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ABSTRACT

MEASUREMENT OF ISOBARIC ANALOGUE RESONANCES OF 47Ar
WITH THE ACTIVE-TARGET TIME PROJECTION CHAMBER
By

Joshua William Bradt

While the nuclear shell model accurately describes the structure of nuclei near stability, the structure of
unstable, neutron-rich nuclei is still an area of active research. One region of interest is the set of nuclei
near N = 28. The shell model suggests that these nuclei should be approximately spherical due to the
shell gap predicted by their magic number of neutrons; however, experiments have shown that the nuclei
in this region rapidly become deformed as protons are removed from the spherical “*Ca. This makes *6Ar
a particularly interesting system as it lies in a transition region between 8Ca and lighter isotones that are
known to be deformed.

An experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to
measure resonant proton scattering on 6Ar. The resonances observed in this reaction correspond to
unbound levels in the 4’K intermediate state nucleus which are isobaric analogues of states in the *’Ar
nucleus. By measuring the spectroscopic factors of these states in *’Ar, we gain information about the
single-particle structure of this system, which is directly related to the size of the N = 28 shell gap. Four
resonances were observed: one corresponding to the ground state in *’Ar, one corresponding its first
excited 1/2~ state, and two corresponding to 1/2* states in either 47 Ar or the intermediate state nucleus.
However, only a limited amount of information about these states could be recovered due to the low
experimental statistics and limited angular resolution caused by pileup rejection and the inability to ac-
curately reconstruct the beam particle track.

In addition to the nuclear physics motivations, this experiment served as the radioactive beam com-
missioning for the Active-Target Time Projection Chamber (AT-TPC). The AT-TPC is a new gas-filled
charged particle detector built at the NSCL to measure low-energy radioactive beams from the ReA3
facility. Since the gas inside the detector serves as both the tracking medium and the scattering target,
reactions are measured over a continuous range of energies with near-4x solid angle coverage. This ex-
periment demonstrated that tracks recorded by the AT-TPC can be reconstructed to a good resolution,

and it established the feasibility of performing similar experiments with this detector in the future.
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CHAPTER 1

INTRODUCTION

One of the primary goals of nuclear physics research is to understand the structure of the nucleus. While
the introduction of the nuclear shell model helped explain the structure of stable nuclei, the exotic,
neutron-rich nuclei produced by modern radioactive beam facilities continually present new challenges
to our understanding of nuclear structure far from stability. In these neutron-rich nuclei, the predictions
made by the shell model based on stable nuclei begin to break down, leading to changes in single-particle
levels and shell gaps.

This thesis describes an experiment that was performed to study the structure of 4’Ar, an isotope
with 18 protons and 29 neutrons that lies in a region of particular interest for studies of shell evolution.
This introductory chapter begins with a brief review of some relevant concepts from nuclear physics.

The motivations behind the experiment are then described in detail.

1.1 Nuclear physics background

Individual nuclei are characterized by the number of neutrons and protons they contain. A group of
nuclei with the same number of protons Z are called isotopes, while a group with the same number of
neutrons N are called isotones. Nuclei with the same mass A = Z + N are called isobars. The full set of
known nuclei is often displayed in a chart like the one in Fig. 1.1. There, vertical lines group isotones,

horizontal lines group isotopes, and lines parallel to the line Z = — N group isobars.

1.1.1 Magic numbers and the nuclear shell model

Although several models have been proposed to describe the structure of the nucleus, the best model
currently known is the nuclear shell model. The shell model was first developed in 1949 [9] by physicists
including Maria Goeppert Mayer, J. Hans D. Jensen, and Eugene Wigner—who later shared the 1963 No-
bel Prize in Physics for their work—to explain the existence of the so-called magic numbers of protons
and neutrons shared by many of the most stable nuclei. The key feature of this model was the proposal

of a shell structure for nucleons (protons and neutrons) analogous to that of electrons in atomic orbitals.
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Figure 1.1: Chart of the nuclides. Neutron number increases along the horizontal axis, and proton num-
ber increases along the vertical axis. The color corresponds to the log of the half-life, with lighter colors
indicating a longer half-life. Stable nuclei are colored black.

A few of the lowest-energy shells are shown in Fig. 1.2. The left-hand column shows the shells pre-
dicted by assuming that nucleons are bound by a harmonic oscillator potential. However, to reproduce
many of the experimentally observed magic numbers (particularly those at higher N or Z), the model
must be extended to include a spin-orbit interaction [49]. This produces the set of levels shown on the
right-hand side of the figure. For example, the neutron shell gap at N = 28 arises due to spin-orbit split-
ting of the 1 f oscillator shell that pushes the 1f;,, level to a somewhat lower energy than the 1f5,, level

and the two levels derived from the 1p shell, which are all grouped together at a higher energy.

1.1.2 Single-particle states

The simple picture of the shell model presented above is derived for a single particle bound in a simple
potential well, like that of a harmonic oscillator or Woods—Saxon function. However, the energy levels of
actual nucleons are much more complex and depend on interactions with all of the other nucleons in the
system. Therefore, the energy levels measured experimentally are not equivalent to the single-particle

energy levels predicted by theory. Instead, the single-particle energies can be defined as a weighted sum
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Figure 1.2: The first few levels of the nuclear shell model (level spacings are not drawn to scale). The
number in parentheses next to each level indicates the number of nucleons that fit in that level. The
shell gaps are shown with dotted lines. The boxed number to the left of each shell gap line is the number
of nucleons that fit below that shell closure. These are the first few magic numbers.

of the actual energy levels: [2]

€a =) S(a,)E;. (1.1)

In this sum, the single-particle energy e, of particle «a is related to the experimental energy levels E;
having the same spin and parity as the single-particle state. The weighting factors S(a, i) are the spec-
troscopic factors, which can be thought of as the probability of finding the particle a in the given single-
particle state.

A more thorough theoretical treatment of the notion introduced in Eq. (1.1) is given by Baranger [2].

They define a single-nucleon Hamiltonian W by

(@WIB) =Y (Woldalxn) (En— Eo) (xnlaglwo) + ) wolaglyn) (o — En) (nldaalwo).  (1.2)
n N

The matrix elements in this sum connect the ground state |y) (with energy Ejp) of a nucleus with mass

number A to the set of states |y,) (with energy E,) in the adjacent A + 1 “particle” nucleus and the set



of states |yn) (with energy E) in the A—1 “hole” nucleus. |§) and |a) are two single-particle states with

"
B

are assumed to be eigenstates of W, then W must be diagonal, so Eq. (1.2) reduces to

corresponding creation and annihilation operators a, and a,. Baranger [2] points out that if these states

o = (alWla)y =Y [{Wolaqlyn) I (En— Eo) + Y [ {xnlaalwo) I*(Eo — En). (1.3)
n N

They then identify | (wolaq |y, |> with the spectroscopic factor and (E, — E,) with the energy E; from

above, assuming the reference state |1¢) is the ground state.

1.1.3 Isobaric analogue states

Many measurements of nuclear spectra have shown that families of isobaric nuclei, or nuclei with the
same mass number A but different charges Z, tend to share sets of common energy levels. This occurs
because the neutron and proton have very similar masses and behave approximately identically under
the strong nuclear force, leaving charge as the main difference between them. If Coulomb repulsion is
neglected, the proton and neutron can then be considered as two states of the same particle.

Formally, this symmetry is described using the isospin t, a vector quantity that behaves identically to
ordinary spin vectors. Protons are defined! as having isospin projection ¢, = —1/2, while neutrons have
t, = +1/2. The total isospin T of a nucleus is the vector sum of the isospins of its constituent nucleons,
and the total isospin projection, which distinguishes individual members of the isobaric multiplet, can
be altered by defining a set of isospin raising and lowering operators much like those used for spin and
orbital angular momentum.

Much like how a magnetic field splits degenerate electron orbitals into distinguishable levels based
on the projection of their total angular momentum, the presence of the Coulomb force inside the nucleus
creates multiplets of states with the same total isospin but different isospin projections. The rest of the
quantum numbers of these states are the same, so they have very similar wave functions.

Figure 1.3 shows an example of isobaric analogue states in three nuclei with A = 6. Two isospin
triplets (T = 1) are visible, connecting sets of 0" and 2" states. The remaining, unique states in °Li are

isospin singlets (T = 0).

1 Although this sign convention is commonly used in nuclear physics, other fields use the opposite convention.
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Figure 1.3: Three isobaric nuclei with isospin projections T, = —1, 0, and +1 from left to right. Sets of
isobaric analogue states are indicated with dashed lines. The ground states of the °He and ®Be spectra
are printed higher than that of °Li to make the correspondence more apparent. Energies are given in keV.
(Data taken from [38].)

