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ABSTRACT

An initio many-body methods, such as coupled cluster theory, are able to make accurate predictions
on systems, even if no experimental data for the system exists. This makes them an invaluable tool
for studying exotic nuclei or systems, such as infinite matter, where experimental results are sparse.
However, the performance and accuracy of a coupled cluster calculation suffer from truncations
of the cluster operator and basis truncations, both of which are needed to reduce the scale of the
problem such that it is computationally feasible. Additionally, when coupled cluster theory is
applied to systems of infinite matter (the homogeneous electron gas and infinite nuclear matter),
the number of particles in the system must also be truncated to a finite number, this introduces
another source of error in the calculations. Finally, when modeling all nuclear systems, including
infinite nuclear matter, the choice of nuclear interaction can greatly affect both the results and
the computational run time. Simple nuclear interactions, such as the Minnesota potential, have
comparatively small run times but lack the accuracy of computationally more complex interactions
which are derived from effective field theory.

The goal of this thesis is to improve the accuracy of coupled cluster calculations applied to two
infinite matter systems: the homogeneous electron gas and two infinite nuclear matter system (pure
neutron matter and symmetric nuclear matter). Coupled cluster calculations at the doubles and
triples levels will be compared to determine if the increase in computational time is worth the
increase in accuracy. Additionally, two different nuclear interactions will be tested on calculations
of pure neutron matter: a toy model called the Minnesota potential, which is computationally
simple, and a much more complex set of optimized interactions which are derived from effective
field theory, which increase the accuracy but also the computational run time.

Finally, the main part of this thesis is devoted to the development of a simple machine learning
algorithm that can accurately extrapolate coupled cluster calculations of infinite systems separately
to the complete basis limit and the thermodynamic limit. This algorithm, known as sequential
regression extrapolation, combines a Bayesian machine learning algorithm with a unique way of

formatting the training data to create a powerful and accurate extrapolate that can be trained on very



little data, does not require hyperparameter tuning, and can automatically produce uncertainties on
its predictions. With this method, we are able to accurately predict the coupled cluster correlation
energies of infinite matter systems accurately in the complete basis and thermodynamic limits while

savings months of computational time in the process.
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CHAPTER 1

INTRODUCTION
Describing a system of many-interacting particles is difficult in the context of classical mechanics.
It becomes even more complicated when the quantum mechanical properties of the particles are
included. The only quantum mechanical many-body problems we can solve exactly are simplified
problems, and thus we must develop a framework to approximately solve the many-body problem
for large systems of interest, such as atomic nuclei and infinite matter systems [1]. This is the basis
of the field of many-body physics, which intersects with nuclear theory, condensed-matter theory,
quantum chemistry, and other subfields of chemistry and physics.
Specifically, we will look at ab initio, or first principles, many-body methods where the calculations
start from a given Hamiltonian and attempt to solve the many-body problem without allowing any
uncontrolled approximation. These first principle calculations are essential in nuclear physics and
quantum chemistry calculations. It should be noted that while a proper ab initio calculation in
nuclear physics would begin with the quark and gluon degrees of freedom, in this thesis we use ab
initio to refer to a group of many-body methods which can which can be improved systematically
given the Hamiltonian of the systems and relevant laws of motion.
Though ab initio many-body calculations can be expensive, both in terms of computational time and
computational resources, they play an important role in many-body physics for a few reasons. First,
performing these calculations at a fine-grained and controllable level allows us to probe new and
interesting particle interactions and challenge existing computational methods. Second, these first
principle methods allow theoretical many-body physicists to guide new experiments and interpret
the results from these experiments. Furthermore, since these calculations start from first principles,
these ab initio many-body methods can make predictions on systems where no experimental data
exists [2].
In nuclear physics, the results from performing an ab initio calculation on a light nucleus are
expected to yield a binding energy that has an error of less than a few percent when compared

to experimental results. While this is a good accuracy considering that these methods start only



from the Hamiltonian of the system, the shell model with matrix elements which are fitted to
experimental data would achieve a higher level of accuracy. However, ab initio methods still have
a place in nuclear physics as they allow us to test and expand our knowledge of the various nuclear
interaction models. Additionally, they allow us to study nuclei from the nuclear chart in regions
where very little data is available for phenomenological models [2]. They are many ab initio
many-body methods available for nuclear studies, and they differ in their computational costs and
the regions of the nuclear chart where they can be applied. They also have differences in flexibility
and ability to deal with various Hamiltonians.

The ab initio many-body method which will be the focus of this thesis is coupled cluster theory,
originally named exp S, which originated in the nuclear physics community over sixty years ago.
Coester and Kiimmel proposed an exponential ansatz that could be used to describe the correlations
within a nucleus. Since its inception in the late 1950s and early 1960s, coupled cluster theory has
become an important many-body method, both in its home field of nuclear physics and quantum
chemistry.

There are a few reasons why coupled cluster theory is such a popular many-body method. First,
coupled cluster theory is fully microscopic and is both size extensive and size consistent [2, 3].
Second, coupled cluster theory can exactly produce the fully correlated many-body wavefunction
if all components of its cluster operator are considered. However, since this is usually not pos-
sible, coupled cluster theory provides a systematic truncation method that allows for hierarchical
improvements. Third, though coupled cluster theory is not a variational method, its energy behaves
in most cases as a variational quantity. Finally, the form of the equations in coupled cluster theory
is very amenable to parallel implementation, including with MPI and utilizing graphical processing
unit (GPU) computations [4].

In the 1960s and 1970s, coupled cluster theory was further developed and was applied to the field of
quantum chemistry, where it continues to flourish to this day [5—7]. Though this thesis is in nuclear
physics, we will take inspiration from quantum chemistry and use some of the advancements made

in that field. Reference [7] provides a good review of coupled cluster theory’s importance to the



field of quantum chemistry.

There are several good reviews on coupled cluster theory’s history in nuclear physics and develop-
ments at that time (see Refs. [2, 8, 9]). However, we will summarize the highlights and mention
some recent coupled cluster results in nuclear physics that post-date these reviews. Though coupled
cluster theory was initially developed in nuclear physics, it grew slowly in the field and experienced
only slow changes and growth during the second half of the 20th century [9]. This was due to a
combination of inaccurate models to describe the nuclear interaction and computational limitations,
which made describing nuclear systems of interest challenging and inaccurate. Heisenberg and
Mihaila were the first to use a high-precision nucleon-nucleon interaction and three-nucleon forces
in a coupled cluster calculation of a nucleus, specifically oxygen-16 [10]. Coupled cluster theory
experienced a revival in nuclear physics in the early 2000s (see, for example, Reference [4]) and has
been successfully and accurately applied to both medium mass nuclei and is now being extended to
study high mass nuclei. See Ref. [2] for a review of coupled cluster calculations on medium mass
nuclei among other systems and Ref. [11] for a recent result concerning coupled cluster studies of
high mass nuclei.

Though coupled cluster theory in nuclear physics does differ from coupled cluster theory in quantum
chemistry, an essential advancement in the revival of coupled cluster theory in nuclear physics in
the early 2000s occurred when Dean and Hjorth-Jensen took the standard approach to coupled
cluster theory from quantum chemistry and translated it to nuclear physics [4]. Additionally, within
nuclear physics, several conceptual and theoretical developments involving nuclear interactions
increased coupled cluster accuracy when applied to nuclear problems. These advances include
the development of soft interactions through the application of effective field theory (EFT) and
the inclusion of three-nucleon interactions. These changes, along with the development of more
realistic nuclear interactions [12—19], made coupled cluster theory into a more feasible method
for application to nuclear studies. Finally, increased computational technology has allowed more
computational cycles for faster calculations and the option for coupled cluster calculations to be

further accelerated by leveraging modern computational methods such as parallel computing and



utilizing graphical processing units (GPUs) [2, 20]. Recent advances in coupled cluster theory have
allowed calculations on nuclei as large as lead-208 ([11]).

One important system which can be analyzed with coupled cluster theory is a system of infinite
matter, meaning that the system contains an infinite number of particles and spans an infinite
volume in space. The most important infinite matter system in nuclear physics is infinite nuclear
matter, where all of the particles are protons and neutrons in various fractions. In this thesis, we
will investigate two infinite nuclear matter systems: pure neutron matter, where all the particles are
protons, and symmetric nuclear matter, where the particles are evenly divided between protons and
neutrons.

Infinite nuclear matter has several essential applications within nuclear physics and astrophysics.
Within nuclear physics, calculations of infinite nuclear matter are performed alongside calculations
of finite nuclei to support the results (see, for example, [11, 17, 21]). Additionally, calculations
of infinite nuclear matter are essential for determining the nuclear equation of state, which can
determine the behavior of both finite nuclei and the behavior of matter in astrophysical objects.
Finally, some astrophysical objects, such as neutron stars, are challenging to study using traditional
observational astronomy. However, we can still conclude their behaviors and properties by per-
forming many-body studies on their particles. The matter that makes up objects, such as neutron
stars, can be modeled by various types of infinite nuclear matter approaches [22-33]. There have
been several coupled cluster studies of infinite nuclear matter previously [2, 3, 34-36].

Outside of nuclear systems, this thesis will also perform coupled cluster calculations of the homo-
geneous electron gas (HEG), an infinite matter system containing only electrons with a positive
background charge, so there is no net charge [37]. The electron gas is essential in many fields of
chemistry, such as density functional theory, where it is used to benchmark calculations, and is used
as a model for the electrons in superconducting metals. The HEG has been extensively studied with
coupled cluster theory for decades [38—43]. For our purposes, the homogeneous electron gas will be
a test case for developing methods that can be applied to infinite nuclear matter. The homogeneous

electron gas, made entirely of electrons, is governed by the Coulomb force, a much simpler force



than the nuclear forces. Thus coupled cluster calculations of the homogeneous electron gas are less
time-consuming than calculations of infinite nuclear matter, making it a great sandbox to build our
methodologies.

While it may be evident that modeling an infinite system in a finite computational space is not
feasible, this is a significant hurdle to performing accurate coupled cluster calculations on infinite
matter systems. The number of single-particle states and the number of particles in the system must
be truncated, introducing basis incompleteness and finite size errors, respectively. The coupled
cluster calculation, specifically the coupled cluster correlation operator, must also be truncated due
to computational time and resource limitations.

While traditional methods of extrapolation can be used to remove the basis incompleteness and
finite size errors with some success ([38, 42, 44-50]), these methods are usually very specific
to the exact system and many-body method being studied. It should also be noted that many of
these studies focus on extrapolations to the thermodynamic limit and not the complete basis limit.
Additionally, performing the calculations at large values of M and N to mitigate these errors is
computationally prohibitive due to a significant amount of time and resources, machine learning
offers a new and promising avenue for removing these errors. Machine learning is a field at the
intersection of artificial intelligence and data science where the algorithms "learn" to perform a
task by being given examples of the task they are to perform. Machine learning is becoming a
common tool in many-body physics, and there have been many recent studies analyzing its various
uses in the field [51-69]. A review is provided in Ref. [70]. The goal of this thesis is to use a
class of machine learning algorithms based on Bayesian statistics and a novel method of formatting
the data to create an algorithm called sequential regression extrapolation (SRE), which is capable
of removing the basis incompleteness and finite size errors from coupled cluster calculations of
infinite matter systems, using only complete calculations performed at small values of M and N.
Additionally, we wish to develop the SRE method is such a way that it can be applied to remove
truncation errors from any system and using any many-body method. Machine learning has been

used to perform extrapolations in many-body calculations ([51, 54, 71-75]), and some of these



studies do attempt to use machine learning ro remove the basis incompleteness or the finite size
errors, but the SRE method is unique among these studies. We will use the SRE predictions and
results calculated at the complete basis limit and the thermodynamic limit to determine the accuracy
of the extrapolations. We will also determine the time saved by generating a small training data set
at low M and N and using the SRE algorithm to extrapolate versus performing a coupled cluster
calculation near the absolute basis limit or the thermodynamic limit.

The remainder of this thesis contains seven content chapters followed by conclusions and future
works chapter. Chapter 2 will develop the basics of many-body theory, including second quantiza-
tion and diagrammatic methods. Chapter 3 develops Hartree-Fock theory, many-body perturbation
theory, and coupled cluster theory as the many-body methods of interest in this thesis. Chapter 4
expands on the infinite matter systems studied in this work, including the three-dimensional ho-
mogeneous electron gas, pure neutron matter, and symmetric nuclear matter. Chapter 5 introduces
machine learning, including neural networks, various regression algorithms, and Bayesian machine
learning. Chapter 6 develops the machine learning-based extrapolation algorithm, sequential re-
gression extrapolation (SRE), which will be used to remove the basis incompleteness and finite
size errors from coupled cluster calculations of infinite matter. Finally, Chapters 7 and 8 are the
results chapter, showing the success of the SRE algorithm in removing the basis incompleteness
and finite size errors from infinite matter calculations, first of the electron gas (Chapter 7) and then

from infinite nuclear matter (Chapter 8).



CHAPTER 2
MANY-BODY FRAMEWORK

2.1 Introduction to Many-Body Theory

Modeling a system containing many-interacting particles can be a complex problem, even in clas-
sical mechanics. This problem becomes even more complicated when the quantum mechanical
properties of the particles are taken into account, as this drastically increases the system’s complex-
ity. Furthermore, when the particles are protons and neutrons, this problem becomes exceedingly
tricky due to the need to include complex nuclear interaction. However, it is still possible to make
meaningful studies of nuclear many-body systems using many-body methods [1].

We will start our discussion of many-particle systems by defining the many-body Schrodinger
equation used to find the system’s energies. The time-dependent Schrodinger equation, shown in
Equation (2.1), can be used to find all of the possible wavefunctions of the many-body system.
Each wavefunction describes the system in a different configuration, so a many-body system has

many wavefunctions that need to be found. This can be represented as:

OD(7F, 1)

7
SLNNFY

= A®(7,1), 2.1)
where 7 is the reduced Planck’s constant, ® is a wavefunction of the system, and H is the many-body
Hamiltonian, which is unique to the system being studied. In this thesis we will use the common
notation where capital Greek letters (® and W) represent many-body wavefunctions but lowercase
Greek letters (¢ and ¢) represent single-particle wavefunctions. In many cases, such as in this

thesis, we remove the time dependence from the many-body problem to reduce its complexity. This

reduces the Schrodinger equation to its time-independent form:
HO(F) = E®(7), (2.2)

where E is the system’s energy if it is in the state represented by the wavefunction ®. Removing the
time dependence reduces the Schrodinger equation to an eigenvalue problem where the eigenvalues
are the energies of the many-body system. The eigenvectors are the corresponding wavefunctions

(or state vectors).



Next, we need to define the Hamiltonian of our system. The Hamiltonian for a many-particle system

can be represented generally in the form shown in Equation (2.3) [35]:

A A

H=K+Vi+Vo+Vs+.... (2.3)

In the above equation, K is the kinetic energy of the system, V; is an external one-body potential,
V, represents the two-body interaction and V3 represents the three-body interaction. Note that in
nuclear physics there will not be an external one-body potential. For a system containing A particles,
there are a maximum of A-body interactions, though, in practice, the number of interactions (which
corresponds to the number of matrix elements in the Hamiltonian) is usually limited. Itis common to
limit the many-body Hamiltonian to the 2-body interaction level, sometimes the 3-body interaction
level. It is uncommon to include interactions higher than the 3-body interaction level, especially for
large systems or nuclear systems with complex interactions, since the complexity of the interactions
increases drastically with the number of particles involved. Each sum also includes an increasing
number of particles at higher interaction levels. For example, the kinetic energy only has A terms,
but the two-body interaction sum already has %A(A—l) terms [1].

Once the Hamiltonian has been defined, the next step in the many-body problem is to obtain the
eigenvalues and the eigenfunctions from H, which is a matrix. The eigenvalues of H are the
energies of the system, and the eigenvectors are the wavefunctions of the system and are thus
the solutions to the time-independent Schrodinger equation shown in Equation (2.2). However,
in practice, Equation (2.2) can only be solved exactly for small, uninteresting systems. Thus we
must turn to many-body methods to approximately solve for the energies of a many-body system
[1, 76, 77]. In the following two sections, we will develop the notation (Dirac notation) and
a way to represent the many-body basis that is more convenient (occupation representation and
second quantization). Then we will revisit the many-body Hamiltonian once these tools have been
developed before closing the chapter. Finally, we will develop other formalisms, including normal

ordering and diagrammatic methods.



