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ABSTRACT
COULOMB EXCITATION OF NEUTRON-RICH SULFUR ISOTOPES
By

Brenden Robert Longfellow

Understanding how the structure of nuclei is modified far from stability has become one of
the major goals in nuclear science. While the nuclear shell model was successful in explaining
the magic numbers observed for the stable and near-stable nuclei available for study at
the time, subsequent research on nuclei with extreme proton-to-neutron ratios has revealed
surprising changes in nuclear structure. For example, the conventional magic number of
neutrons N = 28 has been shown to break down in the region of neutron-rich nuclei centered
around #2Si and #4S known as the N = 28 island of inversion. In this work, predictions made
by the shell-model effective interaction SDPF-MU, which has been successful in describing
the evolution of collectivity for nuclei in this region, were put to the test using the selectivity
of intermediate-energy Coulomb excitation in an experiment utilizing the scintillator array
CAESAR and the S800 magnetic spectrograph at the National Superconducting Cyclotron
Laboratory at Michigan State University. In the even-even neutron-rich sulfur isotopes
38,40,42.44g B(E?2) strengths from the ground states to multiple 27 states were measured
allowing a detailed comparison to theoretical predictions by the SDPF-MU Hamiltonian.
For 43S, excited states built on top of both the ground state and the isomeric state at
320 keV were excited, allowing the collective nature of these shape-coexisting structures to

be characterized.
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Chapter 1

Introduction

1.1 Atomic Nuclei

The atomic nucleus is a quantum many-body system made up of neutrons and protons.
Collectively, the electrically-neutral neutrons and positively-charged protons are known as
nucleons. The nucleus consisting of N neutrons and Z protons, with a total of A =N + Z
nucleons, is commonly referred to using the notation 4X(Z) where X(Z) is the chemical
symbol for the element with Z protons. Since protons carry a positive charge, they repel
each other via the Coulomb interaction, which is proportional to 1/ r2 where r is radial
separation. Despite this repulsion, the nucleons in a nucleus are bound together due to the
strong nuclear force.

Nucleons are composed of three valence quarks: two down quarks and one up quark (neu-
trons) or two up quarks and one down quark (protons). The strong interaction described by
quantum chromodynamics confines the quarks that constitute the nucleons and is mediated
by the exchange of gluons. At a distance of 1 fm = 10~1® m, which is on the order of the
nucleon size, the strong force is roughly 100 times stronger than the Coulomb repulsion.
While quarks and gluons carry color charge, nucleons are color neutral. The strong nuclear
force that binds nucleons together within the nucleus is a residual of the fundamental strong

interaction, analogous to the van der Waals force in chemistry between neutral atoms or



molecules which is a residual of the fundamental Coulomb interaction [16].

Figure [1.1| shows the central part of the nucleon-nucleon interaction. The strong nuclear
force has a repulsive core at short distances but outside of the core is strongly attractive
over a short range. At longer distances, the nucleon-nucleon potential can be modeled as
the exchange of light mesons (systems composed of one quark and one antiquark) [I7]. In
addition to the scalar central part, the nucleon-nucleon interaction has a complex dependence
on spin that can be decomposed into vector (spin-orbit) and tensor components. Nucleon-
nucleon scattering experiments indicate that the strong nuclear force is approximately charge

independent [18].

200

100 Repulsive
core

21m, P, W, 0
exchange

i , l
100575 0.5 10 15 2.0 25

r (fm)

Figure 1.1: Central projection of the nucleon-nucleon interaction. Outside the repulsive core,
the potential is attractive with rapidly diminishing strength. Over longer ranges, the central
nuclear force can be modeled through exchange of massive particles called mesons. Figure
modified from [I].

T
exchange

|

The interplay between the strong nuclear force and the Coulomb repulsion is apparent

in the chart of the nuclides shown in Figure The chart of the nuclides displays neutron



number on the x axis and proton number on the y axis with each square representing a
different nucleus. Nuclei with the same Z, N, and A are referred to as isotopes, isotones,
and isobars, respectively. Of the approximately 7000 nuclei predicted to exist [19], around
3000 have been observed experimentally. The stable nuclei (black squares) are situated in
the region of the chart known as the valley of stability. As the proton number increases, the
valley of stability bends away from the N = Z line, where neutron-proton pairing dominates,

toward the neutron-rich side as a result of the repulsive Coulomb force between protons.

120F T T T T T T T T T_]

N

o

o
I

o
o
T

Proton number
()]
(@]
1

N
o
1

Observed nuclei
Bl Stable nuclei

B 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Neutron number

Figure 1.2: The chart of the nuclides with neutron number on the x axis and proton number
on the y axis. