four most steeply-varying lines all involve
either phosphorus or sulfur abundances, making precise determination of these elemental
abundances a high priority. Figure credit: Ref. [25].

constrain the highest temperature a nova could achieve. This study used a nuclear reaction

network with an updated library of reaction rates [26] and hydrodynamic nova models over

a range of progenitor white dwarf masses from 1.15−1.35 M⊙ to simulate ONe nova explo-

sions and subsequent nucleosynthesis. It recorded the final elemental abundances and peak

temperatures reached by the novae during the simulations and plotted the relationships (Fig.

2.6).

The study found that, of the eight proposed elemental abundance ratios which varied

most strongly with peak temperature, the two most strongly temperature-dependent ratios

were O/S and S/Al, with the ratios O/P and P/Al following closely behind. However, the

study concluded that the applicability of these thermometers was limited, partly due to
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limitations in the observation and spectral analysis of ONe nova ejecta, but also due heavily

to the lack of available experimental information on the 30P(p, γ)31S reaction rate. In fact,

as in Ref. [24], the study was not even able to use experimental data to produce a reaction

rate, instead opting for the purely theoretical Hauser-Feshbach statistical model [27] (see

Section 3.3.1). The study called for new laboratory measurements of the rate in order to

ascertain the validity of the nova thermometers O/S, S/Al, O/P, and P/Al.

In principle, isotopic abundances are not only useful for a theoretical understanding of

nova nucleosynthesis or a computational study of their peak temperatures. In the situation

described in Chapter 1, a grain of dust may condense from a nova outflow and travel to a

young planetary system in the process of formation. If the material into which this grain

embeds itself never draws close enough to its parent to cause chemical changes through

heating, the grain may retain a distinct record of the isotopic abundances of its parent nova.

In the event that such a grain, having entered our solar system during its formation, then

makes its way to Earth, analysis may be carried out in the same manner as for a solar

system grain and the nova grain’s isotopic composition may be determined experimentally

and compared to nova models. Such a grain, created before the birth of the solar system,

can thus allow for in-laboratory study of an astrophysical process that occurred somewhere

in the galaxy over 4.5 billion years ago.

2.2 Presolar Grains

Despite the knowledge that a number of diverse nuclear processes created the mixture of

elements that formed the solar nebula [1], it was originally thought that the the formation

process had homogenized the presolar materials which would form the solar system, resulting
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in uniform solar system isotopic abundances. The first indications of anomalous isotopic

composition in meteoritic grains occurred in 1954 and 1964 with the observation of divergent

amounts of hydrogen [28] and xenon [29]. Further evidence in 1973 in the form of a meteoritic

excess of 16O opened the door to the idea that not all material present at the formation of

the solar system had been homogenized, and the search for signatures of presolar material

continued with observation of isotopic divergences in a number of other elements [30].

Isotopically anomalous meteoritic grains may have one of a number of origins [30]. They

may be the result of decay processes of long-lived radioactive isotopes such as 26Al, which

is formed throughout the galaxy in giant stars and at other sites, with a half-life of ∼ 1 · 106

years; this radioactive 26Al is caught up in the formation of the solar system and lends its

signature to these samples in the form of its beta-decay daughter nucleus, 26Mg. They may

be so-called calcium-aluminum-rich inclusions, which may be formed from crystallization or

melting of condensed liquid in the early solar system [31]. They may also simply be the result

of local inhomogeneities in the solar nebula. In each of these cases, the sample may be the

result of incomplete mixing in the solar nebula, but while it retains some of the characteristics

of its site of origin, it does not exhibit isotopic ratios divergent enough to preclude creation

in the young solar system. Those meteoritic grains whose isotopic abundances are different

enough from solar system abundances to preclude a solar origin are known as presolar grains.

Presolar grains may originate from any stellar process which produces dust influenced by

nucleosynthesis. Each grain carries a unique record of the process that spawned it, and as

a result presolar grains from different sources exhibit isotopic abundances that are distinct

from one another, even as they are distinct from solar abundances. These diverse grains

also exhibit diverse compositions: for example, a majority of supernova grains are made of

carbon in the form of diamond, while a majority of grains formed in asymptotic giant branch
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(AGB) stars are silicon carbide (SiC) grains. Supernova or other processes may also produce

SiC grains with their own unique isotopic abundances; thus, even grains of similar large-scale

composition may reveal diverse origins upon examination.

2.2.1 Presolar Nova Grains

SiC grains are the most extensively studied of the presolar grains because they are both

comparatively larger than other types of grains and because they are more numerous and

easily found in meteorites such as CI chondrites. Because these grains are large enough to

study individually as opposed to in bulk, techniques such as secondary ion mass spectroscopy

(SIMS) [32] may even allow for measurements of elements with small chemical presences in

the grain. Laser ablation and resonance ionization mass spectroscopy (RIMS) [33] have

also proven useful for measurements of heavier elements such as strontium, zirconium, and

molybdenum [34]. SiC grains have anomalous isotopic abundances of not only silicon and

carbon, but of a sizeable list of other elements: N, Mg, Ca, Ti, noble gases, and refractory

elements such as Sr, Zr, Mo, Ba, Nd, and Sm. [30]. A scanning electron microscope image

of a SiC grain is shown in Fig. 2.7.

In quantifying the precise isotopic abundances of key species in particular grains, sev-

eral different populations of SiC grains have been identified. In order to easily differentiate

between these populations and their prospective origin processes, it is possible to plot char-

acteristic isotopic abundance ratios as shown in Figs. 2.8 and 2.9. In each of these cases,

different populations of grains are shown to have distinct ratios of isotopic species of key el-

ements. Mainstream grains and types A and B grains are thought to be produced in various

types of carbon stars in which the CNO cycle, helium burning, and the slow neutron cap-

ture process (s-process) occur. Types Y and Z grains are most likely produced in low-mass
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Figure 2.7: A SEM image of a silicon-carbide (SiC) grain, taken from the Murchison me-
teorite, a carbonaceous chondrite. Note the grain’s large (several microns) size. Isotopic
analysis has revealed that this grain is indeed a presolar grain, with an origin before the
solar system. Photo credit: Max-Planck-Institut Für Chemie
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Figure 2.8: A plot of the ratios of carbon and nitrogen isotopic abundances as determined
for a number of SiC presolar grains and some graphite grains. The dotted cross in the center
of the plot denotes solar system abundances, and the various populations of grains, denoted
with different symbols, are shown to be distinct based on the combination of the two ratios.
As an example, the so-called nova grains are shown here to be deficient by nearly an order
of magnitude in both 12C relative to 13C and in 14N relative to 15N, when compared with
solar abundances. Figure credit: Ref. [35].

AGB stars with relatively small amounts of metal in which mixing between layers occurred.

X-type grains have been proposed to originate in supernovae. For a thorough discussion of

the natures of different presolar grain populations, see Ref. [30].

The so-called “nova grains” exhibit characteristically high 30Si/28Si ratios along with

characteristically low 12C/13C and 14N/15N ratios. Nova models broadly predict that as

the mass of the white dwarf on which the nova occurs increases, the relative amount of Si

increases as well, as the temperatures reached during nucleosynthesis increase enough to

produce silicon isotopes. Thus, oxygen-neon (ONe) novae, which occur on the most massive

white dwarfs, are a possible origin process for these candidate nova grains [36].
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Figure 2.9: A plot of the ratios of the abundances of the stable silicon isotopes. The dotted
cross centered at the origin denotes solar system abundances. The notation used here is
“permil:” δ29,30Si/28Si = [(29,30Si/ 28Si)/ (29,30Si/28Si)⊙−1]×1000, such that a placement
of 100 along the axis represent a 10% higher ratio than solar, and a placement of 1100
represents a 110% higher ratio. Figure credit: Ref. [35].

2.2.2 Comparison with Nova Models

As mentioned in Section 2.1.2, the output isotopic abundances of nova models may be com-

pared with the observed isotopic abundance ratios of candidate nova grains. In principle,

because there are so few nuclear reactions whose rates have not been constrained by experi-

ment, it should be straightforward to assess whether or not candidate nova grains truly do

originate in classical novae. Indeed, the comparison of isotopic ratios of carbon and nitro-

gen isotopes in nova models to those in analyzed grains reveals a generally good agreement

[35]: both the models and the grains themselves exhibit deficits of both 12C and 14N when

compared to 13C and 15N respectively. However, these agreements are overshadowed by

the uncertainties in the model abundances of the silicon isotopes, which are so large as to

completely preclude a definite assessment. These uncertainties are the result of uncertainty
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in one single reaction: 30P(p, γ)31S proton capture.

30Si is produced via the beta decay of 30P, 30P(β+)30Si. The alternate path for de-

struction of 30P in novae is via proton capture, 30P(p, γ)31S. These processes compete to

determine the total amount of 30Si produced in novae: if the 30P(p, γ)31S rate is compara-

tively fast, more 30P is destroyed via proton capture and less 30Si is produced. Conversely,

a slow rate yields more 30Si. The half-life for 30P beta decay is well-known to be 2.498(4)

min, but the proton capture reaction is, comparatively, essentially unconstrained [24]. In

fact, if the lower and upper limits of the rate are adopted instead of the central rate, the

amount of 30Si relative to 28Si produced in the nova models becomes an excess of a factor

of ∼6 or a deficit, respectively [35]. Better constraints for the 30P(p, γ)31S reaction rate are

thus critical to answering the question of whether candidate nova grains truly do originate

in classical novae.

2.3 The 30P(p, γ)31S Reaction Rate: Purpose of This

Work

As discussed above, the rate of the 30P(p, γ)31S reaction plays an integral part in answer-

ing a number of important questions for classical nova studies due to its influence on nova

observables. What is the final isotopic abundance distribution of novae in the mass region

above 30P? How high a temperature can novae actually reach? And do presolar nova grains

truly come from novae? The first two questions are intertwined, as the maximum tem-

peratures of novae are relevant to the question of CNO cycle breakout, a process by which

novae could produce dramatically different isotopic abundances. The answers to all of these

questions, however, involve constraining the 30P(p, γ)31S rate. Unfortunately, as will be dis-
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cussed in more detail in Chapter 4, studying 30P(p, γ)31S is no trivial task, and the rate still

remains largely unconstrained experimentally, despite numerous studies. Understanding the

30P(p, γ)31S reaction rate involves addressing a number of considerations: the environment

in which the reaction takes place, the energies of the particles involved in the reaction, and

even the specific nature of the capture reaction itself. All of these are factored into the

derivation of the thermonuclear reaction rate, the rate of the reaction in the astrophysical

environment.

The present work constitutes an experimental study using the beta decay of 31Cl to pop-

ulate a number of 31S energy states important to 30P(p, γ)31S and measuring their properties

via their gamma-decay. The experiment itself will be discussed in Chapter 4, while results

and conclusions will be discussed in Chapters 5 and 6. Before discussing the experiment,

however, it is useful to engage in a brief discussion of the nuclear structure concepts and

formalism used to derive and interpret results in the experiment – this is the focus of the

following Chapter 3.
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Chapter 3

Formalism and Theoretical

Considerations

The term “reaction rate” in reference to 30P(p, γ)31S is somewhat loaded. There are in

principle a number of ways to quantify the combination of a proton and a 30P nucleus into

31S: the cross section, a factor with geometric units describing the likelihood of combination

of the two bodies; the reaction rate, which factors in the relative speeds of the particles;

the thermonuclear reaction rate per particle pair, which normalizes over the distributions of

energies of the particles in an astrophysical environment. In practice, when discussing or

tabulating the “reaction rate” of a given reaction, astrophysicists are concerned with this

last quantity. The term thermonuclear reaction rate reflects the fact that the energies of

particles in astrophysical environments like novae are due to their thermal motion.

In the present section, we begin with a short derivation of the thermonuclear reaction rate

equation and a discussion of the nature of particle capture in astrophysical environments,

including direct and resonant capture reactions. Following that, we discuss ways to calculate

the reaction rate when not every parameter involved in the calculation can be constrained

experimentally, including the Hauser-Feshbach statistical model. Lastly, although they are

not strictly related to astrophysics, we discuss two concepts important to nuclear structure

and to the derivation and interpretation of results in the present work, the nuclear shell
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model and the isospin model.

3.1 Derivation of the Thermonuclear Reaction Rate

In general, to calculate a particle capture reaction rate between a projectile (say, a pro-

ton) and a target (say, a nucleus in a stellar environment), several factors must be taken

into account. These include: a geometrical factor πλ2, where λ = 2π~√
2mE

is the deBroglie

wavelength of the projectile; the interaction between the projectile and target, which can

be represented by a matrix element |M|2; and a factor called the penetrability, essentially

the probability that the projectile will approach near enough to the target to interact. This

penetrability factor Pl(E) accounts, for example, for the relative angular momentum of the

projectile with respect to the target – radial motion of the projectile with respect to the

center of the target results in an effective energy barrier which the projectile must overcome

to interact. Combining these factors yields the following proportionality for the cross section

for capture:

σ ∝ 1

E
· |M|2 · Pl(E) (3.1)

where E is the energy of the projectile.

Charged particle reactions such as proton capture require consideration of additional

factors: because both the projectile (proton) and target (nucleus) of the reaction are charged,

the penetrability must account for the Coulomb barrier, the repulsive potential between the

nucleus and the proton. The penetrability Pl(E) factor of the s-wave (that is, l = 0) proton

capture can be shown using the expansion of the transmission coefficient T̂ to be dependent
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upon the Sommerfeld parameter η:

Pl(E) ∝ e−2πη, η ≡
√

µ

2E

Z1Z2e
2

~
(3.2)

where Z1 and Z2 are the proton number of the projectile and target, respectively, µ

is the reduced mass of the projectile-target system (µ = M1M2

M1+M2
), e is the fundamental

charge, and E is again the projectile energy. As expected, this penetrability increases as the

center-of-mass energy of the reactants increases.

From an astrophysical standpoint, the proton capture rate is also dependent upon a

number of environmental factors including the relative densities of projectile protons and

target nuclei and temperature, the latter of which affects the energy of the projectiles. It is

possible to derive an expression for the rate of a nuclear reaction in a way that illustrates

this fact. For the reaction X +Y → Z+W , where X and Y , are, for example, a proton and

a nucleus, the rate may be written:

rXY = NXNY vσ(v) (3.3)

where rXY is the reaction rate per unit volume and time, NX and NY are, for X and Y

respectively, the number per unit volume, v is the relative velocity of the projectile-target

system, and σ(v) is the reaction cross section in terms of that velocity. Since the velocities

of projectiles and targets in the astrophysical environment are not constant, it is possible to

use a generalized distribution for the range of possible velocities and write:

rXY = NXNY

∫ ∞

0
vf(v)σ(v)dv (3.4)
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where we can additionally define 〈σv〉XY ≡
∫∞
0 vf(v)σ(v)dv as the reaction rate per

particle pair. As mentioned above, it is typically this value that is tabulated in place of the

reaction rate rXY , normalized by the Avogadro number NA: NA〈σv〉XY . This thermonu-

clear reaction rate is in units of cm3mol−1s−1, and reflects, as mentioned, the fact that the

kinetic energy of the nonrelativistic projectile and target is their thermal motion, dependent

upon the temperature of the stellar plasma [3].

In fact, because the particles involved in the reaction are nonrelativistic and nondegen-

erate and are in thermal equilibrium with one another, the relative velocity distribution of

the projectile-target system can be described using a Maxwell-Boltzmann distribution, f(v):

f(v) =
( µ

2πkT

)3/2
e−µv2/(2kT )4πv2dv (3.5)

where µ and v are again respectively the reduced mass and center-of-mass velocity of

the projectile-target system, T is the temperature of the stellar environment, and k is the

Boltzmann constant. Using this as the distribution in the equation for the reaction rate

per particle pair, and converting from a velocity distribution to an energy distribution using

v =
√

2E/µ and dE/dv = µv, the following result is reached:

〈σv〉AB =

∫ ∞

0
vf(v)σ(v)dv =

∫ ∞

0
vf(E)σ(E)dE

=

√

8

πµ

1

(kT )3/2

∫ ∞

0
Eσ(E)e−E/kT dE

(3.6)

where the reaction rate depends upon the temperature T , center-of-mass energy E, re-

duced mass µ, and the cross section σ(E), which itself differs between different reactions and

is dependent upon the factors above.

For proton capture in a stellar environment, the reaction rate as noted here depends
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Figure 3.1: An abstract figure denoting the Gamow window and the Gamow peak for pro-
ton capture in a stellar environment. The blue line shows the Maxwell-Boltzmann energy
distribution of the particle in the environment; that is, it shows the decreasing probability
of finding a particle at a given energy as the energy increases. The red line shows the energy
dependence of the penetrability; that is, it shows that the higher-energy the proton is, the
more likely it is to approach near enough to the nucleus to interact. The purple line shows
the combination of these two factors to create a region of increased reaction probability,
the Gamow window. The purple line has been multiplied by a factor of 100 in this plot to
illustrate the effect.

not only upon the Maxwell-Boltzmann exponential factor e−E/kT but, as above, the proton

capture penetrability factor (Pl(E) ∝ e−1/
√
E , Equation 3.2). These two factors combined

yield a distribution with a well-defined maximum (Fig. 3.1); this maximum is named the

Gamow peak. The narrow area of increased reaction probability surrounding the Gamow

peak is known as the Gamow window, and physically reflects both the fact that an increas-

ingly energetic proton is increasingly more likely to penetrate the Coulomb barrier and the

rapidly diminishing probability of the stellar environment producing such a proton as energy

increases.

Thus, for experimenters wishing to measure the reaction rate directly, Equation 3.6 sug-
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gests that it is necessary to measure the cross-section σ(E) at energies ranging throughout

the Gamow window in order to determine the thermonuclear rate. This can be difficult

experimentally, but for certain reactions there is another consideration: the presence of

resonances.

3.2 Direct and Resonant Capture Reactions

Equation 3.6 is a generalized reaction rate for particle capture as described in Chapter 1,

effective for determining the direct capture reaction rate over the relevant energy region. For

charged particle captures, this region is the Gamow window. Physically, a direct capture

results when a nucleus AZ captures a proton into a bound state, simultaneously emitting

a photon which carries away the energy difference between the initial state of the target

nucleus AZ plus the proton and the bound state of the product nucleus A+1(Z + 1) (Fig.

3.2).

However, in the event that the product nucleus has an excited state in the Gamow

window, there will be a so-called resonant capture contribution to the reaction rate as well

as the direct capture rate. In this case, the target nucleus and projectile proton have a

center-of-mass energy Er such that when they combine, they form the product nucleus in

its excited state (Fig. 3.2). If this resonance state then undergoes gamma decay, the energy

of the resulting photon reflects only the differences in energies between the resonance state

and the state in the product nucleus to which the resonance decays. Because this state is

unbound (i.e. it is above the proton emission threshold, the binding energy for the nucleus

plus the proton), it may also re-emit the proton into the ground state of the target nucleus

or one of its excited states. The relative probabilities for decay through various channels
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Figure 3.2: A simple figure showing (a) direct proton capture into a nucleus and (b) resonant
capture into the same nucleus. In direct capture, the initial nucleus combines with a proton,
then emits a gamma-ray into a lower bound state of the compound nucleus. The energy of
the gamma-ray is only a function of the initial nucleus energy, the proton energy, and the
final state energy. In resonant capture, the initial nucleus captures a proton into a higher,
unbound state in the compound nucleus. That state may either re-emit the proton or emit
a gamma-ray, deexciting into a lower state of the compound nucleus. In this case the energy
of the gamma-ray is the energy difference between the resonance state and the lower state.

such as proton emission or gamma decay are given by the partial widths Γp, Γγ , or, for the

general decay channel i, Γi.

Resonant capture is characterized by an extremely enhanced cross-section in a region

peaking around the resonance energy Er (the energy above the proton threshold) of the

resonance state. This peak is described in part by its full width at half-maximum, Γ, the

total width of the resonance. This total width Γ is equal to the sum of partial widths of all

decay channels: Γ = ΣiΓi. Depending upon the value of Γ, a resonance may be categorized

as broad or narrow. The present discussion is limited, for the purposes of this work, to

narrow resonances, where Γ is much less than few keV and the resonance width is such that

the decay partial widths Γi do not vary with energy.

Because of the sharp peak in cross-section around the resonance energy, the formula for

direct capture does not completely describe the energy dependence of the cross-section. The
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resonant-capture cross-section for an isolated resonance involving two decay channels (e.g.

proton emission and gamma decay) is described by the one-level Breit-Wigner formula:

σ(E) =
λ

4π

(2J + 1)

(2JA + 1)(2JB + 1)

Γ1Γ2
(Er − E)2 + Γ2/4

(3.7)

where J and Er are the total spin and resonance energy of the resonance state, JA

and JB are the spins of the projectile proton and target nucleus, and Γ1, Γ2, and Γ are

the partial widths and total width, respectively. Deriving this Breit-Wigner description of

narrow resonances is beyond the scope of this work, but an excellent review may be found

in Ref. [3]. Using this cross section in the reaction rate calculation (Equation 3.6), the

following result is obtained:

NA〈σv〉 = NA

√
2π~2

(µkT )3/2
ω

∫ ∞

0

Γ1Γ2
(Er − E)2 + Γ2/4

e−E/kT dE (3.8)

where ω ≡ (2J + 1)/[(2JA + 1)(2JB + 1)]. As above, for a narrow resonance the partial

widths Γi are constant over the total width of the resonance. In addition, the Maxwell-

Boltzmann factor e−E/kT can be approximated as a constant, evaluated at Er, allowing all

three to be pulled out of the integral. The integral is then easily analytically calculated:

NA〈σv〉 = NA

√
2π~2

(µkT )3/2
ω
Γ1Γ2
Γ/2

e−Er/kT
∫ ∞

0

Γ/2

(Er − E)2 + Γ2/4
dE

= NA

√
2π~2

(µkT )3/2
ω
Γ1Γ2
Γ/2

e−Er/kTπ

= NA(
2π

µkT
)3/2~2ωγe−Er/kT

(3.9)

where γ ≡ Γ1Γ2/Γ. The quantity ωγ is known as the resonance strength, and in practice

the reaction rate for a narrow resonance depends only on this quantity and on the resonance
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energy. This means that, unlike for the direct capture case where the cross section must

be measured at a number of energies in order to determine its energy dependence, the

reaction rate through a given resonance may be calculated from the measurement of only

a few parameters: the spins of the projectile, target nucleus, and resonance state of the

compound nucleus, and the partial widths of decay for each channel from the resonance

state. In the case where one of the partial widths is much smaller than the other, Γi ≪ Γj ,

γ =
ΓiΓj
Γi+Γj

≈ Γi. When a number of narrow, isolated resonances contribute to the reaction

cross-section, their contributions are simply summed:

NA〈σv〉 = NA(
2π

µkT
)3/2~2

∑

i

(ωγ)ie
−Eri/kT (3.10)

Thus, for capture reactions where excited states of the product nucleus lie within the

Gamow window, the resonant capture reaction rate dominates over the direct capture rate

and determination of the various nuclear parameters involved in the resonance states becomes

paramount to accurately describing the rate. Because these parameters are intrinsic to the

states and not a function of temperature or external energy, they may be measured through

a number of different techniques. In fact, because 30P(p, γ)31S is thought to be dominated

by narrow, isolated resonances, study of these states offers a potentially fruitful means of

constraining the rate. Some of the techniques that have been used to study the 30P(p, γ)31S

reaction will be discussed in Chapter 4.

3.3 Reaction Rate: Theoretical Considerations

In the event that one or more of the parameters involved in a resonant capture reaction

are unknown experimentally, theoretical estimations may be used to supplement existing
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information. For proton capture reactions, Γγ may be estimated using, for example, the

nuclear shell model, and Γp may be estimated using the following formula:

Γp =
2~

Rn

(2Er

µ

)1/2
Pl(Er, Rn)C

2Sθ2s.p. (3.11)

where Er is again the resonance energy, Rn = 1.25(A
1/3
A +A

1/3
B ) fm is the interaction ra-

dius, Pl(Er, Rn) is the penetrability which itself can be calculated numerically by computing

the regular and irregular Coulomb wave functions Fl and Gl respectively (Pl = 1/[F 2
l +G2

l ])

[37], C is a Clebsh-Gordan coefficient, S is the single-particle spectroscopic factor, and θ2s.p.

is the single-particle reduced width. The factor θ2s.p. contains information regarding the nu-

clear structure of the compound level and depends upon the interaction radius Rn, orbital

angular momentum l, and number of nodes n in the single-particle radial wave function

φl(Rn):

θ2s.p. =
Rn

2
φ2l (Rn) (3.12)

This estimation of Γp may be used in place of an experimentally-measured partial width,

particularly at energies close to the proton emission threshold where the energy of the in-

coming proton is low and the proton partial width is thus much lower than the gamma-decay

partial width, Γp ≪ Γγ . In this case the total width Γ may also be approximated Γ ≈ Γp,

as above.

3.3.1 The Hauser-Feshbach Statistical Model

Unsurprisingly, only a small subset of the vast number of nuclear reactions relevant to the

numerous stellar burning processes have been measured experimentally. In cases where no
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experimental parameters have been measured, it is possible to estimate the reaction rate

using the Hauser-Feshbach statistical model [27]. Derivation of the model formalism is

beyond the scope of this work, but briefly, the model assumes there is a high level density

in the compound nucleus and that consequently there is a large number of resonance states

through which the reaction can proceed. It then calculates a cross-section through each of

these resonances using the level density and other input parameters such as the transmission

coeffecient and averages over the energy region, providing a statistical estimate of the reaction

cross section in the region of interest. Hauser-Feshbach calculations for proton capture

reactions are typically reliable within a factor of ≈ 2−3 – but only if the level density of the

compound nucleus is large enough in the region of interest [3]. In cases where the level density

is relatively low, Hauser-Feshbach may provide an unreliable estimate of the cross-section

and thus the reaction rate. 30P(p, γ)31S is expected to to be at the edge of applicability for

the Hauser-Feshbach rate because the density of states in the Gamow window is relatively

low.

3.4 The Nuclear Shell Model

Analogous to the model for electrons in atomic orbitals, it is possible to model the energy

states of a given nucleus by taking into account the fact that protons and neutrons are both

fermions which obey the Pauli exclusion principle. The shell model treats the nuclear po-

tential according to the Woods-Saxon potential (Figure 3.3) with an additional interaction

coupling the nucleon spin to its orbital angular momentum. Protons and neutrons inde-

pendently fill orbitals, with certain “magic numbers” of nucleons corresponding to increased

stability according to the closure of “shells” of nuclear orbitals with quantum numbers n (the
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Figure 3.3: The Woods-Saxon potential commonly used to model the nuclear force. The
form of the potential is: V (r) = −Vo/[1 + exp(r −R/a)] where Vo is the potential depth,

R = 1.25A1/3fm (A the mass number), and a represents the “surface thickness” of the
nucleus.

number of nodes in the wave function), l (the orbital angular momentum), and j (the total

angular momentum), typically using the notation nlj to denote the combination of quantum

numbers that defines the state. The 1s orbital has l = 0, for example, and can thus hold

only two nucleons (spin-up and spin-down; that is, total j = 1/2 and jz = ±1/2), the 1p

orbital with l = 1 can hold six nucleons, two in the 1p1/2 orbital (j = 1/2, jz = ±1/2) and

four in 1p3/2 (j = 3/2, jz = ±3/2,±1/2).

The “magic numbers” can thus be derived from the total number of nucleons contained at

the shell closures: 2 (1s, closing the s-shell), 8 (1s+1p, closing the p-shell), 20 (1s+1p+1d+2s

closing the sd-shell), etc. Unlike the atomic shell model, the nuclear shells do not strictly

correspond to a particular quantum number and instead represent only places where the

binding energy of the nucleus has large gaps between orbitals, hence examples such as the

sd-shell, which includes the 1d5/2, 2s, and 1d3/2 orbitals. A graphical representation of the

shell model and its comparison to the harmonic oscillator is shown in Figure 3.4.

By accounting for these considerations, the shell model can be used to predict the spin

and parity of the ground state of a given nucleus. For example, 30P, with 15 protons and

15 neutrons, fills the 1s, 1p, and 1d orbitals for both protons and neutrons, with one proton
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Figure 3.4: Comparison of the energy levels of the nucleus using the simple harmonic oscilla-
tor potential (left) and using the full shell model (right). As shown, the spin-orbit interaction
splits the harmonic oscillator levels, and the large gaps in binding energy that cause the shells
do not necessarily correspond to the gaps between harmonic oscillator levels. Figure credit:
Bakken (GPL).
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and one neutron each in their respective 2s orbital. The nucleus can here be thought of as

an inert core of 14 protons and 14 neutrons (that is, an inert 28Si core) with total angular

momentum j = 0, because it completes the 1d5/2 orbital, and two extra valence nucleons,

each with j = 1/2. The two extra nucleons sum to a total j = 1. Because the two nucleons

are in an orbital with l = 0, the parity is positive and the shell model correctly predicts a

spin and parity of the 30P ground state of Jπ = 1+.

In principle, the shell model can also be used to predict the energies, spins, and parities

of excited states in the nucleus. However, although the ground state spin and parity can

be inferred from the spins and parities of individual nucleons, this is not necessarily true

for excited states. This is due to the collectivity of the nucleus, or the tendency of many

nucleons to be simultaneously involved in nuclear excitations. As with the calculation for

the 30P ground state, it is customary for shell model calculations to treat a given nucleus as

an inert core with one or more valence nucleons, limiting the valence space of the calculation

to a few orbitals above the closed core to reduce calculation costs. Because the calculation

for the nucleus’s structure is arbitrarily truncated at some point, the calculation must use

a so-called effective interaction, which accounts for the truncation in the Hamiltonian used

for the calculation.

One very commonly-used Hamiltonian is the “Universal sd-shell” (USD) interaction [38].

The USD models USDA and USDB produce two-body effective Hamiltonian matrix elements

meant to treat the interaction between nucleons in the sd-shell space. These matrix elements

are in part derived from a fit of experimentally-known energy levels on nuclei in the mass

region from 17O to 39K, and can be used in calculations to not only predict the energies, spins,

and parities of nuclear states in a given sd-shell nucleus, but probabilities for electromagnetic

transitions between states (e.g. B(En), where n is the order of the electric transition) as
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well as transition probabilities for beta decay (a more thorough discussion about beta-decay

strengths follows in Section 3.5.1).

For the calculation of astrophysical reaction rates, in the case when energy levels for a

given nucleus, gamma-decay branches for those levels, and beta-decay probabilities to those

levels from a parent nucleus can be calculated, measurements may be compared to theory

in order to constrain the spin and parity of observed states. In cases where parameters such

as Γp are needed to calculate a resonance strength of the level, quasi-theoretical Γp values

based on observed energies and calculated nuclear structure components may be used to give

a meaningful estimate of the resonance strength and, hence, the reaction rate, with reduced

theoretical uncertainties when compared with the Hauser-Feshbach statistical model.

3.5 Mirror Nuclei and the Concept of Isospin

Another tool useful for determining the spin and parity of nuclear states is the existence

of mirror nuclei, nuclei with identical mass number A but conjugate proton number Z and

neutron number N . In principle, the nuclear structure of mirror nuclei should match closely:

as shown in Figure 3.5, for example, the energies of excited states in 13C and 13N are very

similar, and the spins and parities of the states are identical. Thus, if parameters such as

spin and parity are know precisely in a given nucleus, that information can be used to help

constrain matching states in the mirror nucleus – assuming that the states’ mirror assignment

can be made accurately.

The usefulness of mirror nuclei is a consequence of the isospin model, a concept introduced

by Werner Heisenberg in 1932 [39]. Because the nuclear force is charge-independent and the

masses of the proton and neutron are nearly the same, it is possible to treat them not as
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Figure 3.5: Comparison of the first five energy levels of 13N and 13C. The ground-state
energies of the two levels have been adjusted to be equal, and the relative heights of the
states in each nucleus represent the relative excitation energies of those states. The spins
and parities of the states are also shown, and color is given to denote positive or negative
parity states. The relative spacing of levels in a given nucleus is not to scale as this figure’s
purpose is simply to show the mirror symmetry between these two nuclei.

individual particles, but as projections in a so-called isospin doublet of a single particle,

the nucleon. This particle has both spin j = 1/2 and isospin T = 1/2, with projections

Tz = +1/2 for neutrons and Tz = −1/2 for protons. In this way, a given nucleus can be seen

to have total isospin projection Tz = (N − Z)/2 1. However, each state of a given nucleus,

although sharing the same projection, does not necessarily carry the same total isospin T .

The mathematical formalism for isospin is very similar to that for standard angular

momentum. For example, a state with a given total isospin T can have any of the 2T + 1

projections −T < Tz < T . In the case of 13C and 13N as shown in Figure 3.5, the similarities

between the level schemes can thus be interpreted as the observation of isospin states with the

same isospin across nuclei but with different isospin projections. In the most basic example

of this case, the ground states of the two nuclei can be interpreted as the Tz = +1/2 (13C)

1This is the convention for nuclear physics. The convention differs from the original conception of the
proton as a Tz = +1/2 particle and the modern convention in particle physics. This convention was chosen
so that the more numerous neutron-rich nuclei have positive isospin projection
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Figure 3.6: A simple graphical depiction of T = 1/2 isobaric doublets in 13C and 13N and
T = 3/2 isobaric quartets in 13B, 13C, 13N, and 13O. Here the energy levels have been
equalized to demonstrate the manifestation of perfect isospin symmetry more clearly. As
shown, the ground states and multiple excited states in 13N and 13C make up the Tz = +1/2
and Tz = −1/2 members of the first two T = 1/2 doublets, and certain excited states of
13N and 13C comprise the Tz = +1/2 and Tz = −1/2 members of the T = 3/2 quartets
completed by analogous Tz = +3/2 and Tz = −3/2 states in 13O and 13B, respectively. The
spacing between levels is arbitrary and is meant only to show the symmetry of the isobaric
analog states.

and Tz = −1/2 (13N) members of a T = 1/2 doublet. In general, states in these nuclei will

share the isospin of the ground state. However, certain higher energy states, such as those

analogous to the ground states of 13B (Tz = +3/2) and 13O (Tz = −3/2), will have isospin

corresponding to their own multiplet (e.g., members of a T = 3/2 quartet). These states can

be seen as members of an isospin multiplet, as shown in Figure 3.6. Generally, states with

similar wave functions that share an isospin value across nuclei are known as isobaric analog

states (IAS) of one another; these states share the same spin and parity as well, allowing for

the mirror symmetry described above.
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3.5.1 Isospin and Beta Decay

Since both the proton and neutron carry their isospin and unique isospin projection, any

process that affects the number of nucleons in a nucleus, for example beta decay, changes at

the very least the projection Tz, and usually the isospin T as well. In the case of beta decay,

the nucleon numbers N and Z change but the total mass A remains constant. This changes

the isospin projection ∆Tz = ±1; that is, a nucleon flips its isospin projection. Beta decay

proceeds through two couplings of the weak interaction, the vector (V ) and axial-vector (A)

components, with decay rate from initial nuclear state to final nuclear state given by the

equation:

Wi,f = (f/Ko)[g
2
V Bi,f (F±) + g2ABi,f (GT±)] (3.13)

where f is a dimensionless constant that depends on the Q-value of the decay, Ko =

1.8844·10−94 erg2 cm6 s, gV and gA are the coupling constants for the vector and axial-vector

decays, and B(F ) and B(GT ) are the transition strengths for the vector channel (“Fermi

Decay”) and axial-vector channel (“Gamow-Teller Decay”), with ± denoting β+ and β−

decay. The operators of the Fermi and Gamow-Teller transitions are O(F±) = Σit±i and

O(GT±) = Σiσit±i, where i is the summing index over all nucleons in the nucleus, t± is the

raising/lowering ladder operator that changes the isospin projection Tz by one, and σ is the

nucleon spin operator. In the case of the Fermi operator it can be seen that the eigenvalue

of the operator acting on a state is given by:

t± |T, Tz〉 =
√

T (T + 1)− Tz(Tz + 1) |T, Tz ± 1〉 ; (3.14)
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the Fermi strength B(F) is simply given by:

B(F ) = | 〈Tf , Tzf | t± |Ti, Tzi〉 |2 = (T (T + 1)− Tzf (Tzf + 1))δTfTiδTzfTzi±1, (3.15)

allowing for quick calculation of the expected Fermi strength of a given beta decay tran-

sition based on the isospin and isospin projection of the initial state.