2.2 Dirac Bracket Notation for Many-Body Systems

Before developing the different many-body methods, we must develop a framework for representing
specific quantities found in many-body theory. This framework work is called Dirac bra-ket
notation, and it dramatically simplifies many quantum mechanical expressions. It is commonly
used in quantum mechanics and many-body physics because it provides a simple way to represent
complex quantum mechanical operations as linear algebra problems.

The base quantity of Dirac notation is a ket. Given a column vector, X, which contains n elements,
we can denote the vector in ket notations as:

X0
X1
X2

Ixy=1 . |, 2.4)

Xn—1
where we will begin numbering the elements from 0, leading to the last element having an index
of n-1. In general, x; € C.

The corresponding bra vector to the ket is simply the Hermitian conjugate of |x):

(x| = Xo X{ X o oo x| (2.5)

Note that the bra vector is a row vector instead of a column vector.

In quantum mechanics, different kets represent the system’s different states. These kets differ from
representing quantum mechanical states in wave mechanics (where the state is represented as a
function) and in matrix mechanics (where the states are represented as basis expansions). However,
kets encode the same information as these other representations. In addition, kets allow invariance
in the state, meaning that the choice of coordinates and basis can be chosen at any point and quickly
changed [78]. For now, the bras and kets will only describe a state with one particle; we will

develop a formalism to describe many-particle states as bras and kets later in this section.



It is also important to note that since the ket |x) is a quantum mechanical state, then it belongs to
an infinite dimensional Hilbert space, H (|x) € H). The corresponding bra, (x|, also belongs to the
same Hilbert space [78].
Hilbert spaces are closed under linear combinations, which gives rise to the superposition of
quantum states [78]. Dirac notation also provides an easy way to represent states in a superposition,
meaning that they are simultaneous in two or more states, and the same state is determined upon
system measurement. Given two states |x) and |y), we can say that state |z) is in a superposition of
|x) and |y) with the following:

|z) = alx) + Bly), (2.6)

where a and 8 are complex numbers. The bra of the above state (z| can be denoted as:

(z| = " (x + Byl 2.7)

Note that in Equation (2.7), the coefficients of the kets are a* and S* (i.e., complex conjugates)
instead of just @ and S.

The coeflicients @ and 8 have a physical interpretation. When the state |z) is measured and collapses
into either |x) or |y), there is an || probability that the state will be found in |x) and a |3]> chance
that it will be found in |y). Note that the notation |a|? represents the complex modulus of e. Since
both |e|* and | 8] represent probabilities that the two different outcomes of measuring state |z) will

occur then |a|> + 8| = 1.

Inner Product

For kets |x) and |y), the inner product between the two will be defined as:

(YIX) = yoXo + Y1 X1 + y3x2 + oo + Y, Xpo1. (2.8)

It is important to note that{y|x) = (x|y). Also note that (y|x) will sometimes be referred to as the
overlap between the states x and y.
Many quantum mechanics bases are orthogonal and normalized and therefore called orthonormal.

However, two restrictions are placed on most bases in many-body theory. First, inner products are
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used to ensure that a basis is both orthogonal and normalized. In terms of inner products, this
means that for each state, i, in the basis, the inner product of the state with itself must be one to be
normalized:

dliy=1, Vi. (2.9)

The second restriction is that the basis is orthogonal. This means that the inner product of a state i
with another state j must be zero:

(ilj) =0, Vi#]. (2.10)

For a basis that is both normalized and orthogonal, the basis is said to be orthonormal, and the

conditions can be represented in compact delta notation as:

(ilj) = 6;j, V1,j. (2.11)

Outer Product

The outer product between |x) and |y) can be computing using the following formula:

X0yy X0y X0y, - - - X0Yr 4
lea xly’l‘ xlyz [ xly;;_l
X2yy X2y X2y, . . . X2y,
Ix){y| = . . . CoL ) . (2.12)
xn—lyg xn—lyT xn—ly; S xn—ly:z_l

Another restriction on a quantum mechanical basis is that it is complete. We can define the

completeness relation for a general basis as:

Dl =1, (2.13)

where I is the identity matrix in Hilbert space H.
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Tensor Product

Tensor products are essential when describing many-particle systems from one-particle state vectors
(or wavefunctions). In wave mechanics, we would describe the many-particle wavefunction with N
particles as

W(X1, X2, ....XN) = ¥p, (XY p, (X2) .. p, (XN), (2.14)

where ¢/, represent one-particle wave functions and x; are the single-particle degrees of freedom
(usually position and spin) [78]. These are called product states, forming a complete A-body basis
[78]. In Dirac notation, we can also represent a many-particle wavefunction similarly, but in this

case, we will use tensor products [78]:

|‘P> = |wp1wp2---wp/4> = |lpp1> ® |¢p2> ®..0® |¢pA>- (2-15)

In Dirac notation, we can represent the complete N-body basis as:

¥y = > dprpaltipWpa), (2.16)

Pl1,---PA

where dy,, . p, = (Yp,...¥p,|¥) is the overlap between the states.
Note that the order of the single particle wavefunctions matters in either Equation (2.14) or in
Equation (2.15). It is possible to exchange the order of the single particle wavefunctions, which

will be discussed in the next section.

Operators, Expectation Values, and Matrix Elements
In Dirac notation, operators are matrices typically represented using hat notation: 6. To find the

expectation value of this operator in Dirac notation, it is placed in between a bra and a ket:

(wlolg), (2.17)

where ¢ and ¢ can be the same or different wavefunction depending on the operator. This
combination of bra, operator, and ket is also called a matrix element. Several operators will be
defined in the next section once more framework exists to support them, but we can define one

operator here. The exchange operator, P, is defined such that:
Plyya) = lyayn), (2.18)
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where y; are single particle wavefunction [79]. A plus sign on the right side of the equation
indicates the particles are bosons, and a minus sign indicates the particles are fermions; in this
work, we will only consider particles that are fermions. Now, we can define the following two
matrix elements using the exchange operator and the orthonormal rules extended to a many-body

basis:
W2 Py ya) = —(Wyalyay) = 0. (2.19)
and

W1l Plyag) = —(ynlyiyn) = —1. (2.20)

Note that the exchange operator can work on more than two-particle states. If there are more than
two particles in the many-body wavefunction, the particles the exchange operator is acting on are

denoted as subscripts:

Pulyryoys...) = —lyapiys...). (2.21)

Slater Determinants

The wavefunction for an A-particle system that solves Schrodinger’s equation precisely can be
expressed as an expansion of Slater determinants which span a complete, usually infinite, basis
[76]. However, usually, the single-particle space must be truncated only to contain M single-particle
states due to computational limitations, for which an N-particle system leads to (% ) determinants
[76].

We can represent out many-body wavefunction, @, as the following determinant:

pi(X) Ya(X) . . . un(xn)
i1(X2) Y2 (X2) . . . Yn(F2)
o - 1] - . oL . 22
= , (2.22)
lpl ()_C)v) lﬂz ()_C)V) Y l/’N ()_C)v)
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where @ is the many-body wavefunction and ¢, (7,,) is the single-particle wavefunction of the n-th
particle with spatial and spin coordinates described by 7,,. Each column represents a different
single-particle wavefunction, and each row represents a different set of spatial and spin coordinates.

Thus represented in the Slater determinant represents every particle being in every configuration.
2.3 Occupation Representation and Second Quantization

Occupation Number Representation

Up to this point, we have used |®,, .. ,,) to represent a many-fermion wavefunction with A fermions.
The single-particle basis in which the single-particle wavefunctions exist is not denoted explicitly,
but it contains M single-particle states (where M can be finite or infinite). There is another way to
represent a many-fermion wavefunction in a way where the number of single-particle states in the
basis is more explicitly shown. This is called occupation number representation. Given an ordered

single particle basis, any many-fermion wavefunction can be represented as:
|®) = |nynyns...ny) n;=0,1. (2.23)

If the state n; is occupied (i.e., contains a particle), then n; is one. If n; is unoccupied, then it is
a zero. As an example, consider the many-fermion wavefunction made up of the single particle
wavefunctions ¥, ¥p,, ¥p,, and ¢ ,,. The many-fermionic wavefunction made from these states

can be represented in occupation number representation as:
1Dy, paprps) = 1010010011000...). (2.24)

In the above equation, the number of trailing zeros can be finite or infinite depending on if M is
finite or infinite. The total number of occupied states (states which are one) must equal the number
of particles, N, in the system. So in Equation (2.24), there are four particles in the system, so there
must be four ones in the many-body wavefunction. Also, note that, as previously, we start indexing
the single particle states at zero instead of one.

We can represent a couple of other important wavefunctions in occupation number representation.

A single particle wavefunction can be represented in occupation number representation, where only
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the index corresponding to the single particle state is non-zero. For example, ¥, in occupation

number representation is:

[¥2) =12) =]001000....), (2.25)

where we have introduced the shorthand |,) = |p) [78]. We can also introduce the true vacuum
state in occupation number representation, which is simply the state where all M single-particle

states are unoccupied (all the indices are zero) [78]:
|0000000000.....) = |0). (2.26)

Occupation number representation will be a more convenient way to represent these many-fermionic
wavefunctions moving forward as we develop the rest of the necessary formulas. Therefore, moving
forward, a many-fermion wavefunction is assumed to be in occupation number representation unless

explicitly stated otherwise.

Creation and Annihilation Operators

The annihilation and creation operators allow us to change from one many-body state to another by
removing existing particles and adding new ones. Let a; represent the fermionic creation operator
acting on state p and a, represent the fermionic annihilation operator acting on state p (p =0, 1,
..., M). The creation and annihilation operators are Hermitian adjoints of each other ((a;r,)T =ap
and (a,)" = a;).

2.3.0.1 Annihilation and Creation Operators on Single-Particle States

When acting on the single particle state |p), the annihilation operator a, removes the particle at
state p, resulting in the true vacuum state. When the creation operator aj, acts on state |p), it results
in an answer of zero since it cannot create an occupied state at index p if one already exists. Thus
we have:

aplp) =10 and aj|p) =0. (2.27)

T

p acts on the true vacuum state |0), it creates the single-particle state

When the creation operator a

|p). On the other hand, when the annihilation operator a p acts on the true vacuum state, it answers
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zero since it cannot create an unoccupied state at index p if it is already unoccupied. Then:

a,|0) = 0 and a},|0) = |p). (2.28)

Annihilation and Creation Operators on Many-Particle States

The annihilation and creation operators are applied to the many-fermion states similarly to the
single-particle states. For example, when the creation operator a; is applied to a many-fermion
state, it returns the same state with p now occupied (p=1) if p was unoccupied and O if state p was
already occupied. However, there is now an additional phase factor that needs to be accounted for.

(=D™...1...), ifp=0
aZl...p...) = (2.29)

0, if p=1
In Equation (2.29), m refers to the number of occupied states prior to state p and determines the
phase factor. The annihilation operator is applied to a many-fermion state in the same manner:

(-DH™...0...), ifp=1
apl..p...) = . (2.30)

0, if p=0

Annihilation and creation operators can be applied in chains to a given many-body state. In this
case, the rightmost operator acts first, then the next rightmost operator acts on the result, and so on.
Below is an example of how chains of operators can act on a given many-body state to create an

entirely new state.
alasalalas|1001101010)
= alasala}|1001101010)
= a}aeal|1000101010)
(2.31)
= alas|1001101010)
= a}[1001111010)

= |1001110110)
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Every many-fermion state can be created from the true vacuum state with a chain of creation
operators.

1@, pa) =dal..a’]0) (2.32)

Using these creation operators, we can create a critical state: the Fermi vacuum state represented
as |Wy). For an N particle system, the Fermi vacuum state occupies the N lowest energy states,
and the remaining single-particle states are unoccupied. We can create the Fermi vacuum state by

applying N creation operators to the actual vacuum state:

|®o) = alal...al|0). (2.33)

By defining the Fermi vacuum state, we also define the Fermi level. The Fermi level is the line
that separates the highest energy-occupied single particle state from the lowest energy-unoccupied
single particle state in the Fermi vacuum state. We also will denote a new way to label single
particle states based on the Fermi vacuum state. States which are occupied in the Fermi vacuum
state (i.e., are below the Fermi level) will be labeled with indices i, j, k, [, ... . States which are
unoccupied in the Fermi vacuum state (i.e., are above the Fermi level) are labeled with the indices
a, b, c,d,.. . States which are labeled with the indices p, g, r, s, ... can be either above or below
the Fermi level. This notation will be vital as we construct the many-body methods in the next

chapter.

Anticommutation Relations

All creation and annihilation operators must obey the following two anticommutation rules. Re-
member that {A,B} = AB+ BA = BA + AB = {B, A}. Thus, we have the anticommutation
rules:

{al,az} = 6pg. (2.34)

and

{ap,ag} ={a}.a}} = 0. (2.35)
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Operators in Second Quantization

Number Operators
The first operator we will look at in the second quantization is the number operator. The number
operator is defined as:

A .}.

N, = aydp. (2.36)

When the number operator acts on a many-body state, the result is:

R pl..p...), ifp=1
Npl..p...) = . (2.37)
1, ifp=0

Since the many-body state is unchanged on both sides of the equation for p=1, the many-body state
is an eigenket of the number operator if index p is occupied. Note that N » conserves particle number
(because there are an equal number of creation and annihilation operators) and is Hermitian.

The total number operator is defined as the sum of number operators overall single-particle indices:
N=>N, (2.38)
p

When N acts on a many-body state, it returns the number of fermions in that state. For example,

when the number operator is applied to the A-body state |¥):
N|¥) = A|WP). (2.39)

Note that |¥) is an eigenket of the number operator.

Hamiltonian and 4£-Body Operators

As in the first section of this chapter, we can define the Hamiltonian for a many-body system as:

A

H=K+Vy+V3+..., (2.40)

where K is the one-body operator (the kinetic energy), V> is the two-body operator, V; is the three-

body operator, and so on. There are, at most, A operators in the Hamiltonian for an N-body system.
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Second quantization provides us with two ways to represent these k-body operators: Goldstone and

Hugenholtz. In the Goldstone form, the k-body operator can be represented as:

1

Vi = (F)Z Z (p1...pk|\9k|q1...qk>a;1...a;kaqk...aql, (2.41)
* D1--Dk
q1---qk

where the matrix element is defined as:

(P1..-PelVklgr...qx) = / / W (X)), )Pk (X1, s Xi )W gy (X1) gy (Xi) dxy . dxy
(2.42)
In Equation (2.42), we again use the single-particle wavefunctions to calculate the many-fermion
matrix elements. Again, the k-body interaction in the Hugenholtz form is very similar, except the

matrix elements are antisymmetrized:

R 1 X
Vi = (F)2 Z (pl...pklvqul...qk)Aazl...azkaqk...aql. (2.43)
* P1-Dk
q1---qk

Using the antisymmetrized matrix elements is often more convenient and compact, so we will
primarily use the Hugenholtz form for this thesis.

Due to computation limitations, the maximum k-body interaction included in the calculations in
this thesis is the three-body interaction. Therefore, we can explicitly define the one-body, two-body,

and three-body interactions in the Hugenholtz form below.

K = (plklg)aa}a, @244)
rq
. 1 N
Vy =2 > palialrs)alajasa; (2.43)
pqrs
N 1 N
Vs = g Z )pqr|V3|stu)a;a;a:auazas (2.46)
pqrstu

The exact form of ¥, and V3 will depend on the interaction of the system being studied. However,
since the systems are defined in detail in Chapter 4, they will be left in their generic forms until

then.
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2.4 Normal Ordering

We now see how many-body states and operators can be written in second quantization. Though
second quantization simplifies many-body calculations, some can still become long and complicated
with strings of creation and annihilation operators. Normal ordering simplifies these calculations
by arranging chains of creation and annihilation operators such that annihilation operators are all
on the right and creation operators are all on the left. We can thus define a typical ordered sequence
of operators as:

n[61...0m] = (—1)Raj...ajaj+1...am, (2.47)

where n[...] defines a normal ordered sequence of operators, §; represents either a creation or
annihilation operator and R handles the sign change for the permutations—each time two operators
exchange location, R increments by one. Normal ordering is essential because it makes determining
which expressions and matrix elements will yield a non-zero result easier. For example, consider
the following matrix element.

(00101]asaao|10001) (2.48)

Written in its current form, it is difficult to tell if this matrix element will be non-zero without

evaluating each operator. However, if we normal order the operators, it becomes more apparent.

(00101|n[azalao]|10010) = —(00101|n[a’asae]|10001) = (00101]a]agas|10001)  (2.49)

.{.

Now it is obvious that the matrix element will yield zero as a,

acting on the bra will return zero.
All operators that have been derived so far and which will be derived in the coming chapters will
be written in a normal ordered form as this will drastically simplify the extensive calculations we
will be performing.

A closely related concept to normal ordering is Wick’s theorem, which allows for these complex
many-body states and operators to be simplified further. However, Wick’s theorem will not be used

in future derivations, so it will not be derived here. For a thorough explanation and derivation of

Wick’s theorem, see Reference [79] and [80]. -
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2.5 Diagrammatic Methods

Diagrammatic notation for representing Slater determinants and operators originated with Richard
Feynman in the field of quantum field theory (QFT). The methods were further developed for
applications in many-body physics, see, for example, Paldus and Cizek in 1975 [81]. The following
will be a brief description of these diagrams. For a more thorough explanation of these diagrams,
please refer to Chapter 4 of Reference [80] and Reference [81].

Diagrammatic methods are practical in studying many-body systems because the equations involved
with solving these methods can get out of hand quickly. In addition, diagrammatic methods provide
a more compact way to display these equations, which can hint at how specific components of the
calculations will cancel or combine with other parts.

First, we will begin by representing the primary states in diagrammatic representation. First, the
reference state is represented by nothing; for most systems in this thesis, the reference state will
be the Fermi vacuum state (|®@o)). A one-particle one-hole excitation, |®{), is represented by two
vertical lines. The line pointing upwards represents a state that is unoccupied in the Fermi vacuum
state (i.e., indexed by a, b, c, ...), and a line pointing downwards represents a state that is occupied in
the Fermi vacuum state (i.e., indexed by 7, j, k, ...). Any line which does not have a directional arrow
could represent either state (i.e., would be indexed with p, g, r, ...). Note that neither the horizontal
arrangements nor spacing are significant in the representation. A two-particle, two-hole excited
state, |CI>fjb ), is represented by four vertical lines, two of which point down and two which point up.
Following this pattern, an n-particle n-hole excited state is represented by 2n vertical lines, where
n points upwards and n points downwards. figure 2.1 shows the diagrammatic representations of
the Fermi vacuum state, the one-particle one-hole, and the two-particle two-hole excited states.
Representing the excited states as creation and annihilation operators acting on the Fermi vacuum
state is also possible. Remember that the one-particle one-hole excited state can be written as
D) = aZai |®o) where a' is a fermionic creation operator and « is the fermionic creation operator.
This means that the two-particle two-hole excited state can be written as |C[>l‘.‘jb> = aZaZa jai|®Po).

The state a,a;|®g) can be represented the same way as |®{), but with two horizontal lines at the
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Figure 2.1 Diagrammatic representations for the Fermi vacuum state, the one-particle one-hole
excited state, and the two-particle two-hole excited state

, } a
@) (@ @)

Figure 2.2 Diagrammatic representations for the one-particle one-hole and two-particle two-hole
excited states written as annihilation and creation operators applied to the Fermi vacuum state

bottom to represent the Fermi vacuum state. To represent the bra of this state ((®{| = (®g |ajaa) is
represented in the same way, but the vertical lines representing the Fermi vacuum state are moved to
the top. The two-particle two-hole excited state is represented similarly. These diagrams are shown
in figure 2.2. Note that there is some ambiguity in the representation of |<I>l.“jb ) in this representation,
it could also represent |<I)ll.’j“ .

Now that we have the diagrammatic notation for the various states, we can define a notation for
the various operators. Here we will explicitly define the one-body and two-body operators in
diagrammatic notation, but the form of the higher-order operators will follow the same patterns.

We can define a generic one-body operator as:
01 = ) (pléilgHapay}, (2.50)
pq

where p and ¢ can be occupied or unoccupied states, this one-body operator can be represented

22



Figure 2.3 A generic representation of the one body operator. The orientation of the lines does not
matter, so the diagram can be represented with both lines being entirely vertical or with the lines
being slanted. Since these lines do not have arrows, they represent generic single-particle states
that could be occupied or unoccupied in the Fermi vacuum state

with either diagram in Figure 2.3. The horizontal orientation of the lines does not matter so the
lines can be in the purely vertical orientation, as in the left diagram, or they can be slanted, as in the
right diagram. Since the lines in neither diagram of Figure 2.3 have directional arrows, the lines
are represented by indices p and q.

When creating the specific diagrams for the one-body operator, there are four options, as shown
in Figure 2.4. There is one diagram where both indices are from states that are unoccupied in the

Fermi vacuum state, which is represented by the top left diagram and equation form as:

D (alo1|b){ajas}. (2.51)
ab

One diagram also results from having both states taken from the states occupied in the Fermi
vacuum state. This is the diagram shown in the top right of Figure 2.4 and is represented in

equation form as:
> (o1l {alay}. (2.52)
ij

Finally, two diagrams can be created: one state is drawn from the occupied states and one from the
unoccupied states. These are shown in the bottom row of Figure 2.4. The bottom left diagram is

represented in equation form:

> (alorliy{alai}, (2.53)
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Figure 2.4 The specific diagrams for the one-body operator, with the top left diagram for two
unoccupied states, the top right diagram for two unoccupied states, and the bottom two diagrams
containing one occupied and one unoccupied state

the bottom right diagram in equation form is:

D (ilo1la){afa,}. (2.54)

In the diagrams, the summation of the indices is implied using Einstein notation. In general,
when creating diagrams from an equation, the index in the bra of the matrix element will exit
the interaction vertex, and the index in the ket will be the line that enters the interaction vertex:
(left linelo|right line).

Finally, in this section, we can move onto the diagrammatic representation of a generic two-body
operator, which we can represent in equation form as:

02 = ) (pqloslrs){ayalasar. (2.55)

pqrs
The generic two-body diagram can be described in Figure 2.5, and the nine specific two-body

diagrams can be found in Figure 2.6.
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Figure 2.5 The general diagram for a two-body interaction

Figure 2.6 The nine specific diagrams for a two-body interaction
From these examples, we can begin to create a set of rules for creating these diagrams and converting

them to algebraic expressions:

1. Lines representing occupied states in the Fermi vacuum are labeled with indices like i, j,
k, ... and point downwards. Lines representing unoccupied states in the Fermi vacuum are
labeled with indices a, b, c, ... and point upwards. Finally, lines that could represent either

type of state are labeled with indices p, ¢, r, ... and have no directional arrows.
2. The horizontal arrangement and spacing of the diagrams do not matter.

3. Lines that represent the bra of the interaction matrix element leave an interaction vertex and

are called external lines.

4. Lines that represent the ket of the interaction matrix element enter an interaction vertex and

are called internal lines.
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5. Every one body interaction vertex represents the factor (out|d;|in).

6. Every two-body interaction vertex represents the factor {le ft — out right — out|d,|le ft —

inright —in).

7. If two lines start and end in the exact location, they are considered equivalent. Each set of

equivalent lines in a diagram represents a factor of 1/2.

8. The sign of a diagram is calculated using (—1)"occ*) where n,. are the number of lines
representing states that are occupied in the Fermi vacuum state and 1 is the number of loops

in the diagram.

9. Each pair of unique external lines (i.e., the bras of the interactions) that are not connected to

the same interaction picks up a permutation factor.

2.6 Conclusion

In this chapter, we have developed second quantization and diagrammatic methods, two frameworks
that will allow us to represent and solve problems in many-body physics more efficiently. However,
many problems of interest are still too large and complicated to be solved with the full Schrodinger’s
equation approach, even with the advancements made in this chapter. Therefore, in addition to these
two frameworks, we need to develop a set of many-body methods, which will provide approximate
solutions to the Schrodinger equation, but which will be able to describe much larger systems of
interest. In the next chapter, three of these many-body methods will be developed—Hartree-Fock
theory, many-body perturbation theory, and coupled cluster theory—with coupled cluster theory

being particularly interesting to the remainder of this thesis.
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CHAPTER 3
MANY-BODY THEORIES

3.1 Introduction

Ab initio many-body methods aim to solve the many-body problem starting only from the Hamilto-
nian of the system and a set of known approximations [51]. Although a proper ab initio approach
in nuclear physics entails dealing with degrees of freedom that include quarks and gluons, we use
ab initio here to mean a method that can systematically improve upon the many-body framework
devised in the last chapter starting from a given Hamiltonian and the respective laws of motion.
Many ab initio many-body methods are applied to nuclear physics and other fields, but for this
thesis, we will limit the scope to just three of these methods. Hartree-Fock theory (HF) is one of the
oldest and simplest many-body methods. However, despite its simplicity and small computational
requirements, it is one of the least accurate methods. The other two methods investigated in this
chapter are post-Hartree Fock methods, which improve the Hartree Fock result. These two methods
are many-body perturbation theory (MBPT) and coupled cluster theory (CC).

This chapter will first explore Hartree-Fock theory as the simplest many-body method and the basis
of MBPT and CC. Then, after a brief introduction to post-Hartree Fock methods, MBPT will be

investigated, followed by a thorough explanation of coupled cluster theory.

3.2 Hartree-Fock Theory
The first many-body method we will explore in this chapter is the Hartree-Fock theory (HF) [82,
83]. Hartree-Fock, one of the earliest many-body methods, is an iterative algorithm that can be used

to find the ground state of a system given its Hamiltonian [78]. As an independent-particle model,
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Hartree-Fock Theory begins with the Slater determinant, defined in Section 2.2 and rewritten here:

y1(X1) Y2 (X1) . . . Yn(ED)
Y1(X2) ¥2(X2) . . . Yn(F2)

o % . . oL o A1)
lpl (fv) '702(3_51/) <. . wN()_C)V)

where ® is the many-body wavefunction and v, (7,,) is the single-particle wavefunction of the m-th
particle with spatial and spin coordinates described by 7,,. Hartree-Fock Theory uses an iterative
algorithm to vary the single-particle wavefunctions, ¥ such that the energy of the entire many-body
wavefunction, represented by the Slater determinant, is minimized [80]. This minimization can be
achieved by solving eigenvalue problems for all single-particle wavefunctions. All of the eigenvalue

equations are coupled and have the form:

A

fvi = ey, (3.2)

where ¢ is the single-particle energy and f is the single-particle Fock operator. The single-particle
Fock operator, which depends on all of the single-particle wavefunctions, has the following matrix

elements:

(plfla) = (plilg) + > (pilbalgi)a, (3.3)

where 7 is the single-particle kinetic energy operator and ¥, is the interaction between two particles
[3]. It is important to note that for nuclear problems, interactions beyond the two-body level
contribute significantly to the total interaction. We can also define the many-body Fock operator,
F, as:

F = (plfla)aa,. (3.4)
pr4q

For many systems, the solution provided by HF provides an excellent initial approximation for the

ground state energy and its corresponding many-body wavefunction. HF can recover approximately
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99% of the ground state energy and approximately 95% of the corresponding wavefunction for
electronic systems [3, 80]. However, since HF is an independent particle model, the missing energy
comes from the interaction between particles, and therefore this energy must be recovered as well.
The need to recover the energy from the interactions between particles, known as the correlation
energy, has led to the development of more advanced many-body methods. This chapter will

develop two of these, many-body perturbation theory and coupled cluster theory.

3.3 Many-Body Perturbation Theory
By this point, it has been well established that finding the energy of a many-body system is done

by solving the following eigenvalue problem where |¥') is a many-body wavefunction:
H|¥) = E|¥) — (H¥Y) =E. (3.5)

However, this problem can only be solved fully for a few uninteresting systems. Therefore, we have
developed our first many-body method, HF theory, capable of finding approximately the energy
of a many-body system. However, HF is an independent particle model, and we also wish to
include the interactions between the particles in the energy. Thus, we will start by developing
many-body perturbation theory (MBPT), a post-Hartree-Fock method, so called because it starts
with the Hartree-Fock energy but then adds a correction to account for the interactions between the
particles [80, 84—-86].

Many-body perturbation theory assumes that the Hamiltonian can be split into two pieces, a non-
interacting component, Ho, and an interacting component, H;. The interacting component is a
small perturbation away from the non-interacting component, thus the method’s name. Thus, we
have:

H=H,+H,. (3.6)

From this definition of the Hamiltonian, we can split the energy of the many-body system into two

components: a reference energy, Ey, and a correlation energy, AEyppr, leading to:

E :ERef+AEMBPT- (37)
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The reference energy is defined using the total Hamiltonian and the Fermi vacuum state, |®¢) and
the total Hamiltonian as:

Eger = (®o|H|Dp). (3.8)

In practice, the reference energy is, in fact, the Hartree-Fock energy, assuming we are using a Fock
basis, which we will be using for every calculation in this thesis. Thus the correlation energy is an
additional term to the MBPT energy compared to the HF energy.

Now we can define the MBPT correlation energy as the matrix elements formed when the interacting
component of the Hamiltonian is applied to a many-body wavefunction as the ket and the Fermi
vacuum as the bra, giving:

AEyppr = (@o|H/|'P). (3.9)

However, solving equation is no simpler than solving the original eigenvalue problem. Thus we
will rephrase the MBPT correlation energy as:
AEyppr = y AEY, (3.10)
i=1
where AE" is the i-th order correction to the MBPT correlation energy. We can define the form

of the first two corrections as follows. The first order correction to the MBPT energy is:
AEW = (®y|A;|W). (3.11)

The second order correction to the MBPT energy is:

Ag®@ = L 5 jl9alab)lablialij) (3.12)

4 5o (ei+€j) — (€4 +€p)

Theoretically, there are infinite corrections to the MBPT correlation energy. In practice, we cannot
compute infinite corrections to the MBPT energy, and we must truncate Equation (3.10) to a finite
number of terms. However, the form of the correlation energy provides a convenient truncation
scheme. The MBPT truncation MBPT1 (many-body perturbation theory to the first order) uses the
approximation AE yzpr ~ AED | the MBPT truncation scheme MBPT?2 (many-body perturbation

theory to the second order) uses the approximation AEygpr = AE W+ AE®@  and so on. This thesis
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will primarily focus on MBPT2 as the leading MBPT approximation used in these calculations.

Any MBPT results presented here will only include one-body and two-body interactions.
3.4 Coupled Cluster Theory

3.4.1 Introduction to the Method

Coupled cluster theory (CC), initially developed in nuclear physics (for its development, see
Reference [87, 88], and for its resurgence in nuclear physics, see Reference [2, 4, 8—10]), has
long been the goal standard for quantum chemistry calculations ([7]). Coupled cluster theory
provides a method to systematically include complicated interactions beyond the mean field, is
non-perturbative, size extensive, non-variational, and is widely used for performing calculations on
strongly correlated systems [35]. Being size-extensive is important for CC to be applied to large
systems. Computationally, CC scales polynomially with respect to the number of occupied and
unoccupied states in the system, making it an efficient many-body method for small to medium-
sized systems but relatively slow for large systems. Compared to MBPT, CC is a more accurate
method but also incurs more extensive computational run times.

In quantum chemistry and electronic structure, CC is considered the "gold-standard" many-body
method but also can be too computationally expensive for some applications, especially for studies
of larger molecules [62]. However, quantum chemists have made great strides in accelerating
coupled cluster calculations of electronic systems through various methods, including truncations,
which will be discussed in a few sections. For interesting applications of coupled cluster theory in
quantum chemistry, see, for example, References [6, 7, 40, 42, 54, 62, 89-94].

In CC, we can represent the N-Fermion wavefunction (|¥)) using the so called exponential ansatz:
1P) = e |dy). (3.13)

In the above equation, |®g) is the Fermi vacuum state where the N particles in the system occupy
the N lowest energy states. 7' is known as the correlation or the cluster operator, and it is the sum

of N operators, where N is the number of particles in the system [35, 62], and can be written as:

N
T:ZTm (3.14)
i=1
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Each 7}, operator in Equation (3.14) represents the m-particle m-hole excitation operator, which

has the below form [35, 62].

~ 1 2 KN
Tu=(=7 > iyiwral,..a,a,..a (3.15)
’ i]...imal...am
Single-particle states with labels i,, correspond to states occupied in the Fermi vacuum state, and
single-particle states with the labels a,, correspond to states unoccupied in the Fermi vacuum state.
The operator a' is the Fermion creation operator, and the operator « is the Fermion annihilation

operator (both are defined in Chapter 2). The coeflicients ¢ are called T-amplitudes, and they are

determined through a complex set of non-linear equations:

<q)a"a2"".’ak|€_Tﬁ€f|q)0> =0, (316)

i130250i

where the index k =1, 2, ..., A [35]. When k = 1, the one-particle one-hole excitation operator is
recovered (1), when k = 2 the two-particle two-hole excitation operator is recovered (T»), and so
on. Therefore, amplitude equations must be solved for untruncated coupled-cluster theory to fully
derive the cluster operator for an N-body system. If coupled cluster equations are solved with the
untruncated cluster operator, they arrive as the same result as Schrodinger’s equation.

It is important to note that in Equation (3.16), we have used a shorthand notation to refer to the bra
vector, which is, in fact, a k-particle k-hole excitation of the Fermi vacuum state [35]. Written out
fully in second quantization, we can define the k-particle k-hole excitation of the Fermi vacuum

state as:

| ap,az,...,Adk
L1502500 5Lk

)y =a) ..a} a...a;|®o), (3.17)

ai

where a' is the Fermion creation operator, and a is the Fermion annihilation operator.

As a note on notation, the T-amplitudes, scalars that are calculated through determining the m-
particle m-hole excitation operators, can be represented equivalently in the following two notations:

aj...am,

i1...0m

t = (al...am|f|i1...im>. (3.18)

As an aside from the form of the CC wavefunction:

¥y = T |p), (3.19)
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one can use a Taylor expansion to expand the exponential function to obtain:
Wy = (1+T+T2/21+T3/31 + ...)|®p). (3.20)

This expansion explains why some of the later CC approximations we will be looking at contain

terms such as 7} and 75 but also 777> and Tf

3.4.2 Energy and Correlation Energy
Given an N-body many-body wavefunction, its energy can be determined by solving the eigenvalue
problem that results from applying the Hamiltonian to the wavefunction (i.e., solving the time-

independent Schrodinger’s equation) using:
H|¥) = E|W). (3.21)

The above equation Equation (3.21) can give just the energy on the right-hand side of the left-hand

side turned into a matrix element such that the equation now has the form:
(P|H|¥) = E. (3.22)

Equation (3.22) has an implicit (¥|¥) = 1 on the righthand side of the equation. From here, we can
split the Hamiltonian into two pieces, the normal-ordered Hamiltonian and the vacuum expectation
value:

H=Hy +E). (3.23)

where the vacuum expectation value E is defined as:
Ey = (@o|H|Dy). (3.24)
Combining Equations (3.22) and (3.23) yields:
(Y|Hy + Eo|¥) = E, (3.25)
which can be split up into the following two terms:
(P|Hy|P) + (P|Eo|P) = E. (3.26)
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Since (V|Ey|¥) = Eo(¥Y|¥) = Ey, then we can simplify Equation (3.26) to:
(P|Hy|¥Y) +Ey=E. (3.27)
From here, we can rewrite the coupled cluster exponential equation:
o) = |¥), (3.28)
which can be inserted into Equation (3.27) to yield.
(Dole T Ayel |@g) + Ey = E. (3.29)
From here, we can define the similarity transformed normal ordered Hamiltonian to be:
Hy =eTHye, (3.30)
which yields a final form of the energy equation:
(®o|Hy|®Po) + Eo = E. (3.31)

In 3.31, Ey is known as the reference energy and (for this work) it is the Hartree-Fock energy.
This makes coupled cluster a post-Hartree-Fock method, similar to MBPT. The term (®|Hy|®)
is the correlation energy or the coupled cluster correction to the Hartree-Fock energy. As a final
definition for this section, the CC correlation energy will be represented as AEcc = (®g|Hy|Dy).
Much like MBPT, coupled cluster calculations will generally be reported in terms of the correlation
energy instead of the total energy. Again, this is due to convention, as the correlation energy is
the most important part of the energy calculation. Also note that for some systems (namely the
infinite matter systems discussed in the next chapter), CC correlation energies are usually reported
as the CC correlation energy per particle by convention such that systems with different numbers
of particles can be compared.

The cluster operator 7" is undefined in the above equations. It is obtained by solving a set of coupled
cluster amplitude equations set up in the previous section, of which there are N sets of equations

for an N particle system. and the number of equations per set depends on the number of single
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particle states in the calculation. This system of equations is quite large even for relatively small
systems and requires and iterative procedure to be solved. Defining the cluster operator (and, more
specifically, the t-amplitudes) is the most computationally extensive step when performing a CC

energy calculation.

3.4.3 Computational Methods and Approximations

For almost all CC calculations performed computationally, the cluster operator must be truncated
[62]. Systems, where CC calculations can be performed with the full cluster operator, tend to be
uninteresting toy models [35]. However, the form of the cluster operator provides a physically
motivated method for truncation where all m-particle m-hole excitation operators over a certain
level are set to zero. This approximation scheme is referred to as the SUB,, approximation scheme
[35]. There is also a convenient naming scheme when the cluster operator is truncated in this
way. For example, if 7' ~ T}, the approximation is called the coupled cluster single approximation
(CCS), and if T ~ T} + T» then we call this the coupled cluster singles and doubles approximation
(CCSD), and if T ~ Tl + Tz + Tg this leads to the coupled cluster singles, doubles, and triples
approximation (CCSDT) [51]. Due to computational limitations, approximations over the triples
level are rare, but have been performed on a limited set of systems [43]. For the infinite matter
systems that are defined in the next chapter, the 7} operator gives no contribution to the energy so
that we can simplify the above truncations: CCSD becomes CCD (coupled-cluster doubles) where
T ~ T, and CCSDT becomes CCDT (coupled-cluster doubles and triples) where T~ T +Ts.
As the primary goal of this thesis is to use machine learning to extend the range of pre-existing
coupled cluster methods instead of developing new methods or improving on existing methods, the
explanations below are kept short and generally free of derivations. There have been many great
works deriving the various coupled cluster methods in great detail, and we would like to point the
readers to References [7, 80, 94], among others, for complete derivations of the methods introduced
in this section.

As is expected, the higher the level of approximation, the more accurate the calculations but, the

more extended run times. However, if having all N terms in the cluster operator gives 100% of the
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energy of an N-particle system, then the CCSD approximation gives approximately 90% of the total
energy, and CCSDT gives almost 99% of the total energy [80]. Each additional m-particle m-hole
excitation operator does increase the accuracy of the energy calculation, but the improvements
progressively decrease in size. Additionally, as expected, the computational time and resource
requirements increase drastically as the order of the CC calculation increase. For example, the
expected run time for a CCSD calculation is O(M®), where M is the number of single-particle
states. The expected run time for a CCSDT calculation is O (M?), and considering M is likely to be
1,000 or higher for accurate calculations, this extra factor of M? represents a significant increase in
run time. However, since we would like to achieve the accuracy of CCSDT, recovering 99% of the
total energy, we can instead look at some approximative methods to the CCSDT approximation.
These methods will not be as accurate as the CCSDT method, but they will be more accurate than
the CCSD method as they contain some components from the 73 operator. Additionally, while these
approximative triples methods will have a longer run time than a CCSD calculation, they will have
much shorter run times than a complete CCSDT calculation, making the triples approximations a

good balance of accuracy and run time.

3.4.4 CCSDT Approximations
There are two types of approximative triples calculations: non-iterative perturbative triples approxi-
mations, CCSD(T), and iterative CCSDT-n approximations. The methods differ in their complexity

and formulations, but give similar results and thus will be compared below.

3.4.4.1 Non-Iterative Triples Approximations

The perturbative triples approximation, CCSD(T), is a non-iterative triples approximation that is the
gold standard for quantum chemistry applications [2]. The CCSD(T) method was developed in the
late 1980s in the field of quantum chemistry [95]. The computational considerations for CCSD(T)
have two components: an iterative component with a cost of O(M®) (the CCSD equations) and a
non-iterative component with a cost of O (M”), making it faster than complete CCSDT calculations
by a factor of M or greater. Since M can be over 1,000, this can represent a significant decrease in

the run time for a calculation.
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We will start developing the CCSD(T) equations by defining the following two permutation opera-
tors:
P(a/be) =1~ Pap — Pac, (3.32)
and:
P(a/bclk/ij) = P(a/bc)P(k/if), (3.33)
where ﬁpq is the permutation between states p and g. Next we can define an equation through

which the T3 amplitudes can be defined from the 7> amplitudes:

edberahe = P(a/belk/ij) Z<bc|vz|dk>r = P(c/abli/jk) Z>zc|vz|ﬂc>m , (3.34)
where:
El.aj[;{c = (Ei + Ejék) — (6a + € + GC). (335)

Equation (3.34) defines the leading order (i.e., the second-order) terms in the full CCSDT triples
equations. This equation will be used here to define the CCSD(T) method and in the next section
to define the CCSDT-1a method. Next we can define E;4), the triples-excitation contributions to

the MBPT4 (MBPT to the fourth order):

4) _ be@D* abe @) ap

E! Z robe' " gabetS abe (3.36)
i>j>k
a>b>c

Here we are defining the second order T3 amplitudes (see Sec. 10.5 of Reference [80]). However,

for CCSD(T), we are going to define these as tl.”;.’;f [2]

instead of tfﬁc(z) because we will generate the
T3 amplitudes using Equation (3.35) and the converged 75 amplitudes (the square brackets represent
that we are using converged 7> amplitudes and the number in the brackets is a generalized order).

From here, we are in a place to define the energy that results from a CCSD(T) calculation using the

following equation:

4
Eccspary = Eccsp + E; V= Ecesp + Et[ Ty Es[t], (3.37)
where:
[2]
= 3 paheltanclleane, (3.38)
i>j>k
a>b>c
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and where:

a A . a c[z]
EW = (Zri [2])Z>bc|v2|Jk)tiﬁ< . (3.39)
ia J>k
b>c
Note that the only difference between CCSD(T) and another non-iterative CCSDT approximate
method, CCSD[T] (see. Reference [96]), is the inclusion of the Es[f] term, which is usually

relatively small. We should also mention an improvement to CCSD(T), called A-CCSD(T), which

has been developed in quantum chemistry and is defined in Reference [89].

3.4.4.2 [Iterative Triples Approximations

Another method of approximating the triple contribution is through the iterative CCSDT-n methods,
where n = la, 1b, 2, 3, 4, or 5. Though computationally more expensive than their non-iterative
counterparts, iterative triples approximations are more accurate [2]. All methods will be briefly
described here, but we will focus on CCSDT-1a, which will be used for calculations later in
this thesis. For more information on CCSDT-1b - CCSDT-4, please refer to Reference [94] and
Reference [96].

The simplest of the CCSDT-n methods is the CCSDT-1a approximation and is created by setting 7}
= T3 = 0 when being projected against the three-particle three-hole excited state. The CCSDT-1a
covers some infinite order terms from the T operator. This contrasts CCSD, which covers no
terms from the 75, and CCSDT, which covers all terms. As shown in Table 3.1, the CCSDT-1a
method uses the operator eT+T+Ts when projected against the singly excited state, the operator
el 4 T35 when projected against the doubly excited state, and the operator 1 + 7> when projected
against the three-particle three-hole excited state. These projections are used when constructing the
amplitude equations, which are used to derive the T-amplitudes and the energies and are in contrast
to a complete CCSDT calculation where the operator eT1+12+T3 i used no matter the state [94, 96].
Some successive approximations are made in the CCSDT-1a approximation that will be discussed
as the other methods are made.

The CCSDT-1b model uses the complete AR EAE operator for the singly and doubly excited states

but, like CCSDT-1a, uses the operator 1+ Tz for the three-particle three-hole excited state. Because
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the full operator is projected against the doubly excited state, the disconnected 7,73 clusters are
included. Additionally, CCSDT-1b has a similar computational time to CCSDT-1a [96].

The next approximation is the CCSDT-2 approximation, which like CCSDT-1b, applies the com-
plete eTi+To+Ts operator to the single and doubly excited states and uses 7} = T3 = 0 when applied
to the triply excited state. However, it changes the operator projected on the triply excited states
to el [94, 96]. This is an important approximation since it adds the effects of the disconnected
T»T> clusters on the T3 amplitudes. The CCSDT-3 approximation is conceptually the simplest,
where only T3 is set to zero, such that the full Ti+To+Ts operator is projected onto the singly and
doubly excited states but the operator PURERT projected onto the triply excited state [96]. The final
approximation, CCSDT-4, projects the full PURESE operator onto the singly and doubly excited
states but uses the operator T2 4 T for the triply excited states. The CCSDT-5 approximation is
simply the full CCSDT calculation.

The reason to perform this approximation over the complete CCSDT calculation is computational
run times. A total CCSDT calculation is expected to have a run time on the order of O(M?). The
expected run times for the CCSDT-n approximations are in Table 3.2 [94]. CCSDT-1a, CCSDT-1b,
CCSDT-2, and CCSDT-3 have computational run times that are shorter than a complete CCSDT
calculation by a factor of M (where typically M is greater than 1,000) but are more extended than
CCSD calculation by a factor of M. However, they include contributions from 73 and the triply
excited states that CCSD does not. CCSDT-4 has the exact computational cost as acomplete CCSDT
calculation, so there are not many cases where it would be preferred over just using a complete
CCSDT calculation. Additionally, about 75% of the extra energy from the triples contribution is
captured by the CCSDT-1a approximation, which CCSDT-1b, CCSDT-2, and CCSDT-3 not adding
any other contributions to the energy from full summations, though they do add some contributions

from partial summations [94]. Thus as a good compromise of accuracy and computational run

time, we will use the CCSDT-1a approximation.
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Method |DF) |c1)lqu> |q)?jbkc>
CCSD et eli+12 N/A
CCSDT-1a | eli+12*1s | oTi+12 4 1+ 75
CCSDT-1b | elt*12415 | pTi+12+T5 1 +15
CCSDT-2 | elit1atTs e+ 1+T3 o2
CCSDT-3 | hitla+ls | oTi+1a+T3 oT+T

CCSDT-4 eTl +12+T3 eT] +1+T3 eTl +7> + T3
CCSDT PUARY LAY E e+ 12473 o T+T+Ts

Table 3.1 This table summarizes the approximations for e the various CCSDT-n methods use in
the amplitude equations, along with the approximations used for CCSD and CCSDT

Method | Computational Cost

CCSD 0(M®)
CCSDT-1a oM7)
CCSDT-1b oM7)
CCSDT-2 oM7)
CCSDT-3 oM7)
CCSDT-4 O(M?®)

CCSDT O(M?)

Table 3.2 The predicted computational run times of various coupled cluster calculations as a
function of M, the number of single particle states in the calculation

If we consider the Hamiltonian with at most a two-body force written in normal product form, we
get:

H=Hy+Vs= ) (plflgpajat + ) pars(pqlislrsi{ajaasar}. (3.40)
pP4q

We can then write the CCSD equations using this Hamiltonian as (following Reference [94]):

(@ol H(T> + %T?)lcbw = AEccsp, (3.41)
and:
(PAH(T) + Ty + T T + %T}Z + %Tﬁ)@o) =0, (3.42)
and finally:
@A +Ti + 7>+ 313 + Ty + 51T + 517 + 1 7}10) =0, (3.43)
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Here we have the CCSD energy equation in Equation (3.41), the amplitude equation for the singly
excited states in Equation (3.42), and the amplitude for the doubly excited states in Equation (3.43).
Using the same system, the CCSDT-1a equations are as follows (also following Reference [94]),

with the correlation energy equation being:
- ~ 1 A
(@o|H(T> + ST7)|®0) = AEccspr-1a: (3.44)
the singly excited amplitude equation being:
a\ G Pt L2 a e Las
<q)i |H(T1 + T2|T3 + ET] + T1T2|§Tl |q)o> = 0, (345)

the doubly excited amplitude equation being:

- PN P A 1,
(O IH( + Ty + T2|T3|§T12 + 1T + §T2| T3| T2T2|—T4|<I>o) = (3.46)
and finally the triply excited amplitude equation being:
(@) |HoTs + V| Do) = (3.47)

We can write the T-amplitudes for the T3 operator that will result from a CCSDT-1a calculation as

(which is the same as Equation (3.35)):
efherehe = P(a/bclk/z])Z(bclvzldk)t F’(c/abli/jk)Z)lc|92|jk)tflb. (3.48)
l

For the CCSDT-1a method, we use the unconverged 7> amplitudes to calculate the 73 amplitudes
and converge both sets of amplitudes in an iterative method that requires 10 to 20 steps on average
[80]. Another improvement of the CCSDT-1a model over a complete CCSDT calculation is that
it avoids the storage of the 73 amplitudes. So not only are there reduced computational time
requirements, but there is also a reduction in the amount of memory required [80, 94].

Briefly, we can compare CCSD(T) and CCSDT-1a since we will be using both approximations later
in this thesis. Timing-wise, CCSD(T) should provide a better cost-performance ratio as its run time
is an iterative O (M?®) followed by a non-iterative O (M) while CCSDT-1ais a fully iterative O (M").

Additionally, CCSDT-1a and CCSD(T) should produce similar results, but CCSD(T) has fewer s
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Figure 3.1 Diagrammatic representations for the Ty, T>, and Tz operators. Higher order T),
operators can be created using the pattern in the operators shown here

terms than CCSDT-1a. However, as both methods have the same number of 7373 coupling terms,
CCSD(T) should avoid the exaggeration of the T3 effects that can plague CCSDT-1a calculations.
Finally, for systems where T3 have significant effects, both CCSDT-1a and CCSD(T) provide a
reliable method, but for practical applications, the CCSD(T) calculation is preferable as a CCSDT
approximation due to run-time considerations and the reduction in exaggerating the effects of the

15 operator [94].

3.4.5 Diagrammatic Representations

Finally, we can briefly discuss the diagrammatic representations of the CC approximations up to
and including the triples approximation. In this chapter, we will only mention some of the crucial
diagrams. For a complete derivation of the coupled cluster diagrams up to and beyond the triples
level, see, for example, Reference [80].

To the diagrammatic rules we developed in Chapter 2 of this thesis, we can also add the following

diagrammatic rules, which are specific to drawing coupled cluster diagrams:

« Every vertex representing 7, picks up a factor of (aj...an|f|i1...im) (the T-amplitudes)

« Each pair of T}, vertices which are equivalent pick up a factor of 1/2. The vertices are

equivalent if they connect to the interaction vertex in the same way.

Representing the T, 75, and T3 operators in diagrammatic representation is quite simple, and these

are shown in Figure 3.1.
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Figure 3.2 The diagrammatic formulation for the CCD amplitude equation

i\

Figure 3.3 Antisymmetrized Goldstone diagrams representing the T3 contributions to the CCSDT
T, equations. Dyop and Do are relevant to the CCDT-1 approximation defined in the last section

+

+

Figure 3.4 Antisymmetrized Goldstone diagrams representing the CCSDT T3 equations relevant to
calculating the CCDT-1 approximation. For a full list of all antisymmetrized Goldstone diagrams
for the CCSDT T5 equations, the reader is referred to Reference [80]

To show a complete coupled cluster calculation written out in diagrammatic form, we will represent
the CCD amplitude equation in diagrammatic form in Equation (3.2). Though long, this collection
of diagrams is significantly shorter than the entirely written out CCD amplitude equation using

summations and Dirac notation, which can be found in Reference [35].
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Finally, look at some diagrams from the 75 operator, which are important to the CCD(T) and
CCDT-1 approximations. In fact, the terms 77, and T}, from the T5 amplitude equations form
Equation (3.48). The amplitudes that are gained by this equation are then used to calculate the

diagrams Do, and Do, for the T amplitudes [97].

3.5 Many-Body Methods Conclusion

In this chapter, we have developed three many-body methods we will use throughout this thesis.
The most fundamental of these methods is the Hartree-Fock theory, which will recover a reasonable
amount of the system’s energy. It is an independent particle model, so it cannot account for the
energy from interacting particles. The first post-Hartree-Fock method we developed, so-called
because it improves the Hartree-Fock result, was many-body perturbation theory (MBPT) which
provides a convenient truncation scheme that allows for systematic improvements to the Hartree-
Fock results. The final many-body method, developed in great detail due to its importance later in
this thesis, was coupled cluster theory, which is more accurate than MBPT but much more time-
consuming. Coupled cluster theory also provides a convenient truncation scheme and, at the triple
level, allows us to recover most of the system’s energy even with the method being truncated. Now
that we have developed our many-body methods, the next chapter will be devoted to developing the

system to which these methods will be applied: infinite matter.
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CHAPTER 4
INFINITE MATTER SYSTEMS

4.1 Introduction to Infinite Matter Systems

An infinite matter system is simply a system which contains infinite particles and occupies an
infinite volume. We will be looking at two infinite matter systems in this chapter. The first,
the homogeneous electron gas, which has critical applications in several areas of chemistry and
condensed matter physics [9, 37, 38, 40, 43, 54, 76, 98—101]. Since the homogeneous electron gas
is a more straightforward infinite matter system, it is also a test bed for developing methods that
can be applied to more complex infinite matter systems. The second infinite matter system we will
investigate in this chapter is infinite nuclear matter [9, 21, 35, 102, 103]. Specifically, pure neutron
matter is an infinite nuclear matter system where all the particles are neutrons ([14, 20, 30, 32,
33, 104-107]), and symmetric nuclear matter, where half of the particles are protons and half are
neutrons ([25, 108]). Studies of infinite nuclear matter play an essential role in nuclear physics and
astrophysics [11, 22, 23, 26-31, 57, 60, 67, 77].

Performing coupled cluster calculations on infinite matter is not a new concept. For coupled cluster
calculations of the electron gas, see, for example, References [3, 38, 40, 78], among many other
interesting studies. For infinite matter, there are References [3, 11, 34, 35, 78] among others.
However, this work is unique in the methodology we will take to remove some of the errors that
result from these calculations, described towards the end of this chapter. It is important to note
that for all infinite matter systems investigated in this thesis, the one-particle one-hole excitation
operator (T7) in the cluster operator is zero due to symmetry considerations [35]. It is almost
important to note that these infinite matter systems are momentum conserving and that the total

momentum is zero [35].
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4.2 Single Particle Basis for Infinite Matter
We can begin to define a single particle basis for infinite matter calculations in three dimensions by

defining the single particle wavefunction as plane waves with the form:

1 -_’.}7
Ui, = Eelk éq, 4.1)

where &, has two possible values corresponding to spin-up particles:

1
£ 1= , 4.2)
0
or spin-down particles:
0
£ 1= . (4.3)
T

Additionally, in Equation (4.1), Q = L3 corresponds to the volume of the infinite matter system. The
limit L — oo is taken to accurately simulate an infinite matter system after the various expectation
values have been calculated [1, 76, 77].

When using the plane waves as the single particle wavefunctions and assuming periodic boundary

conditions, we can define the single particle momentums to be:
ki=—n, (4.4)

where i =x, y,or zand n; =0, 1, +2, ... [76, 77]. From the momentum numbers, we can define
the kinetic energy of an infinite matter system in second quantization to be:
h2k2
- Z - M 5, - (4.5)
po—p
Finally, we can define the energy of each single particle state in terms of its quantum numbers:
h 21 4
€ny iy, = ( ) (n + n2 + nz) (4.6)

We can rewrite Equation (4.6) to be in terms of the momentum using Equation (4.4), resulting in:

h2
€npiny i, = %(kﬁ + k3 +k2). (4.7)
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Some of the single-particle states in a system will contain particles, which we will call occupied
single-particle states. On the other hand, some will not contain particles, referred to as unoccupied
single-particle states. When the system is arranged in its ground state formation (i.e., the lowest
energy configuration), the occupied single-particle states fill the states with the lowest single-
particle energies. Thus, the occupied single particle states will lie inside a so-called Fermi sphere,
described by the Fermi momentum, kr, and the Fermi energy, Er. The Fermi level divides the
occupied and unoccupied single-particle states in this ground state configuration.

The following set of equations can relate to the Fermi momentum and the Fermi energy:

hzk; 2mEy

From the Fermi momentum, we can define the average density of the system, pg, to be:
3
kf

" 32

00 (4.9)

The average density, po can also be defined as pp = N/Q, where N is the number of particles in
the system and like L, the limit N — oo is taken. However, the limits N, L — oo are taken such

that po remains at a fixed, finite value. Finally, N and kr can be related with:

k3Q 2
f 3n°N 1/3

N=— —>kp= . 4.10
3n2 F=( Q ) (+10)

While in this theoretical model, there are an infinite number of single-particle states in the basis,
in practice, due to computational limitations, the total number of single-particle states included in
the calculation, M, must be truncated to a finite number. In this work, we will assume that the
number of occupied and unoccupied single particle states correspond to closed-shell structure, and
the total number of shells will be finite. Here we will define the a shell as a collection of single
particle states with the same energy level. We will place a spherical energy cut-off on the quantum
numbers such that ny + n} +n? < Nypenrs — 1, Where Ngjerss is the total number of energy shells
included in the calculation. It is important to note that Nypeiis # Npmax. Rather, Ny, corresponds
to the maximum value of ny, ny, or n, that is included in the calculation. This closed shell structure

is also used for coupled cluster calculations in Reference [77], [78], and [35] among others.
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Enforcing a closed-shell structure for the occupied and unoccupied single-particle states and trun-
cating the total number of shells allowed in the system restricts the number of allowed particles and
total single-particle states to a finite set of values. We refer to these allowed numbers as "magic
numbers," They correspond to the total number of single-particle states when s shells are included
in a calculation. The first magic number is two, as there are two single-particle states in the first
energy shell. The second magic number is 14, as there are 14 single-particle states when two energy
shells are included (2 in the first shell and 12 in the second shell). Continuing as such gives the
following magic numbers: 2, 14, 38, 54, 66, 114, ... . Note that these are only the magic numbers
for the homogeneous electron gas and pure neutron matter. For symmetric nuclear matter, all magic
numbers are doubled (4, 28, 76, 108, 132, 228, ...). In the context of this thesis, the term shells will
refer to the total number of energy shells used in the calculation, M will refer to the total number
of single-particle states in the system (both occupied and unoccupied), and open shells will refer to

the number of shells above the Fermi level only.

4.3 The Homogeneous Electron Gas

The homogeneous electron gas (HEG) is an infinite matter system containing only electrons with
a uniform positive background charge such that the overall net charge of the system is zero [3].
Though the HEG as a theoretical model exists in various dimensions [3], this thesis will only
focus on the three-dimensional electron gas. The HEG in three dimensions is essential in density
functional theory, where it is the cornerstone of the local density approximation [3]. It is also
a reasonable model for several systems of interest in quantum chemistry and condensed matter
physics, including the electrons in semiconductors and alkali metals [3]. Additionally, studies of
the HEG can be used to build a framework that can be transferred to studies of infinite nuclear matter,
which is essential for studying the equation of the state of nuclear matter and many-body studies of
neutron stars. The HEG is used as a framework for developing analysis tools for other many-body
systems because the HEG is a relatively simple infinite matter system, leading to many published
properties (both analytical and numerical) for results to be compared to. Other studies have used the

HEG as a system that allows for comparisons between the results of different many-body methods
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(see, for example, Reference [3]).

The Hamiltonian for the HEG consisting of N electrons can be defined as
H=K+V,. + Ve + Vpp, 4.11)

where K is the kinetic energy operator, V.. is the interaction between all sets of two electrons, Vp,
describes the interaction of all electrons with the positive background charge, and V};, describes the
contribution of the background charge interacting with itself. Since the HEG comprises a positively
charged background and negatively charged electrons, the Coulomb force is the primary force at
play in the interactions. The Coulomb force is a long-range force that acts over an infinite space.
However, instead of using the Coulomb interaction, we will instead use Ewald’s interaction, which
splits the electron interaction into a short-range term and a long-range term while simultaneously
dealing with Vpe and Vp,. We can rewrite the HEG Hamiltonian using the Ewald interaction as:
FI:—%ZV3+%Z17W+%NVM, (4.12)
a a#p
where « and S are electron indices [76]. The first term is the kinetic energy operator, and the final
two terms comprise the Ewald interaction [76]. The term v, is called the Madelung term and ¥4,

the two-electron operator, is defined as:

Dap = é Z vg eldFa=Tp), (4.13)
q
where V = L3 is the finite volume of the HEG and v = 2—’27 if § # 0Oand vz = 0if g = 0 [76].
This choice of Hamiltonian leads to the plane wave basis for the single-particle states described
in Section 2 of this chapter. While the Ewald interaction makes the HEG easier to work with
by splitting up the long-range and short-range components of the electron-electron interaction, it
cannot correctly describe the exchange-correlation energy [3].

Note that the density of the homogeneous electron gas is typically described by a parameter called

the Wigner-Seitz radius. The Wigner-Seitz radius can be defined as

ro=22 (4.14)
rp
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where rp is the Bohr radius, and ry is related to the size of the box containing the electron gas by

4 5 N

§7TI"0 = E,

(4.15)
where the density of the HEG is d = N/ L3, measured in fm™ [78]. A larger value of ry means the
modeled system is in a larger box and therefore is less dense than a smaller value of rg for the same
number of particles. It is important to note that the HEG behaves differently at different densities.
At low densities (or high ry), the electrons in the HEG are for a lattice. This process is called
Wigner crystallization and results from the long-range repulsive interactions between the electrons
[3]. At higher densities (or lower values of ry), the HEG can better be described as a liquid instead
of as a gas [3].

The convergence of the correlation energy for the electron gas using plane waves as a basis has yet
to be thoroughly investigated, but some work has been done in Reference [76]. One reason why the
correlation energy of the electron gas is an interesting problem is that it has substantial contributions
from the electron-electron cusp. However, this electron-electron cusp does lead to trouble when
making computational truncations as a finite set of single-particle states cannot accurately describe
the behavior in this region [76].

It is important to note that the MBPT?2 correlation energies are well-defined for a finite electron gas.
However, they diverge in the thermodynamic limit of an infinite electron gas in three dimensions
[76]. This happens at high densities due to the dominance of the particle-hole ring diagrams [3].
The single particle energies of the HEG when using the Ewald interaction are as follows for occupied

single particle states:

6= 7’ D ifloaljiy = = (4.16)

J#
and for unoccupied single particle states:

2
= 7‘1 Z<aj|vma> (“17)

Here we have used the common denotation of indices where a, b, c,... represent states which are
unoccupied in the Fermi ground state, i, j, k,... represent states which are occupied in the Fermi

ground state, and p, g, r,... could represent either [76].
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We can also define the two-electron matrix elements in integral notation as:
LR PN 1 = g k= k2 \NA (22 - -
Gsl0alab) = 8ujogs [ [ divdraw oo G 7). (4.18)

where 75 is defined in Equation (4.13) and ¢ are plane waves defined in Sec. 4.2.
By convention, the energies calculated using the HEG will be reported in Hartrees (1 Hartree =
4.35x10718 Joules). However, this differs from the units that will be used for the next system,

infinite nuclear matter.

4.4 Interlude: Nuclear Forces

The properties of infinite nuclear matter and finite nuclear systems are determined by the nuclear
forces that govern the interactions between the nucleons. These nuclear forces are given by
two fundamental forces: the strong nuclear force, which binds the nucleons together, and the
electromagnetic force, which causes repulsion between the protons. The strong force is stronger
over short distances (which causes nuclei to hold together), but the electromagnetic force is a
long-range force acting over large distances. The nature of the strong force needs to be better
understood, and this can make it challenging to model the nuclear forces in theoretical calculations
[18, 19]. Because of this, the first interaction used to perform calculations in this thesis is the "toy"
interaction called the Minnesota potential, which is defined in Reference [109] and used in, for
example, Refs [77, 78, 110] to model the nuclear interaction. The Minnesota potential is a local,
nucleon-nucleon-only, moderately soft potential reproducing the nucleon-nucleon effective range
parameters. It provides a reasonable approximation for the binding energies of light nuclei, but
it is a simple interaction that is computationally inexpensive compared to more realistic nuclear
interactions. It should be noted that the Minnesota potential is a phenomenological interaction,
meaning that it was constructed by fitting experimental data instead of being derived from first
principles. The matrix elements for the Minnesota potential are given by:

1 1 1
Vij= E[VR + 5(1 + PV + 5(1 = PL)Vs](1+ PL).

In the above equation, P is the spin exchange operator, P” is the space exchange operator, and Vg,

V:, and V; are given by the following equations, where r1;; is the distance between two nucleons
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and the constants are found by fitting to experimental data.
Vi = Voge i
V, = —Voe i
V, = Vose ™71,

Though the Minnesota potential is computationally inexpensive and captures important aspects of
the nuclear interactions, modern advancements have improved our models of nuclear forces [11,
18, 19, 104, 111-123]. The second nuclear force used to model infinite nuclear matter in this
thesis, which is a more model interaction, is derived from practical field theory (EFT) [77] [2,
12-15, 18, 19, 29, 108, 119, 124-126]. The nuclear forces derived from EFT have an advantage
over other nuclear forces in that the two-body and the many-body interactions can be derived in a
mutually consistent matter [35]. Much recent progress has been made in deriving the nuclear forces
based on chiral EFT and the nuclear Hamiltonian for many nucleonic matter calculations, not using
forces from chiral EFT, including both nucleon-nucleon (NN) and three-nucleon (3N) forces [104,
112, 117, 118, 123, 127, 128]. For the results presented herein, we will use the parametrization
NNLO,, for the NN and local 3N interactions.

It should be noted that implementing the 3N forces in the single particle basis used for infinite
nuclear matter calculations is much simpler than implementing them in the harmonic oscillator
basis commonly used for nuclei calculations [34]. However, the large number of matrix elements
needed to compute 3N forces is still the computationally limiting factor in these calculations [34].
The specific chiral potentials used in this work are detailed in References [18] and [19]. They have
optimized A-full interactions and are calibrated with nuclear matter properties [18]. The A-full
interaction is detailed in References [120-122, 129-131]. The interaction employs a standard

non-local regulator function of the form:
f(p) = PN, (4.19)

where p is the relative momentum, » is 4, and A is 394 MeV. We are using these interactions

at the next-to-next-to-leading order (NNLO). In this order, 17 low-energy coeflicients (LECs)
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parameterize the interaction and whose values are given in Reference [18]. This leads to a form of

the Hamiltonian, which can be written as:

Npecs=17
H(a) = ho + Z aihi, (4.20)

i=1
where hg = trin, + Vo, trin 1S the Kinetic energy, v is a constant potential that does not depend on the
LECs, a is a vector that denotes all of the LEC. Of the two interactions used in this thesis to model
nuclear forces, the optimized A-full interaction is more accurate than the Minnesota potential, but

has more complex matrix elements which leads to longer run times.

4.5 Infinite Nuclear Matter

Infinite nuclear matter is defined as a system containing infinite nucleons (protons and neutrons)
that only interact via the nuclear forces [35]. Studies of infinite nuclear matter are essential for
understanding the matter within dense astronomical objects such as neutron stars [77]. Neutron
stars are exciting because they offer insights into nuclear processes and astrophysical observables.
However, neutrons stars also contain matter that spans several orders of magnitude and contain
many different compositions of matter [26-31, 77]. Neutron star matter occurs at densities of 0.1
fm=3 or greater and consists of various fractions of neutrons, protons, electrons, and muons. These
particles exist in beta equilibrium (8-equilibrium) governed by the weak force.

Studies of infinite nuclear matter are also focused on determining the equation of state (EoS) .
When considering applications to neutron stars, the EoS can help determine the mass range, the
relationship between the star’s mass and its radius, the thickness of the star’s crust, and the rate at
which the star will cool down [77]. Determination of the EoS also links neutron stars to the neutron
skin in atomic nuclei and the symmetry energy of nuclear matter. The symmetry energy is crucial
because it relates to the difference between proton and neutron radii in nuclei [35].

Solving the EoS depends on our ability to solve the many-body problem for infinite nuclear matter
[35, 77]. The nuclear matter has been of interest in many-body studies since the early days of
the field (see Reference [132] for a review of these early studies). These early calculations were

performed with Brueckner-Bethe-Goldstone theory ([133, 134]). However, modern many-body
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studies of nuclear matter are performed with a varied of methods, including coupled-cluster theory
(CO) (2, 3, 34, 35,717, 78, 119, 125]), Monte Carlo methods ([16, 23, 32, 33, 57, 105, 106, 135,
136]), Green’s function methods ([107, 108, 137, 138]) and methods from the renormalization
group theory family ([77, 126, 139]). The coupled-cluster theory will be the many-body method of
interest for the remainder of this thesis. Coupled-cluster calculations of nuclear matter date back
to the 1970s and 1980s [35].

One property of infinite nuclear matter we are interested in is the proton fraction, which is defined
as

x, =L, 4.21)

where p,, is the density of protons in the matter, p, is the denisty of neutrons in the matter, and p
= pp + py 18 the total density of the infinite nuclear matter [77]. Defining different proton fractions
defines different types of infinite nuclear matter systems. For example, if x,, = 0, the infinite nuclear
matter system contains only neutrons. We will refer to this system as pure neutron matter (PNM).
If x,, = 1/2, then the system contains an equivalent number of protons and neutrons, and this system
is called symmetric nuclear matter (SNM).

From the proton fraction, we can define the symmetry energy as the difference between the energy

for pure neutron matter and symmetric nuclear matter at a set density [77]:

Esym(p) = E(p,xp =0) — E(p,xp = 1/2). (4.22)

All energies for infinite nuclear matter calculations will be, by convention, reported in units of

MeV.

4.6 Truncation Errors in Infinite Matter Calculations

As mentioned throughout this chapter, several truncations and approximations must be made to study
these infinite matter systems in a computational framework. Though computational limitations
require these truncations and approximations, they introduce errors into the calculations, making
them undesirable [38, 76]. Though it is impossible to remove every error that comes from the

various truncations and approximations, this thesis will focus on mitigating the effects of three
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truncation errors: the error that results from truncating the number of single-particle states in the
basis, the error that results from truncating the number of particles and volume of the infinite matter
system, and the error that results from truncating the coupled cluster correlation operator, 7.
As discussed in Section 2 of this chapter, the number of single-particle states (M) in the calculation is
truncated due to truncating the total number of energy shells allowed in the system. This introduces
an error in the calculation called the basis incompleteness error. The basis incompleteness error can
be mitigated by increasing the number of single-particle states (or energy shells) in the calculation.
Unfortunately, this also drastically increases the computational time and resources needed. Coupled
cluster theory has polynomial time scaling with respect to M, which, while being better than other
many-body methods, still means that computational times can be prohibitive at large values of
M. Additionally since increasing the number of single-particle states in the system increases the
number of matrix elements in the calculations, computational resources are also increased.
While infinite matter systems theoretically contain infinite particles over an infinite volume, these
values must be truncated to finite values computationally [35]. This introduces an error in the
calculations called finite size error. Since the number of particles in the system and the volume of
the system are related by a fixed density (pg = N/Q), itis sufficient to increase N to the infinite limit
while keeping the density constant. However, the same problem occurs when attempting to increase
M since coupled cluster theory also has polynomial time scaling with respect to the number of
particles in the system; however, the power tends to be higher with particles than with single-particle
states. Additionally, matrix elements involving occupied states (or particles) are computationally
more complex than those involving only unoccupied states. Therefore, adding more particles to the
system increases the computational resources needed than additional single-particle states.
As discussed in the previous chapter, the coupled cluster correlation operator is:
N
T = Z T, (4.23)
m=1

where N is the total number of particles in the system and 7}, represents the m-particle m-hole

excitation operator. We can make this operator specific to infinite matter systems by making two



changes. First, infinite matter systems contain particles, so N = co. Second, the 1-particle 1-hole
excitation operator, T}, will always be zero for infinite matter systems due to symmetry in the

momentum. Therefore, we can write the cluster operator for infinite matter systems as:
o0
T=> T (4.24)
m=2

Also, as discussed in the previous chapter, the correlation operator is truncated in practice by setting
excitation operators over a certain level to zero. In this thesis, the coupled cluster results will either
be calculated using coupled cluster doubles (CCD) where 7' ~ T, or approximations to coupled
cluster doubles triples (CCDT) where T ~ T» + T. Since the full cluster operator is not used in the
calculations, this does reduce the accuracy of the calculations. However, in this thesis, we will not
be extrapolating to the complete coupled cluster calculation since this would require performing
coupled cluster calculations at more truncation levels. However, we will attempt to improve the
accuracy of infinite matter calculations by predicting the CCDT result from the CCD result and
the CCD result from the MBPT2 result, thus improving the accuracy while keeping computational
time and resources small.

However, in the infinite matter calculations, there are sources of error from approximations and
truncations that are not addressed in this thesis but could be the subject of future work. Some of them
will be discussed briefly here. First, the Coulomb interaction, the predominant interaction in the
homogeneous electron gas, is a long-range interaction that acts over an infinite distance. Truncating
the volume of the electron gas to a finite size also truncates the Coulomb interaction. It is important
to note that this is a finite size error occurring in the HEG but not in infinite nuclear matter [3]. This
means that studies of the HEG at finite sizes will face additional complications compared to studies
of infinite nuclear matter [3]. In addition to truncating the coupled cluster correlation operator, not
all n-body interactions are included in the calculation because the Hamiltonian is also truncated.
In this work, calculations are limited to including, at most, the two-body or three-body matrix
elements. However, the highest level of matrix elements contributing to the system is k-body,
where N is the total number of particles. Finally, while the Coulomb interaction, the primary

interaction of the electron gas has a simple closed-form representation that can be calculated
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precisely, the primary interaction in the infinite nuclear matter is the nuclear interaction. However,
the nuclear interaction has no simple closed-form solution and cannot be represented precisely.
Therefore all nuclear interactions are approximations with various levels of accuracy compared to

real nuclear interaction.

4.7 Conclusion

In this chapter, we have explored the two systems of interest in this thesis: the homogeneous electron
gas and infinite nuclear matter. We have also developed a single-particle basis for these calculations
which provides a convenient method for truncating the number of particles in the system and the
number of single-particle states, which is required due to computational limitations. We have also
investigated two nuclear interaction models and seen some errors that can occur when trying to
model an infinite system in a finite computational space.

Up until this point, this thesis has focused on the physical framework necessary for understanding
this work. We first developed a many-body framework to define our many-body systems. We then
developed three many-body methods which can be used to find the energies of our systems, and
finally, we explored the two systems of interest. The following two chapters will develop the needed

computational framework: machine learning and the basics of the SRE method.
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CHAPTER 5
BAYESIAN MACHINE LEARNING

5.1 Machine Learning

Machine learning is the field that occurs at the intersection of data science and artificial intelligence;
it is the science of programming a computer so that it can learn from a given data set [79].
Machine learning algorithms can solve these problems without being programmed with task-
specific instructions; machine learning encompasses a set of generic algorithms that can be applied
to various problems.

Machine learning can be applied to a wide variety of problems, but it is most useful when traditional
styles of programming cannot solve the problem or would take a very long time to solve a problem.
This includes problems where the traditional solution would have a long list of rules; machine
learning can find patterns in the data set without problem-specific programming. Machine learning
also excels in problems where a large amount of complex data is difficult to sort and work with by
hand or with traditional programming [79].

Machine learning algorithms can be classified into one of three categories: supervised, unsuper-
vised, and reinforcement learning. In supervised learning, the training data given to the algorithm
is labeled, meaning it has both an X and a y component. Therefore, supervised learning aims to map
every X to its corresponding y correctly. There are two types of supervised learning: classification
(when y contains a finite number of possible values) and regression (when y contains an infinite
number of possible values). All machine learning algorithms developed in this chapter will be
supervised learning. Unsupervised learning algorithms work with unlabelled data, meaning they
only receive the X component of the data set. Common unsupervised learning tasks are clustering
and dimensionality reduction. Finally, reinforcement learning describes a set of algorithms where
an agent learns to solve a problem by maximizing its reward. Supervised and unsupervised learning
are common in machine learning applications in physics, while reinforcement learning in physics
applications is less common.

Machine learning has recently become a popular tool in physics and is being applied to a wide range
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of problems. Machine learning has found applications across all areas of physics. Specifically
looking at neural networks, they have been used in nuclear physics to perform extrapolations (for
example References [140], [66], [141],[142],[67],[68],[69],[52]) and to directly solve the many-
body problem (for example Ref [53]). Neural networks can be problematic for ab initio data
sets due to very small data sets but will be explored in this thesis as a possible machine learning
method. Machine learning can also be used in many-body physics to simulate the wavefunction
of a system to find the variationally lowest energy of the system [57]. More generally, machine
learning algorithms have been used to predict the coupled cluster energies of molecules using a
variety of machine learning algorithms. The work presented in this thesis, though unique, has been
inspired by these previous applications of machine learning in the field of many-body physics.

The remainder of this chapter will be structured as follows. The following sections will develop four
standard supervised learning algorithms: linear regression, its related algorithms ridge and kernel
ridge regression, and finally, a brief discussion on neural networks and recurrent neural networks.
Next, there will be a discussion of Bayesian statistics to prepare the reader for the development of

the final two machine learning algorithms: Bayesian ridge regression and Gaussian processes.

5.2 Linear Regression

Linear regression is one of the most basic machine learning algorithms. However, it is often
the first algorithm studied in a machine learning class or textbook because it still contains all of
the essential elements of a supervised machine learning algorithm (a loss function, parameters,
and optimization). One of the main reasons linear regression is still studied as a machine learning
algorithm is that it has analytical expressions for its parameters. This contrasts with other supervised
machine learning algorithms, such as neural networks, which use numerical algorithms to optimize
the parameters. Furthermore, due to the analytical expressions for the parameters, linear regression
will always return the same output if given the same input, again in contrast to other machine
learning algorithms such as neural networks. This reproducibility makes linear regression and its

related algorithms attractive for physical applications.
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The output of the linear regression algorithm can be written as follows:

VLinear = X0, (5.1)

where X is the input of the algorithm and 6 is a vector of constant parameters, often called the

weights. The "machine learning" part of the algorithm is tuning 6 so that:

YTrue = yLinea}“ (52)

In machine learning, a loss function measures the error in the algorithm’s prediction from the real

data. The loss function for the linear regression algorithm is the mean-squared error function:

1 n—1 X
JLinear(g) = ; Z(yl - yLinear,i)za (53)
i=0

where y = yrye-

The optimal values of 6 are the ones that make the output of the linear regression algorithm the
same as the actual data. Another way of phrasing this is that the optimal values of 6 are the values
that minimize the loss function. Thus linear regression becomes a simple minimization problem!
Minimizing the loss function with respect to the parameters 6 yields the optimal parameters, the
values of € that make the output of the linear regression algorithm as close to the actual data as
possible.

OLinear = (X' X)1XTy. (5.4)

These optimized values of 6 can then be multiplied by new data not in the training set to make

predictions for new data.

5.3 Ridge Regression

Several regularized linear regression forms exist, including ridge, LASSO, and elastic net. This
section focuses on ridge regression, where the base linear regression loss function is regularized
by the L2 norm of the weights, 6 [79, 143, 144].

The output of a ridge regression algorithm is the same as for linear regression:
)’}Ridge = X0, (55)
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The main difference from linear regression comes with the loss function. The ridge regression loss
function, shown in Equation (5.6), consists of the standard mean-squared error as the first term and
a second term known as a regularization term. The regularization term is simply the L2 norm of
the weights, 6, scaled by a parameter A, known as the strength of the regularization. Note that in

some sources, this scaling factor is shown as A/2, or sometimes as «.

n—1 n—1
I .
Tridge(8) = = 3 (i = Siaged)” +1 ) 6 (5.6)
i=0 =0

The optimal values of 8 will again be found via a simple minimization which results in optimal

values of 6 which are close to 81,.4- but which contain an additional term from the regularization:
Oridge = (XX —aD) ™' X"y, (5.7)

Ridge regression tends to be more accurate than linear regression due to the bias-variance trade-
off. The addition of the regularization term to the loss function adds some amount of bias to the
algorithm. This, in turn, causes a drop in the variance, leading to ridge regression being better able
to generalize to data outside of its training set than linear regression. The regularization term also
keeps the model’s weights small, which can have computational benefits.

The value chosen for the hyperparameter A can significantly affect the values of the optimized
0riage and the results of the future predictions. For example, if A = 0, then 0,;4¢c = OLinear (the
ridge regression algorithm becomes linear regression because the regularization term is removed).
On the other hand, if 4 is very large, then the weights will all be forced to be very small, and the
resulting predictions will be a straight line through the mean of the data set.