1.1.4 FElastic scattering in quantum mechanics

The quantum mechanical description of the elastic scattering of nuclei off a potential V (r) depends on

the solution of the time-independent Schrédinger equation [22]
2, 2M _
Viy+ 5 [E- V)Y =0. (1.4)

In spherical coordinates, the solution to this equation must approach

(e 9]

. ikr
W) 12 gikz 4 eT 120 (1.5)

at large distances from the scattering center at the origin [22]. The first component of this expression
represents an unscattered plane wave with wavenumber k moving along the same direction z as the
incoming particle, and the second component represents a spherical wave propagating outward from
the scattering center as a function of radius r. Assuming azimuthal symmetry, the factor f(6) defines
what proportion of the incoming wave was scattered as a function of the scattering angle 8, so the elastic

scattering cross section can be written as [22]
do 2
—=|fO]|". 1.6
10 |f O] (1.6)

Equation (1.4) is commonly solved by expanding v over partial waves with discrete values of angular



momentum L:
S ur(r)

() =)

L=0

Py (cosb). (1.7)

Here, uy (r) is the radial component of the wave function, and the Pj(cos@) are the Legendre polynomi-

als. Applying boundary conditions leads to the following solution for f(0): [22]
1 & .
F©)= 3 @L+1)(e*?: 1) P (cosh). (1.8)
2ik (=

Here, k is the wavenumber, and §7 is called the phase shift, which contains all of the physical information

about the scattering [22]. The phase shift is often used to define the scattering or S matrix element

S; = oL, (1.9)

1.1.5 The optical potential

One commonly used model for the nuclear potential is the optical model. This model represents the nu-
clear potential as a complex quantity with a real component that produces scattering and an imaginary
component that absorbs incoming flux [22]. The absorptive component accounts for non-elastic pro-
cesses in the interaction [22]. This is known as an “optical” model since it was created by analogy to the
scattering of light in a semi-opaque medium, where the proportion of light absorbed by the medium can
be quantified using the imaginary part of a complex index of refraction [22].

An optical model is typically formulated using the Woods-Saxon potential

P

(1.10)
1+exp(

_ ’
=)

where V} is the depth of the potential well, R is its radius, and a is its diffuseness, a measure of how quickly
the function rises [51]. Both the real and imaginary parts of the optical potential have the form shown in
Eq. (1.10), but they may have different parameters.

The nuclear potential is parameterized in terms of several Woods-Saxon potentials. There is generally
areal and imaginary volume potential term, and an imaginary surface term is often included as well [51].
Finally, a spin-orbit term may be added to account for the coupling between the spin of the nucleus and
its angular momentum [51].

The potential described above only contains a contribution from the strong nuclear force, which acts

at short ranges. Scattered charged particles, such as protons, will also experience a long-range Coulomb



force due to the nuclear charge. This contributes the following term to the total potential: [51]

3 r2 1
27 o <
(2 ZR?,OU]A) Rcoul. r= RCOul,

Veoul. (1) = Zproj.Ze2 X (1.1D)

1 I = Reoul.
This potential term depends on the charge Z,;.; e of the projectile, the charge Ze of the nucleus, and the
Coulomb radius R¢oy),, which is typically proportional to A3 in a nucleus with mass number A [51].

In total, this leaves us with a model of the scattering potential that depends on 12 or more free param-
eters which are found by fitting the model to experimental data. Fitting the model to data from a single
nucleus at a single energy produces a local optical potential, and these local parameterizations will gen-
erally describe the data best [51]. However, the model can also be fit to data from a range of nearby nuclei
over a range of energies to produce a global optical potential with parameters that vary slowly as func-
tions of A and energy. These global potentials tend to fit scattering data worse than a local potential for
the nucleus being studied, but they have the benefit of allowing interpolation or extrapolation to nuclei

for which a reliable set of data does not yet exist [51].

1.1.6 Resonances and the R matrix theory

During a low-energy nuclear reaction, it is possible for the projectile and target nuclei to temporarily
form a short-lived, intermediate-state compound nucleus whose decay products correspond to the exit
channel of the reaction. This compound nucleus may be formed in any of a large number of unbound
energy levels which correspond to resonances in the measured excitation function, or isolated regions
of the excitation function where the cross section departs significantly from the baseline value. As the
density of states increases with increasing excitation energies, these resonances eventually merge into a
continuous distribution at high energies [22].

Resonances typically occur in one reaction channel and one partial wave, giving them well-defined
values of orbital angular momentum L and total angular momentum J. For a spin-0 particle, the cross
section near an isolated resonance of this type at energy Ey with width I' is described with the Breit-—

Wigner formula [22]
(L+1)? r?

P} (cosb), (1.12)
4k (E-Ep2+1irz’ !

do
—(E,0) =
dQ( 2

as a function of energy E and scattering angle 0, with wavenumber k.



Resonances in measured elastic scattering cross sections can be fit using the phenomenological R
matrix theory. In the formulation used by Descouvemont and Baye [11], the R matrix for an isolated
resonance in a single partial wave with orbital angular momentum ¢ is given by

Y;
Er_E'

Ry(E) = (1.13)

In this equation, E, and vy, are the formal resonance energy and reduced width. These can be calculated
from the observed resonance energy Eg and width I'g as follows. The formal reduced width y, can be
calculated from the observed reduced width yr using the equation

2
2 Yr

- 'R (1.14)
TS B

The observed reduced width is found from the observed resonance width I'g:

I'r

- 1.15
2P¢(ER) (1.15)

Yi=
The formal resonance energy E;, can be calculated in a similar way:
E; = ER+7%S/(Ep). (1.16)

In Egs. (1.14) to (1.16) above, Sy is called the shift factor, and S/, is its derivative. P is the penetration factor
and should not be confused with the Legendre polynomials. The penetration factor and shift factor are

defined as [11]

ka
Py(E) = 1.17
‘B = Pk + Cka (17
S¢(E) = Py(E) [Fe(ka)F,(ka) + G;(ka)G,(ka)] (1.18)

where Fy and Gy are the regular and irregular Coulomb functions, F; and G/, are their derivatives, k is the
wavenumber, and a is the channel radius, a somewhat arbitrary boundary chosen such that for r > a,
the scattering potential is approximately the Coulomb potential.

More practically, the R matrix theory can be used to calculate the collision matrix U, between chan-

nels ¢ and ¢’. In the Breit-Wigner approximation, this is

iVIc(B)'.(E)

Epr—E—-il(E)/2 |’

Upe (B) = /@90 | 5,0 + (1.19)



where ¢, is the hard-sphere phase shift in this channel [11]. This can then be used to find the elastic

scattering cross section

do 1 2
a0 D8y, Sy, + F g (@ 1.20
dQ @CL+1DRL+1) M%ZM%é|fC( ) My M, ¥ M, M, fchle @) ( )

with Coulomb scattering amplitude fc(Q) and elastic scattering amplitude [11]

(e (@) =i% Y Y Y V20 + 1619 (1 [, My My | TM)

' MM, —
Jn 16 1'¢

< (LEMOLTM) (I 1M} My 1'M') (1'€'M' M = M' 1) 021

x (56’06[’16€’€ - Uc{’?’ﬂ’,clf) v M ().

In these equations, I; for i = 1,2 are the spins of the two colliding particles, ¢ is the orbital angular mo-
mentum of the system, J is the total angular momentum of the many-body system, M is the projection
of the total angular momentum, and x is the total parity of the system. More detail about the R matrix

theory can be found in the review article by Descouvemont and Baye [11].

1.1.7 Isobaric analogue resonances

In some proton-adding or neutron-removing [22] reactions, isospin coupling between the target and the
projectile allows the excitation of higher-isospin states in the compound nucleus. For a target nucleus
beginning in a state with isospin 7, these higher-isospin states have isospin 75 = T + % Each T state
is the isobaric analogue of states in other nuclei with the same mass number A but different isospin
projection T;; therefore, a measurement of the properties of the resonance in the compound nucleus
allows the properties of the analogous states in the other isobars of the multiplet to be deduced.

These T- isobaric analogue resonances coexist with a potentially large number of T< = T — % reso-
nances corresponding to unbound states of the compound nucleus itself. If the density of the T. states
is large, the T states may begin to mix weakly with T. states that have the same spin and parity [22].
This splits the T- resonance into several components, creating fine structure in the excitation function
as seen in Fig. 1.4. However, if the density of T. states is very high (or the resolution is lower), the indi-

vidual components will not be resolvable, and the mixing will instead present itself as a broadening of

the T resonance [22].
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Figure 1.4: A high-resolution measurement of the excitation function from “°Ar(p,p’). The bottom plot
shows a theoretical fit to the data near 2.45 MeV. Spin-parity assignments were made based on the shape
of the resonances, and it is apparent that the 1/2* and 3/2~ resonances are spit into several fine-structure
components. (Figure reproduced from [22, Fig. 19.13], which was adapted from [7].)
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Figure 1.5: Calculating the resonance energy of the isobaric analogue state labeled “IAS”. In this figure,
Sy, is the neutron separation energy, 6 is the difference between the neutron and proton masses, AE, is
the Coulomb energy of the last proton, and E; is the resonance energy. The ground state of 'K is located
far below the bottom of the figure and is not shown. The energy separations are not drawn to scale.
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1.1.8 Calculating the resonance energy

The expected resonance energies can be calculated by comparing the isobaric analogue state to similar
systems. Consider, for example, the state in *’Ar shown on the right-hand side of Fig. 1.5. If we assume
that the strong nuclear force binds protons and neutrons equally, then the energy difference between the
state in 4’Ar and its analogue state in *’K must be AE, — §, where AE, is the Coulomb energy of the last
proton in *’K, and 6 = m,, — my, is the mass difference between the proton and the neutron.

Asimilar comparison can be made between the bound *’ Ar nucleus and the unbound *6Ar+n system;
in this case, the energy difference is simply the neutron separation energy S,. This unbound system has
an energy that is higher than the unbound “®Ar + p system where the resonance occurs by an offset of 5.

Putting these pieces together, the energy of the proton emitted when the compound nucleus decays
from the isobaric analogue state is the difference in energy between the isobaric analogue state in 4’K

and the energy of the unbound “®Ar + p system. This is
Er=(AE.—0)-S,+6=AE.-S;. (1.22)

Values of AE, can be determined empirically or by simulation; values of S, are typically found from mass

measurements and can be looked up in standard references.

1.2 Experimental motivation

The experiment described in this thesis served several purposes. From the perspective of nuclear physics,
the results are interesting because they can contribute to the understanding of the breakdown of the
magic numbers near the N = 28 shell closure. From a practical perspective, the experiment also served
to commission the Active-Target Time Projection Chamber (AT-TPC) with radioactive beams and to test
the analysis methods developed for AT-TPC data. These motivations are each described further in this

section.

1.2.1 The disappearing N = 28 shell gap

While the shell model and magic numbers describe stable and near-stable isotopes relatively well, the

shell gaps defined by the magic numbers begin to change in nuclei that lie further from stability. An
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Figure 1.6: Trends in E(2]) and B(E2) near the N = 20 and N = 28 magic numbers. (Reproduced from
[49].)

example of this is predicted in the N = 28 isotones, where a reduction of the previously mentioned spin-
orbit splitting of the 1f states could move the 1 f5/, level close enough in energy to the 2ps,, level to
induce a strong electric quadrupole transition strength between the levels [18]. This would be indica-
tive of the onset of nuclear deformation, particularly of quadrupole nature [18], and the emergence of
collective behavior and excitations in these nuclei [18, 49].

Several experiments have indicated that the N = 28 shell gap disappears as the number of protons
decreases from *8Ca. One piece of evidence cited by Sorlin and Porquet [49] is the evolution of the energy
of the first 2 excited states E (2;) in these isotones as a function of Z. Magic nuclei that follow the shell
model would be expected to have large values of E(2) due to the large shell gap just above their highest-
lying single-particle states. This is observed, for instance, in the N = 20 isotones, where E (2?) has a strong
peak in the doubly magic “°Ca that decays very slowly through 38Ar, 3¢S, and 31Si before disappearing in
32Mg (see the left-hand plot in Fig. 1.6). Sorlin and Porquet [49] cite this as evidence of an N = 20 shell
closure that remains strong with decreasing Z until Z = 14. In the N = 28 isotones, on the other hand,
the strong peak in *8Ca is already greatly attenuated at *4S and completely gone by #2Si. This indicates
that the N = 28 shell closure vanishes much more rapidly with decreasing Z [49].

A second piece of evidence for the departure from standard shell-model behavior is the reduced elec-

tric quadrupole transition strength B(E2;0] — 27) in these nuclei. This transition strength is expected
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to be weak in spherical nuclei due to the large shell gap. As was the case with values of E (2;), this is
largely true for the N = 20 isotones, which all have a strong minimum for B(E2) except for 3*Mg [49]. The
N = 28 isotones, on the other hand, have widely varying values of B(E2), and the value for “°Ar is not
even well-determined since different experimental techniques have yielded incompatible results [49].
This is shown in the right-hand plot of Fig. 1.6.

These measurements, along with -decay and Coulomb excitation studies, have indicated that nu-
clear deformation develops smoothly as one removes protons from the spherical, doubly magic 48Ca [49].
In particular, Sorlin and Porquet [49] note that prolate-spherical shape coexistence has been observed
in 448, 42Si is known to be oblate, and “°Mg is predicted to be prolate. This leaves “®Ar in an interesting
shape transition region between the deformed #*S and the spherical *3Ca.

In addition to yielding information about nuclear shape in this region, studies of “6Ar and *’Ar can
also provide important information about single-particle structure near the N = 28 shell gap. Because
46Ar has a closed neutron shell, the shell model predicts that the valence neutron in 4’Ar should occupy
the next available orbital, which is 2p3/2. Therefore, reactions populating the ground state and first ex-
cited state of *’Ar should exhibit strong p-wave components, as revealed in their spectroscopic factors.
Additionally, measurements of the energy gap between the ground state of *’Ar and its 1/2" first excited
state provide information about the magnitude of the spin-orbit splitting of the 2p harmonic oscillator

shell which, as mentioned previously, is expected to shrink as the N = 28 shell gap vanishes.

1.2.2 Previous studies of *’Ar

The first [18] experiment to investigate the structure of 4’Ar was performed in 2006 by Gaudefroy et
al. [16, 18]. They populated excited states in *’Ar via the d (*®Ar,*’Ar) p one-neutron transfer reaction
with a 10 MeV/u beam of “Ar generated by the SPIRAL facility at GANIL. The spectrum of *’Ar (shown
in Fig. 1.7) was reconstructed from the energies and scattering angles of the outgoing protons, which
were measured using position-sensitive silicon telescopes at backward angles between 110° and 170°.
By comparison to shell model and distorted-wave Born approximation (DWBA) calculations, they were
able to make angular momentum and parity assignments to the ground state and first few excited states
(see Table 1.1). In addition, they assigned a neutron single-particle state of ps/, for the ground state and

tentatively assigned arrangements of p1,2 and f7/, to the first two excited states at 1130 keV and 1740 keV,
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E [keV] ¢ J* 2]+ 1C?%S

0 1 3/27 2.44(20)
1130(75) 1 1/2~ 1.62(12)
1740(95) 3 7127 1.36(16)
2655(80) 3,(4) 5/27 1.32(18)
3335(80) 3,(4) 5/27 2.58(18)

Table 1.1: First few levels in 4’ Ar identified by Gaudefroy et al. [16, Table 1].
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Figure 1.7: Energy spectrum of d (46Ar, 47Ar) p observed by Gaudefroy et al. [16]. Subplot (a) shows the
spectrum with background curves from carbon-induced reactions only (labeled “C”) and from carbon-
induced reactions and deuteron breakup (labeled “C + d”). Subplot (b) shows the background-subtracted
spectrum fit with 9 Gaussian curves. Subplot (c) shows the spectrum of events where protons were in
coincidence with the *’Ar nucleus. (Reproduced from [16, Fig. 1].)

respectively [18]. Finally, they calculated spectroscopic factors for each measured state using a variety of
different optical potentials.

Using the measured energy levels, Gaudefroy et al. [16] calculated single-particle energies for the p f
shell states. They concluded that the spin-orbit splitting between the 2p levels in *’Ar was reduced by
890(120) keV as compared to *’Ca, and the splitting between the 1 levels was reduced by 875(130) keV
(see Fig. 1.8). This produces a reduction in the N = 28 shell gap of 330(90) keV. This result is controversial,
however, and was disputed in a comment published by Signoracci and Brown [48]. They pointed out that
when computing the single-particle energies, Gaudefroy et al. [16] neglected to include hole states in
the weighted sum. Correcting this leads to a much smaller change in the p-state spin-orbit splitting of
10(130) keV [48]. In response to this comment, Gaudefroy et al. recalculated their values and published a

smaller value of 207 keV for the reduction in the spin-orbit splitting of the p states [17].
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Figure 1.8: A comparison of neutron single-particle energies in **Ca and *’Ar from Gaudefroy et al. [16].
The splitting of the 1p orbitals is reduced in 4’ Ar compared to *°Ca. (Reproduced from [16, Fig. 3].)

A second experiment performed by Bhattacharyya et al. [6] in 2008 measured the y-ray spectrum
of 4748Ar produced by deep inelastic transfer reactions between a 2*8U beam and a *8Ca target. Their
results largely agreed with the previous measurement by Gaudefroy et al. [18], although as the reaction
mechanism was different, they populated a slightly different set of states. The levels identified in their
paper are shown in Fig. 1.9. Of particular interest is the new 5/27 state at 1234(4) keV which is very close
to the 1/2" first excited state. This was not observed by Gaudefroy et al. [16], and based on the resolution
of the peaks in Fig. 1.7, it would not have been possible for them to separate it from the 1/27 state.

Most recently, a thorough study of the levels in *’Ar was presented by Gade et al. [15] in 2016. They
measured the y-ray spectrum of 4”Ar at the NSCL using two different reactions. The first part of the exper-
iment used the GRETINA array and the S800 spectrograph to measure the single-neutron pickup reaction
12C(*Ar,*"Ar + y) X. The second part measured the reaction ?Be (**K,*’Ar + y) X, or the removal of one
proton from the ground state of *8K, using the SeGA array. These two measurements complemented each
other by populating different sets of excited states in the 4’ Ar reaction product, leading to the two spec-
tra shown in Fig. 1.10. Between the two measurements, the authors observed all bound states of the 4’ Ar

nucleus that were known at the time of writing except for the 1/27 state at 1130 keV found by Gaudefroy
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Figure 1.9: Energy levels identified by Bhattacharyya et al. [6]. (Adapted from [6, Fig. 3].)
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Figure 1.10: y-ray spectrum measured by Gade et al. [15]. The results from each reaction are shown sep-
arately, and levels indicated in gray were not observed using a given reaction. (Reproduced from [15,
Fig. 3].)

et al. [18], which could not be populated due to orbital angular momentum constraints.

