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ABSTRACT

NUCLEAR STRUCTURE OF PROTON-RICH INTERMEDIATE MASS
NUCLEI STUDIED WITH ADVANCED LIFETIME MEASUREMENT

TECHNIQUES

By

Christopher Scott Morse

The transition matrix elements between excited nuclear states provide valuable informa-

tion about the structure of exotic nuclei. Lifetime measurements are a model-independent

way to deduce these matrix elements from experimental data. Two studies of proton-rich

nuclei near mass 70 are presented herein using advanced lifetime measurement techniques.

The first study is a measurement of the 8+1 and 9+1 states in the odd-N , odd-Z nucleus

70As. The lifetimes of these states were determined by the application of the γ-ray lineshape

method to γ-γ coincidence data. The states were populated using with the 9Be(78Rb,70As)

reaction and γ rays were detected with the Segmented Germanium Array in coincidence with

reaction products detected in the focal plane of the S800 Spectrograph. The B(E1; 8+ → 7−)

and B(M1; 9+ → 8+) transition strengths were deduced and were found to support the

assignment of these states to a coupling of the odd proton and neutron in the g9/2 orbital.

The second study is a measurement of the 2+1 state lifetime in the N = Z nucleus 74Rb.

A novel technique called the Differential Recoil Distance Method was used to extract the

lifetime from the γ-ray spectra. The next-generation γ-ray detector array GRETINA was

used in the experiment, again coupled to the S800 Spectrograph to detect residues from

9Be(74Kr,74Rb) charge exchange reactions. The B(E2; 2+1 → 0+1 ) strength was calculated

and is consistent with the measured strength of the transition between the isobaric analogue

states in 74Kr, which may be a signature of shape coexistence in 74Rb.
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Chapter 1

Introduction

1.1 The atomic nucleus

At the center of every atom is an atomic nucleus. The nucleus carries the positive charge of

the atom in the form of electrically positive protons, which keep the electrons bound through

the Coulomb force. It also contains neutrons, which are electrically neutral. A given nucleus

is labeled in the notation A
ZXN , where X is the chemical symbol which specifies the number

of protons Z, N is the number of neutrons, and A = N+Z is the mass number. This label is

often abbreviated to AX, since the number of protons determines the element and hence Z,

and N can be determined from N = A−Z. The nucleus occupies only a tiny fraction of the

atomic volume: typical atomic radii are on the order of angstroms (10−10 m) while typical

nuclear radii are on the order of 10 femtometers (10−14 m). Despite this, nuclei contain

nearly all of the mass of the atom (over 99.9%), making them extremely dense. Since only

positive charges exist in this dense object, another force must be present which keeps the

protons and neutrons (collectively called nucleons) bound. This force is the strong nuclear

force, and understanding how it governs nuclear behavior is one of the primary goals of

nuclear science.

Just as atoms are arranged according to the number of electrons which they have, nuclei

are organized according to the number of protons and neutrons that they contain. This

gives rise to the so-called chart of the nuclides (sometimes called the Segrè chart, after
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Figure 1.1: A drawing of the chart of the nuclides. The number of protons is plotted on the
vertical axis and the number of neutrons on the horizontal axis. The black squares are the
stable nuclei, and lie along the so-called “valley of stability.” The blue area indicates nuclei
which have been observed, while the red area represents nuclei which are predicted to exist
but have not been seen experimentally. Finally, the dashed lines indicate the locations of
the canonical magic numbers. For interpretation of references to color in this and all other
figures, the reader is referred to the electronic version of this dissertation.

Emilio Segrè), shown in Fig. 1.1. In this plot, the nuclei are arranged such that the number

of protons in a nucleus is plotted on the vertical axis and the number of neutrons is plotted

on the horizontal axis. Rows of nuclei with the same number of protons are called isotopes,

while columns of nuclei with the same number of neutrons are called isotones. Nuclei which

have the same mass but different numbers of protons and neutrons lie along diagonal lines

sloping downward and to the right, and are termed isobars. The black boxes in the figure

indicate the stable nuclei, while the blue area represents observed unstable nuclei. The

red portion of the figure indicates those nuclei predicted to exist but which have never been
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observed. The borders of the shaded area are known as the driplines and represent the limits

of nuclear binding, beyond which additional nucleons will simply “fall off” the nucleus. The

upper left boundary is known as the proton dripline, beyond which no more protons may

be added to a nucleus. On the other side of the shaded area is the corresponding neutron

dripline, beyond which no more neutrons may be added to a nucleus.

The dashed lines in Fig. 1.1 represent the so-called magic numbers of 2, 8, 20, 28, 50,

82, and 126 [1]. Nuclei that have a magic number of either protons or neutrons are called

magic nuclei, while those that have a magic number of both protons and neutrons are

said to be doubly magic. Such nuclei exhibit certain unique behavior, such as an increased

amount of energy necessary to unbind them compared to neighboring nuclei, as well as higher

first excited state energies and smaller transition probabilities between the first excited and

ground states (more on this in Sec. 1.3) compared to their neighbors. Together, these traits

suggest that magic nuclei are especially stable, and this in turn suggests that some internal

organization of the constituent nucleons in a nucleus exists. Understanding and predicting

how this structure arises is a natural goal once this observation has been made.

Another noteworthy feature of Fig 1.1 is that the stable nuclei all fall along a relatively

narrow band known as the valley of stability. These stable nuclei represent only a small

fraction of the nuclei depicted on the chart: of the roughly 7000 nuclear systems predicted

to exist [2], only about 300 do not undergo spontaneous decay to more stable species. In

light systems, the stable nuclei tend to have the same number of protons and neutrons, but

for heavier nuclei the valley of stability trends towards having more neutrons than protons.

This is because, as more protons are added to the nucleus, a greater number of neutrons are

required to balance the increasing contribution of the repulsive Coulomb force. This also

explains why the majority of the nuclei that are expected to exist but have so far not been
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observed lie on the neutron-rich side of the valley of stability. As protons are added to a

nucleus, the Coulomb potential tends to unbind the nucleus, whereas neutrons do not feel

the Coulomb potential and so more may be added before the nucleus becomes unbound. For

this reason, the location of the proton dripline is determined to a much higher mass than

the neutron dripline, which lies much further from stability.

An important feature of the nuclear force is that it is charge symmetric and, more gen-

erally, charge independent. That is to say, the nuclear force does not distinguish between

protons and neutrons. It is therefore convenient to introduce a formalism which capital-

izes on this feature, and treat protons and neutrons as different states of the same particle,

i.e. the nucleon. This formalism is called isospin, and the charge independence of the nu-

clear force is the manner in which the isospin symmetry between protons and neutrons is

manifested [3, 4]. This symmetry is only approximate, however, since it is violated by the

Coulomb potential. In the isospin description of the nucleus, nucleons (both protons and

neutrons) have isospin T = 1
2 , but opposite isospin projections Tz. The convention in nu-

clear physics is to assign neutrons an isospin projection of +1
2 and protons a projection of

−1
2 . In this sense, the isospin states of the nucleon are analogous to (and follow the same

mathematical rules as) intrinsic spin, and hence the name isospin was given to it.

Just as with angular momentum, the isospin of individual nucleons can be coupled to

describe the overall isospin of the nuclear state they comprise. This leads to the concept

of isospin multiplets, i.e. groups of states with the same isospin T but different isospin

projections Tz. Such states are termed isobaric analogue states, and they can be identified

by examining the spectra of nuclei with the same number of nucleons but different numbers

of protons and neutrons. Figure 1.2 illustrates this concept for several nuclei with mass

A = 58. The energies of several excited states, for which the contribution of the Coulomb
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Figure 1.2: A schematic diagram showing a portion of the level schemes for several nuclei
with mass A = 58, with 58Ni bolded to indicate that it is stable. The levels joined together
by dashed lines indicate isobaric analogue states with the indicated value of isospin T .
The isobaric analogue states have been drawn at exactly the same energy in this figure to
emphasize their relationship with each other, effectively removing the contribution of the
Coulomb interaction which violates isospin symmetry. Also shown for the Tz = 0 nucleus
58Cu are several T = 0 states that have no analogue states and are thus isospin singlet
states. Figure is taken and modified from [5].

interaction has been removed, are drawn. The isobaric analogue states are shown connected

by dashed lines. As can be seen, the Tz = 0 nucleus 58
29Cu29 has several states without

analogues, which are isospin singlet states with T = 0. Several other states form triplets

in the Ni, Cu, and Zn nuclei with T = 1, and higher states form T = 2 quintets with all

five nuclei represented. In principle, states with isospin up to T = A/2 will be present, but

in practice such states cannot be observed as they must lie at extremely high excitation

energies. However, the identification of the low-lying isobaric analogue states is important

because, due to isospin symmetry, the nature of the analogue states should be the same in

all nuclei in a multiplet. Therefore, information obtained on one nuclear state in a multiplet
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can provide predictions about the other states in the multiplet, thereby giving guidance to

experimental studies. This concept will be important for the work presented in Ch. 5.

1.2 Nuclear structure models

The realization that nuclei possess an internal structure leads naturally to a desire to un-

derstand and predict this structure. Given that nuclei are composed of quantum mechanical

particles, their behavior can, in principle, be predicted by solving the Schrödinger equation

for a system of A nucleons:

HΨ = EΨ, (1.1)

with H = T + U , where T is the kinetic energy and U is the nuclear potential. Unfortu-

nately, while various properties of the nuclear force are known, the exact form of the nuclear

potential U is not known. For this reason, a great deal of effort has gone and continues to

go into discovering ways to model the nucleus despite not knowing the nuclear potential. As

the results of the studies presented within this work are primarily applicable to the study

of nuclear structure, a few comments about nuclear structure models are germane to this

discussion.

1.2.1 The nuclear shell model

The nuclear shell model [6] is perhaps the best known example of a nuclear structure model,

and it has been very successful in describing various facets of nuclear structure [7, 8, 9].

In this model, nucleons are organized into groups of orbitals or shells. These orbitals are

characterized by the quantum numbers of the nucleons that occupy them: the principal (or

radial) quantum number n, which denotes the number of times the radial wave function
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changes sign; the orbital angular momentum quantum number l, which is usually given in

spectroscopic notation such that l = 0, 1, 2, 3, 4, 5, ... is denoted as s, p, d, f, g, h, ...; and the

total angular momentum quantum number j = l±s, where s = 1
2~ is the spin of the nucleon.

Since nucleons are fermions, no more than one can have any given combination of quantum

numbers in a nucleus. This restricts the number of nucleons that can occupy an orbital to

the number of magnetic substates mj (of which there are 2j + 1) associated with a given

orbital. Orbitals for protons and neutrons are treated separately because these two kinds of

particles can be distinguished by their isospin, and are typically denoted with a π for protons

or a ν for neutrons. The full notation for a given proton orbital with, e.g. n = 1, l = 2, and

j = 5
2 , would be π1d5/2.

Historically, it was the observation of the magic numbers that prompted the development

of the shell model. After all, a proper model of the nucleus should be able to reproduce the

signature of structure that the magic numbers provide. However, it took some effort to

get the model to this point. As shown in Fig. 1.3, the convenient choice of the harmonic

oscillator as the nuclear potential proves to be insufficient. The levels drawn on the left-hand

side of the figure show that, while the harmonic oscillator does result in certain numbers of

nucleons that correspond to filled shells, they do not correspond to the magic numbers. A

more realistic potential is the Woods-Saxon potential, which has the form

U(r) =
U0

1 + exp(r −R)/a
, (1.2)

where U0 is the depth of the potential well, R is the nuclear radius and a is a parameter

that describes the diffuseness of the nuclear surface. The main effect of this potential is

to break the degeneracy of the orbitals with different l in the harmonic oscillator, but this
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potential still does not reproduce the magic numbers, as shown in the center column of

Fig. 1.3. The breakthrough that solved the puzzle came with the addition of a term that

couples the intrinsic spin and orbital angular momentum of a nucleon (the so-called spin-

orbit term [11, 12]): Uso = −Uso(r)~l · ~s. This term breaks the degeneracy between orbitals

with intrinsic spin and orbital angular momentum aligned and antialigned. The right-hand

column of Fig. 1.3 shows these energy levels, along with the location of the shell gaps which

correspond to the observed magic numbers.

The shell model can be used to make predictions about nuclear structure, such as the

nuclear energy levels and transition probabilities between those levels. However, the com-

plexity of the calculations increases very quickly with increasing numbers of nucleons. To

make the computational size of the problem tractable, the standard approach in the shell

model is to make the assumption that a subset of the nucleons in a nucleus form an inert core

which does not contribute to the calculation. A common choice is to choose the core to be a

doubly magic nucleus close to the nucleus for which the calculation is being performed. The

number of particles in the calculation is then reduced to those remaining outside the core,

called valence nucleons. The number of orbitals available to the valence nucleons (called

the valence space) is also typically restricted to only a few orbitals above the closed core to

further reduce the computational cost of the calculation. To compensate for this truncation

of the calculation, effective interactions must be developed which make up for the effects of

the missing degrees of freedom. The validity of a given effective interaction can be tested

by comparing its predictions against experiments. In turn, the results of experiments can

prompt the development of new effective interactions.
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1.2.2 The Nilsson model

While the shell model has been very successful in describing nuclei which have a spherical

shape, a large number of nuclei exhibit non-spherical properties. To describe these nuclei,

it is important to have tools that can deal with deformed shapes. One example of such a

theoretical tool is the Nilsson model, which is an extension of the shell model to non-spherical

(but still axially symmetric) potentials [13]. The effect of the non-spherical potential breaks

the degeneracy of the states with different projections of the angular momentum, so that

each spherical shell model orbital gives rise to (2j + 1)/2 Nilsson orbitals. Since the orbitals

are now distinct, they are given new labels according the scheme Ω[NnzΛ], where Ω is the

projection of the particle angular momentum onto the symmetry axis of the potential, N

is the principal quantum number of the major harmonic oscillator shell (see Fig. 1.3), nz is

the number of nodes of the wavefunction along the symmetry axis direction, and Λ is the

component of the orbital angular momentum along the symmetry axis of the potential. The

splitting of these orbitals is dependent on both the sign of the deformation (i.e. whether

the nucleus is prolate or oblate) and also on its magnitude. For a prolate deformation, the

orbitals with the lowest projection of their angular momentum (the lowest Ω) are the lowest

in energy, while for an oblate deformation the highest projections are lowered the most.

A diagram showing the Nilsson orbitals for nuclei with N ≈ 82− 126 is shown in Fig. 1.4

and demonstrates the effect of the lowering or raising of the orbitals with different angular

momentum projections with changing deformation, which is plotted along the horizontal axis.

Notice that for no deformation (i.e. a spherical nucleus) the Nilsson model reverts to the

standard shell model with the canonical magic numbers. However, for non-zero deformation,

the large gaps between the orbitals corresponding to magic numbers quickly disappear as
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Figure 1.4: A Nilsson diagram showing the single-particle energy levels in the Nilsson scheme,
plotted against the deformation parameter along the horizontal axis. For zero deformation,
the shell model magic numbers are obtained, but for other deformation parameters (prolate
only in this figure), the splitting of the shell model orbitals fills in the gaps between magic
numbers, giving rise to a more complicated series of single-particle energy levels. Figure is
taken from [14].

the now non-degenerate orbitals quickly fill the space between the spherical single-particle

orbitals. However, at certain deformations, new gaps will sometimes open up between the

Nilsson orbitals, which can indicate that a nucleus with a certain number of nucleons may

experience a particular stability at that value of the deformation. This can be a way to

predict the shape of a deformed nucleus associated with a particular nucleon number.
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1.2.3 Collective nuclear models

Beyond the microscopic calculations of the shell model and the Nilsson model, attempts

to model nuclei have also been made using a macroscopic geometrical description of the

nucleus as a whole [15]. This is especially useful for nuclei in which many nucleons are

actively determining the properties of the nucleus. Such models are called collective models

because they attempt to describe the nucleus from the standpoint of a collection of nucleons

moving coherently, rather than many independently acting particles. Two such descriptions

are especially well-known: the vibrational model and the rotational model. These models are

usually discussed for even-even nuclei, which always have 0+ ground states and usually have

2+ first excited states. It is also possible to extend the discussion to odd-A and odd-odd

nuclei by considering the coupling of one or a few nucleons to an even-even core.

The vibrational model describes nuclei which, while still spherical, experience oscillations

involving many of their constituent nucleons. Most typically, quadrupole vibrations around a

spherical shape are considered, although in principle any order vibration could be considered.

However, since a dipole term in leading order corresponds only to the overall translation of

the nucleus, the quadrupole vibration is typically considered first. The excited states in this

model are treated as arising from quadrupole phonon excitations in the nucleus. Starting

from the 0+ ground state, the creation of one phonon produces a 2+ first excited state

(denoted 2+1 ). Creation of another phonon produces a triplet of nearly degenerate states

at twice the energy of the 2+1 state. These three states arise from the coupling of the two

phonons together to gives states with spin-parities of 0+, 2+, and 4+. Adding yet another

phonon creates a quintet of states with 0+, 2+, 3+, 4+, and 6+ from the coupling of three

phonons. As might be expected, these five states are also nearly degenerate with an energy of
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three times that of the 2+1 state. Generally, the excitation spectrum of a vibrational nucleus

has sets of evenly spaced states with energies given by

En = nE
2+1
, (1.3)

where n denotes the number of phonons. Identification of such a spectrum is experimental

evidence that a nucleus has a vibrational character.

In a rotational nucleus, the spherical symmetry is broken in the intrinsic frame of reference

of the nucleus, which takes on a static deformation. A quadrupole deformation is the most

common shape considered, although higher order deformations are also sometimes included.

For a quadrupole deformation, the radius of the nucleus is given by

R = R0

[
1 +

∑
µ

αµY2µ(θ, φ)

]
, (1.4)

where R0 is the undeformed radius, Y2µ are the second order spherical harmonics, and the

αµ are the coefficients of the expansion of the nuclear shape in spherical harmonics. As with

the vibrational nucleus, the center of mass motion is not of interest, and so the expansion

coefficients which correspond to it (α1 and α−1) are set to 0. The remaining coefficients

are then parameterized in terms of the quadrupole deformation β and the axial asymmetry

γ: α0 = β cos γ and α2 = α−2 = β sin γ. In this formalism, β denotes the deviation of

the nucleus from sphericity along an axis of cylindrical symmetry and is positive-definite.

This assumes that the parameter γ takes one of two limiting values: γ = 0◦ or γ = 60◦. If

γ = 0◦, then β > 0 corresponds to a nucleus with an elongated ellipsoidal or prolate shape.

Conversely, γ = 60◦ and β > 0 corresponds to a compressed or oblate shape. In both cases,
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the nucleus remains rotationally symmetric about the axis of deformation. For 0◦ < γ < 60◦,

however, the nucleus becomes triaxially deformed and is no longer rotationally symmetric

about any axis. With the nucleus now statically deformed, it can have excited states based

upon its rotation. For axially symmetric nuclei (the majority of nuclei), the energy levels of

a rotational nucleus are given by

E(J) =
~2

2I
J(J + 1), (1.5)

where I is the moment of inertia for a nucleus of the appropriate shape. Such level schemes

are well-known in many nuclear systems [16] and serve as a reliable method of identifying

rotation of nuclei.

1.3 Lifetime measurements

Just as a wide variety of models exist to predict nuclear structure, a large number of tech-

niques have been developed to measure it. This dissertation focuses on studies using one

particular category of these techniques: the measurement of the lifetimes of excited nuclear

states. This section will briefly describe the utility of lifetime measurements in general and

their connection to nuclear structure. An overview of some of the techniques used in lifetime

measurements, including those used in this work, will be presented in Ch. 2.

In studying nuclear structure, one often desires to get information about the construc-

tion of states of a given nucleus. Lifetime measurements provide a particularly transparent

approach for gaining such insights. The connection of the lifetime to the nuclear structure
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is given by the equation

1

τi
= Ti→f =

∑
λ,π

kλπE
2λ+1
γ

|〈Jf ||M(πλ)||Ji〉|2

2Ji + 1
,

kλπ =
8π(λ+ 1)

λ[(2λ+ 1)!!]2~(~c)2λ+1
.

(1.6)

In this expression, the mean lifetime τi of the initial state i is the inverse of the transition

rate Ti→j between the initial state i and final state f . The expression on the right gives

this transition rate in terms of a sum over all the allowed multipolarities λ allowed in the

transition as well as the character π of the decay, where π = E for an electric transition

and π = M for a magnetic transition. The matrix element on the right gives the overlap

of initial and final wavefunctions of the nuclear states connected by the electromagnetic

transition operator M(πλ). For electric type decays, this operator takes the form

M(Eλ) =
∑
j

ejr
λ
j Yλµ, (1.7)

and for magnetic decays

M(Mλ) =
∑
j

[
gsj~sj +

2

λ+ 1
glj
~lj

]
· ~∇[rλYλµ]µN . (1.8)

In these expressions, Yλµ are the spherical harmonics, ej is the charge of the jth nucleon,

µN is the nuclear magneton, and gsj and glj are the spin and orbital gyromagnetic ratios,

respectively. The operators ~sj and ~lj are the spin and orbital angular momentum operators

for the jth nucleons, respectively.

Certain selection rules govern the permissible multipolarities for a given transition. The
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Yλµ can only connect states with spin Ji and Jf that differ by at most λ. This is often

expressed as the so-called triangle condition

|Ji − Jf | ≤ λ ≤ Ji + Jf . (1.9)

Turning this statement around, a transition that connects states that have a difference in

angular momentum ∆J must have multipolarity λ ≥ ∆J . Since photons have an intrinsic

angular momentum of one unit, λ = 0 is forbidden and therefore Ji = 0→ Jf = 0 transitions

cannot proceed by γ decay. The parities of the states involved are also important and

determine the electric or magnetic character of the decay. When the parities π are such that

πiπf (−1)λ is even, the transition must be of the electric type, otherwise it is magnetic.

The last fraction on the right of Eq. 1.6 is the so-called reduced transition strength and

is commonly given the symbol B(πλ):

B(πλ) =
|〈Jf ||M(πλ)||Ji〉|2

2Ji + 1
. (1.10)

This quantity is the one that contains the nuclear structure information. When discussing

nuclear structure, it is common to do so in terms not of the lifetime itself, but of the transition

strength which is derived directly from the lifetime:

B(πλ) =
kπλ

τE2λ+1
γ

. (1.11)

With this expression, the transition strength and therefore the nuclear structure can be

discussed so long as one knows the energy of the transition, the lifetime of the initial state, and

the electric/magnetic character and multipolarity of the transition. Typically, the transition
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energy is one of the first experimental observables obtained for a given level, and the character

of the decay is often not far behind. The lifetime is usually measured last, and constitutes

the final piece of information necessary to calculate the transition strength.

Finally, having defined the transition strength and its relationship to lifetime measure-

ments, a word about the insight that these quantities can give about nuclear structure is in

order. First, since the transition strength is directly related to the overlap of the wavefunc-

tions of the states involved in the transition, the transition strength provides insight into

the configuration of the nuclear states. It also provides a method for direct comparison with

theoretical predictions of the transition strength made using wavefunctions calculated with

any appropriate nuclear model, including those discussed above. Agreement between theory

and experimental results then offers a way to test whether the calculated wavefunctions accu-

rately describe the physical states. Even without theoretical calculations, however, transition

strengths are still a valuable tool for interpreting the results of experiments. The relative

strength (or weakness) of a transition can be judged by expressing it in so-called single-

particle units or Weisskopf units [17]. The Weisskopf unit is an estimate of the strength

that would be observed for a given transition assuming that it is due to only a single nu-

cleon. The expressions for the Weisskopf estimate for electric and magnetic transitions are

given by [18]

B(Eλ) =
1

4π

(
3

λ+ 3

)2

(1.2A1/3)2λ e2fm2λ

B(Mλ) =
10

π

(
3

λ+ 3

)2

(1.2A1/3)2λ−2 µ2N fm2λ−2.

(1.12)

If a transition is observed to have a strength which is comparable to the single-particle

estimates given here, it can be taken as an indication that single-particle degrees of freedom

may be appropriate to describe the nuclear behavior. However, if the measured strength
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deviates from this estimate by an order of magnitude or more, then it can be an indication

that the structure of the nucleus is significantly different than that which a single-particle

picture would predict. In this way, the structure of nuclear states can be discussed even

when detailed theoretical information is missing.

The specific case of electric quadrupole (B(E2)) transition strengths is especially inter-

esting from the perspective of studying nuclear structure. In particular, for an even-even

nucleus, the ground state always has a spin-parity of 0+ and frequently the first excited state

will be 2+. Therefore, the lowest multipole transition that can connect these two states is

an electric quadrupole transition, and this can be used to quantify the collective nature

of the nucleus. For quadrupole collectivity as described in Sec. 1.2.3, transitions between

states involve many nucleons acting coherently, and so the transition strength is significantly

enhanced over the single-particle estimate. The observation of such an enhancement can

therefore be taken as evidence for the collective nature of the nucleus being studied. Fur-

thermore, for a statically deformed nucleus, the B(E2) can be related to the quadrupole

deformation parameter β [19]:

B(E2; 2+1 → 0+1 ) =
1

5

{
3

4π
ZeR2

0β

}2

, (1.13)

where R0 is the undeformed nuclear radius. Because of this sensitivity to the deformation

and the collectivity in general, B(E2; 2+1 → 0+1 ) values provide valuable insight into the

structure of nuclei.

The remainder of this work will focus on the application of lifetime measurements to

understand nuclear structure. Two studies will be presented: one on the nucleus 70As and

one on 74Rb. These proton-rich nuclei lie in a portion of the nuclear chart which is known
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to be a site of many nuclear structure phenomena. Some nuclei can be described well using

the single-particle language of the shell model, while others necessitate the use of collective

descriptions. In addition, the transition between these behaviors can be abrupt, both as a

function of the nucleons that make up a nucleus as well as the excitation energy present in

the system. However, these nuclei also present a challenge to experiment and theory alike.