3.5.2 Selection Rules

From these operators it can be seen that the Fermi transition moves only between spin

projections Tz of isospin multiplet members without changing the total isospin T . This

results in a beta decay selection rule: Fermi transitions are those exclusively between a

ground state and its isobaric analog state: ∆Tz = 1,∆T = 0,∆J = 0. Because of the

addition of the spin operator, the selection rules for Gamow-Teller transitions are less strin-

gent: ∆Tz = 1,∆T = 0,±1,∆J = 0,±1(J = 0 9 J = 0). The Fermi transition can be

thought of as proceeding between two states within the same isospin multiplet, while the

Gamow-Teller transition can be thought of as proceeding between two states from different

multiplets (which may or may not share the same isospin).

Because the strength of the Fermi transition is concentrated into a single state (the IAS),

Fermi transitions generally proceed at an increased rate compared to Gamow-Teller transi-

tions. The Gamow-Teller transition strength, by comparison, is usually fragmented between

many final states. Fermi and Gamow-Teller transitions are labeled “allowed” transitions

(J = 0 → J = 0 decays with ∆T = 0 are pure Fermi transitions and are labeled “super-

allowed”). Transitions not allowed by these selection rules (e.g., ∆J = 2) are labeled as

“forbidden” – that is, the matrix element of the transition is zero and they are theoretically
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prohibited from happening. In reality these transitions do proceed, but at a greatly reduced

rate.

As shown here, both spin and isospin selection rules play a part in constraining which

final states are populated in a nuclear process. For example, in proton capture onto 30P, the

T = 1/2 proton couples to the T = 0 30P ground state. This means that only 31S states

with T = 1/2 are populated. Conversely, for the beta decay of the T = 3/2 31Cl ground

state to 31S, there is a strong transition to the T = 3/2 IAS. Unfortunately, even though

this state is populated via the Fermi transition, making its spin and parity precisely known

(Jπ = 3/2+) it is not expected to be populated at all in the 30P(p, γ)31S proton capture, if

isospin is a good quantum number.

3.5.3 The Isobaric Multiplet Mass Equation

So far, we have discussed isospin as though it were a perfect symmetry, and the nucleons

as though their charges were irrelevant. If this were truly the case, isobaric analog states

between nuclei would all share the same mass excess ∆ 2, as shown in Fig. 3.6. The fact

that they do not (as shown in Figure 3.5, for example) is due to the charge of the proton.

Because the Coulomb force acts only on protons, the energy value of multiplet member

states is perturbed systematically across the multiplet according to the proton number Z.

This shift can be treated with first-order perturbation theory: the isobaric multiplet mass

equation (IMME), first proposed by Wigner [40, 41], predicts that isobaric analog states

within a multiplet of given T have mass excesses related to one another according to their

2Mass excess is the difference between the mass of a nucleus and the mass of its constituent nucleons,
M(Z,A)−A ·mu. For an excited state, the mass excess is this (negative) value plus the (positive) excitation
energy Ex of the state.
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isospin projection:

∆(Tz) = a+ bTz + cT 2
z

(3.16)

where a, b, and c are coefficients that can be calculated from the theory or obtained

by fitting the measured mass excesses of the multiplet member states with a quadratic

function. If the mass excesses of enough multiplet members are known (for example, for

three members of an isospin quartet), the IMME can be used to predict the mass excesses

of the unobserved member states. If the ground state mass excess of the nucleus of such a

state is known precisely, a predicted excitation energy Ex can be calculated as well. The

IMME has historically been very successful, only failing in a few known cases [42, 43, 44, 45].

Reasons for the breakdown of the IMME could include: the presence of many-body charge-

dependent forces [46]; a failure on the part of the perturbation theory, indicating a need for

higher-order terms; inaccurate measurements; or isospin mixing of the multiplet member

with a nearby state of a different isospin [47].

3.5.4 Isospin Mixing

The perturbative effects of the Coulomb force can be thought of as the result of two factors:

the relative range difference between the nuclear force and the Coulomb force (i.e., the former

only acts between closely neighboring nucleons while the latter acts over the whole nucleus)

and the relative strengths of the interactions as mass increases (i.e., the former increases, to

first order, linearly with nucleon number, while the latter increases ∼ Z2) [48]. Thus, for

increasingly heavy nuclei, the Coulomb interaction may have a greater effect on the viability

of isospin as a good quantum number.
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Along with the perturbation of isobaric analog state mass excesses described above,

the Coulomb interaction can result to some degree in the mixing of states with differing

isospins. In this case, the Hamiltonian matrix for the interactions involving these states

contains off-diagonal elements corresponding to an isospin interaction between them. For a

simple two-level model with states |1〉 = |J1T1〉 and |2〉 = |J2T2〉,

H =







H11 H12

H21 H22







where H11 and H22 include the contributions to the Hamiltonian from nuclear interac-

tions and the off-diagonal elements H12 and H21 contain the isospin-mixing terms. Because

the Coulomb force is rotationally and time-reversal invariant, the matrix is real and sym-

metric, with H12 = H21 = V δJ1J2 , where V is the mixing strength and the δJ1J2 denotes

the fact that only isospin-mixing terms affect the off-diagonal elements due to the rotational

invariance. Now, instead of |J1T1〉 and |J2T2〉 being isospin eigenstates of the Hamiltonian,

they form the basis for new eigenstates (with J1 = J2 = J):

|ψ1〉 = cosθ|JT1〉+ sinθ|JT2〉 (3.17)

|ψ2〉 = −sinθ|JT1〉+ cosθ|JT2〉 (3.18)

where the mixing angle θ is given by tan2θ =
2V

D
, where D is the energy difference

between the original states. From this expression, it can be seen that only states whose

energies are near each other (that is, D is small) will mix non-negligibly. This two-state

mixing system follows the standard two-state mixing formalism for quantum mechanics: the
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levels are perturbed in energy according to their unperturbed spacing D and the mixing

matrix element V according to the equations

E =
√

D2 + 4V 2 (3.19)

E = D + 2δ (3.20)

where E is the observed (perturbed) energy difference between the states, D is again the

unperturbed energy, V is the mixing matrix element, and δ is the perturbation.

In the case when one of the mixed states is an isobaric analog state populated by a Fermi

transition, the mixing angle can be calculated experimentally from the determination of the

observed Fermi strengths to the two mixed states:

R = tanθ =

√

B2

B1
(3.21)

where B2 and B1 are the strengths of the transitions to the second and first state listed

in Equations 3.17 and 3.18, respectively. The unperturbed mixing matrix element V and

unperturbed energy spacing D may then be calculated purely from quantities based on

observables:

D = E
1−R2

1 +R2
(3.22)

V = E
R

1 +R2
. (3.23)
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In this case (mixing between an IAS and a nearby state), the Fermi transition constrains

the spin and parity of the IAS, which in turn constrains the spin and parity of the mixed

state. Thus, observation of isospin mixing between an IAS and a nearby nuclear state in

an energy region where the spins and parities of states are poorly constrained could provide

a constraint on the spin and parity – properties of that state relevant for calculating the

resonance strength of a reaction.
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Chapter 4

Experimental Considerations and

NSCL Experiment 12028

As mentioned in Section 2.1.2, the 30P(p, γ)31S reaction is critical to answering a number of

astrophysical questions, but its rate is so poorly experimentally constrained that until 2007

the adopted rate was based on the statistical Hauser-Feshbach calculation. However, the

Hauser-Feshbach model calculates the rate based on an assumed high density of states,

which is typically only valid at mass numbers and/or energies higher than the Gamow

window for this reaction. In addition, the model does not take into account individual

low-energy resonances, which as previously discussed are likely to dominate the rate at nova

temperatures. Thus, experimental measurement of the resonance states in the energy region

directly above the proton threshold is of key importance for moving toward an accurate

calculation of the rate.

Ideally, the properties of the resonances involved in this reaction would be measured

directly. In principle, proton capture reactions may be measured in nuclear physics facilities

either by accelerating a hydrogen beam and impinging it upon a heavy target (“regular

kinematics”) or the reverse, accelerating a beam of the target nucleus and impinging it

upon a hydrogen target (“inverse kinematics”). Since 30P has a half-life of just 2.5 minutes,

maintaining a target long enough to perform a direct measurement using a hydrogen beam
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with sufficient statistics is unfeasible, leaving the reverse-kinematics method the only feasible

means of studying the reaction directly.

There are two major currently-used methods of producing a radioactive beams for direct

study of the 30P(p, γ)31S reaction by inverse kinematics. Fragmentation involves producing

a beam of a readily-available stable isotope, accelerating it to high energies (the exact energy

depends upon the accelerator used and the charge-to-mass ratio of the nucleus in question

– for example, the coupled cyclotron facility at the National Superconducting Cyclotron

laboratory typically accelerates stable ions to between 80 MeV/u 1 and 170 MeV/u), and

impinging it upon a thin, light target. This so-called primary beam is fragmented to produce

a number of lighter constituent pieces, including the desired short-lived nucleus. The result-

ing “cocktail” beam of various isotope species can then be filtered using magnetic fields to

produce a purer secondary beam of the desired isotope for study. The fragmentation tech-

nique can allow for relatively high rates of production, but because the beam is accelerated

to very high energies before production of the desired isotope, it is difficult to study low-lying

resonances directly without slowing the beam down to stellar energies.

The “Isotope Separation On-Line” (ISOL) technique involves the acceleration of a beam

of light, stable nuclei, which bombards a target to produce radioactive isotopes. The choice

of both stable beam and production target affects which type of isotopes are produced, and

the desired isotopes must also be extracted from the target; these low-energy isotopes are

then ionized at a source and separated by mass to produce a pure beam of low energy ions.

These ions are accelerated and delivered to the experimental setup. Unlike fragmentation,

these ions can be accelerated to a variable desired energy and at a much better purity,

allowing for more straightforward direct study of capture reactions such as 30P(p, γ)31S. The

1that is, MeV per nucleon
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ISOL technique is notable in that it can produce relatively pure beams when compared to

fragmentation, since the mass separation occurs before acceleration. However, the intensity

of the beam is dependent upon a number of chemistry-related factors that may make it

difficult for certain species of interest to leave the target, meaning that not every isotope

that is desired for study is practical to produce via this technique.

Unfortunately, both of these methods are inefficient at producing 30P for direct study

of 30P(p, γ)31S. ISOL does not produce a sufficiently intense beam because phosphorus is a

“refractory” element, and even using techniques such as gas stopping of beams and reaccel-

eration, fragmentation facilities are currently unable to produce a beam with high enough

intensity and low enough energy to populate the relevant resonance states. Because of this,

a number of indirect methods have been employed to populate these important states and

measure their properties. Because the properties (spin, parity, resonance energy, total and

partial widths) of the nuclear states involved in the reaction are independent of the reac-

tion mechanism, and because for resonant capture the cross-section is entirely dependent

upon these parameters, populating them indirectly and measuring their decay 2 can provide

constraints on the parameters that constrain the reaction rate.

Indeed, a number of indirect methods have provided a considerable amount of informa-

tion on the states potentially involved in the 30P(p, γ)31S reaction. Both the diverse and

ingenuitive techniques used to study 31S as well as the experiments performed themselves

are worth discussing briefly.

2This method of measuring these states is contingent upon the so-called Bohr independence hypothesis,
or amnesia assumption, the assumption that the mode of decay of a compound nucleus is independent of
its mode of formation. This hypothesis is based on the notion that the lifetime of the compound system is
much longer than the timescale for formation and decay (that is, at least several times the time it takes for a
nucleon to traverse the nucleus), and that the compound nucleus therefore “forgets” all “memories” except
those pertaining to conservation laws. For higher energies, where resonances overlap, this assumption has
been shown to be invalid. See Refs. [49, 50, 51, 52] for discussion and relevant experiments.
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4.1 Techniques for Indirect Study of 30P(p, γ)31S

4.1.1 Single-Nucleon Transfer Reactions

Single-nucleon transfer studies of 30P(p, γ)31S involve populating excited states of 31S by

impinging a fast, light projectile such as p, d or 3He onto a heavy transmission target of a

stable nucleus with a mass number one less than or one greater than 31. The light projectile

gains one nucleon from or loses one nucleon to the target, gaining or losing energy as well

in the process. The transformed projectile (ejectile) then continues on its way and can

be analyzed either using silicon detectors that record its energy or by using a spectrograph,

where its kinetic energy is measured in terms of its rigidity in a magnetic field. The resulting

spectrum will show peaks at various energies, which correlate to the energy transferred

between the reactants to create the compound nucleus and, hence, the excitation energies of

the levels populated.

In principle, this measurement may be made at a number of azimuthal angles and the

relative intensities of the peaks of any excited state may be compared to determine the orbital

angular momentum l of the projectile and consequently the populated state, but in order

to confidently determine the total spin and parity Jπ of the state, it is usually necessary to

calculate a theoretical angular distribution for the ejectile, assuming the allowed Jπ values

for the state based on the triangle rule for angular momentum, and compare to experiment.

Because the initial spin of the target and projectile are both known, it is also possible to

compare results to shell model calculations of excitation energies and Jπ values and infer

the spins and parities of the resonance states.
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4.1.2 In-Beam Gamma-Ray Spectroscopy

By definition, “gamma-ray spectroscopy” refers to any experimental procedure that involves

the accumulation and analysis of an energy histogram of gamma-rays. In-beam gamma-ray

spectroscopy experimental studies of 31S involve production of the 31S nucleus in an excited

state, which then emits a gamma-ray in de-excitation. The production target is surrounded

by one or more gamma-ray detectors, which measure the de-excitation of the 31S and allow

for the creation of a gamma spectrum, from which resonance energies can be determined.

These may be used to create a gamma-decay scheme with gamma branches for each excited

state – the scheme can be compared with, for example, the nuclear shell model, facilitating

the inference of parameters like the spins and parities of states potentially relevant to the

30P(p, γ)31S reaction.

4.1.3 Charge-Exchange Reactions

The execution of charge-exchange reaction experiments is somewhat similar to that for single-

nulceon transfer: impinge a light, fast projectile onto a stable target, produce the desired

compound nucleus and measure the energy of the ejectile to learn about the energy and/or

spin of the resonance state populated in the exchange. However, the interaction mechanism

is different: the projectile nucleus approaches close enough to the target nucleus such that

it falls within the potential well of the nuclear force. The two nuclei interact, resulting in a

single nucleon in each nucleus flipping its isospin projection Tz: the result is that a proton

in the projectile transforms into a neutron while a neutron in the target transforms into a

proton, or vice versa.

The mass number A of both nuclei remains the same while their proton numbers Z
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increase or decrease by one such that the total Z of both nuclei remains constant. The

change in Tz may also be accompanied by a change in isosopin ∆T = 0,±1, as well as a

nuclear spin change ∆S = 0,±1, and any transfer of orbital angular momentum ∆l (in this

case the parity of the state may also change according to the rule: π = (−1)l). In the case

where no orbital angular momentum is transfered, total angular momentum J changes only

by 0 or 1; charge-exchange reactions can here be seen to obey the selection rules mentioned

in Section 3.5.1 for Fermi (∆T = 0) and Gamow-Teller (∆T = 1) transitions. Along with

these selection rules, the angular distribution of the ejectile may be used to constrain the

spin and possibly parity of the resonance states populated in the exchange.

4.1.4 Beta Decay

As mentioned in 1, beta decay involves the transformation of a single nucleon within the

nucleus: either a neutron to a proton (β−), or vice-versa (β+). Similar to charge exchange,

beta decay changes the mass and proton numbers (A,Z) of a nucleus to (A,Z ± 1). Unlike

charge-exchange interactions, however, only a single nucleus is involved and the transition

is mediated by the weak interaction. The electron/positron emission conserves the charge

of the decay, while the simultaneous emission of an electron antineutrino/neutrino conserves

the lepton number. As mentioned in Section 3.5.1, beta decay also follows the selection rules

for Fermi and Gamow-Teller transitions.

The emission of the two spin-1/2 particles means that, as with charge-exchange reactions,

spin may change between the parent and daughter nucleus, ∆S = 0,±1; however, transitions

with greater total momentum change ∆J than this are strongly suppressed (“forbidden,” a

term denoting that they are not allowed within the usual mathematical formalism used to

describe the transition – although they are obviously not forbidden in reality) since there
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is no incoming nucleus that may transfer orbital angular momentum. This means that the

parity of the final state is, for “allowed” transitions, identical to that of the initial state.

Thus, beta-decay experiments are useful in cases where strong constraints on the spins and

parities are desired.

4.2 Previous Studies of 30P(p, γ)31S

It should be noted that no single method mentioned above has been exclusively used to

obtain information about the 30P(p, γ)31S reaction. In many cases, due to the natures of the

experimental methods, constraints on the resonance states are not perfectly unambiguous.

The Gamow window for 30P(p, γ)31S at nova temperatures extends about 600 keV above the

31S proton threshold at 6130 keV, so the number of resonance states in that region, as well

as their properties, is of key importance for constraining the 30P(p, γ)31S rate. Presented

here is a brief overview of the history of 30P(p, γ)31S studies which have been used to piece

together the current understanding of the 31S resonances in the energy region of interest.

In 1999, Vernotte et al. [53] published work on their use of the single-proton and single-

neutron transfer reactions on 32S, 32S(3He,α)31S and 32S(d,3He)31P, to populate levels with

excitation energy Ex ≤ 8 MeV in both 31S and its mirror nucleus 31P. 31 31S levels and

41 31P levels were observed. The measured excitation energies and l values were compared

not only with shell model calculations but with each other, with the goal to produce an

identification of positive-parity states in 31S using both the mirror nucleus and the sd shell

model. While this experiment was not motivated by astrophysics, it provided a model for

two future transfer reactions intended to probe the 30P(p, γ)31S reaction for nova studies

[54, 55].
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It was not until seven years after the publication of Vernotte et al. that work was

published following up on the astrophysical motivations for study of 31S. Kankainen et al.

published the results of a beta-decay study of 31Cl [56], which populates 31S resonances in its

decay. The experiment measured both the beta-delayed proton emission and beta-delayed

gamma decay of states above the proton threshold. Multiple useful results were obtained,

including the discovery of a state then evaluated at 6921(15) keV through measurement

of proton emissions, gamma rays corresponding to de-excitation of the first two excited

31S states, and the first definitive identification of the 31S isobaric analog state through

measurement of its gamma decay.

Jenkins et al. performed a measurement of both the 12C(20Ne,nγ)31S and 12C(20Ne,pγ)31P

reactions, motivated both by considerations of the structural differences between the two

mirror nuclei [57] and by considerations of the 30P(p, γ)31S rate [58]. The authors ob-

served several proton-unbound states in 31S and, through analysis of gamma-ray angular

distributions and comparison with mirror states in 31P, inferred their spins and parities.

Although this method preferentially populated high-spin states, which are less important for

the 30P(p, γ)31S reaction due to the heightened centrifugal barrier, the study used this fact to

constrain which other resonances were actually important for the reaction rate and concluded

that two specific resonances at Ex = 6257 keV and 6350 keV dominate the 30P(p, γ)31S rate

at temperatures below T = 0.2 GK and that an additional two resonances at Ex = 6543 and

6593 keV dominate the rate at peak nova temperatures above 0.2 GK – despite not even

observing these states.

Ma et al. published in 2007 results of a measurement of the 32S(p, d)31S transfer reaction

[54], which obtained angular and energy distributions of deuterons and used comparisons to

theory to deduce spectroscopic information for 31S levels within 1 MeV of the proton emission
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threshold. Because the initial nucleus 32S has a spin and parity Jπ= 0+, the authors were

able to use l = 0 transfers to unambiguously confirm the existence of the 31S Jπ= 1/2+

state then evaluated at 6263 keV (6257 keV in Ref. [57], which they concluded dominated

the 30P(p, γ)31S rate at lower temperatures, T < 0.2 GK. A rate was calculated using the

experimental parameters obtained in this study and earlier studies, but the authors found

that the experimental rate only agreed with the Hauser-Feshbach rate above 0.3 GK; below

that temperature, the rate differed up to several orders of magnitude.

Two charge-exchange interaction studies have been performed. The first was a study

by Wrede et al. published in 2007 [59] which measured the momenta of outgoing tritons

from 31P(3He,t)31S. Multiple resonances were either confirmed from tentative assignments

in earlier works or discovered for the first time. Included in the latter group was a state at

6400 keV, for which evidence was found. Parikh et al. also performed a measurement of

31P(3He,t)31S, again observing evidence for the state at 6402 keV and assigning it a spin and

parity of 7/2+. The latter also used the angular distributions of the outgoing tritons to help

constrain spins and parities of a number of states. Wrede et al. also measured 32S(d, t)31S,

finding more evidence for the peak at 6400 keV.

Multiple in-beam gamma-ray experiments built upon the work by Jenkins et al. In 2007

Della-Vedova et al. published results of a study of 24Mg(16O,ααnγ)31S where the authors

observed several transitions from high-spin states [60, 61], confirming the observations of

Jenkins et al.. Doherty et al. used the 28S(α, nγγ)31S to populate resonances, including

low-spin states, in the region of interest and used γ-γ and γ-γ-γ coincidences to determine

the energies of resonance states in the region of interest with very high precision [62, 63].

Using comparisons to the mirror nucleus 31P, the authors determined the spins and parities of

the resonances, including a newly-discovered resonance at 6393 keV, which they labeled as a
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Jπ = 5/2+ state. The authors claimed that their comparisons to 31P had positively identified

all relevant states in the energy region, but implied that the 6402-keV state observed in Refs.

[59, 64] was identical to the state at 6393 keV and not distinct.

Most recently, Irvine et al. published in 2013 a study of the 32S(d, t)31S reaction, measur-

ing outgoing tritons with excitation energies 6.3 . Ex . 7.1 MeV. The major result of the

study was additional evidence for the level at 6402 keV seen by Parikh et al., contributing

to the debate on whether the level was distinct from the 6393-keV level mentioned in Ref.

[62]. The study also produced new mirror assignments for the 31S-31P mirror pair and used

the assignments to conclude that the 6402-keV state’s spin and parity were 7/2+.

4.2.1 Current State of 31S Experimental Understanding

Although these numerous studies have helped build large, complementary understandings of

the energy region above the 31S proton emission threshold, and in some cases have also pro-

vided tight constraints on the properties of resonances in the region, there are still ambiguities

preventing a complete, precise experimental understanding of these states. As mentioned

explicitly above, there is currently no consensus on the number of states in the energy region

around Ex = 6400 keV. The results from Doherty et al. [62, 63] imply that there are only

two states in the region, at 6393 and 6394 keV. The results from Refs. [59, 64, 55] taken

together, however, imply the existence of a distinct state at 6402 keV, the spin and parity

of which is not identical to either of the states mentioned in Refs. [62, 63]. Both interpreta-

tions have complications, and an accurate reaction rate determination using indirect study

requires unambiguous energies, spins, and parities of the resonance states involved in the

reaction.

In fact, several additional states in the Gamow window also have ambiguous spins and
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parities at present. Depending on the methods used to study the states, the constraints on

their parameters can in cases be at odds. Thus, experiments that strongly constrain spins

and parities, such as study via beta-decay, can be very useful toward helping to solve the

conundrum.

4.3 NSCL Experiment 12028

Experiment 12028 (E12028) was carried out at the National Superconducting Cyclotron

Laboratory (NSCL) using the Coupled Cyclotron Facility (CCF). It ran from 24 February

to 4 Mar, 2014 and included collaborators from Michigan State University, Notre Dame

University, Oak Ridge National Laboratory, the University of Tennessee, and the University

of Southern Indiana. Broadly, the experiment produced two fast beams for two purposes: (1)

a beam of 32Cl ions for calibration purposes and (2) a beam of 31Cl ions for the experimental

measurement itself. Both of these beams were delivered to an experimental setup where

they were implanted into a detector used to measure the beta decay to 31,32S. Surrounding

the central detector was an array of gamma-ray detectors used to measure the gamma de-

excitation of the 31,32S excited states populated in the decay. The 32Cl beam was produced

first, in order to calibrate these detectors.

The purpose of E12028 was to measure these gamma-rays and determine both the relative

gamma branchings for the excited states and the beta feedings of the states themselves,

using this information to construct a decay scheme for the beta decay. This beta decay

scheme, including precise information on the beta feedings and gamma branchings of the

1/2+, 3/2+, and 5/2+ states in the region, could then be compared with a theoretical decay

scheme produced via shell model calculations. By comparing the experimentally-determined
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parameters (such as excitation energy) of the states to those of the theoretical states, it

would be possible to associate observed states with shell model states, which include spin

and parity assignments. Then, theoretically-calculated parameters for the states, such as Γp,

could be combined with experimentally-derived parameters to produce resonance strengths

and, subsequently, a calculation of the reaction rate whose uncertainty was tied to the

uncertainty of the theoretical parameters used in the calculation – about a factor of two.

4.3.1 Beam Production at the Coupled Cyclotron Facility

The principle behind the Coupled Cyclotron Facility at NSCL is simple: stable ions from

an ECR ion source 3 are injected into a transverse magnetic field, causing circular motion

according to the Lorentz force. While the ions are circling the cyclotron, they are affected by

an oscillating electric field in the direction of motion, causing the ions to accelerate as they

move. When the ions have been accelerated to the proper speed and energy, they exit the

cyclotron and are impinged upon a fragmentation target, producing a cocktail beam which

includes the desired radioactive isotope for study. The CCF uses two cyclotrons, the K500

and the K1200, to accelerate stable ions up to an energy of 50-180 MeV/u, at an intensity

of anywhere from 0.1 pnA 4 (for uranium beams) to 175 pnA (for oxygen).

In the case of E12028, a stable “primary beam” of 36Ar was produced and accelerated

up to an energy of 150 MeV/u in the CCF, at a beam current of 75 pnA. The 36Ar was

then impinged upon a 9Be target of thickness 1627 mg/cm2 5 and fragmented to produce a

3ECR stands for “electron cyclotron resonance.” The ECR technique involves using electromagnetic
radiation in conjunction with a magnetic field to move free electrons in a gas according to the electron
cyclotron resonance frequency. The free electrons collide with gas molecules in the source, ionizing them for
extraction and acceleration.

4pnA, “particle nano-Ampere,” is a unit of beam current. The transformation from charge current (e.g.
nA) to beam current requires dividing by the charge state of the ion.

5≈0.88 cm. The unit mg/cm2 is a more easily-understood measure of the target mass (likelihood of
interaction) per unit area (of, e.g., the beam). To convert between the two, simply divide by the density of

63



cocktail beam that included both 32Cl and 32Cl as constituents. The thickness of the target

was chosen to maximize production of both of these isotopes without having to switch out

the target.

In order to isolate the desired isotope, in this case either 32Cl (for the calibration) or 31Cl

(for the experiment itself), it is possible to separate the beam constituents by their rigidity,

the ratio of momentum to charge, again using the Lorentz force: mv/q = Br. The cocktail

beam is sent though one or more transverse magnetic fields and the various constituents

experience varying magnitudes of force, causing circular motion with radius dependent upon

the rigidity of the particular isotope. Species with higher rigidity have a higher radius of

curvature in a constant magnetic field, while those with lower rigidity bend more sharply.

Thus, differences in rigidity between the beam constituents result in a spatial distribution of

species. Collimating slits may then be used to select isotopes according to spatial position.

In order to purify the beam further, an energy degrading “wedge” may be used: ions with a

shared rigidity Br but different atomic numbers lose different amounts of momentum in the

wedge, further dispersing them and allowing for additional purification in magnetic fields.

The NSCL uses the A1900 fragment separator [65] to purify the fragmented beam. The

A1900 fragment separation is accomplished through the use of four dipole magnets, two

before and two after the dispersive wedge. The magnetic fields of the dipoles may be tuned

to a specific rigidity, such that, after fragmentation, the desired isotope is centered on the

beam line, while lighter and heavier beam constituents are bent to off-center paths and

blocked. The CCF and the A1900 are shown schematically in Figure 4.1.

For E12028, the dipoles of the A1900 were rigidity-tuned to center 32Cl and 31Cl se-

quentially on the focal plane at the end of the fragment separator. The magnetic separation

the target material (Be: ρ = 1848 mg/cm3)
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Figure 4.1: A schematic of the coupled cyclotron facility and the A1900 fragment separator.
The ion source releases stable ions to the K500, which accelerates the ions to ≈ 13 km/s.
Between the K500 and K1200 the ions pass through a gold foil stripper which removes more
electrons, then the K1200 accelerates the particles to approximately half the speed of light
before impinging them upon the production target. The four dipole magnets of the A1900
are illustrated in red, with the separator wedge in between dipoles 2 and 3 in yellow. The
focal plane of the A1900 houses a scintillator which is used to count the beam current after
purification. After the focal plane, the beam can be directed into one of several experimental
vaults.
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was assisted by the inclusion of a wedge of 145 mg/cm2 Al. The magnets required retuning

between the production of the 32Cl beam and the 31Cl beam; this tuning was on the order

of 5% rigidity difference. At the focal plane of the A1900, the beam current and purity of

the 32Cl beam were roughly 635,000 particles per second (pps) and 11%, respectively, with

expected contaminants 26Mg (stable), 27Al (stable), 29Si (stable), 30P ((T1/2 = 2.5 m), 31Si

(T1/2 = 157.3 m), and 33Ar (T1/2 = 173.0 ms). For the 31Cl beam, the beam current and

purity were roughly 13,000 pps and 3%, respectively, with contaminants 24Na (T1/2 = 15

h), 25Mg (stable), 26Al 6 , 28Si (stable), 29P (T1/2 = 4.1 s), 30S (T1/2 = 1.2 s), and 32Ar

(T1/2 = 100.5 ms).

4.3.2 Beam Purification Using the RFFS

The experiment was conducted in the S2 vault of the NSCL experimental area. This location

allowed for further purification of the beam using the Radio-Frequency Fragment Separator

(RFFS) [66]. The concept behind the RFFS allows for separation of isotopes according to

the varying speeds at which they exit the target: produce a transverse time-oscillating RF

electric field, whose frequency is synchronized with the accelerator RF. Because the beam

constituents have differing speeds coming out of the target, they reach the RFFS chamber

at phase differences φ with respect to the oscillating field. As the particle traverses the

field, it experiences a deflection commensurate with the fraction of the oscillation period it

spends while the field is pointed in one direction. As noted in Ref. [66], the deflection angle

6Ground-state 26Al has a beta-decay half-life of 7.2e5 y, making it effectively stable. However, the

fragmentation process may produce isotopes in excited states; in the case of 26Al, the first excited state is

an isomer with beta-decay half-life of 6.3 s, meaning that some of the 26Al produced was radioactive. None

of the produced radioactive 26Al resulted in gamma-ray detection, due to purification procedures discussed
in Section 4.3.2.
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difference before and after application of the RF field is

δb =
1

Br

V

gω
(cos(φ)− cos(ωT + φ)) (4.1)

where V is the RF voltage, ω is the RF frequency, which itself is coupled to the operating

frequency of the CCF (≈ 25 MHz), φ is the phase difference between the particle and the

cavity, g is the gap across the electrode creating the field, and T is the time taken by the

particle to travel across the electrode. From this equation, it can be seen that maximum

deflection occurs when the particle enters the separator chamber in phase with the field

(that is, φ = 0), so that the field deflection increases monotonically during the particle’s

traversal of the chamber. Conversely, minimum deflection occurs when the field varies such

that it deflects the particle equally in both transverse directions, leaving it in the center of

the beamline when it exits the chamber. As with the A1900, collimating slits may be used to

select beam constituents of a certain deflection angle. To select the deflection for the desired

isotope, the phase of the oscillating field in the RFFS may be set to a desired value.

For E12028, the field production voltage of the RFFS was set to 100 kV. In order to

guard against the possibility of RFFS failure, which would result in the entirety of the

beam passing through undeflected, the phase of the RFFS was set such that the desired

isotope (32Cl and 31Cl, sequentially) was deflected to the maximum angle, and the other

constituents were deflected less sharply. The collimating slits were then used to block the

transit of the contaminant ions, allowing the desired isotope through. The nominal phase

angle was ≈60 degrees; the purity of the beam was monitored during periodic beam diagnos-

tic checks throughout the experiment (see Section 4.3.3), and the angle was adjusted slightly

to maximize the purity and transmission of the desired isotope. The purity of the beam after
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filtering in the RFFS was assessed at the experimental setup. An image and a schematic of

the RFFS are shown in Figure 4.2.

4.3.3 Experimental Setup

After passing through the RFFS, the beam continued to the experimental setup, which

included a scintillator into which the beam was implanted, a suite of high-purity germanium

detectors to measure the beta-delayed gamma-rays from the decay of 31Cl, and the NSCL

digital data acquisition system (DDAS). About one meter upstream of the experimental

area, a pair of silicon PIN detectors were used to measure the purity and composition of the

beam.

