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ABSTRACT

QUANTIFIED LARGE-SCALE DENSITY FUNCTIONAL THEORY (DFT)
PREDICTIONS OF NUCLEAR PROPERTIES

By

Yuchen Cao

Reflection-asymmetric shapes of the atomic nucleus are relevant to nuclear stability,

nuclear spectroscopy, nuclear decays and fission, and the search for new physics beyond

the standard model. CP violation in the standard model is too weak to be responsible

for the observed matter-antimatter asymmetry. Beyond standard model theories require

additional source of CP violation, which could be found if non-zero atomic electric dipole

moment (EDM) is observed.

The nuclear quantity that induces the atomic EDM is the Schiff moment, which is en-

hanced in octupole-deformed odd-mass or odd-odd nuclei where parity doublets exist. This

calls for two tasks: First, a global survey of octupole-deformed even-even nuclei to determine

the nuclear regions with strong octupole instability; second, Schiff moment calculations in

the odd-mass and odd-odd in the vicinity of strongly octupole-deformed even-even nuclei.

The calculated Schiff moments will then help us determine the best candidates for atomic

EDM measurements. These two tasks constitute the first part of this dissertation.

The tool of choice for a large scale calculation on the entire nuclear landscape is nu-

clear DFT. Within the DFT framework, the Skyrme HFB method will be used to perform

calculations in this dissertation.

Although nuclear DFT is a powerful tool, it lacks the ability to provide quality uncertainty

estimates for its predictions. In the second part of this dissertation, we explore several

Bayesian machine learning techniques to further increase the predictive power of nuclear



DFT, and to provide full Bayesian uncertainty quantification for DFT predictions.



Dedicated to my family, who have always been supporting me.
To Claire and Samantha, may you be healthy and happy forever.

iv



ACKNOWLEDGMENTS

I would like to thank my advisor, Witek Nazarewicz, for providing guidance, counsel, and

numerous opportunities throughout my time in graduate school. Thank you for being patient

with me, and tolerant of my mistakes, it has been an honor to learn from the best.

I would like to acknowledge my collaborators, Erik Olsen, Léo Neufcourt, Samuel Giuliani,

and Sylvester Agbemava for their patience with all my questions and their generous support.

I am also grateful to other members of my research group who provided endless help

along the way. I would like to recognize Zachary Matheson, Chunli Zhang, Simin Wang,

Xingze Mao, Mengzhi Chen, Tong Li, Bastian Schütrumpf, Kevin Fossez, Jimmy Rotureau,

Yannen Jaganathen, Nicholas Michel, Nobuo Hinohara, and Futoshi Minato.

I am fortunate to cross path with many wonderful and brilliant graduate students at MSU,

who accompanied me through the early and “toughest” days of graduate school: Justin Estee,

David Tarazona, Kirill Moskovtsev, Ivan Pogrebnyak, Forrest Phillips, Justin Lietz, Joshua

Isaacson, Chaoyue Liu, Samuel Marinelli, Xueyin Huyan, Faran Zhou... I was lucky to have

shared my time at NSCL with my officemates Brent Glassman, Hao Lin, and Xingze Mao,

whose company I will forever miss.

I would like to thank several professors: Scott Pratt, who has been a good friend and

mentor in both physics and the American way of life; Vladimir Zelevinsky, for giving won-

derful lectures on physics; Morten Hjorth-Jensen, for showing extraordinary passion and

patience in teaching; and Shan-Gui Zhou, who first showed me the path to nuclear physics.

I would like to express gratitude towards my committee members: Scott Bogner, Sean

Couch, Jaideep Singh, and Kendall Mahn. Special shout-out to Kendall who offered tremen-

dous help in my job search and great tips on baby care.

v



I appreciate the help from Daniel Lay in editing this dissertation.

I would like to extend my thanks to other staff and faculty members at NSCL and MSU

who were always there to support, especially Elizabeth Deliyski, Gillian Olsen, Kim Crosslan,

and Debbie Barratt.

I am grateful to my parents for their unconditional love and support throughout my life.

Mom, thank you for being strict with me and never lowered your standards, I hope I have

made you proud. Dad, thank you for cultivating my passion towards math and science, I

know you wanted me to become an engineer like you, but hey, I accomplished something

even better.

I am forever indebted to my wife Siqiong Chen. Thank you for all the sacrifices you’ve

made, and for bringing Claire and Samantha into my world.

Thank you Norah, for being a good cat and stayed up with me through countless nights

of writing, and for never trying to delete my files.

2020 is a rough year, but I am glad to be surrounded by so many wonderful and lovely

people.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview of nuclear properties . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Nuclear deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Schiff moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Application of Bayesian machine learning to nuclear structure models . . . . 4
1.5 Organization of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Nuclear density functional theory . . . . . . . . . . . . . . . . . . 6
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Skyrme energy density functional (EDF) . . . . . . . . . . . . . . . . 8
2.1.3 Hartree-Fock-Bogoliubov method (HFB) . . . . . . . . . . . . . . . . 11

2.1.3.1 Hartree-Fock method . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3.2 Bogoliubov transformation and the HFB equations . . . . . 12

2.1.4 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4.1 Constrained calculations . . . . . . . . . . . . . . . . . . . . 14
2.1.4.2 Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4.3 Blocking calculation for odd systems . . . . . . . . . . . . . 17

2.2 Schiff moment and the atomic electric dipole moment . . . . . . . . . . . . . 18

Chapter 3 Global survey of octupole-deformed even-even nuclei . . . . . . 20
3.1 Technical details of the global calculation . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Potential energy surface (PES) and the HFB ground-state . . . . . . 21
3.1.2 PES grid selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Kick-off mode and characteristics of the calculation . . . . . . . . . . 24
3.1.4 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Global results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Comparison with the 2012 quadrupole survey . . . . . . . . . . . . . 28
3.2.2 Octupole deformation β3 . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Octupole deformation energy ∆Eoct . . . . . . . . . . . . . . . . . . 31
3.2.4 Octupole multiplicity: Joint analysis with covariant EDFs . . . . . . 33
3.2.5 Single particle orbitals in octupole-deformed regions . . . . . . . . . . 33

3.3 Local regions of octupole ground-state deformations . . . . . . . . . . . . . . 36
3.3.1 Actinide region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.1 Radon (Z = 86) . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1.2 Radium (Z = 88) . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



3.3.1.3 Thorium (Z = 90) . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1.4 Uranium (Z = 92) . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1.5 Plutonium (Z = 94) . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1.6 Very neutron-rich actinides around 288Pu . . . . . . . . . . 43

3.3.2 Lanthanide region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2.1 Barium (Z = 56) . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2.2 Cerium (Z = 58) . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2.3 Neodymium (Z = 60) . . . . . . . . . . . . . . . . . . . . . 46
3.3.2.4 Proton-rich nuclei around 112Ba . . . . . . . . . . . . . . . . 46
3.3.2.5 Very neutron-rich lanthanides around 200Gd . . . . . . . . . 47

3.4 Summary: Octupole-deformed nuclei . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 4 Intrinsic Schiff moment calculations . . . . . . . . . . . . . . . . 50
4.1 Intrinsic Schiff moments in actinide nuclei . . . . . . . . . . . . . . . . . . . 53

4.1.1 Ra (Z = 88) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Ac (Z = 89) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Summary: Intrinsic Schiff moments . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 5 Bayesian machine learning . . . . . . . . . . . . . . . . . . . . . . 59
5.1 The S2n residual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Bayesian statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Bayesian neural network . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.3 Input refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Results of the S2n residual model . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Training set: AME2003; testing set: AME2016-AME2003 . . . . . . . 72
5.3.2 Training sets: AME2003-H, AME2016-H, testing set: JYFLTRAP-2017 75
5.3.3 Two-neutron drip-line of Sn (Z = 50) . . . . . . . . . . . . . . . . . . 75

5.4 Neutron drip-line in the Ca region using Bayesian model averaging . . . . . . 77
5.5 Proton drip-line analysis and two-proton emitters . . . . . . . . . . . . . . . 83

5.5.1 Modified Gaussian process and Bayesian model averaging . . . . . . . 85
5.5.2 Two-proton emitters . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Quantified limits of the nuclear landscape . . . . . . . . . . . . . . . . . . . 90
5.7 Summary: Bayesian machine learning . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . 96
6.1 Octupole deformations and intrinsic Schiff moments . . . . . . . . . . . . . . 96
6.2 Bayesian machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



LIST OF TABLES

Table 4.1: Candidates for atomic EDMmeasurement with 86 ≤ Z ≤ 94 and half-
life t1/2 ≥ 1 second.

〈
Ŝz
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Chapter 1

Introduction

1.1 Overview of nuclear properties

The atomic nucleus came to light in 1911 with the formulation of the model from Ernest

Rutherford [1], following his interpretation of the Geiger-Marsden experiments (more fa-

mously known as the Rutherford gold foil experiment) in 1909 [1]. From the series of

scattering experiments, the first nuclear property studied was the charge and size of the

nucleus.

With many unknowns to be discovered, the atomic nucleus soon became a testing ground

for the rapidly developing field of quantum mechanics. Subsequent studies related to the

stability and fission of the nucleus, called for an accurate description of the nuclear mass, or

its binding energy, which resulted in the liquid drop model (LDM) formulated by Weizsäcker

in 1935 [2].

As one of the first theories to describe the nuclear mass, the LDM provided good approxi-

mation of the experimental nuclear masses, and became the predecessor for many theoretical

approaches used today [3–5].

However, the shortcoming of the original LDM is its assumption that the nucleus re-

sembles the macroscopic spherical droplet. Microscopic description that takes into account

the various quantum mechanical effects of the nucleus is thus required to further advance

nuclear theory. Many microscopic theories that were developed over the years can be divided
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into three main categories: ab initio [6, 7], configuration interaction (shell model) [8, 9], and

nuclear density functional theory (DFT) [10,11].

In order to study the nuclear properties of nuclei across the entire nuclear landscape, the

tool of choice is DFT, which replaces protons and neutrons with nucleonic densities. The use

of nucleonic densities enables us to scale up the nuclear many-body problem with relatively

low computational cost, and also provides an intuitive path to describing and investigating

the shape of the nucleus.

Studying various global nuclear properties, such as size, mass, and shape, can help us

better understand the boundaries of the nuclear landscape, fission process, nucleosynthesis,

and also gives us the tools to probe the fundamental symmetries of our universe.

1.2 Nuclear deformations

The atomic nucleus was initially believed to be spherically shaped. This can be seen in the

formulation of the liquid drop model (LDM) [2] in 1935, which assumed the nucleus to be a

droplet-like sphere. Around the same time, first evidence for a non-spherical nuclear shape

came from the observation of a quadrupole component in the hyperfine structure of optical

spectra, which showed that the electric quadrupole moments of the nuclei were more than

an order of magnitude larger than the maximum value that could be attributed to a single

proton [12,13]. These observations suggested a collective deformation of the nucleus, which

is a result of the nuclear Jahn-Teller effect [14–17].

Most of the quadrupole-deformed nuclei preserve reflection symmetry in their ground

states. However, in rare cases, the nucleus can spontaneously break this intrinsic reflection

symmetry, and acquire non-zero octupole moments associated with pear-like shapes [18–20]
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(see Refs. [21,22] for comprehensive reviews).

Due to the intrinsic reflection asymmetry, the computational requirement is dramatically

increased for calculations involving self-consistent methods. Consequently, early calculations

of these shapes were performed using macroscopic-microscopic (MM) models based on the

shell correction method [3, 4, 23, 24]. Those were followed by self-consistent studies using

nuclear DFT, which made use of different families of energy density functionals (EDFs),

such as Gogny [25–28], BCP [26,29], Skyrme [30,31], and covariant [32–35].

These studies mostly focused on three specific regions: proton-rich actinides, neutron-rich

lanthanides, and neutron-rich heavy and superheavy nuclei which are important for modeling

heavy-element nucleosynthesis, and only a handful of them were global surveys [4,25,31,34,

36]. In order to better understand the systematic trend of octupole instability across the

nuclear landscape and reduce the bias due to a choice of a particular model, it is important

to carry out inter-model comparisons. A global survey of octupole-deformed even-even nuclei

using DFT is presented in Ch. 3, and constitutes an important part of this dissertation.

1.3 Schiff moments

The search for additional sources of charge-parity (CP) violation beyond the standard model

is an ongoing exciting topic, one of the reasons being that the CP violation in the standard

model is too weak to account for the matter and antimatter asymmetry in our universe [37].

If one assumes the CPT theorem to hold, violation of time-reversal (T) is equivalent to CP

violation. One of the best ways to observe T violation (together with parity (P) violation)

is to measure a non-zero static electric dipole moment (EDMS) of electrons, neutrons, or

atoms [38].
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Current atomic experiment has set the lower limit of atomic EDM using 199Hg, at

| d
(
199Hg

)
|< 3.1 × 10−29ecm [39]. Due to the screening effect caused by the atomic

electrons, the nuclear quantity that induces the atomic EDM is the Schiff moment [40].

It has been known for some time [41–43] that the sensitivity between the measured EDM

and the strength of P, T violation coupling constants is enhanced in nuclei with large Schiff

moments. The largest enhancements are predicted to be in nuclei which have low-lying parity

doublets, and is a common characteristic of octupole-deformed nuclei.

Thus, the global survey of octupole-deformed calculation serves also as a precursor for

finding nuclei with potentially large Schiff moments, which could predict better candidates

in the atomic EDM measurements.

1.4 Application of Bayesian machine learning to nuclear

structure models

Machine learning is one of the most rapidly developing computer science / applied mathe-

matics areas in the past decade. Over the years, machine learning techniques have ventured

beyond the scope of computer science and opened up new paths and brought breakthroughs

in multiple disciplines.

It is thus natural to also incorporate these techniques into nuclear physics. Various such

attempts have been made in nuclear physics [44–49]. Compared to an artificial neural network

which determines the model parameters usually via the minimization of some cost function,

a Bayesian neural network (BNN) adopts Bayesian inference techniques and determines the

probability distributions for the model parameters, which in turn provide predictions in

terms of probability distributions. Not only can a Bayesian machine learning approach, such
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as the BNN, improve the predictability of our nuclear physics models, it also addresses the

burning question of uncertainty quantifications for predictions.

1.5 Organization of this dissertation

This dissertation is organized as follows. Formulation of the nuclear DFT and related nu-

clear properties can be found in Ch. 2. The global survey of octupole-deformed even-even

nuclei will be presented in Ch. 3, followed by Ch. 4, which contains results of Schiff moment

calculations in the octupole-deformed actinide region. Chapter 5 describes various applica-

tions of Bayesian machine learning to nuclear binding energy. Finally, conclusions and future

prospects are presented in Ch. 6.
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Chapter 2

Nuclear density functional theory

2.1 Density functional theory

The density functional theory (DFT) was originally developed to investigate the structure

of the electronic many-body systems, and was later adapted to investigate the structure of

nuclear systems.

In nuclear DFT, protons and neutrons are described using nucleonic densities and cur-

rents. The advantage of doing so compared with solving the many-body Schrödinger equation

directly is that in the latter, the problem will quickly become computationally infeasible as

the number of particles increases, whereas this has little impact in the DFT framework. By

replacing the interactions between nucleons with a mean-field, the exact strong nuclear force

does not have to be known, further simplifying the problem. For these reasons, the nuclear

DFT is capable of describing all nuclear systems in the nuclear landscape, and becomes es-

pecially useful in heavy systems where other theories cannot be used. This makes DFT the

preferred theoretical tool to for large-scale surveys of nuclear properties.

2.1.1 General formalism

DFT is firmly rooted in the Hohenberg-Kohn theorems (H-K) [50]. The first H-K theorem

states that the energy of an N -body system can be uniquely determined by the local particle
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density ρ(r), which only depends on the 3N spatial coordinates, thus greatly simplifying

the many-body problem. The second H-K theorem says that for any nondegenerate system

of particles put into a local external field, there exists a universal energy functional of the

particle density E[ρ], which is minimized at the correct ground state density ρg.s.(r). This

minimized energy will correspond to the ground state total energy of the system Emin[ρg.s.] =

E g.s..

To solve the nuclear ground state using the H-K theorems, we are left with two problems

to tackle. First, we need to find the correct energy functional. Since we do not know

the exact nuclear interactions, we’ll have to resort to certain approximations methods. In

practice, an energy density functional (EDF) H(r) is constructed, which is a real, scalar,

isoscalar function of local densities and their derivatives. Integrating H(r) over space gives

the total energy of the nucleus:

E[ρ] =

∫
H(r)d3r. (2.1)

Examples of nuclear EDFs are the Skyrme EDFs (Sec. 2.1.2), Gogny EDFs [51–53], and

covariant EDFs [54–57], which are, respectively, based on the zero-range Skyrme interac-

tion [58,59], the finite range Gogny interaction [10,60], and the meson exchange forces [61].

In my work, Skyrme EDFs are used, due to the simplicities offered by the zero-range inter-

action, and good predictive power when it comes to experiment.

The second problem is to solve for the ground state particle density. In the electronic

system, this is solved by means of variational method prescribed in the Kohn-Sham theorem

(KS) [62]. In a nuclear system, since the nucleus is a self-bound system, this external field

present in the electronic KS formulation is absent and creates conceptual problems. The
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corrective treatments are complicated in practical implementation, thus in practice, nuclear

DFT relies on mean-field variational methods such as the Hartree-Fock and Hartree-Fock-

Bogoliubov method to solve for the ground state density of the nucleus. These methods will

be discussed in Sec. 2.1.3.1 and 2.1.3.2.

2.1.2 Skyrme energy density functional (EDF)

Within the HFB framework, the total energy density H(r) in Eq. (2.1), using the zero-range

Skyrme EDF, can be expressed as:

H(r) = Hkin +Hint +HCoul +Hpair −Hcorr, (2.2)

where the terms on the right hand side correspond, respectively, to the kinetic energy density,

interaction energy density, Coulomb energy density, pairing energy density, and correction

for the spurious center of mass motion [10].

The kinetic energy density can be written as:

Hkin(r) =
~2

2m

(
1− 1

A

)(
τp(r) + τn(r)

)
, (2.3)

where the kinetic densities τ(r) can be expressed with the nonlocal densities ρ
(
r, r′

)
=〈

Ψ
∣∣∣a†
r′ar

∣∣∣Ψ〉 as:

τ(r) = ∇r∇r′ρ
(
r, r′

)
r′=r , (2.4)

The symbol A represents the mass number (total number of nucleons) and
(

1− 1
A

)
is the

center of mass correction. The subscripts q = n, p correspond to neutrons (n) and protons

(p), and will be used in the remainder of this dissertation.
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The interaction energy density of the Skyrme EDF is based on the zero-range Skyrme

force [58,59], and can be written as a sum of the time-even and time-odd terms:

Hint(r) =
∑
t=0,1

(
Eeven
t + Eodd

t

)
, (2.5)

Eeven
t (r) = C

ρ
t ρ

2
t + C

∆ρ
t ρt∆ρt + Cτt ρtτt + CJT J

2
T + C∇Jt ρt∇ · Jt, (2.6)

Eodd
t (r) = Cst s

2
t + C∆s

t st ·∆st + CTt st · Tt + C
j
t j

2
t + C

∇j
t st · (∇× jt) , (2.7)

where ρt, τt are the particle and kinetic energy density, respectively; Jt is the spin-current

tensor energy densities and Jt the spin-orbit current density; st and Tt are the spin density

and spin kinetic density; jt is the momentum density. The symbols t = 0 and t = 1

corresponds to the isoscalar or isovector densities, respectively, ρ0 = ρn+ρp and ρ1 = ρn−ρp.

Additional discussion of these densities can be found in Ref. [10].

In many cases, one is interested in the ground states of even-even nuclei, where time

reversal symmetry is conserved and the time-odd terms (2.7) vanish. Most of the time-even

coupling constants C are real numbers, except for Cρt , which is a density-dependent function:

C
ρ
t = C

ρ
t0 + C

ρ
tDρ

γ . (2.8)

The Coulomb energy density from the protons can be divided into the direct term and

the exchange term, which is a result of the anti-symmetrization:
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HCoul = Hdir
Coul +Hexc

Coul, (2.9)

Hdir
Coul(r) =

e2

2

∫
dr′

ρp(r)ρp
(
r′
)

r − r′
, (2.10)

Hexc
Coul(r) ≈ −3e2

4

(
3

π

)1/3

ρ
4/3
p (r). (2.11)

The above form of Coulomb exchange term is calculated in the Slater approximation [58,63]

to avoid involving non-local densities.

Therefore, the standard Skyrme interaction energy density Hint(r) can be described by

13 parameters: {
C
ρ
t0, C

ρ
tD, C

∆ρ
t , Cτt , C

J
t , C

∇J
t

}
t=0,1

and γ. (2.12)

Furthermore, some of the parameters in (2.12) can be represented in terms of the nuclear

matter (NM) properties: the total energy per nucleon E/A and density ρc at equilibrium;

the isoscalar and isovector effective masses M∗s and M∗v , respectively; the nuclear matter

incompressibility K; the symmetry energy coefficient asym; and the density dependence of

the symmetry energy Lsym. (2.12) can then be represented by the following, more commonly

used parameters: {
ρc, E

NM/A,M∗s ,M
∗
v , K

NM, aNM
sym, L

NM
sym

}
,{

C
∆ρ
t , CJt , C

∇J
t

}
t=0,1

.

(2.13)

The pairing energy density Hpair is to account for the superfluid correlation that involves

nucleons that occupy orbitals with the same quantum numbers but opposite spin; such

nucleons tend to couple into Cooper pairs. The pairing energy density is usually written as:
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Hpair =
∑
q=n,p

V
q
0

2

[
1− ρ0(r)

2ρc

]
ρ̃2
q(r), (2.14)

where V q0 is the pairing strength, and can have different values for protons and neutrons.

ρc ≈ 0.16 fm−3 is the saturation density. ρ0(r) and ρ̃q(r) are the isoscalar particle density

and the pairing density, respectively.