1.2.3 Resonant proton scattering in inverse kinematics

The resonant proton scattering method described in Section 1.1.7 was used very successfully in the past
in direct kinematics experiments. One particularly relevant example is the measurement of “°Ar(p, p’)
done by Scott et al. [47] in 1968. They bombarded a sealed ™" Ar gas target with a beam of protons from a
5.5MeV Van de Graaff accelerator. The resulting excitation functions were measured to a high resolution

of approximately 3 keV, revealing the fine structure resonance components described in Section 1.1.7;
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the gross structure of the resonances was recovered by averaging the data over approximately 25 keV.

Part of the reason these direct kinematics experiments were so successful was due to the character-
istics of the proton beams they used. Being nothing more than 'H, proton primary beams can be pro-
duced quite easily and with very high intensity as compared to radioactive secondary beams produced
by fragmentation. Furthermore, by virtue of being a primary beam, the incoming proton energies can be
controlled very precisely, producing a very small uncertainty in the reaction energy. The combination of
fine energy resolution and excellent statistics generally leads to impressive results, as seen in Scott et al.
(47].

A natural question, then, is whether this technique can be successfully extended to the modern
domain of inverse kinematics experiments which tend to feature a low-intensity beam with a slightly
broader energy profile. Some resonant proton scattering experiments have been performed in inverse
kinematics, but the technique has not yet been used with heavier radioactive beams in a device like the
AT-TPC. This experiment thus also serves as a test of the feasibility of this sort of measurement in this

detector.

1.2.4 Commissioning of the AT-TPC

In addition to the nuclear physics goals, the experiment described in this thesis was designed to com-
mission the AT-TPC for use with radioactive beams. The AT-TPC is a newly built time projection chamber
with an active-target design that uses the detector gas as a scattering target. This allows reactions to occur
anywhere within the active volume of the detector, thereby increasing efficiency and allowing multiple
reaction energies to be measured at once. The AT-TPC is described in detail in Chapter 2.

Prior to this experiment, the AT-TPC was used to measure a-a elastic scattering at energies less than
4MeV/u. The scattering angles measured in this experiment were reconstructed to a resolution of ap-
proximately 1°. Immediately prior to the *6Ar experiment, “°Ar(p, p’) elastic scattering was measured with
a stable “°Ar beam in hopes of reproducing the results of Scott et al. [47], but an unforeseen issue with
gas contamination made this dataset more difficult to analyze. Therefore, this dataset will be processed

at a later time.
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1.3 Summary

The remainder of this document describes an experiment that was performed to measure the reaction
46 Ar(p,p’) in inverse kinematics with the AT-TPC. As described above, this was done with the dual pur-
poses of commissioning the AT-TPC with radioactive beams and furthering the understanding of the
disappearance of the N = 28 shell closure. First, the AT-TPC and its instrumentation are described in de-
tail in Chapter 2. The methods used to analyze AT-TPC data are then defined in Chapter 3. These analysis
methods are applied in both Chapter 4, which describes simulations of the experiment and the detector’s
efficiency, and Chapter 5, which presents the setup of the experiment, its data processing scheme, and
its results. Finally, a summary is given in Chapter 6 along with some notes about improvements currently

being made to the AT-TPC and its instrumentation.
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CHAPTER 2

THE ACTIVE-TARGET TIME PROJECTION CHAMBER

As mentioned previously in Section 1.2.4, one of the goals of the experiment described in this document
was the commissioning of the Active-Target Time Projection Chamber (AT-TPC), a new detector that was
designed to measure reactions involving low-energy radioactive beams. This chapter begins with a brief
background on time projection chambers, while the remaining sections are devoted to a description of

the AT-TPC and the equipment used to instrument it during the experiment.

2.1 Background

2.1.1 Time projection chambers

The time projection chamber (TPC) is a type of gas-filled charged particle detector originally invented
by Nygren [42] in the 1970s. A TPC consists of a gas-filled vessel equipped with an anode and a cathode
capable of producing a moderate electric field. When a charged particle passes through the gas-filled
volume, it ionizes some of the atoms that compose the gas, leaving behind a trail of free electrons. The
electric field pushes these electrons toward the anode of the chamber, which is typically equipped with
some sort of position-sensitive amplification and readout device to count the number of electrons that
strike it. This process is illustrated in Fig. 2.1.

The position-sensitive readout plane gives two-dimensional information about the track; the third

N Particle track
Anode ~ A\ \X Cathode
e \\
E

Figure 2.1: Principle of operation of a TPC. A uniform electric field is created between the anode and the
cathode. This field transports the ionization electrons produced by a charged particle towards the anode,
where they are amplified and collected.
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dimension is reconstructed from the timing of the recorded signals. This is possible because the elec-
trons drift at a constant velocity in the detector [32], so the position along the drift direction is directly

proportional to the drift time. This is the origin of the “time projection” portion of the detector’s name.

2.1.2 Active targets

The TPC was originally designed as an evolution of bubble chambers for tracking particles in high-energy
experiments [32, 42]. To observe nuclear reactions inside a TPC, a sample of target material must be in-
stalled within the detector. This sample is traditionally a thin foil of target material or a small amount of
target material evaporated onto a thin substrate, but the target can also be the TPC gas itself, creating
a so-called active target [4]. This design has been used successfully in several recently constructed de-
tectors for nuclear physics applications, some examples of which are described by Beceiro-Novo et al.
(4].

The active target design provides a number of advantages over a solid target. The main benefit is that
it allows the detection of reactions at low energy with a solid angle coverage close to 47 and without
compromising the target thickness, as opposed to a passive target where the thickness has to be reduced
enough for the reaction products to escape. Because reactions can occur anywhere within the detector’s
active volume, they can be measured over a continuous, broad range of energies as the beam slows down
within the gas volume. Since the reaction products emerge from within the tracking medium itself, very
low energies can be measured, and the vertex of the reaction can be reconstructed on an event-by-event
basis, allowing excitation functions to be measured with a single beam energy.

The active target design imposes some constraints on the choice of gas for the TPC. Not only does the
gas have to provide good electron amplification and transport, but it also must contain the target nucleus
of interest and, ideally, few other nuclei. For example, the proton scattering experiment described in this
thesis required a gas containing hydrogen nuclei. The best gas choice would therefore be pure hydrogen
as it has no other nuclei for the beam to scatter off of. However, the electron amplification properties of
hydrogen make it hard to work with. Instead, we chose to use isobutane (C4Hj¢). While isobutane pro-
vides better electron amplification, it also requires us to filter out scattering off of carbon nuclei during

the analysis.
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Figure 2.2: A schematic view of the AT-TPC. The outer shielding volume was made transparent in this im-
age to make the details of the inner volume more visible. Beam enters the detector through the beam duct
at the right-hand side of the image and moves toward the sensor plane on the left. Some components of
the GET electronics are shown mounted on the downstream end of the detector (see Section 2.4).

2.2 Structure of the AT-TPC

The AT-TPC is a newly constructed time projection chamber that uses the active target design described
above. Figure 2.2 shows a cutaway view of the detector and all its components. The structure of the TPC
is described briefly in this section. A more thorough description of the detector’s design can be found in

an article published by Suzuki et al. [50] describing a half-scale prototype of the AT-TPC.

2.2.1 Inner and outer gas volumes

The active volume of the AT-TPC is formed by an open-ended cylinder of epoxy-coated fiberglass with
length 1 m and radius 28 cm. The upstream end of the volume is sealed with a stainless steel cathode,
which has at its center a thin foil window through which the beam enters the detector. The downstream
end is closed by an aluminum flange which supports the sensor plane that serves as the anode. This
inner volume is filled with the gas that serves as a target.

Surrounding the inner volume is a larger, concentric shielding volume contained by a cylindrical
aluminum pressure vessel. The purpose of the shielding volume is to isolate the high electric potential of

the cathode from the environment and to prevent arcing. Therefore, the shielding volume is filled with
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Figure 2.3: A photograph of the inner volume wall with the rings of the inner field cage installed. The
outer field cage rings have a larger diameter, but are otherwise identical and are installed on the outer
surface of the cylinder.

an inert gas with a high dielectric constant, like nitrogen. The pressure of the shielding volume is kept
slightly lower than the pressure in the active volume to ensure that if there were a small leak between
the two volumes, the inner volume would not be contaminated with a foreign gas that could affect the

electron drift velocity.

2.2.2 Electric and magnetic fields

The active volume contains a uniform electric field which is produced by applying a potential difference
between the cathode at its upstream end and the anode at its downstream end. To ensure that the electric
field is uniform, the walls of the inner volume are surrounded inside and out by a field cage consisting of
concentric ring-shaped electrodes connected by a resistor chain (see Fig. 2.3). The resistor chain gradu-
ally steps down the voltage between each ring, ensuring electric field uniformity throughout the volume.

In addition to the electric field, particles in the AT-TPC experience a magnetic field from the large-

bore solenoidal magnet that the detector is mounted inside of. This magnet was originally designed for
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use in a medical magnetic resonance imaging (MRI) machine, and it is capable of producing a field of up
to around 2 T. The AT-TPC is mounted on rails in the center of the magnet. The longitudinal magnetic
field bends the trajectories of the emitted charged particles in order to better determine their energies.
Another benefit is the ability to track particles over longer paths, and for those that stop in the gas volume,

measure their total range.