PIN (positive-intrinsic-negative) detectors are semiconducting detectors with an undoped

intrinsic semiconductor sandwiched between a section of p-type semiconductor (that is, a

semiconductor doped with an impurity resulting in fewer electrons and a greater concen-

tration of holes) and a section of n-type semiconductor (doped with an impurity resulting

in a higher concentration of electrons). If a voltage is applied in the n-to-p direction (that

is, electrons flow in the p-to-n direction, a so-called reverse bias), an electric field extends

into the intrinsic semiconductor region, creating a region where holes 7 and electrons are

quickly swept to opposite sides of the detector and making the detector useful for measuring

ionization in the region, such as that caused by an incoming beam particle. The amount of

charge detected, and thus the amplitude of the voltage pulse the amplifier sends to the data

acquisition system, is dependent upon the energy deposited in the detector.

To measure the purity and composition of the beam exiting the RFFS, the silicon PIN

detectors were inserted into the beamline. The beam passed through a collimator to make

7That is, an electron hole, a position in the valence band where an electron is expected to be but is absent.
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Figure 4.2: A schematic and photograph of the RFFS. The beam enters the chamber at
left, experiences deflection according to the electric field throughout its flight between the
two electrode plates, and exits to the right. The RF coupler at top is used to couple the
oscillation frequency of the RFFS to that of the cyclotron. This figure is reproduced from
the original RFFS paper, Ref. [66].
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sure it only impinged upon the active detector area of the detectors, then deposited energy

in the detectors as it passed through, with different beam constituents depositing varying

amounts of energy according to their mass. Both PIN detectors measured energy deposition,

but one of the detectors was also used to measure the time of flight (TOF) of the ions between

the PINs and both the cyclotron and a scintillator at the focal plane at the end of the A1900.

The detector was connected to a TC 241s fast timing amplifier and a Canberra 454 constant

fraction discriminator 8, then split into two separate signals and connected as the “start”

signal for two separate time-to-amplitude converters (TACs), which used the CCF RF signal

and the signal from a scintillator at the A1900 focal plane, respectively, as “stop” signals 9.

With these energy and TOF measurements, a two-dimensional spectrum was created

which separated incoming beam ions by their mass and charge (Figure 4.3). From this 2D

spectrum, it was a simple matter to integrate various clusters of incoming ions to determine

the purity of the beam as well as which contaminants were present. The 32Cl beam was

found to be 99% pure 32Cl, with only trace amounts of other contaminants. The 31Cl beam

was found to be ≈85% pure; however, the strongest contaminant was the stable isotope 28Si,

so the radio-purity of the beam was found to be 95%, with 24Na (∼2%) and 29P (∼1.5%) the

strongest radioactive contaminants. In principle, the PINs could be inserted into the beam

indefinitely, so that particle identification (PID) and purity diagnostics could be performed

continuously throughout the experiment. However, both the 32Cl and 31Cl beams had a

8A constant fraction discriminator measures the timing of a voltage pulse from a detector by splitting
the incoming signal, inverting part of it, and delaying the inverted signal such that the sum of the two split
signals always crosses the zero voltage mark at the same fraction of the original pulse’s rise time. It allows
for precise timing measurements of pulses with nonzero rise times.

9Although this method of time-of-flight measurement may appear backward, it is important to use the
downstream detector as the “start” signal, since not every particle creating a signal at the A1900 upstream
will reach the experimental setup. This method prevents the measurement of TOF “starts” without their
according “stops.” In order to receive the signals in the proper order, a cable delay box was used with
lengths of wire designed simply to delay the signal from the A1900 reaching the TAC.
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Figure 4.3: A particle identification plot for 31Cl showing 31Cl and strongest likely contam-
inants. As described above, the beam constituents are separated both by time of flight, in
this case between the A1900 focal plane scintillator and the PIN detector at the experimental
setup, and by energy loss in the PIN detector. It is customary to plot time of flight on the
horizontal axis and energy loss on the vertical axis. The large blob near the right edge of
the plot is the 31Cl, while the additional blobs are beam contaminants, which have been
identified either by their presence in the gamma spectrum or inferred from the expected
beam composition at the A1900 provided by the NSCL beam group. The horizontally re-
peating structure is likely an artifact caused by reflection within the electronics, creating a
false signal with the appropriate energy but inflated time of flight.

very high intensity, even after purification in the RFFS. To prevent the destruction of the

PIN detectors via radiation damage, they were attached to a hydraulic drive which could

be raised and lowered into the beamline. At various points throughout the experiment, the

beam intensity was reduced by a factor of ten at the cyclotron, at which point the PINs were

inserted into the beam for diagnostics purposes. In practice, this procedure was performed

once per 8-hour experimenter shift.

The experimental setup, as mentioned, consisted of a central scintillator composed of

BC408 plastic surrounded by high-purity germanium detectors. The scintillator (51 × 51 ×
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25 mm) was mounted in alumninum square housing with an entrance window of aluminized

mylar at a much lower density and thickness to prevent interactions before implantation.

It was attached on a 51 × 21 mm side to a Hamamatsu R1924A photomultiplier tube

(PMT) 10 which was connected directly to the NSCL DDAS. The PMT needed to be biased

in order to produce the electron cascade and subsequent voltage pulse, and was kept at

an operating voltage of 1 kV throughout the experiment. Incoming ions were implanted

into the scintillator, deposited energy, and decayed after a time. Both the implants and

decays produced energy in the scintillator, which was not able to differentiate between the

two except for broad energy distribution shape in spectral analysis. The scintillator’s main

purpose in the experiment was simply to record when each implant or decay happened,

so that coincidence sorting could be performed during analysis (see discussion in Chapter

5). No timing information from the scintillator beyond the arrival time of the pulses was

required, so it was sufficient to connect the PMT output to the DDAS input.

Surrounding the central scintillator was an array of 9 high-purity germanium “clover”

detectors – the Yale Clovershare Array. Clover detectors consist of four semiconducting

germanium crystals, packed in a square clover-like formation within the detector. Similar

to the silicon PIN detectors, the germanium crystals in the clover have a positive-intrinsic-

negative structure which allows for rapid detection of ionizing radiation such as gamma-rays.

Germanium is used for the gamma detectors instead of silicon because the depleted intrinsic

semiconductor region can be manufactured to be more than a few millimeters thick, allowing

for a significant probability of complete absorption of incoming photons.

Like the PIN detectors, the clover detectors needed to be biased: the operating voltage of

10A PMT operates according to the photo-electric effect: incoming photons release electrons on a pho-

tocathode. These electrons then cascade through a series of dynodes, multiplying the total charge. The
electrons are then detected at an anode, with the resulting pulse amplitude being proportional to the initial
photoelectron flux generated at the photocathode.
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Figure 4.4: A simple schematic showing the central scintillator and the germanium clover
detectors. The nine clovers surround the scintillator as shown. The 31Cl beam implants in
the scintillator, which detects the beta decays (blue). The subsequent gamma decay of the
daughter 31S nucleus creates gamma-rays (green) which are detected by the clover array.

the detectors was around 5kV. Because the band gap of germanium is low, thermal generation

of charge carriers in the detectors can cause “leakage current,” which compromises the energy

resolution of the detectors (manifesting as a broadening of the energy peak in a spectrum

and a decrease in the precision of measurement of the peak’s centroid) and can even destroy

the detector. To prevent this, the clovers are kept in a vacuum chamber which is attached to

a dewar of liquid nitrogen. The liquid nitrogen cools the detectors to ≈75K, cold enough to

prevent thermally-created noise from being a problem. The dewars for the clover detectors

were filled twice a day throughout the entire experiment to replenish evaporated nitrogen.

The 9 clover detectors were arranged in two “rings” of four detectors each, with one

ring upstream of the scintillator and one ring downstream of the scintillator such that the

germanium crystals were centered on the scintillator and as close to it as possible. The

ninth clover was centered on the beam axis behind the scintillator, inserted into the “ring”

made by the back four germanium crystals. The clovers and the scintillator were all held in
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Figure 4.5: A full CAD drawing of the experimental setup, including the pneumatic drive
attached to the PIN detectors (left insert), the central scintillator which was attached to
the clover frame by a metal arm (right insert), and the full clover frame with all nine clover
detectors (bottom). The liquid nitrogen dewars for the clovers are shown in light blue, and
the clover detectors themselves can be seen as the light gray extensions into the center of
the array.
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place by an aluminum frame designed and fabricated at the NSCL. Schematics of the clovers

and scintillator are shown in Figures 4.4 and 4.5. No timing information from the clovers

was needed other than the arrival time of the pulses generated by energy deposition of the

gamma-rays, so it was sufficient to connect the energy output for all 36 crystals to the DDAS

without further modification.

4.3.4 Brief Discussion of Detector Mechanisms

The detectors mentioned in Section 4.3.3 utilize a number of different techniques to produce

a signal for processing. It is useful for interpreting the spectra produced by the detectors

to engage in a brief discussion detailing the interaction mechanisms occurring within the

detector that ultimately result in the signal output from the detector and sent for processing.

For high-purity germanium detectors such as the clovers, an incoming gamma-ray

may interact in multiple ways: it may undergo photoelectric absorption, where the photon

is absorbed by the atom and the electron is freed; it may Compton scatter, transfering some

of its energy to an atomic electron in the germanium; or, it may undergo pair production in

the presence of the strong electric field of the protons in the nuclei of the atoms that make

up the detector [67]. In the first case, the incident photon disappears in an interaction with

an atom in the detector. An electron is freed, via the photoelectric effect, from one of the

atomic shells; this electron has total kinetic energy equal to the photon’s energy minus the

binding energy of the electron in its shell. To fill in the gap left by the electron, the atom

rearranges its electron configuration, releasing the binding energy of the vacated shell in

the form of an X-ray or Auger electron. The X-ray quickly undergoes its own photoelectric

absorption and is re-absorbed by the atom with the result of the emission of electron such

that the sum of the energies of all electrons produced this way is equal to the original photon
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energy. The electrons are collected at the edge of the semiconductor and a voltage pulse

corresponding to the full photopeak energy is produced. The corresponding observable in

the spectrum is a sharp peak at the original gamma-ray energy. This is of course the ideal

situation for gamma-ray spectroscopy.

In the second case, the photon deposits only some of its energy, causing the electron

to recoil and leaving at some outgoing angle with new energy according to the standard

Compton formula:

E′
γ =

Eγ

1 + Eγ/mec2(1− cosθ)
(4.2)

where me is simply the electron mass, 511 keV/c2. In this case the recoiling electron

therefore has energy Ee = E′
γ − Eγ . The two extreme cases of Compton scattering are

a minimally grazing collision, where θ ≈ 0 and the electron leaves with very little energy,

and θ = π, a head-on collision where the electron leaves with maximal energy Eemax =

Eγ/(1+ 2Eγ/mec
2). The distribution of recoiling electron energies in the detector produces

a Compton spectrum, demarcated by the Compton edge, corresponding to the maximum

electron energy Eemax . The specific shape of the Compton spectrum is somewhat dependent

on the binding energy of the electron prior to the scattering process.

In pair production, a gamma of energy Eγ > 2mec
2 (mec

2 = 511 keV) may, as a

result of interaction with the intense electric field near protons in the nuclei of the detector

material, disappear completely and produce in place of the gamma-ray an electron positron

pair with total shared kinetic energy equal to Eγ − 2mec
2. Both the electron and positron

will typically travel less than a few millimeters before depositing the entirety of their kinetic

energy (the original photopeak energy minus 1022 keV) into the detector. The positron will
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then annihilate with an electron already in the detector, producing two gamma rays of 511

keV, which may or may not deposit their energy in the detector. If both 511-keV gammas

deposit their full energy, the full photopeak energy is recovered in the detector. If one or

both of the gammas escape from the detector without depositing any of their energy, a first

escape peak or second escape peak, respectively, is produced instead, with peak energies lower

than the full photopeak energy by 511 keV and 1022 keV, respectively. These escape peaks

are a very consistent feature of gamma-ray spectra and in some cases can be used to infer

the existence of a photopeak if the detector’s energy range does not extend to high enough

photopeak energies.

For plastic scintillator detectors, the above gamma-ray effects may occur as they do

for germanium detectors. However, since the atoms making up the plastic have much lower

Z values than germanium, the photoelectric cross section is much lower. A vast majority

of gamma interactions in plastic scintillators are simple Compton scattering events, making

production of a gamma-ray photopeak almost impossible. Organic scintillators such as the

plastic scintillator used in E12028 are, on the other hand, often favored for beta-decay

spectroscopy due to their hydrogen content [67].

Light production in scintillators begins when the incoming particles (beta particles, nu-

clei, etc) excite valence electrons in the molecules composing the scintillator material from

a “ground state” singlet state (S0) to an excited singlet state (Sn). The excited singlet

state immediately decays without emitting a photon to the S1 singlet state, which can then

quickly emit a photon with energy equal to the difference between the electron singlet states

S1 and S0
11, producing prompt radiation known as fluorescence. However, the excited

11In principle the excitation or de-excitation can occur to any of the vibrational states associated with
the state; however, the energy spacing between these vibrational states is small compared to the spacing
between electron states, so they do not factor heavily into the light production.
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singlet states can also decay to excited triplet states Tn, which will decay, similarly to the

Sn states, to the lowest triplet state T1. This state decays, with a long lifetime, via photon

emission to the ground state S0. The prolonged de-excitation of the T1 state is known as

phosphorescence, or after-glow.

The amount of light produced via fluroescence is thus seen to be a function of the beta or

charged particle energy, as higher-energy particles can excite greater numbers of molecules.

However, for high-energy particles, an effect known as quenching can occur, resulting in a

reduced light output as the high-energy particles heavily ionize the scintillator material in

a compact region. The light output for a proton in a plastic scintillator is typically ≈1/10

that for electrons [67]. This means that, for E12028, the effective “gain” in the plastic

scintillator for the incoming ≈50 MeV/u 31Cl beam particles was lower than that of the

.12 MeV electrons. While the charged particles stop quickly in the scintillator, however,

beta particles can undergo a process known as backscattering. Similar to the situation with

Compton scattering for gamma rays, this scattering changes the direction of the traveling

electrons and creates the possibility that they may escape the detector without depositing

their entire energy. This consequently leads to a beta detection efficiency that is less than

unity.

4.3.5 The NSCL Digital Data Acquistion System

This simple setup – central scintillator surrounded by germanium gamma-ray detectors –

was nonetheless sufficient for measuring all of the observables we intended to study. How-

ever, performing the measurement is not as simple as taking voltage pulses from detectors.

Traditionally, detectors have been connected to a series of analog nuclear instrumentation

modules (NIM) designed to properly shape the incoming voltage pulse, align in time any
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signals which are meant to be detected in coincidence (that is, account for the timing dif-

ferences created by the electronics differences between detectors that might receive signals

simultaneously), and then digitize the analog voltage pulse so that it can be read into a data

acquisition computer.

The NSCL Digital Data Acquisition System is a computerized system designed to re-

place many of the hardware modules used in between the detector and the data collection

computer. One or more 16-channel Pixie-16 signal processing PXI cards are connected to

an operating computer crate [68]. Each channel from the Pixie-16 card can accept signals

from a variety of detectors. The signal is digitized in the system, and pulse shaping and

timing correction is accomplished by using the module software. The system uses the soft-

ware parameters to obtain the pulse area, and sends the processed pulse information to the

data acquisition computer. A number of parameters can be set in the DDAS, including the

trigger threshold (the voltage level below which an event in the detector will not register in

the electronics) and the rise and decay time of the pulse. A thorough discussion of the DDAS

implementation at the NSCL is beyond the scope of this work, but there are a number of

excellent treatments of the topic [69, 70, 68].

In the case of the clover detectors, the most critical pulse-shaping parameter to set in

the DDAS is the decay constant τ of the pulse shape. Since the signals coming from these

detectors have a very fast rise time and an exponential decay time, it is important to set

the decay constant τ properly for each detector in order to accurately integrate the output

energy signal. For the NSCL DDAS, this is accomplished by recording the waveform of

an incoming pulse using a digitized spectrum generator attached to the Pixie crate. The

waveform typically has a very fast rise time followed by an exponential decay, so the decay

constant τ may be set simply by fitting the waveform for a given detector with an exponential
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of the form et/τ . In the case of E12028, precise energy determination was not strictly

necessary for the scintillator, as the scintillator’s main purpose was simply to the timing

of implants and decays; however, precise energy determination for the clover detectors was

critical to obtaining a narrow energy resolution of the incoming gamma-rays. Thus, it was

necessary to individually set τ for each of the 36 clover detectors in DDAS. The τ value for

each crystal was set to a value between 41.5 µs and 57.4 µs, with most of the crystals having

a τ value of around 44 µs.

The electronics used in E12028 are relatively simple; a brief description of each component

is given here.

• TC 241s Amp: a pre-amplifier used to shape the signal from the PIN detector for

timing. The signal was patched out to the user area at the NSCL, the Data-U.

• QCFD: a constant fraction discriminator with four inputs, used for precise timing.

Operates by splitting the incoming signal into two identical pulses, inverting and de-

laying one of the two, then summing the two pulses back together. The zero-point

crossover of the mixed pulse is the pulse time.

• TAC: time-to-amplitude converter. Records a start and stop signal, then produces a

voltage pulse with height proportional to the time difference between the two.

• 2mm / LEMO Converter Converts between the DDAS cable standard (LEMO)

and the standard for the patch panel electronics (2mm cable).

• Fast Trigger: A logic module that fires when it receives a signal indicating that the

DDAS has received a pulse from a detector that surpasses the threshold for measure-

ment.
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• FIFO: Fan-in, fan-out. Takes data from a number of sources, combines it into a single

channel, and can output to several sources.

• Delay: A length of wire measured to impede the delivery of an electronic signal by

the desired time. Typically comes in a delay box with several lengths of wire.

The energy signals from all of the detectors as well as the TOF signals from the PIN

detector setup were fed into DDAS, which processed the signals and sent them to the data

acquisition computer, which was running the NSCL Readout software. Further description

of the user-side analysis procedure is the focus of Chapter 5. In order to quickly assess the

operation of each of the detectors, the processed detector signals from DDAS were exported

through a number of logic modules designed to isolate specific components of the signals or

combine signals from multiple sources. The relevant signals were then patched out of the

S2 vault in the NSCL and into a patch panel in the NSCL Data-U counting room area. An

electronics diagram, including the diagnostic patches, is shown in Figure 4.6.
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Figure 4.6: A simplified electronics diagram of E12028. Data sources (both detectors and
NSCL apparati) are marked as green boxes. Intermediate modules and the NSCL DDAS
are marked as white boxes. Destinations for data (both the data acquisition computer and
the patch panels to the Data-U) are marked as orange boxes, and connections to exterior
patches are marked as orange arrows. Energy information was passed from the sources
and into the DDAS according to the black arrows, and timing information for time-of-flight
measurements was passed from the sources and into the DDAS according to the blue arrows.
Brief descriptions of the various components are given in the text.

82



Chapter 5

E12028 Analysis Procedure and

Results

Although the electronic equipment used to acquire data for a nuclear experiment is a critical

component in answering the research question, the equipment by itself is worthless without

an analysis suite to record, sort, and make sense of the data. For example, the NSCL

Digital Data Acquisition System (DDAS) receives as input the voltage pulses from various

detectors that signify the energy deposited in the detector from various physical sources:

incoming beam particles, implantations, beta decays, gamma-rays, etc. These incoming

signals (referred from here on as events) must be time-stamped and sent from the DDAS to

a computer used for processing, monitoring, and storing the data in a meaningful way for

future offline analysis.

In practice, no two experiments will use exactly the same data processing procedure,

even if they have similar goals and observables. This is due to several factors including

differences in instrumentation needs and analysis goals. In this chapter we will discuss the

specific analysis procedures used in E12028, including software parameters, data reduction

procedures, particle identification, data calibration, and procedures for the calculations re-

quired to produce the 31Cl beta decay scheme. We will also present the results of analysis,

including the decay scheme itself, the data used to build it, and the gamma-ray spectra used
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for analysis and results.

5.1 Data Processing

Each event received by the DDAS is time-stamped and sent to a data buffer that is attached

to the NSCL Readout program. Readout receives the time-stamped event from DDAS and

groups them within an event window according to a timing parameter set by the experi-

menter, thus creating small groups of data with the same top-level event window time-stamp

in addition to the second-level time-stamps of the individual events (see Fig. 5.1). In this

way, voltage pulses that occur within a set event window are labeled by the system as being

coincident with one another, allowing for more specific gating procedures later on in analy-

sis. The optimal event window for the experiment is dependent upon the rate of incoming

experimental data and the specific processes that produce it. For example, gamma-gamma

coincidence gates are designed to filter out of a spectrum all gamma-rays that are not part

of a cascade with the gated gamma, but they only do so within the event window. Making

the event window too large thus increases the risk of accidental coincidences from other

beta-delayed gamma-rays, which increase the background in the coincidence spectrum.

In the case of E12028, our total rate of beam implantation was high, up to 9000 particles

per second. However, for every 31Cl implantation and decay to 31S recorded in the scintilla-

tor, there is a subsequent additional decay of the 31S nucleus to 31P, which produces its own

beta-delayed gamma rays that can be in coincidence with gammas from the beta decays of

different nuclei including 31Cl. This also does not take into account the risk of accidental

coincidences from radioactive beam contaminants or room background radiation. To limit

the probability of accidental coincidences at this high rate, we set the Readout event window
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CLOVERS TO 
ANALYSIS

SCINTILLATOR

READOUT

Figure 5.1: A simplified diagram showing the processing that the Readout program does
to allow coincidence sorting for incoming data. Events from (in the case of E12028) the
clover detectors (black arrow) and the scintillator detector (blue arrows) are buffered into
the Readout program, which segregates them according to the event window (grey boxes)
and pushes them into an event file for analysis.
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to be 1µs wide. Data from the ring buffer was thus segmented into 1-µs event windows and

stored in an event file, a file format that stores data in “words” denoting the time of an in-

coming event, the channel on which the event arrived, and the size of the event (that is, the

pulse height), all organized by event windows. The Readout program is capable of creating

multiple event files as needed according to the amount of incoming data, but it is common

practice to organize data into “runs” of a few event files each so that, if the buffered data

becomes corrupted, data loss is kept to a minimum. For E12028 our procedure was to stop

and restart data acquisition roughly every hour, typically resulting in a “run” of three to

five event files depending upon the implantation rate throughout the hour.

5.1.1 Online Analysis

Because beam time is at a premium, it is important to analyze the incoming data as soon

as it has been processed into an event file. This allows experimenters to determine whether

the experiment is likely to meet its research goals at the current experimental settings, or

whether changes must be made. In addition, it allows experimenters to diagnose whether

changes in the experimental electronics are needed, e.g. whether the delay cables used in

particle identification (PID) time-of-flight measurements are an appropriate length to leave

the “stop” signal from the upstream A1900 scintillator later than the “start” signal from the

downstream PIN detectors at the experimental setup.

Typically, experimenters at the NSCL will use a program called SpecTcl for their online

analysis. SpecTcl can be attached to either the incoming online data or to stored evt files,

so the procedure for E12028 was to run two instances of SpecTcl on different computers, one

attached to online data that allowed for quick analysis changes (new gates, calibrations, etc.)

and one attached sequentially to stored data to produce a comprehensive accumulation of
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data for the purpose of assessing the experiment’s status. Fig. 5.2 shows a typical SpecTcl

display.
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Figure 5.2: A screenshot of the SpecTcl analysis program spectrum window showing gamma-ray spectra for each crystal in the
first four clover detectors (that is, the detectors in the ring upstream of the scintillator). These spectra have had a preliminary
energy calibration (see Section 5.2.1) applied to them, and they demonstrate the slight differences that each detector crystal
sees as it records information (for example, compare the relative heights of the peak at 2234 keV).
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5.2 Calibration Procedure

In order to meaningfully understand and interpret the incoming data, it must be calibrated

– the DDAS only forwards to Readout the time-stamped voltage pulses from the detectors,

each of which has been amplified according to its unique electronic gain. This means that at

the analog-to-digital conversion (ADC) step in the DDAS, gamma rays of the same energy

detected in different detectors will likely result in voltage pulses of different heights and

consequently be sorted into different digitized “ADC channel” histogram bins. Thus, plotting

the uncalibrated gamma-ray spectrum combining multiple detectors results in a nonsensical

histogram. In order to even make sense of the data at all, the first calibration applied to the

data must be an energy scale calibration.

Further, once the calibrated spectra have been produced, any analysis procedure whose

goal is to derive intensities of gamma-rays must take into account the fact that no detector

is perfectly efficient for detection. Not only is it possible that a gamma-ray of a given energy

will not deposit its full energy into the detector, or even fail to interact at all, the detectors

simply do not cover the full 4π solid angle surrounding the gamma-ray source. To produce

accurate intensities of gamma-rays, an efficiency calibration must also be performed. Here

we will discuss both of these procedures for E12028.

5.2.1 Energy Calibrations

The general technique used in an energy scale calibration is to fix the ADC scale at several

places where the energy is well-known. This is typically done by selecting several precisely-

measured gamma-ray photopeaks in the uncalibrated gamma spectrum, plotting them as a

series of ordered pairs of ADC channel and known energy, and fitting the points with an

89



analytical function that can translate ADC channel into energy at all points along the axis.

Then, the data can be sorted again using this analytic function to produce a calibrated

spectrum whose horizontal axis is an accurate energy scale.

This procedure can be performed in a number of ways when multiple detectors are in-

volved. Each individual clover crystal can be individually calibrated, or the crystals as a

group can be gain matched so that their ADC scales align with one another, and the aggre-

gate spectrum then calibrated as one. Further, the choice of peaks to use for calibration is

at the discretion of the experimenter and the needs of the analysis. In the case of E12028,

several options existed: we could for example use photopeaks from 31S beta-delayed gamma

rays themselves, or use peaks from contaminants or room background radiation.

Each option presents its own set of concerns for producing an accurate calibration func-

tion. In the first case, the necessary assumption is that previous studies of 31S gamma-rays

have produced accurate values for the photopeak energies. This assumption may not be

warranted however, given that the in-beam gamma-ray spectroscopy experiments mentioned

in Chapter 4 have produced excitation energies for various 31S states that are systematically

higher than the 31Cl beta-decay experiments done to-date by a few keV [59, 71, 56, 72]. In

both cases, the issue of energy scale extrapolation is also a concern, since if the curve is fixed

only at lower energies and extrapolated to higher energies, the error on the calibration in-

creases monotonically with energy. This experiment aimed to precisely measure gamma-rays

up to energies of 7100 keV, and the highest-energy known photopeak in 31S that is not in

the energy region we wished to study is the deexcitation to the ground state from the 6280

keV IAS – an almost 1 MeV extrapolation. A calibration based on room background peaks

would have introduced even more of a problem, since the highest-energy commonly-used

background peak is at only 2614 keV.
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As mentioned in Chapter 4, we produced a 32Cl beam for the purpose of calibration, and

opted to use it for both energy and efficiency calibration. A detailed gamma-ray spectroscopy

study of 32Cl was published in 2012 [73] which produced 32S gamma-ray energies up to 7189

keV. We fit the 32Cl peaks up to 7189 keV, obtained ADC channel maxima (we used the

peak maximum instead of the centroid, as discussed more fully in Section 5.2.2), and fit the

obtained points to obtain a calibration curve for each clover crystal for the 32Cl data. We

used a quadratic function for the calibration to account for small nonlinearities in the gain of

the detectors, which may happen over such a large energy range as ours. Typical quadratic

coefficients for the 32Cl energy scale calibration were on the order of 10−9 keV, indicating

that the nonlinearity in the detector was very small.

The calibration curves we produced for the clover crystals were used to calibrate the 32Cl

data, which was taken over only a few hours. However, because the gains in detectors can

drift over time, it is not feasible to apply a single calibration to a detector over an entire

experiment, which may last for hundreds of hours. This gain drift has the effect of spreading

out the photopeak, creating a peak with a lower amplitude and a wider peakshape. This

can result in less precise measurements of the peak, and can even prevent peaks from low-

intensity transitions from being visible at all. We found that five of the 36 clover crystals

exhibited impractically large gain drift over time as well as changes in resolution, which

produced odd peak shapes; data from these crystals was discarded entirely, as they would

not have contributed productively to producing an accurate and precise calibration.

In order to counter the potential effects of gain drift in the 31Cl data, which was taken

over the course of many days, we grouped runs into small sets that were obtained close to

one another and did not exhibit appreciable gain drift. We then applied the 32Cl calibration

to the set of runs that was taken closest in time to the 32Cl calibration runs (only about
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four hours difference) to produce a calibrated 31Cl spectrum based on the independent 32Cl

calibration. We fit several 31S photopeaks in this calibrated 31Cl spectrum to produce our

own set of 31Cl calibration values, to which the remainder of the 31Cl data was gain-matched,

producing a 31Cl calibration that did not require extrapolation or reliance on external 31Cl

values.

In order to check this calibration, we performed a second, completely separate calibration

on the first segment of 31Cl data to be calibrated with the 32Cl calibration curve using the

cascade crossover method. This method utilizes well-known low-energy room background

peaks to perform a precise linear calibration in a known energy region (e.g., the well-known

40K and 208Tl lines at 1460.8 and 2614.5 keV, respectively). Within that region, it is

then assumed that photopeak energies are precisely determined. In the event that two

gamma-rays within that region are part of a cascade, their transition energies (which are

related to the gamma-ray energies by a simple reference-frame transformation) may be added

to get the transition energy of the gamma-ray that de-excites the level to which the two

cascading gammas sum. This new gamma-ray, which ostensibly lies outside of the calibration,

may then be used to extend the calibration, extending the region in which the cascade

crossover method may be applied. This technique is time-consuming and arduous, but it

does produce a calibration that, except for the two peaks used to begin the calibration, relies

only on internally-obtained energies. We used this method to verify the accuracy of the 32Cl

calibration method, but the two methods were found to give consistent results, so the 32Cl

method was used on the rest of the 31Cl data exclusively.
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Figure 5.3: A comparison between the peak shape function used in the analysis of E12028
(red solid line) and the standard Gaussian peak shape (blue dashed line). The two functions
have been normalized to have the same maximum value, centroid, and standard deviation
parameter, σ. The large low-energy tail is the result of the convolution with the exponential.

5.2.2 The Peak Shape

Ideally, gamma-rays of a given energy would deposit the entirety of their energy into the

Ge detector and produce a peak that follows the Gaussian distribution, with a centroid and

maximum at the energy of the gamma-ray and a standard deviation based on the resolution

of the detector. However, because of a number of physical effects in the detector, the actual

photopeak shape is skewed as shown in Figure 5.3. The most prominent feature of this

shape is the low-energy tail. This is due to incomplete charge collection in the detector of

electron-hole pairs [74]. In principle, pile-up effects in the ADC could also change the shape

of the peak; however, the charge-collection tail is a much stronger effect and the latter can

usually be safely ignored.

For fitting photopeaks in the gamma-ray data, we used the following function, created
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through the convolution of a Gaussian with an exponential, the complementary error func-

tion:

N

2τ
· exp

[ σ2

2τ2
+
x− µ

τ

]

·
(

1− erf
[

σ2 + τ · x− µ√
2στ

])

(5.1)

where N is the peak integral (not simply the amplitude; the peak shape function relates

the integral N to the amplitude A by the factor 2τ), µ is the centroid, σ is the Gaussian

standard deviation, and τ is the “decay constant” of the exponential. Note that this τ is

not related to the lifetime τ of the nuclear state whose deexcitation may create the photo-

peak being fit, nor the waveform decay constant τ used in setting the DDAS pulse-shaping

parmeters. The function shown in Equation 5.1 represents a single peak with no background;

throughout analysis we combined multiple peak-shape functions as needed to model doublets

or series of peaks, and we found a simple linear background A+ Bx to be sufficient for our

background modeling.

This modified Gaussian peakshape is also appropriate to model the systematic widening of

the photopeaks due to the energy absorption effects in the detector as the gamma-ray energy

increases. At low energies, the peak shape generally looks more Gaussian, whereas at higher

energies the deviation becomes more pronounced. In practice, both σ and τ affect the width

of the photopeak; thus, least-squares minimizations of the fit will produce unreliable fits

with correlated uncertainties if these parameters are not constrained somehow. To increase

the reliability of the peak-shape, we fit a number of strong, isolated peaks from a 152Eu

calibration source at a number of lower energies. When we were assured that the fit was

good (that is, a χ2/ν value close to 1 and a fit result where the minimization function did not

have correlated errors) for each of these peaks, we plotted the σ and τ values as functions of
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energy and fit them with parametrization function: σ =
√

A+B · E), τ = A+B ·E+C ·E2.

In this way, we were able to systematically vary both σ and τ across the entire energy

spectrum, allowing the peak shape to widen monotonically with increasing energy and elim-

inating the potential for correlated errors involving σ and τ . We also opted to use for the

recorded energy value of the photopeak the maximum of the peak shape 1 instead of the

centroid as described above. We chose to use the maximum instead of the function centroid

because, for multiple fits of the same peak with slightly different fit boundaries, the maxi-

mum was found to vary less than the centroid. We used the centroid parameter’s statistical

uncertainty from the fit for the uncertainty in the maximum.

5.2.3 Energy Calibration Systematics

For our energy calibration, we obtained both the energies and the statistical uncertainties of

the energies from the peak shape used to fit the photopeaks. However, a calibration cannot

be more precise than the data used to perform it, so we needed to take into consideration the

systematic error as a result of the calibration. To assess the accuracy of the calibration and

assign systematic uncertainties at low energies, we measured the peak-shape maximum of a

number of room background peaks known to a very high precision, and assigned a 0.2-keV

blanket systematic uncertainty up to 2.7 MeV based on the variance of the peak centroids

around their literature values [75]. Above 2.7 MeV, we measured the excitation energy of

various levels using the cascade-crossover method with multiple cascades of the same level

and compared the spread in the excitation energy derived from the cascades. We were able,

using this method, to produce a widening uncertainty envelope to high energies: 0.2 keV for

1 To find the energy corresponding to the maximum of the fit function peak, we used a computer function
that iteratively steps through the function over the fit range and searches for the maximum value of the
function. It then finds the energy value at that maximum function value.
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Eγ < 2.7 MeV, 0.3 keV for 2.7 MeV < Eγ < 4.8 MeV, and 0.6 keV for Eγ > 4.8 MeV.