Since the results of a ridge regression model depend on the value of A chosen, hyperparameter
tuning is used to choose an optimal value. In hyperparameter tuning, a ridge regression model is
trained using the training data set and various values of A. The algorithm’s performance with each
new value of A is checked against a validation data set, which can be a subset of the training set,
the test set, or a separate data set. For a thorough hyperparameter tuning of A, hundreds of different
values are typically tested, spanning several orders of magnitude. The value of A that is kept is the

one that produces the lowest error when recreating the validation data set.
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While finding a value of A that produces an acceptable error in this manner is possible, it poses
a few problems. First, there is a theoretical value of A that will minimize the loss function when
applied to the validation data set. However, it is unlikely that the exact value will be found in a
traditional hyperparameter tuning process where the list of supplied values for A are tested by brute
force. This leaves the open question of if the value of A that performed best in the tuning process is
the best value overall. Secondly, while the hyperparameter tuning process can be fast (depending
on the number of values tested), it is an additional step that needs to occur with each new data set
and thus adds time to the ML analysis. Lastly, hyperparameter tuning requires a validation data set,
either taken from the training or test data set, making them smaller, or generated separately. While
this may be fine for some machine learning applications, especially those with large data sets or
where data is easy to generate, this is a significant drawback for many-body applications since new

data points can represent large computational requirements in time and resources.

5.4 Kernel Ridge Regression

A regression algorithm related to ridge regression is called kernel ridge regression (KRR) [62,
79, 143]. While it uses the same loss function as ridge regression, the inputs are altered using a
kernel function. This is known as the kernel trick and adds non-linearity into the model, making
it able to generalize to a broader range of data sets. KRR assumes that the output data, y, can be

approximated by multiplying a set of weights, 6, by values from a kernel function:

—_

n—

Ykrr = ) Oik(x,x;), (5.8)

i

Il
[}

where the points x; correspond to the training data, and x is the point to produce a prediction. The
function k is the kernel function and can take different forms depending on the application. Some

common kernel functions are the polynomial kernel,

k(x,y) = (yx"y +co), (5.9)

and the sigmoid kernel,

k(x,y) = tanh(yx"y + cg). (5.10)
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Each of these kernel functions comes with some hyperparameters: vy, cg, and d for the polynomial
kernel and y and c( for the sigmoid kernel, for example. The user must set these hyperparameters
before the algorithms are trained. Even the kernel function can be considered a hyperparameter
since the user chooses it, and it affects the results of the trained algorithm.

The loss function for KRR is the same as ridge regression’s, a regularized form of the mean-squared
error function where the regularization term is the L2 norm of the weights, . Therefore, KRR still
has the A hyperparameter. Just like the previous algorithms, the optimized values of the weights
are found by minimizing the loss function with respect to the weights yielding optimized values of
the weights to be:

Oxrr = (K — ANy, (5.11)

where K is known as the kernel matrix and is defined as:
Ki,j = k(xl-,xj). (5.12)

While KRR is better at generalizing than linear regression and ridge regression due to the inclusion
of the kernel function, this does introduce significantly more hyperparameters into the algorithm.
Furthermore, this drastically increases the complexity of the hyperparameter tuning process since
the kernel function and its hyperparameters must also be tuned in addition to A. Therefore, while
KRR can produce the most accurate predictions once trained of the three regression algorithms
investigated here, the requirements for its hyperparameter tuning are a significant drawback when
total run time and data set size are restrictions, as in the case with the research presented in this

thesis.

5.5 Neural Networks

Neural networks are computational systems that can learn to perform tasks by considering examples,
generally without being programmed with any task-specific rules. Another way to phrase this is
that a neural network is a computational system that learns to match a given input to the correct
output. They are a broad category of machine learning algorithms, including popular algorithms

such as convolutional neural networks, recurrent neural networks, and deep learning.
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Fully Connected Feedforward Neural Network

Though there are many types of neural networks, using just the phrase "neural network" typically
refers to a type of neural network known as a fully connected feedforward neural network (FFNN).
This type of network can also be known as a multilayer perceptron (MLP) if it has at least one hidden
layer. These FFNNs contain many interconnected layers which transform the given input into an
output [51]. The base unit of an FFNN is called a neuron, and these neurons are arranged into
columns which are called layers [51]. Information in an FFNN moves only forward. Additionally,
each neuron is connected to every neuron in the next layer, and there are no connections between
neurons in the same layer. This means that the input to a layer in the neural network is simply the
output from the previous layer. As we will see in a moment, each neuron receives a weighted sum

of the outputs of all neurons in the previous layer.

5.5.0.1 Mathematics of Neurons and Layers
Each neuron is a mathematical function involving a column from a weight matrix, a scalar from a
bias vector, and an activation function. We can represent the mathematical form of the ith neuron

in the first hidden layer as:
M
Vi = f(z wijXxj +b;), (5.13)
j=1

where x is the input to the neural network, w is the weight matrix that scales the input of the neuron,
b is the bias vector that ensures the neuron output is non-zero. Finally, the function f is known as
the activation function, which adds nonlinearity to the neuron [51]. The weights and biases are
free parameters (meaning they are set for the neural network during training), but the activation
function is a hyperparameter [51].

For each neuron, i, in the first hidden layer of a neural network, we can represent its mathematical

form as:
M
=1 whxj+b)). (5.14)
j=1

We can also write out the mathematical form for the entire first hidden layer as:

51 = fH(Wix+by). (5.15)



Similarly, for the second hidden layer, we can represent the mathematical form of each neuron as:
N

- fz(z wiyh+ 7). (5.16)
j=1

Note here that the weights matrix is no longer multiplied by the inputs to the neural network (x)
but rather by the output of the first hidden layer. This is because the input to the first hidden layer
is the input to the neural network, but the input to the second hidden layer is the output of the first

hidden layer. Therefore, we can expand the above equation to be more precise:
N M
2 2 ¢l 1 1 2
= f (Zwijf (Zwijk+bj)+bi). (5.17)
j=1 k=1
We can also write a mathematical form for the entire second hidden layer in matrix-vector form as:

92 = fA(Wa91 +by), (5.18)

or more explicitly as
2= P(Waf (Wi(x) +by1) +by). (5.19)

Finally, we can use the pattern we have developed to write down the equation for the mathematical
output for a neuron on the /-th hidden layer of the neural network. For the i-th neuron on the /-th

layer, we can describe it mathematically as:

and more explicitly as
N
=f (Z wii f 1(2 Wity + b + b, (5.21)

and finally, all the way expanded as

Ni-1

M
f’(Z wh I(Z wliZI(. . -fl(Z Whtn + bh) <) + 071 + b, (5.22)
n=1

We can also write a mathematical expression for the output of the entire /-th layer using matrix-

vector format as:

9= fLWiHi_1 +by), (5.23)
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which can be expanded to

51 = fLW Y Wiy 912 +bisy) +by), (5.24)

and finally to
$i= LW N Ws G- L (WX +by) - ) +bisy) + by). (5.25)

It is a complicated expression and can grow to be very large, but it is a set equation that describes
the output of a neural network with /-1 hidden layers and an output layer. So it is also possible to
rephrase the definition of a neural network to be an analytical function that maps a set of inputs to

a set of outputs using a set of optimized parameters [51].

Activation Functions

The activation function is nonlinear. Its purpose is to allow the neural network to capture nonlinear
patterns in the data set [S1]. Without an activation function, a neural network could only produce
an output that was a linear combination of the inputs. There are many choices for the activation
function for the neurons, but standard activation functions are the sigmoid, the hyperbolic tangent
function (tanh), and the rectified linear unit (ReLLu) [51]. Some neural network architectures will
have some layers with no activation function. For example, it is common to have no activation

function on the output layer so as not to constrain the range of values the output layer can produce.

Loss Functions and Training Neural Networks

A loss function determines how much the output from a neural network differs from the real/expected
result. There is no set loss function used with neural networks, but two common loss functions
are the mean-squared error loss function and the mean absolute error function. The mean-squared

error loss function (MSE) can be defined as:
| &
- 5.2
Juse(W) = N ;:1 i =9,

where y is the true data set, § is the neural network prediction, N is the number of data points in
the set, and W is the neural network’s weights. The loss function depends on the weights of the

neural network because changing the weights of the neural network changes its output.
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The mean-absolute error loss function (MAE) has a similar form:
| &
Iyuae(W) = ¥ ; lyi = Jil,

A significant part of working with neural networks is a process known as training, where the weights
of the neural network are optimized such that the cost function is minimized. This training process
has two phases: the forward pass and the backpropagation.

The forward pass occurs when data is sent through the neural network (left to right on the above
graph) to produce a predicted output. This predicted output is fed into the loss function with the
actual data set to generate the loss value.

After the forward pass comes backpropagation, where the error from the loss function is backprop-
agated through the layers of the neural networks, and its weights are adjusted layer by layer so that
the next forward pass will result in a reduced loss value. A simple way to optimize the weights of
a neural network during backpropagation is through an optimization technique known as gradient
descent. The weights of the neural network are adjusted by the derivative of the loss function with

respect to the weights, scaled by a hyperparameter known as the learning rate:

The learning rate (r;) is a number typically much less than one, and it is also a hyperparameter, so
its value must be set before the neural network is run.

The process of training a neural network involves many different iterations of forward pass followed
by backpropagation. Typically a training process will continue until a certain number of training
iterations has been reached, or the difference in the current loss value compared to the value from
the previous iteration is below a certain threshold. However, neural networks should not be trained
for an overly long time because this will lead to something called overfitting, where the neural
network learns to match the data set it is trained with very well (so it will show a small loss value)
but loses all generality when given new data (so it will perform poorly when given the new data

set).
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Recurrent Neural Networks

There are many different types of neural networks besides the basic FFNN, such as convolutional
neural networks (CNNSs) and recurrent neural networks (RNNs) [51]. However, RNNs will be the
focus of this section as they are designed to handed ordered data, which may make them better at
extrapolations than regular neural networks. Furthermore, recurrent neural networks can be used
to analyze time series data; thus, they have typical applications in finance.

In feedforward neural networks, data only flows in one direction, from an input layer to the output
layer. The architecture of a recurrent neural network will look very similar to a feedforward neural
network, except each neuron feeds its output back into itself and sends its output to the next layer.
For every data point the RNN receives, each neuron receives both the input from the previous layer
(using the same equations as a feedforward neural network) and its output from the previous data
point. This combination of inputs gives an RNN a memory, making it capable of predicting the
future when analyzing time series data or being an extrapolator for other data sets.

The main problem RNNS faces is a vanishing or exploding gradient that can occur during the
training process. It is possible to fix this problem using different types of RNN layers. Common
alternative RNN layers are long-short-term memory layers (LSTM) and gated rectified unit layers

(GRU).

A Discussion on Neural Network Hyperparameters

One of the drawbacks of neural networks is that they have many hyperparameters that need to be
set by the user before the neural network can be trained. Examples of hyperparameters include the
activation function, the learning rate, the use of dropout during the training process, etc. When
using RNNgs, the type of RNN layer (regular, LSTM, or GRU) adds another set of hyperparameters.
Additionally, the number of layers in the neural network defines its depth, and the number of
neurons in the hidden layers defines the width of the neural network [51]. Both of these are also
hyperparameters. A network’s ability to find patterns in complex data is governed by the number of
hidden layers and neurons the network contains, but too many neurons and layers can make for a slow

training process [51]. Thus, with the vast number of possible hyperparameter combinations present
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in neural networks, hyperparameter tuning can be difficult and time-consuming. Additionally, since
neural network weights are initialized randomly, and the optimization of the weights is typically
not performed with a closed-form optimization algorithm, a neural network will return a different
result every time it is trained. This means that to ensure that a neural network has a good set of
hyperparameters to give accurate results reliably, it must be retrained many times, and its results
averaged to determine its actual performance. It is not uncommon in physical science applications
where producing reliable results is essential to use a "forest" of 100 identical neural networks and
use the average results, the true answer, and the standard deviation across all the predictions as the

uncertainty of the result [51].

5.6 Bayesian Ridge Regression

The following two machine learning algorithms we will investigate belong to a family of algorithms
called Bayesian machine learning, so called because they rely on Bayes’ theorem and Bayesian
statistics to both make predictions and determine the uncertainty of those predictions. The main
draw of using Bayesian machine learning algorithms over standard machine learning algorithms is
that Bayesian algorithms determine their hyperparameters using Bayesian statistics to determine
the most likely values. They also produce uncertainty in their results, which is essential for machine
learning applications in the physical sciences [79, 143, 145].

Therefore an alternative to performing traditional ridge regression with hyperparameter tuning is
to use Bayesian ridge regression, the Bayesian form of ridge regression where the training process
sets the value of A [79, 143, 146, 147]. In Bayesian ridge regression, the output data, y, is assumed

to be in a Gaussian distribution around X6:
p(y1X,0,4) = N(y|X0, 1), (5.26)
Priors for the weights, 6, are give by a spherical Gaussian, where 87! is taken to be the precision:

p(618) = N(6]0, 57'T), (5.27)

where I is the identity matrix.
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The priors over A and S are assumed to be gamma distributions, and 6, A, and § are estimated
jointly when the model is fit. The Bayesian ridge regression analysis will result in different
weights than a regular ridge regression analysis, but a Bayesian ridge regression algorithm is more
robust. Additionally, since the value of A is set when the algorithm is trained, using Bayesian ridge
regression eliminates the need for hyperparameter tuning and a validation data set, making it a
better choice than ridge regression when time savings is essential, and the size of the data sets is

minimal.

5.7 Gaussian Processes

Gaussian processes (GP) are non-parametric models that use Bayesian statistics to provide a machine
learning algorithm that can model complex relationships between the data, even if the predictions
are based on uncertain information. GPs can be used for classification, but we will only consider
regression applications in this thesis, meaning the GPs will learn to model a continuous function.
GPs assume that the function to be modeled can be represented as a Gaussian distribution over the
function values at every point [79, 143, 145].

Given a set of inputs x and a set of outputs y, the GP defines a joint distribution over all outputs

such that the subsequent multivariate Gaussian distribution, N, is created:

p(y|x) = N(u, 2),

The vector u contains the mean of each element of y (i; = E[y;]), and X is the covariance matrix
with elements X; ; = k(y;, y;), where k is known as the covariance or the kernel function.
The kernel function used in the GP analysis presented in this work is the rational quadratic (RQ)

kernel, which is defined as:
d(x;, x;)?

k i, Xj) = 1+
() = (14—

) -
where « is a hyperparameter known as the scale mixture parameter, | is a hyperparameter that sets
the length scale of the kernel, and the function d calculates the Euclidean distance between x; and

x;j. The values of the hyperparameters are set during the training process. The rational quadratic

kernel can model functions with a mixture of local and global smoothness. It was chosen as the
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kernel function for this analysis because it produced the lowest RMSE error on the extrapolations
compared to other kernel functions.

GPs were chosen as a primary machine learning method because they can be thought analogous
to the Bayesian implementation kernel ridge regression (KRR). KRR relies on user-chosen hyper-
parameters, complicating the analysis process. The values of these hyperparameters (one from
the loss function, 2-5 from the kernel) are chosen through hyperparameter tuning, where many
combinations of hyperparameters are tested to find the best combination. The drawback to this
method is that it requires a validation data set to be used for the hyperparameter tuning, in addition
to the training data set and the test data set. Additionally, it was found that the data sets used in this
work are sensitive to the values of the hyperparameters (a slight change in hyperparameter value
could lead to a significant change in extrapolated value), so a quiet through hyperparameter tuning
would need to be performed to find the optimal values.

In the context of this research, we are interested in time savings in addition to prediction accuracy.
Therefore the goal is to accurately generate the converged correlation energies with as few training
points as possible and as fast as possible. Furthermore, eliminating the need to perform hyperpa-
rameter tuning saves a significant amount of time in the machine learning analysis and eliminates

the need to generate a validation data set.

5.8 Conclusion

In this chapter, we have introduced machine learning and investigated different supervised learning
methods. However, as they are commonly formatted, these algorithms will only make a good ex-
trapolator for some-body data sets. RNNs, built for extrapolations, require too much training data to
be helpful in a many-body application (where generating data points is computationally expensive),
and the hyperparameter tuning process associated with RNNs is a significant drawback. However,
the other machine learning algorithms we investigated here need to be built for extrapolation and
thus perform poorly. Thus in the next chapter, we will create a method of formatting a data set,
called sequential regression extrapolation (SRE), that will take a simple regression algorithm, such

as ridge regression, and turn it into a powerful extrapolator.
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CHAPTER 6
SEQUENTIAL REGRESSION EXTRAPOLATION (SRE)

6.1 Introduction to Methodology

Removing the basis incompleteness and finite size errors by formatting it as an extrapolation
problem is a promising application of machine learning because it is well formatted. Furthermore,
the extrapolations are known to have asymptotic values for the correlation energies (i.e., the
converged values), there is a simple pattern in the data for the machine learning to pick up, and the
training data is already near the converged values (but still far enough away that performing the
extrapolation increases the accuracy of the results) [S1].