On the experimental side, the nuclei near mass A ≈ 70 near the proton dripline can be hard

to produce in sufficient quantities to study. In addition, the nuclei in this work have an

odd number of both protons and neutrons, and such nuclei usually exhibit very complicated

spectra which can hinder analyses. From a theoretical standpoint, the rapid evolution of

nuclear structure in this region makes it difficult to create a universal description which

can simultaneously reproduce the features of all of these nuclei. These systems also have

enough nucleons that they require quite large model spaces for microscopic calculations such

as the shell model, which in turn requires a great deal of effort to keep the computational

requirements tractable. The work detailed in this dissertation is intended to contribute

to the solution of this situation from the experimental side. The results of the analyses

provide important information about the structure of the nuclei studied herein and help to

improve the understanding of nuclear structure in this region. In addition, the methods

used to perform these studies constitute a contribution in their own right. Both are lifetime

measurements that are advanced versions of their more well-known counterparts intended

to solve specific problems frequently encountered in nuclear spectroscopy. The next chapter

will go into detail about lifetime measurements in general, and will also introduce these two

methods and their utility. Following that, the equipment necessary for these studies will be

reviewed, and then each of the studies presented in turn. Finally, some closing remarks will

be made about the results of these studies and the future prospects they present.
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Chapter 2

Lifetime Measurement Techniques

The measurement of the lifetimes of nuclear states has led to the development of a wide

variety of experimental techniques. One of the driving factors of this proliferation of tech-

niques is the rather large range of values that these lifetimes can take, such that multiple

methods have been necessary to cover as much of the spectrum of lifetimes as possible. In

addition, since a nucleus can decay through multiple channels, it has been necessary to de-

velop methods which are tailored to specific kinds of nuclear decays in order to measure

their lifetimes. Figure 2.1 shows several techniques for measuring lifetimes along with the

approximate range of lifetimes which can be measured with that technique. This chapter

will introduce and give a brief summary of a few common methods for measuring excited

state lifetimes, focusing mostly on those involving the detection of γ rays. After that, the

two methods used in the experiments described in this work will be covered: the lineshape

method and the Differential Recoil Distance method.

2.1 Overview of lifetime measurements

Despite the great variety of strategies for measuring lifetimes, all lifetime experiments seek

to answer the same question: Given that excited nuclear states follow the law of radioactive

decay,

N = N0e
−t/τ , (2.1)
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Figure 2.1: A diagram showing the approximate ranges in which various lifetime measure-
ment techniques are effective. The methods labeled “direct” measure the lifetime itself,
whereas the “indirect methods” measure the width Γ = ~/τ or cross-sections of electromag-
netic transitions. Figure is from [20].

how can the lifetime τ be extracted from the experimental data? The answer to this question

is very much dependent on the details of the state being analyzed, including the level scheme

of the nucleus, the difficulty of populating the state, and the value of the lifetime itself. An

additional complication presents itself when using secondary beams of rare isotopes, as the

intensities of such beams are usually limited and the beam emittance (that is, the distribution

of the beam in position and momentum space) can be large. This section will briefly introduce

a few of the more common methods employed to measure lifetimes in nuclear physics. More

specifically, since this dissertation is focused on direct methods for lifetime measurements

with fast rare isotope beams, the indirect methods shown in Fig. 2.1 will not be discussed.
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In addition, the blocking and X-ray coincidence techniques listed in Fig. 2.1 will also be

omitted, as they are suited for lifetime measurements orders of magnitude shorter than the

lifetimes presented herein. The interested reader is referred to [20] for a review of these

methods.

2.1.1 Electronic timing measurements

Perhaps the most conceptually straight-forward method of measuring the lifetime of a nuclear

state is by directly measuring the time difference between two signals, one which corresponds

to the population of the state and another to its depopulation. This kind of measurement

is called an electronic timing measurement. Broadly speaking, there are two methods used

within the category of electronic timing methods: the slope method, used for longer lifetimes

greater than about 1 ns, and the centroid shift method, for shorter lifetimes less than about

1 ns [20]. Of necessity, this discussion of electronic timing measurements will be brief, but

much more information can be found in Ref. [21], from which this discussion is largely drawn.

In general, the timing signals generated by any detector system are subject to some level

of fluctuation, due both to the intrinsic timing characteristics of the detector system and to

the electronics used with it. Therefore, even for two radiation signals emitted simultaneously,

there is some finite width associated with the distribution of timing signals recorded by the

radiation detectors that sense this radiation. This distribution is known as the prompt time

distribution (PTD) or prompt response function (PRF). This is typically characterized by

the full width at half maximum of the distribution, which may also be referred to as the

“time resolution,” and an exponential tail which has some characteristic decay constant

called the “apparent half-life (τ1/2)” or the “slope” of the distribution. It is the slope of

the PTD that determines which of the methods listed in the previous paragraph will be
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used. If the apparent half-life of the PTD is small compared to the half-life of the state

to be measured, then the slope method can be used. On the other hand, if this is not the

case, then the difference between the centroids of the PTD and the time distribution of

the delayed signal from the decaying state can be used to measure the lifetime. As stated

in [20], centroid shifts as small as 0.5% of the FWHM of the PTD may be measured in this

fashion. For reference, values for the FWHM of the PTD may be a few hundred picoseconds

for scintillator detectors, while for germanium detectors this may be several nanoseconds.

Typical values of the apparent half-life are tens to around 100 ps for scintillators, and several

hundred picoseconds for germanium detectors.

Mathematically, the problem can be stated as an analysis of the time spectrum of the

delayed coincidence events F (t), which is a convolution of the PTD P (t) and an exponential

function f(t) with lifetime τ :

f(t) = (1/τ) exp(−t/τ), (2.2)

for t ≥ 0 and 0 for t < 0. The function F (t) can then be written as

F (t) =

∫ ∞
0

f(t′)P (t− t′)dt′, (2.3)

as long as F (t), P (t), and f(t) have their areas normalized to unity. The time delay t − t′

in Eq. 2.3, which is just due to the width of the PTD, can be eliminated by the substitution

y = t− t′, and further substituting in f(t) gives

F (t) = 1/τ exp(−t/τ)

∫ t

−∞
exp(y/τ)P (y)dy, (2.4)
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which when differentiated yields

dF (t)

dt
=
P (t)− F (t)

τ
. (2.5)

Moving F (t) to the left side, it can be seen that

d lnF (t)

dt
=
dF (t)/dt

F (t)
= −1

τ

(
1− P (t)

F (t)

)
. (2.6)

Equation 2.6 gives the condition for using either the slope method or the centroid shift

method. Specifically, as stated earlier, at those times when the prompt timing distribution

makes a negligible contribution to the overall decay curve, i.e. when F (t)� P (t), then the

slope method can be used. In this case, the lifetime is found simply as

d[lnF (t)]

dt
= −1

τ
, (2.7)

and can be obtained from the slope of the function F (t) on a logarithmic plot at points

sufficiently far from the prompt timing curve.

For cases when the lifetime to be measured is small compared to the decay time of the

prompt timing distribution, then the condition F (t) � P (t) is never fulfilled. In this case,

the centroid shift method can be used. With this technique, the lifetime is given by the

difference of the first moments (centroids) of the delayed time distribution F (t) and the

prompt time distribution P (t). This result is not particularly difficult to derive. The first

moment of Equation 2.3 is

M(1)[F (t)] =

∫ ∞
−∞

tF (t)dt. (2.8)
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From Eq. 2.5, this integral can be rewritten as

M(1)[F (t)] =

∫ ∞
−∞

t

(
P (t)− τ dF (t)

dt

)
dt. (2.9)

The term on the left is the first moment of P (t), while the term on the right can be integrated

by parts:

M(1)[F (t)] =M(1)[P (t)]− τ
{
tF (t)

∣∣∞
−∞ −

∫ ∞
−∞

F (t)dt

}
. (2.10)

Because F (t) is normalized to unit area, the last integral in this expression is unity. Since

f(t) = 0 for t < 0, the lower evaluation limit in the first term in brackets can be set to zero:

M(1)[F (t)] =M(1)[P (t)]− τ
{
tF (t)

∣∣∞
0 − 1

}
. (2.11)

Physically, the delayed time spectrum F (t) must approach zero for very long times t, since

the population of a radioactively decaying state must eventually approach zero. The first

term in the brackets therefore vanishes at both the upper and lower limits, leaving the desired

relation:

τ =M(1)[F (t)]−M(1)[P (t)]. (2.12)

This simple expression is attractive because all that is required to determine the lifetime is

to read off the centroids of the two distributions F (t) and P (t). However, care needs to be

taken in practice to avoid systematic errors when the centroids of the distributions become

very close to each other, as noted in [20, 21]. It has also been shown that higher moments of

F (t) and P (t) may be used in the analysis [22]. Under the right circumstances this can allow

the lifetime to be analyzed even when the PTD is not known very precisely, but systematic
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errors may become large. More details can be found in [21].

2.1.2 The Recoil Distance Method

The Recoil Distance Method (RDM), originally described in Ref. [23] and in more detail in

Ref. [24], is applicable to the measurement of lifetimes in the range from a few picoseconds to

nanoseconds and is described in its modern incarnation in Ref. [25]. Although there is some

overlap with electronic timing methods in terms of the lifetimes which can be measured,

the RDM represents a very different measurement paradigm than the electronic methods

of the previous section. In particular, rather than attempting to directly measure the time

delay between the creation and destruction of an excited state, which is quite challenging

for picosecond lifetimes, the RDM transforms the problem into one of measuring distances.

This takes advantage of the fact that an excited nuclear state is often created “in-flight”

by reaction of a moving nucleus on a fixed target. Assuming the reacting nucleus is not

stopped in the target material, it will recoil out of the target into vacuum, where it will have

a well-defined velocity. If the lifetime and the velocity are large enough, then the average

distance this nucleus will travel before decaying becomes macroscopic and can be measured

accurately. The problem is therefore translated from evaluating challengingly short times to

determining measurable distances.

The challenge of measuring the distance that the decaying nuclei travel still remains.

To solve this problem, the concept of a device which is called a “plunger” was developed,

illustrated in Fig. 2.2. These devices are designed to mount two foils in the beamline and

position them very precisely. The first foil that the beam encounters is called the target and

is used to populate excited states of the nucleus to be studied. The function of the second

foil is to change the velocity of the recoiling nucleus. For a low-energy study, the beam
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Figure 2.2: An illustration of the concept of the plunger setup for measuring the lifetimes
of excited nuclear states. A beam of nuclei comes from the left and interacts with a target
foil, producing the excited states to be studied. The beam then recoils out of the target,
emitting γ rays as it travels toward a second foil. In this figure, the beam is stopped in the
second foil, where any nuclei which have not yet decayed will do so. Both Doppler shifted
and non-Doppler shifted photons are detected, and the ratio of the shifted and unshifted
photons gives the sensitivity to the lifetime. Figure is from [25].

velocity is typically a few percent of the speed of light, in which case the recoiling nucleus

is brought to rest in the second foil. In this case, the second foil is called a “stopper.” In

a high-energy experiment, which is more typical of the experiments performed at the NSCL

where the beam velocity is closer to 30% of the speed of light, the recoiling nucleus will pass

through the second foil. For these experiments, the second foil is called a “degrader.” In

either case, the reaction of the beam in the target defines a time t = 0. The second foil is

placed at a precisely measured distance D from the target, and if the velocity of the nucleus

as it recoils out of the target is known, then the time t = D/v at which it reaches the second
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target is well-determined. The number of excited states which decay before the nucleus is

slowed or stopped in the second foil is governed by the lifetime. By systematically changing

the distance between the two foils during the experiment, the number of decays observed as

a function of distance can be mapped out, converted to a function of time, and the lifetime

extracted.

In principle, any method of detecting the decay of an excited state in a nucleus can

be used with the RDM, so long as it is sensitive to whether the decay happens before or

after the nucleus encounters the degrader/stopper. In practice, this most often involves the

detection of γ rays that are emitted as the nucleus decays to lower energy states. However,

some experiments have detected other radiations for the purposes of measuring lifetimes, for

example, from a proton-emitting nucleus [26]. Whatever the radiation detected, however, it

is necessary to determine whether it is emitted before or after the second foil is reached. For

the most common case of detecting photons, this can be done by noting that those nuclei

which decay before reaching the second foil do so in-flight, and therefore the γ-rays they

emit will be Doppler shifted according to

Elabγ =
Ecmγ

γ(1− β cos θlab)
, (2.13)

where Ecmγ is the photon energy in the center-of-mass frame, θlab is the laboratory-frame

angle at which the photon is emitted relative to the velocity vector of the nucleus, β is the

velocity of the nucleus as a fraction of the speed of light, and γ = (1−β2)−1/2 is the Lorentz

factor. On the other hand, those nuclei that decay after encountering the second foil will

exhibit either no Doppler shift if the second foil is a stopper or a reduced Doppler shift if

the second foil is a degrader. Therefore, in the γ-ray spectrum, there will be two photopeaks
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associated with the decay of each excited state which is populated in the nucleus: the shifted

peak for those nuclei decaying in-flight and the unshifted or less shifted peak for those nuclei

that decay after reaching the second foil. The number of decays happening before and after

reaching the second foil (and hence the lifetime of the state being studied) can then be

determined from the areas of the two peaks.

As it was originally stated [23], the mathematical justification for the Recoil Distance

Method is very simple. If the total number of γ rays observed from an excited state is given

by I0, then the number of counts in the Doppler shifted peak is given by

Is = I0(1− exp(−D/vτ)) (2.14)

and the counts in the unshifted peak (assuming a stopper is used) is

Iu = I0 exp(−D/vτ). (2.15)

If these two quantities are measured for several different distances D, then the ratio

R(D) =
Iu

Is + Iu
= exp(−D/vτ) (2.16)

can be constructed as a function of D and the lifetime can be extracted from this function.

However, this doesn’t take into account the possibility of feeding from higher-lying states.

As written in Ref. [25], a more general approach can be taken to find the correct lifetime. In

this case, if the level of interest is Li, the higher-lying levels are Lh, and the levels to which
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Li decays are Lj , the population of the level Li is governed by the differential equation

dni(t)

dt
= −λini(t) +

N∑
h=i+1

λhnh(t)bhi, (2.17)

where N denotes the highest state considered, λk = 1/τk is the decay constant of the state

k, and bhi is the branching ratio which indicates the fraction of the population of the state

h which decays to state i. Each of the higher states is also governed by a similar differential

equation, so that a system of coupled differential equations must be solved in order to find

the lifetime of the state i. The solution to this system of equations is given by

Ri(t) = Pi exp(−tλi) +
N∑

h=i+1

Mhi[(λi/λh) exp(−tλh)− exp(−tλi)], (2.18)

where Pn is the direct population of the state n which is not due to feeding and the term on

the right describes the feeding to this state, with

Mhi =
1

λi/λh − 1

bhiPh − bhi
N∑

m=h+1

Mmh +
h−1∑

m=i+1

Mhmbmi(λm/λh)

 . (2.19)

In this last equation, the first term quantifies the direct population of the feeding state h, the

second term accounts for even higher-lying states that feed h, and the last term describes any

feeding of i by h through any intermediate states. Practically speaking, what this means is

that the data from an experiment with significant feeding must be fit with many parameters,

so that the lifetime, populations, and branching ratios for each state are extracted from the

data if they are not already known.

30



2.1.3 The Doppler Shift Attenuation Method

For lifetimes of nuclear states that are shorter than about one picosecond, measurements

that rely on the excited nuclei recoiling into vacuum become difficult. This is due to the fact

that a significant number of the excited states will decay before the nucleus exits the target,

and so a different approach is necessary. The Doppler Shift Attenuation Method (DSAM)

is applicable in this circumstance and makes use of the fact that the recoils are decaying in-

medium. As the excited nuclei pass through the target material, they will be slowed due to

interactions with the target, with the consequence that the γ rays that are emitted as they

relax will have a continuous distribution of Doppler shifts according to the characteristic

timescale of the decay, which is just the lifetime of the state. Likewise, if the beam velocity

as it enters the target is chosen appropriately, then it will be stopped inside the target with

its own characteristic time scale. Comparing this stopping timescale, which is known in

principle, to the timescale exhibited by the distribution of Doppler shifts of the photons

from the decaying nucleus allows the lifetime to be extracted.

Practically speaking, the DSAM is based upon the measurement of the average velocity

v with which the excited states being studied decay. This is then used to define a function

F = v/v0, with v0 the initial velocity of the nucleus [27]. An experimental measurement of

this function can be made in one of two ways. In the first method, the centroid of the observed

Doppler shifted γ-ray spectrum may be measured and used to determine v according to

E
lab
γ =

Ecmγ

γ(1− β cos θ)
. (2.20)

The measured value of F can then be compared with a theoretically calculated value of F

using stopping theory. In the second case, the lifetime can be determined by fitting the
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lineshape of the γ-ray spectrum to a theoretical lineshape, again calculated using stopping

theory, and which may generated using Monte Carlo methods [28]. In either case, it is

important to understand the stopping theory (e.g. [29, 30]) used as well as the stopping

powers they predict so that any possible uncertainties from this theory can be quantified.

Some insight into the nature of the dependence of the DSAM on stopping theories can

be gained by considering the actual form of the function F , which is

F =
v

v0
=

1

v0τ

∫ ∞
0

v(t) exp(−t/τ) dt. (2.21)

From this, it can be seen that to evaluate F , it is necessary to know the functional form of

the velocity as a function of time. As a first approximation, the energy loss in the material

can be assumed to be proportional to the velocity, dE/dx ∝ v, if the velocity is around 1%

the speed of light [27]. This leads to the result that the velocity as a function of time behaves

exponentially, v(t) = v0 exp(−t/α), where α in this expression represents the characteristic

slowing down time of the material. Inserting this into Eq. 2.21 and evaluating the integral

results in

F =
1

1 + τ/α
. (2.22)

As stated in [27], most solids have a characteristic slowing down time around 3 × 10−13 to

∼ 10−12 seconds. If values of F in the range 0.1 to 0.9 are those which can be determined

with sufficient accuracy, then the lifetimes that lie within the measurable range within this

assumption are roughly 10−14 to ∼ 10−11 seconds. However, the assumption that the ve-

locity change is exponential is not necessarily valid. It is valid for velocities of about 1%

of the speed of light, where the energy loss is chiefly due to electronic stopping. However,

for higher velocities the energy loss scales more slowly with velocity, and for lower veloci-

32



ties nuclear stopping comes into play. Unfortunately, the treatment of the nuclear stopping

necessarily involves making approximations, and therefore DSAM measurements are inher-

ently dependent upon the choice of some model. Nevertheless, DSAM is an important tool

for measuring lifetimes of femtosecond (10−15 s) order since few other direct methods can

measure lifetimes of less than one picosecond, as shown by Fig. 2.1. For more details and

further discussion of the stopping models used, see Refs. [20, 27].

2.2 The Lineshape Method

As described in Ch. 4, one of the goals of the experiments covered by this work was to measure

the lifetime of some of the excited states in 70As. In order to accomplish this goal, a lifetime

measurement technique known as the lineshape method [31, 32] was used and applied to rare

isotope beams. Depending upon the experimental conditions, this technique can be applied

to lifetimes in the range of a few tens of picoseconds to a few nanoseconds. This section will

describe the lineshape method in detail as it was used in the 70As experiment.

As with many of the methods used to measure prompt γ rays, the lineshape method is

predicated upon the fact that photons emitted from a source moving at relativistic speeds

will be Doppler shifted, such that the energy of the γ rays emitted in the rest frame of the

nucleus is related to the energy of the photons in the lab frame by the expression

Ecmγ = γ(1− β cos θ)Elabγ , (2.23)

where β is the velocity of the emitting nucleus expressed as a fraction of the speed of light,

θ is the angle (in the lab frame) at which the photon is emitted relative to the trajectory
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of the nucleus, and γ is the Lorentz factor. In a typical experimental setup, the radioactive

isotopes which are to be studied are produced by passing a beam of nuclei through a thin

piece of target material to induce nuclear reactions. If these reactions result in nuclei in

excited states, the nuclei will quickly relax to their ground state, mostly by the emission

of one or more photons. Since many of these photons will be emitted extremely quickly,

Eq. 2.23 is used to reconstruct the energy of the photons in the center of mass frame of

the nuclei assuming that the angle of emission θ can be measured from the target position.

For short-lived states this is a good assumption, but for sufficiently long-lived states the

nucleus may travel a significant distance from the target before it decays. In this case the

assumption of emission at the target is no longer valid and the measured emission angle no

longer corresponds to the true one.

While incorrect Doppler correction is normally considered a liability, the lineshape method

makes use of it to extract useful information. For a sufficiently long-lived state, the observed

and true emission angle will differ enough that an observable shift in the reconstructed en-

ergy will appear. In addition, where normally a sharp peak would be present for a properly

Doppler corrected γ ray, a long-lived state will produce a peak which is broadened in such

a way that it acquires a low-energy tail. This shift in the peak energy and the shape of the

tail are characteristic of the lifetime of the decay, and therefore can be used to deduce the

lifetime of the state. Figure 2.3 shows typical lineshapes for decays with 10 ps, 100 ps, and

1000 ps lifetimes for decaying nuclei with a velocity of about 30% of the speed of light. As

can be seen from the figure, while there is no low-energy tail for the 10 ps lifetime, the 100 ps

lifetime has a small tail, and the 1000 ps lifetime has a prominent tail. This demonstrates

the sensitivity of the γ-ray spectral shape to the lifetime.

For the purposes of this dissertation, however, the lineshape method was not sufficient
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Figure 2.3: The change in the spectral lineshape of a 500 keV γ-ray transition for 10 ps,
100 ps, and 1000 ps lifetimes, shown in blue, red, and green, respectively. For the 10 ps
lifetime, there is a significant high-energy shoulder which is smeared out over a large range,
plus a sharp peak. This is due to some decays happening in the target where the velocity
is faster than assumed having a smeared out Doppler correction and can be used as an
indication of a short lifetime. The 100 ps lifetime shows only a peak, but it is shifted
somewhat compared to the sharp portion of the 10 ps peak, and this shift is due to the
lifetime. There is also a small low-energy tail. Finally, the 1000 ps lifetime peak has mostly
a smeared out low-energy tail with only a small number of the decays happening near the
target.

without some improvement. This is because 70As is an odd-odd nucleus and has a very

complicated level scheme. The presence of many photopeaks located close together in the

γ-ray spectra made it difficult to be certain that the lineshape observed for a given state

was, in fact, due to the lifetime and not to the presence of another peak at roughly the same

place. In addition, when there are multiple decays happening sequentially, the lifetime of one

state will have an effect on the measured lifetime of all of the states that it “feeds.” If this

“feeding lifetime” is long or at least comparable to the lifetime of a lower-lying state under

study, then it can cause a lifetime to be measured which is too long. For this reason, in order

to achieve a sufficiently clean spectrum and to control feeding, it was necessary to use the
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lineshape method with γ-γ coincidence data. This enforces the requirement that a specific

state is populated first before another state, and therefore the history of each observed γ-ray

transition is known. It is then only necessary to know the lifetime of the state which is

feeding the lower-lying state(s) in order to correct for this effect on the lifetime. In addition,

the number of observed transitions in such a case is often substantially reduced and so

understanding the spectrum is considerably simplified. However, the requirement that a γ

ray be present in coincidence with another of a specific energy causes a large reduction in the

γ-ray yields, possibly of an order of magnitude or more. Therefore, successfully implementing

this technique is also challenging, as the signals from γ-ray transitions may be reduced to

the point that they are difficult to identify above the background. Thus, care must be taken

to optimize the selectivity of the coincidence requirements while still maintaining sufficient

statistics to make a meaningful measurement.

2.3 The Differential Recoil Distance Method

As the name implies, the Differential Recoil Distance Method (DRDM) is a variant of the

Recoil Distance Method (RDM) described earlier in this chapter. As will be discussed in

Ch. 5, this technique was used to measure the 2+1 state lifetime of 74Rb. Although the

method was first proposed in 1989 [33], it was not possible to implement it previously due to

difficulties with experimental resolution [25]. Therefore, the use of this method in this work

constitutes the first successful implementation of the technique.

In order to show the value of the DRDM, it is convenient to first introduce a variant of

the classic RDM known as the Differential Decay Curve Method (DDCM), also described

in [33]. The motivation for the DRDM then arises naturally from the development of the
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DDCM. Since it is related to the classic RDM, the DDCM begins with the same equation

(c.f. Eq. 2.17):

dni(t)

dt
= −λini(t) +

N∑
h=i+1

λhnh(t)bhi. (2.24)

However, rather than seeking an integral solution to the differential equations, the DDCM

attempts an algebraic solution. By defining the quantities

Ri(t) = λi

∫ ∞
t

ni(t)dt

Rij = bijRi,

(2.25)

where bij is the branching fraction of the decay of state i to state j, Eq. 2.24 can be rewritten

in the form

dRij(t)

dt
= −λi

(
Rij(t)− bij

∑
h

Rhi(t)

)
. (2.26)

The quantity Rij is the decay function of the level i as it decays to the level j, and is given by

the number of states that decay after the nucleus has been in flight for a time t. Equation 2.26

requires that this function as well as its derivative be known. This is accomplished by taking

data at many different flight times (that is, many different distances between the target and

degrader/stopper foils). If the time t is defined as the time it takes for a nucleus to travel

between the two plunger foils, then the number of states that decay after this time will just

be the number of observed γ rays in the peak corresponding to the degrader/stopper. The

function Rij can then be determined by fitting an appropriate analytical function to the set

of values of Rij measured at different distances, and the derivative of the function taken

to determine dRij/dt. If higher states h are present that feed the level i, then the number

of γ decays observed in the degrader/stopper peaks (the second term in the numerator of
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Figure 2.4: An example decay curve measured for the 2+1 → 0+1 transition in 120Xe with
the DDCM. The function Sij plotted on the vertical axis is proportional to Rij . As can be
seen, many data points are used to determine the lifetime, which in turn requires a large
amount of data to be taken. Figure is taken from [33].

Eq. 2.26) are subtracted from the decays associated with the level i in order to remove the

perturbing influence of the feeding on the lifetime. Compared to the Eq. 2.18 for the RDM,

which can quickly become very complicated when multiple feeding levels are involved, the

lifetime analysis in the DDCM is considerably more transparent, as only a few parameters

need to be determined. This facilitates accurate determination of the lifetime and reduces

the reliance on very complicated fitting routines.

However, despite the advantages of the DDCM, a rather large drawback of the technique

is its requirement that many data points be obtained and fit in order to determine the decay

function Rij , as illustrated in Fig. 2.4. For those nuclei which can be produced easily this

does not pose a challenge, but for very exotic nuclei this can be a serious problem, as the

amount of beam time necessary to accurately determine the derivative of the function Rij
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Figure 2.5: A schematic drawing of a differential plunger used for the DRDM. The beam
enters from the right and excited states are created by interaction with the target. The
recoiling nuclei exit the target with velocity v and travel a distance x before being slowed
in the degrader. After the degrader they travel a short distance ∆x at a reduced velocity
v′ before being stopped in the stopper. As the excited nuclei relax, they emit γ rays with
different Doppler shifts at velocities v, v′, and at rest, producing the γ-ray spectrum shown
at the bottom. Figure is from [25].

may become prohibitively large. This is where the DRDM method comes into play. Instead

of determining the derivative of the function Rij by fitting many data points, the DRDM

instead extracts the derivative of the decay function directly from the data. In order to

do this, a modification of the plunger is necessary. As shown in Fig. 2.5, a third foil is

added to the classic plunger design between the target and the degrader/stopper so that the

photopeak from the decay of each state is divided into three Doppler-shifted components.

This foil is always a degrader, as it is necessary that the nucleus being studied reach the

third foil. With this change, it becomes possible to determine the lifetime of a state with a

measurement at only one distance setting, thereby extending the family of Recoil Distance
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measurements to much more exotic nuclei.

In order to see how a measurement with only one distance setting can yield the lifetime

of a nuclear state, it is useful to return to Eq. 2.26 and begin rewriting it in terms of the

quantities shown in Fig. 2.5. For the purposes of this discussion, it will be assumed that the

last foil in the experiment is a stopper for consistency with Fig. 2.5. As in the DDCM, the

decay function Rij is given by the number of excited nuclei that remain after a given time

t. It is convenient to take this time to be the time at which the decaying nucleus reaches

the stopper foil (denoted ts), since the number of decays observed in the unshifted peak

from the stopper foil directly correspond to the number of excited states remaining at ts and

therefore to Rij(ts). This number of decays will be denoted Isij . Similarly for any feeding

states, Rhi(ts) will be written Ishi. Now, to determine the derivative of Rij , it is necessary to

make an approximation. If the flight time of the nucleus is short compared to the lifetime of

the state under study, then the derivative of the decay function for the state i can be found

by a difference approximation of the decay function as the nucleus passes the degrader at

the time td and as it encounters the stopper at time ts:

dRij(ts)

dt
≈
Rij(td)−Rij(ts)

ts − td
. (2.27)

By noting that ts− td = ∆t = ∆x/v′ in the nomenclature of Fig.2.5 and that Rdij = Idij+Isij ,

Eq. 2.27 can be written as

dRij(ts)

dt
≈
Rij(td)−Rij(ts)

ts − td
=

(Idij + Isij)− I
s
ij

∆x/v′
= Idij

v′

∆x
. (2.28)
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Plugging this into Eq. 2.26 finally gives

τ = −∆x

v′
Isij − bij

∑
h I

s
hi

Idij
, (2.29)

which is the expression for the lifetime in the DRDM.

It is worth discussing the details of the DRDM further in order to make clear the ad-

vantages of the method. As stated, the addition of a third foil makes it possible to extract

lifetimes from experimentally measured quantities with only one distance setting between

the foils, which is a considerable improvement over the DDCM. This allows measurements

to be made of nuclei which are very difficult to produce, as significantly fewer counts are

necessary to determine the lifetime. Of course, feeding is a concern, and while the expres-

sion for the lifetime in the DRDM does explicitly treat feeding contributions, the effects

of feeding also warrant comment. For a feeding lifetime similar to that of the state being

studied, a significant fraction of the decays observed for the level of interest will be created

a significant distance from the target, and the term subtracted in the numerator of Eq. 2.29

will be very important. On the other hand, if the feeding states have a lifetime which is

much shorter than that of the state being studied, the design of the DRDM is such that it

automatically minimizes the effects of feeding. This is because the target is removed some

distance from the degrader, and therefore a state which is short-lived compared to the tran-

sit time to the degrader will have almost entirely decayed before reaching it. Therefore, the

DRDM effectively isolates the state being studied from the effects of feeding so long as the

target-degrader distance is properly chosen. This is reflected in the fact that the expression

for the lifetime in the DRDM does not make reference to the number of decays detected

after the target (i.e. Itij). Of course, the ideal case is when there is no feeding at all, and
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then the expression for the lifetime becomes especially transparent:

τ = −∆x

v′
Isij

Idij
. (2.30)

As will be seen in Ch. 5, this expression can be very powerful for quickly obtaining an

estimate of the lifetime of a state before performing a full analysis, as only four quantities

are necessary to calculate the lifetime.
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Chapter 3

Experimental Methods

The nature of rare isotopes is that they exist only for a short time before decaying towards

more stable species, mainly through β decay. Therefore, in order to study these rare isotopes,

it is necessary to produce them in a laboratory setting before transporting them to an exper-

imental area for investigation. Doing so successfully often requires the use of sophisticated

techniques and the simultaneous operation of multiple state-of-the-art devices. This chapter

presents the process of developing and delivering a beam of rare isotopes at the National

Superconducting Cyclotron Laboratory (NSCL), as well as the experimental equipment and

methods relevant to the analyses presented in this work.

3.1 Beam production

The NSCL uses the projectile fragmentation method to produce exotic nuclei. In this

method, a beam of stable nuclei is first produced by ionizing them in an ion source and

then accelerating them to relativistic speeds in the K500 and K1200 cyclotrons, together

known as the Coupled Cyclotron Facility (CCF) [34, 35]. This beam of stable nuclei is called

the primary beam, as it is the first and most intense beam of nuclei created by the facility.

Once it is produced, the primary beam is then directed onto a piece of material, usually

beryllium, which is known as the primary target or production target. As the primary beam

passes through the primary target, nuclear reactions may be induced which can produce

43



Figure 3.1: An illustration of the equipment used to create a beam of rare isotopes at
the NSCL. A beam of ions with a only a few electrons removed is generated in one of the
ion sources, then injected into the K500 cyclotron. After being accelerated, the beam is
transported to the K1200, where it is further stripped of most or all of its electrons and
accelerated again. The beam is reacted on the production target and a single species is
selected to study in the A1900 before being transported to an experimental endstation.
Figure is from [36].

many different species of nucleus. These species typically contain fewer nucleons than the

primary beam, giving rise to the name “fragmentation.” Once past the primary target, one

or a few of the species produced can be selected in the A1900 Fragment Separator [36] based

on their charge and momentum in order to create the secondary beam, which then can be

transported to one of the experimental areas for further processing or analysis. Figure 3.1

shows the arrangement of the equipment just mentioned, and details of this process are

presented in the following subsections.

3.1.1 Primary beam production

The creation of a beam of rare isotopes at the NSCL begins with the production of ionized

stable nuclei. There are two ion sources available to accomplish this task: the Supercon-

ducting Source for Ions (SuSI) [37, 38] and the Advanced Room TEMperature Ion Source
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(ARTEMIS) (see Ref. [39] for a description of ARTEMIS-B, an identical copy of the ion

source used for primary beam production), both of which operate on the principle of elec-

tron cyclotron resonance. If the stable species that will be accelerated is gaseous, then it

may be used directly in the ion sources. However, if it is metallic, then the material must

be placed into an oven to produce a vapor that the ion sources can use. With the atoms

now prepared in a gaseous state, electron cyclotron resonance heating [40] is used to ionize

them. The atoms to be accelerated are injected into a plasma confined within a magnetic

field while they are being ionized by microwave radiation applied at the electron cyclotron

resonance frequency ωc, given by

ωc =
eB

me
, (3.1)

where e is the charge of the electron, B is the magnetic field strength, and me is the mass of

the electron. This causes energy to be transferred to the electrons of the plasma, accelerating

them. Multiple ionization is achieved by the accelerated electrons repeatedly impacting the

species to be used to form the primary beam, ionizing the beam material step-by-step to

the desired charge state before it is extracted from the ion source by an applied electric field

gradient. For both of the experiments described in this work, SuSI was used to produce

78Kr ions with a charge state of 14+. For more details on electron cyclotron resonance ion

sources, see Ref. [40].

After extraction from the ion source, the two cyclotrons of the Coupled Cyclotron Fa-

cility [34, 35] are used to accelerate the ions up to the desired beam energy. The operating

principle of the cyclotrons is based upon the application of a radio-frequency electric field for

acceleration and a magnetic field for confinement of the ions. The electric field is produced

by three pairs of blade-shaped electrodes known as “dees,” to which a rapidly switched elec-
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tric potential is applied. When the ions are injected into the cyclotrons, they experience an

acceleration whenever they pass through the space between each pair of dees. Meanwhile,

a magnetic field is applied transverse to the plane in which the dees lie. Because the ions

are in motion, the magnetic field causes them to experience a Lorentz force that produces a

circular trajectory in the cyclotrons. The radius ρ of this trajectory for a given velocity can

be found by equating the Lorentz force due to the magnetic field with the centripetal force

experienced by the ions in the non-relativistic limit:

qvB =
mv2

ρ
, (3.2)

where q, m, and v, are the charge, mass, and velocity magnitude of the ions, respectively,

and B is the magnitude of the applied magnetic field. In the absence of the accelerating

electric field, the radius of the circular orbit in the cyclotrons is then

ρ =
mv

qB
. (3.3)

However, the acceleration from the electric field continually increases the velocity of the ions,

causing them to spiral outward towards the edge of the cyclotrons where they are extracted.

For a particular cyclotron with a given radius and magnetic field, the energy of the ions at

extraction is determined by their charge and mass and can be found by rearranging Eq. 3.3

for the velocity at the maximum radius:

E =
1

2
mv2 =

1

2
m

(
qBρ

m

)2

=
q2B2

2mρ2
∝ q2

m
. (3.4)

At the Coupled Cyclotron Facility, the NSCL operates two cyclotrons connected in series:
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the K500 cyclotron and the K1200 cyclotron (see Ref. [41] for several schematic drawings

and photographs of the K500). The names correspond to the so-called “K-number” of the

devices, which corresponds to the maximum energy to which a beam of protons can be

accelerated, although in practice this is not typically done. In principle, however, the K500

can produce a beam of 500 MeV protons, while the K1200 can produce a beam of 1200 MeV

protons. Both cyclotrons are isochronous, such that the RF frequency of their accelerating

electric fields is constant at about 23 MHz. As a consequence, in order to compensate for

the relativistic effects of the ions accelerating in these fields, the magnetic fields increase in

strength from the center of the cyclotrons towards their outer radii. In order to accelerate

ions most efficiently, the cyclotrons are coupled to produce higher energy beams. According

to Eq. 3.4, the highest energy beams for a given species can be produced when the charge

of that species is maximized. However, in order to produce ions which have the maximum

number of electrons removed, a significant penalty in beam current must be incurred. To

compensate for this, partially stripped ions are extracted from the ions sources, which have

a much higher beam rate, and injected into the K500. These ions are accelerated to their

maximum velocity of about 0.15c in the K500 before being extracted and then directed

through a thin carbon stripper foil whose purpose is to remove the remaining electrons

from the ion species. The now fully- (or mostly-) stripped ions are then injected into the

K1200 where they are accelerated up to their final velocity of about 0.5c. For the works

described in this dissertation, the K500 produced beams of 78Kr (Z = 36) with an energy of

13.02 MeV/nucleon and a charge state of 14+ which were subsequently sent to the K1200

to produce primary beams of 78Kr with an energy 150 MeV/nucleon and a charge state of

34+.
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3.1.2 Secondary beam selection

Although some experiments at the NSCL are performed using stable beams, the majority

of experiments make use of radioactive species to perform experiments. To produce these

radioisotopes, the technique of projectile fragmentation [42, 43] is used to produce the nucleus

to be used in the experiment. For this technique, the primary beam is impinged upon a piece

of material called the primary production target or simply the primary target. Beryllium is

usually chosen to be the target material because it has a high number density of target

atoms, a high melting point, and good thermal conductivity so that it can withstand and

release the significant heat deposition from the primary beam. Most of the primary beam

particles will pass through the primary target without interaction, but some fraction will

undergo a nuclear reaction which can produce many different species lighter than (or, in the

case of a charge exchange reaction like in Ch. 4, of an equal weight to) the primary beam.

At this point, it is necessary to select the desired isotope from all other isotopes produced by

the interaction of the primary beam with the primary target, as well as any beam particles

which did not react.

In order to select the desired nuclear species from all other species present in the now-

composite beam, the A1900 Fragment Separator [36] is used. The A1900 is composed of four

superconducting 45◦ dipole bending magnets and 24 superconducting quadrupole focusing

magnets which are collectively used to eliminate unwanted reaction products as well as

unreacted primary beam particles from the beamline. Each dipole magnet is separated by

two triplets of quadrupole magnets, and between each pair of quadrupole triplets is an image

plane where a pair of slits with variable width is located. A wedge of material can be inserted

at the momentum dispersive focal plane (Image 2 in Fig. 3.1) position which serves to aid
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in isotope separation [44], and finally a suite of detectors is located at the achromatic focal

plane at the end of the separator (the focal plane detectors, Image 3 in Fig. 3.1) which provide

information about the now purified secondary beam.

The A1900 achieves isotopic separation by taking advantage of the fact that each species

present in the beam will have a specific (although not necessarily unique) magnetic rigidity,

given by

Bρ =
mv

q
∝ A

Z
v, (3.5)

where B and ρ are the magnetic field strength and radius of curvature of the dipole magnet

through which a particle is traveling, and m, v, and q are the mass, velocity, and charge of

the particle as defined in Eq. 3.3. This quantity (which is often simply called the “Bρ”) has

the advantage that it identifies the ratio A
Z of a given particle, independent of the device

used to produce the magnetic field. The velocity v is typically almost constant for species

produced in fragmentation, and so the velocity dependence of the Bρ does not interfere with

identifying nuclei. The first step in purifying the beam in the A1900 is to select in the dipole

magnets a specific Bρ which includes the isotope to be studied. Those nuclei which do not

match this Bρ will follow a path with a radius of curvature different than that of the magnets

and will fail to be accepted into the next section of the beamline. Because the beam is now

spread out in the dispersive direction (i.e. the direction in which the beam bends), further

selection is provided by the pairs of slits at the intermediate image locations. These slits

are positioned such that they block all but a narrow portion of the beam which selectively

contains the isotopes to be studied.

The separation of the beam based on the magnetic rigidity may still allow multiple species

with the same A/Z ratio as the desired nucleus to pass through the separator. In order to
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remove such persistent contaminants from the beam, an aluminum “wedge” is inserted into

the beamline at the Image 2 location. This wedge (which actually may be a curved piece

of aluminum of uniform thickness if it is thin enough) results in the different components

of the beam experiencing a different effective thickness as they pass through the wedge.

The various components of the beam will experience a unique energy loss which is governed

mainly by their charge q and velocity v and is given according to the Bethe formula [45]:

− dE

dx
=

4πe4q2

mev2
NZ

[
ln

2mev
2

I(1− β2)
− β2

]
. (3.6)

In this expression, N is the number density and Z the atomic number of the atoms in the

wedge, e is the unit of electric charge, I is a parameter specific to the stopping material (the

aluminum wedge in this case), and β is the beam velocity expressed as a fraction of the speed

of light c. This energy loss causes the different parts of the beam, which were degenerate

in Bρ, to now have a different magnetic rigidity. The desired isotope can then be selected

in the second half of the A1900 by a similar Bρ separation as in the first half, providing a

beam which is largely free of contaminants. This beam is then sent to the focal plane of the

A1900 where various detectors may be used for beam diagnostics and identification purposes.

The most important of these for the purposes of this work is the extended focal plane (xfp)

scintillator which, together with the object scintillator in the S800 (see Sec. 3.2.1), is used

for identifying the components of the beam in the experiment.
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3.2 Experimental devices and detector systems

The previous section describes the radioactive ion beam production process that is common

to most experiments done at the NSCL. However, a wide array of other devices are available

at the laboratory. Depending on the physics goals of a given experiment, the secondary

beam may be sent to one of several different vaults that are dedicated to certain setups.

For the purposes of the experiments described in this work, it was necessary to select an

area where the products of secondary reactions induced in the beam could be detected along

with γ radiation being emitted by these reaction products. Therefore, in both experiments

presented in this work the secondary beam was transported to the S3 vault, where the

S800 spectrograph is located and can be coupled with γ-ray detection systems. This section

will discuss the experimental apparatus and detector systems used in these experiments,

including S800 and the two different γ-ray detector arrays used, as well as the TRIPLEX

plunger device, which was critical to the success of the lifetime measurement of 74Rb.

3.2.1 The S800 Spectrograph

For in-beam experiments performed at the NSCL, further manipulation of the secondary

beam may be necessary in order to extract the desired physics. This may be the case, for

instance, for reaction studies in which it is necessary to measure the angular distribution

of reaction products or for experiments which are intended to study nuclear states created

in the reacted beam at the experimental station. In such cases where further reactions

of the secondary beam are necessary, the ability to again identify one reaction product

from the potentially many newly created species is necessary. For this purpose, the S800

spectrograph [46], shown in Fig. 3.2, may be used.
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Figure 3.2: A diagram showing the layout of the S800 spectrograph. The beam enters at
the Object position and is bent down through an analyzing beamline towards the location
labeled scattering chamber, where experimental apparatus and target materials are typically
located. After passing this location, the beam is bent upward through the two dipoles of
the spectrograph and beam particles are identified in a suite of detectors located inside the
focal plane. Figure adapted from [46].

The S800 is composed of an analyzing beamline and the spectrograph itself. The beamline

is built of superconducting magnets which are used to direct and focus the beam, while the

spectrograph is comprised of two superconducting dipole bending magnets plus a suite of

particle detectors located just past these dipoles in the final focal plane [47]. The S800 can be

operated in two modes: focused mode and dispersion matching mode. In focused mode, the

beamline is achromatic such that the beam is focused at the target position but dispersed in

the focal plane. This mode allows for the widest momentum acceptance of roughly ±2.5%,

but the momentum resolution is then limited by the momentum spread of the incoming

beam. By contrast, in dispersion matching mode the entirety of the S800 is tuned to be

achromatic so that the beam is dispersed across the target but this dispersion is canceled

in the focal plane. For typical targets, the momentum acceptance is limited to ±0.25% in
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Figure 3.3: An illustration of the detectors located in the focal plane of the S800 spectro-
graph. The beam first passes through the two CRDCs which provide position and angle
information. Next the beam passes through the ionization chamber which measures the
energy loss of the beam as it passes through the detector. Next the beam passes through
the E1 scintillator, which serves as both a timing signal and a trigger. In the figure there
are two more plastic scintillators, but these have been replaced with a 32 crystal CsI(Na)
hodoscope for charge state identification [49]. Figure is taken and modified from [47].

this mode [48], but greater precision in the momentum measurement of the beam can be

achieved. Both of the experiments described in this work were run in focused mode.

3.2.1.1 S800 particle detection systems

The S800 makes use of a variety of particle detectors for the purposes of beam diagnostics

and identification. The majority of these are housed in the focal plane, shown in Fig. 3.3,

and include two Cathode Readout Drift Chambers (CRDCs) for position and angle determi-

nation, an Ionization Chamber (IC) which measures energy loss, a plastic scintillator (called

the E1 scintillator) for timing and triggering information, and a hodoscope composed of

32 CsI(Na) crystals for charge state identification. Besides the focal plane detectors, there

is also a scintillator at the object position (known as the OBJ scintillator) which together

with the E1 scintillator gives the time of flight for the ions through the entire spectrograph.
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Optionally, tracking detectors may be inserted at the intermediate object image of the spec-

trograph beamline to characterize the path of the beam before it interacts with the target.

However, these detectors were not used in the experiments described in this work, and so

will not be discussed further here.

3.2.1.1.1 Time of Flight Scintillators Thin plastic scintillators in the S800 serve to

identify the time of flight of the particles through the spectrograph. When beam particles

pass through these scintillators, light is emitted and collected in the photomultiplier tubes

attached to the ends of the scintillators. While they have poor energy resolution, the light

pulse that they emit has a very fast decay time, resulting in excellent time resolution (with a

FWHM of the timing signal on the order of 100 ps [47]) ideal for time of flight measurements.

The two scintillators used in the S800 are the E1 scintillator in the focal plane, and another

scintillator located at the object position of the spectrograph. In the focal plane, the E1

scintillator is located just before the hodoscope and is used as a trigger signal for the S800

readout as well as providing a timing signal. When this timing signal is combined with

that from the scintillator at the object position, the time of flight of a particle through the

spectrograph can be calculated.

3.2.1.1.2 The Ionization Chamber The ionization chamber is located in the S800

focal plane just after the CRDCs. As with the CRDCs, the ionization chamber has an active

area of roughly 30 cm by 60 cm, but has a depth of 16 inches. The volume of the detector is

filled with P10 gas (a mixture of 90% argon and 10% methane) and is divided into 16 1-inch

sections along the beam direction. Previously this segmentation was achieved by having

16 separate anodes paired with a cathode on the opposite side of the detector. However,

this design was replaced with a new detector in which there are 16 cathode-anode pairs
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formed from aluminized mylar foils. As beam particles pass through the detector, energy

is deposited in the gas and a number of electron-ion pairs are created proportional to the

energy deposited. The electrons are collected on the anodes and the ions on the cathodes.

The charge collected in this way is determined by the number of pairs created and is therefore

proportional to the energy loss of the particle. Since the energy loss is in turn proportional

to the square of the charge of the particle as given by Eq. 3.6, this gives identification of the

element of the particle in the focal plane.

3.2.1.1.3 Cathode Readout Drift Chambers The CRDCs measure the position and

the angle of the beam as it traverses the focal plane of the S800. These detectors have

an active area of roughly 30 by 60 cm and a depth of 1.5 cm, and are separated by 1 m.

The CRDCs are filled with a gas mixture which is 80% CF4 and 20% C4H10, and when

a beam particle passes through this gas mixture electrons are dislodged from the gas and

are collected on an anode wire. The position in the dispersive direction (the x position) is

determined by measuring the induced signal on the neighboring cathodes which sandwich

the anode and are divided into 224 pads. The distribution of induced charges on the pads

is fit with a Gaussian function to determine the x-position. The y-position is determined by

the drift time of the electrons in the gas, where the time is measured between the collection

of the charge on the anode wire and the timing signal from the E1 scintillator. The first

CRDC is located at the optical focus of the S800 and so the dispersive and non-dispersive

coordinates of a beam particle in the focal plane (called xfp and yfp, respectively) are taken

from this detector. The angles in the dispersive and non-dispersive directions relative to a

central trajectory through the S800 focal plane (termed afp and bfp, respectively) at which

a particle travels is determined by the difference in the positions measured in each of the
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CRDCs.

3.2.1.1.4 Trajectory Reconstruction While the detectors of the S800 provide the

ability to determine the position and momentum of beam particles in the focal plane, it

is often of greater interest to know the beam properties at the location of the target. For

this purpose, the S800 provides the capability to reconstruct the trajectory of the beam at

the target position on an event-by-event basis. This was critical for both of the experiments

described in this work, as both relied heavily on reproducing the experimental measurements

with simulations (see section 3.3 for more details). The simulations rely on the ability to

accurately reproduce the properties of the beam as it exits the target, and so the particle

tracking facility of the S800 is very important to these analyses.

The trajectory reconstruction is achieved by way of an analytical calculation in the code

COSY INFINITY [50]. Using the measured magnetic field maps of the magnets, this program

constructs a transfer map S which transforms the beam parameters at the target to those

at the focal plane. In practice, since the focal plane parameters are the ones measured, the

inverse transfer map S−1 is then calculated and used to determine the desired parameters

at the target location: 

ata

yta

bta

dta


= S−1



xfp

afp

yfp

bfp


. (3.7)

Here the parameters with the subscript ta indicate beam parameters at the target while

fp indicates parameters at the focal plane. In either case, x and y indicate dispersive and

non-dispersive position, while a and b indicate angles in the dispersive and non-dispersive
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directions, respectively. The parameter dta indicates the energy of the beam at the target.

For this transformation, the spread of the beam in the dispersive direction is assumed to be

negligible and so xta is set to zero, thereby allowing the energy dta to be calculated [46].

3.2.1.2 Detector calibrations

The detectors in the S800 must be properly calibrated to be of use in an experiment. As these

detectors were common to both of the experiments in this work, the calibration procedures

will be described here so that they do not need to be repeated in the chapters devoted to

the individual studies.

3.2.1.2.1 CRDC calibrations The CRDCs determine the (x, y) position of the beam

as it passes through these detectors, and this position needs to be calibrated so that any

offsets are removed. This is done during the experiment by inserting a thick metal plate

(called a “mask”) with a specific pattern of holes and slits drilled in it in front of each

CRDC. The beam is then swept across the face of the detector with the mask in front of

it, with the consequence that only the parts of the detector behind the holes in the mask

are illuminated. Figure 3.4 shows the signals measured in the CRDCs when the masks are

inserted. Since the locations of the holes are well-determined on the masks, the signals

recorded in the CRDC during a mask run correspond to known physical positions. The

positions recorded in the CRDC are then linearly scaled so that the pattern that is recorded

matches the physical dimensions of the pattern of holes on the mask. Several mask runs

are taken throughout an experiment, since the positions that are recorded in the CRDCs

are dependent upon experimental conditions such as the pressure of the fill gas and the

temperature. If there is any change in the calibration between mask runs, this can be
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Figure 3.4: The measured signals in the CRDCs when the masks are inserted into the
beamline. The first CRDC is shown on the left, and the second on the right. By matching
the pattern of slits and holes on the mask to the pattern of signals generated in the CRDCs,
the CRDC positions can be calibrated.

taken into account by interpolating between the mask runs to correct for any changes in the

experimental conditions.

3.2.1.2.2 Ionization chamber calibration The ionization chamber has sixteen chan-

nels which are used to measure the energy loss of the beam as it passes through the detector.

Since the energy loss for the detector is determined by averaging the energy loss in each chan-

nel, the channels need to be gain matched so that no single channel has a greater influence

than the others. This is done by selecting at least two nuclear species and measuring their

energy loss as recorded in each channel. The energy loss peaks are then fit with Gaussians,

and the centroids are used to create a linear function that scales each channel to match that

of the channel which has the smallest unadjusted energy loss. Figure 3.5 shows the result of

this gain matching.
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Figure 3.5: This figure shows the gain matching of the ionization chamber. On the left, the
raw energy loss signals (in arbitrary units) are shown for each channel. On the right, the
energy loss in each channel has been gain matched to channel zero, which has the lowest raw
energy loss signal. As a result, the centroids of the energy loss in each channel are the same,
and this provides much cleaner elemental separation when performing particle identification.