5.2.4 Efficiency Calibration

As mentioned above, the detector array was not capable of measuring every single gamma-

ray emitted by the 31Cl decay. In order to properly deduce accurate absolute intensities

for the gammas emitted as a result of 31Cl beta decay, it was necessary to perform an

efficiency calibration, providing a scale factor for the integral of the peak as a function of

energy: N(Epeak) = ǫ(Epeak) ·I(Epeak) where N is the number of gamma-rays detected (the

peak integral), I is the actual intensity of the peak (effectively, the number of gamma-rays

emitted at the source), and the efficiency ǫ is simply the ratio between the two – all of these

are evaluated at each peak energy Epeak.

In practice, when experimenters discuss “efficiency,” they typically refer to the absolute

efficiency, which is the efficiency as defined here: simply the ratio of the number of gammas

measured by the detector array during the measurement time interval to the number gammas

emitted from the source during that time. However, the absolute efficiency of a detector has

itself two factors, the geometrical efficiency and the intrinsic efficiency of the detector:

ǫA(E) = ǫG · ǫI(E). The geometrical efficiency EG is essentially a measure of how the

detectors are arrayed, how much of the solid angle surrounding the source is covered by

material that may detect the gamma-ray. The intrinsic efficiency EI(E) is a measure of how

likely the detector material is to absorb the incoming gamma-ray, which depends upon the

energy of the photon. While these factors may in principle be determined independently, it

is usually easier to measure the combined absolute efficiency directly.

Typically, the procedure to determine absolute efficiency is to use an “absolutely cali-

brated” source, whose activity at a specific point in time was precisely known, and determine
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its current activity over a span of time by applying the known half life. Then, it is possible

to count the number of gamma-rays in a given photopeak detected during the interval and

compare it to the expected yield of gamma-rays for that photopeak using the radiation law:

Npeak(t) = Ipeak · Roe
−ln(2)t/T1/2 , where Ro is the activity measured at the point at which

the source was absolutely calibrated, t is the time since that point, T1/2 is the half-life of

the source, Ipeak is the branching intensity of the photopeak being measured (that is, the

absolute intensity of that gamma-ray per decay of the source), and Npeak is thus the ex-

pected number of counts in that peak. The absolute efficiency then is simply determined

as Ncounted/Nexpected. This process can be performed for a number of peaks and an ana-

lytic efficiency curve may be produced from a fit of the data, allowing for determination of

absolute efficiency anywhere on the curve.

In cases where an absolutely calibrated source is not available, it is not possible to produce

an absolute efficiency curve. However, the relative efficiency of the detector array as a

function of energy may still be determined, since the ratios of efficiencies at any two energies

is constant. In this case, the experimenter can simply measure the photopeak integral at an

anchor-point energy and use the absolute intensity of that gamma-ray to produce a floating

“anchor” for the rest of the curve. For example, the efficiency could be set to unity; then

the relative efficiency of lower-energy peaks would be comparably higher and the relative

efficiency of higher-energy peaks would be lower, with the curve overall retaining the same

shape as an absolute efficiency curve.

As with the energy calibration case, standard calibration sources typically do not produce

gamma-rays of sufficient energy for precision determination of an efficiency calibration curve

over a large range of energies. In the case of E12028, we had 32Cl data up to 7189 keV and

the 152Eu calibration source data below 1400 keV. We produced a relative efficiency curve
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for our data using these two datasets. The 152Eu was used to produce a curve up to 1400

keV. This curve was then extrapolated by extending the function up to 1547 keV, where

the first 32Cl photopeak was anchored to the 152Eu curve. The relative intensities of the

32Cl photopeaks [73, 76] were then used to extend the curve from 1547 keV to 7189 keV,

producing a relative efficiency curve over the entire energy range of our data. The specific

shape of this curve was an exponential of the form ǫ(E) = exp[ΣiAiln(E)
i], where ǫ(E) is

the efficiency at a given energy E and the exponential contains a polynomial of order i with

argument ln(E), the natural log of the energy. The energy curve and uncertainty envelope

is shown in Fig. 5.4.

5.2.5 Efficiency/Intensity Systematics

Although the 152Eu source was absolutely calibrated, our procedure for determining the

absolute intensities of the gamma-rays only required relative efficiencies, so we did not prop-

agate the error due to the calibrated activity of the source. However, our derived intensities

still relied on data from Ref. [73] and our own calibration procedure, so it was necessary

to propagate uncertainties in the efficiency through the intensity calculation. To do this,

we included a flat efficiency uncertainty of 0.7% across all energies based on variations in

the photopeak integral as a result of variations in the peak fitting procedure, an uncertainty

of 0.2% for Eγ < 1547 keV from spread between the data points used for calibration and

the calibration curve itself in the 152Eu data, a flat 1.4% uncertainty for Eγ > 1400 keV

from the extrapolation of the 152Eu data to 1547 keV, and the energy-dependent uncertainty

envelope values above Eγ = 1547 keV taken from Ref. [73]: 0.4% for 1.5MeV < Eγ < 3.5

MeV, 1% for 3.5MeV < Eγ < 5 MeV, and 5% for Eγ > 5 MeV. The envelope from these

combined uncertainties is shown along with the efficiency curve in Fig. 5.4.
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Figure 5.4: Upper panel: the efficiency curve generated from fitting the relative efficiencies
of the 152Eu and 32Cl data. The polynomial required six terms, listed in the box at top-
right along with the reduced chi-squared value and the p-value for the fit. Lower panel: the
uncertainty envelope adopted across the energy region, based on the envelope in Ref. [73]
and the other considerations detailed in the text.
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In addition to the systematic uncertainty derived from our efficiency calibration proce-

dures, we also included a uniform 1% uncertainty in the efficiencies at all energies due to

summing. In the event that multiple gamma-rays enter a detector simultaneously, they may

be detected simultaneously, resulting in a recorded energy that is higher than the actual

energy of either gamma ray. Even if one of the two gamma rays only deposits some of

its energy, scattering out of the detector afterward, it will cause the apparent photopeak

intensity of the other gamma to decrease, as an event of the particular photopeak energy

will no longer be recorded. To arrive at the 1% uncertainty, we simulated the interaction of

gamma-rays in the clover detector over a range of energies and recorded the total efficiency

of the gamma in the detector (that is, we integrated the entire simulated spectrum, not just

the photopeak). This 1% uncertainty was factored into the photopeak intensities used to

determine the branching ratios and absolute efficiencies for each transition.

5.3 Data Reduction and Final Results Spectra

We obtained cumulative spectra for both the central scintillator and the surrounding 36

clover crystals. The cumulative scintillator spectrum is shown and described in Figure 5.5.

Because the purpose of the scintillator was only to gate out room background, we did not

need to calibrate its energy scale. The software gate, as described above, loops over all events

within the event window and determines whether they meet the gate criteria. If an event

meets the gate criteria (for example, “the event occurs within a certain detector” or “the

event occurs within a certain amount of time after or before another event”), the software

continues to process the other events in the event window according to the rules of the gate.

Typically, gates such as this are used to eliminate unwanted events while keeping good events
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Figure 5.5: A histogram showing the uncalibrated scintillator energy spectrum. Because
the central scintillator was only used to count the number of implants and decays and allow
for gating of clover events, a calibration was not needed, although since the Q-value of the
31Cl beta decay is approximately 12 MeV, it is likely that the uncalibrated spectrum, which
appears to show a distribution of events similar to that expected for a 12-MeV beta endpoint
energy, is close to any actual calibration that would be applied.

for processing – this procedure is known as data reduction.

In the case of the scintillator gate, we produced a spectrum plotting the time-stamp

difference between events in the same window recorded in the scintillator and in any of

the clover detectors, shown in Fig. 5.6. The vast majority of clover events related to 31Cl

decay occur very quickly after the decay itself, whereas clover events originating from other

sources, such as room background, occur randomly throughout the event window. As shown

in Fig. 5.6, this manifests as a broad plateau of accidental coincidence timing values, with

a central true coincidence timing value peak. We gated on the central peak, a window of

approximately 1µs as compared to the broad 10-µs plateau.
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Figure 5.6: A histogram populated by calculating the time difference between an event in
the scintillator and an event in any clover crystal. Most of the 31Cl events occur in the
large peak near the center of the plateau while the rest of the plateau events are likely
caused by accidental coincidences. The trough to the left of the central peak and the higher
plateau background to the left of the central peak are likely caused by reflections in the data
connections between the detector and the DDAS.
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As mentioned above, five clover crystals were found to be inappropriate for analysis and

were not included in the calibration procedure. The remaining clover crystals were cali-

brated and gain-matched to produce the cumulative spectrum shown in Fig. 5.7. This

spectrum represents the highest-statistics gamma-ray spectrum resulting from 31Cl spec-

trum produced to-date by over two orders of magnitude. It has not been processed beyond

the energy scale calibration (that is, there is no coincidence gate applied). Gating on the

scintillator/clover timing peak produced a gamma spectrum with significantly reduced room

background peaks and only very slightly reduced 31S peaks. A comparison of the ungated

and scintillator/timing gated spectrum (referred from this point forward as the “timing-gated

spectrum,” for the time difference), including an insert of a region with greatly-reduced back-

ground peaks, is shown in Fig. 5.8. The determination of gamma-ray energies and intensities

for E12028 was carried out on this gated spectrum.
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Figure 5.7: A histogram showing an energy-scale calibrated clover spectrum, including all 31 clovers used for analysis. This
spectrum represents, by over two magnitudes, the highest-statistics 31Cl beta-delayed gamma ray spectrum to date.
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Figure 5.8: Main figure: A comparison of the scintillator-gated (blue) and timing-gated (green) clover spectra. As illustrated
here, the background is reduced considerably, especially at lower energies, while the photopeak integral for 31Cl events is only
slightly reduced according to the efficiency of the scintillator to detect beta particles. Inset: A zoomed-in region between
1100 keV and ≈1600 keV, demonstrating the effects of the scintillator-timing gate compared to the scintillator-only gate. As
illustrated here, several photopeaks caused by room background, including the very prominent 1460-keV peak, are almost
completely eliminated.



5.3.1 Gamma Decay Selection Rules

While the beta decay selection rules discussed in Section 3.5.2 narrow the range of states

which are likely to be populated in 31Cl beta decay, they do not in principle affect how

those states undergo gamma decay. The electromagnetic transition does not change the

mass number of nucleonic composition of the nucleus, so it does not require specific isospin

values between levels. However, there are a few gamma decay selection rules which affect

the observed gamma branching of excited states; these will be discussed briefly here.

As with the Gamow-Teller beta decay transitions, the electromagnetic transition operator

couples to nuclear spin J and prohibits J = 0 → J = 0 transitions. Electromagnetic

“allowed” transitions similarly have ∆J = 0,±1. However, unlike allowed beta decays,

allowed gamma decays require a parity change, πf = −πi. To determine where this additional

rule comes from, we can write out the transition probability for gamma decay [77]:

T
(σλµ)
fi =

2

ǫ0~

λ+ 1

λ[(2λ+ 1)!!]2

(Eγ

~c

)2λ+1
|〈ξfJfmf |Mσλµ|ξiJimi〉|2 (5.2)

where Eγ is the gamma-ray energy and Mσλµ is the matrix element associated with the

transition. The indices σ, λ, and µ are the multipole radiation field numbers: σ delineates

the electric field (σ = E) or the magnetic field (σ = M), and λ and µ are the l and m

multipole numbers of the electromagnetic field spherical harmonics. It is possible to rewrite

M in terms of the separate electric and magnetic components:

MEλµ = Qλµ, MMλ =Mλµ (5.3)
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where

Qλµ = ζEλ
A
∑

j=1

e(j)rλj Yλµ(Ωj),

Mλµ =
µN
~c

ζMλ
A
∑

j=1

[ 2

λ+ 1
g
(j)
l l(j) + g

(j)
s s(j)

]

· ∇j [f
λ
j Yλµ(Ωj)],

(5.4)

e(j) the electric charge, rj is the radius of the nucleon j, Yλµ(Ωj) is the spherical harmonic

of order λµ, µN is the nuclear magneton
e~

2mp
, l(j) and s(j) are the orbital and spin angular

momenta of nucleon j, gl and gs are the orbital and spin gyromagnetic ratios, gl = 1 for

protons and 0 for neutrons, gs = 5.586 for protons and −3.826 for neutrons. ζEλ and ζMλ

are phase factors, ζEλ = iλ and ζMλ = iλ−1 [77].

From the above equations it can be seen that the electric and magnetic operators for

the electromagnetic require different parity constraints: the parity of Yλµ is (−1)λ, and the

parity of rλ is +1, so the parity of rλj Yλµ and hence the electric transition of order λ, Eλ, is

π = (−1)λ, where λ is the order of the transition. Similarly, since the parity of ∇ is −1 and

the parity of rλj Yλµ is (−1)λ, the parity of the magnetic transition Mλ is (−1)λ−1. These

constraints are the origin of the parity selection rule and also help to infer the probability of

transitions between different states.

Transition probability decreases by about approximately one order of magnitude per

increasing order of multipolarity – thus, the most likely transitions are electric and magnetic

dipole transitions, E1 and M1. Less likely than their respective dipole transitions by an

order of magnitude are the quadrupole transitions E2 and M2 – however, the strengths of

magnetic transitions are typically an order of magnitude weaker than the comparable electric

transitions, meaning that E2 transitions compete not withM2 transitions but withM1. The

“allowed” electromagnetic transitions referenced above can therefore be seen to correspond
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to E1 transitions, while Mλ and Eλ (λ ≥ 2) transitions can be thought of as the various

orders of “forbidden” transitions.

In this way, experimenters can estimate the probability of transitions to a given lower

energy state using the rule-of-thumb selection rules. In addition, the Q-value of the transition

(in this case, the difference in energy between the two nuclear states) affects the probability

of decay: a higher energy difference between the two states increases the probability that

the photon will be created with the requisite angular momentum, and transitions between

states with a large ∆J but low Q-value proceed more slowly than transitions between states

with the same difference in angular momentum but a greater difference in energy 2 In fact,

a set of rule-of-thumb equations known as “Weisskopf estimates” [78] can be used to give

a ballpark number for the expected number of gamma decays per second for electric and

magnetic transitions of order l:

λEl = CElA
2l/3Q2l+1 λMl = CMlA

(2l−2)/3Q2l+1 (5.5)

with coefficients [78]:

l 1 2 3 4 5

CEl: 1.0 · 1014 7.3 · 107 3.4 · 102 1.1 · 10−5 2.4 · 10−12

CMl: 3.1 · 1013 2.2 · 107 1.0 · 101 3.3 · 10−6 1.0 · 10−13 .

These estimates include a number of simplifying assumptions, including that only one

single proton changes states in the transition and that the final state of that proton has

angular momentum 1/2. The methods used for estimating the transition strength matrix

2 A notable example is the isomeric state of tantalum-180, 180mTa. The ground state of 180Ta has spin
and parity Jπ = 1+, while the isomeric second excited state has Jπ = 9− but an excitation energy of only

77.2(12) keV. With only the ground state and the Jπ = 2+ first excited state to which to decay, 180mTa is

expected to have a half life no less than 1015 years.
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element M in sophisticated computational tools such as the USD shell-model calculations

performed for the analysis in the present work are much more complex, but have the same

basic goal: provide probabilities for electromagnetic transitions between states in a given

nucleus, which can be normalized in the form of gamma decay branching ratios, relative

probabilities for a given state to decay to a given lower-energy state in a nucleus. These

theoretical branching ratios may then be compared to those calculated from observed gamma

transitions in an experiment.

5.3.2 Photopeak Identification – Building the Decay Scheme

As mentioned, E12028 produced a beta-delayed gamma-ray spectrum with statistics over two

orders of magnitude higher than the two 31Cl beta-decay studies to-date [56, 72]. The wealth

of data proved invaluable to the construction of a new, more comprehensive and precise

beta-decay scheme. However, the process of building the decay scheme was not without

its challenges. Even though the 31Cl beam was very pure (95%), the high intensity meant

that even the small contaminant activity could produce detectable peaks in the gamma-ray

spectrum. Even peaks that could not be positively identified as a product of contaminant

processes were not assumed to come from 31Cl decay. And even among those peaks that

could be shown to be 31Cl(βγ) peaks, it was not known a priori where in the decay scheme

to place them.

We utilized two methods of filtering out contaminant peaks and identifying and placing

peaks corresponding to transitions from 31Cl beta decay. First, we found that, when we

applied the timing gate and compared the integrals of the gated peaks to the ungated peaks,

the timing gate reduced known 31Cl peaks by a constant factor, yielding a ratio of timing-

gated intensity to ungated intensity of 0.806(7)%, a number ostensibly related to the beta
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detection efficiency of the scintillator. This ratio was observed for a number of 31Cl peaks

over the entire energy range and is shown in Fig. 5.9. In comparison, peaks known to

come from beam contaminants were found to have ratios that were different from this value,

typically lower by ≈0.2%, ostensibly due to implantation depth (simulations performed prior

to the experiment predicted that the 31Cl would implant the farthest into the scintillator

and that the contaminants, having lower energy, would implant at shallower depths). In this

way, we were able to use the timing gate to infer that any given photopeak did or did not in

fact come from 31Cl decay, with a few notable exceptions that will be discussed in Section

5.4. A comprehensive beta-delayed gamma-ray spectrum with peak labels is shown in Fig.

5.10.

Second, because of both the high statistics and the large number of detectors, we were able

to make great use of gamma-gamma coincidences. Similar to the beta-gamma coincidences,

it is possible to gate on a range of specific gamma-ray energies (e.g., on a specific peak) and,

when one clover crystal event within the event window falls inside that energy gate, process

only those events that occur in different crystals of the detector, or even in different whole

detectors. This gate can then be combined in the software with other gates, for example

the scintillator timing gate, to reduce background even further. The benefit of gamma-

gamma coincidence gates is in the identification of cascades: since cascading gamma-rays

are emitted essentially simultaneously compared to the implantation and beta-decay rate,

gating on one gamma-ray in a cascade will allow for the production of a spectrum with greatly

reduced background, but with a strong enhancement of other gammas in the cascade. In the

event that multiple cascades include de-excitation from a particular level, a gamma-gamma

coincidence spectrum produced from gating on that de-excitation can yield much information

about transitions from higher states. This kind of gate is particularly effective when applied
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Figure 5.9: For photopeaks of several energies between 1 MeV and 7 MeV, the ratio of
the measured photopeak intensity in the timing spectrum to the measured intensity in the
ungated spectrum, the mean of the measurements (black dashed line, 80.6%) and the one-
sigma envelope denoting the standard deviation of the points about that mean (red dashed
lines, 0.7%). This figure illustrates that the scintillator efficiency was essentially constant
over its entire energy range, regardless of the beta endpoint energy of any particular 31Cl
transition.
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Figure 5.10: A comprehensive spectrum showing the assignments for the photopeaks used
in analysis as well as those of identified beam contaminants. Each photopeak is labeled by
the emitting nucleus and its energy. Peaks labeled with one or two asterisks correspond to
single and double escape peaks, respectively. Peaks marked with a single dagger are sum
peaks and the summation is noted, and peaks marked with a double dagger have multiple
contributions and are discussed in detail in Section 5.4.
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to lower excited states – the βγ spectrum and a βγγ spectrum gated on the transition from

the first excited state at 1248 keV is shown in Fig. 5.11.
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Figure 5.11: The timing-gated spectrum (green) and the timing-gated spectrum additionally gated on transitions from the first
excited 31S state, at Ex = 1248 keV, to the ground state. The overall statistics of the spectrum are reduced by several orders of
magnitude, but several features are nonetheless visible, including enhanced peaks at energies corresponding to transitions to the
1248-keV state, such as the peaks at 985 keV (2234 → 1248), 2035 (3283 → 1248), and 5031 (6279 → 1248). Many other peaks
can be seen to be enhanced as well; these enhancements were used to help confirm the placement of several of the transitions
shown in Fig. 5.12 and reported in Table 5.1.



5.3.3 Spin and Parity Assignments:

As mentioned in Chapter 4, 31Cl beta decay selectively populates states with Jπ = 1/2+, 3/2+, 5/2+.

This reduces the number of options for assigning spin and parity, but does not provide im-

mediately unambiguous constraints. Typically, experimenters will use the results of com-

plementary experiments to populate nuclear states and make spin and parity constraints.

However, as discussed in Chapter 4, despite the relative wealth of experimental data on the

resonances involved in the 30P(p, γ)31S, unambiguous constraints for the resonances are still

elusive. In part this is due to conflicting spin and parity constraints from different experi-

ments, so in order to approach the experimental study of these states free from the concerns

of previous experiments, we utilized a partially theoretical method of assigning spin and

parity.

Prior to the analysis of E12028, we performed shell-model calculations using the USDB

interaction [38] to predict both the beta feedings of the various 31S states populated in

allowed 31Cl beta-decay transitions and the gamma branchings for a number of positive-

parity 31S states, including those addressed in the beta-decay calculation. The results of these

calculations are reported in Appendix A. During analysis, we then assigned spin and parity

based on comparison between observed beta feedings and gamma branchings for each state

(calculated according to the procedure in the following section) and those predicted by both

the USDB calculations and by new USD calculations performed following the experiment

(see discussion in Section 6.1).

Many of the 31S states below the proton threshold that are populated by 31Cl decay

already have unambiguous Jπ values, so they were used to confirm that the USD calculations

were correct. Then, for the states with uncertain spin and parity, including states never seen
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before in 31Cl beta decay, we applied the USD results to make the spin and parity assignment.

In some cases this allowed for a more definite assignment than is reported in the A = 31

Nuclear Data Sheets [79] (for example, the state at 3283 keV), and in one case, the state at

4867 keV, our assignment based on the shell-model calculations disagreed with the spin and

parity reported in NDS (Jπ = 1/2+ in our analysis compared to (1/2, 3/2)− in NDS). For

most states, the observed quantities and predicted quantities were in very good agreement;

where the agreement was not very good, we have indicated a tentative assignment in the

conventional way: (Jπ) in parentheses. Again: no single reaction or decay experiment can

absolutely determine the spins and parities of the important states, but relying on our shell-

model calculations rather than the previous experimental work at the least allowed us the

freedom to make complementary assignments independently of any precedents set by those

experiments – which may or may not be accurate.

5.3.4 Beta Feedings and Gamma-ray Absolute Intensities

Constructing a beta decay scheme requires two things: beta feedings for each level and

gamma intensities for each observed transition. The latter is often presented both in terms

of relative gamma branchings for each level, denoting the relative intensity of all gamma-rays

that de-excite a level, and in terms of absolute gamma-ray intensity per unit beta decay,

denoting the number of times per single decay (or 100, for example), that a gamma-ray of

that energy will be detected.

The typical procedure for determining absolute intensity of a given gamma-ray per beta

decay is simply to count the number of gamma-rays observed, use the detector efficiency

to determine an absolute photopeak intensity, and then divide by the number beta decays

observed. One common method for determining the number of implants and thus the number
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of 31Cl decays is simply to count the number of 31Cl ions that pass through the PIN detector

in the PID spectrum, giving the number of implanted 31Cl ions. Then, the beta-detection

efficiency of the central detector (in this case the scintillator) can be used to scale this number

to arrive at the number of decays that result in detected gamma-rays in the beta-gamma

spectrum.

Determination of beta feedings is a slightly more involved process because a given energy

level can be populated both by beta feeding and by gamma de-excitation from higher levels.

Since it is not known a priori which of the two processes a de-exciting gamma ray originates

from, the absolute photopeak intensity cannot be used by itself to determine the beta feeding

of the level. Instead, the procedure for a given level is to sum the intensities of all gammas

de-exciting the level, then subtract the sum of all gammas feeding the level. The assumption

here is that every gamma feeding the level will result in a gamma de-exciting the level as

well, which is a valid assumption for levels below the proton threshold, where gamma decay

is the only energetically allowed channel. The resulting quantity is the number of gamma-

rays de-exciting the level not from gamma feeding; each of these gammas must therefore

come from a beta decay which feeds the level. So, the beta branch for the state is typically

calculated by dividing this value, which represents the number of beta decays feeding the

level, by the total number of beta decays.

In the case of E12028, both of these processes were complicated by the fact that the PIN

detectors had to be extracted from the beamline for the majority of the experiment. Thus,

any normalization to the estimated number of implanted 31Cl ions would be approximate

and potentially inaccurate. In addition, since we only used a relative efficiency curve, we

did not have absolute photopeak efficiencies for the observed gamma-ray transitions, mak-

ing determination of the absolute number of gamma rays in any given photopeak difficult.
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Instead, we circumvented calculations using the number of beta decays and performed a nor-

malization for the beta feedings and absolute gamma-ray intensities per beta decay entirely

from the measured gamma-ray photopeak intensities.

To calculate the beta feeding for each level, we first adopted branches for the beta decay

to the ground state (which cannot be determined from 31S gamma de-excitations as there

are none to measure), beta-alpha and beta-proton emission (since a number of decays are

above the emissions threshold for these two particles), and estimated unseen beta-gamma

branches. Following Ref. [56] we adopted a 7(2)% beta feeding for the ground state; this

value is based on the 31Si beta decay branch to the 31P ground state, the mirror process for

31Cl beta feeding of the 31S ground state. This value was corroborated by a 7.9% ground-

state beta feeding in the USD shell-model calculation we performed to help interpret the data

we generated (Section 5.3.3). The beta-alpha and beta-proton branch we adopted, 1.4(6)%,

was based on improvements to the value used in Ref. [56] by Ref. [72] and our shell model

calculations. We estimated a conservative 0.5(5)% branch for unseen gamma rays based on

comparisons between the gamma branches we expected our from shell model calculations

and what we actually observed.

We summed these branches to a total 8.9(22)% for unobserved beta feeding and, reasoning

that the remaining beta feeding was split between the levels from which gamma decay was

observed, used the remaining 91.1(22)% of the beta feeding as the total feeding for all

observed levels. Then, we subtracted the relative intensity of the gamma-ray transitions

feeding the level from the relative intensity of the gamma-ray transitions de-exciting the

level. These adjusted relative intensities for each level were then all summed together to

give the total relative number of beta decays, and the beta branchings were determined by

taking the ratio of each level’s subtracted relative gamma feedings to the total sum of all
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subtracted relative gamma feedings.

The absolute gamma-ray intensities per decay were then determined according to the

formula:

Iγ,abs,i = Iγ,rel,i ·
100− (Iβp + Iβα + Iβ,g.s. + Iγ,unsn)

(ΣnIγn,all − Iγm,all) + ΣjIγ,rel,j
(5.6)

where Iγ,abs,i is the absolute intensity of transition i per unit beta decay, Iγ,rel,i is the

relative intensity of the transition, determined from the integral and the efficiency curve, Iβp

and Iβα are the beta-proton and beta-alpha branches, respectively, Iβ,g.s. is the ground-state

beta branch, Iγ,unsn is the adopted unseen gamma branch, ΣnIγn,all is the sum of all ad-

justed relative intensities for each level n (the total relative number of beta decays), Iγm,all

is the adjusted relative intensity of the level m which transition i de-excites, and ΣjIγ,rel,j

is the sum of all transitions j de-exciting level m. The uncertainty on this value factored

in the uncertainty in the adopted non-observed-gamma branches (essentially a purely sys-

tematic uncertainty), the statistical and systematic uncertainties of the relative gamma-ray

intensities, and the uncertainties propagated through the derivation of the adjusted relative

gamma intensities for each level.

With these quantities, and using the analysis tools mentioned above, we were able to

produce a beta decay scheme with 62 total gamma-ray transitions – over twice as many

as the number of transitions reported in the 2012 A = 31 Nuclear Data Sheets [79], which

reported 29 transitions, and in the most recent 31Cl beta-decay study [72], which reported 27.

In addition, we observed beta-decay transitions to ten levels previously unobserved in 31Cl

beta decay. A full decay scheme with beta intensities and gamma-ray energies and relative

branching ratios is shown in Fig. 5.12, and lists of all 31S gamma-ray transitions observed
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in the decay, including their energies and absolute intensities, are reported in Tables 5.1 and

5.2. These results, including the effect on the 30P(p, γ)31S reaction rate, will be discussed

in-depth in Chapter 6.

5.4 Analysis Anomalies

In any analysis procedure, cases requiring special attention will often crop up. In building the

31Cl decay scheme and determining the absolute gamma-ray intensities and beta feedings, for

example, several cases occurred which required modification of the general analysis technique

described above. Here we discuss the analysis procedures used to determine the quantities

reported in Fig. 5.12 and Table 5.1. First, we will discuss the observation of so-called

“forbidden transitions,” gamma-ray transitions corresponding to beta decays populating

states forbidden by the Fermi and Gamow-Teller selection rules (Section 3.5.2). We will also

discuss the amended analysis procedures used when gamma-ray photopeaks from multiple

sources overlap in the energy spectrum. The significance of these findings is discussed in

Chapter 6.

5.4.1 Forbidden Transitions: The Levels at 3349 keV and 4970

keV

A cursory analysis of the 31Cl beta decay scheme (Fig. 5.12) shows that while most of the

spin and parity assignments of 31S states observed enable them to be populated by the beta-

decay selection rules for allowed transitions, two states, the states at 3349 keV and 4970 keV,

were assigned spins and parities of Jπ = 7/2+ and 3/2−, respectively. Only 1/2+, 3/2+, and

5/2+ states are allowed by the selection rules of beta decay from the 3/2+ 31Cl ground state;
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Figure 5.12: The final, comprehensive 31Cl decay scheme produced from the analysis of
E12028. For each level, the level’s energy rounded to the nearest keV is reported on the left
wing of the level and its spin and parity Jπ are reported on the right wing. The precise
excitation energies Ex of each level are reported in Table. 5.1. Each beta decay transition is
depicted by a red arrow on the right side and includes its beta feeding Iβ , also reported in

Table 5.1. Blue coloring for a level indicates that the level has never been observed in 31Cl
beta decay before.
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Fig. 5.12 (cont’d) Gamma-ray transitions between 31S levels are also denoted in the table
by the vertical arrows. Each transition includes the gamma-ray energy Eγ and branching
ratio (B.R.), which are both reported in Table 5.1. As with the populated levels, gamma
transitions which have never been observed in 31Cl beta decay before are colored blue. The
scheme also reports the adopted branches for beta-proton and beta-alpha and unobserved
gamma-rays.

transitions to these two states are known as forbidden transitions because they violate the

selection rules discussed in Section 3.5.2: in the case of the 3/2+ state, the parity selection

rule is violated, π+ → π− (a first forbidden transition), and in the case of the 7/2+ state,

∆J = 2 instead of 0 or 1 (a second forbidden transition). As mentioned in Section 3.5.2,

however, the forbidden appelation does not mean impossible, simply proceeding at a greatly

reduced rate. The high statistics of E12028 therefore potentially allow for observation of

these transitions. We will discuss here the analysis procedure for, and interpretation of,

both of these levels.

5.4.1.1 4970-keV Level

We observed a gamma ray at a photopeak energy of Eγ = 4970.2(9) keV (reported in Table

5.1). It was not observed to be in coincidence with any other gamma ray, and the ratio

of its gated intensity to its ungated intensity was found to be consistent with the average

ratio of 0.806(7), indicating a likely origin from 31Cl beta decay. The A = 31 Nuclear

Data Sheets [79] report a state at Ex = 4971(3) based on a number of nuclear reaction

experiments, some of which were discussed in Chapter 4 [80, 81, 82, 83, 84, 85] with a spin

and parity assignment Jπ = 3/2−; none of these experiments, however, measured gamma-

ray transitions. We calculated a beta feeding for this level of 0.037(7), which yields, using

the same procedure as for the 6279-keV and 6390-keV states, a log(ft1/2) value of 6.61,

which is consistent with the interpretation that this level was fed via the first-forbidden beta
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Table 5.1: 31S level excitation energies Ex, beta-decay intensities Iβ and corresponding
log(ft) values, and transitions from each level observed to be populated in the beta decay of
31Cl (the designation Jπn denotes the nth state of a given spin and parity). Also included for
each transition are the gamma-ray energies Eγ , relative gamma-ray branching ratios (B.R.),
and absolute gamma-ray intensity per 100 beta decays, Iγ .