2.2.3 Sensor plane

Ionization electrons produced inside the AT-TPC are read out by a sensor plane mounted on the anode
end of the detector. The sensor plane (or “pad plane”) consists of a circular printed circuit board of radius
27.5 cm covered with 10240 triangular gold-plated conductive pads. The pads are arranged in a hexago-
nal inner region of small pads with height 0.5 cm surrounded by an outer region of large pads with height
1.0 cm. This layout is shown in Fig. 2.4.

The triangular pad shape was chosen to maximize the spatial resolution of the detector. When a
charged particle track crosses a series of adjacent triangular pads, the amount of charge deposited on
each pad is staggered. This staggering pattern changes significantly with even a small change in the ori-
entation of a track, leading to a greater sensitivity and an improved angular resolution.

Electron amplification is provided by a Micromegas [19] device installed on the sensor plane. The Mi-
cromegas (from “micro-mesh gaseous structure” [27]) consists of a very fine conductive mesh supported
approximately 100 um above the sensor plane by insulating posts. The mesh is biased with respect to the
electrodes to create a relatively large electric field between the mesh and the pads. This effectively divides
the detector into two regions: a large drift region above the mesh and a small multiplication region below
the mesh. When a charged particle passes through the detector, it ionizes the gas in the drift region. The
relatively low electric field in the drift region then transports the electrons toward the mesh. Once the
electrons pass through the mesh and enter the multiplication region, the much larger electric field there
causes electron avalanches to form, effectively amplifying the single-electron signals to something that

can be measured by the electronics. This process is illustrated in Fig. 2.5.
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Figure 2.4: Layout of the pad plane. The inset shows a closer view of one corner of the hexagonal in-
ner region. This region of half-scale pads provides finer resolution near the reaction vertex, which will
generally occur near the central axis of the detector.

E<10°V/m

Particle

E~105V/m

Figure 2.5: Principle of operation of a Micromegas. The electric field magnitudes shown are nominal: the
field in the region above the mesh may vary from roughly 10° V/m to 10° V/m
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Figure 2.6: Illustration of pileup separation due to the tilt angle. The leftmost track is elastic @-a scatter-
ing, and the rightmost track is another a particle that entered the detector during the event. Without the
tilt angle, the two beam tracks would be collinear, making them more difficult to separate.

2.3 Tilting the detector

The AT-TPC is normally coaxially centered within the bore of the magnet, but the detector’s support
carriage has a small jack that allows the anode end of the detector to be raised up to approximately 6°
with respect to the axis. Tilting the detector can be advantageous for two reasons. First, the tilt angle
projects tracks at very forward angles onto more than one pad, improving measurements at these small
scattering angles. Second, it allows some separation of pileup events since earlier beam tracks drift away
from the cathode before later ones arrive (see Fig. 2.6).

While tilting the detector solves some problems, it also creates a few complications for the analysis.
When tilted, the electric and magnetic fields in the TPC are no longer parallel, but are instead separated
by a small angle. This causes the drift electrons to be deflected by a small amount in a direction transverse
to the electric field. This has to be corrected for during the track reconstruction process, which will be

described in Section 3.2.
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Figure 2.7: A schematic view of the GET electronics system. Only one AsAd is shown for clarity, but 40
AsAds are used to instrument the AT-TPC.

2.4 Electronics

The AT-TPC is instrumented with digital electronics developed by the Generic Electronics for TPCs (GET)
collaboration [44]. This equipment provides a fully digital data acquisition system capable of digitizing
and recording the full trace for each of the 10240 channels in the detector.

The electronics hardware is divided into a hierarchy of several modules (see Fig. 2.7). At the lowest
level of the hierarchy is a custom application-specific integrated circuit (ASIC) called the AGET (ASIC for
GET). This chip samples and shapes the signals and compares them to a threshold to generate a channel-
level trigger. The AGET amplifies the incoming signal with a variable-gain charge-sensitive preamplifier
and performs pole-zero correction. It then stores samples of the analog signal in a switched capacitor
array (SCA) which acts as a circular buffer [1, 3]. Each AGET can read out 64 physics channels from the
detector in addition to 4 fixed-pattern noise channels. The fixed-pattern noise channels are structurally
identical to the physics channels, but without inputs [1, 3]. This allows the data to be corrected for low-
frequency electronic noise.

The AGETs are mounted in groups of four on AsAd (ASIC Support and Analog to Digital conversion)
boards. In addition to the four AGETs, each AsAd board houses a four-channel, 12-bit ADC. When a trig-

ger is issued, the ADC digitizes the sample outputs from each AGET chip and transmits them via a serial
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link [3]. Between triggers, the ADC digitizes and transmits the multiplicity signal from each AGET. The
input end of each AsAd board is attached to an isolation circuit, and this assembly is then mounted on
the downstream end of the TPC and connected directly to the sensor plane (see Fig. 2.8). This design
was chosen to minimize the distance that analog signals must travel before being digitized, reducing the
capacitance and potential for noise in the data.

The top level of the GET electronics hierarchy is the CoBo (Concentration Board). Each of the AT-
TPC’s 10 CoBos is connected to four AsAd boards. When a trigger is issued, the CoBo collects the data
from these boards, applies an event time stamp, and builds the event [3]. It then sends the event over a
10 Gb/s fiber-optic link to a network switch to be distributed to a cluster of computers for storage.

To keep the CoBos synchronized and generate a global trigger, an additional board called the Mu-
TAnT (Multiplicity, Trigger, And Time) distributes a global time stamp and manages clock synchroniza-
tion across the system [3]. The MuTAnT board is designed to collect all of the running multiplicities
and hit patterns from the CoBos and combine them in various ways to generate a global trigger. The
most straightforward method consists of simply summing the multiplicities to generate a trigger when a
global threshold is reached. This is referred to as a Level 1 trigger. Other more complex trigger decisions
can be used that involve matching a predefined pattern of hit channels (a Level 2 trigger). The choice
of which channels contribute to the global multiplicity trigger is set independently for each CoBo; this

process will be described in Section 5.2.3.

2.5 Data acquisition

Due to the very large number of channels and high data rate, the AT-TPC requires custom software for
data acquisition. The AT-TPC DAQ is a multi-level, distributed system with a controlling master node

overseeing a set of 10 worker nodes, one per CoBo. A schematic of the system is shown in Fig. 2.9.

2.5.1 Structure of the DAQ system

Since the DAQ computers must be located next to the AT-TPC in the experimental vault, the DAQ system
was designed as a web application that can be opened in a browser on a client computer elsewhere in

the laboratory. The core of the software is written in Python 3 using the popular Django web application
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Figure 2.8: A photograph of the fully instrumented AT-TPC mounted inside its solenoid magnet. The
40 AsAds are mounted on the downstream end flange surrounded by copper shielding. Individual cables
connect each AsAd to its controlling CoBo, and a separate set of cables connects each to its power supply.

framework and the Celery asynchronous task queue. The site is supported by a PostgreSQL database that
stores the internal configuration of the system.

The processes for the web servers controlling the DAQ interface are run inside a set of Docker con-
tainers. Docker is a containerization platform that allows programs and their associated dependencies
to execute independently and without knowing about the rest of the system [12]. This is possible through
the use of containers, which are functionally similar to virtual machines but with the key distinction that
a container does not contain a full guest operating system. Instead, containers use the Linux kernel of
the underlying host’s operating system while still providing filesystem isolation and an independent set
of system libraries to the contained code. This saves disk space compared to a full virtual machine, but
more importantly, code inside a container runs at native speed as it does not have to work through a
hypervisor layer. Additionally, since each container has its own full set of system libraries, containerized
applications are platform-independent and can run on any operating system that uses the Linux kernel
(support is also available for Windows and macOS through a lightweight Linux virtual machine).

In addition to the web application, there are ten separate worker nodes for the DAQ, one for each
CoBo. Each of these runs on its own computer. The main reason for running so many independent sys-

tems is throughput: with a theoretical maximum! data rate of approximately 21 MB/event, the AT-TPC

IExperimental data rates are much lower since we do not read out channels that were not above threshold.
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Figure 2.9: Structure of the DAQ system. Only two worker nodes are shown, but there are ten in the actual
system.
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could easily saturate the throughput of a single mechanical hard drive at an event rate as low as 10 Hz.
Using a parallel set of 10 computers allows the rate to be 10 times higher.

Each worker node runs a set of two programs provided by the Institut de recherche sur les lois fon-
damentales de I'Univers (IRFU) in Saclay, France. The first program, the Electronics Control Core (ECC)
server, is responsible for controlling the CoBo. It can configure the CoBo and its connected AsAd boards
using a configuration file and start and stop data taking. The second program, the data router, receives
the data stream from the CoBo and records it to a file on the local hard disk. At the end of the experiment,

the data files from the ten computers are collected and merged together.
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CHAPTER 3

ANALYZING AT-TPC DATA

Extracting physics results from the data recorded by the AT-TPC requires a complex, multi-step analysis
process. This process involves correcting the electronics signals for baseline fluctuations, reconstructing
three-dimensional tracks, separating the tracks from noise, and fitting the tracks using a Monte Carlo
algorithm. This chapter contains a general description of the steps of the analysis process and the rea-

soning behind its design. Specifics of the analysis performed on the “éAr data are given later in Chapter 5.

3.1 Baseline correction

The signals recorded by the AT-TPC in the *6Ar(p, p’) experiment feature large-scale baseline fluctuations
corresponding to the time that the beam particle was present in the chamber. This happened because
the *6Ar nucleus, which is much more ionizing than the protons that the AT-TPC was tuned to measure,
deposited enough charge onto the pads it activated on the sensor plane to induce a negative signal in all
other pads via capacitive coupling through the mesh. Fortunately, this effect is easy to correct in software.
The correction is done using a Fourier transform and a low-pass filter.