2.1.3 Hartree-Fock-Bogoliubov method (HFB)

2.1.3.1 Hartree-Fock method

The ground state density of a nuclear system is obtained by using the variational methods

such as the Hartree-Fock (HF) and Hartree-Fock-Bogoliubov method (HFB).

The HF equation is obtained by varing the energy functional E[ρ] (2.1) with respect to

the particle density ρ:

δE[Ψ] = 0, (2.15)

with

E[Ψ] =
〈Ψ|E[ρ] |Ψ〉
〈Ψ|Ψ〉

. (2.16)

The HF ground state wave function |Ψ〉 is represented by a Slater determinant [64] of single

particle (KS) states

|Ψ〉 =
A∏
i=1

â
†
i |0〉 , (2.17)

where the HF creation and annihilation operators â†k, âk act on the HF vacuum, and rep-

resent the single particle wave functions φk. The single particle wave functions are the
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eigenfunctions of the single particle (KS) Hamiltonian ĥ:

ĥ(i)φk(i) = εk(i)φk(i), i = {ri, si, qi}, (2.18)

which sums up to be the total Hamiltonian of the HF system ĤHF =
A∑
i=1

ĥ(i). In practice, we

usually solve the HF equations in the configuration space on some complete and orthogonal

set of basis functions {χl}:

φk =
∑
l

Dlkχl. (2.19)

For each χl, we can define their corresponding fermion operators ĉ†l , ĉl, and express the single

particle operators â†k, âk as:

â
†
k =

∑
l

Dlk ĉ
†
l ,

âk =
∑
l

Dlk ĉl.

(2.20)

2.1.3.2 Bogoliubov transformation and the HFB equations

The HF wave function does not take into account the short-range particle-particle correla-

tions. In practice, the HF method is often used in parallel with the BCS pairing model [65],

which is an analog of the BCS theory for superconductivity [66]. The HFB method combines

and generalizes both the HF and BCS theory. The HFB ground state wave function can be

written as:

|Ψ〉 =
∏
k

β̂
†
k |0〉 , (2.21)

where β̂†k, β̂k are the quasi-particle (q.p.) operators which obey the fermion anti-commutation
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relation, and relates to the operators ĉ†l , ĉl in (2.20) via the Bogoliubov transformation:

β̂k
†

=
∑
l

Ulk ĉ
†
l + Vlk ĉl,

β̂k =
∑
l

U∗lk ĉl + V ∗lk ĉ
†
l .

(2.22)

We can define a unitary transformation matrix W†,

W † ≡

 U† V †

V T UT

 , (2.23)

and rewrite the transformation (2.22) as

 β̂

β̂†

 =W†

 ĉ

ĉ†

 . (2.24)

Using the matrices U , V , the particle density ρll′ = 〈Ψ| ĉ†
l′ ĉl |Ψ〉 and the HFB pairing tensor

κ = 〈Ψ| ĉl′ ĉl |Ψ〉 can be written in the matrix form as:

ρ = V ∗V T ,

κ = V ∗UT .
(2.25)

The pairing tensor κ is simply related to the pairing density ρ̃ (2.14) [67]. The densities ρ

and ρ̃ (or κ) uniquely define the energy of the system according to the H-K theorems [68].

Variation of the total energy 2.1 with respect to ρ and ρ̃ yields the HFB equations [69]:

 h− λ ∆

−∆∗ −h∗ + λ


 Uk

Vk

 = Ek

 Uk

Vk

 , (2.26)
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with

hij = tij +
∑
kl

v̄iljkρkl,

∆ij =
1

2

∑
kl

v̄ijklκkl,

(2.27)

where h is the self-consistent HF field, ∆ is the self-consistent pairing field, and λ is the chem-

ical potential. The HFB equation eigenvalues Ek represent q.p. energies, and (Uk, Vk)T are

the HFB eigenvectors of the HFB ground state. Due to the density dependence of the

mean-fields, the HFB equations are non-linear and thus need to be solved using a self-

consistent approach, such as iterative diagonalization. Various HFB solvers exists, e.g. HF-

BTHO(v3.00) [70] and HFODD (v2.73y) [71]. The former is the main solver that I used for

calculations in this dissertation, and the latter contains more functionalities and the ability

to break all self-consistent symmetries.

2.1.4 Other considerations

2.1.4.1 Constrained calculations

The Bogoliubov transformation (2.22) does not conserve particle number, thus we need

to control the correct particle number by introducing a constraint. A common method to

introduce constraints is to use the Lagrangian multiplier method. The modified total energy,

or Routhian, E′ can be written as:

E′ = E − λn
〈
N̂n

〉
− λp

〈
N̂p

〉
, (2.28)

where N̂n, N̂p are the neutron and proton particle number operators, λn and λp are the

corresponding Fermi energies, which are determined once the conditions
〈
N̂q

〉
= Nq are met.
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Other more advanced restoration schemes, such as the Lipkin-Nogami method [69,72–75] are

also commonly used.

Constraints on the deformation of the nucleus can also be introduced via Lagrangian

multipliers Cλµ:

E′ = E −
∑
λµ

Cλµ

(〈
Q̂λµ

〉
− Q̄λµ

)2
, (2.29)

where the Q̂λµ are the mass multipole moment operators and Q̄λµ the desired values of the

multipole moments. Another commonly used method for constraining the deformations is

the linear constraint method [76],

E′ = E −
∑
λµ

Cλµ

(〈
Q̂λµ

〉
− Q̄λµ

)
, (2.30)

where the Lagrange parameters Cλµ are readjusted at every iteration following the proce-

dures in Ref. [76]. This method for the multipole moment constraint is implemented in

recent versions of the HFB solvers HFBTHO [70,77] and HFODD [71,78].

2.1.4.2 Deformations

One way to describe the deformation of the nucleus is to use the length of the radius vector

at a given point on the nucleus’ surface. It can be expanded using the orthonormalized

spherical harmonics [68]:

r(θ, φ) = R0

1 + α00 +
∞∑
λ=1

λ∑
µ=−λ

α∗λµYλµ(θ, φ)

 . (2.31)

In (2.31) R0 is the radius of a sphere that has the same volume as the nucleus. The constant

α00 serves to fix the volume of the nucleus to V = 4
3πR

3
0. In the small deformation limit,

15



the λ = 1 terms mostly describe the translation of the nucleus as a whole, and are usually

fixed by constraining the center of mass of the nucleus to the origin:

∫
V
rd3r = 0. (2.32)

This condition is automatically satisfied if the system is reflection symmetric, in which case

the expansion, equation 2.31, only contains even-valued λ terms. In systems with non-zero

odd-value λ > 1 terms, e.g. in reflection asymmetric nuclei, one needs to constrain the

corresponding Q1µ (2.29) to zero in order to correctly describe the nuclear deformations.

In an axially symmetric system, all µ 6= 0 terms of αλµ become zero, and the remaining

non-zero αλ0 are usually called βλ. The λ = 2, 3, 4, ... terms describe the quadrupole,

octupole, and hexadecapole deformations etc., respectively.

Another way to describe the deformations, which relate to the βλ values, are the mass

multipole moments Qλ0. Unlike the dimensionless βλ values, the multipole moments are

subject to an arbitrary constant factor. A common definition for the quadrupole (λ = 2)

and octupole (λ = 3) moments is:

Q20 =
〈

2z2 − x2 − y2
〉
,

Q30 =
〈
z
(

2z2 − 3x2 − 3y2
)〉

,

(2.33)

where they relate to the deformation parameters β2 and β3 via:

β2 = Q20/

(√
16π

5

3

4π
AR2

0

)
,

β3 = Q30/

(√
16π

7

3

4π
AR3

0

)
.

(2.34)
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For R0 one usually adopts the semi-empirical expression R0 = 1.2A1/3 fm.

In practice, one needs to be wary of the potentially different definitions of the multipole

moments when comparing results. A somewhat safer option is to compare βλ parameters.

2.1.4.3 Blocking calculation for odd systems

In an even-odd or odd-odd nucleus, the unpaired nucleons carry non-zero angular momen-

tum. The non-zero angular momentum breaks time-reversal symmetry, which results in the

presence of time-odd fields (2.7). In the HFB framework, the so-called particle blocking is

required, making calculations in odd systems more computationally involved compared to

their even-even neighbors.

In HFB, an odd-A nucleus can be viewed as a one q.p. excitation β̂
†
µ0

with respect

to the ground state of its even-even neighbor. For instance, in the case of a even-proton,

odd-neutron nucleus (Z,N), its ground state wave function can be expressed as:

|Ψ(Z,N)〉 = β̂
†
µ0
|Ψ(Z,N − 1)〉 , (2.35)

where µ0 represents the quantum numbers of the blocked state [79]. A full blocking method

treats the time-reversed component µ̄0 of the q.p. state µ0 properly when modifying the

density matrix and pairing tensor (2.25). For the detailed description of blocking, see

Refs. [79–81]

An approximate approach to blocking is the so-called equal filling approximation (EFA) [82,

83]. EFA treats the Kramers-degenerate states µ0 and µ̄0 with equal weights when they enter

the density matrix and pairing tensor (2.25), thus conserving time-reversal symmetry. This

allows odd systems to be calculated in the absence of the time-odd fields (2.7).
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It has been shown that EFA is practically equivalent to the exact blocking when time-

odd fields are set to zero, and even when they are switched on, the impact to the ground

state energy is rather small [77,81]. Thus EFA can be used to explore odd systems, without

needing to deal with the time-odd terms (2.7).

2.2 Schiff moment and the atomic electric dipole moment

The Schiff moment [40] serves as a bridge between the atomic electric dipole moment (EDM)

and the parity (P ) and time-reversal (T ) symmetry violating nucleon-nucleon (πNN) inter-

action mediated by the pion. Several estimates of the atomic EDM expressed in terms of

the Schiff moment have been given, e.g. 129Xe [84–86], odd-mass isotopes of Rn, Fr, Ra, Ac,

and Pa [87], and 239Pu.

Because of atomic electrons’ screening [40], the nuclear quantity that induces the the

atomic EDM is not the nuclear dipole moment but rather the Schiff moment (to the first

order [88]),

S ≡ 〈Ψ0| Ŝz |Ψ0〉 =
∑
i6=0

〈Ψ0| Ŝz |Ψi〉 〈Ψi| V̂PT |Ψ0〉
E0 − Ei

+ c.c., (2.36)

where |Ψ0〉 is the member of the ground state multiplet with the maximum z-axis projection

of the angular momentum J , and the sum runs over all excited states |Ψi〉. Ŝz is the third

component of the Schiff operator, written as:

Ŝz =
e

10

∑
p

(
r2
p −

5

3
r̄2
ch

)
zp. (2.37)

The energy denominator in Eq. (2.36) implies that the lowest excited states dominate
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the sum in (2.36). This makes octupole-deformed nuclei of particular interest. An octupole-

deformed nucleus with odd-numbered neutrons or/and protons, is commonly accompanied

by the existence of a parity doublet, which is a near-degenerate state with the same angular

momentum as the ground state but with reversed parity [21, 22, 89]. For instance, in 225Ra

the energy splitting between the ground state with Jπ = 1/2+ and its opposite parity partner

with Jπ = 1/2− is ∆E ≈ 55keV [90]. In the rigid-deformation limit of DFT, the ground

state |Ψ0〉 =
∣∣J+

〉
and its opposite parity partner

∣∣Ψ̄0
〉

=
∣∣J−〉 are projections onto good

parity and angular momentum of the same intrinsic state, and the Schiff moment (2.36) can

be approximated as [91]:

S ≈ −2
〈Ψ0| Ŝz

∣∣Ψ̄0
〉 〈

Ψ̄0

∣∣ V̂PT |Ψ0〉
∆E

= −2
J

J + 1

〈
Ŝz

〉〈
V̂PT

〉
∆E

, (2.38)

where
〈
Ŝz

〉
and

〈
V̂PT

〉
are the expectation values of Sz and VPT in the intrinsic frame of

the nucleus.

The work that I have done in this dissertation focus on evaluating the intrinsic Schiff

moment
〈
Ŝz

〉
expression (2.37) in the framework of HFB. Assuming axially symmetric

(around z-axis) deformations, it can be expressed in the integral form:

〈
Ŝz

〉
≡ e

10

∫
ρpr

2
pzpd

3r. (2.39)

This expression (2.39) will be evaluated for odd-A and odd-odd systems in the actinide

region (Ch. 4) that have one nucleon more than their even-even neighbors predicted to be

octuple-deformed in Ch. 3.
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Chapter 3

Global survey of octupole-deformed

even-even nuclei

In this chapter, I’ll discuss the procedure and final results of the global survey of octupole-

deformed even-even nuclei. Part of the results have been published on arXiv [92] and sub-

mitted to Physical Review C.

Calculations for the octupole-deformed even-even nuclei are performed using a modified

version (Sec. 3.1.4) of the HFBTHO (v3.00) solver. Particle number symmetry is restored

using the Lipkin-Nogami prescription, and the linear constraint method is used for the

deformation constraints (Sec. 2.1.4.1).

We selected five Skyrme energy density functionals (SEDFs, see Sec. 2.1.2): UNEDF0 [93],

UNEDF1 [94], UNEDF2 [95], SLy4 [96], and SV-min [97] to perform the calculation of

octupole-deformed even-even nuclei. The selection of these interactions comes naturally as

this work is an extension to the quadrupole mass-table calculated in 2012 that used the above

SEDFs [98]. The root-mean-square (rms) error of BE, when comparing to the experimental

masses in the mass evaluation AME2016 [99], ranges from 1.7 MeV (UNEDF0) to 5.3 MeV

(SLy4).

Reflection-asymmetric calculations were performed in all even-even nuclei with Z ≤ 120,

starting with neutron numbers around (less than) the proton drip-line and a few beyond
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the neutron drip-line, to ensure all bound systems are included, up to neutron number

N = 300. A total of 2836 nuclei were computed for each of the SEDFs, resulting in five

octupole-deformed mass-tables.

In the results reported here, we removed all systems with Z ≥ 112, due to the fact

that Coulomb frustration at this region could introduce exotic shapes such as bubbles and

tori [100–105], and multipole moments constraints are insufficient in describing these nuclear

shapes. The results in this region display frequent crossings among two-neutron separation

energy lines between different isotopic chains, and irregular jumps in the deformations within

a given isotopic chain, which indicates instability of the results.

3.1 Technical details of the global calculation

3.1.1 Potential energy surface (PES) and the HFB ground-state

Within the nuclear DFT framework, a common strategy to find the shape of a nucleus is to

perform a set of constrained calculations to create the potential energy surface (PES).

By employing the Lagrange multiplier method, we can constrain the deformation of

the nucleus in terms of its multipole moments, i.e. quadrupole moment Q20 and octupole

moment Q30 etc.(Sec. 2.1.4.2), to find the energy of the nucleus at this particular shape.

We can then create a two-dimensional grid, where each mesh point would correspond to a

value of (Q20, Q30), and perform constrained calculations for the entire surface. After these

calculations converge, each (Q20, Q30) pair will have a corresponding energy, in our case

where the Hartree-Fock-Bogoliubov method is used, the HFB energy. The global minimum

of these energies will be chosen as the nucleus’ ground-state (g.s.) binding energy (BE) in

the PES, and thus the corresponding (Q20, Q30) are its g.s. deformations.
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Figure 3.1 is an example of a PES for the 224Ra nucleus using the SLy4 Skyrme EDF.

The white circle, (Q
PES g.s.
20 , Q

PES g.s.
30 ) = (1711 fm2, 3312 fm3), represents the position of

the g.s. deformations, and its BEPESg.s. (-1710.705 MeV) serves as the zero-energy of the

color contour.

Figure 3.1: Potential energy surface of 224Ra calculated using Skyrme energy density
functional SLy4. The white circle marks the lowest binding energy, which serves as the
baseline energy value.

Since the size of the grid is finite, values are interpolated in between calculated mesh

points. In addition, the finite grid implies that the true g.s. of the system is believed

to be in the vicinity of (Q
PES g.s.
20 , Q

PES g.s.
30 ). Thus, one needs to perform an additional

unconstrained calculation, by removing the Lagrangian multiplier terms used to constrain

the multipole moments, and restart the HFB calculation from the converged g.s. many-

body wave functions. Since the HFB equation is rooted in the variational principle, we

are guaranteed to find a configuration with a lower energy compared to BEPES g.s.. This

22



resulting configuration from the unconstrained calculation is then the true HFB g.s. with

deformation (Q
HFB g.s.
20 , Q

HFB g.s.
30 ).

3.1.2 PES grid selection

Ideally, one would choose a PES grid as dense and as large as their time and budget allows.

The choice for density of the grids is arbitrary and subject to benchmarks. The PES for

a nucleus in a HFB mass-table calculation usually consists around 150 mesh points, as

this has been proven effective in finding the HFB g.s. with benchmarks using the two-step

constrained + unconstrained method mentioned above.

Very large Q20 and Q30 values correspond to extreme and unstable shapes in a fission

process, where one would not expect a g.s. to be located. This limits the range, or area,

of the PES we have to calculate. Although the deformation constraints are imposed on the

expectation values of multipole moments using Lagrangian multipliers, these moments scale

with the size of the nucleus. For a fixed shape, we have:

Q20 ∝ R2
0 ∝ A2/3,

Q30 ∝ R3
0 ∝ A.

(3.1)

Thus, when setting up the PES for a global mass-table calculation that includes masses

ranging from 4 to 420, the range of Q20 and Q30 differs greatly, and instead, one should

define the PES grids across all mass ranges using the deformation parameters β2 and β3,

such that for axially symmetric nuclei with identical βλ values, their shapes are identical.

In our latest octupole mass-table calculations, the range of β2 and β3 is [−0.35, 0.35] and

[0, 0.4], respectively, and the step-size 0.05 and 0.1, respectively, creating a PES containing
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15× 5 = 75 (β20, β30) mesh points for each nucleus. In the actual HFB calculations, the βλ

values are converted to the moments Qλ0 using Eq. (2.34).

3.1.3 Kick-off mode and characteristics of the calculation

The conventional two-step procedure of finding the nuclear g.s. is cumbersome, in the sense

that at every point on the PES we first need to generate a “restart” file, which stores infor-

mation of the current nuclear configuration in order to start the unconstrained calculations.

To save storage, one could perform a PES without creating all the “restart” files, identify

the (Q
PES g.s.
20 , Q

PES g.s.
30 ), then redo the constrained calculation for this deformation while

allowing it to generate a “restart” file.

An improved solution is to combine the two steps of constrained and unconstrained

calculations, and use a so-called kick-off mode. This was introduced in the HFB solver

HFBTHO (v2.00d) [77] and subsequently improved in the latest HFBTHO (v3.00) [70], where

a derived version from the latter was used to perform our octupole mass-table calculation.

The idea of kick-off mode is to start the HFB calculation with moment constraints,

continue this for the first Nkickoff iterations or until the convergence criteria εkickoff is met,

then release the constraints and allow the HFB calculation to smoothly transit into an

unconstrained calculation. By experimenting with the Nkickoff and εkickoff parameters, we

were able to determine that with Nkickoff = 20 and εkickoff = 1.0 the number of PES points

needed to find the g.s is reduced. This was tested in all bound O, Th and Fm isotopes.

One can think of this pre-releasing of the constraints as granting the calculation a sort of

“search radius”, where the calculation is allowed to iterate in the first 20 steps to find roughly

the density configuration near the given constraints, then release the constraints and let the

variational principle take us to the minimum. Using too small a Nkickoff value does not
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“guide” the calculation long enough to get close enough to the initial multipole moments,

and using too large a Nkickoff value, in the extreme of infinity, is equivalent to the combined

two-step procedure, and does not reduce the number of PES points.

The effectiveness of kick-off mode has been throughly tested and benchmarked prior to

the global calculations. The adopted mesh is βi2 ∈ [−0.35, 0.35], βi+1
2 − βi2 = 0.05 and

βi3 ∈ [0, 0.4], βi+1
3 − βi3 = 0.1. This selection reproduces g.s. BE (within 10eV) of all bound

nuclei in O, Ca, Gd, Dy, Th, and Fm isotopic chains when compared with PES calculations

that use dense populated grids, where the kick-off calculations are able to converge within

200 iterations in most cases. We also performed these kick-off calculations by doubling the

number of mesh points in β2 and β3, and found no significant decrease in the computed g.s.

energies.

Although the kick-off mode is able to reduce the number of points by at least 50%, the

disadvantage of kick-off mode is that we can no longer create a PES contour plot such as

Fig. 3.1, since the converged calculations have (Q20, Q30) that are randomly spaced and

sometimes clustered. However, if one is only interested in the global nuclear g.s. properties,

kick-off mode can provide us with a more efficient solution, while providing equally high

quality predictions.

Following the completion of the octupole mass-table, we selected nuclei that have zero

octupole deformation and then performed reflection-symmetric calculations. The average

g.s. BE difference between these benchmarks and the reflection asymmetric octupole mass-

tables is 4 eV, with the largest difference at 26 eV, which demonstrates that HFBTHO (v3.00)

solver handles the breaking of reflection symmetry with high precision.

The g.s. of each nucleus is selected to be the output that has the lowest binding energy

among results from the 75 inputs. In practice, not all inputs will converge, as we limited the
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maximum number of HFB iterations to be 1000. In limited cases where the nuclear g.s. come

from the HFB calculation that requires more than 1000 iterations, the additional iterations

decrease the g.s. BE on the order of 10 eV, which does not justify the cost of increasing the

iteration limit.

We limit the number of harmonic oscillator shells in the basis to 20, as increasing this

number to 30 shells did not bring any improvements. Out of the 75 (Q20, Q30) points,

the percentage of converged mesh points varies between EDFs: UNEDF0 (78%), UNEDF1

(31%), UNEDF2 (62%), SV-min (94%), and SLy4 (95%). We believe this percentage does

not have any impact on the quality of the g.s. BE predictions, as one could see in Fig. 3.2

that the rms deviation of BE predicted by UNEDF1 is similar to UNEDF2.
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Figure 3.2: Binding energy residuals for Skyrme EDFs UNEDF0, UNEDF1, UNEDF2, SV-
min, SLy4, and SkP mass-tables. Red dots are from quadrupole-deformed calculation [98],
blue dots are from the current octupole-deformed mass-table. All rms deviations are im-
proved in the latest calculations. The large shift in binding energy residuals in the SkP
mass-table is due to the different pairing strengths used in these two calculations. Conse-
quently, results from SkP calculations have not been considered.

In a few cases, the lowest binding energy was obtained at deformations that clearly went
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beyond the fission barrier, such as β2 as large as 1.5. Hence, we discarded all outputs with β2

and β3 greater than 0.5. All nuclei with deformation β2 > 0.4 have been manually inspected,

the ones with β2 > 0.5 are prone to have suspiciously low minima, creating sharp kinks in

the separation energy. We realize that this is by no means the most rigorous approach to

deal with large deformations, as one should look at the PES in each case to be certain, but

given the scale of calculation involved we find this compromise reasonable.

Finally, as a reminder, one always need to check if the dipole moment of the nucleus is

constrained to zero (Sec. 2.1.4.2), which is essentially requiring the center of mass of the

nucleus to be the same as the origin of the intrinsic reference frame.

3.1.4 Computational aspects

The 2836 nuclei in each mass-table, together with the 75 deformation mesh points for each

nucleus, resulted in a total of 212,700 entries for each of the five SEDFs. Each entry is

itself an individual HFB calculation, which takes anywhere from 10 minutes to 4 hours to

complete, with an average of 2 hours for the UNEDF family of SEDFs and 40 minutes

for SLy4 and SV-min, using the Intel Xeon E5-2680 processor at iCER [106]. This puts

us at roughly 2 million CPU-hour for these five mass-tables and their related benchmarks.

Although HFBTHO (v3.00) has OpenMP capability, no OpenMP were used in these global

study as we would like to achieve 100% efficiency.

Adjustments to the MPI of HFBTHO (v3.00) was made. The parallel mass-table mode

is now modified to allow for octupole deformation constraints in the input file. The default

MPI uses the static scheduling scheme, where each MPI task will be assigned a fixed set of

grids to calculate at the beginning of a parallel run. This quickly proves to be inefficient for

global calculations, since the total time needed for all MPI tasks is determined by the slowest
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MPI task. Additionally, in almost every batch of computation (1000 MPI tasks), there will

be task that freezes, likely caused by hardware issues, creating further complications. We

have thus replaced this static scheduling scheme with dynamic scheduling, where a MPI task

was designated as a manager. Once a worker task completes its calculation and becomes

available, it would send a message to a manager to acquire a new task. In this dynamic

scheduling scheme, the worst-case scenario was for all MPI tasks to wait for one single tasks

to complete. This greatly reduced the load imbalance in this large-scale computation.

By implementing dynamic scheduling, according to conservative estimates, roughly 50%

of computational cost was saved. Together with the reduced PES sizes required by using

the kick-off mode, an estimated 6 million CPU-hours were saved at the conclusion of our

octupole project.

3.2 Global results

3.2.1 Comparison with the 2012 quadrupole survey

Figure 3.2 is the BE residual (difference with respect to experimental masses from AME2016 [99])

obtained in the current octupole mass-tables (blue dots) and the 2012 quadrupole mass-tables

(red dots) [98]. The overall rms error and the improvements are in units of MeV. For UN-

EDF0, UNEDF1, UNEDF2, SLy4, and SV-min a slight improvement in the rms error has

been obtained, likely due to the additional octupole degree of freedom; this can be seen in

the separation of blue and red dots around N = 130, which is where most of the octupole-

deformed nuclei are located. The octupole mass-table of SkP (lower right) and SkM* (not

displayed here) was left out of the current study due to the dramatic improvement in the

rms error compared with their 2012 mass-table [98]. This improvement is clearly systematic,
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and not just in the octupole-deformed region. We believe this has been caused by different

pairing parameters used than the previous mass-table. Unfortunately, since the original pair-

ing parameters of SkP and SkM* used for the 2012 mass-table [98] could not be retrieved,

and the currently used pairing parameters have not been benchmarked, we decided to leave

these two SEDFs out of the current study. The pairing strengths for SLy4 and SV-min

were assumed to be -258.2 MeV and -214.28 MeV, respectively, assuming the same value for

neutrons and protons, consistent with the 2012 mass-table [98].
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Figure 3.3: Total g.s. quadrupole deformation β2 of even-even nuclei in the (Z,N) plane
predicted with the SEDFs UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min from the cur-
rent reflection-asymmetric calculations. Spherical shell closures can be easily seen.

Figure 3.3 shows the landscape of quadrupole deformation from the our calculations (note:

unbound nuclei have not been removed from this figure). The prediction of quadrupole

deformation is identical to the 2012 survey, which can be found on MassExplorer [107],

a data distribution platform for theoretical nuclear data of our research group. In most
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cases, the Q20 values obtained in the reflection-symmetric calculations are similar to that in

our reflection-asymmetric calculations, which could also be seen in the example of Fig. 3.1.

However, in rare cases, particularly near the end of the range of octupole deformation in an

isotopic chain, this is not guaranteed, as the octupole minimum becomes shallower.

3.2.2 Octupole deformation β3

The g.s. octupole deformations β3 obtained in our calculations are displayed in Fig. 3.4.

There is a good inter-model consistency, with large octupole deformations predicted around

146Ba (neutron-rich lanthanides), 200Gd (very neutron-rich lanthanides), 224Ra (neutron-

deficient actinides), and 288Pu (neutron-rich actinides), i.e., in the regions of strong octupole

collectivity defined by the presence of close-lying proton and neutron shells with ∆` = ∆j =

3 [21]. This finding is consistent with previous global studies [4, 25,31,34,36].

In each region of octupole-deformed nuclei, the magnitude of octupole deformation in-

creases with the number of valence nucleons. All five SEDFs predict neutron-deficient and

neutron-rich actinides to exhibit strong octupole deformations, while predictions in the lan-

thanide region are less uniform regarding which nuclei are deformed and how deformed they

are. In general, UNEDF2 and SLy4 predict the largest number of octupole-deformed nuclei

and also larger values of β3. In both models, proton-rich nuclei around 112Ba are expected

to be reflection-asymmetric. The functional UNEDF0 predicts the least amount of octupole-

deformed nuclei and smaller β3 deformations overall.
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Figure 3.4: Total g.s. octupole deformations β3 of even-even nuclei in the (Z,N) plane
predicted with the SEDFs UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min. The magic
numbers are indicated by dashed lines. (Figure taken from Ref. [92])

3.2.3 Octupole deformation energy ∆Eoct

The magnitude of octupole deformation, i.e. β3, alone is insufficient in determining whether

robust octupole deformation is present since it does not provide any information on the

softness of the potential energy surface in the octupole direction. To address this point, we

also look at the gain in binding energy ∆Eoct due to octupole deformation:

∆Eoct = Ea (β2, β3)− Es (β′2, β′3 = 0
)
, (3.2)

where Ea is the absolute binding energy obtained in reflection-asymmetric calculations, and

Es is the binding energy minimum from reflection-symmetric calculations. These two minima

do not necessarily have the same quadrupole deformation, but as mentioned in Sec. 3.2.1,

31



they are expected to be very close.
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Figure 3.5: Similar to Fig. 3.4 but for the octupole deformation energy ∆Eoct. (Figure
taken from Ref. [92])

The octupole deformation energies ∆Eoct predicted in our mass-table calculations are

shown in Fig. 3.5. We can see that lanthanide nuclei have appreciably smaller ∆Eoct values

as compared to the actinides in spite of similar octupole deformations. This indicates that

most of the reflection-asymmetric lanthanide nuclei are predicted to have very soft PESs in

the octupole direction, regardless of the equilibrium value of β3.

The values of ∆Eoct and β3 of nuclei with at least three SEDFs predicting it as octupole-

deformed are displayed in Table A.1.
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3.2.4 Octupole multiplicity: Joint analysis with covariant EDFs

In an effort to obtain a more robust picture of octupole deformations, we combined the oc-

tupole predictions from our five SEDFs calculated using the HFB method and four covariant

energy density functionals (CEDFs) DD-ME2 [54], DD-PC1 [57], NL3* [55], and PC-PK1 [56]

using the relativistic Hartree-Bogoliubov method (RHB), in Fig. 3.6. Most of the CEDFs

results can be found in Ref. [35]. We define the model multiplicity m(Z,N) = k if a nu-

cleus (Z,N) is predicted by k models (k = 1, . . . 9) to have a nonzero octupole deformation.

Nuclei predicted by all nine EDFs as octupole-deformed (i.e., m = 9) are shown by stars.

These are: 146Ba, 224,226Ra, 226,228Th, and 228Pu in the regions experimentally accessible;

288,290Pu, 288,290Cm, and 288,290Cf in the very neutron-rich actinides region. Apart from

the overall agreement between SEDFs and CEDFs when it comes to the predicted regions of

octupole-instability, we see systematic shifts (by 2-4 neutrons) between the regions of ∆Eoct

and β3 obtained by these two energy density functionals (EDF) families. This systematic

effect is illustrated in Fig. 3.7, where dots mark the SEDFs’ predictions with m ≥ 3, squares

show the CEDFs’ predictions with m ≥ 2, and diamonds mark the overlap of the two. This

shift has been noticed in Ref. [35] pertaining to superheavy nuclei.

3.2.5 Single particle orbitals in octupole-deformed regions

Microscopically, octupole deformations can be traced back to close-lying pairs of single-

particle (s.p.) shells coupled by the octupole field [21]. Each pair consists of the unusual-

parity intruder shell (`, j) and the normal-parity shell (` − 3, j − 3). Consequently, the

regions of nuclei with strong octupole correlations correspond to particle numbers near 34

(g9/2 ↔ p3/2 coupling), 56 (h11/2 ↔ d5/2), 88 (i13/2 ↔ f7/2), 134 (j15/2 ↔ g9/2), and 196
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Figure 3.6: The landscape of g.s. octupole deformations in even-even nuclei. Circles
and stars represent nuclei predicted to have nonzero octupole deformations. The model
multiplicitym(Z,N) is indicated by the legend. The boundary of known (i.e., experimentally
discovered) nuclei is marked by the solid green line. For simplicity, this boundary is defined
by the lightest and heaviest isotopes discovered for a given element. The average two-
nucleon drip lines from Bayesian machine learning studies [108, 109] are marked by dotted
lines. Primordial nuclides [110] are indicated by squares. (Figure taken from Ref. [92])
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Figure 3.7: Comparison between SEDFs and CEDFs predictions. Dots mark the SEDFs
predictions with m ≥ 3, squares show the CEDFs predictions with m ≥ 2, and diamonds
mark the overlap region between SEDFs and CEDFs results. The borders of known nuclei
and two-particle drip lines are as in Fig. 3.6. (Figure taken from Ref. [92])
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Figure 3.8: Single-particle energy splitting ∆e between the unusual-parity intruder shell
(`, j) and the normal-parity shell (`− 3, j− 3) for five nuclei representing different regions of
octupole instability. The s.p. canonical states were obtained from spherical HFB/RHB cal-
culations. The neutron (proton) splittings are indicated by the solid (dashed) lines. (Figure
taken from Ref. [92])

(k17/2 ↔ h11/2).

Figure 3.8 shows the energy splitting

∆e = e(`, j)− e(`− 3, j − 3), (3.3)

between s.p. canonical shells obtained from spherical HFB/RHB calculations. In general,
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there is a systematic decrease of ∆e with mass, which – together with the increased degen-

eracy of s.p. orbits (and matrix elements of the octupole coupling) – results in enhanced

octupole correlations in heavy nuclei. However, while this general trend is robust, the magni-

tude of ∆e is not a good indicator of octupole correlations when comparing different models.

Indeed, when comparing different models one also needs to consider other factors related

to each model’s structure. For instance, the isoscalar effective mass of SLy4 is close to 0.7,

which effectively increases the s.p. splitting as compared to UNEDF models (which have

effective mass close to one). As a result, although in most cases SLy4 has larger ∆e than

UNEDF1, it predicts more octupole-deformed nuclei and larger ∆Eoct values. It is safer and

more instructive to compare predictions of the UNEDF family of SEDFs, as their properties

are not very different. Here, the UNEDF2 parametrization, constrained to the spin-orbit

splittings in several nuclei, yields the lowest values of ∆e for neutrons and predicts the

strongest octupole correlations, see Figs. 3.5 and 3.6.

3.3 Local regions of octupole ground-state deformations

The majority of nuclei with g.s. octupole deformation are found near the intersection between

neutron numbers 88, 134, and 194 and proton numbers 56 and 88. This pattern is more

pronounced in heavy nuclei, due to their lower values of ∆e, see Fig. 3.8.

I will be discussing the octupole collectivity in the actinide region (Z ≈ 88) in sec-

tion 3.3.1, and the lanthanide region (Z ≈ 56) in section 3.3.2 , with a focus on the cases

robustly predicted to be octupole-deformed in our SEDF calculations. Our SEDFs’ results

will be compared with octupole predictions using other theoretical methods: macroscopic-

microscopic (MM) method using FRLDM interaction [22], generator coordinate method
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(GCM) using Gogny interaction [23], Hartree-Fock + BCS (HF+BCS) method with Skyrme

interaction SkM* [3], and the RHB method discussed earlier (Sec. 3.2.4). Except for the

MM approach [22] that made predictions for odd-odd and odd-A nuclei, all other mentioned

methods are calculated for even-even nuclei only.

We note that all EDFs used in this study provide robust and consistent predictions for

quadrupole moments, which generally agree well with available experimental data [111–113].

This suggests that the quadrupole collectivity is well developed. On the other hand, in

many nuclei, the octupole deformation energy has a modest value of less than 500 keV. Such

small values of ∆Eoct indicate soft PESs resulting in the octupole collectivity of transitional

character, i.e., between octupole rotational and vibrational collective motions [21]. While

in this work we refer to a nucleus as octupole-deformed when it has β3 6= 0, this does not

mean that this octupole deformation is static. For octupole-soft, transitional nuclei, beyond

mean-field methods are needed to describe the system [26,28,29,36,114–117].

3.3.1 Actinide region

Because of large octupole correlation effects and experimental accessibility, neutron-deficient

actinides have traditionally been in the spotlight of octupole deformation studies. As seen

in Fig. 3.6, this region is expected to be abundant in octupole-deformed nuclei, with many

systems predicted robustly by several models, i.e., having high octupole multiplicity.

3.3.1.1 Radon (Z = 86)

The isotopes 218,220Rn and 224,226Rn have been found experimentally to be close to the oc-

tupole vibrational limit [111,118–120]. As seen in Fig. 3.9, |∆Eoct| reaches its maximum for

220Rn, with an average value around 0.5 MeV. These shallow octupole minima suggest that
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Figure 3.9: Predicted β2, β3, and ∆Eoct values for even-even Rn (Z = 86) isotopes.

neutron-deficient Rn isotopes are transitional systems, consistent with experiment. Interest-

ingly, UNEDF0 predicted the largest |∆Eoct| for Rn isotopes among the SEDFs. As we shall

see later, UNEDF0 tends to predict the smallest |∆Eoct| for other robust octupole-deformed

nuclei.

More than half of the SEDFs predicted 218−224Rn as octupole-deformed, as well as

GCM [25] and MM [4], where the latter extended its octupole prediction all the way to

232Rn. The HF+BCS model [31] reported 220,222Rn in their octupole list. No octupole

deformation is predicted by CEDFs for Rn isotopes in Ref. [34].

3.3.1.2 Radium (Z = 88)

The search for octupole instability in neutron-deficient Ra isotopes has been of great inter-

est [22, 111, 121], also because of atomic EDM studies [122, 123]. According to numerous

theoretical calculations, 224Ra has the largest octupole deformation [22, 121], and is often

predicted to have the largest ∆Eoct among the Ra isotopes. It is therefore hardly surprising

that 224Ra, along with 226Ra, is predicted to be octuple-deformed by all nine EDFs studied.
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Figure 3.10: Predicted β2, β3, and ∆Eoct values for even-even Ra (Z = 88) isotopes.

Within the SEDFs, the values of Predicted β2, β3, and ∆Eoct values appear to be very

consistent for 220,224Ra, cf. Fig. 3.10. The largest |∆Eoct| is predicted for 222Ra, followed

by 220Ra and 224Ra. In CEDFs predictions, |∆Eoct| is largest for 224Ra due to the shift in

neutron numbers discussed earlier (Sec. 3.2.4).

Even-even 222−230Ra are calculated by at least half of the CEDFs to be octupole-

deformed. Both MM [4] and GCM [25] models reported octupole moments in even-even

218−228Ra, in complete agreement with the majority of the SEDFs; HF+BCS [31] reported

222,224Ra as octupole-deformed.

Recent experiments suggest 222Ra has the largest octupole deformation among the Ra

isotopes followed by 226Ra, 228Ra, and 224Ra [112, 121, 124]. Figs. 3.11 and 3.12 show the

proton Q20 and Q30 from our SEDFs’ predictions compared with charge multipole moments

derived from experimental data. The sudden drop in the proton Q20 of 224Ra is predicted by

none of the SEDFs and CEDFs, and currently we do not have any theoretical explanation for

this effect. Additional measurements might be needed to confirm this particular behavior.
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Figure 3.11: Proton Q20 of Ra isotopes from SEDFs calculations (see Table A.2 for a
comprehensive list of values) compared with measured E2 intrinsic moments Q2 for 2+ →
0+ transitions (black squares with error bars) of Ref. [111–113, 124]. (Figure taken from
Ref. [125])
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Figure 3.12: Proton Q30 of Ra isotopes from SEDFs calculations (see Table A.2 for a
comprehensive list of values) compared with measured E3 intrinsic moments Q3 for 3− → 0+

transitions (black squares with error bars) of Ref. [111, 112, 121, 124]. (Figure taken from
Ref. [125])
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Proton Q20 and Q30 values for octupole-deformed even-even nuclei from SEDFs predictions

are compiled in Table A.2.

3.3.1.3 Thorium (Z = 90)
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Figure 3.13: Predicted β2, β3, and ∆Eoct values for even-even Th (Z = 90) isotopes.

Experimentally, even-even 222−226Th exhibit many signatures of stable octupole defor-

mation [118, 126, 127], in agreement with the SEDFs’ predictions shown in Fig. 3.13. All

SEDFs predict octupole deformations in even-even 220−228Th. These nuclei are identical to

MM [4] and GCM [25] predictions, while HF+BCS [31] only reported 220,222Th as octupole

deformed. The CEDFs models [34] predicted octupole deformation in even-even 224−232Th,

a shift of four neutrons compared to the SEDFs. From our SEDFs calculation, we predict

the nucleus 222Th and 224Th to have strong g.s. octupole deformation.

3.3.1.4 Uranium (Z = 92)

The majority of SEDFs predict even-even 222−228U to be octupole-deformed. As seen in

Fig. 3.14, the largest octupole deformation energy exceeding 2MeV is calculated for 224U,
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Figure 3.14: Predicted β2, β3, and ∆Eoct values for even-even U (Z = 92) isotopes.

followed by 222,226U. Experimentally, the nucleus 226U has similar octupole characteristics

as 222Ra and 224Th [128].

MM [4] predicted the octupole-deformed U isotopes to be 220−226U, GCM [25] listed

222−232U and HF+BCS [31] listed 220,224,226U as octupole-deformed. The CEDFs [34] pre-

dicted octupole deformations in 226−234U.

According to our SEDFs study, the nuclei 222,224,226U are strong candidates for pear-

shaped deformations, with 224U being most promising.

3.3.1.5 Plutonium (Z = 94)

Neutron-deficient Pu isotopes have received little attention in experimental searches for

octupole instability as they are extremely difficult to access. The lightest-known Pu iso-

tope, 228Pu, has a half-life of 1.1 s [129] but spectroscopic information about this system

is nonexistent. Likewise, virtually nothing is known about 230,232,234Pu, except for their

g.s. properties [110]. Interestingly, the isotope 228Pu is predicted by all our models to be

octupole-deformed, followed by 226Pu (m = 7) and 230Pu (m = 8) (see Fig. 3.6). The large
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Figure 3.15: Predicted β2, β3, and ∆Eoct values for even-even Pu (Z = 94) isotopes.

values of |∆Eoct| in 224,226,228Pu (Fig. 3.15) calculated by SEDFs are similar to those Ra,

Th, and U isotopes that show evidence for stable octupole deformations.

The GCM study [25] listed 228−234Pu as octupole-deformed, while MMmodel [4] reported

222−228Pu, with the largest |∆Eoct| = 1.09 MeV in 224Pu. The majority of the CEDFs of

Ref. [34] predicted even-even 228−232Pu as octupole-deformed.

The lightest Cm isotope known experimentally is 233Cm, which is significantly heavier

than our most promising Cm candidates for pear-like shapes: 228,230Cm. As seen in Fig. 3.6,

in neutron-deficient actinides with Z ≥ 98, most of the best candidates for octupole defor-

mation lie well beyond the current discovery range, and some appear to be close, or outside,

the predicted two-proton drip line [108].

3.3.1.6 Very neutron-rich actinides around 288Pu

Many extremely neutron-rich actinide and transactinide nuclei with 184 < N < 206 are

predicted to be pear-shaped, see Fig. 3.6, Table A.1, and Refs. [27,30,33,35]. From a purely

nuclear structure perspective, this broad region of octupole instability is of solely theoretical
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interest as it lies well outside experimental reach. While the production of nuclei heavier

than N = 184 in the astrophysical r process is expected to be strongly hindered by neutron-

induced fission [104, 130], the magnitude of this suppression strongly depends on predicted

fission barriers [131] and hence the question of their astrophysical relevance is still open.

3.3.2 Lanthanide region

The region of Ba, Ce, Nd, and Sm isotopes around 146Ba constitutes the second largest

concentration of octupole-unstable nuclei predicted theoretically that are within the current

experimental range.

3.3.2.1 Barium (Z = 56)
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Figure 3.16: Predicted β2, β3, and ∆Eoct values for even-even Ba (Z = 56) isotopes.

Intrinsic dipole moment measurements indicate appreciable octupole correlations in even-

even 140−148Ba [132–135]. In particular, direct measurements of E3 transition strength

made recently in 144Ba and 146Ba (48
(+25
−34

)
W.u. and 48

(+21
−29

)
W.u., respectively) [136,137]
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suggest similar octupole correlations in these nuclei (within large experimental uncertainties).

As seen in Fig. 3.16, except for UNEDF1, the SEDF results are consistent with this finding,

as they predict similar β3 and ∆Eoct for these systems.

The MM [4] and HF+BCS model [31] calculations also predicted similar β3 in 144Ba

and 146Ba. Although GCM calculation did not directly report β3 values, they predicted

142−148Ba as octupole-deformed. The CEDFs predicted similar large β3 and |∆Eoct| values

between 146Ba and 148Ba.

3.3.2.2 Cerium (Z = 58)
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Figure 3.17: Predicted β2, β3, and ∆Eoct values for even-even Ce (Z = 58) isotopes.

For the Ce isotopes, all SEDFs except for UNEDF0 predict octupole deformations in

146,148Ce, with the largest |∆Eoct| in 146Ce, see Fig. 3.17. Experiment suggests enhanced

octupole correlations in 146Ce [138], 144Ce [134, 138], and 148Ce [139], and a weakened

octupole collectivity in 150Ce [140].

Similar to our results, MM [4] also predicts the maximum |∆Eoct| value for 146Ce,

at 0.46MeV. GCM [25] predicts 144−148Ce to be octupole-deformed, and 144,146Ce from
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HF+BCS [31]. Again, the CEDFs predict similar results except for a shift of two neutrons.

3.3.2.3 Neodymium (Z = 60)
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Figure 3.18: Predicted β2, β3, and ∆Eoct values for even-even Nd (Z = 60) isotopes.

The stable isotopes 146,148Nd are predicted to be octupole-deformed (Fig. 3.18 and 3.6).

Experimental data suggests enhanced octupole collectivity in 146,148,150Nd [141–145]. An-

other stable isotope with predicted high octupole multiplicity is 150Sm. Experimentally,

there is some evidence for octupole collectivity in an excited band of 150Sm [146]. As seen

in Fig. 3.6, the isotopes 146,148,150Nd and 150Sm are the only stable even-even candidates

for octupole instability. The parity doublets in odd-mass nuclei from this region, such as

153Eu, can be excellent candidates for searches of T,P-violating effects with atoms, ions, and

molecules [147].

3.3.2.4 Proton-rich nuclei around 112Ba

Strong octupole correlations, including octupole instability, were predicted theoretically in

nuclei around 112Ba in the early 1990s [148, 149]. As seen in Fig. 3.6, some of our models
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yield reflection-asymmetric shapes in a handful of nuclei from this region that lie close to,

or beyond, the proton drip-line, with 112Ba being the best candidate.

The experimental data in this region are scarce, with enhanced octupole correlations

suggested for 112Xe [150] and 114Xe [151]. The lightest observed Ba isotope is 114Ba [152],

for which no spectroscopic information exists.

Shallow octupole minima are calculated in the Zr region around N = 40 and N = 70

by some CEDFs (Fig. 3.7), and also by GCM calculations [25]. On the other hand, our

calculations predict no octupole instability in this region.

3.3.2.5 Very neutron-rich lanthanides around 200Gd

Many extremely neutron-rich nuclei around 200Gd are predicted to be octupole-deformed,

see Fig. 3.6 and Table A.1. While this region lies well outside experimental reach, the nucle-

osynthesis calculations suggest that it can be accessed in a very neutron-rich r-process [153].

The best candidates for octupole instability in this region are 196,198,200Sm, 196,198,200Gd,

and 200Dy.

3.4 Summary: Octupole-deformed nuclei

In this chapter, we discussed the standard techniques of finding the Hartree-Fock-Bogoliubov

g.s. of the even-even nuclei, and the optimization of the global survey calculation using kick-

off mode and dynamic MPI scheduling which reduced the computational cost to 25% of the

original estimate.

Among the five SEDFs employed in this global survey of octupole deformation, UNEDF2

and SLy4 predict the largest number of octupole-deformed nuclei, and also the largest oc-
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tupole deformation energies |∆Eoct|. The functional UNEDF0, which was not optimized

to experimental shell gaps, predicts the lowest number of octupole minima. This can be

attributed to the larger energy splitting ∆e between octupole-driving (`, j) and (`− 3, j− 3)

shells in this model (Fig. 3.5).

The combined prediction from our five SEDFs and four CEDFs functionals of Ref. [34]

are shown in the multiplicity plot Fig. 3.6, by combining multiple predictions across different

theoretical frameworks.

There are 12 even-even nuclei predicted by all nine EDFs to be octupole-deformed: 146Ba,

224,226Ra, 226,228Th, 228Pu, 288,290Pu, 288,290Cm, and 288,290Cf.

By analyzing the trend of predicted β2, β3, and ∆Eoct values along isotopic chains

of actinides and lanthanides, we found that the SEDF results are fairly consistent with

other studies [4, 25,26]. A shift in the position of octupole-unstable regions (by 2-4 neutron

numbers) is seen when comparing SEDFs and CEDFs results. This shift can be seen in

Fig. 3.7, and likely comes from the shell structure obtained with CEDF models, as the

SEDFs results agree well with the results of other global non-relativistic surveys.

Minor differences aside, the octupole landscape reported in Fig. 3.6, is consistent with cur-

rent experimental data. Quadrupole deformations are highly consistent across all nine models

used and agree well with experiment. In addition, proton Q20 and Q30 of 222,224,226,228Ra

from our SEDFs calculations are extremely consistent with available experimental data

(Fig. 3.11 and 3.12), except for the unusual decrease in the measured proton Q30 of 224Ra

that cannot be explained yet.

In the neutron-deficient actinide region, in addition to the “usual suspects” of 224,226Ra

and 226,228Th, our study suggests stable g.s. octupole deformations in 224,226,228U, 226,228,230Pu,

and 228,230Cm. The only stable pear-shaped even-even nuclei expected theoretically are
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146,148,150Nd and 150Sm.

Our global survey predicts two exotic regions of octupole instability in extremely neutron-

rich nuclei that are inaccessible experimentally. The first region, of lanthanide nuclei around

200Gd, is possibly populated in a very neutron-rich r process. In the second region of actinide

and transactinide nuclei with 184 < N < 206, neutron-induced fission is likely to suppress the

r-process production of nuclei with N > 184, but the magnitude of this hindrance strongly

depends on predicted fission barriers.
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Chapter 4

Intrinsic Schiff moment calculations

The results presented in Ch. 3 gave us a better understanding of different regions of octupole

deformations. The strongest and most rigid octupole-deformed even-even nuclei are found

in the neutron-deficient actinide and the superheavy actinide region, the latter however, are

far beyond experimental reach.

In this chapter, we discuss the evaluation of the intrinsic Schiff moment,

〈
Ŝz

〉
≡ e

10

∫
ρpr

2
pzpd

3r. (4.1)

This evaluation was carried out within the HFB framework, using a modified version of

the solver HFBTHO (v3.00) [70]. Blocking calculation for odd systems employs the equal

filling approximation method (Sec. 2.1.4.3), hence time-odd terms are not included. Particle

number is kept on average using (2.28), instead of the Lipkin-Nogami prescription (LN)

used for the even-even octupole survey, because the implication of LN approximation in the

context of blocking calculations is still unclear. Since the LN procedure is not used here,

the ground state deformations of even-even nuclei are slightly different than from the global

octupole survey, thus these nuclei were recalculated. In total, 120 deformation mesh points

were used, defined as:

βi2 ∈ [−0.35, 0.35], βi+1
2 − βi2 = 0.05 ; βi3 ∈ [0, 0.35], βi+1

3 − βi3 = 0.05. (4.2)
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The same five Skyrme EDFs (SEDFs) as the global octupole survey were used for the

Schiff moment calculations, namely UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min (see

Ch. 3).

The Schiff moment expression (2.38) contains two major assumptions. The first one is

the existence of a near-degenerate parity doublet, which dominates the sum (2.36) through

its small energy denominator, and allows us to evaluate the intrinsic Schiff moment
〈
Ŝz

〉
directly using the ground state proton density (2.25) from the HFB calculation. These

parity doublets are more commonly identified in neutron-deficient actinide region [21]. Other

studies found evidence of parity doublets in the lanthanides 151Pm, 153Eu, and 155Eu which

have energy splitting of about 100 keV between the doublet [154–156].

The second assumption requires rigid deformation in the nucleus. Although several even-

even nuclei in the lanthanide region, such as 144Ba and 146Ba, exhibit large octupole defor-

mations, their small | ∆Eoct | values (Fig. 3.16) suggest that the octupole deformations in

these nuclei are soft, thus we do not consider them in the current Schiff moment analysis.

Given these reasons, our calculations for intrinsic Schiff moments are performed for

octupole-deformed systems in the neutron-deficient actinide region with 86 ≤ Z ≤ 94 and

N ≤ 142. Neutron-deficient isotopes with Z = 95, 96 that are octupole-deformed are very

close to the proton drip-line, hence, they will not be presented in this chapter.

A brief description of the procedure used in calculating the odd systems is as follows:

1. Create a list of octupole-deformed even-even nuclei from the global octupole survey for

each of the five SEDFs,

2. Recalculate these nuclei with no LN particle number restoration,

3. Identify the even-even ground state among the 120 outputs for each nucleus, store
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the corresponding restart file for later use, select the lowest lying proton and neutron

quasiparticle (q.p.) states above the Fermi surface as the blocking candidates.

4. Perform blocking calculations using kick-off mode and identify the ground state of the

odd system.

Several approximations have been used in the odd system’s calculation: no time-odd fields

were considered, approximate treatment of blocking used the equal filling approximation [82,

83], and identification of the q.p. state used Nilsson orbits of the largest s.p. component of

the desired q.p. state. All create room for large uncertainties.

Since the q.p. state to be blocked is chosen from the lowest q.p. state above the Fermi

surface of its even-even core, we require that the odd system’s deformation is not too different

from those of its even-even cores. If the deviation in the deformations between the odd and

even nuclei is too large, the ordering of the q.p. orbitals in the odd system may have shifted,

resulting in the blocking of a wrong q.p. state that does not correspond to the ground state of

the odd system. Hence, when searching for the ground state of the odd system, the following

conditions were applied:

| β g.s.
λ (Zodd, Nodd)− β g.s.

λ (Zeven, Neven) |≤ 0.05, λ = 2, 3,

where

(Zodd, Nodd) ∈ [(Zeven, Neven + 1), (Zeven + 1, Neven), (Zeven + 1, Neven + 1)].

In practice, since the typical range of β2 is [0, 0.35] and [0, 0.15] for β3, the above conditions

are not too restrictive, and the correct ground state of the odd system is not likely to be
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excluded.

4.1 Intrinsic Schiff moments in actinide nuclei

Intrinsic Schiff moments
〈
Ŝz

〉
were evaluated in nuclei with 86 ≤ Z ≤ 96 and 128 ≤ N ≤

142, using Eq. (4.1). As a result, “Schiff moments” in even-even nuclei are also calculated

and presented, although strictly speaking, they are not relevant to the laboratory-system

EDM (Sec. 2.2). As a demonstration, I will present results from the Ra and Ac isotopic

chains in this section. More results can be found in Sec. 4.2 and Table 4.1.

4.1.1 Ra (Z = 88)
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Figure 4.1: Predicted β2, β3, and
〈
Ŝz

〉
values for Ra (Z = 88) isotopes.

At the the center of octupole deformation of the Ra isotopes, i.e. 222−225Ra, the predicted

values for β2, β3, and
〈
Ŝz

〉
are very consistent between the five SEDFs. The octupole
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deformation is believed to be rigid in the even-even Ra with A = 220 − 224 (Fig. 3.10),

judging from the magnitude of |∆Eoct|. Assuming this rigid deformation also holds for

their neighboring odd-mass Ra, 221,223,225Ra are likely good candidates for the atomic EDM

search, with average
〈
Ŝz

〉
> 30 efm3. Parity doublets in 223,225Ra have been identified

with energy splittings ∆E ≈ 50 keV, and in 221Ra, the splitting is roughly doubled [21].

The octupole deformation in 227Ra is perhaps not as rigid as the lighter odd-mass Ra, as

the ∆Eoct of 227Ra likely lies close to 226Ra and 228Ra. The energy splitting of the parity

doublet in 227Ra is 90 keV.

4.1.2 Ac (Z = 89)
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Figure 4.2: Predicted β2, β3, and
〈
Ŝz

〉
values for Ac (Z = 89) isotopes.

Parity doublets were identified in 223,224,225,227Ac, with ∆E ≈ 70 keV, 22 keV, 40 keV,

and 27.4 keV, respectively [21]. Fig. 4.2 shows that the predicted β2 values for these Ac nuclei

54



are consistent among the SEDFs, although the β3 values exhibit a larger spread. Assuming

the odd-N Ac isotopes also share similar tendency to develop rigid octupole deformation as

their even-even cores, a wide range of 221−227Ac isotopes could be considered as excellent

candidates for the atomic EDM measurements.

4.2 Summary: Intrinsic Schiff moments

In this section, I have shown the results of the intrinsic Schiff moment
〈
Ŝz

〉
calculated using

the expression (4.1), which assumes rigid deformation and the existence of parity doublets

that are only found in octupole-deformed nuclei with odd-nucleon number. One needs to

keep this in mind when interpreting the results of
〈
Ŝz

〉
. If these assumptions are not met,

the interpretation in terms of the intrinsic Schiff moment reported here should be taken with

a grain of salt.

One also needs to understand that the Schiff moment in the laboratory frame depends on

the
〈
V̂PT

〉
term, and is very sensitive to the energy splitting ∆E between the parity doublet

(Eq. (2.38)). Nonetheless, the intrinsic Schiff moment and octupole deformations calculated

for the odd systems offer valuable insights to the relative strength of the full Schiff moment,

since parity doublets and large β3 and
〈
Ŝz

〉
values tend to occur simultaneously.

By qualitatively extrapolating from the rigidness of octupole deformation in the odd

system’s even-even neighbors, and only consider the odd systems that are likely to have rigid

octupole deformations, the following nuclei are likely to have large intrinsic Schiff moments.

For even-Z isotopes, 221,223,225Ra, 221,223,225,227Th, 223,225,227U, and 225,227Pu; for odd-Z

isotopes, 223Fr, 221−227Ac, 221−227Pa, 223−229Np. Among these nuclei, parity doublets have

been identified in 221,223,225Ra, 227Th, 223Fr, 223,225,227Ac [21].
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If one also takes into account the lifetimes of these odd-A and odd-odd systems in order

to conduct atomic EDM measurements, and limit to isotopes with t1/2 > 1 s, the potential

candidates for atomic EDM measurements are listed in Table 4.1. Among isotopes with

confirmed parity doublets, 223Ra, 225Ra and 227Th share similar strength of
〈
Ŝz

〉avg
/∆E.

This “weighted” Schiff moment is much larger in 225Ac and 227Ac due to the small energy

denominator, with 227Ac almost twice the value of 225Ra.

As a final comment, we note that there is a macroscopic expression [157] for the intrinsic

Schiff moment:

Sintr = eZR3
0

9

20π
√

35
β2β3. (4.3)

When attempting to fit all calculated
〈
Ŝz

〉
to ZR3

0β2β3 in the neutron-deficient actinides

region, the R2 score for a linear regression fit is only 0.43. Interestingly, when fitting
〈
Ŝz

〉
directly to β2β3, the R2 ≈ 0.9 (see Fig. 4.3).
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Table 4.1: Candidates for atomic EDM measurement with 86 ≤ Z ≤ 94 and half-life t1/2 ≥

1 second.
〈
Ŝz

〉
from evaluating (4.1) has been averaged over the five Skyrme EDFs (except

for 223Fr and 229Np which are only calculated for four Skyrme EDFs). Experimental energy
splitting between parity doublets ∆E p.d. are shown where data exists [21]. The last column
is the average

〈
Ŝz

〉
divided by ∆E p.d.. The parity doublet in 224Ac has not been fully

established, the listed value is only for reference. 229Pa is also listed, in the event that the
low lying parity doublet of less than 1 keV from the ground state is confirmed.

Isotope t1/2

〈
Ŝz

〉avg
(efm3) ∆E p.d. (keV)

〈
Ŝz

〉
∆E (e fm3

keV )

223Fr 22.00(7) min 31.30 160.45 0.195
221Ra 28(2) s 33.91 103.4 0.328
223Ra 11.43(5) d 33.35 50.19 0.664
225Ra 14.9(2) d 39.69 55.2 0.719
227Ra 42.2(5) min 35.55 90.0 0.395
222Ac 5.0(5) s 33.80
223Ac 2.10(5) min 37.60 64.6 0.582
224Ac 2.78(17) h 31.65 (22.0) (1.439)
225Ac 10.0(1) d 37.27 40.1 0.929
226Ac 29.37(12) h 38.87
227Ac 21.772(3) y 35.84 27.4 1.308
225Th 8.72(4) min 40.67
227Th 18.68(9) d 46.43 67.2 0.691
225Pa 1.7(2) s 44.17
226Pa 1.8(2) min 43.51
227Pa 38.3(3) min 46.74
229Pa 1.50(5) d 50.60
227U 1.1(1) min 46.03
228Np 61.4(14) s 46.22
229Np 4.0(2) min 49.76
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Figure 4.3:
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〉
plotted against β2β3 for all odd systems in the neutron-deficient actinides

region. Two linear fits were made, one without intercept (dashed line), and one with intercept
(solid line). R2 score for the linear fits are listed accordingly.
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Chapter 5

Bayesian machine learning

This chapter summarizes a series of papers produced in our group, involving myself, from

2018 to 2020 [108,109,158,159]. These studies pertain to the applications of various Bayesian

machine learning techniques to nuclear mass models. In particular, these techniques were

used to improve model predictability, and to present uncertainty-quantified analysis of nu-

clear instability near the particle drip-lines.

5.1 The S2n residual model

The binding energy, or mass of a nucleus describes how stable the nucleus is compared

to its neighbors, which determines the decays of the nucleus. Theory models that predict

the nuclear masses, from phenomenological models such as the liquid drop model in the

early days, to the modern self-consistent mean-field models, all contain some assumptions

due to incomplete physics, and approximations to reduce computational requirements; both

aspects contribute to the systematic uncertainties of the predictions. On the other hand,

experimental errors and fitting of the model parameters give rise to statistical uncertainties.

These two types of uncertainties are responsible for most of the discrepancies between theory

predictions and the measured nuclear masses.

Missing information contained in the mass differences, or the mass residuals, is generally

unknown analytically. This presents us with the perfect test ground for “black-box” modeling
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with machine learning. The modeled residuals can be added back to the original theory

predictions to improve them. Moreover, by utilizing Bayesian machine learning techniques,

one can provide uncertainty quantification for the new theory estimates.

To test this methodology, we first focus on the two-neutron separation energy S2n, defined

as:

S2n(Z,N) = BE(Z,N − 2)− BE(Z,N), (5.1)

where BE(Z,N) is the binding energy for nucleus with Z protons and N neutrons.

The reason for modeling the residual of S2n instead of the binding energy is because, by

performing a subtraction between neighboring nuclei, some of the systematic trend in the

predicted masses will cancel out (Fig. 5.1). In this section, we limit ourselves to even-Z and

even-N nuclei and S2n.
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Figure 5.1: Left panel: Binding energy residuals of SEDF SkP (calculated w.r.t. experimen-
tal masses from the AME2016 mass evaluation [99, 160]). Results from octupole-deformed
(blue dots) and quadrupole-deformed (red dots) survey calculations are shown. Right panel:
Same as in left panel but for two-neutron separation energy S2n. Note that the range on
the energy axis is [−10, 10] MeV for S2n compared to [−20, 20] MeV for BE, illustrating a
significant reduction of systematic uncertainty in S2n.

The S2n residual is defined as the difference between experimental two-neutron separation
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energy and the corresponding theory prediction:

δ(Z,N) = S
exp
2n (Z,N)− Sth

2n(Z,N, ϑ), (5.2)

where ϑ is represents the parameters in the theory model. Our task is to construct the

emulator δem(Z,N) using machine learning techniques, such as the Bayesian neural network,

Gaussian process, or frequency domain bootstrap [44–47,49,161–165].

Upon obtaining the posterior distribution of δem(Z,N), we can provide a new estimate

of the predicted S2n by combining the original theory predictions with the mean value of

the emulated residuals:

Sest
2n (Z,N) = Sth

2n(Z,N, ϑ) + δem(Z,N). (5.3)

Because the resulting δem(Z,N) is given by a probability distribution, we can assign an

error bar associated with its mean value, which could be interpreted as the error bar for the

new estimate Sest
2n (Z,N).

In this study, 537 experimental S2n values from AME2003 mass evaluation [166,167](along

with theoretical predictions) were used as the training set. 55 new data points in AME2016

mass evaluation [99, 160], i.e. S2n previously unavailable in AME2003, were used as the

testing data set and will be referred as AME2016-AME2003 (Fig. 5.2). This strategy aims

to test data points outside the training regions, which is important for far extrapolations;

this is different than the interpolations done in previous studies [45,46,49,164,165].

We have selected three groups of theory models representing different theoretical frame-

works. The selection criteria for models have been defined as follows. First, the model needs
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Figure 5.2: The experimental S2n(Z,N) datasets for even-even nuclei used in our study:
AME2003 [166,167] (light dots, 537 points), additional data that appeared in the AME2016
evaluation [99, 160] (dark dots, 55 points), and JYFLTRAP [168] (stars, 4 points). (Figure
taken from Ref. [158])

to be able to extrapolate well into regions of the unknown nuclei, thus it should be based

on sound many-body formalism using quantified input such as inter-nucleon interaction or

nuclear energy density functional etc. Second, the theory needs to be able to reproduce

other basic nuclear structural properties that impact nuclear binding energy, such as shell

structure and deformations. Finally, it should be a global mass model capable of predicting

binding energy in all mass regions.