3.2.1.2.3 Time of flight corrections Due to the different paths that ions take through

the spectrograph, there is a correlation between the time of flight measured by the scin-

tillators and the measured angle of the ion trajectories as they pass through the CRDCs.

Removing this correlation allows for better identification of nuclear species in the S800 focal

plane. The form of this correction is

Tscint,corrected = Tscint +mafp + nxfp, (3.8)

where afp and xfp are the dispersive angle and position in the focal plane, respectively,

and m and n are constants to be determined. Figure 3.6 shows the effect of this correction

for the extended focal plane and object scintillators, as well as for the RF signal from the

cyclotrons.
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Figure 3.6: The effect of correcting the time of flight measured for the RF signal (top
row), object scintillator (middle row), and extended focal plane scintillator (bottom row).
Uncorrected spectra are shown on the left, corrected spectra on the right.
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3.2.2 γ-ray detectors

Both of the techniques for extracting lifetimes utilized in the experiments described in this

work are predicated on the detection of γ rays. The techniques themselves have already

been described in detail in Ch. 2, however, neither the actual process of detecting γ rays

nor the apparatus used to detect them has been discussed. This section and its subsections

therefore summarize the important aspects of the measurement of γ radiation as well as the

two different γ detector arrays used in each of the two analyses contained herein.

3.2.2.1 γ-ray interactions with matter

Unlike charged particles, which undergo a continuous process of slowing down in a material,

γ rays interact with matter in discrete steps. For the purposes of this work, this interaction

can be described by three processes which dominate at different energies: photoelectric ab-

sorption, Compton scattering, and pair production. While each of these processes is distinct

from the others, they are similar in that each involves the transfer of energy from the photon

to electrons present in the material. The remainder of this subsection will describe these

processes.

Photoelectric absorption occurs when a photon interacts with and transfers all of its

energy to an atomic nucleus, as illustrated in Fig. 3.7. This results in the ejection of one of

the atomic electrons as a photoelectron with a kinetic energy given by

Ee− = hν − Eb, (3.9)

where h is Planck’s constant, ν is the frequency of the incident photon, and Eb is the binding

energy of the photoelectron. This expression neglects the recoil velocity of the nucleus, which
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hν

Figure 3.7: An illustration of the photoelectric effect. An incident photon interacts with an
atom and deposits its energy, causing the ejection of an electron.

is very small. Characteristic X-rays or Auger electrons are generated as the vacancy left by

the photoelectron is filled. If the energy of these secondary radiations is absorbed in the

detector, the result is the detection of the full energy of the incident γ ray. This is the

ideal case for γ-ray spectroscopy, as the identification of γ-ray energies corresponding to

specific transitions may be done by inspecting the spectrum of observed photon energies.

However, this process typically is dominant only at photon energies below about 140 keV

(see Fig. 12.17 in Ref. [45]), and for germanium detectors gives way to Compton scattering

for photon energies above roughly 200 keV (see Fig. 2.20 of Ref. [45]).

Compton scattering is another process by which a γ ray may interact with a detector and

is illustrated in Fig. 3.8. In this process, a photon scatters from an electron in the medium,

imparting to the electron some but not all of its energy. The electron will then recoil while

the lower-energy photon propagates away at some angle θ relative to its previous trajectory.

The energy of the scattered γ ray is given by

hν′ =
hν

1 + (hν/mec2)(1− cos θ)
, (3.10)

where hν and hν′ denote the photon energy before and after scattering, respectively. The
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Figure 3.8: An illustration of the process of Compton scattering. An incident photon with
energy hν interacts with an electron in the medium and imparts some of its energy to it. The
scattered photon then propagates away at an angle θ with respect to its original trajectory
and with a lower energy hν′, given by Eq. 3.10, while the electron recoils away at some other
angle φ and energy given by Eq. 3.11.

energy of the photoelectron, which is the amount of energy that will be registered in the

detector, is then the difference between the energy of the photon before and after scattering:

Ee− = hν − hν′ = hν

(
(hν/mec

2)(1− cos θ)

1 + (hν/mec2)(1− cos θ)

)
. (3.11)

For a given photon energy, the only parameter in this expression is the scattering angle θ,

and it is useful to examine the limiting cases of scattering at θ ≈ 0 and θ = π. In the θ ≈ 0

case, it is evident from Eq. 3.10 that hν′ ≈ hν and so the scattered photon deposits almost

no energy in the detector. In this case, the photoelectron has very low energy (as shown by

Eq. 3.11) and the event is essentially undetected. On the other hand, for the θ = π case, the

energy transferred to the photoelectron is maximized:

Ee− = hν

(
2hν/mec

2

1 + 2hν/mec2

)
. (3.12)

63



However, the photon still carries away a portion of its original energy. There is also a

probability for the photon to scatter into other angles, and the cross-section for scattering

at any given angle is predicted by the Klein-Nishina formula [51]:

dσ

dΩ
=Zr20

(
1

1 + (hν/mec2)(1− cos θ)

)
×
(

1 +
(hν/mec

2)2(1− cos θ)2

(1 + cos2 θ)[1 + (hν/mec2)(1− cos θ)]

)
,

(3.13)

where r0 is the classical electron radius. For a given photon energy, this distribution leads

to a γ-ray spectrum that has a large continuum for Compton scattering, in contrast to the

single photopeak present for photoelectric absorption. Neglecting detector efficiency effects,

the continuum reaches from zero energy up to the maximum given by Eq. 3.12, with no

peak corresponding to the energy of the incident γ ray. However, if the scattered photon

undergoes subsequent interactions within the detector volume, it may deposit some or all of

its remaining energy and in this case the full-energy peak may be observed.

Finally, for sufficiently high-energy γ rays, pair production may occur. In this process,

a photon is converted into a positron-electron pair in the electric field near a nucleus in

the detection medium, as illustrated in Fig. 3.9. This process is only energetically allowed

if the incident photon has an energy of at least the mass of the newly created particles:

hν ≥ 2mec
2 = 1.022 MeV. Any remaining energy from the photon goes into the kinetic

energy of the pair. Both particles quickly slow as they travel through the medium, but the

positron will eventually annihilate with another electron, creating two photons with energy

mec
2 = 511 keV. One or both of these photons may then escape from the detector, giving

rise to a spectrum characterized by the full-energy peak for the photon, plus a single-escape

peak 511 keV below the full-energy peak corresponding to the escape of one photon from the
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Figure 3.9: An illustration of the process of pair production. If a photon has at least
1.022 MeV of energy, it may be absorbed by a nucleus and an electron-positron pair emitted
in its place. The positron will annihilate with another electron in the medium and release
two 511 keV photons, one or both of which may escape the detector.

detector, and a double-escape peak 1.022 MeV below the full-energy peak corresponding to

the escape of both of the annihilation photons.

3.2.2.2 The SeGA detector array

One of the γ-ray detection devices used in the experiments described in this work is the

Segmented Germanium Array (SeGA) [52], specifically for the study on 70As presented in

Ch. 4. As the name implies, SeGA is an array of 18 high-purity germanium detectors whose

crystals have been electrically segmented to provide sensitivity to the position at which γ

rays interact with the crystal. This position sensitivity is important because the γ rays

detected in the experiments in this work are Doppler shifted according to the relation

Ecmγ = γ(1− β cos θ)Elabγ , (3.14)
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where the superscripts cm and lab indicate the photon energy in the center of mass frame

and in the laboratory frame, respectively, and θ is the emission angle of the photon in the

laboratory frame relative to the beam axis. Since the energy is measured in the laboratory

frame, the relation above must be used to find the γ-ray energy in the center of mass frame,

and therefore accurate knowledge of the emission angle (as well as the beam velocity) is

critical for good final energy resolution. The remainder of this section will describe the

characteristics of the SeGA detectors and their use in the present work.

Each of the detectors that comprise SeGA are composed of a highly-segmented ger-

manium crystal. The germanium itself is of high-purity n-type material (sometimes called

ν-type to distinguish high-purity material with residual donor impurities from material which

is intentionally doped with donor atoms). The crystals are cylindrical with a diameter of

7 cm and a length of 8 cm. Electrical contacts are placed along the outside of the crystal that

divide the detector into 8 disks of 10 mm width along the axis of the cylinder, and each disk

is further divided into four quadrants to give a total of 32 segments which are individually

read out (see Fig. 3.10). In addition, there is a central contact in the center of the crystal

so that the total energy deposited in the crystal can be read out in addition to the energy

deposited in each segment. The crystal is kept cold at roughly 100 K by thermal contact

with a dewar of liquid nitrogen, mounted at a 45◦ angle to the crystal axis.

The operational characteristics of SeGA depend heavily on the arrangement of the de-

tectors during an experiment. While many different considerations may go into choosing an

experimental configuration for the detectors, often the choice is centered around optimizing

the trade-off between γ-ray detection efficiency and energy resolution. Efficiency can be

increased by placing the detector crystals as close as possible to the γ-ray source in order to

maximize the solid angle which the crystals cover, thereby increasing the probability that a
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Figure 3.10: An illustration of the segmentation scheme of the crystals of the SeGA detectors,
as well as the nomenclature used to identify each segment. The crystals are divided into
eight disks with a width of 10 mm each, labeled A through H along the axis of the cylindrical
crystal. Each disk is further segmented into quarters numbered 1 through 4, with quarters 2
and 3 closest to the beampipe for the setup described in this work. Figure adapted from [52].

photon will pass through the detectors’ active volume. However, doing so has implications

for the energy resolution of the array. As indicated by Eq. 3.14, there are three quantities

that are needed to compute the center of mass energy of a γ ray emitted from a nucleus

moving at relativistic speeds: the velocity as a fraction of the speed of light (β), the angle

of emission (θ), and the photon energy measured in the lab frame (Elabγ ). Each of these

parameters contributes to the resolution of the γ-ray energy:

(
∆Ecmγ
Ecmγ

)2

=

(
β sin θ

1− β cos θ

)2

(∆θ)2 +

(
β − cos θ

(1− β2)(1− β cos θ)

)2

(∆β)2 +

(
∆Elabγ

Elabγ

)2

.

(3.15)

The intrinsic resolution of the detectors (the final term in this expression) has been deter-

mined to be ∼ 0.2%, but the other two terms can be much larger, on the order of about 1%

(see text and Fig. 1 of [52]). In particular, the first term includes a factor in ∆θ, and as

the detectors are brought closer to the γ-ray source, the solid angle of the segments used to
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determine the emission angle becomes wider and therefore causes this term to grow.

The trade-off between detector efficiency and energy resolution has caused several dif-

ferent standard configurations to be developed for SeGA, each designed to optimize the

performance of the array for specific science goals. For the experiment on 70As, a config-

uration known as the “barrel” or “beta” configuration was chosen. In this configuration,

SeGA consists of fifteen detectors arranged in two rings of detectors with the crystal axes

aligned with and roughly 13 cm from the beam axis. One ring is composed of eight detectors

covering emission angles of roughly 95◦ to 125◦ relative to the target (the “backward” ring),

and the other ring of seven detectors covering roughly 50◦ to 80◦ with respect to the target

(the “forward” ring). The forward ring had one less detector to allow space for a gatevalve

in the beamline. This gives a detection efficiency for 1 MeV photons of roughly 7%, which

was important for the 70As experiment, while still giving sufficient energy resolution. See

Ref. [53] for other possible configurations of SeGA.

3.2.2.2.1 SeGA calibrations As SeGA consists of many separate germanium crystals

which operate independently of one another, each detector will exhibit a different response

to γ rays of the same energy, as shown in Fig. 3.11. Therefore, in order to make use of the

array in an experiment, it is necessary to calibrate SeGA against a source of γ rays with

known energies in order to ensure that each detector will give the same response. For this

purpose, in the 70As experiment data were taken with several different radioactive check

sources, including 56Co, 133Ba, 152Eu, and 226Ra.

Calibrating the SeGA detectors first requires determining the centroids of the peak po-

sitions for a radioactive source with well-determined γ-ray transition energies. These peak

positions are then matched to the known peak positions and a fit is performed using a second
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Figure 3.11: The response of several SeGA detectors to a 226Ra source before calibration.
The photopeaks from each detector are clearly misaligned, which would result in a γ-ray
spectrum for the entire array with poor resolution. The detectors are therefore calibrated to
match the raw signal in ADC channels to the actual γ-decay energies, which are well-known.

order polynomial to map the uncalibrated energies to the calibrated energies for each crystal.

A χ2 minimization is used to determine the parameters of the fit, and these parameters are

then used to align the peaks in each crystal so that when the spectra from all the detectors

are summed the photopeaks are aligned. However, the segments of each crystal also provide

energy information and must be calibrated as well. This is a much more complicated prob-

lem, as there is cross-talk between the segments that causes the calibration to depend on

the number of segments which register an interaction in an event (the “fold” of the event).

For single-fold events, the energy deposited in the segment must be the same as that for

the central contact, and so the second-order polynomial fit can be performed to match the
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segment calibration to the central contact calibration. Similarly, a χ2 fit is performed to

match each pair of calibrated segments to the central contact energy in 2-fold events, which

results in 32 × 31/2 sets of calibration parameters, showing how quickly the number of pa-

rameters grows with the fold of the event. Higher-fold events are therefore calibrated using

a correction derived from the single-fold and two-fold events. This process is described in

Ref. [54].

3.2.2.3 The GRETINA detector array

While SeGA provides good energy resolution, the next generation of γ-ray detectors aims

for significantly better resolution. To this end, the development of a new detector array

called the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA) [55] has been

undertaken. This is part of a project to construct a larger array, the Gamma-Ray Energy

Tracking Array (GRETA) [56], which will cover a full 4π of solid angle. The experiment on

74Rb described in this work was performed using GRETINA during its first experimental

campaign at the NSCL. This subsection will therefore describe the characteristics of the

array as it was during this first campaign.

During the experiment on 74Rb described in Ch. 5, GRETINA was composed of seven

detector modules (called “quads”), each of which contains four hexagonally-shaped high-

purity germanium crystals. There are two different irregular hexagonal geometries of crystal

(type A and type B), and each quad contains two of each type. Similarly to SeGA, each

crystal is electronically segmented; however, the GRETINA crystals are divided into six slices

of width 8 mm, 14 mm, 16 mm, 18 mm, 20 mm, and 14 mm in order from the face to the

back of the crystal. Each slice is further divided into six segments, for a total of 36 segments

per crystal. The electronics for reading out the photon signals are housed just behind the
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Figure 3.12: An illustration of the segmentation of the GRETINA crystals, as well as the
modules as a whole. The crystals are segmented into layers which are, in order from the layer
labeled α to φ, of thickness 8, 14, 16, 18, 20, and 14 mm. On the far left is the arrangement
of the two different hexagonal geometries used for grouping the crystals into a quad. Figure
adapted from [55].

crystals, and a dewar of liquid nitrogen keeps the crystals cold. For an illustration of the

GRETINA detector modules, as well as the segmentation of the crystals, see Fig. 3.12.

Although both SeGA and GRETINA make use of segmented germanium crystals, the

design of GRETINA actually represents a significant advancement in γ-ray detection tech-

nology. This is due to two features of GRETINA: signal decomposition and γ-ray tracking.

The signal decomposition is one of the most important aspects of GRETINA, in that it

allows the γ-ray interaction position to be determined with subsegment resolution. In order

to do so, a set of simulated detector responses to the deposition of a unit of charge at vari-

ous locations in the crystal are generated. This set of simulated responses is called a basis.

The basis signals are generated for a grid of non-uniform spacing with an average distance

between points of 1 mm. When a γ ray interacts with the crystal, it will generate a signal

in the segment it hits as well as an image charge in the surrounding segments. By fitting

the basis signals to the real and image charge signals in the detector, the position of the

interaction can be determined. The fit can also be performed for multiple-scattering by the
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same photon in the crystal, in which case the basis signals are fit to the linear combination

of signals generated by the multiple hits from multiple-scattering events. During testing, the

resulting position resolution of the detectors was found to be roughly 2 mm [55], significantly

better than assuming that the hit occurred at the center of the segment.

GRETINA is also designed to have the ability to do γ-ray tracking. This is the capability

to examine an event in which the array experienced multiple photon scattering events in the

crystals and reconstruct the path(s) of the photon(s) that interacted with the detectors. This

is done by grouping the interaction points according to the likelihood that they originate

from the same photon. Next, for each group of points a scattering sequence is generated and

compared to the Compton scattering formula (Eq. 3.11) and a figure of merit is generated

according to how well the deposited energies and angles of the scattering sequence agree

with the Compton formula. The sequence is permuted for all possible orderings. A detector

that had perfect energy and position resolution would have a figure of merit of zero for

a fully absorbed photon. In practice, the figure of merit will not be exactly zero for a

correctly reconstructed scattering sequence, but the figure of merit should be large for partial

absorption or incorrect reconstruction. Finally, other possible clustering arrangements of the

interaction points may be iterated to seek an optimum solution. Placing a condition that

only events in which the figure of merit is above a certain threshold then eliminates events

that can be identified as only partial deposition of the γ-ray energy, resulting in a spectrum

with an increased ratio of events in the full-energy peak compared to those that populate

the Compton continuum.

For the 74Rb experiment, GRETINA was set up in a “standard” configuration, with four

quads positioned to cover angles of roughly 20◦ to 50◦ and the remaining three quads placed

around 70◦ with respect to the beam axis. This provided the necessary sensitivity to the
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lifetime of the state being investigated (see Ch. 5 for more details). The signal decomposition

is done automatically, as it is key to the superior energy resolution of GRETINA, and is

available on-line during experiment. However, it was found that γ-ray tracking was not

necessary for this particular experiment, and so this capability was not used in the present

work. Finally, the software GrROOT [57], which was developed for the GRETINA campaign

at the NSCL, was used for unpacking the data from the NSCL event format into ROOT [58]

objects.

3.2.2.3.1 Calibration of GRETINA In order to operate effectively, the GRETINA

detectors must be calibrated. Similarly to SeGA, this may be done using radioactive check

sources in order to map the measured energy in ADC channels to the actual γ-ray energies

emitted by a given source. The experiment on 74Rb presented in this work was performed

as part of a year-long campaign of experiments with GRETINA at the NSCL, and so the

detectors remained in a calibrated state between experiments. This calibration was checked

before each experiment to ensure that the calibration parameters had not changed. For the

data presented in this work, this check was done by comparing the energies recorded for a

152Eu source in each crystal against the known source energies. A linear fit was performed

to extract “recalibration” parameters for each crystal and these parameters were used in the

data analysis to account for any drift in the calibration. For the γ-ray energies of interest

for the 74Rb study (∼450 keV), this resulted in a typical correction of less than 1 keV.

3.2.3 The TRIPLEX plunger device

The TRIple PLunger for EXotic beams (TRIPLEX) [59, 60] is a device used to precisely

position various experimental targets along the axis of the beamline. The TRIPLEX is
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Figure 3.13: A schematic drawing of the TRIPLEX plunger device. The components are
labeled as follows: (A) The outer casing of the TRIPLEX. (B) One of the piezoelectric mo-
tors for positioning the targets. (C) The outermost movable cylinder, to which the second
degrader is attached. (D) The central, immobile cylinder to which the first degrader is at-
tached. (E) The innermost movable cylinder to which the target is attached. (F) The target,
positioned by the moving cylinder E. (G) The first degrader, held at a fixed position. (H)
The second degrader frame, on which the second degrader (obscured by the first degrader)
is mounted.

in the class of devices known as “plungers” commonly used in Recoil Distance Method

lifetime measurements. Unlike most plungers, however, which typically support mounting

at most two foils, the TRIPLEX is designed to support three foils in the path of the beam.

This addition is critical for enabling the use of the Differential Recoil Distance Method

(section 2.3), among other possible uses.

The design of the TRIPLEX is shown in Fig. 3.13, highlighting its various components.

The three foils are mounted on frames which are attached to the plunger by screws. The

middle foil is stationary, but the other two may be moved up to 25 mm away from the

center foil. This movement is achieved by moving the cylindrical tubes on which the foils are

mounted relative to the one on which the central foil is mounted. The tubes themselves are

moved by two piezoelectric stepping motors. Each motor contains several pairs of piezoelec-
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Figure 3.14: An illustration of the operation of the piezoelectric stepper motors used in
the TRIPLEX plunger. The red and blue rectangles are the piezoelectric elements while the
gray bars are the runner and the wall of the chamber containing the stepper motor. Starting
with frame 1, a potential is applied to one of the blue piezoelectric elements, causing it to
expand and clamp to the wall. Another potential is then applied to the red element on the
end of the blue element, causing it to expand and move the stepper assembly to the right in
frame 2. The potential is then switched from one blue element to the other, switching which
one is clamped (frame 3), and then the red element on the right has a potential applied to
move the assembly to the right again, while the potential on the red element on the left is
reversed to prepare it for the next step. This process is then repeated until the assembly has
moved the desired distance.

tric elements attached to each other as well as to a runner, as shown in Fig. 3.14. Whenever

an electric potential is applied to the elements, they expand along the direction of the ap-

plied electric field. To achieve motion, a potential is applied to the elements attached to the

runner so that they expand and clamp against another surface. Then, another potential is

applied so that the piezoelectric elements deform along the axis of the runner, causing it to

move. The remaining elements are then clamped while the original elements are allowed to

unclamp and the deforming potential is reversed so that the motion is continued in the same

direction. By performing this process (shown in Fig. 3.14) repeatedly, uniform motion can
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be achieved.

There are three methods for verifying the position of the three foils relative to one another.

First, the motors internally track how far they have moved and report a position relative

to their starting position when they are initially given power. Testing has shown that these

reported positions are generally reliable, but may begin to show some drift when the motors

are operated near the extremes of their range. A second method involves two micrometers,

one each for the position of the first foil relative to the second, and the third to the second.

These micrometers are extremely precise and can be used as a check against the positions

reported by the motors. However, they have a limited range which is less than the range of

motion of the motors. They are also fragile and may be damaged if too much force is applied

to them. Finally, the three mounting locations of the plunger are electrically isolated from

each other, which allows capacitive measurements of the distance to be used. Since the foils

are usually flat pieces of metal, they resemble parallel plate capacitors, and therefore the

TRIPLEX is designed to allow an electrical potential to be applied to the middle foil and the

induced signal read out from the other two foils. If properly calibrated, the control software

of the TRIPLEX is able to translate this capacitance into a position. Under conditions in

which the foils are thin enough that they may deform under the application of the beam,

such as low-energy experiments with beam energies less than about 10 MeV/nucleon, the

software can even use this capacitance measurement to correct the separation of the foils

in real time via a feedback mechanism. However, as this was not necessary for the present

work, this feedback mechanism was not used. Instead, the capacitance reading was used to

note the precise moment when contact was achieved between the foils, and this was used to

define the “zero distance” for the motor and micrometer readings.
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3.3 Geant4 simulations

Much of the work to extract lifetimes from the experimental γ-ray spectra is performed with

the aid of the Geant4 simulation package [61]. These simulations need to accurately repro-

duce all of the important aspects of the experimental setup as well as handle the appropriate

physics processes. Geant4 itself is designed to take care of the physics processes, including

the physics of the beam propagating through target materials and photon physics. For the

specific needs of the experiments described in this work, a simulation package previously

developed and used at the NSCL [62] was employed. This package has been updated so that

it incorporates both the SeGA and GRETINA detector systems in the geometries used in

this work. This section will briefly describe the operation of the simulation software and the

manner in which it is used to analyze lifetime data.

The simulation software accepts many parameters in order to accurately describe an

experiment. Many of these are determined by the equipment used in an experiment. As

the simulation is designed to be used for lifetime measurements at NSCL, it accepts input

which tells it whether to use a single target, a classic two-foil plunger, or the TRIPLEX

plunger. It can also accept values for the material type, thickness, position, and a factor by

which to scale the density of each target in order to reproduce the measured energy loss in

the experiment. There is also the possibility to translate the plunger away from its default

position within the simulation. With respect to the detector systems involved, the simulation

is able to virtually construct either SeGA or GRETINA and use it as a detector system for

γ rays. For SeGA, this includes the capability to translate and rotate each SeGA detector

individually to precisely reproduce the experimental setup. The description of the SeGA

detectors is also very complete, including both the active volumes of the detectors as well as
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the crystal housings and dewars, and includes the ability to simulate the individual segments

of SeGA. For GRETINA, the individual quads are described and can be positioned precisely

in a similar manner to SeGA. However, instead of individual segments, the simulation mimics

the position sensitivity of GRETINA by taking the actual interaction point of a photon in

the simulated detector volume and shifting it according to a three dimensional gaussian

distribution with a variable width parameter. In this way, the observed position resolution

can be matched in the simulation.

In addition to the parameters which describe the experimental setup, the simulation also

accepts many values which describe the experimental conditions specific to a given nucleus.

These include the position, spatial extent, energy, momentum spread, and angular spread

of the incoming beam; the change in charge and mass number undergone in a reaction in a

foil, the probability that the reaction will happen in a given foil as opposed to the others,

and the change in momentum of the reacted beam due to the reaction; and the charge state

of the outgoing beam, a reference energy that the outgoing beam is expected to have, and

the acceptance of the S800. Finally, the simulation accepts parameters which describe one

or more excited states in the nucleus that results from the reaction on the target, including

the excitation energy of the states, the energy of the γ rays coming from these states, the

fraction of the nuclei produced which populate each state, and the lifetime of each state. In

this way it is possible to describe the beam itself and reproduce a potentially complicated

level scheme involving many excited states which decay to each other.

With all the relevant parameters set, the simulation program can be executed. The

parameters can be set at runtime in interactive mode or a set of macros can be defined to

automate the process. Once executed, the program will use Monte Carlo methods to generate

incoming beam particles in a distribution defined by the given incoming beam parameters.
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The simulation will then propagate the beam through the various foils, simulating the energy

loss that the beam particles experience as they pass through the material. According to the

parameters entered, the simulation will select one of the foils to be the one in which the

beam undergoes a reaction, producing the outgoing nucleus in one of the states defined

in the input file. The parameters that determine the outgoing beam momentum include

a fraction of the momentum that is lost in the reaction, the width of a gaussian profile

that is sampled to create a spread in the outgoing momentum, and finally the strength of a

kick in a random direction. If the outgoing nucleus is in an excited state, the program will

sample the decay curve of the excited state based on its entered lifetime and determine the

location at which it will decay, propagating the nucleus to that point and emitting a γ-ray

according to the given decay properties of that state. The photon emission distribution is

isotropic, and if it encounters part of the detector volume its interaction will be determined

by the included Geant4 physics processes. The response of the detector is then reproduced,

including the various possible photon-material interactions, and the energy deposited in the

germanium crystals recorded. This continues until the nucleus has deexcited to its ground

state. This process is then repeated many times until a given number of beam particles have

been simulated.

Once the program has finished simulating the experiment, it will output a set of his-

tograms that can be compared to experimental data. Internally, it uses the ROOT analysis

package [58] to store data during the simulation process, then generates a predefined set of

histograms from this data. These histograms are then written to a ROOT file which can be

opened and manipulated by the user. The tree structure which stores the data internally

can also be written to file, although this is atypical as the files are very large. Since the

experimental data in this work was also analyzed using the ROOT package, it is then possi-
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ble to directly compare the simulations of data with those from the simulation for analysis

purposes.

In this work, the simulations are fit to the data using a χ2 minimization procedure. A

short overview of this procedure is given here, which represents a summary of the information

found in Ref. [63]. If the data is represented by a histogram with N bins denoted xi, where

i is the index of a bin, and the simulation by a histogram with the same number of bins

denoted yi, then the quantity χ2 is calculated by

χ2 =
N∑
i=1

(xi − yi)2

σ2i
, (3.16)

where σi is the uncertainty in the number of entries in bin i of the data. If the simulation

reproduces the spectral shape of the experimental spectrum well, then the χ2 will be small,

as the differences between the data x and the simulation y will be small. However, if the

simulation doesn’t reproduce the data (if, e.g., the lifetime input to the simulations is not

the true lifetime), then the χ2 will be large. This provides a metric by which to gauge the

goodness of a particular fit. By fitting many simulations with different lifetimes to the data,

a distribution of χ2 can be generated, and the minimum taken to be the “best fit.” If this

distribution of χ2 is quadratic in the lifetime, then the χ2 for a value of the lifetime which

is one standard deviation away from the minimum χ2 is given by

χ2 = χ2min + 1. (3.17)

This provides a useful way of determining the uncertainty in the lifetime. However, it is also

important to judge whether the obtained χ2 indicates a good fit or not. This can be done,
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assuming that the individual bins of the data are independent and the simulation gives the

correct spectral shape, by noting that the minimum value of the χ2 should be distributed

according to the χ2 distribution:

f(z;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2, (3.18)

where z is a continuous variable (the lifetime, in this case), n is the number of degrees of

freedom of the fit, and Γ is the gamma function defined by

Γ(x) =

∫ ∞
0

e−ttx−1dt. (3.19)

The expectation value of the χ2 distribution is the number of degrees of freedom, which

in the present case is the number of bins less the number of fit parameters fixed from the

data. For a good fit, then, it is expected that χ2/n = 1. This condition can therefore be

used to judge the quality of the fit, and in conjunction with the procedure for finding the

uncertainty, is used to determine the lifetime in the analyses presented in this work.
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Chapter 4

Lifetime Measurements in 70As

The first of the lifetime analyses to be discussed in this work was done on 70
33As37 [64]. This

experiment used the lineshape method to determine the lifetimes of the 8+1 and 9+1 states of

this nucleus. More specifically, the analysis applied the lineshape method to γ-γ coincidence

data, where it was required that a γ ray populating the state of interest be observed in the

same event as a γ ray depopulating the state. This presents an experimental challenge, as the

γ-ray yield is substantially reduced in a coincidence measurement and therefore maintaining

sufficient statistics for an accurate measurement becomes difficult. However, as 70As is an

odd-odd nucleus (i.e. it has an odd number of both protons and neutrons), it has a high

level density of excited states which are interconnected. This makes it difficult to ensure

that the shape of the γ-ray spectrum being studied is due to just one transition and not

multiple transitions superimposed on one another. In addition, with significant feeding, it

is possible that a given state may appear to have a longer lifetime than it actually does due

to the influence of the lifetime of a feeding level. The use of γ-γ coincidence was therefore

necessary for this analysis, and also demonstrates an important tool for the determination of

lifetimes in similarly complicated nuclear systems where the analysis of γ-ray singles spectra

may prove insufficient.
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4.1 Physics motivation

The motivation for studying 70As was to understand the structure of this nucleus. 70As

is located in a region of the nuclear chart which is known to be a location where nuclear

structure is rapidly evolving [16, 32]. For instance, nuclear systems of roughly mass 70 near

the N = Z line have been shown to rapidly change their shapes as a function of the number

of protons and neutrons they have [60, 65, 66]. In addition, as more nucleons are added

to nuclei in this mass region, they exhibit greater levels of collectivity and this behavior

is attributed to increasing occupation of the g9/2 orbital, which is understood to drive the

collectivity in this region [67]. However, for nuclei which have A . 70, it can be expected

that their low-lying states can be described by nucleons that occupy primarily the p and

f shell-model orbitals. Still, in higher-lying excited states these nuclei may show evidence

of the g9/2 orbital [68] as nucleons are promoted out of the p and f orbitals. Studying the

excited states of 70As and looking for evidence of collective behavior can therefore provide

information about the structure of these states.

Another aspect of 70As that needs to be considered is that it is an odd-odd nucleus.

Without collectivity, an odd-odd nucleus can be described primarily by the coupling between

the last proton and last neutron which are then coupled to the rest of the nucleons in the

form of an even-even core. In such an arrangement, the excited states of the nucleus are

built primarily upon the interactions of the two odd nucleons, and so the transitions between

these excited states can be expected to display a strongly single-particle character. On the

other hand, for states that are at sufficiently high excitation energy, the odd particles may

be promoted into the g9/2 orbital, which might be expected to cause the nucleus to evolve

collective characteristics as mentioned above. Therefore, it is also of interest to understand
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how nuclei evolve with increasing excitation energy, as well as changing nucleon number.

There have been a number of previous studies performed on 70As that have provided

information about its nuclear structure. In addition to identifying many excited states and

assigning spin and parity values to them, some studies have sought to interpret the structure

of the nuclear states in terms of the excitations of the two odd particles. It was found that

the ground state can be described by placing both the odd proton and the odd neutron into

the f5/2 orbital, and several excited states were described in terms of the coupling of the

odd proton and odd neutron in the f5/2, p3/2, p1/2, and g9/2 orbital space [69, 70]. This

would lend support to the premise that 70As does not exhibit strong collective features.

Indeed, in Ref. [70] it was found that the low-lying states are well-described by a spherical

shape and in Ref. [69] there was no evidence found for collective behavior when the odd

nucleons are not both in the g9/2 orbital. However, a later study found that for the 11+1

and 13+1 states there is evidence of strong collectivity based on the lifetime measurements of

these states [71]. This would indicate that at some point the structure of 70As changes from

non-collective to collective. The purpose of the study presented in this chapter is to provide

further information about this change in structure.

The two states under investigation in the analysis presented here are the yrast (that

is, lowest-lying) 8+ and 9+ states in 70As. In both Refs. [69] and [70] the 9+ state was

suggested to belong to the configuration where both the odd proton and the odd neutron

are in the g9/2 orbital. This claim was based upon the observation that the level energies

of the 9
2
+

states in the neighboring odd-A nuclei sum to roughly the energy of the 9+

state in 70As (i.e. E(69Ge,92
+

) + E(69As,92
+

) = 397.9 keV + 1306.7 keV = 1704.6 keV [72],

compared to E(70As,9+) = 1752.2 keV [73]). This would indicate that the 9+ state behaves

similarly to the lower-lying states which arise from the coupling of the valence nucleons,
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in that it behaves as an excitation of the two odd nucleons to the g9/2 orbital rather than

collectively as the higher-lying states do. The 8+ level was proposed to also belong to this

configuration (referred to as πg9/2νg9/2 hereafter) based on the fact that a strong M1 branch

was observed to connect the 9+ and the 8+ states, which could suggest that the two states

have a similar structure since the overlap of their wavefunctions would be large. However,

more experimental information can help to set these assignments on firmer ground.

In order to investigate whether the 8+ and 9+ states do belong to the πg9/2νg9/2 con-

figuration, the lifetimes of these two states were measured. From this, the strengths of the

transitions B(M1; 9+ → 8+) and B(E1; 8+ → 7−) can be extracted in order to discuss the

structure of these states. As a prediction, the strength of the 9+ → 8+ transition should be

on the order of unity in single-particle units if the assignment of these states to the πg9/2νg9/2

configuration is correct, since only the last odd nucleons should be participating in the transi-

tion. On the other hand, to make a prediction about the strength of the 8+ → 7− transition,

some knowledge of the 7− state is necessary. The stretched configuration πf5/2νg9/2 can

account for the spin-parity of the state, and the measured magnetic moment of the state

agrees well with theoretical calculations [70, 74]. Therefore, the assignment of this state to

the πf5/2νg9/2 configuration can be taken with some confidence. However, this means that

the 8+ → 7− transition, which has a dipole character, must connect two states in which the

proton makes an angular momentum change of 2~ between the f5/2 and g9/2 orbitals, which

is forbidden. Given that the transition occurs, it means that if the odd-particle configura-

tion assignments of these two states are accurate then the transition is strongly hindered

and proceeds because of small admixtures of other configurations. A similar situation for the

starting and ending configurations occurs in the neighboring odd-odd isotope 72As, where

the strength of the 8+ → 7− transition is known to be 1.22(16) × 10−5 W.u. since the
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lifetime [75] and the E1 character of the γ ray [76] are known. This is a strongly hindered

decay [77], consistent with the proton having to make a ∆j = 2 transition via a forbidden

dipole decay. Therefore, if the 8+ → 7− decay has a strength which is similarly hindered, it

will support the assignment of the 8+ state to the πg9/2νg9/2 configuration.

4.2 Experimental details

The experiment that produced the data for this analysis was run in December of 2010 at the

NSCL. The primary beam from the cyclotrons was a standard 78Kr beam with an energy of

150 MeV/nucleon and an intensity of 25 particle nano-Amperes (pnA). This primary beam

was impinged upon a 9Be target to produce 78Rb via a nuclear charge exchange reaction,

rather than the typical fragmentation reactions used at the facility, which was necessary to

fulfill other science goals in the experiment. The 78Rb was selected in the A1900 fragment

separator, using an aluminum wedge of thickness 240 mg/cm2 and a longitudinal momentum

acceptance of 0.5%. This resulted in a secondary beam that was approximately 70% 78Rb,

with an energy of 101.6 MeV/nucleon and a rate of about 1 × 105 particles per second.

Figure 4.1 shows the different species present in the secondary beam after purification in the

A1900, identified by their time of flight between the extended focal plane (xfp) scintillator

in the A1900 focal plane box and the object scintillator in the S800. Software gates were

used to remove the remaining components besides 78Rb in the offline analysis. This beam

was then transported to the S800 vault for the measurement.

Once the beam reached the experimental station in the S800 vault, further reactions were

necessary to produce the 70As nuclei in the appropriate excited states. For this purpose, a

second 9Be reaction target of thickness 376 mg/cm2 was placed at the S800 target position
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Figure 4.1: The composition of the secondary beam after purification in the A1900 fragment
separator, distinguished by their time of flight between the A1900 extended focal plane (xfp)
scintillator on the vertical axis and the S800 object (obj) scintillator on the horizontal axis.
78Rb is the primary component, with smaller contributions from 77Kr and 76Br. These latter
components were removed with software gates in the analysis.

to induce further reactions in the secondary beam. The beam particles that were within the

acceptance of the spectrograph (which was operated in focused mode for this experiment,

resulting in a large momentum acceptance of about ±2.5%) were then bent through the

analyzing dipole magnets to the S800 focal plane. In general, many species of particle will

be present in the focal plane detectors. They can be identified by correlating their time of

flight from one of the scintillators in the beamline (the obj scintillator in this case) with

their energy loss in the S800 ionization chamber. As shown by Eq. 3.6, the energy loss of

an ion in a material is proportional to the square of the charge of the ion, Z2, which gives

87



(arb. units)objT
1400 1450 1500 1550 1600

E
 (

ar
b

. u
n

it
s)

∆

1500

1600

1700

1800

1900

2000

2100

2200

2300

1

10

210

310

78Rb

76Rb

70As

Figure 4.2: A plot of the energy loss ∆E vs. time of flight Tobj of each particle used to identify
the various nuclei produced in the reaction of the secondary beam. The energy loss separates
elements vertically according to Z2 while the time of flight separates isotopes horizontally
according to A/Z (note that for this plot, the horizontal axis has been reversed, so that
increasing time of flight corresponds to decreasing A/Z). This results in the slanted lines
shown. Stepping right along a “horizontal” line corresponds to removing one neutron per
locus, as shown by the labeled Rb isotopes. Moving vertically downward along a “column”
corresponds to removing one proton and one neutron per locus. Thus, moving the four loci
from 78Rb to 70As in the figure corresponds to removing four protons and four neutrons.

elemental separation. Meanwhile, the time of flight Tobj is related to the ratio of the mass

to the charge:

Bρ =
m

q
v ≈ A

Z
v =

A

Z

L

Tobj
, (4.1)

or Tobj ∝ A
Z , which gives isotopic separation. Correlating the energy loss with the time of

flight therefore uniquely identifies the nuclei that enter the S800 focal plane. Figure 4.2 shows

the particle identification for this experiment with several nuclear species labeled, including

70As. Software gates were again used to select only the nucleus under study.
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Figure 4.3: A partial level scheme for 70As, showing the levels which are relevant to this
study. Level energies are shown on the right, while spins and parities are shown on the left
(parentheses indicate tentative assignments), and the arrows indicate transitions between
levels of the associated energy. Two transitions are enclosed in boxes, indicating that these
were used as gating transitions in the γ-γ analysis, described in detail in the text. Figure is
from [64].

The deexcitation γ rays coming from the excited nuclei produced by reactions in the

target were detected by SeGA in its barrel configuration (see Sec. 3.2.2.2). The lineshape

method was used to extract the lifetimes of the states of interest in 70As. To do so, γ-γ

coincidence data were used, despite the large reduction in statistics that this imposes on

the data. The reason for this is that the level scheme of 70As is both dense and highly

interconnected as illustrated by Fig. 4.3, which shows the portion of the excitation scheme of

70As relevant to this study. As stated earlier, the two quantities of interest to this study are

the 8+ and 9+ state lifetimes. However, inspection of Fig. 4.3 shows that multiple higher-

lying states decay to both of these levels. This presents a problem because only some of
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these higher-lying states have known lifetimes. If any of these states should have a lifetime

which is comparable to or longer than the ones they feed, then the lifetimes of the 8+ and 9+

states measured here would be systematically higher than the true values. Therefore, gates

were placed on the γ-ray spectra such that only photons coincident with a particular state

with a sufficiently short lifetime were present in the spectra, thereby ensuring that feeding

from long-lived states is removed.

To measure the 8+ state lifetime, the 8+ → 7− transition was analyzed in coincidence

with a γ ray from the 10+ → 8+ transition. This transition was chosen because it was

observed to be present in the experiment and, more importantly, there is good reason to

expect that the 10+ state has a short lifetime. Although the 10+ state lifetime in 70As is

unknown, it is reasonable to expect that the 10+ → 8+ transition strength will be similar

to that in the neighboring arsenic isotopes. Therefore, the 10+ state lifetime in 70As can

be estimated based on the strength of the 10+ → 8+ transition in 72As, which is known to

be B(E2; 10+ → 8+) = 67 W.u [78]. Under the assumption that the strength of this decay

is identical in 70,72As, this leads to an estimated lifetime of τ10+ = 0.73 ps, which is well

below the sensitivity of this measurement and can be neglected. The possible impact of this

estimation is discussed further in the discussion of the results of this measurement, Sec. 4.5.

Therefore, analyzing the lineshape of the 8+ → 7− transition when the 8+ state is fed by

the 10+ state should ensure that the lifetime determined from this measurement is free from

feeding effects.

The 9+ state was analyzed in a similar fashion to the 8+ state by analyzing the lifetime

of the 9+ state in coincidence with a γ ray from another state. However, several of the

experimental conditions made a direct measurement of the 9+ → 8+ decay lineshape difficult.

As can be seen in the spectra in Sec. 4.3, the threshold of the SeGA detectors was set such
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that the transition was just on the edge of the range of energies that could be detected, and

below the threshold for the forward detectors. Since a portion of the photopeak then lies

over the part of the spectrum which is rapidly decreasing at the threshold, the shape of the

peak is no longer reliable because the background shape cannot be accurately characterized.

It was also observed during the experiment that there was a strong background component

at roughly the same energy as the 76.1-keV transition depopulating the 9+ state. This

corresponds to a photon from radiative electron capture (REC) [79, 80], which is the inverse

process of the photoelectric effect in which the projectile nucleus captures an electron from

the target and emits a photon. The photon energy in the beam frame is the sum of the

electron K-shell binding energy Eb in the projectile and the kinetic energy of the electron in

the beam frame:

EREC =

(
1√

1− β2
− 1

)
mec

2 + Eb. (4.2)

Since REC can have a cross section as high as tens of barns (see Fig. 1 of Ref. [79]), there is a

significant chance for this process to be due to the 78Rb beam before it reacts to form 70As,

or to the reacted beam itself. Therefore, the upper bound of REC energies corresponds to

78Rb as it enters the target (traveling at β = 0.43) and the lower bound to 70As as it leaves

the target (β = 0.34). Eb can be approximated by assuming that the binding energy is the

same as a hydrogen-like atom of the appropriate species, so that the range of energies in

which an REC photon can be emitted is between 47 keV and 74 keV in the projectile frame.

Considering the 9+ → 8+ photon has an energy of 76.1 keV, it will not likely be possible to

distinguish it from the REC photopeak. Therefore, instead of measuring the shape of the

9+ → 8+ transition, it was decided to use the photon depopulating the 9+ state as a gating

condition and evaluate its effect on the lineshape of another transition which the 9+ state
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feeds. The 8+ → 7− transition was the natural choice since it had already been measured

in this work. With a sufficiently long lifetime, the feeding from the 9+ state would cause

the 8+ state to appear to have a longer lifetime than that measured in coincidence with the

10+ → 8+ transition. With the 8+ state lifetime already measured, any remaining effect

would then be attributable to the 9+ state and allow its lifetime to be determined.

4.3 γ-ray spectra

With the identification in the previous section of the particles entering and exiting the

target, the γ rays that were detected in SeGA could be filtered to select only those that

were detected in coincidence with 78Rb particles incident on the target and 70As fragments

exiting the target. This insures that only the γ rays coming from excited states in 70As are

present in the analysis, so that transitions from other nuclei do not influence the lifetime

measurement. These γ-ray spectra will be discussed in this section, both the singles spectra

(those on which the only condition placed is coincidence with the incoming and outgoing

beams) and the coincidence spectra (those which are gated on the presence of a specific γ

ray).

The singles γ-ray spectra for 70As are shown in Fig. 4.4, split into forward and backward

rings and corrected for Doppler shifting. While the singles spectra may be problematic for

measuring lifetimes in the present case (for the reasons discussed in Sec. 4.2), they have the

highest statistics and are therefore useful for the purpose of identifying the various γ rays

present. It is also important to inspect the singles spectra carefully before deciding upon

the conditions for generating the coincidence spectra, as it is important to choose a gating

condition which maximizes the number of true events in the gate while excluding as many
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Figure 4.4: The γ-ray singles spectrum in coincidence with 70As fragments detected in the
S800, with panel (a) showing the γ rays detected in the backward ring and (b) those detected
in the forward ring. Several prominent transitions are identified by arrows, including the
8+ → 7− at 788.3 keV which has a noticeable asymmetry due to lifetime effects. The strong
peak at low energy in the backward ring is due to both the 9+ → 8+ transition and the REC
process described in Sec. 4.2, which cannot be resolved in this experiment. As mentioned,
REC can have a very large cross section, which explains the large amplitude of this peak.
In each panel, the inset shows the same spectrum focused around the 788.3-keV γ ray from
the 8+ state as well as weakly populated γ rays from the 10+ and 11+ states, which were
important for choosing the coincidence gates. Figure is modified from [64].

93



accidental coincidences as possible. Inspection of Fig. 4.4 shows several places where clear

peaks are present in the γ-ray spectrum, including the 8+ → 7− peak and the peak which

is a combination of the REC process mentioned earlier and the 9+ → 8+ transition. The

insets to the figures show the peak from the 8+ state along with two transitions from the

10+ and 11+ states, which are only weakly populated. These states feed the 8+ and 9+

states, which demonstrates the necessity of using γ-γ coincidence.

The coincidence spectra were generated by requiring that a γ ray within a given energy

range corresponding to a particular transition be present and then plotting all other γ rays

that were detected in the same event. The determination of the coincidence condition for the

9+ state lifetime measurement was straightforward, as the peak from the 9+ state lay within

the large peak at low energy in the backward ring singles spectrum. Therefore, the condition

for plotting γ rays for the coincidence spectrum was that a photon was detected in the range

covered by this combination of the 9+ → 8+ and REC peaks in the backward ring. This

gating condition can include events where REC satisfies the gating condition and creates

false coincidence. However, since REC is an atomic process and not related to the nuclear

states, it is completely uncorrelated with any nuclear transition and should contribute only a

random background. The resulting γ-ray spectra are shown in Fig. 4.5, where the upstream

and downstream rings have once again been plotted separately. Several transitions besides

the 8+ → 7− have been tentatively identified in this figure, but they are not related to the

transition in question. In addition, it can be seen that the backward ring of detectors suffers

from poor statistics and the shape of the 8+ → 7− peak is not well-defined. Because of this,

the backward ring was not able to be fit reliably and was excluded from the analysis and the

lifetime was extracted from the forward detectors only.

The placement of the gate for generating the spectra for measuring the 8+ state lifetime
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Figure 4.5: The coincidence γ-ray spectra for the lifetime measurement of the 9+ state
in 70As, Doppler corrected and split into (a) the backward ring and (b) the forward ring.
The gating condition is that there is a photon within the energy range covered by the
combined REC and 9+ → 8+ transition peak. Several decays are labeled that can come in
the coincidence gate but are not related to the decay of the 9+ state. As can be seen in
the figure, due to poor statistics the shape of the 8+ → 7− peak is not well-defined in the
backward ring and was not able to be fit reliably. For this reason, only the forward ring was
used for analysis.
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was more difficult to determine due to the much lower statistics in the 10+ → 8+ transition

at 903.8 keV. In the end, the placement of the gates was chosen to require either a photon

with an energy between 878 keV and 938 keV in the forward ring or a photon with an

energy between 886 keV and 920 keV in the backward ring, as this was observed to give

the best signal-to-noise ratio for the 8+ → 7− transition. This choice was also validated

later by comparing to the simulated peak shape for the 10+ → 8+ transition (see Sec. 4.5).

The resulting γ-ray spectra are shown in Fig. 4.6, again split into forward and backward

detectors. As with the coincidence spectra for the 9+ state, the backward ring spectrum

has very low statistics for the 8+ → 7− transition, which does not have a clear shape for

the peak. Therefore, as for the analysis of the 9+ state lifetime, only the forward ring of

detectors were used to analyze the lifetime of the 8+ state.

Finally, given that the signal-to-noise ratio is not very high in the singles spectra, it

can be asked whether the signal for the 8+ → 7− transition observed in the coincidence

spectra is due to true coincidence or accidental coincidence with background events. To

evaluate the false coincidence rate, spectra were generated with gates beside the true gates

that were specifically placed in locations where no coincidence with the 788.3-keV γ ray

from the 8+ state is expected. If a signal is observed in these spectra at 788.3 keV, then

this will correspond to the accidental coincidence rate and can be used to determine whether

it will be significant. These false-coincidence spectra are shown in Fig. 4.7, with the dots

corresponding to the true coincidence data and the cross marks corresponding to the false

coincidence data. In panel (a), the coincidence spectra for the 8+ lifetime measurement are

shown, and it is clear that while the background in both spectra are comparable, there is

only a signal present in true coincidence data. The background spectra were generated by

putting a gate on the energy spectrum around 1400 keV, with the same width as the gate on

96



 (keV)γE
0 200 400 600 800 1000 1200 1400

C
o

u
n

ts
 /
 1

6
 k

e
V

0

50

100

150

200

(a)  coincidence
+

As backward, 8
70


7→

+
8

 (keV)γE
0 200 400 600 800 1000 1200 1400

C
o

u
n

ts
 /
 1

6
 k

e
V

0

50

100

150

200

(b)  coincidence
+

As forward, 8
70


7→

+
8

Figure 4.6: The coincidence spectra used to determine the 8+ state lifetime in 70As, split
by photons detected in (a) the backward ring detectors and (b) the forward ring detectors.
In contrast to the coincidence spectra for the 9+ state lifetime, there are no other obvious
transitions observed. The one bin which goes beyond the y-axis range in panel (a) is due to
accidental coincidence from REC which is not important in this figure and had a bin content
of 451 counts, and so the axis range was set to emphasize the rest of the spectrum. The
8+ → 7− transition is labeled, and as for the 9+ coincidence spectra, the peak shape is only
well-defined in the forward detectors, and so the backward ring was not used in the lifetime
analysis of the 8+ state either.
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Figure 4.7: A comparison of the true coincidence rate with the background coincidence rate
for (a) the 10+ → 8+ coincidence spectrum for the 8+ lifetime analysis and (b) the 9+ → 8+

coincidence spectrum for the 9+ state lifetime analysis. In both panels, the dots represent
the true coincidence spectrum and the crosses represent the coincidence with background,
and only data from the forward ring are shown. For both cases, the true coincidences show
a clear presence of the 8+ → 7− transition while the accidental coincidence spectra do not
exhibit a signal from this transition. Figure is adapted from [64].
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the true coincidence spectrum. A gate closer to the actual energy would have been used, but

several transitions that feed the 8+ state surround the 10+ → 8+ transition (see Fig. 4.3),

and so a gate at higher energy had to be chosen to evaluate the accidental coincidences.

Panel (b) shows a similar comparison for the 9+ state lifetime analysis, and once again only

the true coincidence spectrum shows a signal from the 8+ → 7− transition, as well as a peak

from other transitions as in Fig. 4.5. This false coincidence gate was set just above the true

coincidence gate to try to use background as similar as possible to the true coincidence gate,

and also shows no signal near the 788.3-keV γ ray from the 8+ state. This shows that the

gates used for this analysis do in fact select events which are in true coincidence with the

8+ → 7− transition, as opposed to being in coincidence with the background. Normally, the

background spectra would be subtracted from the true coincidence spectra in order to have

a cleaner signal, however, it is usual to subtract a background spectrum which is an average

of background gated just above and just below the transition of interest to try to minimize

the impact of choosing any particular location to characterize the background. In this case,

since the background in panel (a) was taken at significantly higher energies, and that in

panel (b) could not be taken below the peak due to the threshold settings, no background

subtraction was performed, and the background spectra are presented to demonstrate the

quality of the gates.

4.4 Lifetime analysis

With the γ-ray spectra generated, the analysis of the lifetime of the 8+ and 9+ states could

be performed. This was done by using Geant4 simulations (see Sec. 3.3) to reproduce the

experimental γ-ray spectrum under the assumption of a range of different lifetimes for the
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state being studied, and then fitting these simulated spectra to the real ones. In doing so,

a reduced χ2 distribution was generated as a function of the lifetime, and the minimum of

this function was taken to be the lifetime. For this dataset, since coincidence data were

used to determine the lifetimes, simulated coincidence spectra were also generated for use in

the fitting procedure. The remainder of this section will describe the preparation of these

simulations and the data analysis itself.

4.4.1 Geant4 simulations

In order to accurately reproduce experimental γ-ray spectra, it is important for the Geant4

simulations to mimic as much as possible the conditions under which the experiment was

performed. The first step towards reproducing the experiment is to ensure that the place-

ment of the SeGA detectors in the simulation corresponds to the placement of the physical

detectors. While the geometry of the barrel configuration of SeGA is largely set by the

detector mounting frame, there is some room for adjustment of the detectors. To deter-

mine the detector locations as accurately as possible, a device known as a “ROMER arm”

is used. This device is an armature with a pressure-sensitive probe attached to the end.

As the armature is moved, the device tracks the location of the probe in space and records

the coordinates of the probe each time it is pressed against a surface. Known points on the

SeGA detectors are then touched by the probe to record their coordinates, and the location

of the ROMER arm is determined against well-known calibration locations in the lab by

laser survey. These coordinates are then used to generate the simulated SeGA detectors so

that their locations are the same as those used in the experiment.

With the geometry fixed, the next thing to be validated is the γ-ray detection efficiency

of the simulation as a function of photon energy. This is important because the detector

100



 (keV)γE

0 200 400 600 800 1000 1200 1400

E
ff

ic
ie

n
c

y
 (

%
)

0

2

4

6

8

10

12

14

16

18

20
(a)   Forward ring

 (keV)γE

0 200 400 600 800 1000 1200 1400

E
ff

ic
ie

n
c

y
 (

%
)

0

2

4

6

8

10

12

14

16

18

20
(b)   Backward ring

Figure 4.8: Comparison of the simulated and measured efficiency of SeGA for various γ-ray
energies with a 152Eu source in (a) the forward ring and (b) the backward ring. In both
panels, the simulation is shown by the red triangles while the data is shown by the black
dots. The simulations reproduce well the efficiency of the real SeGA detectors, especially in
the ∼600-1000 keV energy range of interest to this experiment.

efficiency is intimately connected with the photopeak shape. If the simulation were to have

a detection efficiency with a much greater slope as a function of energy than the real de-

tectors, it would lead to an exaggerated low-energy tail and thus produce erroneous lifetime

results. The efficiency can be checked by taking data with a standard radioactive calibration

source with known activity and γ-ray branching ratios and comparing it to the corresponding

spectrum generated by the simulation. The efficiency curve for a 152Eu source is shown in

Fig. 4.8, divided into the forward and backward rings. The red triangles represent the data

while the black dots represent the simulations. The overall shape of the efficiency curve for

the data is reproduced very well by the simulations, especially for the energy range between

about 600 keV and 1000 keV which is relevant for this analysis. While some small deviation

between the data and simulations may be present, this is ultimately inconsequential, as the

simulations are scaled to match the data in the analysis and this will effectively normalize
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the simulated efficiency. What is important is that the relative efficiency at various energies

remains constant between the simulation and the data. This figure aptly demonstrates that

this is the case.

With the performance and placement of the SeGA detectors determined, the properties

of the beam in the experiment need to be input into the simulation. In particular, it is

important to fix the physical size and direction of the beam as well as its energy, because

the simulation attempts to apply the same Doppler correction to photons that it generates

as is applied to the γ rays detected in the experiment. Since the real beam is tracked in

the S800 and its reconstructed trajectory at the target used for the Doppler correction, this

same condition needs to be recreated in the simulation as well. This was done by providing

the focus point of the incoming 78Rb beam as well as its spatial and angular spread in the

dispersive and non-dispersive directions. The energy of the incoming beam and the energy

spread as measured in the experiment are also provided. The reaction mechanism is input

as the change in the number of protons and neutrons, and the momentum change of the

beam is described by a loss of longitudinal momentum according to a Gaussian distribution

with an adjustable width, plus a kick of adjustable strength in a random direction. The

target thickness and density are also provided, and the simulation uses this information to

calculate the energy loss of the ion through the target (see Sec. 3.3). The kinetic energy of the

beam corresponding to the Bρ setting of the S800 is provided as well as the acceptance of the

spectrograph so that the acceptance of the simulation is similar to what is actually observed.

In the end, the simulation outputs the distributions of the angles in the dispersive and non-

dispersive direction (ata and bta, respectively), the non-dispersive position (yta), and the

spread in the energy ∆E/E (dta). Figure 4.9 shows a comparison between the experimental

(black) and simulated (red) properties of the beam. All of the simulated spectra reproduce
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Figure 4.9: A comparison of the measured beam profile (black) with the simulated one (red).
Panels (a) and (b) show the spread in the angular divergence of the beam in the dispersive
and non-dispersive directions, respectively. Panel (c) shows the spatial distribution in the
non-dispersive direction, and panel (d) shows the spread in the energy of the beam relative to
the energy specified by the Bρ of the S800. All the distributions show very good agreement
with the exception of yta, where the simulation does not reproduce the tails of the data.
However, the position in the non-dispersive direction does not strongly affect the γ-ray
spectrum, and so this level of agreement is sufficient.
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the data very well with the exception of the yta, which shows a marked deviation from

the tails of the data. This is because the simulation assumes a uniform ellipsoidal beam,

but in reality the beam may have any shape. However, the distribution of the beam in

the non-dispersive direction does not have a strong effect on the γ-ray spectrum, and so

instead of attempting to modify the simulation code to accommodate every experiment, the

approximation of an ellipsoid is used and adjusted to the data as much as possible. The

position in the dispersive direction is not measured, but is usually assumed to be zero in

order to be consistent with the assumption made for the inverse tracking in the S800.

Finally, with the detector and beam properties constrained, the last inputs necessary to

generate the simulated γ-ray spectra are the level scheme, decay energies, and lifetimes. For

this work, the level and γ-decay energies were already determined in previous studies, and

so these parameters were taken from the literature. The lifetime is to be determined here,

and so this final parameter was varied in the simulations. The simulated spectra and the

lifetimes determined from fitting them to the data are presented in the next section.

4.4.2 Lifetime determination

With the Geant4 simulations prepared, the lifetimes of the 8+ and 9+ states were determined

by fitting the simulated γ-ray lineshapes to those observed. First, a preliminary fit with no

feeding was performed on the singles spectrum in order to verify which transitions could be

observed in the spectrum. Then, fits to the coincidence data were performed to determine

the 8+ and 9+ state lifetimes. Finally, a fit to the singles data was performed with full

feeding where both the 8+ and 9+ state lifetimes were varied simultaneously, and this was

used to verify the results of the coincidence fit.

The first step in understanding the γ-ray spectra was to determine which transitions

104



could be observed and to have an estimate of their intensities. To do this, a preliminary

investigation of the γ-ray singles spectrum in the range between roughly 600-1000 keV was

performed by fitting γ-ray spectra for all of the transitions shown in Fig. 4.3 on top of an

exponential background (excluding the 1342.7-keV, 76.1-keV, and 221.8-keV transitions, as

these were outside of the initial fitting range chosen). A transition at 944.9 keV (not shown

in Fig. 4.3) was also added in order to explain the counts observed at that energy, however, it

is otherwise unrelated to the analysis. The results of this fit are shown in Fig. 4.10, where the

upper panel shows the simulated γ-ray spectrum (red) fit to the data (black) in the forward

ring and the lower panel shows the simulation broken up into its individual components.

For this first fit, a lifetime of 150 ps for the 8+ state was observed to give a reasonable

reproduction of the experimental spectrum. However, it should be noted that feeding was

ignored for this first attempt, and so this value should not be taken to be representative of

the true 8+ lifetime. What is important to see from this fit is that there are many γ rays

present in the spectrum and that many of them are significantly overlapping each other. In

particular, the 791.3-keV γ ray is completely unresolved from the 788.3 keV γ ray from the

8+ state, which severely complicates the determination of the lifetime of the 8+ state in the

singles spectrum. The other point to notice about this fit is that it shows that the 903.8-keV

transition from the 10+ state is well-separated from the 827.7-keV and 980.7-keV transitions

that feed the 8+ state through the 9+ state, which makes it ideal as a gating condition. It

does have significant overlap with the 944.9-keV transition mentioned earlier, but as this is

located below the 8+ state and does not feed any of the states of interest to this analysis, it is

inconsequential. This provides confirmation that the placement of the gate used to generate

the 8+ state coincidence spectrum is valid. The dashed vertical lines indicate the placement

of the gate.
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Figure 4.10: A first attempt at fitting the γ-ray singles spectrum from the forward ring. For
this fit, no attempt was made to account for any feeding, and a lifetime for the 8+ state of
150 ps was used. Panel (a) shows the data (black points with error bars) with the fit overlaid
as the solid line in red. The assumed exponential background is shown by the dashed line.
The individual components of this fit can be seen in panel (b). The legend identifies the
various γ-ray energies, which correspond to those listed in Fig. 4.3 except for the 944.9-keV
γ ray, which was included to explain the accumulation of counts at that energy. Otherwise,
the 944.9-keV γ ray is unrelated to the analysis, as the state from which it originates lies
below the 8+ state. The vertical dashed lines denote the location of the gate used to generate
the coincidence spectra for determining the 8+ lifetime. Figure is from [64].
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Figure 4.11: The results of fitting simulations of the 8+ state with various lifetimes (red
line) to the experimental data for the downstream ring in coincidence with the 10+ → 8+

transition (black points with error bars). The lifetime determined from the fit is τ8+ =
80(28) ps, including only statistical uncertainties. Also shown is a simulation with a lifetime
of 0 ps for the 8+ state for comparison, which demonstrates the sensitivity of the data to
the lifetime. The inset shows the reduced χ2 distribution with five degrees of freedom, the
minimum of which was used to determine the lifetime. Figure is from [64].

In order to determine the lifetime of the 8+ state, simulations were fit to the coincidence

spectrum for the forward detectors shown in Fig. 4.6(b). The simulations were generated

with the lifetime varied in 10 ps steps, and each of these was fit to the data on top of

an exponential background. The background was constrained by fitting on a region that

included the 8+ → 7− peak plus background on either side, then fixing the parameters of the

exponential. The simulations were then fit to the data over a smaller region which included

only the peak area, the results of which are shown in Fig. 4.11. For each simulation, the

χ2 value per degree of freedom was calculated and saved. The minimum of the distribution

of reduced χ2 values (shown in the inset of the figure) was then used to determine the 8+

lifetime as τ8+ = 80(28) ps. In the figure, the data are shown by the black points, the

solid red line shows the simulation generated with a lifetime of 80 ps, and the blue dashed
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line is a simulation with an 8+ lifetime of 0 ps to show the sensitivity of the peak shape

to the lifetime. The uncertainty of this measurement given in parentheses is only due to

the statistical uncertainty of the fit. Systematic uncertainties were also evaluated and were

mostly due to the assumptions associated with the background, including its shape and

the region over which it was fit, which when varied produced a sensitivity of 6.4% of the

measured lifetime value. Varying the position of the detectors relative to the target in the

simulations produced a 3% variation in the results, consistent with the findings in [32] where

the same setup was used. Finally, the assumption that the 10+ state lifetime is 0.73 ps

also introduces some uncertainty. To evaluate this effect, the lifetime of the 8+ state was

also evaluated under the assumption that the 10+ state lifetime is five times longer (i.e.

3.65 ps, which would already indicate a substantial change in the structure of the 10+ states

between 70,72As and can therefore be considered unlikely). In this case, the lifetime of the

8+ state in 70As is reduced by 3.4%. Added in quadrature and combined with the statistical

uncertainty, this gives a final result for the 8+ state lifetime of τ8+ = 80(29) ps.

A similar approach was taken to determine the 9+ state lifetime using the coincidence

spectrum shown in Fig. 4.5(b). Simulations were generated with the 9+ state decaying into

the 8+ state, and the 8+ in turn decaying into the 7− state. The lifetime of the 8+ state

was fixed to 80 ps as measured in this experiment, while the 9+ state lifetime was varied

in 10 ps increments. Since the 827.7-keV γ ray from the 10+ state and the 980.7-keV γ

ray from the 11+ state can both be in coincidence with the 9+ → 8+ decay, simulations

were also generated for these states and included in the fit. As with the 8+ state lifetime

analysis, the background as well as the amplitude of the peaks from the 10+ and 11+ states

were fixed by fitting over a wide region including the 8+ peak, then the simulations were

fit to a region including only the peak itself and a reduced χ2 distribution was generated.
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Figure 4.12: The results of fitting the coincidence spectra gated on the 9+ state for 70As.
The simulation with the best fit lifetime of 85 ps is shown by the solid red line drawn over
the black data points. As with the 8+ lifetime analysis, a simulation with the 9+ lifetime
set to 0 ps is shown by the blue dashed line to show the sensitivity to the lifetime. The
inset shows the reduced χ2 distribution which was calculated with four degrees of freedom,
the minimum of which was used to determine that the 9+ state lifetime is τ9+ = 85(30) ps,
including statistical uncertainties only. Figure is from [64].

The results of the fit are shown in Fig. 4.12. From the χ2 distribution, the lifetime was

found to be τ9+ = 85(30) ps, where the uncertainty is again only statistical. The sources

of systematic uncertainty were similar to that for the 8+ state lifetime analysis, with the

background constraint contributing 9.4% to the uncertainty, the same 3% uncertainty due

to detector placement, and the assumption of the 10+ state lifetime gives an additional

uncertainty of 4.4%. Since the lifetime of the 8+ state was used in the determination of the

9+ state, its uncertainty was also propagated to the 9+ state lifetime result. Combined in

quadrature, these extra sources of uncertainty give a final result for the 9+ state lifetime of

τ9+ = 85(43) ps.

As a check that the lifetime measured for the 9+ state is not from differences in the

lineshape due to other features of the spectrum, for example the shape of the background, a
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Figure 4.13: A fit to the 9+ coincidence data using simulations which do not include the
feeding from the 9+ state. This fit should be poor if the measured lifetime is truly due to
the 9+ state. Inspecting the spectrum, it can be seen that the shape of the photopeak is
not reproduced by the simulations under these conditions, which indicates that the 9+ state
lifetime has a significant effect on the 8+ lineshape. The reduced χ2 distribution in the
inset, which was calculated using four degrees of freedom as in Fig. 4.12, does not show a
sharp minimum as in Fig. 4.12 nor is it consistent with the result for the 8+ state lifetime
in Fig. 4.11. This indicates that the 8+ state lifetime alone cannot explain the lineshape of
the peak under these gating conditions. Figure is from [64].

set of simulations without feeding from the 9+ state was generated and fit to the coincidence

data gated on the 9+ state. The results of this fit are shown in Fig. 4.13. Under these

conditions, the shape of the 8+ → 7− transition cannot be adequately reproduced for any

lifetime of the 8+ state. In addition, the reduced χ2 value is considerably worse than the

fit including feeding from the 9+ state. This indicates that the measured lifetime is in fact

attributable to the 9+ state.

As a final check for consistency, the 8+ and 9+ lifetimes were analyzed by varying them

simultaneously in the simulations and fitting the resulting spectra to the γ-ray singles spec-

trum. The full feeding of every level to the 8+ and 9+ levels was implemented for this fit

to ensure full consistency. The result of this fitting procedure is shown in Fig. 4.14, where
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Figure 4.14: The results of a fit in which both the 8+ and 9+ state lifetimes are varied
simultaneously. Panel (a) shows the resulting fit to the data, while panel (b) shows the
individual simulations involved in the fit. Also shown in the inset to panel (b) is the 2-
dimensional reduced χ2 surface along with its projection onto the axes for the 8+ and 9+

state lifetimes. The minimum value is χ2/N ≈ 1.15 at τ8+ ≈ 100 ps and τ9+ ≈ 80 ps,
in agreement with the coincidence fits. The number of degrees of freedom for this fit is 58,
which reflects the fact the fit is over a much wider energy range. For reference, the maximum
value given by the red color in this contour plot is χ2/N = 2. Figure is adapted from [64].

the top panel shows the summed simulations (red line) overlayed on the data points for the

downstream ring of detectors as well as the exponential background (dashed line). As shown

in the inset to panel (b), a 2-dimensional χ2 surface was generated from these fits and the

projection of this surface onto the 8+ and 9+ χ2 axes are also shown. Two minima can be

seen in the inset, one at τ8+ ≈ 0 ps and τ9+ ≈ 160 ps, and another at τ8+ ≈ 100 ps and

τ9+ ≈ 80 ps. The coincidence fits clearly exclude the possibility of τ8+ = 0 ps, but the other

minimum is fully consistent with the conclusions drawn from the coincidence fits and serves
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as a validation of these results.

4.5 Results and discussion

In order to interpret the results of the measurements reported in this chapter, the lifetimes of

the 8+ and 9+ states should be converted into reduced transition strengths. The transition

strengths contain the nuclear structure information of the states involved in a transition and

therefore they are useful for understanding the results of a measurement and comparing to

the structure of nearby nuclei. For the 8+ state, the decay that was measured has a primarily

E1 character with a small M2 admixture (δ = 0.017(13)) [73]. Knowing this, the transition

strength can be calculated to be B(E1) = 1.3(5)× 10−5 e2fm2. In single-particle units, this

corresponds to 1.2(4)×10−5 W.u. The 9+ → 8+ transition, on the other hand, has an M1

character with a small E2 admixture (δ = 0.01(3)) [73], and so the transition strength is

B(M1) = 1.5(8) µ2N , or 0.85(42) W.u. These results can now be used to provide insight

into the nature of the 8+ and 9+ states, and specifically whether they can be described by

a πg9/2νg9/2 configuration.

As discussed in Sec. 4.1, if the 8+ state has a πg9/2νg9/2 configuration, then it is to be

expected that the 8+ → 7− transition is strongly hindered. As explained, there is good

reason to believe that the 7− state has a πf5/2νg9/2 main configuration, and so these two

states cannot be connected by an electric dipole transition since the proton must change its

angular momentum by 2~ between the f5/2 and g9/2 orbitals. Therefore, if the transition

proceeds it must be through small admixtures of other minor configurations (e.g. excitations

of the core) which are allowed, and therefore the overall strength must be very hindered.

To gauge the hindrance of this decay, it is helpful to compare its strength to that of other
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Figure 4.15: A diagram showing the distribution of transition strengths for several types
of electromagnetic transitions, divided into several different mass regions [77]. The central
set of distributions is for E1 transitions, and unfilled histogram is the relevant one for 70As.
This histogram includes transition strengths in the range from roughly 10−6 to 10−2 W.u.
With a strength of B(E1; 8+ → 7−) = 1.2(4)× 10−5 W.u., it is clear that this transition in
70As is relatively hindered.

E1 transitions in this mass region. Figure 4.15 shows a figure taken from Ref. [77] which

contains several histograms for different transitions in different areas of the nuclear chart. Of

interest for the present discussion is the unfilled area of the central collection of histograms in

this figure, which corresponds to E1 transitions in the mass A = 45− 90 region. Inspection

of this distribution shows that the B(E1; 8+ → 7−) value measured in this work is indeed

on low end of this distribution, indicating that it is a hindered transition. This supports the

assignment of the 8+ state to the πg9/2νg9/2 configuration.

A more direct method of evaluating the configuration of the 8+ state in 70As was also

mentioned in Sec. 4.1, which was comparison with the strength of the 8+ → 7− transition
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in the neighboring isotope 72As. In this nucleus, it has been established already that the

8+ state is a member of the πg9/2νg9/2 configuration, and this state also has a decay to

a 7− level with a πf5/2νg9/2 configuration, just as is believed to be the case in 70As. As

mentioned at the beginning of this chapter, this decay has a known strength of B(E1) =

1.22(16) × 10−5 W.u. The measurement of the 8+ → 7− strength in 70As in this work of

B(E1) = 1.2(4) × 10−5 W.u. is fully consistent with that measured in 72As. Since it can

be expected that neighboring isotopes have similar structure, this is another indication that

the 8+ state in 70As does in fact belong to the πg9/2νg9/2 multiplet of states.

Evaluating the structure of the 9+ state relied upon interpreting the M1 strength of the

transition between the 9+ and 8+ states. In Sec. 4.1, it was predicted that if the 9+ state

belongs to the πg9/2νg9/2 configuration (along with the 8+ state), then the strength of the

transition should be about 1 W.u. in terms of order of magnitude because only the last odd

nucleons should be participating in the transition. Indeed, the strength that was measured

was 0.85(42) W.u., which is consistent with this interpretation. However, a more quantita-

tive prediction can be made by employing a simple model calculation for the M1 strength.

For this purpose, a model was chosen that has been used to describe 70As previously [70],

specifically its lower-lying states. The model itself describes the nucleus as composed of

two quasiparticles (a quasiproton and a quasineutron) coupled to an even-even core which

has a vibrational character [81]. This model is a convenient choice, because it allows the

M1 strength of a transition between two states in the same quasiparticle multiplet to be

calculated analytically with the equation [81]

B(M1; Ii → If ) =
3(jp + jn + Ii + 1)(jp − jn + Ii)(−jp + jn + Ii)(jp + jn − Ii + 1)

4πIi(2Ii + 1)

×
(
µp
2jp
− µn

2jn

)2

,

(4.3)
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where in this expression Ik represents the spin of the nuclear state k, jp,n the angular

momentum of the proton and neutron, respectively, and µp,n the magnetic moment of the

proton and neutron, respectively. It is important to note that this expression assumes that

the initial state is the higher spin state, and if it is not then all Ii must become If in

the numerator of Eq. 4.3. In Ref. [81], the term in the magnetic moments is evaluated by

assuming a quenching of the spin-g factor for free nucleons of 0.6, such that

µp
2jp
− µn

2jn
=

1

2

{
1 +

2.35

2lp + 1
+

2.29

2ln + 1

}
µN . (4.4)

With this, and inserting jp = jn = 9
2 and Ii = 9, this model gives a predicted M1 strength

for the 9+ → 8+ transition of B(M1) = 1.2 µ2N , or equivalently 0.69 W.u. This is very

much in line with the original prediction of ∼1 W.u. transition strength, and also consistent

with the measured strength of 0.85(42) W.u. This model therefore supports the assignment

of the 9+ state to the πg9/2νg9/2 multiplet.

The consistency of the strength of the 9+ → 8+ transition in 70As with other nuclei in the

region can also be evaluated, similar to the manner done with the 8+ state. While there is

no 9+ → 8+ transition with measured strength in the neighboring arsenic isotopes, isotopes

of other nearby elements do have such transitions with measured strengths, and these can

be used for comparison with 70As. The 9+ → 8+ strengths of transitions in several nuclei

including 70As are shown in Fig. 4.16. These nuclei were chosen because they have a known

B(M1; 9+ → 8+) and also because they all have the same isospin as 70As, in order to try

to make as direct a comparison as possible. They also all originate from a 9+ state found

to be a member of the πg9/2νg9/2 multiplet. As can be seen, all of the nuclei shown in

Fig. 4.16 have a very similar strength as that measured in 70As except for 66Ga. This data
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Figure 4.16: A plot of B(M1; 9+ → 8+) of several nuclei close to (and including) 70As, as
well as the strength predicted by the particle-vibration coupling model expressed in Eq. 4.3.
All of the isotopes shown in the figure are believed to have a 9+ state belonging to the
πg9/2νg9/2 configuration. Most of the transition strengths in the figure are similar to that

measured in 70As in this work, which indicates that 70As also has a 9+ state which is a
part of the πg9/2νg9/2 multiplet. The outlier is 66Ga, which has a significantly smaller
strength. However, this point is tentative because it is not certain that the decay is of an
M1 nature, and this may explain the discrepancy. Figure is from [64], and data are taken
from [82, 83, 84, 85].

point is, however, tentative, in that it is known that it is a dipole transition [86] but not

necessarily that it is of M1 character. The apparent discrepancy of this point with the others

in Fig. 4.16 may therefore lie in the fact that it could be an E1 transition. It could also be

that the transition is of M1 character, but that the 9+ state of 66Ga is not well-described

by a πg9/2νg9/2 configuration. More information would be necessary to make a statement

about this situation. The remaining points in Fig. 4.16, however, show comparable strengths

to that measured in 70As, which indicates that it shares with them a similar structure. The

dashed line indicates the strength calculated from the particle-vibration coupling model

discussed earlier for comparison, which also demonstrates that it does a reasonable job of

reproducing the strengths of these nuclei. Overall, this comparison further supports that the

9+ state of 70As belongs to the πg9/2νg9/2 configuration.
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Chapter 5

Lifetime Measurements in 74Rb

The second lifetime study presented in this work utilizes the Differential Recoil Distance

Method (DRDM). As mentioned in Sec. 2.3, this is the first time that the DRDM has been

successfully implemented, due in large part to the superior energy resolution of the next-

generation γ-ray detector array GRETINA (Sec. 3.2.2.3). The physics goal of the study was

to measure the lifetime of the 2+1 state of 74
37Rb37, thereby making this the heaviest odd-odd

N = Z nucleus with a measured B(E2). This nucleus can be produced by a unique reaction

path involving charge exchange reactions at intermediate energies [32, 87] and therefore

has a small production cross-section. Thus, it was anticipated that the statistics for this

measurement would be low. However, as discussed in Sec. 2.3, the DRDM is well-suited to

such measurements as it requires fewer counts to make a lifetime measurement compared to

the well-known (non-differential) Recoil Distance method. The 74Rb 2+1 lifetime therefore

provides an excellent case to demonstrate the utility of the DRDM. However, unlike the γ-γ

coincidence lineshape analysis performed in Ch. 4, the DRDM produces several Doppler-

shifted components for each deexcitation γ ray, and therefore requires a relatively clean

spectrum with a wide separation between γ-ray decay energies compared to the dense level

scheme of 70As. It is also sensitive to lifetimes considerably shorter (a few picoseconds)

than would normally be accessible to the lineshape method (several tens of picoseconds)

under the typical fast beam conditions at the NSCL. Therefore, the DRDM is a technique

complementary to the lineshape method, rather than a competing alternative.
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5.1 Physics motivation

The physical motivation for undertaking this study was to measure the lifetime of the 2+1

state in 74Rb. As this state decays to the 0+ ground state of 74Rb, the γ-ray decay is of an E2

nature, and so the lifetime of the 2+1 state can be used to calculate the B(E2; 2+ → 0+) of the

transition. As discussed in Ch. 1, B(E2) transition strengths are often used when discussing

the collectivity of a nucleus and can be used to infer information about its shape. However,

in the case of 74Rb, there is a complication involved which makes such a discussion less clear.

This complication is a phenomenon known as shape coexistence [88, 89], and determining

whether it is present in 74Rb forms the primary basis for making the measurement reported

herein. This is of interest for understanding the structure of the 74Rb nucleus itself, but also

has implications for other physics interests as well. For instance, 74Rb is one of a few nuclei

that have very precisely measured superallowed Fermi beta decay strengths (also referred to

as ft-values) used to test the conserved vector current (CVC) hypothesis and the unitarity

of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [90]. Such tests rely critically on nuclear

structure corrections for their analyses, and so it is important to provide accurate nuclear

structure inputs for these nuclei, including information about the wavefunctions themselves.

A full discussion of the CVC hypothesis and the unitarity of the CKM matrix is beyond

the scope of this work, but more information can be found in Refs. [91, 92]. It is important

to note, however, that the data provided by this work can also provide information about

the wavefunctions and therefore the structure of the 74Rb nucleus, which is important for

properly correcting for the nuclear structure effects in these tests of fundamental physics.

Shape coexistence occurs when a nucleus has available to it two or more different con-

figurations with distinct shapes which are separated by only a small difference in energy
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(typically about 1 MeV or less). Because of their close proximity, these two configurations

are said to “coexist” with each other. However, the coexistence of these two different config-

urations has a consequence, which is that the wavefunctions of the states that belong to the

two different configurations can mix via some interaction between them. Then, the states

which are observed physically have wavefunctions which are superpositions of the wavefunc-

tions of the “intrinsic” states which belong purely to one configuration or the other. The

mixing causes one state to be lowered in energy while the other is raised.

Shape coexistence may be predicted in a number of ways. One is an examination of

the Nilsson orbits calculated in a given region. Figure 5.1 shows the neutron single-particle

orbitals calculated for the self-conjugate nucleus 80Sr in the Nilsson scheme [93]. Inspection

of these orbitals shows that, as expected, when the quadrupole deformation parameter β

is zero, there are energy gaps between the single-particle energies at the canonical magic

numbers. However, when the nucleus takes on some non-zero deformation, these gaps begin

to close and new ones to appear at different particle numbers. Of particular interest to

this discussion is the occurence of gaps at almost equal energy but opposite sign of the

deformation parameter at nucleon numbers 36 and 38. This suggests that in nuclei which

possess N ≈ Z ≈ 36 − 38, there may be competition between these two gaps and this can

lead to shape coexistence. Another very useful tool for predicting the occurence of shape

coexistence is the potential energy surface of a nucleus as a function of the quadrupole

deformation parameter β and the triaxiality parameter γ. As discussed in Sec. 1.2.3, these

calculations can be used to predict the shape of a nucleus. It can also happen that there

may be multiple minima in these potential energy surfaces, which serves as another strong

indicator of shape coexistence. Figure 5.2 shows such potential energy surfaces for 72,74,76Kr,

where the numbers along the contours give the depth of the potential in MeV. All three nuclei
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Figure 5.1: The single-particle energy levels for 80Sr in the Nilsson model, calculated for
neutrons but which will be similar for protons in N ≈ Z nuclei. The horizontal axis shows
the quadrupole deformation parameter β, while the single-particle energies are plotted along
the vertical axis. While the usual gaps at the magic numbers are present at β = 0, new
gaps arise at non-zero values of the deformation. In particular, gaps at roughly the same
energy appear at neutron number 36 and 38, but corresponding to opposite signs of the
deformation. This can be a signature that shape coexistence may occur in nuclei that have
proton and neutron numbers similar to these values. Figure is taken from [93].

clearly have multiple minima, one of which is prolate and the other oblate, while in 72Kr

the prolate minimum also has a degree of triaxiality with γ ≈ 15◦. This suggests that these

krypton isotopes exhibit shape coexistence, in agreement with the argument based on the

gaps in the Nilsson orbitals in Fig. 5.1.

Experimentally, often a signature of shape coexistence is the observation of low-lying

excited 0+ states above the ground 0+ state (in even-even nuclei). These excited 0+ states

can be considered as a kind of “alternative ground state” which might have become yrast had

the energy of the various configurations been different. These 0+ states typically also have
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Figure 5.2: Potential energy surfaces generated for 72,74,76Kr. As described in Ch. 1, the β
axis gives the quadrupole deformation. Values of γ = 0◦ or γ = 60◦ correspond to prolate and
oblate deformation, respectively, while intermediate values of γ indicate triaxiality. All three
krypton isotopes clearly exhibit multiple minima, with a fairly strong prolate deformation
as well as a weaker oblate minimum. 72Kr also has some slight triaxiality associated with
its prolate minimum. Figure taken from [94].

excited state bands built upon them. However, if the ground band mixes with an excited

band, then it is usually the 0+ states which mix most strongly, as the J(J + 1) energy

dependence of the excited states of the two bands (assuming they are axially deformed)

causes progressively greater energy separation between pairs of levels of the same Jπ and

hence less mixing. This causes an interruption of the regular J(J + 1) spacing at low-spin,

and can be taken as an indication of mixing. However, the regular spacing at higher energies

can be used to extrapolate down to find the locations of the bandheads if there was no

mixing, and from this both the mixing matrix element and the amplitude of each of the pure

configurations in the mixed states can be deduced. Figure 5.3 shows the results of such a

calculation for the even-even krypton isotopes from mass A = 72 to mass A = 78 [95, 96].

For each nucleus, a few low-lying states are drawn divided into those belonging to prolate

shapes on the left and oblate or spherical on the right. Also drawn is the location at which

the 0+ states associated with each shape would be found if there was no mixing. Starting

with 78Kr, the intrinsic states start far apart, and so there is only a small amount of mixing

and repulsion. However, the intrinsic states become closer together in the lighter isotopes
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Figure 5.3: Several partial level schemes for even-even proton-rich krypton isotopes, showing
the systematics of the low-lying levels. For each isotope, the set of levels on the left is
associated with a prolate shape, while the 0+ level on the right is an oblate or spherical
shape. In addition to the levels themselves, the positions at which the 0+ states would be
located if there was no mixing between them are indicated by the dashed horizontal lines.
These unperturbed levels become almost degenerate at 74Kr, at which point the mixing has
become almost maximized. The observed 0+ states are therefore almost even mixtures of
the intrinsic prolate and oblate shapes. Figure is from [95].

and even switch places in 72Kr, so that the oblate state becomes the ground state. Table 5.1,

which is taken from [95], summarizes the mixing of the intrinsic states in these nuclei. In

74Kr, the two intrinsic states become almost degenerate, and this corresponds to almost the

maximum possible mixing of the two intrinsic configurations, with half of the wavefunction

amplitude coming from the prolate shape and half from the oblate shape.

Turning now to the question concerning the work presented in this chapter, namely that

of shape coexistence in 74Rb, the krypton isotopes just discussed offer a convenient entry

point. In Ch. 1, the concept of isospin was introduced. The nuclei 74Rb and 74Kr are isobars

with Tz = 0 and Tz = 1, respectively. Since this allows both nuclei to have states with T = 1,
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Nuclide ∆′ [MeV] ∆ [MeV] V [MeV] b2

78Kr 1.01718(3) 0.80(1) 0.31(1) 0.11(2)
76Kr 0.7700(2) 0.36(1) 0.34(1) 0.27(1)
74Kr 0.508(1) -0.02(1) 0.25(1) 0.52(1)
72Kr 0.671(1) -0.54(1) 0.20(1) 0.90(1)

Table 5.1: A summary of the values for the mixing of the 0+gs and 0+2 states for the isotopes of
krypton shown in Fig. 5.3, taken from Ref. [95]. The energy difference between the observed
states is given by ∆′, while the energy difference between the intrinsic states is given by ∆
and the mixing matrix element is V . The amplitude of the prolate wavefunction in the 0+2
state is given by b2.

there should be a subset of levels in both nuclei which have similar properties. In Fig. 5.4,

which shows a few of the low-lying levels of 74Kr and 74Rb, it can be seen that several of

these levels follow a similar pattern of excitation energy up to spin 8+, and these have been

proposed to be T = 1 isobaric analogue states in these nuclei. These analogue states should

all share similar nuclear structure properties under the assumption of isospin symmetry,

and therefore the fact that there is shape coexistence in 74Kr means that 74Rb ought to

manifest shape coexistence as well. However, as can be seen in Fig. 5.4, there is no known

excited 0+ state in 74Rb, despite numerous searches [98, 99, 100, 101, 102, 103]. As has been

previously suggested, this most likely means that the level exists close to an excitation energy

of 500 keV in the vicinity of or even below the 2+1 state and decays primarily or exclusively by

the emission of internal conversion electrons, to which the previous studies were not sensitive.

However, the non-observation of this 0+ state makes it difficult to investigate to what extent

it may manifest shape coexistence by the extrapolation method used in the krypton nuclei.

Another method is therefore required to explore this matter further.

To solve this problem, the study presented in this chapter was designed to measure the

lifetime of the 2+1 state in 74Rb. This is a useful measurement to make because the transitions
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Figure 5.4: A partial level diagram of the low-lying T = 1 states in 74Rb and 74Kr. Level
energies in keV are shown to the left of the states, while the spin-parities are given on the
right. The isobaric analogue states can be identified based on the similar excitation energies
up to spin 8+. However, there is no known excited 0+ state in 74Rb which would be the
analogue of the excited 0+ state in 74Kr. Data for 74Kr are taken from [97], while data for
74Rb are from [98].

between the isobaric analogue states should share similar properties. In particular, the

quadrupole transition strength of the analogue 2+1 → 0+1 decays should be very similar due

to isospin symmetry, and the lifetime can be used to calculate the strength. However, there

is a caveat to this last statement about the equivalence of the transition strengths. If the

matrix element M governing the transition is expressed in terms of isospin, then it is due to

a sum of two terms [104]:

M(Tz) =
1

2
[M0 − TzM1], (5.1)
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where M0 is called the isoscalar matrix element and M1 is called the isovector matrix

element. In the Tz = 0 nucleus of an isobaric triplet (T = 1), the matrix element arises from

the isoscalar matrix element only, but the isovector component also contributes in the Tz =

±1 cases. Therefore, the statement that the transition strength B(E2) = |M(Tz)|2/(2Ji+1)

should be roughly equivalent between the analogue states of the Tz = 0 and Tz = 1 members

of an isobaric triplet is only true as long as the isovector matrix element is small compared

to the isoscalar matrix element. It has been observed in other isobaric triplets, however,

that the isovector matrix element is typically on the order of 10% of the isoscalar matrix

element [105], and so this statement may be reasonably expected to be true in the case of

the A = 74 nuclei as well.

As discussed in Ch. 1, the transition strength B(E2) is related to the overlap of the

initial and final states of the transition. This makes this quantity sensitive to the structure

of the states and can be used to infer information about the occurence of shape coexistence.

In 74Kr, the lifetime of the 2+1 state has already been measured [106] and so the B(E2)

is known. Since isospin symmetry (and a small isovector contribution) would predict that

the B(E2; 2+1 → 0+1 ) is nearly identical in these two nuclei, this can be used to predict

the lifetime of the 2+1 state in 74Rb. For this electric quadrupole transition, the transition

strength is given by

B(E2) =
816

E5
γτ

e2fm4, (5.2)

where Eγ is given in units of MeV and τ is given in picoseconds, which yields a predicted

lifetime for the 2+1 state in 74Rb of about 26 picoseconds. However, if there is no shape

coexistence, then the 0+1 and 2+1 states should have a much larger overlap because there is

only one configuration involved, and so the B(E2) should be larger (by a factor of ∼ 2) and
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the lifetime would then be about 13 picoseconds. These predictions therefore offer a metric

by which to judge whether shape coexistence persists between these two nuclei, and motivate

the measurement of the 2+1 state lifetime.

5.2 Experimental details

As with the data on 70As, the data for this analysis was obtained from an experiment

run at the NSCL. The primary beam was again 78Kr at 150 MeV/nucleon and 25 pnA. The

secondary beam was produced by fragmentation on a 9Be target and 74Kr was selected in the

A1900 with the aid of an aluminum wedge and 0.5% momentum acceptance. The resulting

beam had an intensity of roughly 1 × 105 particles per second and a purity of about 40%.

For this experiment, the timing signals from the object scintillator were not sufficiently well-

separated to resolve the beam components, and so the radio frequency (RF) timing signal

from the cyclotrons was used instead of the object scintillator to identify the components

of the secondary beam. Figure 5.5 shows the timing signal from the A1900 extended focal

plane (xfp) scintillator plotted against the RF signal from the cyclotrons. Software gates

were used to isolate the 74Kr from the contaminants in the beam during offline analysis. The

beam was then directed to the S800 vault where the lifetime measurement was performed.

Once in the S800 vault, the secondary beam was caused to undergo further reactions in

order to produce 74Rb. The beam was directed to the target location of the S800 just in

front of the large analyzing dipole magnets where the TRIPLEX plunger (c.f. Sec. 3.2.3)

was installed in the beam line. The TRIPLEX held three metallic foils in this experiment: a

138-mg/cm2 9Be target used to induce reactions, a 208-mg/cm2 natTa degrader to reduce the

beam velocity, and a 166-mg/cm2 second natTa second degrader to slow the beam further.
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Figure 5.5: The particle identification plot for the 74Rb experiment. The vertical axis gives
the timing difference between the A1900 xfp scintillator and the S800 E1 scintillator while
the horizontal axis is the time difference between the radio frequency (RF) signal from the
cyclotrons and the E1 scintillator.

Behind the second degrader, a 7-mg/cm2 thick foil made of polyethylene was installed in

order to improve the charge-state distribution of reaction products. The beam then entered

the analyzing dipoles in the S800 and were directed into the focal plane where the reaction

residues were identified. Figure 5.6 shows the fragments identified by their energy loss in the

S800 ionization chamber (∆E) plotted against their time of flight between the E1 scintillator

and the A1900 xfp scintillator (Txfp). The energy loss resolution in this experiment was not

as high as in the 70As experiment, however, it was still sufficient to identify the fragments.

The location of the unreacted 74Kr beam as well as 74Rb reaction products are indicated by

the ellipses in the figure, and software gates were used to select these species in the analysis.

The γ rays emitted from the beam after interactions with the target were detected with
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Figure 5.6: The outgoing particle identification plot for the 74Rb experiment. The vertical
axis gives the energy loss in the S800 ionization chamber while the horizontal axis gives the
time of flight between the A1900 xfp scintillator and the S800 E1 scintillator. As in Fig. 4.2,
the horizontal axis is reversed so that increasing time of flight indicates decreasing A/Z. The
unreacted 74Kr beam as well as the 74Rb reaction products are labeled and indicated by the
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the GRETINA detector array (Sec. 3.2.2.3). The seven detector modules of GRETINA were

configured with four detectors in the most forward positions and the remaining three around

90◦ with respect to the beam axis. The TRIPLEX plunger was moved upstream from the

nominal target position at the center of GRETINA in order to shift the angular coverage

of GRETINA towards more forward angles, since these will show the most sensitivity to

Doppler shifting at different velocities. With this plunger placement, the forward detectors

covered roughly 20◦ − 50◦ with respect to the beam axis, and the remaining three detectors

were centered around 70◦. In addition, thin sheets of lead and copper were installed on the

faces of the GRETINA modules in order to attenuate X-rays from the tantalum degraders,
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which were observed with high intensity during the experiment. Data were taken for γ rays

in coincidence with 74Rb detected in the S800 focal plane as well as for 74Kr. The 74Kr was

used as a reference measurement to demonstrate the validity of the DRDM, since it had not

been implemented previously. For each nucleus, data were taken with a separation of 1 mm

between the target and the first degrader and between the two degraders. A short time was

also spent taking data for both nuclei with the separation between the target and the first

degrader increased to 10 mm in order to quantify how many reactions are occurring in the

degraders compared to the target (see Sec. 5.4.1 for a detailed discussion).

A possible concern regarding the lifetime measurement of the 2+1 state in 74Rb arises

from the potential feeding of this state by the predicted 0+2 state. Assuming that it lies

near about 500 keV as the analogue state in 74Kr does, any γ decay that it experiences to

the 2+1 state of 74Rb would have an energy of ∼ 20 keV, which would be stopped in the

absorbers placed over the GRETINA modules even if it is not highly converted into electron

emissions. This means that the possible effect of feeding from this state to the 2+1 state

cannot be observed. However, this is not a large concern, as the analogue 0+2 state in 74Kr

has a lifetime of 20.5(14) ns [107]. Under the assumption of isospin symmetry, the 0+2 state

in 74Rb should have a similar lifetime. For the present experiment, it takes only about 20 ps

for the beam to travel from the target position to the second degrader position, and so the

majority of the possible population of the 0+2 state should decay far downstream from the

TRIPLEX. As a consequence, the γ-ray spectrum should not be strongly sensitive to this

lifetime and so it should not have a large effect on the 2+1 state lifetime measurement.
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5.3 γ-ray spectra

The γ-ray spectra used to determine the lifetimes of the 2+1 states in 74Rb and 74Kr will be

discussed in this section. While the placement of the GRETINA modules allowed γ rays to

be observed at angles up to nearly 90◦ with respect to the beam axis, those γ rays emitted

nearly perpendicular to that axis will have a Doppler shift which is least sensitive to the

velocity at which the nucleus is moving. Since the DRDM relies critically on this velocity

difference, these γ rays are not useful for the present analysis. Therefore, all of the spectra

shown in this section include only those γ rays which are detected at an angle relative to the

beam axis of less than 40◦. This allows sufficiently large separation between the photopeaks

originating from emission after each of the foils mounted in the TRIPLEX.

Figure 5.7 shows the γ-ray spectrum obtained in coincidence with 74Kr nuclei detected

in the S800 focal plane. Transitions can be seen in these spectra which correspond to the

6+1 → 4+1 decay, the 4+1 → 2+1 decay, and the 2+1 → 0+1 decay. In addition, the three-peaked

structure necessary for the DRDM can be clearly seen in the inset to panel (b) of the figure,

although for the 10 mm data in panel (a) most of the nuclei decay before reaching the

degraders and so only the fast peak is obvious. These spectra show that 74Kr is well-suited

for demonstrating the validity of the DRDM, as each of the transitions shown in Fig. 5.7

originates from a state that has a known lifetime. The lifetime of the 2+1 state can therefore

serve as an excellent test case, both by analyzing the 2+1 → 0+1 transition alone as well as

analyzing the effects of feeding on this state.

The γ rays from 74Rb are shown in Fig. 5.8. As with 74Kr, the spectra have been

divided into data which were taken with a separation of 10 mm between the target and first

degrader in panel (a) and data which were taken with a separation of 1 mm between the
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Figure 5.7: The γ-ray spectra obtained in coincidence with 74Kr nuclei in the S800 Spec-
trograph. Panel (a) shows data taken with a 10 mm separation between the target and
first degrader, while panel (b) shows data taken with only a 1 mm separation. In both
panels, transitions can be clearly identified which correspond to the 2+1 → 0+1 transition, the

4+1 → 2+1 transition, and the 6+1 → 4+1 transition, and are labeled accordingly. The insets

to each panel show the same spectra focused on the 2+1 → 0+1 transition to make clear the
three-peaked structure, where the components of the decay from fast, reduced velocity, and
slow recoils are also labeled.
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Figure 5.8: The γ-ray spectra obtained in coincidence with 74Rb detected in the S800 focal
plane, again divided into (a) data taken with 10 mm separation between the target and the
first degrader and (b) 1 mm separation between target and degrader. The insets again focus
on the 2+1 → 0+1 transition to show the three-peak structure. However, unlike for 74Kr, there

is very little population of states above the 2+1 state. A hint of the 4+1 → 2+1 transition can
be seen at the position labeled in the figure, but no other transitions can be identified.
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target and first degrader in panel (b), with the insets showing the 2+1 → 0+1 transition in

greater detail. A striking difference between these data and those for 74Kr is that the 74Rb

data have much lower statistics. As noted in Sec. 2.3, the DRDM is well-suited for such

low-production rate experiments compared to the classic RDM method because it does not

require multiple measurements in order to extract a lifetime. Another difference between

the 74Rb and 74Kr data is that the 74Rb spectra do not show strong population of excited

states above the 2+1 state. There is some evidence for population of the 4+1 state, but it is

very small and considerably less than in 74Kr. This means that the analysis of the 74Rb

data will be simplified since feeding will not have a major impact on the 2+1 state lifetime

measurement.

5.4 Lifetime analysis

Unlike the 70As measurement presented earlier, once the γ-ray spectra were obtained very

little additional processing was necessary before proceeding to the analysis. This is partially

due to the relative simplicity of the low-energy level schemes of 74Kr and 74Rb, but is also

a feature of the DRDM. To show the transparency of the method, a rough estimate of the

lifetime of the 2+1 states in 74Kr and 74Rb can be obtained from Eq. 2.30. From the insets

to Fig. 5.7(b) and Fig. 5.8(b), the ratio of the yield of the slow peak to that of the reduced

velocity peak for both nuclei was Is/Ir ≈ 3. The velocity of the recoils between the two

degraders was v′ ≈ 0.35c = 0.1 mm/ps, and the separation between the two degraders was

∆x = 1 mm. Following Eq. 2.30, the lifetime of the 2+1 states can then be estimated to be:

τ =
∆x

v′
Isij

Idij
≈ 1 mm

0.1 mm/ps
× 3 = 30 ps. (5.3)
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This value is roughly consistent with the known value of τ = 33.8(6) ps [106], giving a

reasonable estimate for the unknown lifetime of 74Rb. For a more thorough analysis, the

extraction of the 2+1 state lifetimes from the γ-ray spectra was performed using Geant4

simulations. Although the method as it is described in Sec. 2.3 does not require the use

of simulations to perform a lifetime measurement, the use of simulations does offer certain

advantages. In particular, the DRDM hinges critically upon the ability to measure the

lifetime of a state using only the two photopeaks coming from decays after the first and second

degraders. However, this is motivated by the approximation that the slope of the decay

curve is linear in the space between the two degraders, while in actuality it is exponential.

By simulating the transport of the ions through the TRIPLEX plunger as they decay, this

approximation is in effect folded into the simulated spectra. Using simulations to determine

the lifetime therefore corrects for the assumptions inherent in the method and allows the

lifetime to be determined in a self-consistent way. It also takes into account the experimental

lineshape of the peaks, possible decays occurring inside the foils, and other similar small

effects which can affect the lifetime measurement. Feeding effects, if present, can also be

included. The material in this section will show the details of the analysis, including the

setup of the simulations and the fitting of the simulated γ-ray spectra to the data.

5.4.1 Geant4 simulations

As with the measurements performed on 70As, the first step in the analysis is to set up the

simulations. This setup proceeded very much as was described already for 70As in Sec. 4.4.1,

and so will only be summarized here. The GRETINA detectors were installed at the NSCL

as part of a campaign of experiments and so the location was determined by the laboratory

staff and provided to experimenters. This information and the dimensions of GRETINA
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were used to fix the location of the detectors in the simulation. The beam properties were

determined in exactly the same fashion as for 70As, and the agreement between the simulated

and measured beam properties are shown in Fig. 5.9 for 74Kr and Fig. 5.10 for 74Rb.

The chief difference in preparing the simulations between the analysis presented in this

chapter and that in Ch. 4 is that with the DRDM it is possible that some of the incoming

beam particles react not with the target as desired but instead react with the degraders.

Therefore, it is necessary to constrain the relative number of reactions occurring on the

target, the first degrader, and the second degrader. This is typically done by moving the foils

mounted on the plunger far apart, so that there is ample time after each foil for the excited

states to decay completely before the next foil is reached. Any counts observed in a given

peak can then be assigned unambiguously to reactions happening on the corresponding foil.

This information is provided to the simulation software as the fraction of reactions occurring

on the target, and the fraction of the remaining reactions occurring on the first degrader. To

fix these values for this experiment, the spectra in Fig. 5.7(a) and Fig. 5.8(a) were analyzed.

The number of counts observed at a Doppler shift corresponding to decays after the target

compared to those after the two degraders was used to determine the fraction of the reactions

happening in the target. This was determined to be about 90% for the 74Kr data and about

80% for the 74Rb data. Due to a mechanical failure in the drive controlling the position of

the second degrader, data with a large separation between the two degraders could not be

taken during the experiment. Therefore, the ratio of the reactions happening on the first

degrader compared to the second was fixed to the ratio of the thickness of the two degraders

for both 74Kr and 74Rb, which was about 55%.
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Figure 5.9: A comparison between the measured (blue) and simulated (red) beam properties.
Panel (a) shows the angle of the beam in the dispersive direction, while panel (b) shows the
angle in the non-dispersive direction, and both are reproduced well. As with 70As, the
position of the beam in the non-dispersive direction shown in panel (c) is not reproduced
well because the beam is assumed to be circular in the simulation, but in reality may have
any spatial distribution. The spread in the energy is shown in panel (d), and is reproduced
well.
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Figure 5.10: A comparison of the simulated and measured beam properties for 74Rb, shown
in red and blue, respectively. As for the 74Kr beam, the dispersive and non-dispersive angular
distributions shown in panels (a) and (b), respectively, are reproduced well, while the non-
dispersive position has a different distribution in the data than is assumed in the simulation.
The spread in beam energies about the central value shown in panel (d) is reproduced well.
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5.4.2 Lifetime determination

After preparing the simulations, determining the lifetimes of the 2+1 states in 74Kr and 74Rb

was accomplished by generating a set of simulated γ-ray spectra for each nucleus with the

lifetime varying in a range from 0 ps to 50 ps. These simulations were then fit to the data

along with a background which was assumed to be exponential. In accordance with the

DRDM, only the peaks from the reduced and slow velocity recoils were fit, while the fast

component was excluded from the fitting region. For each simulation with a given lifetime,

a χ2 value was extracted, then the distribution of χ2 values was plotted and the minimum

used to extract the lifetime. The following shows the results of this analysis for each of the

two nuclei in question.

The analysis of 74Kr was performed first in order to validate the DRDM. The 2+1 state

has a lifetime of 33.8(6) ps [106], and so should lie within the range of lifetimes that was

simulated. As noted previously, a significant amount of feeding is present in the spectrum

obtained for 74Kr, and so this data can also test how accurate the method is under these

conditions. First, the data was fit using only simulations that included the 2+1 state, and did

not account for feeding from higher-lying states. An advantage of using the DRDM is that

this should give a result that is close to the true value. However, because there is significant

feeding, there should be an excess of counts in the target component in the simulations

compared to the data. This is because the lifetime of higher-lying states will delay the

population of a portion of the 2+1 state, so that fewer decays from this state happen before

the first degrader. Figure 5.11 shows the results of this fit. As can be seen in the figure, the

slow and reduced velocity components are reproduced very well in this fit. However, the fast

component is overestimated considerably in the simulations, as expected given the observed
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Figure 5.11: The results of fitting the simulated γ-ray spectra to the 74Kr γ-ray spectrum.
The data points are shown in black, while the simulation is shown in red and the background
is shown in blue. The slow and reduced velocity components of the data are reproduced
well by the simulation, but the fast component is not. This is expected, as the observed
feeding from higher-lying states should produce a deficit of counts in this peak relative to
the simulations. The inset shows the distribution of reduced χ2 values obtained by varying
the lifetime in the simulations, and the minimum of this distribution gives a lifetime of
τ = 30.6(20) ps, with 15 degrees of freedom in the fit.

feeding. The inset in the figure shows the distribution of reduced χ2 values which has a

clear minimum. The lifetime extracted from this distribution is τ = 30.6(20) ps. Compared

to the accepted literature value of τ = 33.8(6) ps [106], this result is consistent within two

standard deviations, and demonstrates that the DRDM is giving accurate results.

To verify that it is actually the effects of feeding that are causing the overproduction of

the fast component of the simulation shown in Fig. 5.11, the higher-lying states can also be

included in the simulations. Doing so should reduce the contribution of the fast component

relative to that of the other two peaks and result in a simultaneous reproduction of all three

components. Figure 5.12 shows the result of fitting the 74Kr data with simulations that

include the 2+1 , 4+1 , 6+1 , and 2+2 states as well as the feeding among them. The 2+2 state was
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Figure 5.12: The results of fitting the 74Kr γ-ray spectrum with simulations that include the
effects of feeding from the 4+1 and 6+1 states. The 2+2 state was also included, but observed
to contribute almost nothing to the fit. In this figure, the lifetime was not varied, but the
literature value of τ = 33.8 ps [106] was used and all three peaks were included in the fitting
region. Now all three peaks are reproduced simultaneously, in contrast to Fig. 5.11, which
demonstrates that all three components can be reproduced if feeding is taken into account.

included to account for any possible population of this state, but is extremely small. For

this fit, instead of searching for a best-fit spectrum by varying lifetimes, the literature value

of τ = 33.8 ps was used for the 2+1 state lifetime to generate the simulations in this figure.

Also, the fitting region was extended to include all three peaks. It is clear from looking at

this spectrum that all three peaks are reproduced well when the feeding from higher-lying

states is included, and confirms that the DRDM is performing as expected.

With the method validated, the lifetime of the 2+1 state of 74Rb was analyzed. Since

no significant feeding was observed in the data, it can be expected that even though only

the slow and reduced velocity peaks are included in the fitting range, the fast peak should

automatically be reproduced by the simulations if the lifetime is correctly determined. The

simulations were fit to the data and the reduced χ2 values plotted and used to determine
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Figure 5.13: The results of the fit to the 74Rb data. The data points are shown in black,
while the red line shows the best-fit simulation and the blue line shows the assumption of
the background. All three peaks are reproduced in this fit even though only the slow and
reduced velocity components are fit, which shows that feeding is not a strong contributor in
this analysis. The inset shows the reduced χ2 distribution, where the number of degrees of
freedom is 19, and the minimum of the distribution gives the lifetime as τ = 26.7(60) ps.

the lifetime. Figure 5.13 shows the results this analysis, with the data shown by the black

points and the simulation shown by the red solid line. The blue curve shows the assumed

exponential background. As expected, all three peaks are correctly reproduced, confirming

that there is no significant impact on the 2+1 state lifetime from feeding. The distribution of

reduced χ2 values is shown in the inset, and the minimum gives a lifetime of τ = 26.7(60) ps.

5.5 Results and discussion

With the lifetime of the 2+1 state of 74Rb measured, it is possible to discuss the physical

meaning of the result. As mentioned in Sec. 5.1, isospin symmetry requires that the charac-

teristics of the 2+1 states of 74Rb and 74Kr be similar. This led to the prediction that, based

on the previously measured 2+1 → 0+1 transition strength measured in 74Kr, the lifetime of
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the 2+1 state in 74Rb should be about 26 ps. This prediction is born out by the results of this

study. This suggests that, similarly to 74Kr, 74Rb exhibits shape coexistence in its ground

state, and likely there is a similar amount of mixing between its ground state and the excited

0+ state that is hypothesized to exist at about 500 keV.

In order to have a quantitative discussion of the results of this study, it is useful to

discuss the 2+1 → 0+1 transition strength in 74Rb instead of the lifetime. From Eq. 5.2,

the transition strength can be calculated to be B(E2; 2+1 → 0+1 ) = 1227(276) e2fm4. The

two-state mixing model described earlier in this chapter can be used to investigate to what

extent this result indicates mixing of intrinsic shapes. This can be done by formulating the

transition strength in terms of the overlap of the wavefunctions of the intrinsic states. For

the intrinsic wavefunctions of the 0+ and 2+ states of the different configurations, this would

be written as

|0+〉 = cos θ0|0+p 〉+ sin θ0|0+o 〉

|2+〉 = cos θ2|0+p 〉+ sin θ2|0+o 〉,
(5.4)

where θ0,2 is the mixing angle between the 0+ or 2+ states, respectively, and |0+p 〉 denotes the

intrinsic wavefunction of the 0+ state belonging to the prolate configuration while |0+o 〉 rep-

resents the same for the oblate configuration. Then, the B(E2; 2+1 → 0+1 ) can be constructed

by writing the overlap of these wavefunctions through the E2 transition operator:

B(E2; 2+1 → 0+1 ) =
|〈0+||M(E2)||2+〉|2

2Ji + 1

=
1

5
| cos θ0 cos θ2〈0+p ||M(E2)||2+p 〉+ sin θ0 sin θ2〈0+o ||M(E2)||2+o 〉|2,

(5.5)

where it has been assumed that the oblate and prolate intrinsic configurations are orthogonal
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and therefore all terms such as 〈0+o ||M(E2)||2+p 〉 = 0. From this expression the mixing am-

plitudes cos2 θ0 and cos2 θ2 can be extracted if the transition strengths between the intrinsic

configurations are known.

Unfortunately, a lifetime measurement of the 2+1 state alone is not enough to deduce

the individual matrix elements on the right hand side of Eq. 5.5. However, an analysis

was performed in Ref. [108] on 74Kr in which the matrix elements 〈0+p ||M(E2)||2+p 〉 and

〈0+o ||M(E2)||2+o 〉 were determined from the experimental data, as well as the mixing am-

plitudes cos2 θ0,2. The technique used in the study is known as Coulomb excitation [109]

(more precisely, multiple Coulomb excitation), in which the nucleus is excited via the elec-

tromagnetic interaction with a high-Z material. This technique is sensitive to the shape of

the nucleus through the so-called “reorientation effect,” in which transitions occur between

magnetic substates of an excited state which gives access to the quadrupole moment of the

nucleus in that state. In order to discuss 74Rb further, the assumption can be made that

these matrix elements have the same values in 74Rb as in 74Kr. While this is a strong

assumption, it is motivated by the expectation that isospin symmetry should preserve the

structure between the isobaric analogues states of these nuclei. There is also indirect evi-

dence to support this assumption, in that the B(E2; 2+1 → 0+1 ) values in these two nuclei

are very similar, which in itself suggests that the structure of these states in these two nuclei

remains the same. With this justification, the values of the matrix elements from [108] can

be adopted here: 〈0+p ||M(E2)||2+p 〉 = 114(15) efm2 and 〈0+o ||M(E2)||2+o 〉 = −21(27) efm2.

Since the oblate term is both small and consistent with zero, it can be neglected in Eq. 5.5,

which becomes

B(E2; 2+1 → 0+1 ) =
1

5
cos2 θ0 cos2 θ2(114efm)2. (5.6)
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In Ref. [108], the term cos2 θ2 = 0.82(20), and therefore it is reasonable to set this value to

unity in Eq. 5.6. With the experimental value of the B(E2) measured in this work, the only

undetermined quantity left is cos2 θ0, which is the amplitude of the prolate configuration in

the 0+1 state. Solving for this quantity, it is found that

cos2 θ0 = 0.47(16)

sin2 θ0 = 0.53(16),

(5.7)

where the equation in sin2 θ0 is the amplitude of the oblate configuration. These values

indicate that the 0+1 state in 74Rb is nearly an equal mixture between intrinsic prolate

and oblate states. This is not a surprising result, as the assumptions made along the way

essentially necessitate this conclusion. However, what is important to note is the uncertainty

associated with these values, which indicates that even at the edge of the 1σ uncertainties,

there is still at least a 30%-70% mixture of the intrinsic shapes in 74Rb. Therefore, within the

assumptions that have been made herein, this study provides good evidence for significant

shape coexistence and configuration mixing in 74Rb.

Unfortunately, relatively few theoretical predictions which have published a B(E2; 2+1 →

0+1 ) value exist for 74Rb due to difficulties with performing detailed calculations in this mass

region. One spherical shell model study was published that used a truncated model space of

f5/2p1/2g9/2d5/2 (i.e. the p3/2 orbital was omitted) and presented results for several N = Z

nuclei in this mass region, including 74Rb [110]. The B(E2; 0+1 → 2+1 ) values from this

study are shown in Fig. 5.14, which is taken from the paper. While a numerical value for

the B(E2) value for 74Rb was not provided, from the figure the B(E2; 0+1 → 2+1 ) value can

be estimated to approximately 0.22 e2b2. Noting that B(E2; 2+1 → 0+1 ) = 1
5B(E2; 0+1 →
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Figure 5.14: Theoretical B(E2; 0+1 → 2+1 ) values for several N = Z nuclei calculated using

the shell model with the f5/2p1/2g9/2d5/2 model space. The value for 74Rb is underpredicted
by roughly a factor of three, which the authors of the study note is due to the omission of
the p3/2 orbital. Figure taken from [110].

2+1 ), this corresponds to a calculated transition strength of B(E2; 2+1 → 0+1 ) ≈ 440 e2fm4.

This is considerably smaller than the experimentally measured value of 1227(276) e2fm4.

However, the authors of the study note that their calculation underpredicts the other B(E2)

strengths in the figure as well, and attribute this to the omission of the p3/2 orbital from

the calculations. They make reference to another paper [111] in which the pf5/2g9/2 model

space was used (i.e. the d5/2 orbital was not included but the p3/2 was) and note that

the magnitude of the B(E2) value calculated for 68Se therein is increased by a factor of

three compared to the present calculation without the p3/2 orbital. Applying the same

factor of three increase to the calculated strength estimated from Fig. 5.14 for 74Rb gives

B(E2; 2+1 → 0+1 ) ≈ 1320 e2fm4, which is consistent with the value measured within this

work. It would be informative to see the results of a calculation performed for 74Rb with

the p3/2 orbital included to see whether this factor of three increase is justified.

A different approach to predict the B(E2) strength can be taken by predicting the de-

formation parameter β of the nucleus and using Eq. 1.13 to convert this into a transition
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strength. This procedure relies on the assumption that the nucleus is axially symmetric,

which can justified if the characteristic J(J+1) energy dependence is observed in the energy

spectra. It then remains to find a suitable way to calculate the deformation parameter.

Using a macroscopic-microscopic model, these deformation parameters have been calculated

for an extremely wide range of nuclei in Ref. [112]. The macroscopic portion of the model

used was the “finite range droplet model,” which is essentially the well-known liquid-drop

model [113] that models the nuclear binding energy with terms such as the volume, sur-

face area, and charge of the nucleus, just as if it were a drop of charged liquid, but with

refinements to account for the nuclear deformation. The microscopic portion of the model

provides corrections to the macroscopic portion from shell effects and nucleon pairing and

is based on a folded-Yukawa potential. A full discussion of these models, which is beyond

the scope of this work, can be found in [112]. The result of this calculation, however, is a

predicted deformation parameter of β = 0.381 for the ground state of 74Rb. Putting this into

Eq. 1.13 and using the typical choice that the nuclear radius is given by R = 1.2A1/3 fm,

this predicts a value of B(E2; 2+1 → 0+1 ) = 1459 e2fm4, which is in agreement with the

experimental value of 1227(276) e2fm4 measured here. Values predicted by this model for

several neighboring N = Z nuclei are plotted in Fig. 5.15. For the most part, this model

does well in reproducing the B(E2) transition strengths for these nuclei, although it fails

in the case of 70Br. However, it should be noted that this macroscopic-microscopic model

only calculates the ground-state deformation, and so it will not have any sensitivity to the

higher-lying states and possible mixing between them and the ground state. Therefore, the

results of this model in the particular case of 74Rb should be interpreted with caution.

As a final remark about the comparison between the two models referenced above, while

the details of the calculations may not be exactly correct, it is important to note that
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Figure 5.15: Systematics of the measured B(E2) values for several N = Z nuclei, where the
even-even nuclei are indicated by the filled symbols and the odd-odd nuclei correspond to the
open symbols. The red point is theB(E2) value for 74Rb measured in this work. These values
are compared to the predictions calculated from the results of the macroscopic-microscopic
model in [112] (solid line). Overall, the trend is reproduced well, although the prediction for
70Br differs significantly from the measured value. Data are taken from [32, 60, 66, 114].

both models do correctly reproduce the overall trend of the B(E2) values in this region.

Specifically, for both the shell model and the macroscopic-microscopic model, there is a rapid

rise in collectivity that begins around 72Kr and continues through 76Sr which is reflected

in the increasing B(E2) values predicted by both models (see Figs. 5.14 and 5.15). The

macroscopic-microscopic model does predict that the increase in collectivity begins slightly

earlier in 70Br, at variance with the data, but the overall agreement is still fairly good. It

will be very interesting to compare the results of these calculations with future theoretical

predictions, e.g. that can account for the full fp model space while including the g9/2d5/2

orbitals as well.
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Chapter 6

Concluding Remarks

In this work, two studies have been presented which used lifetime measurements to study

the structure of rare isotopes, namely 70As and 74Rb. In both cases the data presented

challenges to the analyses which required the use of advanced techniques in order to extract

results from the experimental spectra. A summary of these studies is given here as well as

a few words on the future prospects generated by this work before concluding.

For the 70As experiment detailed in Ch. 4, data were taken with the intention of using

the lineshape method to extract lifetimes based on the asymmetric photopeaks produced by

long-lived states moving at relativistic speeds. However, the very high density of excited

states in this odd-odd nucleus necessitated a more sophisticated analysis, as the presence of

many photopeaks in close proximity introduced too much uncertainty into the determination

of the lineshape. To remedy this situation, the lineshape method was extended to use

γ-γ coincidence data in order to isolate the levels of interest, both from the perturbing

effect of feeding and to remove the presence of any possible background peaks in the singles

spectrum. While this improved the purity of the spectra greatly, as a consequence it reduced

the statistics available for the analysis considerably. However, with careful analysis, it was

possible to determine the lifetimes of the yrast 8+ and 9+ states. This study therefore

constitutes an important tool in the arsenal of nuclear spectroscopy for measuring excited

state lifetimes, particularly for complex spectra as is typical of odd-odd nuclei.

The physics goal of this study on 70As was to provide a firmer experimental determination
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of the configuration of the 8+ and 9+ states. As mentioned in Ch. 4, previous studies on

this nucleus had suggested that these states arise from a coupling of both the last proton

and the last neutron in g9/2 orbitals. This was based on the energy systematics of levels in

neighboring nuclei, however, and the lifetime measurements in this work were intended to

provide an independent verification of this assignment. The results of these measurements

support the assignment of the 8+ and 9+ states to the πg9/2νg9/2 configuration, based

upon both the systematics of the reduced transition strengths calculated from the measured

lifetimes, and upon the agreement with the prediction of a particle-vibration coupling model

calculation.

The analysis of 74Rb presented in Ch. 5 also presented an experimental challenge in

that it is difficult to produce this nucleus in large quantities with the current generation

of experimental facilities. To address this problem, this experiment implemented for the

first time the Differential Recoil Distance Method (DRDM). The analysis of 74Rb is well-

suited to the use of the DRDM, as the technique is able to measure the lifetime of nuclear

states with considerably lower γ-ray yields than more conventional Recoil Distance methods.

The method was demonstrated to reproduce the measured lifetime of the 2+1 state of 74Kr,

which has been determined very precisely by previous measurements, and then successfully

applied to the 2+1 state of 74Rb. This analysis provides a way to retain the precision of the

Recoil Distance Method while simultaneously increasing the economy of the measurement

by reducing the number of counts necessary to determine the lifetime. This result therefore

paves the way to access very exotic nuclei which previously could not be produced in sufficient

quantities for lifetime measurements.

In addition to providing an opportunity to demonstrate the DRDM, the choice to measure

the lifetime of 74Rb offered the chance to obtain important physics information as well. In

149



the isospin partner nucleus 74Kr, it is well known that shape coexistence is present and that

this causes the two low-lying configurations that are present in this nucleus to experience

strong mixing. Because of isospin symmetry, states that arise from the same structure should

also be present in 74Rb and their transitions should exhibit similar spectroscopic properties.

As discussed in Ch. 5, these isobaric analogue states in 74Rb had been identified, and the

transition strength calculated from the lifetime measurement of the 2+1 state in this work

agrees very well with the measured value in 74Kr. This can be taken as an experimental

indication that shape coexistence persists across the isospin triplet at mass 74. By making

the assumption that the intrinsic shapes of the two coexisting configurations are the same,

the degree of mixing in 74Rb was also quantified and found to be consistent with the roughly

equal mixing that occurs in 74Kr, even with the relatively large uncertainty of ∼ 20%.

Finally, a few comments are offered about the future prospects that are raised by these

two studies. The preceding paragraphs have already mentioned how the techniques pre-

sented in this work can facilitate the analysis of challenging data. However, it is also worth

discussing the future physics interests that can be conceived based on this work. For 70As,

the origin of the 8+ and 9+ states in the πg9/2νg9/2 configuration was the sole focus, and

little consideration was given to the possible shape that the nucleus may adopt. However,

while it was mentioned that previous studies did not find strong evidence for deformation in

the lower-lying states, with both the odd nucleons populating the deformation driving g9/2

orbital a non-spherical shape might be expected. This can provide the motivation for future

studies which are designed specifically to quantify the degree of variation from sphericity in

the high-spin states of 70As. Likewise, as was discussed in Ch. 5, the lifetime measurement

on 74Rb presented in this work can be used to infer the presence of shape coexistence, but

cannot be used to directly determine its existence. However, future measurements specifi-
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cally designed to detect the decay of the analogue of the excited 0+ state in 74Kr, specifically

decays that proceed through the emission of conversion electrons, would provide more direct

evidence of shape coexistence. In addition, a multiple Coulomb excitation experiment similar

to the one used to determine the shapes and mixing of the intrinsic configurations similar to

that reported in [108] for 74Kr should provide clear evidence for shape coexistence. Future

advances in experimental facilities may enable the successful use of these techniques in 74Rb.

Lastly, as mentioned at the end of Ch. 5, there are relatively few theoretical treatments of

74Rb, and therefore future calculations that can reproduce the B(E2; 2+1 → 0+1 ) value for

this nucleus are desirable.

In closing, lifetime measurements provide a sensitive probe of the structure and behavior

of exotic nuclei. They can provide a measure of the collectivity of a nucleus and are sensitive

to the wavefunctions of nuclear states. They are also model-independent and can serve as a

valuable tool for benchmarking the results of nuclear theory as well as evaluating systematic

trends in the data. The studies presented in this work demonstrate two advanced techniques

for measuring excited state lifetimes which are suitable for challenging systems with com-

plicated level schemes or low production cross sections. The methods were developed and

used to study the 8+ and 9+ states in 70As and the 2+1 state in 74Rb, and the results used

to understand the structure of these exotic nuclei.
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[21] K. E. G. Löbner, in The Electromagnetic Interaction in Nuclear Spectroscopy, edited
by W. D. Hamilton (North-Holland Publishing Company, 1975) pp. 173–236.

[22] Z. Bay, Phys. Rev. 77, 419 (1950).

[23] T. K. Alexander and K. W. Allen, Can. J. Phys. 43, 1563 (1965).

[24] D. B. Fossan and E. K. Warburton, in Nuclear Spectroscopy and Reactions: Part C,
edited by J. Cerny (Academic Press, New York, 1974) pp. 307–377.
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[76] J. Döring, D. Pantelicǎ, A. Petrovici, B. R. S. Babu, J. H. Hamilton, J. Kormicki,
Q. H. Lu, A. V. Ramayya, O. J. Tekyi-Mensah, and S. L. Tabor, Phys. Rev. C 57, 97
(1998).

[77] P. M. Endt, At. Data Nucl. Data Tables 23, 547 (1979).
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ström, P. Mayet, M. Pfützner, and M. Mineva, Nucl. Phys. A 722, C273 (2003).
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[83] G. Garćıa-Bermúdez, M. A. Cardona, A. Filevich, R. V. Ribas, H. Somacal, and
L. Szybisz, Phys. Rev. C 59, 1999 (1999).

[84] R. A. Kaye, L. A. Riley, G. Z. Solomon, S. L. Tabor, and P. Semmes, Phys. Rev. C
58, 3228 (1998).

[85] S. D. Paul, H. C. Jain, S. Chattopadhyay, M. L. Jhingan, and J. A. Sheikh, Phys.
Rev. C 51, 2959 (1995).

[86] E. Browne and J. K. Tuli, Nucl. Data Sheets 111, 1093 (2010).

[87] A. Gade et al., Phys. Rev. Lett. 102, 182502 (2009).

[88] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

[89] A. Petrovici, K. Schmid, A. Faessler, J. Hamilton, and A. Ramayya, Prog. Part. Nucl.
Phys. 43, 485 (1999).

[90] J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502 (2005).

[91] D. H. Wilkinson, Nucl. Instrum. Methods, Sect. A 488, 654 (2002).

[92] J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).

[93] W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, and I. Ragnarsson, Nucl. Phys.
A 435, 397 (1985).

[94] M. Girod, J. P. Delaroche, A. Görgen, and A. Obertelli, Phys. Lett. B 676, 39 (2009).

[95] E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).

[96] F. Becker et al., Eur. Phys. J. A 4, 103 (1999).

158

http://dx.doi.org/10.1016/S0375-9474(03)01377-0
http://dx.doi.org/ 10.1016/0375-9474(87)90119-9
http://dx.doi.org/10.1007/BF02395350
http://dx.doi.org/10.1007/BF02395350
http://dx.doi.org/10.1103/PhysRevC.59.1999
http://dx.doi.org/ 10.1103/PhysRevC.58.3228
http://dx.doi.org/ 10.1103/PhysRevC.58.3228
http://dx.doi.org/ 10.1103/PhysRevC.51.2959
http://dx.doi.org/ 10.1103/PhysRevC.51.2959
http://dx.doi.org/10.1016/j.nds.2010.03.004
http://dx.doi.org/10.1103/PhysRevLett.102.182502
http://dx.doi.org/10.1103/RevModPhys.83.1467
http://dx.doi.org/ 10.1016/S0146-6410(99)00099-X
http://dx.doi.org/ 10.1016/S0146-6410(99)00099-X
http://dx.doi.org/10.1103/PhysRevLett.94.092502
http://dx.doi.org/10.1016/S0168-9002(02)00563-6
http://dx.doi.org/10.1103/PhysRevC.91.025501
http://dx.doi.org/ 10.1016/0375-9474(85)90471-3
http://dx.doi.org/ 10.1016/0375-9474(85)90471-3
http://dx.doi.org/10.1016/j.physletb.2009.04.077
http://dx.doi.org/10.1103/PhysRevLett.90.082502
http://dx.doi.org/10.1007/s100500050209


[97] B. Singh and A. R. Farhan, Nucl. Data Sheets 107, 1923 (2006).

[98] S. M. Fischer et al., Phys. Rev. C 74, 054304 (2006).

[99] J. M. D’Auria, L. C. Carraz, P. G. Hansen, B. Jonson, S. Mattsson, H. L. Ravn,
M. Skarestad, and L. Westgaard, Phys. Lett. B 66, 233 (1977).

[100] P. H. Regan et al., Acta Phys. Pol. B 28, 431 (1997).

[101] M. Oinonen et al., Nucl. Phys. A 701, 613 (2002).

[102] D. Rudolph et al., Phys. Rev. Lett. 76, 376 (1996).

[103] C. D. O’Leary et al., Phys. Rev. C 67, 021301 (2003).

[104] A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Rev. Lett. 42, 425 (1979).

[105] P. D. Cottle, AIP Conf. Proc. 638, 37 (2002).

[106] A. Görgen et al., Eur. Phys. J. A 26, 153 (2005).

[107] R. Dunlop et al., Phys. Rev. C 88, 045501 (2013).

[108] E. Clément et al., Phys. Rev. C 75, 054313 (2007).

[109] K. Alder and A. Winther, Electromagnetic Excitation, Theory of Coulomb Excitation
with Heavy Ions (North-Holland, Amsterdam, 1975).

[110] M. Hasegawa, K. Kaneko, T. Mizusaki, and Y. Sun, Phys. Lett. B 656, 51 (2007).

[111] K. Kaneko, M. Hasegawa, and T. Mizusaki, Phys. Rev. C 70, 051301 (2004).

[112] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables
59, 185 (1995).
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