One definition of the Fourier transform of a function f () is!

(e

fowv) =Z1f (1) :f f(ne ?™Viqy., (3.1)

To correct for the baseline fluctuation, we first calculate the Fourier transform f(v) of the signal. Then,

we multiply f (v) by sinc(v/a) where

X sin(rx)
sincx = , (3.2)
X

and a is a constant scaling factor. Finally, we find the inverse Fourier transform of this product. This gives
an approximation for the baseline of the signal which can then be subtracted away (see Fig. 3.1).
The sinc function was chosen in order to take advantage of the Convolution Theorem. This theorem

states that

g_l[f(V)g(V)]=(f*g)(t):f f@glt-1)dr, (3.3)

IThis is perhaps not the most common definition in physics, but it is the definition used by the Fast Fourier Transform
library used in the analysis [25].
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Figure 3.1: Subtracting the baseline from a single signal. The top plot shows the raw signal and the cal-
culated baseline. The bottom plot shows the difference between the two.

where (f * g)(t) denotes the convolution of f(¢) and g(t) [31]. Therefore multiplying the transformed
signal by sinc(v/a) and then inverting the transformation is equivalent to convolving the original signal
with the inverse transformation of sinc(v/a). Conveniently, that inverse is

1 1
l, ——<t<-=
2 2

g1 [sinc(v)] =rect(t) = (3.4)

0, elsewhere,

a rectangular window function. This whole procedure is therefore equivalent to convolution with a rect-
angular window, or a moving average. The Fourier transform was used instead of a simple moving aver-

age due to the high speed of modern Fast Fourier Transform (FFT) libraries.

3.2 Track reconstruction

After baseline correction, the next step of the analysis process is to reconstruct three-dimensional tracks
from the signals. This entails converting the time-domain signals to a set of discrete points (x;, y;, z;) in

three-dimensional space with associated peak amplitudes a;. The simplest way to do this is to assume
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Figure 3.2: Coordinate systems used in the analysis. After calibration, the recorded tracks are in the de-
tector coordinate system (a). This system has its origin in the center of the sensor plane at z = 0 with the
z axis pointing upstream toward the beam entrance window. The beam coordinate system (b) is related
to the detector coordinate system by a rotation through angle T about the beam entrance window, where
7T is the detector tilt angle. In this system, the beam moves along the —w axis. Note that both of these
coordinate systems are left-handed.

that each pad is activated only once in a particular event. Then the raw (x, y) coordinates for a particular
channel are assumed to be the centroid of the corresponding triangular pad, and the uncalibrated z
position is the location of the center of gravity of the peak in the ADC signal. The amplitude of the signal
is calculated by subtracting an averaged baseline from the maximum of the peak. This averaged baseline
is the mean of the signal in time buckets N —20 through N — 15, where N is the location of the maximum
of the peak.

At the end of this process, we have a set of 4-tuples (x;, yi, zi, a;) that describe the position and energy
loss of a tracked particle in the detector coordinate system (Fig. 3.2a) at a given moment in time; however,
the units of these quantities are not all the same. Since the x and y positions are calculated from the pad
plane, they are in distance units, but the z position is still an ADC time bucket index, which is a time unit.
A calibration is therefore required to make all of these values compatible with each other.

The calibration is simplest when the electric and magnetic fields are parallel or when there is no
magnetic field. In this case, the primary electrons produced in the TPC drift along the electric field lines,
which point along the z axis in the detector. Therefore the track’s projection onto the pad plane is or-
thogonal, which implies that the x and y coordinates recovered from this projection equal the true co-
ordinates of the particle track, and the only thing that needs to be calibrated is the z position. Since the

uncalibrated z value is in time units, it can be converted to distance units using the electron drift velocity
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v4 and the ADC clock frequency v:

z= 4% (3.5)
1%

The calibration is more complex when the magnetic field is nonzero and the detector is tilted. In this
case, the electric and magnetic fields are neither parallel nor perpendicular, so the Lorentz force experi-
enced by the drifting electrons will have components in the transverse x and y directions in addition to
the primary z component. This causes the electrons’ trajectories to be deflected in the x and y directions,
which means that all three coordinates need to be calibrated. This can be done by using a vectorial drift
velocity instead of the scalar one used above.

Following the derivation presented by Lohse and Witzeling [32], the motion of an electron with mass

m and charge e can be modeled with a Langevin equation of the form

dv m
m—=e(E+vxB)——v, (3.6)
dt T

where E and B are the electric and magnetic field vectors, v is the electron’s velocity, and 7 is the mean

time between collisions. This equation admits a steady-state solution

vp=—H 5 [E+wr (ExB)+0’r (E-B)B]. (3.7)

1+ w?

Here, vp is the drift velocity vector, w = eB/m is the cyclotron frequency, T = mvp/eE is the mean time
between collisions, and y = er/m is the electron mobility in the gas. In the detector coordinate system

(%, 7,2) shown in Fig. 3.2a, the electric and magnetic fields are

E=EZ

B =B([sin(@,) + cos(6,)2]

for a tilt angle 8, so Eq. (3.7) can be simplified to yield the following components:

HE .
Vy= ——— (wtsinf 3.8
* 1+w272( t) (3.8)
HE 2.2 .
vy= ——— (w°T°sinf;cosO 3.9
Y 1+w212( f 2 3.9)
HE 2.2 2
vV, =———(1+w°Tt°cos“0;). 3.10
z 1+w212( t) (3.10)
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Since we assumed a constant drift velocity magnitude, the amount of deflection in the x and y directions

is proportional to the drift time. Therefore, the data can be calibrated with the equations

x=xo— UxZ0 (3.11)
Vy 20
Y=Yo— yT (3.12)
o= 220 (3.13)
v

where vy, vy, and v, are the three components of the drift velocity vector given in Egs. (3.8) to (3.10).
The final step of track reconstruction is to transform the data from the detector coordinate system
xyz of Fig. 3.2a to the beam coordinate system uvw of Fig. 3.2b. The beam is parallel to the w axis in the

latter frame, which simplifies the fitting algorithms. This transformation is given by

u 1 0 0 X 0
v|=]10 cosO; sinf;||y|+t]|(Qm)tanb; |- (3.14)
w 0 -sinf; cosf;||z 0

The extra factor added to the v component corrects the vertical offset introduced by rotating about the

X axis at z = 0 rather than at the beam origin window.

3.3 Noise removal

The reconstructed tracks generally contain some noise points and structures that need to be removed to
prevent fits from diverging. There are generally two types of noise present in the events: uncorrelated,
random points from channels that were triggered by electronic noise, and correlated structures of points
created by cross-talk in the electronics. An example event with both types of noise is shown in Fig. 3.3.
The noise is removed by two algorithms that are run in series on each event. First, correlated noise is re-
moved using a method based on the Hough transform [13], and then uncorrelated noise is removed using
a nearest-neighbor algorithm. This section begins with a description of the Hough transform algorithm

for straight lines and for circles, and then the noise removal algorithms are defined.

3.3.1 Hough transform for lines

The Hough transform is a feature recognition algorithm commonly used in computer vision applications

to detect straight lines and simple curves in images [13]. It works by transforming image points into a
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Figure 3.3: Event 99-30 from the #6Ar data set, a particularly noisy event, before cleaning. There are some
correlated noise structures present at the bottom of the uv projection and the left of the wv projection,
and there is uncorrelated noise throughout the event.

parameter space where the desired image features map onto single points. The features can then be
identified by using a peak-finding algorithm in the parameter space.

One way to parameterize a line is in terms of the normal line drawn from it to the origin. This param-
eterization is given by [13]

R =xcos6 + ysinf, (3.15)

where R is the length of the normal line, and 8 is the angle between the normal line and the x axis. This
isillustrated in Fig. 3.4. This parameterization implies that each point in the (x, y) system (the coordinate
space) maps onto a sinusoidal curve R() in the (8, R) system (the Hough space). Similarly, each line in
the coordinate space has a unique parameterization (6, R), mapping it onto a single point in the Hough
space. Therefore, sets of collinear points in the coordinate space can be found by looking for intersecting
curves in the Hough space, as shown in Fig. 3.5.

This process is described more concretely in Algorithm 1. The algorithm computes a discrete set of
points (6;, R;) in the Hough space corresponding to the sinusoidal curve generated from each data point.
Each of these points is then mapped to the corresponding bin in a two-dimensional accumulator array,
which is incremented by 1. After processing each point, lines in the original data are found by looking for
peaks in the accumulator array. A large number of collinear points creates a set of sinusoids that intersect

at one point, causing the corresponding accumulator bin to hold a large value.
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Figure 3.4: Parameterizing a straight line in two dimensions using a normal line drawn to the origin.