The first group contains the more phenomenological global mass models FRDM-2012 [169]

and HFB-24 [170], which are commonly used in astrophysical nucleosynthesis network simu-

lations. FRDM is representative of a set of well-fitted microscopic-macroscopic mass models.

HFB-24 is rooted in a self-consistent mean-field method with several phenomenological cor-

rections added. The root-mean-square (rms) deviation of S2n from both model compared to

AME2003 is around 0.6 MeV (Fig. 5.3), which is as low as one can expect while using rea-
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Figure 5.3: Top panel: Residuals of S2n(Z,N) for the six global mass models with respect
to the testing dataset AME2003. The rms values of δ(Z,N) in MeV are marked for AME2003
(upper number) and AME2003-H (lower number). Bottom panel: Same as top panel but
for S2n(Z,N) residuals smoothed with Gaussian folding function to emphasize long-range
systematic trends. (Figure adapted from Ref. [158])

sonable numbers of phenomenological corrections. FRDM-2012 contains 38 parameters and

was fitted to 2149 experimental nuclear masses; HFB-24 contains 25 self-consistent mean-

field parameters and 5 phenomenological correction parameters and was fitted to 729 nuclear

masses. Both these models included odd-odd and odd-A nuclei masses in the fitting samples.

The second group contains six microscopic Skyrme-DFT models based on energy density

functionals (EDF) (Sec. 2.3) SkM* [171], SkP [172], SLy4 [96], SV-min [97], UNEDF0 [93],

and UNEDF1 [94]. The rms deviation of S2n of this group compared to AME2003 is around
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1 MeV (Fig. 5.3). These Skyrme models contain around 12 model parameters and were fitted

to less than 10 even-even nuclear masses for the first 3 models, and around 70 even-even

nuclear masses for the latter 3 models.

The third group contains four microscopic covariant-DFT models based on relativistic

energy density functionals NL3* [55], DD-ME2 [54], DD-PC1 [57], DD- MEδ [173]. The rms

deviation of S2n of this group compared to AME2003 is around 1.1 MeV, slightly higher

than the Skyrme group (Fig. 5.3). The covariant EDFs have 6 to 10 parameters, with NL3*

and DD-ME2 fitted to 12 even-even nuclear masses, and the other two fitted to around 60

even-even nuclear masses.

A visual representation of the residual data are shown in Fig. 5.3, with two models selected

from each of the three theoretical frameworks. The bottom panel is a smoothed out version of

the the residuals in the upper panel by using a Gaussian folding function to better visualize

the long-range correlations. These long-range patterns are most noticeable in SLy4, DD-

ME2, and DD-PC1, peaking at the neutron shell gaps and decreasing when moving further

away; this is likely due to the low effective masses used in these theory models. UNEDF1

shows a much smoother trend. On the other hand, the more phenomenological models

FRDM-2012 and HFB-24, being fitted to large amount of experimental masses, provide a

very good reproduction of the experimental values.

5.2 Bayesian statistical models

Loosely speaking, a Bayesian method can be seen as a statistical way of solving an inverse

problem of inferring the model parameters given some observations / data. Unlike the

deterministic approach commonly used in the optimization process of physics modeling,
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where the model parameters are determined through minimizing certain penalty function,

in a Bayesian setting, a probability distribution of the parameters are generated using pure

statistical sampling processes, such as in our case, the Metropolis-Hastings algorithm [174].

We perform a Bayesian analysis of the residuals δ(Z,N) using two different statistical

models: Gaussian processes (GP) and Bayesian neural networks (BNN). We investigate the

actual posterior distributions of all predicted quantities and parameters in the emulator

model. This selection was made because GP is more capable of capturing short-range corre-

lations while BNN is expected to capture more long-range trends. As general notation, we

denote the statistical model by a function f of the particle number xi := (Z,N), and pa-

rameters θ, which are unknown and later estimated via Bayesian inference. We also replace

the residual with yi := δ(Z,N). Our Bayesian model is then of the form:

yi = f (xi, θ) + σεi, (5.4)

where f is either GP or BNN with parameters θ. The added term εi is a random variable

used to model the error. We assume it to be an independent standard Gaussian variables

with mean zero and unit variance, and σ is a noise scale parameter.

The relation Eq. (5.4) is called the likelihood equation, which relates the data yi with

the unknown parameters θ and σ. In the likelihood model, assuming fixed θ and σ, the

probability density of y is denoted by p(y | θ, σ). For xi = (Z,N) where the values of

yi (S2n residual) are unknown, i.e. the testing dataset, we use Eq. (5.4) to predict them

once the posterior density of the unknown parameters θ and σ are determined via Bayesian

inference. In order to do so, we must assume some prior distribution for these unknown

model parameters, denoted as a joint probability density π(θ, σ).
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According to Bayes theorem, the posterior density p(θ, σ | y), given the training data y,

the prior π(θ, σ) and the likelihood models:

p(θ, σ | y) ∝ p(y | θ, σ)π(θ, σ). (5.5)

We can then use this posterior density p(θ, σ | y) to predict y∗ in the regions of x where

y is unknown. This requires computing the conditional density p (y∗ | y, θ, σ), where y is the

known residual data, and integrating over the posterior density p(θ, σ | y) of the unknown

model parameters:

p (y∗ | y) =

∫
p (y∗ | y, θ, σ) p(θ, σ | y)dθdσ. (5.6)

As mentioned, we not only acquire the mean values of the predicted residuals, but also

their uncertainties due to the probabilistic description (5.5) and (5.6) of the unknown pa-

rameters and predictions. In Bayesian terms, the quantity that resembles the “confidence

interval” in classical statistics is what’s called the credibility intervals. The credibility in-

tervals, or CI, is an interval around the Bayesian mean value in which contains, e.g., 68%

of the simulated sample, and is approximately the same as the confidence interval of one

standard deviation if the posterior distribution of y∗ is symmetric on the left and right of

the mean. For simplicity, in this text, we shall treat CI as the confidence interval. This is

justified because the posterior distributions of the residuals are highly symmetric.

In more precise notations, let m be the total number of samples in the posterior dis-

tribution of yi for a given xi = (Z,N). These posterior distributions are computed via

Monte Carlo techniques, in which the samples are obtained using 100,000 iterations of er-

godic Markov chain produced by the Metropolis-Hastings algorithm [174].The prediction for

the residual, the corrected prediction Sem
2n and the one-σ uncertainty (error bar) are thus
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respectively:

δem(Z,N) = 1
m

∑m
j=1 y

∗
j (Z,N),

Sem
2n (Z,N) = Sth

2n(Z,N) + δem(Z,N),

σem(Z,N) =

√
1
m

∑m
j=1

[
y∗j (Z,N)− δem(Z,N)

]2
.

(5.7)

Here we use Sem
2n (Z,N) ± σem(Z,N) to approximately represent a two-sided 68%-CI and

Sem
2n (Z,N)±1.96σem(Z,N) as a two-sided 95%-CI. Below I’ll discuss the two specific Bayesian

statistical models that were used to produce the posterior samples yi := δ(Z,N) by construct-

ing different f (xi, θ) in Eq. (5.4).

5.2.1 Gaussian process

Gaussian processes have been used commonly in physics and other nature sciences to model

the short-range, or local, correlations of the data. In the context of nuclear physics, it is

fair to assume residual information of neighboring nuclei have stronger impact than nuclei

further away due to similarities in their nuclear structures, thus GP is a suitable model for the

task at hand. We treat a Gaussian process as a Gaussian functional on the two-dimensional

nuclear landscape, characterized by its mean function and covariance function [175]. We take

the mean function to be 0, and the “spatial” dependence of neighboring nuclei is described

using an exponential quadratic covariance kernel,

kη,ρ
(
x, x′

)
:= η2 exp

[
−
(
Z − Z ′

)2
2ρ2
Z

−
(
N −N ′

)2
2ρ2
N

]
, (5.8)

where x = (Z,N) and θ ≡ {η, ρZ , ρN} are the unknown parameters that need to be acquired

through Bayesian inference. The parameter η defines the strength of dependence between

neighboring nuclei, ρZ and ρN are the correlation ranges in the proton and neutron direction,
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respectively. The covariance kernel k is the classical Gaussian kernel up to a linear transfor-

mation of its parameters, and it is symmetric in
(
x, x′

)
. Other kernels such as Matérn kernels

and exponential kernels offer similar performance on capturing short-range correlations, but

the former requires more intense computation due to the embedded Bessel functions while

the latter have heavy tails that are not needed here. Using the notation GP as a Gaussian

vector here, we can define the function f in Eq. (5.4) as a random vector with parameters

θ ≡ {η, ρZ , ρN} and input x := (Z,N):

f(x, θ) ∼ GP
(
0, kη,ρ

)
, (5.9)

which means the distribution of f(x, θ) has mean 0 and covariance matrix kη,ρ. The key

component of the Gaussian process f(x, θ) is the covariance matrix kη,ρ, which is trained

on the values kη,ρ
(
xi, xj

)
from the known region and used to predict y∗ according to its

Gaussian distribution given y and θ, and can be expressed explicitly using kη,ρ [175]. We

use pure experimental uncertainty to represent the noise parameter ε in Eq. (5.4), which is

very small compared to the theory uncertainties. This value is fixed as 0.0235 MeV, which

is the average experimental error.

Figure 5.4 is the computed posterior distribution of the GP parameters θ ≡ {η, ρZ , ρN}

in the case of the DD-PC1 relativistic DFT model. It can be seen that all three parameters

are well determined with small variance and symmetric around its mean. The strength of

dependence between neighboring nuclei is of the scale η = 0.87 MeV, and the correlation

range given by ρZ and ρN along the Z and N directions are precisely 68% concentrated

within the width of 2ρ and 95% within the width of 4ρ. Thus we can conclude that roughly

90% of the correlation effects are localized in the region of Z ± 4, N ± 2.
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Figure 5.4: Posterior distributions of the GP parameters θ ≡ {η, ρZ , ρN} in the case of the
DD-PC1 model, with the posterior mean and standard deviation listed. (Figure taken from
Ref. [158])

5.2.2 Bayesian neural network

A Bayesian neural network is basically an artificial neural network [175], which computes

distributions for its model parameters / weights instead of acquiring them using the frequen-

tist approach of minimizing certain penalty functions, thus providing us with a probabilistic

description of the model parameters. Here, we set the function f(x, θ) in Eq. (5.4) to have

only one hidden layer and H = 30 hidden neurons [175]:

f(x, θ) := a+
H∑
j=1

bjφ

(
cj +

∑
i

djixi

)
, (5.10)

where φ is a nonlinear activation function, and in our case chosen as the hyperbolic tangent

function φ(z) = tanh(z). The unknown parameters are the weights θ ≡
{
a, bj , cj , dij

}
of

this function, and are both internal to each neuron j’s activation and external based on the

training data to form the interacting network among neurons. The layers and number of

neurons per layer H were selected to be 1 and 30 respectively, due to the small number of

training data (∼500) available in a nuclear physics setting.
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The posterior density of y∗ of the unknown region is determined by integrating over the

posterior density of the unknown parameters θ ≡
{
a, bj , cj , dij

}
as shown in Eq. (5.6). To

acquire the likelihood function p (y∗ | y, θ, σ), we first assume the noise term ε in Eq. (5.4)

as a normal vector with independent and identical distributed components, with mean 0

and unit variances. We presume there is no information gain in our BNN in making more

complex assumption for this term. Thus, the likelihood function is given as:

p(y | θ, σ) ∝ exp

[
−
∑
i

(yi − f (xi, θ))
2

2σ2

]
, (5.11)

where σ is the noise scale in Eq. (5.4). The y in the above probability density is a combination

of both the training data y and the to-be-predicted values y∗. Therefore, given (θ, σ), these

two datasets y and y∗ can be seen as stochastically independent, and we have p (y∗ | y, θ, σ) =

p (y∗ | θ, σ) for Eq. (5.6).

5.2.3 Input refinement

We experimented with three variants of input for the above statistical models other than

the standard xi = (Z,N). In the first variant, denoted as GP(H) and BNN(H), nuclei below

Ca are removed from the dataset (H stands for “heavy”). Doing so allow us to compare our

results with previous studies [45–47,49,176] that have systematically disregarded light nuclei

in their datasets.

The second variant is denoted by GP(T) and BNN(T), where T represents “transformed”.

This variant was inspired by Ref. [49] which supplements the input xi = (Z,N) with infor-

mation pertaining to the nucleus’ distance from the magic numbers. This information is
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represented by two additional inputs:

x̃i ≡ (dN (xi) , p (xi)) , p(x) =
dZ(x)dN (x)

dZ(x) + dN (x)
, (5.12)

where dZ(x) and dN (x) are the distance of x to the closest proton and neutron magic number,

respectively. The quantity p(x) is the promiscuity factor that indicates the collectively in

the open-shell nuclei [177].

The third variant is the combination of the above two, denoted as GP(T+H) and BNN(T+H).

As we will see later, these refinements will significantly improve the BNN model, and provide

only minor improvements for the GP.
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Figure 5.5: Residuals of S2n(Z,N) for the six global mass models with respect to the testing
dataset (AME2016-AME2003): δ(Z,N) (dots) and the GP emulator δGP(Z,N) (circles).
(Figure taken from Ref. [158])
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5.3 Results of the S2n residual model

We divided the exercise of modeling the S2n residuals into three groups, each using different

datasets. The first group tests the predictive power of our methodology and to compare

the performance between GP and BNN, which used the training dataset AME2003 and

AME2003-H (heavy) to test on AME2016-2003 data points (blue dots in Fig. 5.2). The

results are shown in Fig. 5.5 and Table 5.1. Since AME2016 contains remeasured data for

nuclei that were already in AME2003, if the differences in the two measurement is greater

than 30% for a nucleus, we removed it from the AME2003 training dataset - this includes

10He,24O,34Mg, and 52Ca, which are moved into the testing dataset.

The second group used AME2003-H and AME2016-H as two different training datasets,

and compared the trained residual models on the then recently measured masses at JYFLTRAP

in 2017. Only the (T+H) variant of the inputs were used. This is to test how much the

additional data points affect model predictions. The results are compared in Table 5.2.

Finally, we trained our residual emulators on the combined dataset of AME2016-H and

JYFLTRAP to produce an estimate for the S2n of the entire nuclear landscape, and analyzed

the two-neutron drip-line of tin isotopes with the uncertainty-quantified S2n values.

5.3.1 Training set: AME2003; testing set: AME2016-AME2003

The original residuals from Sth
2n(Z,N) (black dots) and the residuals from the new estimates

Sest
2n (Z,N) (white circles) in Eq. (5.3) of six representative nuclear mass models are shown in

Fig. 5.5 for GP(T+H). In Fig. 5.5, nearly all white circles, which are the residuals from the

new estimates, moved closer to 0 compared to the corresponding black dots, which are from

the original theory predictions. This is to say that the GP model systematically improved the
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predicted S2n for these nuclear mass models. Additionally, the local trends of the residuals

have been visibly dampened, and the corrected residuals are closer to having a distribution

of mean zero.

Table 5.1 lists the rms deviations of the residuals from different nuclear mass models

using the standard input and three different input variants discussed in Sec. 5.2.3, and

the two Bayesian models GP and BNN for the emulators δem(Z,N). Both GP and BNN

reduced the rms deviation of the residuals noticeably for the Skyrme and relativistic DFT

models, with GP having consistently better performance. The performance on relativistic

DFT models are the best, around 50% rms reduction, followed by the Skyrme DFT models,

around 30% rms reduction. In the more phenomenological models FRDM-2012 and HFB-

24, the results are mixed. In HFB-24, instead of decreasing, the rms has increased for most

cases, and for FRDM-2012, only the GP models systematically improved its prediction. This

is not surprising, as we expect the residuals from the more microscopic models to have more

implicit structure, whereas the more phenomenological models have been fitted very closely

to mass data, and their residuals have a higher proportion of statistical noise. This can

also be seen from the fact that after the improvements, the rms deviations seem to have

reached a lower bound at around 300-500 keV for the GP(T+H) variant, which has the

best performance, and is likely from the irreducible statistical noise. This lower bound also

suggests that our statistical models captured most of the residual structure, and that an

uncertainty quantification (UQ) analysis becomes necessary to further assess the models’

quality.
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Table 5.1: Root mean square values of δ(Z,N), δBNN(Z,N), and δGP(Z,N) (in MeV) for var-
ious nuclear models with respect to the testing dataset consisting of the AME2016-AME2003
S2n values. The training AME2003 and AME2003-H datasets were used to compute the em-
ulators δBNN(Z,N) and δGP(Z,N). The two numbers listed under the model’s name in the
first column are the uncorrected δrms model values with respect to AME2003 and AME2003-
H datasets, respectively. The rms residuals corrected by a statistical model are shown in the
remaining columns. For each model, GP results δGP

rms are given in the upper row and the BNN
results δBNN

rms are listed in the lower row. The numbers in parathenses indicate the improve-
ment in percent. The four statistical variants are listed: Std is the standard standard input
x = (Z,N); T indicates results involving the non-linear transformation x̃i = (dN (xi), p(xi));
H is based on the reduced dataset AME2003-H pertaining to heavy nuclei with Z ≥ 20.
(Table taken from Ref. [158])

model Std T H T+H

SkM*
1.25/1.01

0.96(23) 0.96(23) 0.49(52) 0.49(52)
0.99(20) 0.81(35) 0.73(28) 0.53(47)

SLy4
0.95/0.80

0.82(13) 0.82(13) 0.52(35) 0.52(35)
0.91(3) 0.82(14) 0.71(11) 0.56(30)

SkP
0.84/0.62

0.75(11) 0.75(11) 0.38(39) 0.38(39)
0.76(9) 0.74(12) 0.59(5) 0.45(27)

SV-min
0.78/0.49

0.70(10) 0.70(10) 0.32(34) 0.33(34)
0.72(8) 1.35(-73) 0.50(-1) 0.43(12)

UNEDF0
0.78/0.54

0.73(6) 0.73(6) 0.34(37) 0.34(37)
0.87(-12) 0.73(7) 0.55(0) 0.46(16)

UNEDF1
0.66/0.49

0.61(8) 0.61(8) 0.34(30) 0.34(30)
0.79(-20) 0.74(-12) 0.53(-10) 0.32(33)

NL3*
1.19/0.86

0.84(29) 0.84(29) 0.46(47) 0.45(47)
1.10(7) 0.90(24) 0.83(4) 0.69(20)

DD-MEδ
1.13/0.96

0.73(35) 0.74(35) 0.55(42) 0.55(42)
1.08(4) 0.91(19) 0.89(7) 0.75(22)

DD-ME2
1.04/0.95

0.71(32) 0.71(31) 0.63(34) 0.62(34)
1.00(4) 1.32(-27) 0.90(5) 0.61(36)

DD-PC1
1.10/0.91

0.79(28) 0.79(28) 0.46(50) 0.46(50)
1.00(9) 1.33(-22) 0.85(7) 0.54(41)

FRDM-2012
0.63/0.49

0.57(9) 0.57(9) 0.36(25) 0.36(26)
0.61(4) 0.72(-15) 0.48(2) 0.45(7)

HFB-24
0.40/0.37

0.40(-1) 0.40(-1) 0.40(-8) 0.40(-8)
0.59(-48) 0.44(-10) 0.37(1) 0.35(6)
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5.3.2 Training sets: AME2003-H, AME2016-H, testing set: JYFLTRAP-

2017

The difference in performance of the models trained on AME2003-H and the larger dataset

AME2016-H is compared by predicting the recent S2n values from JYFLTRAP using the

(T+H) variant of the model input. The testing dataset consists of 4 points (red stars in

Fig. 5.2); the results are shown in Table 5.2. From this table, we can see that the GP

models reduced the rms significantly for all cases, while the BNN predictions of SLy4, SkP,

SV-min, UNEDF0, and DD-MEδ deteriorated. This can be attributed to the emphasis on

long-range correlations from the BNN model due to the non-vanishing tail in the activation

function. On the other hand, the GP models, which use a Gaussian-like kernel and a range of

correlation effects of Z± 4, N ± 2, focus more on the short-range correlations and performed

better. This can be explained by the observation that the residual surface in the region of

JYFLTRAP data (Z ∼ 62, N ∼ 100) is fairly smooth (Fig. 5.3).

Overall, slightly better improvements have been achieved for the models trained using

the AME2016-H dataset. However, this improvement is not significant - we see that only

one new measurement in the extended data, i.e. AME2016-2003 (Fig. 5.2 blue dots), is in

the vicinity of the testing dataset, and thus can only impose weak constraints on regions of

the testing data.

5.3.3 Two-neutron drip-line of Sn (Z = 50)

In the next step, we trained the residual emulators on the entire even-even nuclear landscape

with the combined dataset of AME2016-H and JYFLTRAP, using the (T+H) input variant.

Based on results from this set of predictions, Fig. 5.6 shows the extrapolated S2n values
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Table 5.2: Similar as in Table 5.1 except for the rms values of δ(Z,N), δBNN(Z,N), and
δGP(Z,N) (in MeV) for various nuclear models with respect to the testing dataset consisting
of the four JYFLTRAP S2n values. The second column shows the uncorrected rms value
δrms. For each model, the training datasets AME2003-H (third column) and AME2016-H
(fourth column) were used to compute δGP

rms (upper row) and δBNN
rms (lower row) using the

T+H variant of statistical calculations. (Table taken from Ref. [158])

model δrms 2003-H 2016-H

SkM* 0.91 0.40(56) 0.31(66)
0.24(74) 0.25(72)

SLy4 0.27 0.09(65) 0.09(67)
0.42(-57) 0.28(-4)

SkP 0.19 0.16(14) 0.14(26)
0.35(-85) 0.36(-92)

SV-min 0.14 0.11(18) 0.10(29)
0.17(-20) 0.26(-86)

UNEDF0 0.11 0.11(-3) 0.11(1)
0.33(-199) 0.22(-97)

UNEDF1 0.26 0.17(36) 0.14(48)
0.09(64) 0.13(50)

NL3* 0.32 0.19(39) 0.22(32)
0.17(47) 0.18(43)

DD-MEδ 0.16 0.08(50) 0.09(46)
0.18(-14) 0.28(-4)

DD-ME2 0.30 0.12(58) 0.13(55)
0.28(8) 0.29(2)

DD-PC1 0.28 0.17(41) 0.13(52)
0.25(12) 0.27(5)

FRDM-2012 0.13 0.10(20) 0.09(26)
0.05(60) 0.05(58)

HFB-24 0.13 0.12(2) 0.11(12)
0.07(43) 0.10(25)

and its credibility intervals (CI) of the Sn (Z = 50) isotopes using GP and BNN, for the

relativistic DFT model DD-PC1. The objective here is to predict the location of the two-

neutron drip-line. This is roughly equivalent to finding the largest neutron number N∗ such

that the lower endpoint of its one-sided 1.65-sigma CI barely touches the S2n = 0 line, i.e.
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a 95% probability that this N∗ gives the correct two-neutron drip-line. In Fig. 5.6, we can

see that both the original DD-PC1 prediction and the DD-PC1+GP(T+H) posterior mean

predicted N∗ to be 126, and N∗ = 122 and 118 at the 1- and 1.65-sigma CI, respectively.