Ex Iβ log(ft) Transition Eγ B.R. Iγ

1248.43(20) 2.5(6) 5.8 3/2+1 → 1/2+1 1248.40(20) 100 12.3(5)

2234.06(20) 47(4) 4.3 5/2+1 → 1/2+1 2233.97(20) 99.7(62) 53.2(27)

5/2+1 → 3/2+1 985.62(23) 0.35(2) 0.187(9)

3076.40(31) 2.58(18) 5.3 1/2+2 → 1/2+1 3076.24(20) 93(6) 2.82(14)

1/2+2 → 3/2+1 1827.93(25) 6.8(5) 0.205(14)

3283.76(31) 4.64(32) 5.0 5/2+2 → 1/2+1 3283.57(31) 16.1(9) 1.11(6)

5/2+2 → 3/2+1 2035.24(20) 63.6(35) 4.38(22)

5/2+2 → 5/2+1 1049.66(21) 20.3(9) 1.40(5)

3349.30(32) < 0.01 ¿7.7 7/2+1 → 3/2+1 2100.79(25) 100 0.076(14)

3434.90(33) 0.64(5) 5.8 3/2+2 → 1/2+1 3434.70(32) 54.7(35) 0.420(24)

3/2+2 → 3/2+1 2186.33(33) 45.3(30) 0.348(21)

4085.4(8) 0.74(5) 5.6 5/2+3 → 1/2+1 4085.2(8) 2.3(10) 0.019(8)

5/2+3 → 3/2+1 2837.60(32) 73(5) 0.614(34)

5/2+3 → 5/2+1 1852.19(25) 25.0(14) 0.211(14)

4207.7(31) 4.15(27) 4.8 3/2+3 → 1/2+1 4207.43(31) 63.8(21) 3.12(18)

3/2+3 → 3/2+1 2959.09(31) 36.2(21) 1.77(9)

4519.63(32) 1.13(9) 5.3 3/2+4 → 1/2+1 4519.28(32) 100 1.20(7)
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Table 5.1 (cont’d)

4717.72(32) 1.55(9) 5.1 5/2+4 → 1/2+1 4717.34(32) 37.5(24) 0.618(37)

5/2+4 → 3/2+1 3469.13(31) 6.9(5) 0.113(8)

5/2+4 → 5/2+1 2483.60(22) 28.7(17) 0.472(26)

5/2+4 → 5/2+2 1433.89(22) 24.3(14) 0.399(22)

5/2+4 → 7/2+1 1368.34(29) ≤1.1 ≤0.018

5/2+4 → 3/2+2 1283.32(37) 2.6(4) 0.043(7)

4866.2(6) 1.64(10) 5.0 1/2+3 → 1/2+1 4865.8(6) 41.2(27) 0.71(4)

1/2+3 → 3/2+1 3617.40(31) 58.8(39) 1.01(6)

4970.7(9) 0.037(7) 6.6 3/2−1 → 1/2+1 4970.2(9) 100 0.037(7)

5021.9(5) 0.273(21) 5.7 5/2+5 → 3/2+1 3773.2(5) 28.6(30) 0.078(7)

5/2+5 → 5/2+1 2787.7(8) 6.4(15) 0.0173(39)

5/2+5 → 5/2+2 1738.52(36) 23.3(28) 0.063(7)

5/2+5 → 7/2+1 1672.53(29) 41.8(38) 0.114(9)

5156.1(6) 0.93(10) 5.2 3/2+3 → 1/2+1 5155.7(62) 90(11) 0.84(8)

3/2+3 → 3/2+1 3907.3(4) 9.8(23) 0.091(8)

5435.9(9) 0.023(7) 6.6 3/2+5 → 1/2+1 5435.4(9) 86(38) 0.020(7)

3/2+5 → 3/2+1 4187.4(15) 14(5) 0.0034(7)

5775.4(4) 0.254(25) 5.5 5/2+6 → 5/2+1 3541.10(27) 100 0.254(21)

5890.3(8) 0.269(21) 5.4 3/2+6 → 1/2+1 5889.7(8) 26.0(35) 0.070(9)

3/2+6 → 5/2+1 3656.01(37) 63(6) 0.170(12)

3/2+6 → 5/2+2 2605.9(5) 10.6(18) 0.029(5)

6129.3(10) 0.0253(31) 6.3 5/2+7 → 1/2+1 6128.7(10) ≤4.47 ≤0.0012

5/2+7 → 7/2+1 2779.5(6) 100 0.0253(18)
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Table 5.1 (cont’d)

6255.0(6) 0.57(6) 4.9 1/2+5 → 1/2+1 6254.3(6) 80(10) 0.46(4)

1/2+5 → 5/2+1 4020.2(5) 9.7(13) 0.055(6)

1/2+5 → 5/2+2 2970.9(4) 10.1(14) 0.058(6)

6279.0(6) 18.7(11) 3.4 3/2+7 → 1/2+1 6278.4(6) 16.9(17) 3.15(30)

3/2+7 → 3/2+1 5030.1(6) 10.4(10) 1.94(18)

3/2+7 → 5/2+1 4044.7(30) 60.6(37) 11.3(6)

3/2+7 → 1/2+2 3202.2(4) 0.432(39) 0.081(7)

3/2+7 → 5/2+2 2995.04(31) 6.16(37) 1.15(6)

3/2+7 → 3/2+2 2843.9(4) 0.452(39) 0.084(7)

3/2+7 → 5/2+3 2192.63(28) 0.59(5) 0.110(9)

3/2+7 → 3/2+3 2071.11(22) 3.09(19) 0.577(32)

3/2+7 → 3/2+4 1759.05(34) 0.39(5) 0.072(8)

3/2+7 → (5/2+4 ) 1561.01(29) 0.56(5) 0.104(8)

3/2+7 → 1/2+3 1412.91(30) 0.44(4) 0.082(7)

6390.2(7) 3.38(18) 4.1 3/2+8 → 1/2+1 6389.5(7) 5.4(6) 0.181(18)

3/2+8 → 3/2+1 5141.3(6) 10.8(11) 0.368(36)

3/2+8 → 5/2+1 4155.84(31) 44.4(27) 1.51(9)

3/2+8 → 1/2+2 3313.56(33) 11.8(7) 0.401(22)

3/2+8 → 5/2+2 3106.28(31) 21.6(12) 0.734(39)

3/2+8 → 3/2+2 2182.52(25) 6.0(5) 0.210(16)

7050.0(8) 0.047(6) 5.7 1/2+6 → 1/2+1 7049.2(8) 100 0.047(5)

7149.8(9) 0.059(8) 5.5 5/2+8 → 3/2+1 5900.8(8) 100 0.059(7)
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Table 5.2: All gamma-rays observed in E12028 assigned to the beta decay of 31Cl. For each
gamma-ray, the transition energy Et and gamma energy Eγ are given in keV. The transition
and the absolute intensity per 100 beta decays Iγ are also listed for each transition.

Etrans Eγ Transition Iγ

985.63(23) 985.62(23) 5/2+1 → 3/2+1 0.187(9)

1049.68(21) 1049.66(21) 5/2+2 → 5/2+1 1.40(5)

1248.43(20) 1248.40(20) 3/2+1 → 1/2+1 12.3(5)

1283.35(37) 1283.32(37) 5/2+4 → 3/2+2 0.043(7)

1368.37(29) 1368.34(29) 5/2+4 → 7/2+1 ≤0.018

1412.94(30) 1412.91(30) 3/2+7 → 1/2+3 0.082(7)

1433.93(22) 1433.89(22) 5/2+4 → 5/2+2 0.399(22)

1561.05(29) 1561.01(29) 3/2+7 → (5/2+4 ) 0.104(8)

1672.58(29) 1672.53(29) 5/2+5 → 7/2+1 0.114(9)

1738.57(36) 1738.52(36) 5/2+5 → 5/2+2 0.063(7)

1759.10(34) 1759.05(34) 3/2+7 → 3/2+4 0.072(8)

1827.99(25) 1827.93(25) 1/2+2 → 3/2+1 0.205(14)

1852.19(25) 1852.19(25) 5/2+3 → 5/2+1 0.211(14)

2035.31(20) 2035.24(20) 5/2+2 → 3/2+1 4.38(22)

2071.18(22) 2071.11(22) 3/2+7 → 3/2+3 0.577(32)

2100.87(25) 2100.79(25) 7/2+1 → 3/2+1 0.076(14)

2182.60(25) 2182.52(25) 3/2+8 → 3/2+2 0.210(16)

2186.41(33) 2186.33(33) 3/2+2 → 3/2+1 0.348(21)

2192.71(28) 2192.63(28) 3/2+7 → 5/2+3 0.110(9)

2234.06(20) 2233.97(20) 5/2+1 → 1/2+1 53.2(27)

2483.71(22) 2483.60(22) 5/2+4 → 5/2+1 0.472(26)

2606.0(5) 2605.9(5) 3/2+6 → 5/2+2 0.029(5)

2779.6(6) 2779.5(6) 5/2+7 → 7/2+1 0.0253(18)

2787.8(8) 2787.7(8) 5/2+5 → 5/2+1 0.0173(39)

2837.74(32) 2837.60(32) 5/2+3 → 3/2+1 0.614(34)

2844.0(4) 2843.9(4) 3/2+7 → 3/2+2 0.084(7)

2959.24(31) 2959.09(31) 3/2+3 → 3/2+1 1.77(9)

2971.1(4) 2970.9(4) 1/2+5 → 5/2+2 0.058(6)

2995.19(31) 2995.04(31) 3/2+7 → 5/2+2 1.15(6)

3076.40(31) 3076.24(20) 1/2+2 → 1/2+1 2.82(14)

3106.45(31) 3106.28(31) 3/2+8 → 5/2+2 0.734(39)

3202.4(4) 3202.2(4) 3/2+7 → 1/2+2 0.081(7)
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Table 5.2 (cont’d)

3283.76(31) 3283.57(31) 5/2+2 → 1/2+1 1.11(6)

3313.75(33) 3313.56(33) 3/2+8 → 1/2+2 0.401(22)

3434.90(33) 3434.70(32) 3/2+2 → 1/2+1 0.420(24)

3469.34(31) 3469.13(31) 5/2+4 → 3/2+1 0.113(8)

3541.32(27) 3541.10(27) 5/2+6 → 5/2+1 0.254(21)

3617.63(31) 3617.40(31) 1/2+3 → 3/2+1 1.01(6)

3656.24(37) 3656.01(37) 3/2+6 → 5/2+1 0.170(12)

3773.5(5) 3773.2(5) 5/2+5 → 3/2+1 0.078(7)

3907.5(4) 3907.3(4) 3/2+3 → 3/2+1 0.091(8)

4020.4(5) 4020.2(5) 1/2+5 → 5/2+1 0.055(6)

4044.94(30) 4044.7(30) 3/2+7 → 5/2+1 11.3(6)

4085.4(8) 4085.2(8) 5/2+3 → 1/2+1 0.019(8)

4156.14(31) 4155.84(31) 3/2+8 → 5/2+1 1.51(9)

4187.71(15) 4187.4(15) 3/2+5 → 3/2+1 0.0034(7)

4207.7(31) 4207.43(31) 3/2+3 → 1/2+1 3.12(18)

4519.63(32) 4519.28(32) 3/2+4 → 1/2+1 1.20(7)

4717.72(32) 4717.34(32) 5/2+4 → 1/2+1 0.618(37)

4866.2(6) 4865.8(6) 1/2+3 → 1/2+1 0.71(4)

4970.7(9) 4970.2(9) 3/2−1 → 1/2+1 0.037(7)

5030.6(6) 5030.1(6) 3/2+7 → 3/2+1 1.94(18)

5141.7(6) 5141.3(6) 3/2+8 → 3/2+1 0.368(36)

5156.1(6) 5155.7(62) 3/2+3 → 1/2+1 0.84(8)

5435.9(9) 5435.4(9) 3/2+5 → 1/2+1 0.020(7)

5890.3(8) 5889.7(8) 3/2+6 → 1/2+1 0.070(9)

6129.3(10) 6128.7(10) 5/2+7 → 1/2+1 ≤0.0012

6255.0(6) 6254.3(6) 1/2+5 → 1/2+1 0.46(4)

6279.0(6) 6278.4(6) 3/2+7 → 1/2+1 3.15(30)

6390.2(7) 6389.5(7) 3/2+8 → 1/2+1 0.181(18)

7050.0(8) 7049.2(8) 1/2+6 → 1/2+1 0.047(5)

7149.8(9) 5900.8(8) 5/2+8 → 3/2+1 0.059(7)
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decay from 31Cl. We have therefore labeled the state as Jπ = 3/2− in the decay scheme;

the de-exciting gamma ray is the first measured gamma de-excitation of the state and the

calculated excitation energy of 4970.7(9) keV is more precise than the NDS reported value.

5.4.1.2 3349-keV Level

We observed a gamma-ray of 3773 keV, which was observed to be in coincidence with the

de-excitation of the first excited state at 1248-keV. Initially, the simplest interpretation of

this gamma-ray seemed to be that it was the de-excitation of a known level at 5021 keV to

the first excited state. However, we also observed two gamma-rays, energies 2100 and 1673

keV, which were observed to be in coincidence with one another and together sum to 3773

keV. The 2100-keV peak was also observed to be in coincidence with the 1248-keV gamma

ray. It was not immediately clear whether these peaks corresponded to a cascade adding

up to some new level at 3773 keV, or whether they corresponded to a cascade de-excitation

of the 5021-keV state. After further analysis, including consideration of our shell-model

calculations, we found that the 5021-keV state is expected to have four primary gamma

branches: to the 1248-keV state, to the 2234-keV state, to the 3283-keV state, and to a

Jπ = 7/2+ state at a theoretical energy of 3477 keV.

The A = 31 Nuclear Data Sheets [79] report a 7/2+ level at 3351.30(19) keV, which is

expected to decay primarily via a 2102.4(2)-keV gamma ray. Given the agreement with the

NDS and with the shell-model calculations (which are only accurate to within a few hundred

keV), we considered it likely that the 2100-keV gamma ray was the de-excitation of a state

at an excitation energy Ex = 3349.30(32) keV, and the 1672-keV gamma ray was feeding

this state via the de-excitation of the 5021-keV state. We also observed two other relevant

gamma rays whose energies correspond to de-excitations of known 31S states: a 1368-keV
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gamma ray de-exciting the state at 4717 keV, and a 2779-keV gamma ray de-exciting a state

we observed to be at 6129 keV. These transitions are all reported in Table 5.1.

The 31Cl beta-decay transition to the state at 3349 keV would be a first forbidden

transition. We calculated a beta feeding upper limit for this state of < 0.01. As described

in Section 5.3.4, the procedure for calculating the beta feedings of the 31S states involved

subtracting the sum of the intensities of the gamma rays feeding the level (in this case,

the 1368, 1672, and 2779-keV gammas) from the sum of the intensities of the gamma rays

de-exciting it (in this case, the 2100-keV gamma). However, the procedure for determining

the beta feeding of this state deviated significantly from the standard procedure, as both the

photopeak of the 2100-keV gamma de-exciting this state and the photopeak of the 1368-keV

gamma feeding it overlapped with photopeaks from other processes. This atypical procedure,

including the calculation of the beta feeding upper limit, is detailed in the following section.

5.4.2 Overlapping Photopeaks: the 1368-keV, 2100-keV, and 6129-

keV Gamma Rays

Ideally, the analysis procedure for high-resolution gamma-ray spectroscopy is simple: for

each photopeak in the spectrum, identify the peak’s origin and measure its intensity. This

data may then be used to produce, for example, a beta decay scheme and absolute gamma

intensities. However, occasionally it is the case that various factors prevent the simple iden-

tification and analysis of a photopeak. As discussed in Chapter 5, peaks corresponding

to background processes (e.g., room background peaks) are often present in the spectrum.

Although room background peaks can be gated out of the spectrum, photopeaks correspond-

ing to transitions from beam contaminants will also show up in the spectrum, even if it is
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gated on beta decays. Statistically, some number of peaks from disparate processes will have

energies similar enough that they overlap in the energy spectrum histogram. This means

that simply integrating such a photopeak without careful consideration will give an inaccu-

rate, unphysically high intensity; special care must therefore be taken to disentangle the two

contributing sources of the photopeak.

In our analysis of the 31Cl beta-gamma spectrum, we occasionally encountered photo-

peaks with contributions from multiple sources. Two of these have already been mentioned:

the 1368-keV gamma ray feeding the 3349-keV level, and the 2100-keV gamma ray de-

exciting it. We also observed two photopeaks corresponding to transitions de-exciting a

state at 6129 keV: a 2779-keV transition to the state at 3349 keV and a photopeak at 6129

keV we assigned to a transition to the ground state. The 2779-keV gamma was greatly en-

hanced in the 2100-keV coincidence spectrum, lending credence to the hypothesis of a state

at 6129 keV. However, 6129 keV is also the energy of a known gamma ray (Eγ = 6129.89(4))

corresponding to a transition from the second excited state of 16O, allowing for the possibil-

ity of contributions from two sources in the intensity of this peak. This and the two cases

surrounding the 3349-keV state will be discussed here.

5.4.2.1 The 2100-keV Peak

The 2100-keV gamma ray de-exciting the 3349-keV state was measured at a peak energy of

Eγ = 2100.79(25) keV. This energy is unfortunately only 3 keV lower than the energy of

the first escape peak of a well-known strong room background peak at Eγ = 2614.511(10)

keV from the decay of 208Tl. Although the timing gate on the gamma-ray spectrum greatly

reduces room background contributions, particularly intense peaks such as the 2614-keV

peak may not be supressed entirely, and although the contribution from the escape peak
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is likely very small and relegated to the upper tail of the peak, it could still result in an

erroneously high intensity of the 2100-keV peak.

To account for the possible contribution to the peak from the room background escape

peak, we fit the 2614-keV peak and its first escape peak in a room background run, a run

where no beam was impingent upon the target. From these fits, we obtained the ratio of the

escape peak to the photopeak. We then fit 2614-keV peak in the timing-gated spectrum to

obtain an intensity and used this ratio to obtain the likely intensity of its first escape peak

in the mixed 2100-keV peak. We subtracted this contribution from the measured photopeak

intensity of the 2100-keV peak to obtain the contribution of the de-excitation of the state at

3349 keV to the 2100-keV peak.

5.4.2.2 The 1368-keV Peak

Our shell-model calculations predict a small but not-insignificant gamma ray branch de-

exciting the 4717-keV state and feeding the 3349-keV state. We did in fact observe a gamma-

ray at energy Eγ = 1368.34(29) keV, which was enhanced in coincidence with the 2100-keV

gamma de-exciting the 3349-keV state. In analyzing the intensity of this peak, however,

it became clear that multiple sources were contributing to the peak. The gamma branch

from the 4717-keV state was much higher than expected, and the ratio of the timing-gated

peak to the ungated peak was 0.61(5), lower than and inconsistent with the average ratio of

0.806(7). A zoomed-in view of the 1368-keV peak and nearby peaks is shown in Fig. 5.13.

24Mg is a stable isotope with a first excited state energy of Ex = 1368.626(5) keV, so

if our beam contaminants produced 24Mg through decay, gammas from the decay process

could contribute to the photopeak at 1368 keV. Unfortunately, both the beta-plus decay of

24Al and the beta-minus decay of 24Na produce 24Mg, and both have a high probability of

131



Energy [keV]
1320 1340 1360 1380 1400 1420

C
ou

nt
s 

/ k
eV

50000

60000

70000

80000

90000
Clover gated on Scint + DT Hits

Figure 5.13: A portion of the 31Cl gamma spectra in the region around 1368 keV. The blue
histogram is the ungated gamma-ray spectrum while the green spectrum is the timing-gated
spectrum. As shown, the room background lines are eliminated while the decay-related
peaks at 1368 keV, 1412 keV, and 1433 keV remain. Note however that the 1368-keV peak
is reduced more substantially than the other two peaks, which are known to originate from
31Cl beta decay. This implies that the 1368-keV peak does not originate solely from 31Cl
beta decay.
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producing a 1368-keV gamma ray, and the yield of the various 24Mg beta-delayed gammas is

different between these two processes; consequently, if both of these nuclides were produced,

it would not even be straightforward to use other 24Mg peaks to separate the components

of the 1368-keV peak.

Ground-state 24Na has a half-life of 14.997(12) h, meaning that a room background run

taken shortly after removal of beam from the experimental setup should show photopeaks

corresponding to 24Na beta-delayed gamma rays in a timing-gated gamma-ray spectrum. In

fact, we observed both the 1368-keV photopeak and the 2754-keV photopeak, corresponding

to the transition from the 24Mg first excited state to the ground state and the transition from

the second excited state to the first, respectively. We also observed, in the timing-gated 31S

spectrum, a photopeak with energy Eγ = 7070.9(16) (σ = 3.4). The only gamma with which

this value is consistent corresponds to a transition from the 24Mg level at Ex = 8439.36(4)

keV to the 1368-keV state. Consequently, it appeared as though both 24Na, which was

observed in the PID spectrum, and 24Al, which was not clearly identified in the PID spectrum

but of which trace amounts could be included in the beam or produced through interactions

between the beam and the scintillator, contributed to the 1368-keV photopeak.

In order to accurately determine the contribution to the peak from beam contaminants,

it was therefore necessary to separate the 24Al contribution from the 24Na contribution and

separate both contributions from the 1368-keV photopeak. Ordinarily, experimenters try to

reduce the contribution to the spectrum from beam contaminants as much as possible; in this

case however, our pure beam actually made it more difficult to investigate the nature of the

24Al and 24Na contribution, since very few peaks were available to determine the ratio of the

timing-gated contaminant photopeaks to the ungated peaks. The most pronounced peak we

found was the peak at 2754 keV, but it is produced in different amounts between 24Al decay
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and 24Na decay, requiring further disentanglement. The peak at 7070 keV, however, has an

energy higher than the Q-value of the 24Na beta-minus decay (5513.6(6) keV), meaning that

only 24Al contributed to the peak integral in our spectrum. We measured the integral of this

peak in both gated and ungated spectra and used the relative yields per beta decay of the

2754-keV and 7070-keV 24Al beta-delayed gammas to determine the expected contribution

to the integral of the photopeak at 2754 keV from 24Al (14(1)%). The remaining integral of

the photopeak (87(6)%) was then taken as the expected contribution from 24Na.

To disentangle the various sources of the 1368-keV gamma ray, we then used the relative

yields per beta decay of the 1368-keV gamma branches for both 24Al and 24Na compared to

the 7070-keV peak and 2754-keV peak, respectively, to determine the expected contribution

of those two contaminants to the 1368-keV photopeak: 25(2)% expected contribution from

24Al and a 67(5)% expected contribution from 24Na. Subtracting these values from the

photopeak integral yielded the “leftover” contribution from 31Cl beta decay – only 6(4)%

of the total peak integral. Since this value is nearly compatible with zero, we treated the

contribution from 31Cl as an upper limit in the calculations for the beta feeding and absolute

gamma intensities.

5.4.2.3 The 6129-keV Peak

Although our beam did not contain any 16O as a contaminant, and any 16O produced via

fragmentation would be in its ground state by the time it was delivered to the experimental

setup, excited 16O could be produced from nuclear reactions between the incoming high-

energy beam particles and the atoms in the plastic scintillator. In fact, 16O may be produced

via the 13C(α, n)16O reaction rate using 13C nuclei present in the plastic scintillator and

alpha particles produced via secondary reactions involving the 31Cl and the plastic in the
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target. 16O produced this way has a high likelihood of yielding a gamma ray of energy

Eγ = 6128.63(4) keV, corresponding to a de-excitation of the second excited 16O state

[86, 87, 88]. As reported in Table 5.1, we observed a photopeak at Eγ = 6128.7(10) keV,

which we interpreted as a transition to the ground state from a level at Ex = 6129.3(10) keV

and to which we assigned a tentative spin and parity of Jπ = (5/2)+ based on comparison

with our shell-model calculations. The branch to the 3349-keV state was found to agree with

the shell-model calculations, and the 2779-keV gamma corresponding to the de-excitation

of this state was observed to be strengthened in coincidence spectra gated both on the de-

excitation of the 3349-keV state to the first excited state (Eγ = 2100 keV) and on the

1248-keV de-excitation of the first excited state (both spectra are presented in Fig. 5.14).

The 6129-keV state excitation energy derived from adding the transition energies of the

cascading gammas (Ex = 6128.9(5) keV) was consistent with the energy derived from the

6129-keV photopeak (Ex = 6129.3(10) keV).

However, the observed gamma branch to the ground state was higher than expected,

especially considering that we did not observe two other branches, which, in the shell-model

prediction, were predicted to be more intense than the ground-state branch. Thus, it seemed

prudent to consider whether reactions in the scintillator were contributing to the 6129-keV

line. Using Pace, a fusion-evaporation reaction calculator included in the program Lise++

(see Appendix A), we calculated the rate of production of alpha particles in the scintillator

for beam energies up to 50 MeV/u, using the stopping power of the BC408 plastic to model

the likely energy the beam at ten different implantation depths, up to the depth at which

the beam stopped (approximately 2.5 mm according to Lise++). We found that, for a

beam of rate 6000 pps, up to ≈1700 alpha particles per second could be produced through

fusion-evaporation at the highest interaction probability. These alphas could then interact
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Figure 5.14: Three spectra showing the 2779-keV transition from the 6129-keV state to
the 3349-keV state. Blue line: the timing-gated spectrum showing the 2779-keV photopeak
without any other coincidence gating applied. Green line: the coincidence spectrum produced
by gating on the 1248-keV transition from the first excited state to the ground state. Red
line: the coincidence spectrum produced by gating on the 2100-keV transition from the
3349-keV state to the 1248-keV first excited state. The 2779-keV photopeak is enhanced
in both coincidence spectra, indicating that the three gammas form a cascade adding up to
6129 keV.
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with the 13C that makes up ≈1% of the carbon in the BC408.

For alphas with energy between 5 MeV and 10 MeV, the (α, n) cross section for produc-

tion of the 6129-keV gamma ray has been measured [88]. Using the average alpha energy

calculated by PACE, and the cross sections in Ref. [88], we calculated, for the alpha pro-

duction rates above, 6129-keV gamma production rates of up to 3.9 gammas per second.

Factoring in the efficiency of the Clover detectors at 6129 keV (0.63%), we estimated a the-

oretical count rate of 0.02 13C(α, n)16O 6129-keV gamma rays per second. This value was

compared to the theoretical yield of 6129-keV gammas from our shell-model calculations: for

a beam of the same rate given the shell model beta branch to the 6129-keV state (0.04%), the

gamma branch to the ground state (7.94%), and the efficiency of the detectors at that energy

(0.63%), we estimated a detection rate of only 0.001 31Cl beta-delayed 6129-keV gamma rays

per second, approximately 5% the rate of detection for reaction-produced gammas. These

theoretical calculations seem to imply that the 6129-keV photopeak is mostly the result of

13C(α, n)16O reactions.

To assess the validity of this prediction, we checked the ratio between the timing-gated

photopeak integral of the 6129-keV peak and that of the ungated photopeak (the stan-

dard procedure for determining a peak’s origins, detailed above). We found the ratio to be

0.78(16), consistent with the average value of 0.806(7), but with a much higher uncertainty.

It could be however that the slightly lower ratio is evidence, as in the case of the 1368-keV

peak, of multiple contributing sources. We also looked at a number of spectra gated on

different conditions to try and determine whether the 6129-keV peak’s origins could be ex-

perimentally determined. We first looked at a gamma-ray spectrum to which the timing-gate

was applied, but only for high-energy scintillator events (E > 15000 “channels”), ostensibly

gating on events above the 31Cl beta decay endpoint energy (Fig. 5.15). This produced
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a spectrum with greatly reduced 31Cl beta-delayed gamma-rays, but enhanced room back-

ground peaks at low energies. The peak at 6129-keV was also slightly enhanced in this

spectrum, indicating that it likely has a large contribution from a prompt process that is

not 31Cl decay.

To try and determine the likely contribution to the 6129-keV peak from the non-decay

process (in this case the 13C(α, n)16O reaction), we obtained, for a number of photopeaks

corresponding to room background transitions, the ratio of the photopeak integral in a

gamma spectrum gated only on the high-energy scintillator events to the integral in the

standard scintillator-gated spectrum (we used the scintillator-only gate instead of the timing

gate because almost all of the room background peaks were reduced too much to measure

in the timing-gated spectrum). These values were found to be more or less consistent with

one another. To determine a reasonable estimate for the ratio, we took a weighted average

of the data points and found, with a p-value of 0.48, a ratio of 0.2447(20). That is, the ratio

of the photopeak of a non-decay gamma event gated on high-energy (non-decay) scintillator

events to the ratio of a non-decay gamma event gated on any energy scintillator event was

approximately 25%.

We then compared the ratio of the 6129-keV peak integral in the high-energy scintillator-

gated spectrum to the peak integral in the standard scintillator-gated spectrum. The ratio

for that peak was found to be 0.27(16) – slightly higher, but still consistent with the average

value and with a large uncertainty. If the 6129-keV peak were the result of both 31Cl beta

decay and the 13C(α, n)16O reaction, this value should actually be lower than 0.2447, since

the 31Cl component would be reduced much more strongly than the reaction component.

Therefore, it seems unlikely that 31Cl beta decay contributes strongly to this peak in our

data. To set an upper limit on the 31Cl contribution, we used the 5% 31Cl contribution from
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Figure 5.15: A portion of several gamma-ray spectra illustrating the effects of the various
scintillator gates on both a 31Cl photopeak (the peak at 2565 keV is the first escape peak of
the 3076-keV gamma) and a room background peak (the peak at 2614 keV is from 208Tl).
Blue: Ungated gamma spectrum. Red: Scintillator-gated gamma spectrum, showing slight
reduction of the 2614-keV peak. Green: Timing-gated gamma spectrum, showing almost
complete elimination of the 2614-keV peak and slight enhancement of the 2565-keV peak.
Purple: Scintillator-gated spectrum gated ONLY on high-energy scintillator events, showing
the enhancement of the 2614-keV peak and reduction of the 2565-keV peak. Turquoise:
Timing-gated spectrum gated ONLY on high-energy scintillator events.

139



the combination of our shell-model calculations and the PACE calculations to estimate that

no more than 5% of the photopeak integral is due to 31Cl beta decay. The resulting upper

limit is reported in Table 5.1.
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Chapter 6

Discussion of E12028 Results

As shown in the preceeding chapter, E12028 successfully produced a new 31Cl beta decay

scheme with ten new observed beta transitions and 40 new observed beta-delayed gamma

transitions. In fact, the number of new gamma transitions observed is nearly double the

number (22) of previously-seen transitions, all of which were observed again in this experi-

ment. This expansion of the decay scheme is useful in general for nuclear structure studies,

but as stated in Chapter 2, the motivation for E12028 was the pursuit of constraints on the

spins and parities of potentially-important 31S states in the 30P(p, γ)31S Gamow window, in

order to provide experimental constraints on its rate. Here, we present results from E12028

of astrophysical importance, as well as other results from the experiment. The primary result

of E12028 was the discovery and unambiguous identification of a new Jπ = 3/2+ resonance

state (Section 6.1), but analysis also allowed for tests of the isobaric multiplet mass equa-

tion (Section 6.2) and comparison with previous experimental spin and parity assignments

(Section 6.3).

6.1 Isospin Mixing: A New Jπ = 3/2+ Resonance

Note: This section is adapted from a paper previously published by the author

and collaborators on this subject, Ref. [89]
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As mentioned in Section 3.5.4, Isospin mixing may occur between two states of identical

spin and parity but different isospin T , causing each observed state to be a superposition

of isospin states, |ψ1〉 = cosθ|JT1〉 + sinθ|JT2〉 and |ψ2〉 = −sinθ|JT1〉 + cosθ|JT2〉 (Eqs.

3.17 and 3.18). In this case, the mixed states will, according to the strengths of the mixing,

adopt characteristics similar to one another – observing these characteristics, then, can be

observational evidence of isospin mixing.

For 31Cl beta decay, the transition to the 6279-keV isobaric analog state (IAS) is greatly

strengthened because of the Fermi transition from the T = 3/2 31Cl ground state. In our

analysis we found the beta feeding of the state to be Iβ = 18.7(11)%. Only the IAS should

have such a high beta feeding at such high excitation energy in 31S. Gamow-Teller transitions

to states with similarly high excitation energies are shown in Fig. 5.12 to have beta feedings

on the order of half a percent or less, with one notable exception: the state at 6390-keV.

This state was found to have a beta feeding of Iβ = 3.38(18)%.

The beta feeding of this state is abnormally high and did not match the prediction from

our USDB shell-model calculations. Further, as reported in Table 5.1, the gamma branching

of this state was observed to be qualitatively similar to that for the IAS, especially the highly

strengthened branch to the 5/2+ second excited state at 2234 keV. In total, we observed six

transitions de-exciting this state. A simplified beta decay scheme is depicted in Fig. 6.1,

and selected portions of the timing-gated spectrum showing transitions to the first three

31S states, along with gamma-gamma coincidence spectra showing the enhancements of the

transitions due to the gates, are shown in Fig. 6.2. Similar to the beta feeding for the level,

the gamma branching of this state did not match the prediction from our USDB shell-model

calculations; based on these divergences from prediction and similarties with the IAS, we

investigated the possibility of isospin mixing between the two states.
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Figure 6.1: A simplified 31Cl decay scheme focusing on the 31S levels at 6279 (IAS) and
6390 keV. The blue vertical arrows indicate previously unobserved transitions. Energies and
intensities for these transitions are listed in Table 5.1.
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Figure 6.2: Selected portions of the β-coincident γ-ray spectrum (blue) showing transitions
from the 6279- and 6390-keV 31S states to the ground state and first two excited states (Jπ

= 1/2+, 3/2+, 5/2+, respectively). The bottom two panels also show β-γ-γ spectra (green)
with additional coincidence conditions on the 1248- and 2234-keV γ rays, respectively. Other
photopeaks observed from the β decay of 31Cl are marked with black circles. Double escape
peaks are marked with double asterisks.
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The expected Fermi strength for the transition to the IAS is easy to calculate according

to Eq. 3.15: B(F ) = (T (T +1)−Tzf (Tzf +1)) = 3/2(3/2+1)−1/2(1/2+1) = 3. Using the

observed beta feedings of the two states, we were also able to calculate experimental Fermi

strengths. By rewriting Eq. 3.13 in terms of the half-life, and combining constants, we can

produce the “ft” value, a measure of the transition rate:

ft1/2 =
C

[B(F ) + (gA/gV )
2B(GT )]

(6.1)

where here C = ln2Ko/(gV )
2 = 6170(4), a value determined from several measurements

of pure 0+ → 0+ Fermi transitions [90], and t1/2 is the partial half-life, the total half-life

of beta decay divided by the beta feeding to the level in question. This f value is the

result of a number of corrections to an analytic result derived for a nucleus of Z = 0, fZ=0,

which can be calculated using the Q-value of the beta decay and the excitation energy of the

level. These corrections account for distortion of the wave function from the electron and the

diffuseness of the nuclear charge distribution. They can all be calculated computationally;

a derivation is presented in Ref. [90] and coefficients for the calculation of the electron

distortion correction can be found in Ref. [91].

If it is assumed that B(F ) is much greater than B(GT ) (valid for the IAS and any state

mixing strongly with it, since the Gamow-Teller transition is fragmented across all states),

E. 6.1 can be solved for the Fermi strength: B(F ) = C/fV · t1/2. Here we have rewritten f

as fV to denote the inclusion of the Fermi phase-space factor correction, since the transition

is a Fermi decay. For both the IAS and the state at 6390 keV, we calculated fV and t1/2 and

subsequently the Fermi strength: the results were a strength of B(F ) = 2.4(1) for the IAS

and B(F ) = 0.48(3) for the state at 6390 keV, which together sum to 2.9(1). The inflated
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Fermi transition strength to the state at 6390 keV, the reduced transition strength to the

IAS, their sum, and the similarties between their gamma branches are strong evidence that

the Fermi transition is split via isospin mixing, primarily between these two states.

To determine the strength of the mixing we adopted the two-level mixing formalism

described in Eqs. 3.19, 3.20, 3.21, 3.22, and 3.23 and calculated R = tanθ from the

Fermi strengths. Using R along with the observed energy spacing between the levels E =

6390.2(7) − 6279.0(6) = 111.2(9) keV, we calculated an empirical mixing matrix element

V = 41(1) keV and an unperturbed level spacing D = 74(2) keV. We also used the mix-

ing angle itself to determine the wave functions for the two states: |ψIAS〉 = 0.408|T =

1/2〉+ 0.913|T = 3/2〉 and |ψ6390〉 = 0.913|T = 1/2〉 − 0.408|T = 3/2〉.

Because the beta feeding and gamma branching of the 6390-keV state was not correctly

predicted by our USDB shell-model calculation, B.A. Brown repeated the USD fit for the

calculation with the Hamiltonian from Ref. [38], but this time using only excitation energies

of levels (that is, excluding the binding energies of the nuclei). This new USD fit, termed by

B.A. Brown as “USDE,” gives a similar root-mean-square deviation from the experimentally-

observed energy levels in the region (126 keV, compared to 122 keV RMS deviation for

USDB), but gives a strengthened beta feeding to the 6390-keV level and more quantitatively

similar gamma branching. B.A. Brown performed an isospin-mixing calculation with both

USDB and USDE and found that both interactions yielded a triplet of 3/2+ levels involved

in isospin mixing. The excitation energies of the three states and the calculated mixing

matrix elements for the two T = 1/2 states for both the USDB and USDE calculations are

reported in Table 6.1.