(a) Coordinate space (b) Hough space

Figure 3.5: Transforming points into the Hough space. The left-hand plot shows three points A, B, and C
in the normal coordinate space with lines drawn between them. These points map to sinusoidal curves
in the Hough space, as shown in the right-hand plot. Lines in the normal system become points in the
Hough space, so a line that passes through two points in the normal space is the intersection of two
curves in the Hough space.
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Algorithm 1 Hough space binning method
Given: an Nyjng X Npins accumulator array A, a set of (x, y) data points D, and a maximum bin value M,
function HOUGHBINS (A, Npins, D, M)
foriec{0,1,..., Npins — 1} do > i is the 0 bin index
0 — im/ Npins
for (x,y) e D do
R — xcosf + ysinf

J = L(R+ M) Npins/ (2M)] > j is the R bin index
Ajj—Ajj+1 > Increment the Hough space accumulator array
end for
end for
return A

end function

X

Figure 3.6: Finding the center of a circle using the Hough transform.

3.3.2 Hough transform for circles

Although the process described in Section 3.3.1 is specific to finding lines, a similar process can be used
to find circles in an image. This procedure was originally described by Illingworth and Kittler [23], but
the formulation shown in this section was taken from Heinze [21].

Consider a set of points lying along a circle. If a line is drawn between any two of the points, a second
line can be drawn perpendicular to the first line and passing through its midpoint. This second line will
always pass through the center of the circle. Therefore, given a set of points, we can find the center of
curvature by finding the point where all of these perpendicular bisectors intersect (see Fig. 3.6). We can

do this using the Hough transform.
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Given two points on the circle (xg, o) and (x1, y1), the midpoint between the two points is

Xo+ X +
Xm= = m:—yozyl. (3.16)
The slope of the perpendicular bisector to the line between these two points is
I (3.17)
Yo—Nn
and the y-intercept is
b= Yim— MEm. (3.18)
These can be plugged into the formula for a line y = mx + b and simplified to give
B 2 = 12) + (12 — x2)
) S N { LAl W 4 (3.19)

y= Yo—n 21— )
This describes the set of possible locations of the center of the circle. To make the calculation easier, we

can transform this to polar coordinates:

x = Rcos(0) (3.20)

y = Rsin(0). (3.21)

Then, we can rewrite Eq. (3.19) as

R (oF =) + (0 = 1)) _ (3.22)
2[(x1 — xp) cosO + (y1 — yo) sinf]

This equation can then replace the line R — xcos8 + ysinf in Algorithm 1 to make a Hough transform

function that finds the center of a circle of points.

3.3.3 Removing correlated noise

The two Hough transform algorithms described above are used to remove correlated noise points from

the recorded events. This process proceeds as follows:

1. Find the coordinates (u., v.) of the center of curvature of the event using the Hough transform for

circles (Section 3.3.2).
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2. Calculate the arc length coordinate for each data point as a function of w. The arc length coordi-
nate for each point is defined as

s=pP (3.23)

where

_ Y Y -l v—vc)
0 \/(u u)*+w-vy)* and ¢=tan (—u—uc’ (3.24)

This parameterization is used because the arc length swept by the particle increases monotonically

as a function of w due to the constant polar angle 6 of the particle’s momentum vector.
3. Perform the Hough transform for lines (Section 3.3.1) on the p¢ vs. w projection of the data.

4. Extract the top five peaks from the Hough space and average their angle values together to find the
angle of maximum activation in the Hough space. (This takes advantage of the fact that the lines
we are searching for in the p¢ vs. w space should be parallel.) Take an angular slice of the Hough
space around this maximum value and look for peaks in the 1D projection of this slice onto the R

axis. These peaks correspond to individual lines in the original space.

5. Determine which of the lines each data point is closest to. If a point is more than some threshold

distance from any line, it is discarded as noise.

6. Finally, check how many points are assigned to each line. If any line has less than some threshold

number of points, the points assigned to that line are discarded as noise.

The results of this process for one event are shown in Fig. 3.7.

3.3.4 Removing uncorrelated noise

Random, uncorrelated noise points that are left after the Hough transform-based cleaning are removed
by counting the number of neighbors each point has and eliminating points with too few neighbors
inside a given radius. We use a naive algorithm to find the neighbor counts which simply calculates the
pairwise distance between each unique set of points in the data set and increments a counter if the
distance is small enough. This is shown in detail in Algorithm 2. This method is probably not the most

efficient choice, but it runs fast enough for our purposes.
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Figure 3.8: Final results of the noise removal process on the event shown in Fig. 3.3. The blue points
were kept, and the semi-transparent red points were removed as noise. Some noise is still present after
cleaning, but much of it was removed.

After running both noise removal procedures, much of the noise in the event is removed (see Fig. 3.8).
The remaining noise is often focused in the first or last few time buckets of the event, and can sometimes
be removed with a simple cut. Regardless, the level of noise remaining after this process seems to be

small enough that it does not affect the Monte Carlo fits too much.

Algorithm 2 Counting nearest neighbors inside a radius
RNXM

Given data X € , with number of data points N and number of dimensions M, and maximum
neighborhood radius rmax,
function NEIGHBORCOUNT(X, 'max)

let Ae ZV contain the neighbor counts initialized to —1 to negate self-counting

forie{0,1,..., N—1} do

forje{0,1,...,i—1}do
M-1

r2— Y Xie—Xjp)*
k=0
ifr2 <r?_, then
A —A;+1
end if
end for
end for
return A
end function
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3.4 Modeling tracks and fits

The result of the noise removal process is a set of data points that describe the track as a series of three-
dimensional locations with associated signal amplitudes. A model must be fit to this track in order to
extract physical observables like the scattering angle or the energy of the beam particle at the vertex.
This fit is performed using a Monte Carlo-based optimization algorithm, which will be discussed at the
end of this section.

Note that in the remainder of this chapter, the coordinates of the particle will be referred to using the
variables x, y, and z rather than u, v, and w. Regardless of the notation, this should be understood as a

position in the beam coordinate system shown in Fig. 3.2b.

3.4.1 Trackrepresentation and generation

Particle tracks in the AT-TPC can be uniquely described by a set of six parameters that define the ini-
tial state of the tracked particle. These parameters are the particle’s initial position (xo, yo, o), its initial
kinetic energy Ej, and the azimuthal angle ¢¢ and polar angle 6,y defining the orientation of its initial
momentum vector in spherical coordinates. The azimuthal angle is measured with respect to the x axis
of the detector, and the polar angle is measured with respect to the z axis.

Given this set of parameters, a particle track can be modeled by simulating the motion of the particle
in the TPC under ideal conditions. The simulation is iterative, beginning with the set of initial coordi-
nates described above. At each time step, it updates the position, momentum, and energy of the particle
after applying the Lorentz force. The updated energy is used to calculate the amount of energy lost to
interactions with gas atoms or molecules during that time step, and this energy loss is subtracted from
the updated energy. Finally, if the particle’s energy has reached zero, the simulation is stopped.

Ideally, it would be more convenient to model tracks with a mathematical function rather than a sim-
ulation; however, the nature of the AT-TPC makes this impossible. The particle tracks that the detector
produces are essentially helical, but the radius of curvature of the helices decreases in a complex way that
depends on the energy loss function, a Bragg curve. This prevents us from using an analytic function to

describe the tracks.
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Figure 3.9: Template used to simulate diffusion. The charge g from the initial point is distributed among
the diffused points. The central point gets 0.4q units of charge, and the outer points each get 0.64/8 units
of charge. This is based on a two-dimensional normal distribution.

3.4.2 Simulated diffusion and track projection

The simulated track represents the path the particle followed through the inner volume of the TPC. To
perform the fit, we also need to calculate the distribution of charge deposition on the pad plane, or the
hit pattern. This is done in two phases.

First, we simulate electron diffusion. As electrons drift toward the end of the detector, the electron

cloud spreads out laterally and attains a final width of
o=V2Dt, (3.25)

where ¢ is the total drift time (which is directly proportional to z), and D is a constant that is determined
empirically [27]. Diffusion is estimated by splitting each simulated track point into nine diffused points
based on the template shown in Fig. 3.9.

Each of the diffused points is then projected onto the readout plane at z = 0 using the inverses of
Egs. (3.11) to (3.13), which were used to calibrate the track. A fine-grained two-dimensional lookup table
is used to map simulated points to channels in the electronics. The charge associated with each point is
then used to simulate a pulse in the appropriate channel, and this pulse is accumulated into an event-

wide signal for that channel. The pulses are generated with the equation
0’ s (1
f(g,0)=A(q) p e sin p (3.26)

with shaping time s and amplitude
Guqg

) (3.27)
Gelec.NADC Cnorm

Alg) =
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where G, is the gain of the Micromegas, Gelec. is the gain of the GET electronics, g is the amount of charge
deposited by this point, Napc is the total number of ADC bins, and Cyomy, is @ normalization factor given

by
flg, 1
A(q)

After all of the points are simulated, the peak amplitude is found in each channel to directly compare to

Chorm =

r)° _3(t/s) oo [ £
ax||[-| e sin|— || = 0.044. (3.28)
S S

the experimental data.

3.4.3 The objective function

To compare data to the model, we need an objective function that describes how well the modeled track
fits the data. The objective function contains three contributions: one from the particle’s position, one
from its energy loss, and one that helps constrain its vertex location.

The position component of the objective function is a simple least-squares comparison between the
modeled track and the experimentally measured track. The modeled track’s x and y components are
linearly interpolated as a function of z to give continuous functions ¥(z) and j(z). These functions are
then evaluated at each of the experimental track’s z positions and compared to the experimental x and
y values. This gives the expression

]2
(3.29)

ﬁ [%(zi) — X112 + [§(zi) - yi
i=0 U%os

Xpos = %
where N is the number of data points in the experimental track, and o pos is an expected deviation. We
chose opos to be 0.5 cm based on the average size of the pads.