Similarly, the DD-PC1+BNN(T+H) posterior mean predicted N∗=118, and N∗=102 and

104 at the 1- and 1.65-sigma CI, respectively. One can immediately see the advantage of this

description of the drip-line over simply saying: “DD-PC1 predicts the two-neutron drip-line

of Sn at N = 126”.

5.4 Neutron drip-line in the Ca region using Bayesian

model averaging

The statistical model of residuals served as a proof of concept, which allowed us to test and

analyze the performance of various Bayesian models and other aspects of the methodology.
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In conclusion, we found that using the GP as our likelihood model has the overall best

performance, and is also more numerically stable (Ref. [158]). The performance further

increases by expanding the input dimension for the statistical models to include information

on a nucleus’ proximity to the neutron magic gaps. One could also limit their domain of

training to heavy nuclei, such as nuclei above Ca to improve model performance, if they are

only interested in heavier regions of the nuclear landscape. An additional benefit of using

the Bayesian methodology is the resulting probabilistic description of the model parameters.

This provides us a quantitative way to estimate our predictions’ uncertainties, and thus

quantifies the level of confidence of our predictions.

We next devoted ourselves to a more specific analysis on the neutron drip-line near the Ca

region using the techniques developed in Sec. 5.1 and 5.2, and only used the GP model which

was proven to be more effective. We also included the residual model for the one-neutron

separation energy:

S1n(N,Z) = BE(N,Z)−BE(N − 1, Z), (5.13)

which is the difference in binding energies between neighboring nuclei with the difference of

only one neutron. The neutron number here is always an odd number, which is to say we

only study the residuals of S1n in a system with odd-N and S2n for systems with even-N .

This is due to the fact that an odd-N system will decay first via removing one neutron,

and an even-N system will decay first via removing a pair of neutrons, a consequence of the

pairing correlation.

Since most calculations in DFT are performed for the even-even systems due to the

additional blocking procedure required when dealing with the odd nucleon (Sec. 2.1.4.3), we

took a simple approach in which we used the binding energies of the even-even neighbor and
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the average paring gaps to approximate the binding energy of an odd-A (or odd-odd) system

via:

BE(Z − 1, N) = 1
2 [BE(Z,N) + BE(Z − 2, N)]

+1
2

[
∆p(Z,N) + ∆p(Z − 2, N)

]
,

(5.14)

BE(Z,N − 1) = 1
2 [BE(Z,N) + BE(Z,N − 2)]

+1
2 [∆n(Z,N) + ∆n(Z,N − 2)] ,

(5.15)

where ∆n and ∆p are the average neutron and proton pairing gaps from DFT calcula-

tions [65]. The S1n residuals δ1n(Z,N) are defined similarly to δ2n(Z,N) in Eq. (5.2), with

a change in all the subscripts from 2n to 1n.

Two training datasets were used in this work, in order to test the impact of additional

nuclear mass measurements on the performance of our residual models, similar to what

was done in Sec. 5.3. The first set uses the AME2003 experimental data, and the second

set is AME2016*, which is AME2016 supplemented with the then new measurement of

52−55Ti masses from experiments at TRIUMF [178]. Nine theory models were used in this

exercise, including seven Skyrme DFT models SkM* [171], SkP [172], SLy4 [96], SV-min [97],

UNEDF0 [93], UNEDF1 [94], and UNEDF2 [95] and two more phenomenological models

FRDM-2012 [169] and HFB-24 [170].

Figure 5.7 shows the new estimates for S1n/2n from the nine theory models:

Sest
1n/2n(Z,N) = Sth

1n/2n(Z,N, ) + δem
1n/2n(Z,N). (5.16)

Experimental separation energies of 55−57Ca are provided by AME2016 extrapolations.

We can see that all Skyrme DFT models’ predictions for the S1n values of 55,57Ca are
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are marked. The shaded regions are one-sigma error bars from Ref. [179]; error bars on
theoretical results are one-sigma credible intervals computed with GP extrapolation. (Figure
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consistent with experiments within the range of uncertainties, and the S2n values of 56Ca

are consistent with the experimental data for new predictions of UNEDF1, UNEDF2, SLy4,

SkP and SkM*. The GP corrections for the more phenomenological models are very small,

due to the fact that these models are already well-fitted in almost all mass regions, thus

leaving very little information to be used for the statistical process. The large deviation
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in the new HFB-24 predictions is due to the irregular behavior of its neutron separation

energies in its original prediction.

Since we’re using GP model, as discussed in Sec. 5.2.1, the effective range of the GP is

very short, meaning that additional data points in the AME2016* training set compared to

AME2003 do not have a huge impact on our GP model. There are slight improvements in

the mean value predictions of the separation energies.

We also introduce a quantity pex(Z,N), which is called the probability of existence.

pex(Z,N) is the probability of the predicted separation energy S∗
1n/2n

(Z,N) to be positive

in its posterior distribution:

pex(Z,N) := p
(
S∗1n/2n(Z,N) > 0 | S1n/2n

)
. (5.17)

This provides another way of describing a nucleus’ instability to neutron decay.

The S1n/2n predictions near the Ca drip-line are shown in Fig. 5.8 for the theory models

UNEDF0, SV-min and FRDM-2012. The probability pex(Z,N) is shown in the figure’s

insert. The colored bands are the one-sigma CIs. We can see that the posterior predictions

between the three theory models are overall consistent.

Without the loss of generality, we chose pex = 0.5 as the boundary for the estimated one

and two neutron drip-lines. This is marked by a dotted line in this figure.

Applying the same strategy for the broader region around the neutron-rich Ca isotopes we

arrive at Fig. 5.9. The top panel, Fig. 5.9(a) uses uniform averaging (equal weights) across the

nine theory models after correction with Eq. (5.16). Under this simplistic averaging scheme,

the pex values for the already discovered nuclei [180,181] 49S, 52Cl, and 53Ar are 0.58, 0.45,

and 0.64, respectively. These low pex values show that the odd-neutron systems present a
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challenge for our theory models, as was noticed in Ref. [180]. Thus, we use the knowledge

that these three isotope have been observed to inform the model averaging process, through

the posterior averaging weights:

wk := p
(
Mk |52 Cl,53 Ar,49 S exist

)
. (5.18)

These weights reflect the ability of a model Mk to predict the existence of these isotope,

i.e. the probability of predicting S1n > 0 after correction. Using the posterior weights, the

resulting pex values for 49S, 52Cl, and 53Ar are 0.69, 0.53, and 0.69, respectively(Fig. 5.9(b)),

slightly better than using uniform model averaging.

By comparing Fig. 5.9(a) and (b), the impact of including the information that 49S, 52Cl,

and 53Ar exist were able to extend the drip-line (pex(Z,N) ≥ 0.5) by two neutron numbers

82



14

16

18

20

22

44Si 45Si 46Si 48Si

45P 46P 47P 49P

46S 47S 48S 49S 50S 52S

47Cl 48Cl 49Cl 50Cl 51Cl 53Cl 55Cl

48Ar 49Ar 50Ar 51Ar 52Ar 53Ar 54Ar 55Ar 56Ar 58Ar

49K 50K 51K 52K 53K 54K 55K 56K 57K 58K 59K 61K 63K

50Ca 51Ca 52Ca 53Ca 54Ca 55Ca 56Ca 57Ca 58Ca 59Ca 60Ca 62Ca 64Ca 66Ca 68Ca 70Ca

51Sc 52Sc 53Sc 54Sc 55Sc 56Sc 57Sc 58Sc 59Sc 60Sc 61Sc 62Sc 63Sc 64Sc 65Sc 67Sc 69Sc 71Sc 73Sc

52Ti 53Ti 54Ti 55Ti 56Ti 57Ti 58Ti 59Ti 60Ti 61Ti 62Ti 63Ti 64Ti 65Ti 66Ti 67Ti 68Ti 69Ti 70Ti 72Ti 74Ti 76Ti 78Ti

Prior average corrected model

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
Neutron number

14

16

18

20

22

44Si 45Si 46Si 48Si

45P 46P 47P 49P

46S 47S 48S 49S 50S 52S

47Cl 48Cl 49Cl 50Cl 51Cl 52Cl 53Cl 55Cl 57Cl

48Ar 49Ar 50Ar 51Ar 52Ar 53Ar 54Ar 55Ar 56Ar 58Ar

49K 50K 51K 52K 53K 54K 55K 56K 57K 58K 59K 61K 63K 65K

50Ca 51Ca 52Ca 53Ca 54Ca 55Ca 56Ca 57Ca 58Ca 59Ca 60Ca 62Ca 64Ca 66Ca 68Ca 70Ca

51Sc 52Sc 53Sc 54Sc 55Sc 56Sc 57Sc 58Sc 59Sc 60Sc 61Sc 62Sc 63Sc 64Sc 65Sc 66Sc 67Sc 69Sc 71Sc 73Sc 75Sc

52Ti 53Ti 54Ti 55Ti 56Ti 57Ti 58Ti 59Ti 60Ti 61Ti 62Ti 63Ti 64Ti 65Ti 66Ti 67Ti 68Ti 69Ti 70Ti 72Ti 74Ti 76Ti 78Ti

Posterior average corrected model

measured
observed
dripline estimate

0.00 0.05 0.16 0.33 0.50 0.67 0.84 0.95 1.00
Calculated probability of existence

Pr
ot

on
 n

um
be

r
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in most cases. According to these average pex(Z,N), we can say that 61Ca and 71Ti are

expected to be one-neutron unstable while the two-neutron drip-lines are at 70Ca and 78Ti.

The nucleus 59K, which had one registered event in Ref. [180], is predicted to be stable

against neutron decay.

5.5 Proton drip-line analysis and two-proton emitters

In the next project we improved predictions by using Bayesian model averaging (BMA) to the

proton-rich side of the nuclear landscape, with an additional goal of identifying two-proton
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emitters.

Because of the Coulomb barrier, the one- and two-proton drip-lines lie relatively close

to the valley of stability. Thus the half-lives of proton-unstable nuclei beyond the drip-

lines are relatively long, allowing us to study the nuclear structure and dynamics in systems

with low-lying proton continuum. One of the phenomenon that emerges in these region is

the existence of two-proton emitters. Unlike the one- and two-neutron drip-lines shown in

Fig. 5.8, which has the clear trend that the S1n lies to the left of the S2n line, and thus

one-neutron drip-line will always occur before two-neutron drip-line (also seen in Fig. 5.9),

there is the possibility that in a proton-rich nucleus, the two-proton separation energy S2p

is negative while S1p is positive. This implies that the system can be one-proton bound but

at the same time unstable to two-proton emission. Several two-proton emitters have been

identified by experiments: 19Mg [182], 45Fe [183, 184], 48Ni [185–188], 54Zn [189, 190], and

67Kr [191]. Additionally, broad resonances associated with the two-proton emission were

reported in several light nuclei such as 6Be [192] and 11,12O [193,194].

In this work, we included two Gogny DFT models D1M [53] and BCPM [195] to the set

of models used in Sec. 5.4, making the total number of theory models used to be eleven. The

D1M model is a modern parametrization of the finite-range Gogny interaction, and fitted to

2149 masses from the AME2003 dataset and other nuclear properties. The BCPM model

is primarily given by a fit to the equation of state in both neutron and symmetric nuclear

matter, which resulted in relatively small numbers of free parameters, and was fitted to the

masses of 579 even-even nuclei from the AME2003 mass dataset [166].
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5.5.1 Modified Gaussian process and Bayesian model averaging

We modified the GP model slightly as compared to what was done in Sec. 5.2.1, and intro-

duced an additional parameter µ as the mean of the Gaussian vector:

f(x, θ) ∼ GP
(
µ, kη,ρ

(
x, x′

))
. (5.19)

This added parameter µ improved the rms deviation of the residual by an additional 15%

compared to the initial 25% improvement from the zero-mean version of the GP.

The training dataset used is AME2016+, where we augmented the AME2016 dataset

with masses from Ref. [168, 178, 196–200], and kept the most recent value if there were

repeat measurements.

Four variants of weights for the model averaging were used in this work. The first

used uniform weights (BMA-0) without the need of additional information and the costly

computation of the posteriors. The other three variants, BMA-I, -II, and -III are built on

Bayesian model averaging and their weights depends on how information from the known

two-proton emitters x2p, known ≡
{

19Mg,45 Fe,48 Ni,54 Zn,67 Kr
}
is utilized.

The second variant, BMA-I, used the conditional probability that the corrected the-

ory model is able to predict the correct signs of the experimental Q2p and S1p values for

x2p, known . The weights are given as:

wk(I) ∝ p
(
Mk | Q2p > 0, S1p > 0 for x2p, known

)
, (5.20)

whereMk represents the theory model.

The third variant BMA-II was based directly on the ability of a theory model Mk to
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predict the Q2p values of the five known two-proton emitters x2p, known :

wk(II) ∝ p
(
Mk | Q2p of x2p, known

)
. (5.21)

The final variant BMA-III is a trivial version of BMA-II, consisting of the Gaussian

likelihood of x2p, known evaluated at the posterior mean and posterior variance, assuming

that these values are statistically independent. Compared to BMA-II, this variant ignores

all correlation effects of the posterior predictions for x2p, known . The weights for BMA-III

are given as:

wk(III) ∝
∏

i∈x2p, known

1√
2πσ2

i

e
−1

2(
yi
σi

)2
, (5.22)

where yi are the Q2p residuals of x2p, known .

As a result, we discovered that the BMA-0, BMA-I, and BMA-III variants achieved

better performance compared to the more sophisticated BMA-II, and the best performance

in terms of rms deviation reduction came from the simplest BMA-0 and BMA-I variants.

The resulting prediction of pex for proton-rich nuclei with 16 ≤ Z ≤ 82 is shown in Fig. 5.10.

5.5.2 Two-proton emitters

Although the proton chemical potential is positive for nuclei with S1p/2p < 0, the HFB

(Sec. 2.1.3) calculations are very stable in the range of binding energies considered due to

the Coulomb barrier’s confinement effect on the proton density that effectively pushes the

proton continuum up in energy in the proton-rich nuclei. Thus, we can safely obtain the

proton separation energies S1p/2p and the corresponding Q values from the binding energies

of the proton unbound systems.
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Figure 5.10: Probability of existence pex that a nuclei is bound with respect to proton
decay for proton-rich nuclei with 16 ≤ Z ≤ 82. Calculations using BMA-I (top) and BMA-II
(bottom) variants of model averaging are shown. For each proton number, pex is shown
along the isotopic chain versus the relative neutron number N0(Z)−N , where N0(Z), listed
in Tables A.3 and A.4, is the neutron number of the lightest proton-bound isotope for which
an experimental one- or two-proton separation energy value is available. The domain of
nuclei that have been experimentally observed (both proton-bound and proton-unbound) is
marked by open stars; those within FRIB’s experimental reach are marked by dots. (Figure
taken from Ref. [109])

This work is considered as an extension of the previous global survey of proton emit-

ters [201,202], and uses the same criterion to select true two-proton emitters:

Q2p > 0, S1p > 0, (5.23)

where Q2p = −S2p. This condition corresponds to a simultaneous emission of two-proton

in the diproton model [185, 186], compared to the sequential emission of two protons in the

direct-decay model [163]. We shall refer to the two-proton emission corresponding to the

diproton model as the true two-proton emission.
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There is an additional constraint on the nucleus’ lifetime when selecting a two-proton

emitter, due to the fact that very large Q values will cause the decay to be too fast to be

observed. On the other hand, if the Q values are too small, the proton-decay rates will be

negligible compared to other decay channels such as β or α decays. The practical range of

lifetime to consider is [201]:

10−7 < T2p < 10−1s. (5.24)

The lower bound of 100 ns is to ensure the two-proton decay can be captured by current

experimental techniques, and the upper bound of 100 ms is to prevent the nucleus from

being dominated by β decay. We used the semi-classical Wentzel-Kramers-Brillouin (WKB)

approximation and assumed a diproton decay with angular momentum l = 0 to get an order-

of-magnitude estimate for the two-proton emitters’ lifetimes. A Woods-Saxon potential with

the Chepounov parameters was used. Details of the calculation can be found in Refs. [201,

203]. The proton overlap O2 = 0.0011 has been fitted to match the measured lifetimes of

19Mg, 45Fe, 48Ni, and 54Zn. Branching ratio of the two-proton decay channel in 67Kr cannot

be determined, and was thus left out of the fit.

We also defined the posterior probability p2p for true two-proton emitters that satisfies

Eq. (5.23) as:

p2p := p
(
S∗2p < 0 ∩ S∗1p > 0 | S1p/2p

)
, (5.25)

where S∗
1p/2p

are the values from the unknown mass region, and S1p/2p are what’s being

used as the training dataset, following conventions in Sec. 5.2.

Fig. 5.11 shows the Q2p values from the BMA-I predictions together with the range of

88



27

25

31

29

35

33

39

37

43

40

46

44

50

47

55

52

60

56

64

61

68

64

72

68

76

72

80

76

84

80

88

83

91

87

 

95

91

103

100

107

104

112

108

116

111

119

115

124 129

119

134

123

137

128

142

131

147

135

150

141

155

145

158

150

162

152

156

80Hg78Pt76Os74W72Hf70Yb68Er66Dy64Gd62Sm60Nd58Ce56Ba54Xe52Te50Sn

Q
2p

 (M
eV

)

−2

−1

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10
10-1 s

p2p > 0.410-7 s

30Zn 32Ge 34Se 36Kr 38Sr 40Zr 42Mo 44Ru 46Pd 48Cd28Ni26Fe24Cr22Ti20Ca18Ar16S

Figure 5.11: Q2p values predicted in BMA-I for even-even isotopes with 16 6 Z 6 80.
The thick solid lines mark the lifetime range (5.24). The mass numbers of selected isotopes
are shown. The nuclei with the probability p2p > 0.4 are indicated by dots. Here, we used
this value of p2p rather than p2p > 0.5 because the criterion (5.25) of the true 2p emission is
slightly more restrictive than the energy criterion previously adopted in Ref. [202]. (Figure
taken from Ref. [109])

lifetime in (5.24). The colored shades for the lifetime range corresponds to the uncertainty

in the fitted proton overlap O2, and is clearly negligible in most cases except for e.g. 41Cr.

It is important to note that the large error bars in the Q2p predictions correspond to several

decades of the two-proton decay lifetime due to the exponential energy dependence in the

WKB integral. The known two-proton emitters x2p, known ≡
{

19Mg,45 Fe,48 Ni,54 Zn,67 Kr
}

consistently fall within the target lifetime range (5.24). The black dots correspond to nu-

clei with p2p > 0.4, this value of p2p is selected rather than p2p > 0.5 is because the

criterion (5.25) is slightly more restrictive than the single-value energy criterion previously

adopted in Ref. [201].

We predict the most promising candidates for true two-proton emission, other than
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the known ones x2p, known , are: 30Ar,34 Ca,39 Ti,42 Cr,58 Ge,62 Se,66 Kr,70 Sr,74 Zr,78 Mo,

82Ru,86 Pd,90 Cd, and 103Te.

The calculated p2p is very low for nuclei with Z ≥ 54 that also fall into the lifetime

range (5.24). The large Coulomb barriers and the condition of p2p > 0.4 which corresponds

to low Q2p values, i.e. very long lifetimes, resulted in the small two-proton decay widths.

Many of the very proton-rich nuclei with small p2p values such as 131,132Dy, 134,135Er, and

144,145Hf, are excellent candidates for the direct-decay model of two-proton emission [163].

These findings using the BMA methods are mostly consistent with other predictions. The

nuclei 39Ti and 42Cr, are expected to be excellent two-proton decay candidates [204, 205].

The Q2p value predicted in BMA-I is not consistent with the claim that 39Ti primarily

decays via β decay by Ref. [186]. Other two-proton decay candidates predicted by BMA-I

and discussed in other literature include 26S, 29−31Ar [206], 34Ca [207], 58Ge, 62Se, and

66Kr [208]. Ref. [202] predicts 103Te to exhibit a competition between alpha decay and two-

proton decay, and 145Hf to exhibit competition between α decay and direct-decay model of

two-proton emission.

5.6 Quantified limits of the nuclear landscape

The latest project in the series is on the quantified limits of the nuclear landscape [108].

Within the DFT framework, limits of the nuclear landscape were probed by performing

global mass surveys using several energy density functionals (EDFs): Skyrme [98, 209, 210],

Gogny [53, 211], and covariant [210, 212–214]. The problem however, is that these early

studies often lacked uncertainty quantification. In few cases [98,210,215], systematic uncer-

tainties have been estimated by combining predictions of several different surveys, and by
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performing simple mean averaging.

The Bayesian residual modeling, predictions for the probability of existence pex(Z,N)

follow closely to the descriptions in Sec. 5.2 and 5.4. Gaussian process was selected as

our Bayesian model, using the non-zero mean variance defined in (5.19). Four residual

models: one- and two-neutron separation energies (for odd-N and even-N , respectively),

one- and two-proton separation energies (for odd-Z and even-Z, respectively) were modeled

and trained separately.

For the BMA, we considered eight models based on masses calculated using EDFs under

the HFB framework (Sec. 2.1.3). Masses from the odd-Z and odd-N nuclei were calculated

using Eq. (5.14). The more phenomenological mass models FRDM-2012 [169] and HFB-

24 [170] are also included.

Two variants of weight were used for the BMA, each focusing on data from either the

neutron-rich (BMA(n)) or the proton-rich (BMA(p)) nuclear regions, following similar meth-

ods described in Sec. 5.4 and 5.5. In order to assess the nuclear landscape, we also applied

a third BMA variant which assigned local model averaging weights for each nucleus, called

BMA(n+ p):

wk(Z,N) =wk(n)H
[
N > Nβ(Z)

]
+ wk(p)H

[
N < Nβ(Z)

]
, (5.26)

where H(x) is the Heaviside step function and Nβ(Z) is the neutron number corresponding

to the average line of β stability defined as in Ref. [216].

The resulting model weights for BMA(n) and BMA(p) are shown in Table 5.3. We can

see that BMA(n) is well balanced while BMA(p) is more selective, which penalizes large

deviations at single data points.
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Table 5.3: Model posterior weights obtained in the variants BMA(n) and BMA(p) of our
BMA calculations. For compactness, the following abbreviations are used: UNEn=UNEDFn
(n=0,1,2) and FRDM=FRDM-2012. (Table taken from Ref. [108])

BMA variant SkM* SkP SLy4 SV-min UNE0 UNE1 UNE2 BCPM D1M FRDM HFB-24
BMA(n) 0.10 0.10 0.06 0.11 0.12 0.10 0.09 0.06 0.04 0.12 0.09
BMA(p) 0.00 0.03 0.08 0.05 0.04 0.14 0.12 0.04 0.16 0.17 0.17

By design, the local variant BMA(n+p) performs the best, since it evaluates each model

according to their local quality, i.e. when assigning model weights on the neutron-rich side of

the nuclear chart - models that are more accurate in predicting neutron separation energies

shouldn’t be penalized for their poor performance in predicting two-proton emitters. In

practice, all three BMA variants perform similarly in terms of posterior rms deviation (S1n ≈

302keV, S2n ≈ 453keV, S1p ≈ 410keV, S2p ≈ 438keV) when using AME2016-AME2003

(Sec. 5.3.1) as the testing set. These BMA weights can also help us assess the predictive

power of different theory models after GP correction: UNEDF0, FRDM-2012, and SV-min

have higher predictive power on the neutron-rich side while FRDM-2012, HFB-24, and D1M

performs better on the proton-rich side.

In the entire nuclear landscape, the probability of existence pex is defined slightly differ-

ently as:

pex = p
(
S∗1p/2p > 0 | S1p/2p

)
p
(
S∗1n/2n > 0 | S1n/2n

)
, (5.27)

where p
(
S∗

1p/2p
> 0 | S1p/2p

)
was obtained with BMA(p) and p

(
S∗

1n/2n
> 0 | S1n/2n

)
with

BMA(n). In practice, one of these two probabilities is always ≈ 1, as one would expect the

proton separation energies for neutron-rich nuclei to be well above zero and vice versa.

Plotting pex for the entire nuclear landscape gave us the quantified limit of the nuclear

landscape shown in Fig. 5.12. The drip-line corresponds to pex = 0.5, and the ranges of
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Figure 5.12: The quantified landscape of nuclear existence obtained in our BMA calculations.
High-resolution of this figure can be found in Ref. [217]. For every nucleus with Z,N > 8
and Z 6 119 the probability of existence pex (5.27), i.e., the probability that the nucleus is
bound with respect to proton and neutron decay, is marked. The domains of nuclei which
have been experimentally observed and whose separation energies have been measured (and
used for training) are indicated. To provide a realistic estimate of the discovery potential
with modern radioactive ion-beam facilities, the isotopes within FRIB’s experimental reach
are marked. The magic numbers are shown by straight (white) dashed lines, and the average
line of β-stability defined as in Ref. [216] is marked by a (black) dashed line. In our estimates,
we assumed the experimental limit for the confirmation of existence of an isotope to be 1
event/2.5 days. (Figure taken from Ref. [108])

nuclear mass measurements and known nuclei are marked. According to the BMA(n + p)

variant of model averaging, we find the number of particle-bound nuclei with Z,N > 8 and

Z 6 119 to be 7708 ± 534.

On the proton-rich side of the landscape, we can see that many heavy proton-unstable

nuclei will be reached by FRIB, which could test our predictions for the two-proton emitters

(Sec. 5.5.2). On the neutron-rich side, FRIB could also examine our pex predictions for the

neutron unstable systems in the light to medium mass region.
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5.7 Summary: Bayesian machine learning

In this chapter, we started by introducing the method of using Bayesian neural networks

(BNN) and Gaussian process (GP) to emulate the residuals of the two neutron separation

energy as a way to improve theory models’ predictability. The resulting probabilistic descrip-

tion of the modeled residuals gave us a way to quantify the systematic model uncertainty of

the separation energy predictions. This lead to the concept of the probability of existence

pex, which states the probability of a near drip-line nucleus to have a positive separation

energy. We also concluded that the Gaussian process is a better approach compared to

BNN to in modeling the separation energy residuals, due to its emphasis on the short-range

correlations.

Using the notion of pex, we performed an uncertainty-quantified analysis of the neutron

drip-line in the Ca region, and presented a probabilistic description for the one- and two-

neutron drip-line. We also introduced Bayesian model averaging (BMA) techniques.

Following the neutron drip-line analysis in the Ca region, we set our eyes onto the proton

drip-line, and further experimented with various BMA weighting methods. We also used the

prediction for the one- and two-proton separation energy to provide predictions for potential

two-proton emitters, in addition to the uncertainty-quantified proton drip-line predictions

in the medium-mass region. In this project, we also included a non-zero mean random

variable into our GP for the first time, which reduced the theory models’ rms deviation by

an additional 15% compared with the initial 25% reduction brought by the GP.

Finally, we expanded the Bayesian techniques developed in the first three projects to

the entire nuclear landscape, and provided probability of existence predictions for all nuclei

with Z,N > 8 and Z 6 119. For all even-even, even-odd, and odd-odd systems, our model
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predicted 7708 ± 534 nuclei have probability of existence greater than 0.5. We hope this

quantified limit of the nuclear landscape can provide a guide for experimental research at

next-generation rare isotope facility including the FRIB facility on MSU campus that will

soon become operational.
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Chapter 6

Conclusions and Outlook

This dissertation consists of two parts: the applications of nuclear DFT to predict ground

state nuclear properties on a large scale, and the applications of Bayesian machine learning

techniques in nuclear physics. The common theme is large-scale DFT calculations of nuclear

properties across the nuclear landscape aided by high-performance computing.

6.1 Octupole deformations and intrinsic Schiff moments

The global survey of octupole-deformed even-even nuclei was performed using nuclear DFT,

in particular the Skyrme HFB theory. This served as a precursor to the second project,

which was the computation of intrinsic Schiff moments in the vicinity of robust candidates

for octupole-deformed even-even nuclei.

In the global octupole survey discussed in Ch. 3, results from five Skyrme EDFs and four

covariant EDFs were combined to present the landscape of octupole multiplicity; this gave

us a less model-biased prediction of the octupole deformations in even-even nuclei. We have

confirmed that enhanced octupole instability mostly occur in the neutron-deficient actinide

region and the superheavy actinides with N ≥ 182, where the latter is far from current

experimental reach. Among nuclei in the neutron-deficient actinide region, we predicted

the largest octupole deformations in 224,226Ra, 226,228Th, 224,226,228U, 226,228,230Pu, and

228,230Cm.
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By looking at the octupole deformation energy ∆Eoct in the octupole-deformed nuclei,

we were also able to qualitatively determine the rigidness of octupole deformation. For

instance, although the predicted β3 for lanthanide nuclei such as 144,146Ba, 146,148Ce, and

146,148Nd are large and comparable in β3 to Ra and Th isotopes, their average values of

∆Eoct of less than 0.5 MeV imply very shallow octupole minima, and suggest that octupole

deformations are not rigid. However, large octupole correlations are still expected for these

lanthanide nuclei, which could be reflected in the enhanced E1 and E3 transition strengths

that in many cases have been measured. We also realize that beyond-DFT effects, crucial

for soft systems, can play an important role in the lanthanide region nuclei, which could

enhance the theoretical predictions of octupole deformation in this region [218].

The global octupole deformation survey helped us to determine the best candidates to

conduct Schiff moment in the neutron-deficient actinide region. A list of promising candidates

for the atomic EDM measurement are presented in Table. 4.1.

6.2 Bayesian machine learning

Chapter 5 is a summary of the works done between 2018 and 2020, which involved us-

ing Bayesian machine learning techniques to produce uncertainty-quantified predictions of

nuclear stability.

We began with using the Bayesian statistical models BNN and GP to produce emulators

for the S2n residuals of the theory predictions compared with experimental data. This served

as a pilot study to determine which statistical model is better for modeling the separation

energy residuals, and what improvements can be made to achieve better performance. It

was determined that the GP model, which has a larger emphasis on short-range correlations,

97



is more suited for the modeling of the separation energy residuals, and is also more stable

from a computational viewpoint.

The second project focused on the detailed analysis of the neutron drip-line in the calcium

region by means of Bayesian model averaging techniques. The concept of probability of

existence pex of a nucleus was introduced in this project by evaluating the probability of a

nucleus to have a positive separation energy.

We then studied the proton drip-line and made predictions for two-proton (2p) emitters.

We emphasized experimenting with different variants of the weights for BMA. A non-zero

mean GP was also introduced in this project, which increased model performance from an

average of 25% to 40% rms deviation reduction.

Finally, we expanded the prediction of pex to include all nuclei with Z,N > 8 and

Z 6 119, and performed BMA for eleven theory + GP models. This resulted in the quantified

limit of the nuclear landscape (Fig. 5.12) which predicted the number of particle-bound nuclei

with Z,N > 8 and Z 6 119 to be 7708± 534. We also hope the estimates of the drip-lines

could guide experimental research for the discovery of exotic isotopes at FRIB and other

next-generation rare isotope facilities.

6.3 Outlook

Despite the many exciting results presented in this dissertation, much more awaits to be

done.

The calculation performed for odd systems in this dissertation employed approximated

blocking methods, which lacks key inputs from the time-odd terms of the Skyrme interaction.

This can be overcome by using the latest version of the solver HFODD (v2.73y). However,

98



this can be computationally expensive as HFODD is symmetry-unconstrained. As a versatile

solver, HFODD could also benefit from a re-design of the user interface, as well as incor-

porating additional parallel programming to promote wider use and broader applications.

Global minima calculations can also benefit from machine learning tools.

The Schiff moment calculation presented here is limited to the evaluation of the intrinsic

Schiff moment. This can be expanded to include the effects of P-, T-violating potential

- such functionality has already been implemented in HFODD, but was not investigated

in this dissertation. The calculation of parity doublets using beyond mean-field methods,

including restoration of intrinsically-broken symmetries, is also crucial in determining the

magnitude of Schiff moment, albeit challenging. In the first step, one could limit the scope of

calculations to the robust octupole-deformed odd-mass and odd-odd systems, by performing

a global survey of the odd systems with the full blocking method.

The application of Bayesian machine learning in nuclear physics will likely become a

major focus, with great potential for discoveries [219]. Here, one should always keep an eye

open for new technologies, and be well informed of the latest developments.
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Appendix A: Supplementary Tables

Table A.1: ∆Eoct (MeV) and β3 (in parentheses) values calculated using five Skyrme EDFs:
UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min. See (2.34) and (3.2) for definitions of
β3 and ∆Eoct, respectively. Nuclei with at least three Skyrme EDFs predicting them as
octupole-deformed are shown.

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min

Z = 56 (Ba)

56 112 0.09 (0.07) 0.36 (0.12) 0.08 (0.07)
88 144 0.04 (0.04) 0.56 (0.11) 0.5 (0.11) 0.15 (0.07)
90 146 0.08 (0.06) 0.2 (0.09) 0.48 (0.12) 0.48 (0.12) 0.18 (0.08)

Z = 58 (Ce)

86 144 0.51 (0.09) 0.27 (0.09) 0.05 (0.04)
88 146 0.37 (0.1) 0.9 (0.13) 0.55 (0.12) 0.22 (0.08)
90 148 0.25 (0.11) 0.45 (0.14) 0.14 (0.12) 0.09 (0.08)

Z = 60 (Nd)

86 146 0.24 (0.08) 0.75 (0.1) 0.23 (0.09) 0.05 (0.04)
88 148 0.3 (0.1) 1.15 (0.14) 0.35 (0.11) 0.08 (0.06)
136 196 0.03 (0.03) 0.07 (0.06) 1.03 (0.14) 0.28 (0.1)
138 198 0.07 (0.06) 0.5 (0.15) 0.3 (0.1)

Z = 62 (Sm)

132 194 0.05 (0.03) 0.51 (0.08) 0.62 (0.1) 0.1 (0.05)
134 196 0.24 (0.08) 0.79 (0.11) 1.05 (0.14) 0.38 (0.1)
136 198 0.35 (0.1) 0.89 (0.12) 1.28 (0.15) 0.46 (0.12)

101



Table A.1 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min

Z = 64 (Gd)

132 196 0.34 (0.08) 1.06 (0.11) 0.87 (0.12) 0.25 (0.07)
134 198 0.59 (0.11) 1.45 (0.13) 1.02 (0.15) 0.53 (0.11)
136 200 0.45 (0.13) 1.21 (0.15) 0.81 (0.16) 0.33 (0.12)

Z = 66 (Dy)

132 198 0.37 (0.09) 1.36 (0.12) 0.86 (0.12) 0.24 (0.07)
134 200 0.52 (0.12) 1.68 (0.14) 0.5 (0.14) 0.29 (0.1)
136 202 0.15 (0.14) 1.13 (0.16) 0.28 (0.13)

Z = 68 (Er)

132 200 0.17 (0.08) 1.21 (0.12) 0.18 (0.1) 0.05 (0.05)
134 202 0.17 (0.1) 1.36 (0.15) 0.05 (0.08)

Z = 86 (Rn)

132 218 0.86 (0.1) 0.24 (0.07) 0.6 (0.09) 0.52 (0.09) 0.36 (0.08)
134 220 0.95 (0.12) 0.31 (0.09) 0.2 (0.11) 0.67 (0.11) 0.47 (0.1)
136 222 0.88 (0.12) 0.15 (0.09) 0.56 (0.12) 0.33 (0.1)
138 224 0.55 (0.12) 0.26 (0.09) 0.1 (0.07)
192 278 0.04 (0.04) 0.19 (0.05) 0.13 (0.05)
194 280 0.18 (0.07) 0.01 (0.06) 0.36 (0.1)
196 282 0.25 (0.09) 0.36 (0.11) 0.03 (0.04)

Z = 88 (Ra)

130 218 0.91 (0.1) 0.47 (0.07) 0.79 (0.09) 0.63 (0.08)
132 220 1.24 (0.12) 1.07 (0.11) 1.41 (0.12) 1.58 (0.12) 1.14 (0.11)
134 222 1.41 (0.14) 1.27 (0.13) 1.48 (0.14) 1.81 (0.14) 1.33 (0.13)
136 224 1.24 (0.14) 1.01 (0.14) 0.84 (0.14) 1.65 (0.15) 1.1 (0.14)
138 226 0.77 (0.14) 0.51 (0.13) 0.09 (0.08) 1.17 (0.15) 0.61 (0.13)
140 228 0.29 (0.1) 0.12 (0.07) 0.42 (0.11) 0.16 (0.08)
192 280 0.65 (0.09) 0.25 (0.05) 1.02 (0.11) 0.58 (0.08)
194 282 0.91 (0.11) 0.0 (0.04) 1.51 (0.13) 0.75 (0.11)
196 284 0.97 (0.12) 0.28 (0.09) 1.58 (0.14) 0.79 (0.12)
198 286 0.79 (0.12) 0.22 (0.08) 0.9 (0.14) 0.49 (0.11)
200 288 0.45 (0.12) 0.12 (0.06) 0.19 (0.07) 0.13 (0.07)
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Table A.1 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min

Z = 90 (Th)

130 220 0.96 (0.11) 0.99 (0.1) 0.38 (0.09) 1.25 (0.11) 1.05 (0.1)
132 222 1.21 (0.13) 1.66 (0.13) 2.3 (0.14) 1.91 (0.13) 1.56 (0.13)
134 224 1.16 (0.14) 1.72 (0.15) 2.28 (0.16) 1.85 (0.15) 1.54 (0.15)
136 226 0.72 (0.15) 1.13 (0.16) 1.2 (0.16) 1.19 (0.17) 0.99 (0.15)
138 228 0.18 (0.13) 0.46 (0.15) 0.25 (0.15) 0.63 (0.17) 0.33 (0.15)
192 282 1.04 (0.11) 0.45 (0.06) 1.66 (0.12) 1.09 (0.11)
194 284 1.25 (0.13) 0.99 (0.12) 0.3 (0.07) 2.11 (0.14) 1.41 (0.13)
196 286 1.11 (0.14) 1.14 (0.13) 1.91 (0.16) 1.3 (0.14)
198 288 0.62 (0.14) 0.81 (0.13) 1.06 (0.16) 0.75 (0.14)
200 290 0.05 (0.12) 0.3 (0.11) 0.11 (0.12)

Z = 92 (U)

130 222 0.79 (0.11) 1.35 (0.12) 0.39 (0.11) 1.46 (0.12) 1.25 (0.11)
132 224 0.81 (0.13) 1.8 (0.14) 2.54 (0.15) 1.83 (0.14) 1.49 (0.14)
134 226 0.52 (0.14) 1.48 (0.16) 2.08 (0.17) 1.46 (0.16) 1.19 (0.15)
136 228 0.73 (0.17) 0.87 (0.17) 0.59 (0.17) 0.51 (0.16)
138 230 0.14 (0.15) 0.05 (0.16) 0.15 (0.17)
190 282 0.89 (0.1) 0.66 (0.11) 0.16 (0.09)
192 284 1.04 (0.12) 0.23 (0.11) 0.53 (0.08) 2.03 (0.14) 1.53 (0.12)
194 286 1.04 (0.13) 1.49 (0.13) 0.69 (0.09) 2.24 (0.15) 1.65 (0.14)
196 288 0.7 (0.14) 1.51 (0.14) 0.38 (0.09) 1.67 (0.17) 1.21 (0.15)
198 290 0.09 (0.13) 0.76 (0.15) 0.8 (0.17) 0.5 (0.15)

Z = 94 (Pu)

130 224 0.44 (0.11) 1.61 (0.13) 1.58 (0.12) 1.56 (0.13) 1.29 (0.12)
132 226 0.3 (0.11) 1.58 (0.15) 3.26 (0.15) 1.35 (0.15) 1.06 (0.14)
134 228 0.04 (0.1) 0.91 (0.16) 1.42 (0.17) 0.85 (0.16) 0.62 (0.15)
136 230 0.32 (0.16) 0.33 (0.17) 0.4 (0.16) 0.2 (0.14)
190 284 0.9 (0.11) 0.77 (0.09) 1.68 (0.09) 1.93 (0.12) 1.0 (0.11)
192 286 0.74 (0.12) 1.71 (0.12) 2.16 (0.11) 2.42 (0.14) 1.92 (0.13)
194 288 0.55 (0.13) 2.06 (0.14) 1.76 (0.12) 2.16 (0.16) 1.59 (0.15)
196 290 0.19 (0.12) 1.4 (0.16) 0.94 (0.12) 1.24 (0.17) 0.85 (0.16)
198 292 0.4 (0.16) 0.43 (0.15) 0.29 (0.18) 0.07 (0.15)
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Table A.1 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min

Z = 96 (Cm)

128 224 0.31 (0.07) 0.37 (0.08) 0.6 (0.08) 0.45 (0.09) 0.15 (0.07)
130 226 0.05 (0.1) 1.73 (0.14) 3.11 (0.13) 1.57 (0.14) 1.21 (0.13)
132 228 1.22 (0.16) 3.23 (0.16) 0.83 (0.15) 0.5 (0.15)
134 230 0.36 (0.17) 0.98 (0.18) 0.31 (0.16)
188 284 0.69 (0.09) 1.03 (0.09) 1.85 (0.09) 1.6 (0.11) 0.53 (0.08)
190 286 0.83 (0.11) 2.4 (0.12) 3.19 (0.12) 2.93 (0.14) 1.92 (0.12)
192 288 0.36 (0.12) 2.45 (0.14) 3.62 (0.13) 2.67 (0.15) 2.15 (0.14)
194 290 0.07 (0.1) 2.12 (0.15) 2.91 (0.14) 2.05 (0.17) 1.45 (0.15)
196 292 1.28 (0.17) 1.92 (0.15) 1.11 (0.18) 0.62 (0.16)
198 294 0.29 (0.17) 0.7 (0.16) 0.2 (0.18)

Z = 98 (Cf)

128 226 0.26 (0.07) 0.86 (0.1) 1.38 (0.1) 0.96 (0.1) 0.46 (0.08)
130 228 1.67 (0.14) 3.32 (0.14) 1.49 (0.14) 0.82 (0.13)
132 230 0.71 (0.17) 2.76 (0.17) 0.53 (0.16)
186 284 0.01 (0.02) 0.45 (0.07) 0.77 (0.08) 0.86 (0.09) 0.21 (0.06)
188 286 0.8 (0.09) 1.82 (0.11) 2.75 (0.11) 2.47 (0.12) 1.25 (0.1)
190 288 0.74 (0.11) 2.7 (0.13) 3.71 (0.13) 3.28 (0.14) 2.61 (0.13)
192 290 0.07 (0.1) 2.46 (0.15) 4.0 (0.15) 2.68 (0.16) 2.06 (0.15)
194 292 1.93 (0.17) 3.1 (0.16) 1.95 (0.17) 1.32 (0.16)
196 294 1.29 (0.17) 1.84 (0.17) 1.26 (0.18) 0.55 (0.17)
198 296 0.46 (0.17) 0.7 (0.18) 0.35 (0.18)