Attempting to remove basis incompleteness and finite size errors from many-body calculations
with machine learning is not a novel idea. For example, in Ref [51], the authors attempt to use a
neural network to perform an extrapolation to remove the basis incompleteness error for a harmonic
oscillator basis used in coupled cluster calculations of nuclei. However, the authors encountered
the problems that would be expected when using neural networks for this application, including
difficulty working with small data sets (leading to the need for interpolation before extrapolation)
and neural network’s inability to create exactly reproducible results due to its training process
[51]. Another example of using machine learning to remove truncation errors from many-body
calculations can be found in [54].

We should point out that other methods exist to eliminate the finite size errors other than performing
calculations at higher N or extrapolating. One of these options is to use twisted boundary conditions
instead of periodic boundary conditions, which provide much more accurate estimates of the

correlation energies [3].

6.2 Formulation
As discussed in the previous chapter, supervised machine learning algorithms require label training
data, meaning that both x and y components exist. Therefore, a supervised machine learning

algorithm learns to approximate a function, f, during its training process such that f(x) = y for
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every value of x in the data set.

However, supervised machine learning algorithms tend to fail when asked to make predictions out-
side their training range (for example, see Reference [51]). Put another way, supervised machine
learning algorithms tend to make more extrapolators and are thus not used for extrapolation appli-
cations. However, one type of supervised machine learning performed well with extrapolations; in
fact, it was designed to make extrapolations on time series data. This algorithm is the recurrent
neural network discussed in the last section. RNNs perform very well on extrapolations as their
design inherently gives them some "memory" of previous data that they can use to predict new data.
While RNNs may be a good choice for performing time series analysis and extrapolations, they
have some significant drawbacks when applying them to ab initio data sets. First, RNNs, like all
neural networks, require much training data to make accurate predictions and avoid overfitting.
While this is not a problem for many applications of neural networks, this is a significant drawback
when applying any neural network to ab initio data sets. Since each new point in an ab initio
data set can represent significant computational time and resource investment, these data sets are
usually relatively small, especially by neural network standards [51]. One way around this is to
use an interpolation algorithm to increase the size of the data set artificially, but this represents an
additional step in the workflow and possibly an additional source of error in the analysis [51]. Thus
in this work, we want to avoid using interpolation as much as possible.

Secondly, due to how their weights are initialized, neural networks are inherently random [51].
This means a neural network, including RNNs, will produce slightly different results each time it is
trained, even when the same training data is used. The irreproducibility is a significant drawback
when using neural networks to predict physical values. Additionally, the uncertainty of a neural
network’s prediction is an open research question.

Finally, as mentioned in the previous chapter, neural networks generally have a large number
of hyperparameters, including the number of hidden layers, the number of neurons per hidden
layer, and the activation function, among many others. This leads to complicated and long tuning

processes, dramatically increasing the runtime needed to perform an ML analysis.
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While RNNs are not a good choice of a machine learning algorithm for this application, we can
take inspiration from them and create a machine learning algorithm that can. A standard machine
learning algorithm is trained to take a point from the training set, x;, and match it to its corresponding
y values, y;. Thus training a standard machine learning algorithm has the following relations to be

learned:

fur(x1) =y1, fur(x2) = ya, ... (6.1)

While this training pattern makes many supervised machine learning algorithms excellent at match-
ing new inputs to the correct output, they typically only perform well in the range of data encom-
passed by the training data.

However, there is a way to train RNNs around this problem. This training pattern is typically
used when RNNs perform time-series analysis, which is common in the financial industry. Instead
of learning the relationship between the x and y components of the data set, a time-series data
formatting teaches the RNN to learn the pattern between a sequence of y values and the next y

value in the training data. The training points in this form will look as follows:

TRNN (Vk=3, Yk=2, Yi=1) = Yk, (6.2)

making the RNN much better at extrapolating because it is trained to predict the next value in a
sequence. Note that the sequence length in the inputs could be of any length, thus adding another
hyperparameter.

The drawback of this form of training here is that the data must be sequential (have an order to it),
and the data must be evenly spaced regarding the dependent variables. Additionally, since the RNN
only sees the y component of the data, it may lose the information encoded in the x component.
However, an RNN trained in this manner is an extremely powerful extrapolator.

Nevertheless, as explained earlier in this section, there are several drawbacks to using RNNs in
this application. However, we can combine the training style of an RNN with a simpler machine-
learning algorithm to make a more straightforward but still powerful extrapolator. Furthermore,

since none of the data in this thesis is time-dependent, instead of calling this style of formatting the
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data a time series, we will call it sequential formatting, as the data must be arranged sequentially.
This gives rise to the name of the machine learning algorithm we are building to extrapolate many-
body data sets, sequential regression extrapolation (SRE); so named because it combines sequential
data formatting with a regression algorithm to create an extrapolator that can make predictions from

small data sets. Thus we will train a regression algorithm using the following format:

TROVk=3, Yk=2+ Yk=1) = Vk- (6.3)

The length of the input, now known as the SRE sequence length, can be any length. However, the
larger the sequence length is, the fewer total data points present once the data has been formatted, so
there is a balancing act between choosing a sequence length long enough to encode the sequential
patterns in the data but not so long that there are very few points remaining after the formatting.

Now that we have developed the algorithm generally, we can apply it to remove the basis incom-
pleteness and finite size errors arising from many-body calculations of infinite matter systems. The

remainder of this section will develop the specific SRE formalism to remove these errors.

6.3 CCD Extrapolations With Respect to Number of Single Particle States

This section describes the SRE formulation to remove the basis incompleteness errors from CCD
calculations of infinite matter.

Both the AEc¢ and AEygpr converge as M increases. In that case, there must be a large value of

M where their ratio becomes a constant:

AEcc Large M

—> constant. (6.4)
AEyMBPT,Large M

One of the machine learning algorithms described in the previous chapter will be used to find
this constant value using only data collected at low values of M, where the ratio still needs to be
converged. The energies AEcc and AEyppr are calculated for the training data set generated at
small values of M. The exact values of M will depend on the value of N and the system in the
calculations. However, the largest value of M used across all training data in this thesis is 2,090

single-particle states. For each data set (constant N and po/rs), the training data for the regression
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algorithm was created by dividing AEcc by AE )y ppr at the exact value of M.

AEccm  AEccm,  AEccem,  AEccu,

= = , , - (6.5)
AEygprv AEmBpr.M, AEMBPTM, AEMBPT M,

Next, the machine learning algorithm, fg, is trained on this data set using the SRE formulation
developed earlier in this chapter. The sequence length shown here is three data points, but depending
on the analysis being done, it could range from one to three. We are adding this hyperparameter
into the analysis, whose value will have to be set, but in general, we want a smaller sequence length

if there is less training data:

AEcck-3  AEcck-2  AEcck-1 ,  AEcck

9 bl - .
AEyBpr k-3 AEMBPT k-2 AEMBPT k-1 AEyBPT K

fr( (6.6)

The SRE algorithm is then used to extrapolate this data set to many points until the ratio of
correlation energies has converged. This value can then be taken as the slope of the graph created

with AE¢¢ plotted as a function of AEy,gpr:

. AEcck
lim ———
k—co AEMBPT k

= slope = m. (6.7)
Finally, AEyppT, Large M 18 generated, a process that takes less than one second (not including the
time to generate the matrix elements). This energy, AEyppr Large M- 18 multiplied by the slope, m,

to approximate AEcc rarge M-

MAEMBPT Large M = AECC,Large M (6.8)

Due to convergence, the number of single-particle states used to calculate the large M data sets will
vary depending on the system. It is important to note that the data sets used to train a machine
learning algorithm in this work consist of 3-16 points each, making these data sets some of the
smallest used in physics applications of machine learning. Many machine learning algorithms need
more points to be accurately trained, even up to 1-2 orders of magnitude more, as with some neural
networks. For example, the ML-based process shown in Reference [62] can generate accurate
molecular CCD correlation energies using only 12 data points with kernel ridge regression and

a training process based on MP2 amplitudes. However, the MP2 amplitudes used in the training
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data have a very high dimensionality which can increase the time needed for training. Some other
studies designed machine learning algorithms to use small data sets but still needed around 100
data points, if not more (see Reference [63] for example) and are usually artificially extended with
interpolation (for example, see [51].

It is also of note that machine learning is typically only used to make extrapolations in exceptional
cases such as recurrent neural networks. When asked to make predictions outside their training
range, many machine learning algorithms could improve. However, it will be shown that SRE
can make accurate extrapolations using only a small training set, making it a unique machine-
learning algorithm. There is, however, a drawback to the SRE method. Since it relies only on
the y component of the training data set, it assumes that the data is evenly spaced with respect
to the x variable and can only make predictions at the same spacing. This works well for this
application since "evenly spaced" means a calculation at every closed shell of unoccupied states,
and extrapolations are made until the result converges (the exact x value where this occurs is not
essential for this study). However, this limitation does mean that the SRE method is only suitable

for some applications.

Error Analysis on Prediction
The prediction has a measurable uncertainty since Bayesian methods calculate the slope, m. This
can be transferred to an uncertainty on the predicted converged CCD correlation energy using the

following scheme. Given that the converged CCD correlation energy is:
AEcc = mAEyppr, (6.9)

then we can relate the uncertainties on all three quantities using equation Equation 6.10. In Equation

6.10, ox refers to the uncertainty associated with quantity x.

5AECC _ 5AEMBPT + om
AEcc AEygpr m

(6.10)

We will also assume that the uncertainty in the calculation of the MBPT2 correlation energy is

zero, so 6.10 simplifies to:
OAE o
eazcc _ om (6.11)
AECC m
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Now, Equation 6.11 is solved for AEcc, or the uncertainty on the predicted converged CCD

correlation energy, yielding:

5AECC = om. (612)

However, this can be simplified using the following:

AEcc = mAEyppr — AEyppr = o (6.13)

yielding as a final equation for the CCD correlation energy uncertainty:
(5AECC = AEMBPT(Sm. (614)

Finally, to present the results as the correlation energy per particle, as is typically done with infinite
nuclear matter calculations, the uncertainty in the predicted converged CCD correlation energy can
be found by dividing both sides of Equation 6.14 by N.

AEcc _ AEyBPT

6(
N N

sm (6.15)

6.4 CCD Extrapolations With Respect to Number of Particles

Removing the finite size error from truncating the number of particles in the system will be similar
to removing the basis incompleteness error. We will start with a data set that is created by dividing
the converged CCD correlation energies by the number of particles in the system for small values

of N, resulting in:

N N N
Ny Ny T ONy

Then we will train a machine learning algorithm using the sequential formatting developed in this

last section on the data set we have created:

AENs AENe2 ApNi-t ANk
f CCD CcCD CCD) — CcCD ) (6.17)

Ni—3 ' Ni—a ' Ni Ny

The final step is to use the trained machine learning algorithm to extrapolate this ratio until

convergence, resulting in the CCD correlation energy in the thermodynamic limit. Thus, we have:

lim = lim = AES.,, (6.18)

k—o0 k—o0
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where AE>

ccp 18 the CCD correlation energy per particle in the thermodynamic limit. Additionally,

since the prediction the machine learning algorithm makes is the result we are looking for, the

uncertainty of that prediction does not need to be modified.

6.5 CCDT Extrapolations With Respect to Number of Single Particle States

For removing the basis incompleteness errors from calculations using the approximative triples
methods, we will use the same method developed for removing the basis incompleteness errors
from CCD calculations. Even though the MPBT2 correlation energies are still at a comparatively
lower level of approximation than the CCDT approximations, the SRE methods will still extrapolate
well because both MBPT?2 and CCDT converge as the value of M increases, and both MBPT2 and
CCDT converge at roughly the same rate. So, fortunately, CCD and CCDT correlation energies
can be predicted with the same methods.

However, we will not perform extrapolations to the thermodynamic limit for the approximative
triples calculations because we will use system sizes that already reduce the finite size effects. This

will be explained in greater detail in Chapter 8.

6.6 Conclusion

In this chapter and the previous one, we have developed the computational framework needed for
this thesis. First, we explored several supervised machine learning algorithms, and then we used
these algorithms to develop the sequential regression extrapolation (SRE) algorithm. Though we
have developed the SRE algorithm to work with any supervised machine learning algorithm, in
practice, we will restrict ourselves to only using three in the following two results chapters: ridge
regression, Bayesian ridge regression, and Gaussian processes. Several reasons for not using neural
networks or recurrent neural networks for this application have been given in this chapter and the
previous one. Though kernel ridge regression does perform well as the machine learning algorithm
in an SRE analysis, the large amount of hyperparameters KRR has makes it unattractive. Many-
body calculations are very time-consuming; thus, avoiding the need to generate a validation data set
is optimal. Furthermore, suppose we wish to develop a machine learning extrapolation algorithm

that is both accurate and saves time. In that case, the time costs of generating a validation data
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set and performing an extensive tuning process over many hyperparameters are unattractive. Thus
neural networks, recurrent neural networks, and kernel ridge regression are eliminated as possible
algorithms.

The following two chapters will apply the methods we have developed in this chapter to coupled
cluster calculations of infinite nuclear matter calculations. Chapter 7 will focus on calculations of
the homogeneous electron gas, and Chapter 8 will focus on calculations of infinite nuclear matter;

pure neutron matter and symmetric nuclear matter will be analyzed.
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CHAPTER 7

THE HOMOGENEOUS ELECTRON GAS RESULTS

The first infinite matter system we will analyze with the SRE method is the homogeneous electron
gas (HEG), described in Chapter 4. The HEG, as one of the simpler infinite matter systems, is an
excellent sandbox to fully develop the SRE method described in the last chapter.

Figure 7.1 shows the results of computing the CCD correlation energy per electron for a HEG with
rs = 0.5 at various numbers of electrons and with four different numbers of single-particle states.
We can see that the calculation of AE¢¢ depends heavily on the number of single-particle states in
the system, and we can begin to see that the correlation energy converges as the number of single-
particle states in the system increases. The calculations performed with only 514 single-particle
states (or 15 shells) are the least accurate of the four plots in Figure 7.1 since they are performed
with the fewest single-particle states. On the other hand, the calculations performed with 6,142
single-particle states (or 70 shells in total) are the most accurate of the four plots, and in fact,
the convergence of AE¢c¢ has been confirmed at this point. However, it is not always feasible to
perform the calculations at this high number of single-particle states due to the associated high

computational time and resource requirements.

0 100 200 300 400 500
N

Figure 7.1 AEcc per electron plotted against N with calculations performed at four different values
of M. As M increases, the error in the calculation decreases, but the run time drastically increases
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Figure 7.2 shows the total run time in node seconds for CCD calculations of the HEG with r; = 0.5,
N =66, 294, or 514, and at various numbers of single-particle states. Node seconds/minutes/hours/-
days will be used to report computational run times in this thesis so that run times generated with
different numbers of MPI nodes can be compared. A node second (or minute, hour, or day) is
defined as the run time of the coupled cluster program (in seconds/minutes/hours/days) times the
number of MPI nodes used in the calculation. For the HEG, all calculations were performed using
nodes from Michigan State University’s high-performance computing center. Each node is an Intel
Xeon processor with a reported clock speed of 2.4 GHz. Each coupled cluster program was run
with four MPI nodes and 28 OpenMP threads. The specifications of the coupled cluster code used
to perform the HEG and neutron matter calculations with the Minnesota potential shown in the
section are described in Ref. [78].

In Figure 7.2, there is a consistent pattern in the data where more electrons and more single-particle
states in a calculation require a longer run time. This is an obvious and expected result, and in fact,
the CCD run times should scale polynomially with the number of particles and single particle states
allowed in the calculation. For example, a CCD calculation of the HEG should scale as O (N*M?9),
where typically M is much greater than N [38]. If we look at the results for N = 66 and assume that
the converged CCD correlation energy occurs at M = 6,142 single-particle states (see Figure 7.1),
the total run time for the CCD program is 653.88 node seconds (10.89 node minutes). However,
generating the converged CCD correlation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>