The energy component of the objective function is produced by projecting each generated track onto

the pad plane and comparing the resulting hit pattern to the experimental hit pattern. This gives a func-

tion of the form
1 AA?

Xon = (3.30)

Eit hit pads U%n .
Here A represents the total charge deposited in a particular pad. The estimated uncertainty o, was
chosen to be 10 % of the maximum value of A present in the experimental track. The sum is taken over
all pads that were hit by the experimental track, and Ny is the number of such pads. Limiting the sum
to pads present in the experimentally measured event helps the fit converge when parts of the track are

missing since otherwise y2, would have an unbalanced contribution from all the pads that are present

in the generated track but not the experimental one.
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The final component of the objective function helps constrain the reaction vertex to be near the z
axis. Normally, we could fit the beam track and ensure that the beam track and the track of the scattered
particle intersect, but in the *6Ar data set, the beam tracks were not usable (see Section 5.3.5 for details).

This can be addressed by adding the following extra term to the objective function:

2 2
Xo + Yo
S (3.31)

vert

This is a simple quadratic constraint on the (x, y) location of the vertex that imposes a penalty on the fit if
the vertex is not near the axis. One problem with this approach is that it assumes that the beam is exactly
along the z axis, which it might not be due to emittance; however, the emittance of the beam seems to
be small enough that this approximation is acceptable.

The complete objective function is, then, the sum of Egs. (3.29), (3.30), and (3.31):

X% = Xoos + Xon + Xeert- (3.32)

3.4.4 Finding initial parameter values for optimization

The optimization algorithm must be given a starting point before it can begin generating candidate
tracks. The starting point is found using a simple linear fit. In Section 3.3.3, we found that the arc length
coordinate s = pf can be plotted as a function of the z coordinate to get a straight line. This was also
shown in Fig. 3.7a. This technique can also be used to get a seed for the Monte Carlo algorithm.

To find the seed, we can use the previously found center of curvature to find p and ¢ using the equa-
tions in Eq. (3.24). This time, however, we subtract the angular coordinate of the first point in the track to
make ¢ start at 0. p and ¢ are then multiplied together to get the arc length coordinate s, and a line is fit
to the plot of s vs z. The slope of this line defines the initial polar angle 8, of the track, and the intercept
of the line defines the z( position of the reaction vertex.

The initial energy of the particle is calculated from the radius of curvature. In a magnetic field B, a

charged particle with transverse velocity v, mass m and charge g will move in a circle of radius

mv

=5 (3.33)

I

This particle’s kinetic energy is, of course,

(3.34)
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Combining these yields

He sz2q2 _ BZPZZZeZ

) (3.35)
2m 2Amp

where A and Z are the mass and charge number of the particle. This can be used to find an estimate for
the initial energy Ej, assuming we know the identity of the particle.
Finally, the remaining coordinates x( and yp are assumed to be zero since the data calibration proce-

dure places the beam along the z axis.

3.5 The Monte Carlo optimizer

3.5.1 Description of algorithm

Tracks from the AT-TPC can be fit using a simple Monte Carlo algorithm. The algorithm starts with the
seed point found above. Then, it generates a large number T of candidate parameter sets from a uniform
distribution over the six-dimensional (xy, yo, 20, Eo, $0,080) parameter space. The distribution is centered
on the seed point in each dimension, and the width is set to a configurable value. Each of these candidate
tracks is then simulated, and the values of y? are calculated using the equations in Section 3.4.3. The
track with the lowest value of y? is selected, and the parameter space is re-centered around this new
point before being compressed in each dimension by a multiplicative reduction factor R. This process is
then repeated for a fixed number of iterations I. At the end of the I iterations, the best track is accepted
as the fit result. Figure 3.10 shows how the parameter space converges to a solution across the iterations
of this algorithm.

From the description of this algorithm, it should be apparent that this is not the most efficient way
to fit a track. For each event in the data, the computer has to essentially guess the answer N = IT times
and pick the best result. Fortunately, the convergence of the size of the parameter space helps the algo-
rithm move toward a solution, and it prevents it from generating candidate tracks that are too far from
the minimum. Furthermore, although generating such a large number of tracks is certainly computa-
tionally costly, modern high-performance computers and parallel programming techniques help reduce

the runtime to something reasonable.
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Figure 3.10: Samples drawn by the Monte Carlo algorithm while fitting one event. The horizontal axes
represent the sample number, while the vertical axes represent the value of each of the 6 variables. x, y,
and z are given in meters, E is in MeV, and 6 and ¢ are in radians. Each 500-sample iteration of the code
is visible as a large-scale block in this plot.

3.5.2 Checking convergence

The Monte Carlo algorithm described above does not include an explicit test for convergence, so the
parameters of the fitter must be chosen in such a way that convergence is likely. There are three main
parameters that control the convergence of the fit: the number of candidate tracks T generated per iter-
ation, the number of iterations I, and the reduction factor R by which the parameter space is compressed
after each iteration.

The values of T and R must be chosen carefully to prevent the fitter from converging to local minima.
Much like in the process of simulated annealing, it is important to reduce the size of the parameter space
very slowly and to sample as many points in the space as possible on each iteration. The main limitation
on T is the available computing power, and the value of R must be balanced with the value of I to control
the width of the parameter space at the end of the fit.

If the parameter space has a width A X, along dimension X at the beginning of the fit, the final width
in that dimension will be

AX = (AXy)R. (3.36)
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Figure 3.11: Results of the Monte Carlo convergence study. Subplots represent different numbers of
points T per iteration. Within each plot, rows represent the reduction factor R, and columns represent
the number of iterations I. The number in each cell represents the percentage of fits in which the op-
timizer converged to the correct minimum, subject to a tolerance of 10 mm in each dimension for the
vertex position, 100 keV for the initial proton energy, 5° for the azimuthal angle, and 2° for the scattering
angle. The fit was run 1000 times on the same simulated track for each set of parameters.

I T R 0y, O0p 0p Op

20 500 0.8 0.lm 4.0MeV 60° 30°

Table 3.1: Monte Carlo fit parameters I, T, and R and initial parameter space widths ¢ used in the
46Ar(p,p') measurement.

This gives an estimate for the uncertainty of the fit result in each dimension. This final uncertainty can
be reduced by either using a larger value of I or a smaller value of R.

The values of these parameters can be optimized by fitting one event repeatedly and examining the
distribution of the fit results. The fit parameters can then be varied to find the best choices. This was
done for the *6Ar(p, p’) data set by simulating one proton track and then fitting it 1000 times for various
combinations of parameters. The results of this study are shown in Fig. 3.11, and the parameters used in

the analysis are shown in Table 3.1.

3.6 Alternative fitting algorithms

Several other minimization algorithms were considered in addition to the Monte Carlo optimizer de-
scribed above. Although each of these techniques has some advantages, the naive Monte Carlo algorithm
ultimately produced the best, most consistent results. For completeness, a few of the other algorithms

we tried are described in this section.
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Figure 3.12: Simulated two-dimensional error surface and a one-dimensional slice through that surface.
These were generated from a simulated *6Ar(p, p’) scattering event by varying the scattered proton’s ini-
tial energy and scattering angle, calculating the objective function at each point. 400 points were simu-
lated in each dimension. On the surface plot, the horizontal axis represents energy in MeV, the vertical
axis represents the energy component of the objective function, and the axis going into the page repre-
sents the scattering angle in radians.

3.6.1 Gradient-based methods

The default first approach to an optimization problem is often to use a gradient-based technique. These
algorithms are generally robust and computationally efficient [28], and commonly used software li-
braries like SciPy [25] and MINUIT [24] implement a variety of these algorithms for easy use. However,
these techniques are not well-suited to the problem of fitting tracks in the AT-TPC since smooth deriva-
tives are not available for our objective function.

As described previously, the value of the objective function for a given set of track parameters is found
by simulating a track in the AT-TPC and projecting it onto the pad plane. This produces an objective
function that is not smooth when examined closely, which causes derivatives calculated using the finite
differences method to diverge.

Kolda et al. [28] state that simulation-based optimization problems like ours often produce objec-
tive functions that are nonsmooth and sometimes discontinuous. They name conditional branching
(if/then/else constructs), convergence tests, adaptive algorithms, and loss of numerical precision as a

few common causes of nonsmoothness in simulation-based problems. They also point out that the com-
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Algorithm 3 Basic compass search algorithm [28]

Given a function f : R"” — R, an initial guess xo € R”, a tolerance A, for determining convergence, and
an initial value Ay > A for the step-length control parameter,
function COMPASS(f, X0, Atol, Ao)
fork=1,2,3,... do
Dg — {*e;]li =1,2,..., n}, the set of unit vectors spanning R"
if there exists a dy € Dg such that f(x + Ardy) < f(xi) then

Xjy1 — Xp + Apdy > Take step in best direction

Ags1 — Ag > No change to step size
else

Xkt1 < Xk > No step is taken

A1 — 30k > Shrink step size

if A1 < Aol then
return xj;
end if
end if
end for
end function

plexity of the simulation code often makes it difficult or impossible to find an analytic representation of
the derivative, even when automatic differentiation libraries are available.

Figure 3.12 shows the energy component of the objective function evaluated for a simulated event as
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