Z = 100 (Fm)

126 226 0.17 (0.05) 0.42 (0.07) 0.33 (0.06) 0.03 (0.03)
128 228 0.16 (0.06) 1.05 (0.11) 1.67 (0.11) 1.17 (0.1) 0.58 (0.09)
130 230 1.28 (0.15) 2.76 (0.15) 1.22 (0.15)
132 232 0.27 (0.17) 2.32 (0.18) 0.35 (0.16)
184 284 0.09 (0.04) 0.19 (0.06) 0.45 (0.07) 0.02 (0.02)
186 286 0.1 (0.04) 0.75 (0.09) 1.1 (0.09) 1.29 (0.1) 0.48 (0.07)
188 288 0.79 (0.09) 2.08 (0.12) 2.74 (0.12) 2.8 (0.13) 1.52 (0.11)
190 290 0.61 (0.11) 2.61 (0.14) 3.83 (0.14) 3.21 (0.15) 2.42 (0.14)
192 292 2.2 (0.16) 3.86 (0.16) 2.5 (0.17) 1.84 (0.15)
194 294 1.59 (0.17) 2.86 (0.17) 1.65 (0.18) 1.09 (0.17)
196 296 1.07 (0.18) 1.47 (0.18) 1.17 (0.18) 0.39 (0.16)
198 298 0.38 (0.17) 0.47 (0.18) 0.24 (0.17)
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Table A.1 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min

Z = 102 (No)

128 230 0.05 (0.04) 0.87 (0.11) 1.47 (0.11) 0.9 (0.1) 0.45 (0.08)
184 286 0.14 (0.05) 0.25 (0.06) 0.48 (0.08) 0.06 (0.04)
186 288 0.1 (0.04) 0.76 (0.09) 1.09 (0.1) 1.22 (0.1) 0.49 (0.08)
188 290 0.63 (0.08) 1.98 (0.12) 2.47 (0.13) 2.53 (0.13) 1.37 (0.11)
190 292 0.38 (0.11) 2.39 (0.15) 3.72 (0.15) 2.92 (0.16) 2.0 (0.14)
192 294 1.9 (0.17) 3.61 (0.17) 1.46 (0.18) 1.08 (0.16)
194 296 1.07 (0.17) 2.55 (0.18) 0.15 (0.18) 0.29 (0.16)

Z = 104 (Rf)

184 288 0.09 (0.05) 0.19 (0.06) 0.29 (0.07) 0.02 (0.02)
186 290 0.03 (0.03) 0.57 (0.09) 0.86 (0.09) 0.86 (0.09) 0.32 (0.07)
188 292 0.39 (0.07) 1.66 (0.12) 2.1 (0.13) 1.94 (0.13) 1.0 (0.1)
190 294 0.1 (0.1) 1.91 (0.15) 2.64 (0.16) 1.25 (0.16) 0.53 (0.14)

Z = 106 (Sg)

184 290 0.01 (0.02) 0.06 (0.04) 0.07 (0.05)
186 292 0.33 (0.07) 0.57 (0.08) 0.45 (0.08) 0.14 (0.06)
188 294 0.15 (0.05) 0.74 (0.12) 0.47 (0.13) 0.4 (0.12) 0.45 (0.09)
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Table A.2: Proton quadrupole Q20(fm2) and octupole Q30(fm3) moments (in parentheses)
for octupole-deformed even-even nuclei with predicted β3 ≥ 0.01 from five Skyrme EDFs:
UNEDF0, UNEDF1, UNEDF2, SLy4, and SV-min. See (2.33) for definitions of Q20, Q30.
The proton multipole moments closely resemble charge multipole moments, and can be used
to compare with experimental data derived from transition strengths. Average values are
shown in the rightmost column. All values rounded to integers.

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min Average

Z = 56 (Ba)

56 112 352 (524) 360 (862) 351 (485) 354 (623)
88 144 292 (339) 306 (952) 330 (932) 310 (593) 309 (704)
90 146 333 (496) 356 (789) 359 (1058) 368 (1048) 352 (705) 353 (819)

Z = 58 (Ce)

86 144 248 (818) 295 (776) 275 (369) 272 (654)
88 146 346 (950) 323 (1182) 363 (1086) 347 (779) 344 (999)
90 148 405 (1046) 396 (1308) 425 (1150) 418 (775) 411 (1069)

Z = 60 (Nd)

86 146 277 (804) 227 (991) 297 (834) 286 (430) 271 (764)
88 148 373 (1007) 308 (1344) 400 (1026) 393 (608) 368 (996)
136 196 258 (409) 155 (640) 369 (1666) 339 (1113) 280 (957)
138 198 297 (743) 431 (1779) 390 (1188) 372 (1236)

Z = 62 (Sm)

132 194 170 (430) 166 (1019) 209 (1287) 176 (573) 180 (827)
134 196 223 (1024) 197 (1354) 289 (1676) 264 (1201) 243 (1313)
136 198 263 (1297) 207 (1532) 367 (1897) 339 (1418) 294 (1536)

Z = 64 (Gd)

132 196 184 (1127) 174 (1491) 186 (1516) 169 (958) 178 (1273)
134 198 225 (1501) 200 (1781) 279 (1893) 251 (1436) 238 (1652)
136 200 264 (1744) 205 (1957) 385 (2025) 357 (1551) 302 (1819)

Z = 66 (Dy)

132 198 196 (1328) 177 (1738) 186 (1634) 165 (1010) 181 (1427)
134 200 241 (1728) 197 (2050) 310 (1892) 271 (1440) 254 (1777)
136 202 307 (1947) 194 (2251) 437 (1824) 312 (2007)
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Table A.2 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min Average

Z = 68 (Er)

132 200 223 (1195) 183 (1824) 210 (1498) 199 (711) 203 (1307)
134 202 307 (1529) 192 (2185) 396 (1073) 298 (1595)

Z = 86 (Rn)

132 218 351 (2152) 382 (1453) 293 (1781) 411 (1799) 374 (1593) 362 (1755)
134 220 431 (2440) 463 (1896) 414 (2270) 476 (2196) 452 (1987) 447 (2157)
136 222 488 (2618) 524 (1921) 531 (2378) 511 (2043) 513 (2240)
138 224 538 (2573) 582 (1927) 563 (1458) 561 (1986)
192 278 359 (928) 226 (1198) 370 (1183) 318 (1103)
194 280 443 (1703) 291 (1386) 482 (2293) 405 (1794)
196 282 498 (2079) 550 (2644) 482 (1055) 510 (1926)

Z = 88 (Ra)

130 218 349 (2142) 362 (1531) 408 (1935) 362 (1669) 370 (1819)
132 220 472 (2650) 497 (2389) 445 (2617) 515 (2547) 489 (2430) 483 (2526)
134 222 556 (2957) 579 (2814) 559 (3068) 587 (2973) 569 (2806) 570 (2923)
136 224 619 (3144) 649 (3033) 637 (3145) 648 (3253) 633 (2990) 637 (3113)
138 226 682 (3053) 712 (2783) 692 (1821) 708 (3224) 694 (2791) 697 (2734)
140 228 752 (2310) 770 (1595) 756 (2376) 750 (1846) 757 (2031)
192 280 504 (2442) 249 (1300) 508 (2706) 442 (1990) 425 (2109)
194 282 577 (2890) 336 (1072) 599 (3333) 558 (2755) 517 (2512)
196 284 633 (3154) 580 (2173) 668 (3674) 631 (3051) 628 (3013)
198 286 683 (3264) 651 (2129) 724 (3637) 694 (2902) 688 (2983)
200 288 735 (3106) 716 (1589) 780 (1987) 755 (1982) 746 (2166)

Z = 90 (Th)

130 220 424 (2467) 430 (2240) 345 (2027) 461 (2432) 434 (2283) 418 (2289)
132 222 557 (2950) 564 (2919) 510 (3071) 580 (3010) 562 (2915) 554 (2973)
134 224 649 (3273) 660 (3352) 635 (3530) 662 (3459) 652 (3294) 651 (3381)
136 226 725 (3426) 735 (3592) 723 (3720) 734 (3749) 726 (3493) 728 (3596)
138 228 806 (3063) 809 (3475) 798 (3423) 804 (3734) 798 (3338) 803 (3406)
192 282 582 (3045) 177 (1461) 558 (3280) 524 (2922) 460 (2677)
194 284 663 (3457) 603 (3097) 235 (1722) 661 (3841) 633 (3484) 559 (3120)
196 286 728 (3723) 690 (3469) 740 (4235) 713 (3791) 717 (3804)
198 288 788 (3801) 761 (3517) 802 (4383) 782 (3811) 783 (3878)
200 290 859 (3476) 831 (3168) 855 (3206) 848 (3283)
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Table A.2 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min Average

Z = 92 (U)

130 222 473 (2640) 450 (2673) 356 (2437) 477 (2782) 462 (2653) 443 (2637)
132 224 628 (3058) 600 (3304) 526 (3386) 619 (3344) 610 (3249) 596 (3268)
134 226 739 (3301) 719 (3717) 682 (3884) 726 (3782) 725 (3603) 718 (3657)
136 228 819 (3940) 798 (4085) 818 (4045) 820 (3735) 813 (3951)
138 230 913 (3691) 898 (3747) 907 (3892) 906 (3776)
190 282 503 (2884) 403 (3003) 340 (2415) 415 (2767)
192 284 629 (3396) 498 (3075) 159 (1982) 566 (3706) 543 (3427) 479 (3117)
194 286 727 (3763) 640 (3739) 185 (2285) 690 (4257) 667 (3948) 581 (3598)
196 288 810 (3972) 741 (4125) 187 (2292) 784 (4657) 764 (4263) 657 (3861)
198 290 896 (3804) 828 (4249) 863 (4838) 853 (4277) 860 (4292)

Z = 94 (Pu)

130 224 509 (2667) 439 (3015) 340 (2769) 458 (3058) 456 (2923) 440 (2886)
132 226 711 (2760) 607 (3621) 484 (3597) 633 (3592) 647 (3486) 616 (3411)
134 228 857 (2384) 774 (3988) 690 (4182) 793 (3940) 809 (3696) 784 (3638)
136 230 915 (4011) 877 (4278) 922 (3957) 939 (3314) 913 (3890)
190 284 497 (3163) 316 (2714) 230 (2540) 384 (3470) 362 (3069) 357 (2991)
192 286 654 (3574) 490 (3639) 283 (3050) 537 (4074) 525 (3814) 497 (3630)
194 288 787 (3779) 627 (4213) 314 (3346) 674 (4571) 664 (4303) 613 (4042)
196 290 910 (3532) 741 (4587) 370 (3525) 792 (4983) 788 (4603) 720 (4246)
198 292 857 (4707) 688 (4276) 909 (5125) 921 (4395) 843 (4625)

Z = 96 (Cm)

128 224 193 (1769) 184 (2052) 155 (1916) 189 (2113) 125 (1621) 169 (1894)
130 226 564 (2334) 417 (3334) 345 (3174) 417 (3308) 428 (3150) 434 (3060)
132 228 600 (3942) 453 (3863) 629 (3855) 674 (3642) 589 (3825)
134 230 821 (4165) 635 (4434) 845 (3893) 767 (4164)
188 284 267 (2596) 238 (2681) 243 (2834) 251 (3105) 175 (2408) 234 (2724)
190 286 465 (3372) 368 (3539) 330 (3514) 372 (3933) 353 (3529) 377 (3577)
192 288 671 (3591) 487 (4177) 378 (3961) 499 (4460) 496 (4167) 506 (4071)
194 290 879 (2864) 614 (4667) 420 (4290) 651 (4904) 651 (4646) 643 (4274)
196 292 734 (5022) 490 (4574) 788 (5311) 799 (4902) 702 (4952)
198 294 873 (5111) 666 (4924) 935 (5342) 824 (5125)
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Table A.2 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min Average

Z = 98 (Cf)

128 226 166 (1718) 195 (2568) 193 (2613) 173 (2519) 139 (2119) 173 (2307)
130 228 404 (3672) 361 (3606) 380 (3572) 395 (3359) 385 (3552)
132 230 599 (4279) 472 (4269) 615 (4113) 562 (4220)
186 284 7 (575) 116 (2282) 136 (2494) 125 (2709) 56 (1733) 88 (1958)
188 286 228 (2789) 270 (3408) 277 (3513) 255 (3675) 210 (3130) 248 (3303)
190 288 415 (3523) 392 (4155) 372 (4169) 362 (4374) 342 (3938) 376 (4031)
192 290 708 (3223) 517 (4771) 428 (4607) 482 (4896) 484 (4554) 523 (4410)
194 292 652 (5229) 482 (4964) 670 (5336) 659 (5011) 615 (5135)
196 294 771 (5514) 581 (5341) 804 (5653) 814 (5137) 742 (5411)
198 296 897 (5508) 743 (5584) 936 (5568) 858 (5553)

Z = 100 (Fm)

126 226 28 (1456) 57 (1887) 31 (1737) 8 (719) 31 (1449)
128 228 130 (1503) 176 (2834) 177 (2947) 133 (2710) 112 (2289) 145 (2456)
130 230 407 (4023) 384 (4041) 365 (3864) 385 (3976)
132 232 606 (4556) 506 (4709) 617 (4347) 576 (4537)
184 284 23 (1430) 44 (1806) 47 (2317) 4 (680) 29 (1558)
186 286 31 (1445) 118 (2825) 133 (2981) 111 (3187) 73 (2429) 93 (2573)
188 288 179 (2853) 260 (3830) 276 (3956) 227 (4034) 192 (3473) 226 (3629)
190 290 359 (3580) 411 (4684) 401 (4702) 360 (4832) 328 (4285) 371 (4416)
192 292 554 (5341) 466 (5161) 493 (5415) 489 (4952) 500 (5217)
194 294 704 (5718) 532 (5550) 703 (5735) 682 (5292) 655 (5573)
196 296 827 (5817) 663 (5963) 831 (5831) 847 (5087) 792 (5674)
198 298 942 (5494) 841 (5873) 949 (5420) 910 (5595)

Z = 102 (No)

128 230 78 (947) 140 (2878) 140 (3052) 70 (2640) 61 (2196) 97 (2342)
184 286 16 (1825) 27 (2101) 21 (2508) 7 (1227) 17 (1915)
186 288 17 (1449) 83 (2992) 97 (3154) 66 (3308) 50 (2579) 62 (2696)
188 290 124 (2749) 243 (4082) 271 (4264) 193 (4218) 152 (3571) 196 (3776)
190 292 318 (3480) 421 (5089) 420 (5131) 377 (5270) 324 (4545) 372 (4703)
192 294 558 (5713) 480 (5580) 496 (5835) 494 (5232) 507 (5590)
194 296 733 (5883) 537 (5942) 723 (5838) 719 (5249) 678 (5728)
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Table A.2 (cont′d)

N A UNEDF0 UNEDF1 UNEDF2 SLy4 SV-min Average

Z = 104 (Rf)

184 288 -3 (1680) -6 (2016) -10 (2288) 0 (839) -4 (1705)
186 290 1 (923) 39 (2919) 45 (3122) 15 (3165) 17 (2417) 23 (2509)
188 292 64 (2437) 222 (4192) 251 (4443) 162 (4254) 101 (3465) 160 (3758)
190 294 303 (3160) 406 (5299) 407 (5377) 371 (5516) 313 (4643) 360 (4799)

Z = 106 (Sg)

184 290 -6 (867) -22 (1504) -19 (1592) -15 (1321)
186 292 5 (2621) 0 (2913) -22 (2792) -4 (1906) -5 (2558)
188 294 15 (1830) 194 (4160) 215 (4496) 128 (4152) 48 (3155) 120 (3558)
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Table A.3: Reference table to Fig. 5.10: even-Z elements. For each atomic element with
even-Z shown are: the neutron number N0 of the lightest isotope for which an experimental
one- or two-proton separation energy value is available; the neutron number Nobs of the
lightest isotope observed; the neutron number Ndrip of the predicted drip line isotope in
BMA-I; and the neutron number NFRIB marking the reach of FRIB. (Table taken from
Ref. [109])

Z Elem. N0 Nobs Ndrip NFRIB

16 S 12 11 11 10
18 Ar 14 11 13 12
20 Ca 16 15 15 14
22 Ti 18 17 18 17
24 Cr 21 18 19 18
26 Fe 23 19 20 19
28 Ni 25 20 22 20
30 Zn 28 24 25 23
32 Ge 31 27 28 25
34 Se 33 29 30 28
36 Kr 35 31 32 31
38 Sr 37 35 35 33
40 Zr 40 37 37 35
42 Mo 43 39 39 36
44 Ru 46 41 41 38
46 Pd 48 44 43 40
48 Cd 50 46 45 42
50 Sn 50 49 47 45
52 Te 53 52 53 52
54 Xe 55 54 55 54
56 Ba 58 58 58 57
58 Ce 68 63 60 57
60 Nd 70 65 62 60
62 Sm 73 67 66 63
64 Gd 76 71 69 66
66 Dy 77 73 72 69
68 Er 78 76 75 74
70 Yb 81 79 78 74
72 Hf 84 82 80 77
74 W 86 83 83 80
76 Os 88 85 86 84
78 Pt 90 88 90 87
80 Hg 94 91 94 88
82 Pb 98 96 97 93
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Table A.4: Reference table to Fig. 5.10: odd-Z elements. For each atomic element with odd-
Z shown are: the neutron number N0 of the lightest isotope for which an experimental one-
or two-proton separation energy value is available; the neutron number Nobs of the lightest
isotope observed; the neutron number Ndrip of the predicted drip line isotope in BMA-I; and
the neutron number NFRIB marking the reach of FRIB. (Table taken from Ref. [109])

Z Elem. N0 Nobs Ndrip NFRIB

17 Cl 14 11 14 14
19 K 16 16 16 16
21 Sc 19 18 19 18
23 V 20 20 20 19
25 Mn 22 21 22 21
27 Co 24 23 24 23
29 Cu 27 26 27 25
31 Ga 30 29 29 28
33 As 33 31 31 31
35 Br 35 34 33 33
37 Rb 37 35 35 35
39 Y 40 37 37 37
41 Nb 42 41 41 39
43 Tc 44 43 43 40
45 Rh 47 44 45 42
47 Ag 49 45 47 44
49 In 51 47 49 47
51 Sb 55 52 55 52
53 I 57 55 57 55
55 Cs 62 57 61 57
57 La 67 60 61 58
59 Pr 69 62 65 61
61 Pm 72 67 68 64
63 Eu 74 67 71 67
65 Tb 76 70 75 69
67 Ho 79 73 78 72
69 Tm 82 76 81 75
71 Lu 85 79 83 76
73 Ta 87 82 87 78
75 Re 91 84 90 81
77 Ir 95 87 93 84
79 Au 97 91 97 87
81 Tl 102 95 102 90
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Appendix B: List of my contributions

1. Léo Neufcourt, Yuchen Cao, Witold Nazarewicz, and Frederi Viens, "Bayesian ap-

proach to model-based extrapolation of nuclear observables", Phys. Rev. C. 98, 034318

(2018)

• Produced and compiled nuclear theory and experimental data,

• Produced Figures 1, 2, 3, 5, and 6.

2. Léo Neufcourt, Yuchen Cao, Witold Nazarewicz, Erik Olsen, and Frederi Viens,

"Neutron Drip Line in the Ca Region from Bayesian Model Averaging", Phys. Rev.

Lett. 1 22, 062502 (2019)

• Produced and compiled raw nuclear theory and experimental data,

• Produced Fig. 1,

• Contributed to producing the list of all observed isotopes and nuclei with masses

measured.

3. Léo Neufcourt, Yuchen Cao, Samuel Giuliani, Witold Nazarewicz, Erik Olsen, and

Oleg B. Tarasov, "Beyond the proton drip line: Bayesian analysis of proton-emitting

nuclei", Phys. Rev. C 101, 014319 (2020)
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• Produced and compiled raw nuclear theory and experimental data,

• Suggested introduction of non-zero mean parameter to the Gaussian process,

• Performed calculations to estimate the lifetimes of true two-proton emitters,

• Produced Fig. 5.

4. Léo Neufcourt, Yuchen Cao, Samuel Giuliani, Witold Nazarewicz, Erik Olsen, and

Oleg B. Tarasov, "Quantified limits of the nuclear landscape", Phys. Rev. C 101,

044307 (2020)

• Produced and compiled raw nuclear theory and experimental data.

5. Yuchen Cao, Sylvester E. Agbemava, Anatoli V. Afanasjev, Witold Nazarewicz, and

Erik Olsen, "Landscape of pear-shaped even-even nuclei", arXiv:2004.01319 (2020)

• Performed global Skyrme HFB calculations for octupole-deformed even-even nu-

clei, including necessary computational developments (see p. 7),

• Performed calculations of single particle energies in the octupole-deformed region,

• Wrote the first draft (except for Sec. II(B)),

• Produced all figures in this paper.

6. MassExplorer

• Developed source codes (with E. Olsen) for main page of "Plotting Tools" using

HTML.

• Developed source codes (individually) for the “Nuclear Data Search”, “Isotope/Iso-

tone/Isobar Chain Plot”, “Separation Energy Plot”, and “3D Quadrupole Defor-

mation Plot” functionalities using JavaScript.
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• Developed source codes (with E. Olsen and A. Savanur) for the “Correlation Plot”

functionality using JavaScript.

7. Other contributions

• Implemented dynamic MPI scheduling in HFBTHO (v3.00) masstable mode,

• Introduced Q30 constraints in HFBTHO (v3.00) masstable mode,

• Implemented calculation of Lipkin-Nogami corrected deformations in HFBTHO

(v3.00),

• Implemented calculation of intrinsic Schiff moment in HFBTHO (v3.00),

• Developed Python code for automating blocking calculation with HFBTHO,

• Developed Python code for automating blocking calculation with HFODD,

• Developed Python code for automating single particle orbital calculations with

HFBTHO,

• Developed Python code for remote status monitoring of large scale survey calcu-

lations,

• Served as graduate mentor for the National Science Foundation Research Experi-

ence for Teachers (RET) program at MSU in summer 2019.
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