Based on the values of excitation energy and matrix elements predicted by these shell-

model calculations, as well as the theoretical uncertainties implied by the differences between
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Table 6.1: Calculated excitation energies Ex and mixing matrix elements V of the triplet
of isospin-mixed states, including the T = 3/2 IAS, in 31S for both USDB and USDE
interactions. The matrix elements listed are between the listed T = 1/2 state and the
T = 3/2 state. All values are in units of keV.

Jπ USDB Ex USDB V USDE Ex USDE V

E1(T = 1/2) 3/2+ 6205 35 6095 30
E2(T = 3/2) 3/2+ 6520 −− 6184 −−
E3(T = 1/2) 3/2+ 6382 12 6375 27

the USDB calculation and the USDE, theory is consistent with the present experimental

result. The experimental results show that the isospin mixing of the IAS is dominated by the

nearby 6390-keV state. The best experimental candidate for the other T = 1/2, Jπ = 3/2+

state in the USDB and USDE triplets is at 5890 keV [62, 63] and has an observed beta feeding

of just 0.269(21)%. The relatively large energy difference between this level and the IAS is

consistent with the shell model calculations, and both the large spacing and the relatively

small beta feeding render the isospin mixing negligible when compared to the mixing with

the 6390-keV state – and therefore negligible for the purposes of the present work.

6.1.1 Astrophysical Relevance and Implications

The present work constitutes the first clear observation of isospin mixing between a T = 3/2

state and a T = 1/2 in the sd shell, with the possible exception of a controversial case for

A = 23 [92, 93, 94]. As described in Section 3.5.4, the mixed 6390-keV state must have

the same spin and parity as the IAS, Jπ = 3/2+. No experimental study has identified

this level before, making this result the first completely unambiguous identification of this

state. Furthermore, the 3/2+ spin and parity of the state make it an important l = 0

resonance state for proton capture, located directly in the heart of the Gamow window

where it is likely to greatly impact the 30P(p, γ)31S rate. Using the formalism described
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in Sections 3.2 and 3.3, we attempted to calculate the thermonuclear reaction rate using

Eq. 3.10 with our experimentally-determined spin for ω, the experimental resonance energy

(Er = Ex−Sp, 259.3(8) keV) and a proton partial with Γp calculated according to Eq. 3.12.

For the proton partial width, we calculated a spectroscopic factor C2S (which included

the Clebsh-Gordan coefficient) of 0.0087 using the USDB interaction. We scaled this value

by the square of the T = 1/2 component of the 6390-keV state (0.9132 = 0.83) to account for

the mixing with the IAS. Using the values for Fl and Gl generated by the code described in

Ref. [95], we calculated a penetration length Pl = 2.369 · 10−9. Along with a single-particle

reduced width θ2s.p = 0.553 calculated using the tables in Ref. [96], we calculated a value

of the proton partial width Γp = 36µeV. This value, when combined with the spin of the

resonance and a gamma-ray partial width of 0.97 eV as taken from Table III of Ref. [97],

leads to a 30P(p, γ)31S resonance strength of ωγ = 24µeV. Using this resonance strength

and the resonance energy, we calculated the thermonuclear reaction rate for the 3/2+ state

at 6390 keV. This rate is tabulated in Table 6.2 for peak nova temperatures.

In order to determine the effect of our calculated resonant capture rate on the overall

determination of the 30P(p, γ)31S rate, we compared our rate to the rate calculated using

the Hauser-Feshbach statistical model (Section 3.3.1). We chose to compare to the Hauser-

Feshbach rate because, as discussed in Sections 4.2 and 4.2.1, the uncertainty surrounding

both the number of resonances in the Gamow window and their spins and parities makes

calculating the rate through those resonances a specious pursuit at best. Plotted in Fig. 6.3

is the ratio of the reaction rate calculated through the 6390-keV resonance to the Hauser-

Feshbach rate. As discussed in Section 3.5.2, only T = 1/2 31S states are allowed by isospin

selection rules to be populated via proton capture on 30P. However, because the isospin

mixing of the IAS and the 6390-keV state results in a small T = 1/2 component for the

148



Table 6.2: Thermonuclear 30P(p, γ)31S reaction rate NA〈σv〉 in units of cm3 mol−1 s−1 as
a function of temperature (reported in GK, commonly notated T9, as here), for commonly-
attained nova temperatures. Here “RC” denotes the resonant capture through the 3/2+ state
at 6390 keV. NA is the Avogadro number. The rate is presented here without uncertainty
limits because the only experimental uncertainty used in the calculation was that for the
resonance energy Er; this uncertainty affected the resonance strength by less than 0.2%.

T9 3/2+ RC T9 3/2+ RC
0.01 8.002E-128 0.23 7.246E-05

0.015 1.583E-84 0.24 1.173E-04
0.02 6.199E-63 0.25 1.821E-04
0.03 2.034E-41 0.26 2.728E-04
0.04 1.026E-30 0.27 3.957E-04
0.05 2.511E-24 0.28 5.579E-04
0.06 4.336E-20 0.29 7.667E-04
0.07 4.447E-17 0.3 1.030E-03
0.08 7.847E-15 0.31 1.355E-03
0.09 4.295E-13 0.32 1.750E-03
0.1 1.038E-11 0.33 2.222E-03
0.11 1.388E-10 0.34 2.778E-03
0.12 1.190E-09 0.35 3.425E-03
0.13 7.264E-09 0.36 4.169E-03
0.14 3.396E-08 0.37 5.015E-03
0.15 1.283E-07 0.38 5.969E-03
0.16 4.081E-07 0.39 7.032E-03
0.17 1.126E-06 0.4 8.211E-03
0.18 2.764E-06 0.42 1.092E-02
0.19 6.143E-06 0.44 1.410E-02
0.2 1.256E-05 0.46 1.776E-02
0.21 2.389E-05 0.48 2.188E-02
0.22 4.274E-05 0.5 2.645E-02
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Figure 6.3: Ratios of the 30P(p, γ)31S thermonuclear reaction rates calculated for both the
new 3/2+ state at 6390-keV [solid blue line] and the 6280-keV IAS [dashed green line] to the
overall Hauser-Feshbach rate [98].

T = 3/2 IAS, there is a small contribution to the reaction rate through that level as well,

plotted as a ratio to the Hauser-Feshbach rate alongside that of the 6390-keV state.

As shown in Fig. 6.3, the resonant capture reaction rate for this single resonance ap-

proaches 50% of the Hauser-Feshbach rate. This is a substantial contribution for a single

resonance, considering that the Hauser-Feshbach rate is meant to estimate the total reaction

rate through all levels. Despite the experimental progress made by the studies discussed in

Section 4.2, the Hauser-Feshbach may remain the best estimate of the reaction rate because

of the numerous ambiguities surrounding the resonances in the Gamow window. The fact

that this single resonance approaches half of the theoretical estimate at peak nova temper-

atures means that it is the most important resonance with an unambiguous spin and parity

assignment and, hence, a meaningful estimate of the reaction rate.
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Given that the 30P(p, γ)31S rate for this single resonance produces an estimate that is

a sizable portion of the Hauser-Feshbach rate, it is possible that the overall reaction rate

is higher than previous studies have estimated. In addition to the positive-parity states

observed in this study and modeled using the USDB and USDE interactions, the 30P(p, γ)31S

rate is likely affected by the presence of a number of negative-parity states in the 6-7 MeV

energy region. A recent study [97, 99] concluded that these negative-parity states, some of

which have not yet been observed experimentally, are most important for determination of

the 30P(p, γ)31S rate. The present work calculated a rate through only one single positive

parity resonance and found a contribution of up to 50% of the Hauser-Feshbach rate; if the

resonant capture rates through the negative parity states mentioned in Ref. [97] are as large

as or larger than that for the 6390-keV state, the overall 30P(p, γ)31S rate could be several

times higher than the Hauser-Feshbach rate.

A higher 30P(p, γ)31S rate could help to address the discrepancy between observed

30Si/28Si ratios from presolar nova grains and predicted ratios from nova models. If the

actual 30P(p, γ)31S rate were much higher than the current estimates, it would be the case

that much less 30Si was produced from the beta decay of 30P, since much more 30P would

be destroyed via proton capture. Thus, nova nucleosynthesis would produce a more modest

excess of 30Si, potentially bringing theoretical predictions of Si isotopic abundances more in

line with the observed abundances in grains.
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6.2 Isobaric Multiplet Mass Equation Studies and the

Second 31Cl T = 3/2 State

Note: This section is adapted from a paper previously published by the author

and collaborators on this subject, Ref. [100]

6.2.1 Lowest A = 31, T = 3/2 Quartet

The isospin mixing of the IAS means that the observed excitation energy of Ex = 6279.0(6)

is perturbed from the value of the excitation energy that would be predicted by the isobaric

multiple mass equation (Section 3.5.3). Fitting the IMME with the observed excitation

energy of this state and its T = 3/2 analogs in 31Cl, 31P, and 31Si could therefore result in

a breakdown of the IMME, likely requiring a cubic term. It has historically been difficult,

however, to test the IMME for the lowest A = 31, T = 3/2 quartet because of imprecision

in the experimental mass excess value ∆ of 31Cl. Until recently, the value used in IMME

tests was from a 1977 experimental measurement of the 36Ar(3He,8Li)31Cl Q-value: ∆ =

−7070 ± 50 keV [101]. A much more precise Penning trap mass measurement of 31Cl,

published in 2016, obtained a value for the ground state mass excess that was 15 times more

precise than this value [102]. This observation did in fact lead to an observed breakdown of

the IMME, requiring a large cubic term of d = −3.5(11) keV.

Given the observation of strong isospin mixing in 31S, it is interesting to consider whether

or not this mixing plays an appreciable role in the breakdown of the IMME for the lowest

A = 31, T = 3/2 quartet. Ref. [102] used the value of the 31Cl ground-state mass excess

obtained in that study along with the literature values for the other ground-state mass

excesses of the quartet members and the excitation energies. To confirm the results of that
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Table 6.3: Ground-state mass excess ∆ and excitation energy Ex values used as input for
the IMME fits of the lowest A = 31, T = 3/2 quartet. Except for the observed excitation
energy of the 31S IAS, which is from Ref. [89], all values are the same as in Ref. [102].

Nucleus Tz ∆ [keV] Ex [keV]

31Cl −3/2 −7034.7(34) 0
31S −1/2 −19042.52(23) 6279.0(6)
31P +1/2 −24440.5411(7) 6380.8(17)
31Si +3/2 −22949.04(4) 0

Table 6.4: Output coefficients for the quadratic and cubic IMME fits for the lowest A =
31, T = 3/2 quartet using input data from Table 6.3. All coefficient values are in units of
keV. The cubic fit did not contain any degrees of freedom, so the χ2/ν value is undefined
and hence ommitted.

Quadratic Cubic

a −15466.3(9) −15464.1(10)
b −5302.4(10) −5295.2(20)
c 209.2(9) 209.9(10)
d −− −4.3(11)

χ2/ν 16.0/1 −−

study as a starting point, we have replicated that fit with the only difference being the use

of our experimentally-determined excitation value for the IAS, Ex = 6279.0(6). We used

this value rather than the literature value, which is based on a fit of gamma-ray energies

from a previous 31Cl beta-decay measurement [72] that is currently unpublished and has

greater uncertainty on the value (≈2 keV; the two excitation energies are thus consistent).

The result of using our excitation energy value is, however, similar to Ref. [102]: the IMME

fails, requiring an even larger cubic term d = −4.3(11) keV, and the reduced chi-squared

value of the purely quadratic fit increases from χ2/ν = 11.6 in Ref. [102] to 16.0. The inputs

and outputs for this IMME fit are reported in Tables 6.3 and 6.4, respectively.

It could be the case that the IMME fit would work if, instead of using the observed

excitation energy of the 31S IAS, the fit were performed using the unperturbed excitation
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Table 6.5: Ground-state mass excess ∆ and excitation energy Ex values used as input for
the IMME fits of the lowest A = 31, T = 3/2 quartet. Except for the unperturbed excitation
energy of the 31S IAS, which is from the present work [89], all values are the same as in
[102].

Nucleus Tz ∆ [keV] Ex [keV]

31Cl −3/2 −7034.7(34) 0
31S −1/2 −19042.52(23) 6297.6(13)
31P +1/2 −24440.5411(7) 6380.8(17)
31Si +3/2 −22949.04(4) 0

Table 6.6: Output coefficients for the quadratic and cubic IMME fits for the lowest A =
31, T = 3/2 quartet using input data from Table 6.5. All coefficient values are in units of
keV.

Quadratic Cubic

a −15453.0(12) −15454.6(12)
b −5307.0(10) −5316.1(24)
c 206.4(10) 205.2(10)
d −− 5.0(12)

χ2/ν 17.0/1 −−

energy of that state. To test whether isospin mixing in 31S could account entirely for the

IMME breakdown, we performed an IMME fit including the unperturbed 31S IAS energy,

keeping the other inputs constant from Ref. [102]. However, far from solving the IMME

breakdown, using the unperturbed 31S IAS energy actually exacerbates the problem: the

result is a reduced chi-squared value of χ2/ν = 17.0 in the quadratic fit, increased from both

the fit in Ref. [102] and our own fit using the observed IAS energy, and a cubic term even

larger in magnitude, +5.0(12) keV. Input and output parameters for this fit are reported in

Tables 6.5 and 6.6, respectively, and residuals for the quadratic fit are shown in Fig. 6.4.

Clearly, isospin mixing in 31S alone cannot account for the IMME breakdown. However,

given the mirror nature of 31S and 31P, it is likely that there is similar isospin mixing present

in the latter’s isobaric analog state, which has not yet been directly observed. We attempted
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Figure 6.4: Residuals for the quadratic IMME fit of the lowest A = 31, T = 3/2 quartet
(Tables 6.5 and 6.6) after accounting for the observed isospin mixing in 31S.
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to use our unperturbed 31S IAS energy and the results from Ref. [102] to predict the

“unperturbed” energy for the 31P IAS, the lowest T = 3/2 state in that nucleus. The result

of the prediction using the quadratic IMME is a 31P state at Ex = 6390.8(24) keV, only 10

keV above the current observed excitation energy value of 6380.8(17) keV. In the event that

the observed excitation energy is the result of a perturbation due to isospin mixing with a

nearby higher-energy T = 3/2 state or fragment, its actual energy could be high enough to

revalidate the IMME after accounting for said mixing.

A cursory glance at the 2013 A = 31 Nuclear Data Sheets [79], however, seems to imply

that no such state is known to exist. No nearby states in the evaluation have spin and

parity required for mixing with the 31P (Jπ = 3/2+) state. It is possible, using the two-

level mixing scheme from Section 3.5.4 to derive combinations of mixing matrix element V

and unperturbed excitation energy D for such a state, such that the IMME is revalidated.

Using the two-level mixing equations and the observed and predicted energies of the 31P

IAS, the curve shown in Fig. 6.5 is the result for Ex > 6401 keV. The solution at 6401 keV

corresponds to the limiting case of two degenerate states at Ex ≈ 6391 keV, both pertrubed

by 10 keV (that is, D = 0 and E = 2V ).

Using this curve, it is possible to make a naive empirical prediction of the energy of

the 31P state involved in mixing with the 31P IAS, assuming that the unperturbed energy

spacing is the same (74(2) keV). This value yields a second state at Ex = 6454.8(35) keV,

with an associated mixing matrix element of 27.2(35) keV. Coincidentally, this predicted

state is near a known 31P state at Ex = 6460.8(16) keV. The A = 31 Nuclear Data Sheets

[79] list this level as having spin and parity Jπ = 5/2+. Although this assignment is based

on experimental work evaluated previously as leading to an unambiguous spin and parity

[103], multiple experimental studies [104, 105, 106, 107, 53], while potentially favoring the
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Figure 6.5: Isospin mixing matrix element, including 1σ confidence band, of a hypothetical
state engaged in isospin mixing with the 31P IAS at 6381 keV as a function of the observed
excitation energy of the second state. The band is derived under the assumption that the
IMME provides a good fit of the data after accounting for isospin mixing. The dotted (left)
and dot-dashed (right) lines show the 1σ bounds obtained using this prediction when the
USD mixing matrix element and 6461-keV state energy, respectively, are used as inputs.
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Table 6.7: Calculated excitation energies Ex and mixing matrix elements V of the triplet
of isospin-mixed states including the lowest T = 3/2 state in 31P for both USDB and USDE
interactions. The matrix elements listed are between the listed T = 1/2 state and the
T = 3/2 state. All values are in units of keV.

Jπ USDB Ex USDB V USDE Ex USDE V

E1(T = 1/2) 3/2+ 6258 8.3 6118 4.2
E2(T = 3/2) 3/2+ 6364 −− 6236 −−
E3(T = 1/2) 3/2+ 6579 10.9 6383 12.7

5/2+ assignment, have not excluded the 3/2+ assignment. Furthermore, as noted in Ref.

[79], one study [108] has even labeled the state as Jπ = 1/2+, further complicating the

matter. If the state did in fact have spin and parity Jπ = 3/2+, it could mix with the 31P

IAS at 6381 keV.

To complement this rudimentary empirical approach and facilitate the search for the

hypothetical 31P mixing with the 31P IAS, B.A. Brown performed shell-model calculations

using both the USDB and USDE interactions to predict mixing matrix elements and exci-

tation energies for the 31P and nearby states. As with the 31S case described in Section 6.1,

the results of the calculations are a triplet of Jπ = 3/2+, including the IAS, all involved in

isospin mixing. The results of these calculations are reported in Table 6.7. As shown in the

table, the mixing matrix elements for the 31P case are much smaller than for the 31S case

(Table 6.1). While tentative experimental candidates for the lower mixed state in the triplet

exist at 6233 keV and 6158 keV [79], no higher candidate is apparent, with the exception of

the state at 6461 keV. This state, however, requires a significantly higher mixing matrix ele-

ment than the calculations using USD predict; as such, it should be regarded as a tentative

solution at best. The shell-model matrix elements for the mixed states and the functional

form in Fig. 6.5 can be used to derive theoretical upper and lower bounds for the excitation

energy of the mixed 31P state of Ex = 6406 keV and Ex = 6402 keV, respectively.
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Experimental searches are therefore needed to uncover potential 31P states in the energy

region slightly above Ex = 6400 keV which could fulfill the role of the Jπ = 3/2+ state mixing

with the IAS, as well as to determine with certainy the spin and parity of the 6461-keV state.

As an interesting astrophysical aside, the spin and parity assignments of Refs. [62, 63] used

the 5/2+ assignment for this state, additionally using the mirror state assignment to infer

the same spin and parity for an observed 31S level at 6393 keV. If this 6461-keV state is in

fact a 3/2+ state, it would mean that it is the mirror of the 6390-keV 31S level discovered in

the present work, rather than the mirror of the 6393-keV 31S level described in Refs. [62, 63].

If another nearby 31P state is discovered to be Jπ = 3/2+ state instead, it could inversely

imply that the two 31S states at 6390 keV and 6393 keV are distinct.

6.2.2 Second A = 31, T = 3/2 Quartet

The lowest A = 31, T = 3/2 quartet includes the 31Cl and 31Si ground states and the lowest

T = 3/2 excited states in 31S and 31P. However, as illustrated for A = 13 in Fig. 3.6, there is

also a T = 3/2 quartet for each excited state in 31Cl and 31Si, which also includes T = 3/2

states in 31S and 31P with excitation energies greater than the excitation energies of the

ground-state isobaric analogs. As with the lower quartet, it has been historically difficult

to test the IMME in the second quartet, largely due to uncertainties associated with both

the excitation energy of the first excited state in 31Cl and ambiguity in the identity of the

second T = 3/2 state in 31S.

In fact, a tentative measurement of the first 31Cl excited state via 31Ar β decay [109]

was the only evidence for the observation of that state [83] until a recent Coulomb-breakup

experiment was performed to confirm the existence of the state [110]. In this study [110],

the excitation energy was found to be Ex = 782(32) keV, leaving the identity of the second
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31S T = 3/2 state as the primary ambiguity in the quartet. Various sources have reported

excitation energies for the 31S state ranging from a definite T = 3/2 assignment for a state

at Ex = 7006(25) keV using the 29Si(3He,n)31S reaction [81] with somewhat low precision

to a relatively precise, but tentative, assignment for a state at Ex = 7036(2) keV [111], with

alternative candidates at 6975(3) [97, 111] and 7053(2) keV [111].

Although this Jπ = 1/2+ 31S state is expected to be nearly 1 MeV above the proton

threshold, the proton emission is isospin forbidden and, therefore, it should have a substantial

gamma-decay branch unlike the other low-spin levels in the region [112]. Precise observation

of a high energy γ-ray transition from a low-spin state in this region would be a signature of

the second T = 3/2 state, allowing for a precise determination of its energy. The shell model

predicts that the state decays predominantly to the ground state, and shell model calculations

using both USDB [113] and the recently-developed USDE [89] models predict a 31S state

745(50) keV above the 31S IAS energy of Ex = 6279 keV. In the shell model, this state has

a 31Cl β feeding of 0.03(2)% and a ground-state γ-decay branch of Γ
g.s.
γ /Γγ = 0.95(4).

Analysis of E12028 resulted in the identification of a number of new 31S states. As

discussed in Section 5.3.3, the spins and parities for a majority of new states were inferred

by comparing to shell model calculations. Isospin mixing of the state at 6390 keV and the

IAS allowed for the deduction of that state’s spin and parity with precision. We did not

observe any photopeaks between Ex = 6400 and Ex = 7000 keV. Slightly above this energy

region, we observed a photopeak at Eγ = 7049.2(8) which does not appear in coincidence

with any other peak, indicating that it is likely a transition to the ground state. This state’s

excitation energy of Ex = 7050.0(8) keV, approximately 770 keV above the 6279-keV 31S

IAS, is also consistent with our shell-model calculations, which predict a second T = 3/2 level

770 keV above the theoretical IAS. The observed beta feeding of this state, 0.047(5)%, is also
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Table 6.8: Ground-state mass excess ∆ and excitation energy Ex values [79] used as input
for the IMME fits of the second-lowest A = 31, T = 3/2 quartet.

Nucleus Tz ∆ [keV] Ex [keV]

31Cl −3/2 −7034.7(34) 782(32)
31S −1/2 −19042.52(23) 7050.0(8)
31P +1/2 −24440.5411(7) 7141.1(18)
31Si +3/2 −22949.04(4) 752.23(3)

Table 6.9: Output coefficients for the quadratic and cubic IMME fits for the second-lowest
A = 31, T = 3/2 quartet using input data from Table 6.8. All coefficient values are in units
of keV.

Quadratic Cubic

a −14697.3(14) −14698.6(22)
b −5307.2(19) −5306.0(25)
c 205.0(18) 211(8)
d −− −4(5)

χ2/ν 0.51/1 −−

consistent with shell model predictions, and no other gamma-ray transitions de-exciting the

state were observed. Based on the observed agreement with the shell model predictions, the

singular gamma branch to the ground state, and a small, previously observed beta-proton

branch [83], we have identified this state as the second 31S T = 3/2 state, with Jπ = 1/2+.

Similarly to the lowest quartet, we fit the second A = 31, T = 3/2 quartet, including the

new 7050-keV state excitation energy and the excitation energies of the other three quartet

members, using the IMME. The input mass excesses and excitation energies are reported in

Table 6.8, and the output parameters are reported in Table 6.9. As shown, the quadratic fit

yields a reduced chi-squared value of χ2/v = 0.51/1 and a p-value of 0.48, indicating a good

fit. This further confirms that the state at 7050 keV is indeed the 31S member of the second

T = 3/2, A = 31 quartet. The residuals for this fit are shown in Fig. 6.6.

Although the quadratic IMME fit is very good of the measured mass excesses and ex-
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Figure 6.6: Residuals for the quadratic IMME fit of the second-lowest A = 31, T = 3/2
quartet (Tables 6.8 and 6.9).
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Table 6.10: Calculated excitation energies Ex and mixing matrix elements V of the triplets
of states involved in mixing with the second-lowest T = 3/2 states in both 31S and 31P,
for both USDB and USDE interactions. The matrix elements listed are between the listed
T = 1/2 state and the T = 3/2 state. All values are in units of keV.

31S Jπ USDB Ex USDB V USDE Ex USDE V

E1(T = 1/2) 1/2+ 7234 7.8 6421 6.8
E2(T = 3/2) 1/2+ 7271 −− 6944 −−
E3(T = 1/2) 1/2+ 7814 22 7117 9.4

31P Jπ USDB Ex USDB V USDE Ex USDE V

E1(T = 1/2) 1/2+ 7251 6.5 6417 3.1
E2(T = 3/2) 1/2+ 7310 −− 6982 −−
E3(T = 1/2) 1/2+ 7861 6.1 7127 7.2

citation energies of the quartet members, it is possible that, as with the first quartet, a

small amount of isospin mixing perturbs the excitation energies of the 31S or 31P member

states. Potential candidate T = 1/2 states exist in both nuclei, but no experimental evidence

was observed in E12028 to positively identify any such 31S state. As mentioned previously,

no 31S gamma-ray transitions were observed corresponding to states between Ex = 6400

and Ex = 7000. To estimate the potential amount of mixing, B.A. Brown used both the

USDE and USDB interactions to predict energy levels and mixing matrix elements for both

31S and 31P, as was done for the lowest quartet (Tables 6.1 and 6.7). The models produce

small mixing matrix elements, consistent with the lack of observational evidence from our

experimental data. The results of the shell-model calculations are reported in Table 6.10.

Using our high-precision measurement of the excitation energy of the T = 3/2 state in

31S, it is possible to test the recent measurement [110] of the 31Cl first excited state using the

IMME. By including the new measurement of the second T = 3/2 31S state excitation energy

with the excitation energies and ground-state mass excess values for 31P and 31Si to produce
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the IMME curve, and accounting for the uncertainty introduced by the possibility of isospin

mixing via the d coefficient in the cubic fit, we derive an IMME mass excess for the 31Cl

first excited state of ∆ = −6276(10) keV. When combined with the new, precise ground-

state mass excess from Ref. [102] and its uncertainty, we calculate an excitation energy

Ex = 759(11) keV for the state, a value consistent with the measured value of Ex = 782(32)

keV [110].

It is also possible to use the recent value [102] of the 31Cl proton separation energy, Sp =

265(4) keV and the 30S +p resonance energy based on the beta-proton measurement, Er =

461(15) keV [83, 109]: the result of the calculation is an excitation energy of Ex = 726(16)

keV, which is consistent with our prediction to within 1.8 combined standard deviations and

with the value from Ref. [110] to within 1.6 combined standard deviations. Given the slight

tension between the value based on the beta-proton measurement [109] and the other two

values, a new measurement of 31Ar beta decay [114, 115] with high sensitivity to low-energy

protons would be an interesting study.

6.3 Discrepancies with the Nuclear Data Sheets and

Comparison to Previous Work

E12028 is one of only a few beta decay experiments performed to date, but has nevertheless

yielded over two orders of magnitude higher statistics for analysis than the most recent

experiment [72], resulting in a decay scheme with double the number of observed gamma-

ray transitions and nine new observed beta transitions. The minimum finite beta feeding

observed was Iβ = 0.023(7)%, to the state at 5436 keV. This improvement in sensitivity

tells us much about the 31S nucleus, but it also allows for insight into the results of previous
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experiments as well.

6.3.1 Unobserved Previously-Reported Transitions

In particular, several states reported in the A = 31 Nuclear Data Sheets between Ex = 5

MeV and Ex = 8 MeV were not observed in E12028. The excitation energies of these

states reported in the beta decay scheme of the NDS are: 5408.2 keV (Jπ unconstrained),

5786.2 keV (Jπ = (1/2, 3/2, 5/2)+), 6420.7 keV (Jπ = (1/2, 3/2, 5/2)+), 7280.0 keV (Jπ

unconstrained), 7416.8 keV, (Jπ unconstrained), 7631.8 keV (Jπ = (1/2, 3/2, 5/2)+), and

7644.5 keV (Jπ = (1/2, 3/2, 5/2)+). The states at 5786, 6421, 7280, 7417, 7632, and 7645

keV are from tentative assignments made in the previous 31Cl decay study [72], but our

experiment was much more sensitive and did not observe these peaks. Therefore, we attribute

them to contaminants in the experiment of Ref. [72] and have elected to omit them from

our normalization and decay scheme.

The A = 31 Nuclear Data Sheets also report a transition from the state at 3076 keV to the

state at 2234 keV, based on the reports of Refs. [72] and [116], but note in their decay scheme

that the transition was not included in the least-squares fit that resulted in the quantities

reported in the table. The NDS evaluators note as well that the difference in energy between

the two states ostensibly involved in the transition is only 842 keV. Ref. [72] assigned the

transition an absolute gamma intensity per 100 beta decays of Iγ = 1.1(1), implying that

the peak should be stronger than the nearby 985-keV gamma ray marking the transition

between the 2234 and 1248-keV states, which is assigned an absolute intensity of only 0.2(1).

However, despite observing the 985-keV gamma ray, we did not observe a photopeak at 845

keV in our beta-delayed gamma-ray spectrum or in the 2234-keV coincidence spectrum. After

attempting to fit this region, we obtained an upper limit on the intensity of this transition

165



of Iγ = 0.018(4) per 100 beta decays, and have omitted it from the normalization and decay

scheme.

6.3.2 Spin and Parity Discrepancies

As discussed in Section 4.2, the spin and parities of several important resonance states in

the 30P(p, γ)31S Gamow window are not known unambiguously, due to discrepancies in

assignments between different experiments [64, 62, 63]. Since 31Cl preferentially populates

Jπ = 1/2+, 3/2+, and 5/2+ states, we can compare our assignments to any assignments

with those spins and parities in previous studies. Refs. [64] and [63] report a number of spin

and parity assignments that are at odds with one another; the sensitivity of our experiment

allows us to comment on the assignments of Refs. [64] and [63] and the likelihood of these

assignments being correct.

Ref. [64], for example, reports two states: one at 6328.6(9) keV and one at 6356.1(9)

keV, with Jπ = 1/2+ and 3/2+, respectively. Ref. [63], however, assigns these states spins

and parities of 3/2− and 5/2−, respectively. Given that these levels were not observed in

E12028, we believe it is more likely that the spin and parity assignments of Ref. [63] are

correct for these states. Ref. [64] also reports a number of other states that might have been

visible in the E12028 data, but are absent: a level at 6719.9(9) keV with J = 5/2, a level at

6749.0(9) keV with Jπ = 3/2+, a level at 6936.7(17) keV with Jπ = (1/2 − 5/2)+, a level

at 6959.6(16) keV with Jπ = 1/2+, and a level at 7033.5(13) keV with Jπ = (1/2− 5/2)+.

These states, which are comparatively higher above the proton emission threshold than the

low-lying resonances observed in E12028, decay primarily via proton emission, so the lack of

observation in E12028 is not a significant cause for concern. The 7033-keV state is interpreted

as the state that Ref. [71] tentatively identifies, and E12028 has confirmed as, the second
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T = 3/2 31S state.

We also observe a few discrepancies with Ref. [63]. The level reported in Ref. [63]

at Ex = 4527.8(2) keV is given a Jπ assignment of 3/2+. We did not observe any state

at this energy; the closest candidate is the state at Ex = 4519.63(32) keV, which we also

assigned Jπ = 3/2+. Ref. [63] also reported a state at Ex = 4710.1(8) with Jπ = 5/2+. We

again did not observe a state at this energy, but instead have identified a 5/2+ state at the

nearby energy Ex = 4717.72(32) keV. We did not observe the 5/2+ state Ref. [63] reports

at 5401.5(8) keV or the 5/2+ state at 5518.3(3) keV, and the closest state we observed to

these energies, at 5435.9(9), was assigned Jπ = 3/2+. We did observe a state at 5775.4(4)

keV, which we have assigned a spin and parity of 5/2+, but which Ref. [63] did not observe.

Ref. [63] makes a couple of tentative assignments, which the results of E12028 could help

narrow down. Ref. [63] reports a state at 6138.3(21) keV, identified by both the transition

to the 7/2+ state at 3349 keV and the transition to the 3/2+ first excited state at 1248 keV,

with spin and parity Jπ = (3/2, 7/2)+. This state is near in energy to the state we identified

at 6129 keV, but we assigned this state a spin and parity of 5/2+ based on a comparison to

our shell model calculations. The assignment in Ref. [63] is made based on both the angular

distributions measured for the transitions and the mirror nucleus assignment to a 31P state

at 6233.4(15) keV. Interestingly, however, the two gamma branches observed in Ref. [63] are

the two strongest branches reported in our calculations, and the 31P state does not have a

certain parity, instead reported in the NDS as Jπ = (3/2, 5/2, 7/2)+. If these two states are

the same, and the shell model calculations are correct, it could imply that the assignment

in Ref. [63] is incorrect.

The most interesting potential discrepancy between the present work and Ref. [63] is the

state at 6390 keV. Ref. [63] reports a state at the nearby energy of 6392.5(2) keV (this state
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was briefly mentioned at the end of Section 6.2.1), but assigns it a spin and parity of 5/2+,

based on the angular distribution of the transition observed and the mirror assignment with

the 6461-keV 31P state. We did not observe this state in our analysis at all and the closest

5/2+ state to the 6390-keV state predicted by our shell-model calculations is ≈300 keV

higher, implying either that its beta feeding is extremely low (in which case its photopeak

would likely be entirely overwhelmed by the nearby strong 6390-keV photopeak), or that the

assignment in Ref. [63] is incorrect. However, preliminary results from independent work by

the authors of Ref. [63] seem to indicate that the gamma branches of the state at 6393 keV

are inconsistent with the branches we observed for the 6390-keV state [117], implying that

the two states are nonetheless distinct.

168



Chapter 7

Outlook: The Future of 30P(p, γ)31S

7.1 Conclusions

As a result of NSCL experiment 12028, a new 30P(p, γ)31S resonance state was discovered

and found unambiguously, via isospin mixing with the nearby isobaric analog state, to have

a spin and parity Jπ = 3/2+ [89]. This resonance was found to contribute strongly – up

to 50% of the theoretical Hauser-Feshbach statistical model rate – to the 30P(p, γ)31S rate,

making it the most important unambiguously identified resonance and a meaningful means

of estimating the overall 30P(p, γ)31S rate. The revelation of the importance of the 6390-

keV state to the 30P(p, γ)31S reaction rate and the implication that the rate may be higher

than previously estimated mean that discrepancies between the slight 30Si excess observed

in nova grains and the relatively large excess predicted by some nova models may be less at

odds than previously thought: if the 30P(p, γ)31S proceeds more quickly than current models

suggest, relatively fewer 30S nuclei will ultimately be produced via 30P beta decay, reducing

the 30Si yield in models.

The observation of isospin mixing itself is a milestone in its own right: the first clear

identification in the sd shell of mixing between a T = 3/2 state and a T = 1/2 state. The

new USD interaction “USDE” was created by B. Alex Brown specifically for analysis of

the results of isospin mixing in 31S and has already been used to study potential isospin
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mixing in another sd-shell nucleus, 31P. E12028 allowed for the definite identification of

the second T = 3/2 state of 31S via the gamma de-excitation of the 7050-keV state to the

ground state 31S [100] and, alongside the recent precision measurement of the 31Cl second

excited state energy [110], has allowed for the first precision test of the IMME for the second

A = 31, T = 3/2 quartet. The IMME breakdown observed after the recent 31Cl mass

measurement [102] has not yet been solved, but we conclude it is likely that isospin mixing

in 31P to match the mixing in 31S likely plays a role. The results of this work will provide

an important starting point for the search for the potential mixed 31P state.

The analysis of E12028 has also produced the most complete and detailed 31Cl beta

decay scheme to date, with 40 new observed gamma-ray transitions and ten new observed

beta feedings, including new observations of forbidden beta decay. This scheme reflects over

two orders of magnitude higher statistics acquired compared to previous work and has also

allowed for the potential exclusion of several levels tentatively identified in previous work as

belonging to 31S. The improved accuracy of level identification in 31S should assist in efforts

to assign spins and parities based on, for example, comparisons to 31P mirror states, which

itself could help correctly deduce the parameters of the important resonances that contribute

to the 30P(p, γ)31S reaction.

7.2 Outlook and Future Work

The results of E12028 are an important step toward answering the question of whether

presolar “nova” grains do indeed originate in classical novae. However, the experiment by

itself has not entirely solved the mystery of these ancient stellar messengers. The expected

strength of the 6390-keV resonance may indicate that the overall reaction rate is higher than
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the previously estimated rate, but unfortunately, constraints on important 31S resonances

other than the 6390-keV state remain elusive, and it is still not known with certainty how

many 31S states exist between Ex = 6390 keV and Ex = 6410 keV.

In addition, the rate calculated for the resonant capture through the 6390-keV state,

while based on experimental findings, did require theoretical estimates of both the proton

partial width Γp and the gamma partial width Γγ . Conveniently, the isospin mixing of this

state with the nearby IAS and its consequently large beta feeding make it ideal for study

using 31Cl beta decay. A beta-delayed proton decay measurement of this state could produce

an experimental measurement of the proton branching ratio which, alongside a measurement

of the lifetime of the state, could yield an entirely experimental resonance strength and the

first truly experimental calculation of a lower limit on the 30P(p, γ)31S rate. With the

relatively large resonance strength expected for the 6390-keV state, it is also possible that

the resonance could be accesed directly via proton capture on 30P at the next generation of

rare isotope beam facilities [118, 119].

Finally, it is probable [97] that a number of negative-parity resonances contribute strongly

to the reaction rate at peak nova temperatures; study of these resonances was as a matter

of design effectively prohibited in E12028, but future experimental work will also likely need

to focus on the effects of these negative-parity states on the 30P(p, γ)31S rate.

Although the IMME breakdown reported in Ref. [102] has not been solved with the

addition of isospin mixing in 31S, a discovery of isospin mixing in 31P could help revalidate

the quadratic IMME in the lowest A = 31, T = 3/2 quartet. The 6461-keV state is the

best candidate for mixing with the 31P IAS, but it is not consistent with USD shell-model

predicitions and should be investigated further. Future nuclear structure studies could fo-

cus on gamma spectroscopy of energy levels in the energy region around the 31P IAS to
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complement the numerous charged particle measurements carried out to date and determine

whether all levels in the region have been observed.

In the second A = 31, T = 3/2 quartet, three out of four members now have mass-

excess uncertanties < 2 keV and their masses are well-described by the quadratic form

of the IMME, but the extent of isospin mixing, although likely small, is still not known

with certainty. Further studies of this multiplet could focus on reducing the uncertainty in

the 31Cl first excited state excitation energy. Both the measurement of 31Ar beta-delayed

protons and measurement via in-beam gamma ray spectroscopy could provide independent

contributions toward reducing this uncertainty: the former could help address the apparent

disagreement between Ref. [109] and Refs. [110, 100] and the latter could present a novel

approach to measuring the excitation energy of this state.

7.3 Final Thoughts

Ultimately, no one experiment can currently address conclusively the numerous questions

surrounding presolar nova grains and the 30P(p, γ)31S rate. E12028, like the many experi-

mental studies that preceded it, represents only one important step on the journey toward

answering whether or not these ancient microscopic grains do indeed come from classical no-

vae. E12028 has also played an important role in helping to motivate future nuclear physics

experiments by posing several questions that can be answered using techniques related to

the beta-delayed gamma-ray spectroscopy employed for this study. Complementary beta-

delayed proton measurements represent a promising pathway toward understanding of the

nuclear structure of 31S and other important nuclei. As it happens, a compact beta-delayed

proton detector is already under development at the National Superconducting Cyclotron
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Laboratory, with designs to answer these and many other interesting questions. With the

advent new detectors like this, and the ability to put them to excellent use with next-

generation facilities like the Facility for Rare Isotope Beams and the high-intensity exotic

beams such facilities promise, the future of experimental study of both the nuclear aspect

and the astrophysics aspect of classical novae looks incredibly bright.
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APPENDIX A

Theoretical Tools

As described in a number of previous chapters, we relied on a number of theoretical and

predictive tools both to help plan the experiment and to help interpret the results of analysis.

To justify the experiment and receive beam time, experimenters must be able to predict how

many hours of beam they will need, and what level of statistics are required to achieve

the experimental goals. In addition, experimenters must be able to assess the feasibility of

producing the nuclide for study in the first place. For example, as mentioned in Chapter

4, it is not feasible to produce 30P in large quantities for direct study of 30P(p, γ)31S. It

would be costly to learn this fact only after securing dozens of hours of beam time, setting

up an experimental setup, and starting an experiment; consequently tools for simulating the

production of rare isotopes are required.

In this Appendix, we discuss two simulation tools, Lise++ and Geant4, which we

used both to assess the feasibility of E12028 before its execution and to interpret and check

experimental results during its analysis. We will also discuss briefly the USD shell model

calculations we performed during analysis and will report the results of those calculations.

Lise++: Exotic Beam Production with Fragment Sepa-

rators

Lise++ is a freely-available program developed “to calculate the transmission and yields of

fragments produced and collected in a spectrometer.” [120] Lise++ allows the experimenter
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to select a stable projectile and an energy and intensity post-acceleration, simulate the

fragmentation of the projectile on a target, and tune the width of the target so as to produce

the maximum simulated amount of a desired exotic nuclide “fragment.” The experimenter

can then build a simulated beamline, including fragment separators such as the A1900 and

the RFFS as well as detectors such as silicon PIN detectors or the plastic scintillator used

in E12028 (Fig. A.1). Lise++ contains a large list of materials with which experimenters

can build “blocks” in the simulation; Lise++ also calculates the time-of-flight, energy loss,

position, angular distribution, and other parameters for each of these blocks (Fig. A.2).

In this way the experimenter can use Lise++ to simulate things like beam purification

and production rate in order to determine the best experimental configuration to meet the

experimental needs.

For E12028, we performed a Lise++ simulation that simulated 31Cl fragment production

at the NSCL for the 36Ar beam that was ultimately used for the experiment. We were able to

use the simulation to determine a baseline for the optimal tuning parameters for the A1900

as well as the thickness of the 9Be target used for production (Lise++ is able to calculate

an optimal target thickness (Fig. A.3) to maximize production of the desired fragment) and

the optimal settings (voltage, phase angle) of the RFFS upstream of the experimental setup.

We were also able to simulate the implantation depth of various beam constituents (Fig.

A.4), a quantity subsequently used in our Geant4 calculations to facilitate predictions of

gamma-ray efficiency for the clover detectors.

In addition to the basic beamline simulation components, Lise++ contains a number

of useful extras including a calculator to quickly determine energy loss through blocks and

tools to simulate the interaction of the beam particles with those blocks. One of these tools,

mentioned in Chapter 5, is the fusion-evaporation calculator PACE. PACE is a Monte Carlo
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Figure A.1: A screenshot of Lise++, showing the spectrometer setup window in the center
of the image and an assembled setup corresponding to the A1900 fragment separator and
the RFFS on the left. Each “block” of material is inserted into the beamline using the setup
window and has its own set of options, depending upon the type of block used.

177



Figure A.2: A series of graphs from Lise++, showing the beam’s simulated characteris-
tics at the RFFS. Included calculations are the yield of each isotope, the dispersion angle,
and position for both horizontal and vertical transverse directions, the rigidity of the beam
constituents, and their energy.

Figure A.3: The result of a Lise++ calculation to find the optimal thickness of the beryllium
target for production of 31Cl. Although Lise++ gives an estimate of the best thickness,
experimenters are as always limited by the availability of targets of varying thicknesses.
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Figure A.4: The result of a Lise++ calculation showing the implantation depth of several
beam consituents inside a target block. The calculation shows the yield of each species and
its range in the material.

simulation tool that takes as input the masses of two nuclei and the beam energy (Fig. A.5)

and produces not only a list of likely fusion-evaporation products but angular and energy

distributions for these products as well as for protons, neutrons, and alpha particles produced

through the process. PACE produces results in a text file; an output example is produced

below in Section A.
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Figure A.5: The input card for Pace. As shown, the calculation requires the A and Z of
both target and projectile as well as the laboratory energy of the beam.
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PACE Output

The following code example is the output for a typical PACE fusion-evaporation calculation. The input nuclei in this case are

31Cl and 12C and the beam energy is simulated at 50 MeV/u (1550 MeV total beam energy).

\texttt{v.Version 4.20 13:46 30-06-16

P A C E 4

modified JULIAN

*********** projection angular-momentum coupled evaporation Monte Carlo code ***********

*********** angular distributions obtained using M-states of angular momentum ***********

MODE=1

************ Fusion xsection taken from Bass model

Bass fusion xsection for E =1550.0 MeV is 897 mb

Fusion radius = 5.30 fm. Barrier height is 15.92 MeV
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Transmission probability for a one-dimens.barrier: Classical

---------------------------------------------------------------------------

Starting conditions

Z N A Spin

Projectile 17 14 31 1.5

Target 6 6 12 0.0

Compound nucleus 23 20 43

Bombarding energy (MeV) 1550.00

Center of mass energy (MeV) 432.56

Compound nucleus excitation energy (MeV) 443.508

Q-value of reaction (MeV) 10.950

Compound nucleus recoil energy (MeV) 1117.442

Compound nucleus recoil velocity (cm/ns) 7.086e+00

Compound nucleus velocity/c 2.362e-01

Beam velocity (cm/ns) 9.829e+00

Beam velocity/c 3.276e-01

*** Input transmission coefficients determined by input value of TL diffuseness.

*** diffuseness = 2.00
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*** Optical model input calculation bypasses. *********

Experimental fusion cross section (mb) 897

Fusion L-grazing 70.907

Fusion L-difusseness 2.000

Yrast spin at maximum excitation energy 82

Compound nucleus formation cross section (mb) 897

---------------------------------------------------------------------------

Partial cross sections (mb)

---------------------------------------------------------------------------

J SIG(J) | J SIG(J) | J SIG(J) | J SIG(J) | J SIG(J) |

---------------------------------------------------------------------------

0.5 0.18 | 17.5 6.3 | 34.5 12 | 51.5 18 | 68.5 18 |

1.5 0.7 | 18.5 6.7 | 35.5 13 | 52.5 19 | 69.5 16 |

2.5 1.1 | 19.5 7 | 36.5 13 | 53.5 19 | 70.5 14 |

3.5 1.4 | 20.5 7.4 | 37.5 13 | 54.5 19 | 71.5 11 |

4.5 1.8 | 21.5 7.7 | 38.5 14 | 55.5 20 | 72.5 8.3 |

5.5 2.1 | 22.5 8.1 | 39.5 14 | 56.5 20 | 73.5 6 |

6.5 2.5 | 23.5 8.4 | 40.5 14 | 57.5 20 | 74.5 4.1 |
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7.5 2.8 | 24.5 8.8 | 41.5 15 | 58.5 21 | 75.5 2.7 |

8.5 3.2 | 25.5 9.1 | 42.5 15 | 59.5 21 | 76.5 1.8 |

9.5 3.5 | 26.5 9.5 | 43.5 15 | 60.5 21 | 77.5 1.1 |

10.5 3.9 | 27.5 9.8 | 44.5 16 | 61.5 22 | 78.5 0.7 |

11.5 4.2 | 28.5 10 | 45.5 16 | 62.5 22 | 79.5 0.44 |

12.5 4.6 | 29.5 11 | 46.5 16 | 63.5 22 | 80.5 0.27 |

13.5 4.9 | 30.5 11 | 47.5 17 | 64.5 22 | 81.5 0.17 |

14.5 5.3 | 31.5 11 | 48.5 17 | 65.5 22 | 82.5 0.1 |

15.5 5.6 | 32.5 12 | 49.5 18 | 66.5 21 | 83.5 0.057 |

16.5 6 | 33.5 12 | 50.5 18 | 67.5 20 | 84.5 0.028 |

---------------------------------------------------------------------------

*** Spherical nucleus level density

*** Sierk barrier not found for A = 43 Z= 23

*** Input fission barrier = 39.70 MeV at L=0 taken from Sierk

*** G.S. little A multiplied by factor 1.000 obtain saddle level density

*** No fission calculation for barrier above 30.0 MeV

*** Little-A = MASS / 10.0
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Energy range for neutron proton alpha gamma

minimal 0.01 0.42 0.85 0.00

minimal 40.00 29.26 51.77 20.00

*** Internal probability discriminator of program set to 0.0020 Number of cascades is 1000

Optical model parameters for light emitted particles

V *E *E**2 R0R ARD R0C W0 *E *E**2 R01 AID RMCHD NPD IMAG IRAD

47.010 -0.267 -0.002 1.296 0.660 0.000 9.520 -0.053 0.000 1.257 0.480 0.000 250 SURF 1

57.468 -0.550 0.000 1.250 0.650 1.250 13.500 0.000 0.000 1.250 0.470 0.000 250 SURF 1

50.000 0.000 0.000 5.868 0.576 4.098 7.515 0.000 0.000 5.868 0.576 0.000 250 VOL 0

E.M.Transition strengths in Weisskopf units

E1 = 0.000080 M1 = 0.025000 E2 = 4.800000 M2 = 0.019500

*** Gilbert - Cameron spin cutoff parameter used

------ Output results for compound nucleus decay -----
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1.Yields of residual nuclei

Z N A events percent x-section(mb)

12 14 26 Mg 1 0.1\% 0.897

12 12 24 Mg 2 0.2\% 1.79

11 13 24 Na 1 0.1\% 0.897

12 11 23 Mg 1 0.1\% 0.897

11 12 23 Na 9 0.9\% 8.07

10 13 23 Ne 2 0.2\% 1.79

13 9 22 Al 1 0.1\% 0.897

11 11 22 Na 4 0.4\% 3.59

10 12 22 Ne 12 1.2\% 10.8

11 10 21 Na 7 0.7\% 6.28

10 11 21 Ne 17 1.7\% 15.2

9 12 21 F 2 0.2\% 1.79

10 10 20 Ne 34 3.4\% 30.5

9 11 20 F 8 0.8\% 7.18

10 9 19 Ne 3 0.3\% 2.69

9 10 19 F 12 1.2\% 10.8
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8 11 19 O 5 0.5\% 4.48

9 9 18 F 2 0.2\% 1.79

8 10 18 O 13 1.3\% 11.7

9 8 17 F 8 0.8\% 7.18

8 9 17 O 59 5.9\% 52.9

7 10 17 N 3 0.3\% 2.69

9 7 16 F 1 0.1\% 0.897

8 8 16 O 103 10.3\% 92.4

8 7 15 O 28 2.8\% 25.1

7 8 15 N 112 11.2\% 100

6 9 15 C 3 0.3\% 2.69

8 6 14 O 1 0.1\% 0.897

7 7 14 N 17 1.7\% 15.2

6 8 14 C 32 3.2\% 28.7

7 6 13 N 10 1\% 8.97

6 7 13 C 137 13.7\% 123

5 8 13 B 3 0.3\% 2.69

6 6 12 C 105 10.5\% 94.2

6 5 11 C 13 1.3\% 11.7

5 6 11 B 75 7.5\% 67.3

4 7 11 Be 1 0.1\% 0.897
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5 5 10 B 1 0.1\% 0.897

4 6 10 Be 1 0.1\% 0.897

5 4 9 B 14 1.4\% 12.6

4 5 9 Be 35 3.5\% 31.4

3 6 9 Li 1 0.1\% 0.897

4 4 8 Be 14 1.4\% 12.6

4 3 7 Be 7 0.7\% 6.28

3 4 7 Li 31 3.1\% 27.8

3 2 5 Li 6 0.6\% 5.38

2 3 5 He 5 0.5\% 4.48

2 1 3 He 1 0.1\% 0.897

1 2 3 H 1 0.1\% 0.897

Total fission 36 3.6\% 32.3

TOTAL 1000 100\% 897

Mode = ALPH Total number = 113

15-30 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 2.0 0.0

30-45 8 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 8 2.0 0.0
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45-60 6 4 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 10 4.0 2.4

60-75 8 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 9 2.6 1.6

75-90 1 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3 5.3 2.4

90-105 4 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 6 3.7 2.4

105-120 1 5 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 6 6.2 1.9

120-135 3 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 5 4.0 2.4

135-150 2 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3 3.7 2.4

150-165 2 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4 4.5 2.5

165-180 .. 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 7.0 0.0

180-195 1 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2 4.5 2.5

210-225 .. 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 7.0 0.0

225-240 .. 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2 7.0 0.0

240-255 2 .. 1 .. .. .. .. .. .. .. .. .. .. .. .. .. 3 5.3 4.7

255-270 .. 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 7.0 0.0

270-285 .. 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2 7.0 0.0

285-300 .. 2 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2 7.0 0.0

300-315 .. 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 7.0 0.0

315-330 .. .. 3 .. .. .. .. .. .. .. .. .. .. .. .. .. 3 12.0 0.0

330-345 .. 1 .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 7.0 0.0

345-360 .. .. 1 1 .. .. .. .. .. .. .. .. .. .. .. .. 2 14.5 2.5

360-375 .. .. 1 2 .. .. .. .. .. .. .. .. .. .. .. .. 3 15.3 2.4
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375-390 .. .. 1 .. 3 .. .. .. .. .. .. .. .. .. .. .. 4 19.5 4.3

390-405 .. 1 2 5 1 1 .. .. .. .. .. .. .. .. .. .. 10 16.5 5.2

405-420 .. .. .. .. 2 .. .. .. .. .. .. .. .. .. .. .. 2 22.0 0.0

420-435 .. .. 2 1 .. 1 .. .. .. .. .. .. .. .. .. .. 4 17.0 6.1

435-450 .. .. 1 .. 5 3 1 3 1 .. .. .. .. .. .. .. 14 27.7 8.0

Ex / J -4 -9 -14 -19 -24 -29 -34 -39 -44 -49 -54 -59 -64 -69 -74 -79 sum avrg stdv

Sum 39 32 12 9 11 5 1 3 1 .. .. .. .. .. .. ..

-----------------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------------



Geant4: Simulation of Clover Efficiencies

In order to assess the feasibility of an experiment, the amount of statistics required to observe

meaningful results must be estimated accurately. Experimenters must therefore take special

care to determine not only if the beam production facilities are able to produce the nuclide

they want, they must also determine whether the electronics and detectors available to them

are capable of recording enough data to make analysis worthwhile. For gamma-ray detectors

such as the clover array, this means estimating the efficiency of the detectors at a number

of different energies; such an estimation allows the experimenter to make predictions about

the probability of observing any given signal for a given number of total events. This in turn

allows experimenters to know with greater certainty how much beam time to ask for.

To address this issue, we used a suite of codes called Geant4. Geant4 is a freely-

available suite of codes “for the simulation of the passage of particles through matter.”

[121]. At its most basic, Geant4 creates particles such as protons, electrons, compound

particles such as nuclei, photons, or fundamental particles and, using parameters specified

by the user and physics interaction routines, simulates the interaction of the particle with

a geometrical body made of a user-specified material. This material can be of any makeup

and users may define their own material within Geant4’s source code.

We used Geant4 prior to E12028 in order to assess the feasibility of using the Yale

Clovershare array instead of using NSCL’s own Segmented Germanium Array (SeGA, a

compact germanium array composed of sixteen thirty-two-fold segmented germanium crys-

tals [122]). Preliminary simulations suggested that the Clovershare array would have roughly

double the efficiency of SeGA at all energies, so we performed a number of simulations using

a simulated Clovershare array to determine the needed statistics for E12028.
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To define a geometrical body in Geant4, the user must define the material out of which

the body is created, then place it around an origin point the code’s simulation space. We

used a set of definitions for the clover array provided by a collaborator, tweaking the position

of the nine clover detectors to suit our specific experimental needs (e.g. the use of a small

scintillator for implantation as opposed to a larger germanium implantation detector). We

also defined a number of central implantation detectors (plastic scintillator, NaI scintillator,

LaBr detector) and, using the estimates of the implantation depth from Lise++, performed

simulations for a number of different gamma-ray energies to determine both the efficiency

of the clover detectors and the attenuation of the gammas in the central detector. These

simulations helped fuel both the decision to use a plastic scintillator in the center of the

array, and the thickness of the detector.

We also utilized Geant4 during analysis to help assess the accuracy of our relative effi-

ciency calibration. We performed, for each 152Eu and 32Cl point we used in the calibration,

a Geant4 simulation of the efficiency of the clover detectors where the source was placed in

the simulation at the estimated position of the calibration source (152Eu) or the estimated

beam implantation depth (32Cl). These simulations were used to produce a theoretical rela-

tive efficiency curve as described in Chapter 5, which was then compared to the experimental

efficiency curve. We observed the two curves to be very similar, differing less than 10% at

all energies and frequently by less than 4%. In situations where experimentally-determined

efficiencies are unavailable, theoretically-generated curves such as the curve we produced us-

ing Geant4 may be used instead, but as we did not require extrapolation to higher gamma

energies than 7 MeV or extremely low energies, we opted to use only the experimental curve

in our analysis.
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Geant4 Input Macro Example

Before being able to run, Geant4 requires the user to input a series of commands defining

the parameters of the simulation: which defined geometrical bodies should be “turned on”

for the simulation, which particles should the code produce and at what energies, how many

iterations of the simulation should be done, etc. We utilized a Geant4 “macro” file with

these commands pre-loaded. Then, at runtime, we were able simply to invoke the macro file

and input all the parameters for the simulation at once. Below is an example of a simple

macro file designed to produce a simulation of 1e6 1-MeV gamma-rays using the plastic

scintillator and the clover detectors. It is worth noting that there are many commands

which can be used that do not appear in this simple example; the reader is directed to the

Geant4 documentation for further edification [123].

########################################################################

# #

# THIS TEST GENERATES GAMMA RAYS AT THE CENTRE OF THE TARGET #

# WHICH IS THE ORIGIN. #

# #

########################################################################

#/p26/analysis/dirname

/p26/analysis/filename 1MeVTest

/p26/phys/SelectPhysics LowEnergy_EM

### use the LaBr crystal?

#/p26/det/UseLaBrDetector false

### use the plastic scintillator?

/p26/det/UsePlasticScint true
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/p26/det/UseSega false

/p26/det/UseClover true

/run/initialize

/run/verbose 0

/event/verbose 0

/tracking/verbose 0

/grdm/verbose 0

#/grdm/noVolumes

#/grdm/selectVolume Detector

/grdm/allVolumes

### SOURCE INFO ###

### Gammas ###

/gps/source/intensity 1

/gps/particle gamma

/gps/ang/type iso

/gps/ene/mono 1.000 MeV

############

# No daughter decays in analogue MC mode

#/grdm/analogueMC 1

/run/setSeed 344

/run/beamOn 1e6

#/vis/enable

#/vis/reviewKeptEvents

########################################################################

########################################################################
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Shell Model Calculations: USDE Results

As mentioned in Chapters 5 and 6, one set of theoretical tools that was invaluable to the

analysis of E12028 were a number of shell-model calculations performed by B. A. Brown

using the USD interaction, first mentioned in Chapter 3. Since the nature of shell model

calculations has already been mentioned and the results of many of the calculations have

already been discussed, we present here simply the results of our USDE calculations for both

the beta feedings and gamma branchings of the theoretical states. These calculation results

are reprinted with permission from B. A. Brown, and are truncated after the highest energy

we used in our experimental analysis (7.455 MeV in the calculations, which we interpreted

as the state we observed at 7149 keV).

Beta Feeding Calculations

cl310 s_310

sdpn f92epn

input q-value = 11.972 MeV

calculated t1/2 = 0.2154E+00 sec

experimental t1/2 = 0.0000E+00 (+/-) 0.0000E+00 sec

ji,ti = 1.5 1.5

non gamow-teller br = 0.00%

ft = 6177/[qf*( 1.260**2.)b(gt)+b(f)] where qf = 0.60 for the quenching factor

sum b(gt) b(f) = 2.75835 2.92792

centroid = 7.24777

sum b(gt)/3|n-z| = 0.30648 for cl312y

th [br*b(gt)/3|n-z|] = 0.01496

exp [br*b(gt)/3|n-z|] = 0.00000

sum sum

jf tf nf ex(MeV) br(%) br(%) log(ft) qf*b(gt) qf*b(gt) log(fa) b(f)

1/2 1/2 1 0.000 7.9645 92.036 5.569 0.0105 0.0105 5.137 0.0000
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3/2 1/2 1 1.212 4.9526 87.083 5.532 0.0114 0.0219 4.893 0.0000

3/2 1/2 1 1.212 0.0002 87.083 10.007 0.0000 0.0219 4.893 0.0000

5/2 1/2 1 2.279 41.4741 45.609 4.369 0.1664 0.1884 4.653 0.0000

1/2 1/2 2 3.230 1.7981 43.811 5.493 0.0125 0.2009 4.414 0.0000

5/2 1/2 2 3.304 6.5879 37.223 4.909 0.0480 0.2489 4.394 0.0000

3/2 1/2 2 3.600 0.1889 37.034 6.370 0.0017 0.2505 4.313 0.0000

3/2 1/2 2 3.600 0.0160 37.018 7.442 0.0000 0.2505 4.313 0.0002

5/2 1/2 3 4.230 0.7740 36.244 5.575 0.0104 0.2609 4.130 0.0000

3/2 1/2 3 4.343 3.5158 32.728 4.883 0.0510 0.3119 4.096 0.0000

3/2 1/2 3 4.343 0.0008 32.727 8.542 0.0000 0.3119 4.096 0.0000

3/2 1/2 4 4.607 0.1776 32.550 6.096 0.0031 0.3150 4.012 0.0000

3/2 1/2 4 4.607 0.0457 32.504 6.686 0.0000 0.3150 4.012 0.0013

5/2 1/2 4 4.831 1.4188 31.085 5.121 0.0295 0.3444 3.940 0.0000

1/2 1/2 3 4.911 3.5705 27.515 4.693 0.0788 0.4233 3.913 0.0000

5/2 1/2 5 5.124 0.2884 27.226 5.713 0.0075 0.4308 3.840 0.0000

1/2 1/2 4 5.384 0.0341 27.192 6.549 0.0011 0.4319 3.748 0.0000

3/2 1/2 5 5.710 0.0566 27.136 6.206 0.0024 0.4343 3.626 0.0000

3/2 1/2 5 5.710 0.0863 27.049 6.023 0.0000 0.4343 3.626 0.0059

5/2 1/2 6 5.741 0.1659 26.883 5.727 0.0073 0.4416 3.614 0.0000

3/2 1/2 6 6.102 0.0170 26.866 6.571 0.0010 0.4427 3.470 0.0000

3/2 1/2 6 6.102 0.5812 26.285 5.039 0.0000 0.4427 3.470 0.0565

3/2 1/2 7 6.317 0.4671 25.818 5.043 0.0353 0.4779 3.379 0.0000

3/2 1/2 7 6.317 19.3003 6.518 3.427 0.0000 0.4779 3.379 2.3130

5/2 1/2 7 6.345 0.0435 6.474 6.061 0.0034 0.4813 3.367 0.0000

3/2 1/2 8 6.383 0.1781 6.296 5.433 0.0144 0.4957 3.350 0.0000

3/2 1/2 8 6.383 4.2720 2.024 4.053 0.0000 0.4957 3.350 0.5469

1/2 1/2 5 6.421 0.4239 1.600 5.040 0.0355 0.5312 3.334 0.0000

1/2 1/2 6 7.088 0.0162 1.538 6.140 0.0028 0.5407 3.017 0.0000

5/2 1/2 10 7.455 0.4881 0.475 4.465 0.1333 0.7812 2.820 0.0000

---------------------------------------------------------------------------------

---------------------------------------------------------------------------------
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Gamma Branching Calculations

--------------------------------------------------------------------------------

gamma decay for s_310y.deo BR greater than 0.000

! model space = sdpn

! interaction = f9e2pn

! e_p = 1.360 e_n = 0.450 E2

! g_sp = 5.000 g_sn = -3.440 M1 spin

! g_lp = 1.174 g_ln = -0.110 M1 orbital

! g_pp = 0.240 g_pn = -0.160 M1 tensor

Ei Ji ni tau T_(1/2) M1 moment Q moment width

(MeV) (psec) (psec) (u_N) (e^2 fm^2) (eV)

0.000 1/2+ 1 0.000000 0.000000 -0.390 0.00 ----- 0.0000E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

1.212 3/2+ 1 3.070748 2.128489 1.177 -8.44 ----- 0.2143E-03

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 100.0000 0.79 0.6376E-02 0.3925E+02 -7.093 -6.402

2.279 5/2+ 1 0.295945 0.205134 0.473 2.66 ----- 0.2223E-02

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 99.7069 999.00 0.0000E+00 0.4472E+02 -9.040 -9.082

1.212 3/2+ 1 0.2931 -0.21 0.4434E-03 0.2485E+00 0.930 -0.098

3.230 1/2+ 2 0.012390 0.008588 0.150 0.00 ----- 0.5311E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 90.3479 0.00 0.1229E+00 0.0000E+00 0.000 0.000

1.212 3/2+ 1 9.6339 -0.31 0.4911E-01 0.1634E+02 3.561 1.941

2.279 5/2+ 1 0.0182 999.00 0.0000E+00 0.1542E+02 3.174 2.750
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3.304 5/2+ 2 0.103341 0.071631 0.980 1.28 ----- 0.6367E-02

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 15.3164 999.00 0.0000E+00 0.3072E+01 -3.441 0.857

1.212 3/2+ 1 65.8987 -0.47 0.3231E-01 0.2380E+02 6.634 6.498

2.279 5/2+ 1 18.7849 -0.22 0.9146E-01 0.6036E+02 -10.797 -9.651

3.230 1/2+ 2 0.0000 999.00 0.0000E+00 0.7225E+00 1.066 1.404

3.477 7/2+ 1 0.193860 0.134374 2.375 -1.82 ----- 0.3394E-02

Ef Jf nf BR del B(1) B(2) A_p A_n

1.212 3/2+ 1 98.5153 999.00 0.0000E+00 0.6956E+02 13.289 12.252

2.279 5/2+ 1 1.4744 -0.97 0.1298E-02 0.1216E+02 5.470 5.385

3.304 5/2+ 2 0.0103 -0.06 0.5827E-02 0.1150E+02 -5.001 -6.200

3.600 3/2+ 2 0.012534 0.008688 0.443 6.35 ----- 0.5250E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 66.3579 -0.51 0.5096E-01 0.1495E+02 -4.154 -4.633

1.212 3/2+ 1 33.5773 0.39 0.9728E-01 0.3642E+02 6.480 7.236

2.279 5/2+ 1 0.0425 -2.35 0.1277E-03 0.5823E+01 -2.219 -4.017

3.230 1/2+ 2 0.0177 0.03 0.1581E-01 0.1463E+01 -1.708 -0.213

3.304 5/2+ 2 0.0047 -0.07 0.8100E-02 0.5688E+01 -2.342 -3.521

3.477 7/2+ 1 0.0000 999.00 0.0000E+00 0.7974E+00 0.987 0.985

4.230 5/2+ 3 0.007761 0.005380 0.886 0.70 ----- 0.8478E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 0.0137 999.00 0.0000E+00 0.1061E-01 1.010 -2.492

1.212 3/2+ 1 72.5107 0.26 0.1806E+00 0.1962E+02 5.386 7.843

2.279 5/2+ 1 27.3727 -0.06 0.2688E+00 0.3565E+01 2.437 2.911

3.230 1/2+ 2 0.0003 999.00 0.0000E+00 0.2718E+00 -0.513 -1.288

3.304 5/2+ 2 0.0070 1.12 0.2865E-03 0.6064E+01 3.544 2.693

3.477 7/2+ 1 0.0202 0.74 0.2231E-02 0.3119E+02 -7.439 -7.925

3.600 3/2+ 2 0.0754 -0.28 0.2049E-01 0.5698E+02 -10.311 -9.927
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4.343 3/2+ 3 0.022238 0.015414 1.077 8.03 ----- 0.2959E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 57.4115 -0.38 0.1565E-01 0.1715E+01 -1.191 -2.222

1.212 3/2+ 1 41.3628 -0.18 0.3331E-01 0.1633E+01 1.171 2.142

2.279 5/2+ 1 0.5977 -1.21 0.7044E-03 0.3480E+01 -2.262 -1.453

3.230 1/2+ 2 0.5929 0.54 0.8473E-02 0.2911E+02 6.418 4.586

3.304 5/2+ 2 0.0096 -5.91 0.6052E-05 0.2816E+01 -2.257 -0.637

3.477 7/2+ 1 0.0003 999.00 0.0000E+00 0.2007E+00 0.830 -0.518

3.600 3/2+ 2 0.0253 -0.24 0.1492E-02 0.2210E+01 1.887 0.902

4.230 5/2+ 3 0.0000 -1.59 0.2095E-05 0.5934E+01 -2.740 -2.547

4.607 3/2+ 4 0.023771 0.016477 0.802 -7.92 ----- 0.2768E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 14.4199 2.01 0.6980E-03 0.1913E+01 2.184 -0.453

1.212 3/2+ 1 65.4809 -0.22 0.3806E-01 0.2395E+01 2.442 -0.503

2.279 5/2+ 1 16.3837 0.08 0.3082E-01 0.5603E+00 -0.925 -0.532

3.230 1/2+ 2 0.4617 0.42 0.3582E-02 0.4873E+01 -2.415 -2.512

3.304 5/2+ 2 2.9637 0.14 0.3140E-01 0.5171E+01 -2.505 -2.535

3.477 7/2+ 1 0.0129 999.00 0.0000E+00 0.2402E+01 -1.951 -0.994

3.600 3/2+ 2 0.2367 0.13 0.5446E-02 0.1308E+01 1.525 0.473

4.230 5/2+ 3 0.0394 0.06 0.1750E-01 0.6574E+01 2.762 3.047

4.343 3/2+ 3 0.0012 0.13 0.1498E-02 0.4827E+01 -2.675 -1.681

4.831 5/2+ 4 0.018640 0.012920 0.128 14.52 ----- 0.3530E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 48.2236 999.00 0.0000E+00 0.8023E+01 -3.863 -3.742

1.212 3/2+ 1 2.5966 -5.29 0.5754E-04 0.1768E+01 -2.026 -1.115

2.279 5/2+ 1 22.7086 0.37 0.3674E-01 0.1080E+02 5.064 2.583

3.230 1/2+ 2 0.0282 999.00 0.0000E+00 0.1172E+01 1.598 1.065

3.304 5/2+ 2 22.9195 -0.08 0.1948E+00 0.8566E+01 3.299 5.961

3.477 7/2+ 1 1.1901 -0.06 0.1455E-01 0.4385E+00 -0.528 -2.007

3.600 3/2+ 2 2.1162 0.17 0.3359E-01 0.9335E+01 -4.686 -2.469
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4.230 5/2+ 3 0.1762 -0.13 0.2435E-01 0.1536E+02 -5.408 -4.991

4.343 3/2+ 3 0.0393 0.08 0.1023E-01 0.3498E+01 -2.565 -2.428

4.607 3/2+ 4 0.0001 -0.05 0.2398E-03 0.1557E+00 -0.653 -0.175

4.738 7/2+ 2 0.0016 -0.01 0.6236E-01 0.4783E+01 -2.045 -5.724

4.911 1/2+ 3 0.001789 0.001240 -0.184 0.00 ----- 0.3679E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 58.0474 0.00 0.1556E+00 0.0000E+00 0.000 0.000

1.212 3/2+ 1 41.0009 0.20 0.2477E+00 0.9986E+01 3.003 0.856

2.279 5/2+ 1 0.0280 999.00 0.0000E+00 0.1010E+01 1.012 0.101

3.230 1/2+ 2 0.8825 0.00 0.5900E-01 0.0000E+00 0.000 0.000

3.304 5/2+ 2 0.0001 999.00 0.0000E+00 0.5317E-01 0.171 0.207

3.600 3/2+ 2 0.0195 -0.35 0.2442E-02 0.2536E+01 1.314 1.033

4.230 5/2+ 3 0.0000 999.00 0.0000E+00 0.4816E+00 0.610 0.339

4.343 3/2+ 3 0.0037 0.09 0.6407E-02 0.2296E+01 -1.461 -0.346

4.607 3/2+ 4 0.0179 -0.02 0.2026E+00 0.7231E+01 -1.952 -2.551

4.831 5/2+ 4 0.0000 999.00 0.0000E+00 0.4802E+00 0.616 0.315

5.124 5/2+ 5 0.046810 0.032446 1.294 0.20 ----- 0.1406E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 0.3076 999.00 0.0000E+00 0.1518E-01 -0.027 0.754

1.212 3/2+ 1 23.3452 -0.06 0.4715E-02 0.1546E-01 -0.078 0.911

2.279 5/2+ 1 22.7511 -0.24 0.1132E-01 0.1189E+01 0.858 3.343

3.230 1/2+ 2 0.0890 999.00 0.0000E+00 0.6364E+00 -0.864 -1.733

3.304 5/2+ 2 33.4192 0.09 0.6676E-01 0.2191E+01 2.148 1.567

3.477 7/2+ 1 18.7246 -0.14 0.4990E-01 0.5042E+01 -3.831 -0.645

3.600 3/2+ 2 0.3078 -0.43 0.8874E-03 0.1037E+01 -1.985 0.458

4.230 5/2+ 3 0.3298 -0.01 0.5600E-02 0.4046E-02 0.270 -1.162

4.343 3/2+ 3 0.0557 0.68 0.9685E-03 0.1062E+02 -4.298 -4.747

4.607 3/2+ 4 0.0419 -0.59 0.2722E-02 0.5163E+02 -10.269 -8.086

4.738 7/2+ 2 0.6277 0.01 0.1324E+00 0.4879E+00 -0.725 -1.613

4.831 5/2+ 4 0.0005 -0.55 0.1690E-03 0.8518E+01 -4.034 -3.695

4.911 1/2+ 3 0.0000 999.00 0.0000E+00 0.2072E+01 -2.716 0.373
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5.384 1/2+ 4 0.002396 0.001661 -0.427 0.00 ----- 0.2746E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 93.7399 0.00 0.1424E+00 0.0000E+00 0.000 0.000

1.212 3/2+ 1 3.9300 24.88 0.2069E-04 0.1057E+02 -2.412 -2.928

2.279 5/2+ 1 0.1346 999.00 0.0000E+00 0.1588E+01 -0.728 -1.759

3.230 1/2+ 2 0.6597 0.00 0.1565E-01 0.0000E+00 0.000 0.000

3.304 5/2+ 2 0.0425 999.00 0.0000E+00 0.3721E+01 1.768 0.718

3.600 3/2+ 2 1.2192 -0.09 0.5047E-01 0.1944E+01 -0.901 -1.660

4.230 5/2+ 3 0.0011 999.00 0.0000E+00 0.1878E+01 -1.360 -0.196

4.343 3/2+ 3 0.1760 0.11 0.3653E-01 0.5872E+01 2.223 0.899

4.607 3/2+ 4 0.0701 -0.08 0.3517E-01 0.5872E+01 -1.512 -3.046

4.831 5/2+ 4 0.0000 999.00 0.0000E+00 0.1636E+01 -1.002 -0.994

4.911 1/2+ 3 0.0268 0.00 0.6007E-01 0.0000E+00 0.000 0.000

5.124 5/2+ 5 0.0000 999.00 0.0000E+00 0.3937E+01 1.328 2.222

5.710 3/2+ 5 0.003660 0.002537 1.246 6.76 ----- 0.1798E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 77.8778 -0.01 0.6490E-01 0.6053E-02 -0.114 -0.002

1.212 3/2+ 1 15.2811 -0.02 0.2605E-01 0.4489E-02 -0.436 1.020

2.279 5/2+ 1 0.0333 0.67 0.8864E-04 0.4814E-01 -0.198 1.575

3.230 1/2+ 2 4.6813 -0.17 0.4633E-01 0.3015E+01 2.148 1.226

3.304 5/2+ 2 0.0533 5.02 0.2268E-04 0.1416E+01 -2.111 1.092

3.477 7/2+ 1 0.0205 999.00 0.0000E+00 0.8236E+00 0.445 2.687

3.600 3/2+ 2 0.5933 0.04 0.9781E-02 0.6228E-01 0.524 -0.473

4.230 5/2+ 3 0.0329 -0.75 0.1007E-02 0.3717E+01 -2.082 -2.276

4.343 3/2+ 3 0.2281 -0.02 0.1385E-01 0.3561E-01 0.130 0.445

4.607 3/2+ 4 0.9022 0.05 0.1040E+00 0.3312E+01 -1.474 -3.636

4.738 7/2+ 2 0.0003 999.00 0.0000E+00 0.6716E+00 -0.516 -2.083

4.831 5/2+ 4 0.1082 -0.05 0.2465E-01 0.1350E+01 -1.169 -1.632

4.911 1/2+ 3 0.0625 -0.12 0.1874E-01 0.6010E+01 -2.511 -3.306

5.124 5/2+ 5 0.1178 0.03 0.9078E-01 0.3122E+01 1.945 1.975

5.384 1/2+ 4 0.0075 -0.07 0.3340E-01 0.2166E+02 -4.901 -5.872

5.481 7/2+ 3 0.0000 999.00 0.0000E+00 0.7320E+01 2.899 3.263
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5.741 5/2+ 6 0.016548 0.011470 0.940 11.29 ----- 0.3976E-01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 5.8503 999.00 0.0000E+00 0.4626E+00 -1.734 1.537

1.212 3/2+ 1 12.7606 -0.55 0.3621E-02 0.7661E+00 1.574 0.008

2.279 5/2+ 1 49.2195 0.30 0.3727E-01 0.4128E+01 3.110 1.661

3.230 1/2+ 2 4.3081 999.00 0.0000E+00 0.2128E+02 5.939 7.160

3.304 5/2+ 2 0.6739 -5.51 0.5093E-04 0.3743E+01 -2.982 -1.520

3.477 7/2+ 1 7.8246 -0.02 0.2314E-01 0.1727E-01 0.578 -1.031

3.600 3/2+ 2 8.5576 0.10 0.2961E-01 0.1005E+01 -1.577 -0.689

4.230 5/2+ 3 1.5854 -0.05 0.1573E-01 0.2908E+00 -0.842 -0.392

4.343 3/2+ 3 5.8696 -0.15 0.7218E-01 0.1145E+02 -4.942 -3.479

4.607 3/2+ 4 0.0015 3.85 0.2255E-05 0.3725E+00 0.988 0.335

4.738 7/2+ 2 0.8737 -0.10 0.2944E-01 0.3974E+01 2.542 3.168

4.831 5/2+ 4 2.4278 -0.02 0.1105E+00 0.7877E+00 -0.955 -1.943

4.911 1/2+ 3 0.0022 999.00 0.0000E+00 0.2785E+01 2.185 2.480

5.124 5/2+ 5 0.0383 -0.07 0.5569E-02 0.1087E+01 -1.331 -1.653

5.323 9/2+ 1 0.0000 999.00 0.0000E+00 0.1476E+01 -1.883 -0.921

5.384 1/2+ 4 0.0001 999.00 0.0000E+00 0.5171E+01 3.289 2.436

5.481 7/2+ 3 0.0065 -0.05 0.1267E-01 0.5671E+01 -3.073 -3.675

5.710 3/2+ 5 0.0000 0.00 0.3862E-01 0.5515E-02 0.241 -0.323

6.102 3/2+ 6 0.003880 0.002689 1.049 -5.25 ----- 0.1696E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 34.3950 0.37 0.1949E-01 0.1031E+01 1.120 1.129

1.212 3/2+ 1 0.8614 -0.20 0.1037E-02 0.2457E-01 -0.771 1.634

2.279 5/2+ 1 42.0900 -0.22 0.1052E+00 0.5018E+01 -2.804 -1.483

3.230 1/2+ 2 0.6473 0.23 0.3795E-02 0.3582E+00 0.255 1.888

3.304 5/2+ 2 14.1417 0.12 0.9321E-01 0.2385E+01 1.599 2.032

3.477 7/2+ 1 0.5454 999.00 0.0000E+00 0.9202E+01 3.520 2.842

3.600 3/2+ 2 5.6506 -0.29 0.4877E-01 0.9269E+01 3.251 3.706

4.230 5/2+ 3 0.0404 0.81 0.5457E-03 0.1456E+01 1.450 0.980

4.343 3/2+ 3 0.7172 -0.14 0.1891E-01 0.1782E+01 -1.610 -1.069

4.607 3/2+ 4 0.0295 0.08 0.1284E-02 0.5818E-01 -0.359 0.013

4.738 7/2+ 2 0.0063 999.00 0.0000E+00 0.2802E+01 1.962 1.512
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4.831 5/2+ 4 0.0176 0.32 0.1137E-02 0.1051E+01 1.363 0.436

4.911 1/2+ 3 0.6646 -0.07 0.5726E-01 0.3253E+01 1.768 2.672

5.124 5/2+ 5 0.1255 0.02 0.1963E-01 0.1043E+00 -0.039 1.553

5.384 1/2+ 4 0.0334 -0.26 0.1239E-01 0.2271E+02 -5.276 -5.237

5.481 7/2+ 3 0.0000 999.00 0.0000E+00 0.1313E+00 -0.547 0.043

5.710 3/2+ 5 0.0320 0.06 0.7748E-01 0.2254E+02 5.298 5.089

5.741 5/2+ 6 0.0023 0.00 0.7048E-02 0.7448E-02 -0.459 1.002

5.785 7/2+ 4 0.0000 999.00 0.0000E+00 0.1892E+01 -1.366 -1.984

5.983 7/2+ 5 0.0000 999.00 0.0000E+00 0.2404E+00 0.496 0.681

6.317 3/2+ 7 0.001219 0.000845 1.029 -8.66 ----- 0.5398E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 11.1342 -0.45 0.1711E-01 0.1250E+01 -2.330 2.072

1.212 3/2+ 1 15.0990 -0.17 0.5144E-01 0.7948E+00 -1.800 1.480

2.279 5/2+ 1 59.7927 -0.06 0.4219E+00 0.1132E+01 1.257 0.930

3.230 1/2+ 2 1.2088 0.02 0.1914E-01 0.7006E-02 -0.416 0.884

3.304 5/2+ 2 8.5343 0.08 0.1444E+00 0.1549E+01 -1.344 -1.469

3.477 7/2+ 1 0.0035 999.00 0.0000E+00 0.1258E+00 -0.286 -0.712

3.600 3/2+ 2 0.0868 -0.22 0.1923E-02 0.1802E+00 -0.496 -0.387

4.230 5/2+ 3 0.1625 -0.04 0.8317E-02 0.4435E-01 0.184 -1.492

4.343 3/2+ 3 2.6742 0.03 0.1618E+00 0.5307E+00 -0.695 -1.137

4.607 3/2+ 4 0.0088 0.52 0.6431E-03 0.8519E+00 -1.502 0.437

4.738 7/2+ 2 0.0010 999.00 0.0000E+00 0.6488E+00 -0.158 -3.102

4.831 5/2+ 4 0.2920 -0.04 0.4139E-01 0.4796E+00 -0.558 -1.391

4.911 1/2+ 3 0.8478 0.02 0.1421E+00 0.5446E+00 0.817 0.812

5.124 5/2+ 5 0.1193 0.01 0.3272E-01 0.1480E-01 -0.024 -0.467

5.384 1/2+ 4 0.0136 -0.04 0.7806E-02 0.2179E+00 0.737 -0.154

5.481 7/2+ 3 0.0001 999.00 0.0000E+00 0.1160E+01 1.817 -0.706

5.710 3/2+ 5 0.0098 0.03 0.2045E-01 0.7208E+00 1.542 -0.887

5.741 5/2+ 6 0.0113 0.00 0.2767E-01 0.6223E-03 0.212 -0.753

5.785 7/2+ 4 0.0000 999.00 0.0000E+00 0.2006E+00 -0.831 0.522

5.983 7/2+ 5 0.0000 999.00 0.0000E+00 0.3347E-02 0.199 -0.860

6.102 3/2+ 6 0.0002 -0.02 0.8510E-02 0.9254E+00 1.438 -0.070

6.345 5/2+ 7 0.004477 0.003103 0.799 -2.79 ----- 0.1470E+00
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Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 7.9359 999.00 0.0000E+00 0.1407E+01 -1.848 -0.870

1.212 3/2+ 1 23.0814 0.09 0.2148E-01 0.9398E-01 0.633 -0.244

2.279 5/2+ 1 18.0718 -0.12 0.3363E-01 0.4155E+00 -1.029 -0.399

3.230 1/2+ 2 0.0575 999.00 0.0000E+00 0.3572E+00 -0.162 -2.764

3.304 5/2+ 2 0.9538 0.64 0.3060E-02 0.1931E+01 -2.178 -0.983

3.477 7/2+ 1 41.6568 0.09 0.2223E+00 0.2960E+01 2.871 0.689

3.600 3/2+ 2 0.2610 -0.20 0.1539E-02 0.1179E+00 -0.801 0.552

4.230 5/2+ 3 2.0329 -0.11 0.2693E-01 0.1051E+01 1.428 1.265

4.343 3/2+ 3 2.0244 -0.12 0.3157E-01 0.1583E+01 2.584 -0.961

4.607 3/2+ 4 0.9477 0.05 0.2284E-01 0.2882E+00 0.902 0.197

4.738 7/2+ 2 2.5438 0.03 0.7768E-01 0.4862E+00 -1.088 -0.507

4.831 5/2+ 4 0.0159 0.54 0.4527E-03 0.8125E+00 1.430 0.585

4.911 1/2+ 3 0.1020 999.00 0.0000E+00 0.3065E+02 7.327 7.994

5.124 5/2+ 5 0.0518 0.70 0.2416E-02 0.1153E+02 -4.413 -5.148

5.323 9/2+ 1 0.0002 999.00 0.0000E+00 0.3427E+00 -1.182 0.385

5.384 1/2+ 4 0.0001 999.00 0.0000E+00 0.2162E+00 0.813 0.075

5.481 7/2+ 3 0.0169 -0.08 0.3295E-02 0.3841E+00 0.930 0.563

5.710 3/2+ 5 0.0689 0.01 0.3416E-01 0.2031E+00 0.571 0.726

5.741 5/2+ 6 0.0494 -0.02 0.2844E-01 0.6481E+00 1.077 1.129

5.785 7/2+ 4 0.1178 0.02 0.8511E-01 0.1378E+01 1.888 0.684

5.822 9/2+ 2 0.0000 999.00 0.0000E+00 0.4423E+00 1.215 -0.052

5.983 7/2+ 5 0.0098 0.01 0.2632E-01 0.5551E+00 1.377 -0.106

6.033 9/2+ 3 0.0000 999.00 0.0000E+00 0.1961E-01 0.069 0.553

6.102 3/2+ 6 0.0001 -0.03 0.7623E-03 0.1554E+00 0.233 1.443

6.317 3/2+ 7 0.0000 0.00 0.7526E-02 0.3309E-01 0.297 0.092

6.383 3/2+ 8 0.001879 0.001303 0.722 -7.91 ----- 0.3501E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 15.9169 -0.25 0.1738E-01 0.3931E+00 1.342 -1.268

1.212 3/2+ 1 6.2754 -0.10 0.1357E-01 0.7829E-01 0.901 -1.479

2.279 5/2+ 1 50.2996 0.09 0.2182E+00 0.1504E+01 1.145 1.991

3.230 1/2+ 2 7.5002 0.05 0.7217E-01 0.2159E+00 0.323 1.090

3.304 5/2+ 2 13.5578 -0.18 0.1362E+00 0.6350E+01 -3.270 -1.319
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3.477 7/2+ 1 0.0212 999.00 0.0000E+00 0.4436E+00 1.609 -1.904

3.600 3/2+ 2 0.4143 -0.23 0.5513E-02 0.5498E+00 1.504 -1.250

4.230 5/2+ 3 0.4627 0.12 0.1382E-01 0.6076E+00 -0.968 -0.538

4.343 3/2+ 3 3.3777 -0.09 0.1192E+00 0.3656E+01 -1.899 -2.757

4.607 3/2+ 4 0.3841 -0.09 0.2056E-01 0.7285E+00 -0.840 -1.253

4.738 7/2+ 2 0.0324 999.00 0.0000E+00 0.1167E+02 -4.786 -0.716

4.831 5/2+ 4 0.3200 0.14 0.2541E-01 0.2776E+01 -2.008 -1.335

4.911 1/2+ 3 1.3862 -0.08 0.1305E+00 0.5691E+01 2.458 3.172

5.124 5/2+ 5 0.0146 -0.16 0.2153E-02 0.5256E+00 -0.910 -0.472

5.384 1/2+ 4 0.0127 -0.13 0.3788E-02 0.9063E+00 -1.643 0.734

5.481 7/2+ 3 0.0000 999.00 0.0000E+00 0.1172E-01 -0.562 2.179

5.710 3/2+ 5 0.0233 0.03 0.2307E-01 0.5768E+00 0.447 2.025

5.741 5/2+ 6 0.0005 -0.13 0.5525E-03 0.3469E+00 -0.661 -0.620

5.785 7/2+ 4 0.0000 999.00 0.0000E+00 0.8658E-02 0.340 -1.441

5.983 7/2+ 5 0.0000 999.00 0.0000E+00 0.2836E+00 -0.558 -0.681

6.102 3/2+ 6 0.0005 0.04 0.7379E-02 0.2104E+01 1.331 2.425

6.317 3/2+ 7 0.0000 0.00 0.7683E-02 0.4167E+00 1.075 -0.380

6.345 5/2+ 7 0.0000 0.00 0.2678E-01 0.5134E-02 -0.886 2.360

6.421 1/2+ 5 0.004032 0.002795 -0.993 0.00 ----- 0.1632E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 87.6292 0.00 0.4663E-01 0.0000E+00 0.000 0.000

1.212 3/2+ 1 0.5384 -0.86 0.3078E-03 0.1212E+00 -0.927 1.707

2.279 5/2+ 1 5.1445 999.00 0.0000E+00 0.8541E+01 2.703 1.016

3.230 1/2+ 2 1.8775 0.00 0.8141E-02 0.0000E+00 0.000 0.000

3.304 5/2+ 2 2.3516 999.00 0.0000E+00 0.1618E+02 -3.183 -3.022

3.600 3/2+ 2 1.8544 -0.23 0.1106E-01 0.1050E+01 0.718 1.051

4.230 5/2+ 3 0.1542 999.00 0.0000E+00 0.6181E+01 1.583 3.030

4.343 3/2+ 3 0.1744 -0.38 0.2387E-02 0.1167E+01 0.807 0.958

4.607 3/2+ 4 0.1086 -0.10 0.2537E-02 0.1135E+00 -0.175 -0.531

4.831 5/2+ 4 0.0332 999.00 0.0000E+00 0.6610E+01 -2.460 -0.646

4.911 1/2+ 3 0.0000 0.00 0.1356E-05 0.0000E+00 0.000 0.000

5.124 5/2+ 5 0.0039 999.00 0.0000E+00 0.2167E+01 1.041 1.481

5.384 1/2+ 4 0.0313 0.00 0.3949E-02 0.0000E+00 0.000 0.000

5.710 3/2+ 5 0.0788 -0.13 0.3041E-01 0.1417E+02 -2.726 -3.594
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5.741 5/2+ 6 0.0002 999.00 0.0000E+00 0.2782E+01 1.313 1.274

6.102 3/2+ 6 0.0193 -0.03 0.8352E-01 0.8765E+01 2.224 2.582

6.317 3/2+ 7 0.0005 0.01 0.5756E-01 0.7924E+01 -1.678 -3.774

6.345 5/2+ 7 0.0000 999.00 0.0000E+00 0.5638E-03 0.172 -0.595

6.383 3/2+ 8 0.0001 0.00 0.2476E+00 0.3479E+02 -4.595 -4.649

7.088 1/2+ 6 0.000307 0.000212 0.979 0.00 ----- 0.2147E+01

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 96.6628 0.00 0.5030E+00 0.0000E+00 0.000 0.000

1.212 3/2+ 1 0.2146 0.75 0.1256E-02 0.2929E+00 -0.777 0.649

2.279 5/2+ 1 0.2448 999.00 0.0000E+00 0.2533E+01 2.147 -1.486

3.230 1/2+ 2 0.5121 0.00 0.1653E-01 0.0000E+00 0.000 0.000

3.304 5/2+ 2 0.0036 999.00 0.0000E+00 0.1231E+00 0.867 -1.519

3.600 3/2+ 2 0.9135 -0.15 0.3900E-01 0.1048E+01 1.143 -0.235

4.230 5/2+ 3 0.0017 999.00 0.0000E+00 0.2317E+00 -0.643 0.430

4.343 3/2+ 3 0.1280 0.25 0.1079E-01 0.1291E+01 0.757 1.284

4.607 3/2+ 4 0.1666 -0.18 0.1958E-01 0.1477E+01 -1.567 0.918

4.831 5/2+ 4 0.0030 999.00 0.0000E+00 0.1384E+01 0.655 1.717

4.911 1/2+ 3 0.7835 0.00 0.1407E+00 0.0000E+00 0.000 0.000

5.124 5/2+ 5 0.0000 999.00 0.0000E+00 0.3903E-01 -0.078 -0.387

5.384 1/2+ 4 0.0306 0.00 0.1148E-01 0.0000E+00 0.000 0.000

5.710 3/2+ 5 0.2488 0.02 0.1762E+00 0.3128E+00 0.736 -0.466

5.741 5/2+ 6 0.0006 999.00 0.0000E+00 0.3548E+01 1.862 0.292

6.102 3/2+ 6 0.0332 0.02 0.6408E-01 0.2864E+00 0.124 1.306

6.317 3/2+ 7 0.0266 0.04 0.1075E+00 0.3798E+01 1.405 1.877

6.345 5/2+ 7 0.0000 999.00 0.0000E+00 0.1738E+00 0.560 -0.382

6.383 3/2+ 8 0.0145 -0.05 0.7644E-01 0.4873E+01 -2.463 0.505

6.421 1/2+ 5 0.0114 0.00 0.7110E-01 0.0000E+00 0.000 0.000

6.702 5/2+ 8 0.0000 999.00 0.0000E+00 0.1762E-01 0.062 0.229

7.010 5/2+ 9 0.0000 999.00 0.0000E+00 0.1157E+01 0.885 0.704

7.455 5/2+ 10 0.004728 0.003277 1.533 -2.61 ----- 0.1392E+00

Ef Jf nf BR del B(1) B(2) A_p A_n

0.000 1/2+ 1 0.4127 999.00 0.0000E+00 0.3093E-01 0.515 -0.599
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1.212 3/2+ 1 33.1050 0.17 0.1586E-01 0.1778E+00 0.792 -0.096

2.279 5/2+ 1 0.5511 -0.31 0.4344E-03 0.2310E-01 0.217 0.172

3.230 1/2+ 2 0.3433 999.00 0.0000E+00 0.4401E+00 0.935 0.786

3.304 5/2+ 2 12.2493 -0.13 0.2021E-01 0.3056E+00 -0.768 -0.688

3.477 7/2+ 1 0.3102 3.40 0.4704E-04 0.4948E+00 -1.753 1.469

3.600 3/2+ 2 1.2961 -0.81 0.1644E-02 0.1038E+01 -1.692 -0.433

4.230 5/2+ 3 6.1183 -0.07 0.2180E-01 0.1499E+00 0.397 0.909

4.343 3/2+ 3 0.0528 -0.05 0.2099E-03 0.6801E-03 -0.091 0.133

4.607 3/2+ 4 29.1054 -0.20 0.1453E+00 0.1068E+02 -3.974 -5.778

4.738 7/2+ 2 0.5800 -1.16 0.1485E-02 0.3870E+01 -2.870 -2.035

4.831 5/2+ 4 2.2139 -0.02 0.1471E-01 0.1889E-01 -0.001 0.752

4.911 1/2+ 3 0.2467 999.00 0.0000E+00 0.3995E+01 3.046 1.675

5.124 5/2+ 5 0.2387 3.66 0.1574E-03 0.5570E+01 3.174 3.255

5.323 9/2+ 1 0.0002 999.00 0.0000E+00 0.9584E-02 0.027 0.452

5.384 1/2+ 4 0.0048 999.00 0.0000E+00 0.2162E+00 0.261 1.744

5.481 7/2+ 3 5.9569 0.10 0.9213E-01 0.3320E+01 2.042 3.749

5.710 3/2+ 5 1.8912 -0.12 0.4212E-01 0.3020E+01 -2.477 -1.975

5.741 5/2+ 6 0.2458 -0.15 0.5741E-02 0.6010E+00 1.675 -0.841

5.785 7/2+ 4 0.0209 0.61 0.3929E-03 0.7590E+00 -0.995 -1.736

5.822 9/2+ 2 0.0029 999.00 0.0000E+00 0.4283E+00 1.032 0.445

5.983 7/2+ 5 1.0836 -0.04 0.4074E-01 0.4982E+00 1.225 0.141

6.033 9/2+ 3 0.0095 999.00 0.0000E+00 0.2821E+01 2.424 1.817

6.102 3/2+ 6 0.1141 0.69 0.3760E-02 0.1394E+02 4.974 5.289

6.317 3/2+ 7 3.1906 -0.02 0.2600E+00 0.8348E+00 -1.485 -0.486

6.345 5/2+ 7 0.2738 0.21 0.2305E-01 0.1162E+02 4.549 4.805

6.383 3/2+ 8 0.2339 -0.03 0.2278E-01 0.3146E+00 -0.694 -0.957

6.421 1/2+ 5 0.0088 999.00 0.0000E+00 0.1287E+02 4.722 5.262

6.487 7/2+ 6 0.0543 -0.05 0.7176E-02 0.2360E+00 -0.558 -0.959

6.702 5/2+ 8 0.0555 0.03 0.1562E-01 0.2489E+00 -0.689 -0.633

7.010 5/2+ 9 0.0009 -0.02 0.1267E-02 0.4298E-01 0.338 0.106

7.045 9/2+ 4 0.0000 999.00 0.0000E+00 0.1170E+01 -1.487 -1.394

7.088 1/2+ 6 0.0000 999.00 0.0000E+00 0.9744E-01 0.423 0.419

7.120 1/2+ 7 0.0000 999.00 0.0000E+00 0.4755E+00 1.032 0.634

7.157 3/2+ 9 0.0257 0.02 0.1166E+00 0.1078E+02 -4.061 -5.595

7.166 7/2+ 7 0.0000 0.48 0.1354E-04 0.5257E+00 -0.817 -1.479

7.319 3/2+ 10 0.0031 0.01 0.1474E+00 0.1191E+02 4.305 5.778
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APPENDIX B

Detector Data Sheets

In order to facilitte use of this thesis as a reference tool, we have included here the data

sheets for a number of detectors specific to our experimental setup. While we refer the

reader to the appropriate literature for devices like the A1900 [65] and the RFFS [66], we

have here included data sheets for the silicon PIN detectors used in the experiment, the

plastic scintillator, and its attached photomultiplier tube.
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Figure B.1: A schematic of the silicon PIN detectors used for E12028.
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    ELJEN TECHNOLOGY   Tel: (325) 235-4276 or (888) 800-8771 
 PO Box 870, 300 Crane Street Fax: (325) 235-0701 
 Sweetwater  TX 79556 USA  Website: www.elj entechnology .com 
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EJ-200 PLASTIC SCINTILLATOR 

 
This plastic scintillator combines the two important properties of long optical attenuation length and fast 
timing and is therefore particularly useful for time-of-flight systems using scintillators greater than one 
meter long.  Typical measurements of 4 meter optical attenuation length are achieved in strips of cast 
sheet in which a representative size is 2 cm x 20 cm x 300 cm. 
 

The combination of long attenuation length, high light output and an emission spectrum well matched to 
the common photomultipliers recommends EJ-200 as the detector of choice for many industrial 
applications such as gauging and environmental protection where high sensitivity of signal uniformity are 
critical operating requirements. 
 

Physical and Scintillation Constants : 
Light Output, % Anthracene ..................................... 64 
Scintillation Efficiency, photons/1 MeV e- ................. 10,000 
Wavelength of Max. Emission, nm .......................... 425 
Rise Time, ns ........................................................... 0.9 
Decay Time, ns ........................................................ 2.1 
Pulse Width, FWHM, ns ........................................... ~2.5 
No. of H Atoms per cm3, x 1022 ................................ 5.17 
No. of C Atoms per cm3, x 1022 ................................ 4.69 
No. of Electrons per cm3, x 1023 ............................... 3.33 
Density, g/cc: ........................................................... 1.023 

 

Poly mer Base: …………. Polyvinyltoluene Light Output vs. Temperature:  

Refractive Index: ………. 1.58 At +60oC, L.O. = 95% of that at +20oC 

Vapor Pressure: ……….. Is vacuum-compatible No change from +20oC to -60oC 
Coefficient of Linear  
Expansion: ……………… 7.8 x 10-5 below +67qC  
 

Chemical Compatibility :  Is attacked by aromatic solvents, chlorinated solvents, ketones, solvent 
bonding cements, etc.  It is stable in water, dilute acids and alkalis, lower alcohols and silicone greases.  
It is safe to use most epoxies and “super glues” with EJ-200. 

 

Figure B.2: The Hammamatsu EJ200 Plastic Scintillator Data Sheet.
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Figure B.3: A schematic of the plastic scintillator used in the experiment.
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[23] D. Pérez-Loureiro, C. Wrede, M. B. Bennett, S. N. Liddick, A. Bowe, B. A. Brown,
A. A. Chen, K. A. Chipps, N. Cooper, D. Irvine, E. McNeice, F. Montes, F. Naqvi,
R. Ortez, S. D. Pain, J. Pereira, C. J. Prokop, J. Quaglia, S. J. Quinn, J. Sakstrup,
M. Santia, S. B. Schwartz, S. Shanab, A. Simon, A. Spyrou, and E. Thiagalingam.
β-delayed γ decay of 26P: Possible evidence of a proton halo. Phys. Rev. C, 93:064320,
Jun 2016.

[24] C. Iliadis, R. Longland, A. E. Champagne, A. Coc, and R. Fitzgerald. Charged-particle
thermonuclear reaction rates: II. tables and graphs of reaction rates and probability
density functions. Nucl. Phys. A, 841(1):31–250, 2010.
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cco, A. M. Bizzeti-Sona, P.G. Bizzeti, A. Bracco, F. Brandolini, et al. Isospin symmetry
breaking at high spin in the mirror nuclei 35Ar and 35Cl. Phys. Rev. C, 75(3):034317,
2007.

[62] D. T. Doherty, G. Lotay, P. J. Woods, D. Seweryniak, M. P. Carpenter, C. J. Chiara,
H. M. David, R. V. F. Janssens, L. Trache, and S. Zhu. Key resonances in the
30P(p, γ)31S gateway reaction for the production of heavy elements in ONe novae.
Phys. Rev. Lett., 108(26):262502, 2012.

[63] D. T. Doherty, P. J. Woods, G. Lotay, D. Seweryniak, M. P. Carpenter, C. J. Chiara,
H. M. David, R. V. F. Janssens, L. Trache, and S. Zhu. Level structure of 31S: From
low excitation energies to the region of interest for hydrogen burning in novae through
the 30P(p, γ)31S reaction. Phys. Rev. C, 89(4):045804, 2014.

[64] A. Parikh, K. Wimmer, T. Faestermann, R. Hertenberger, J. José, R. Longland, H-F.
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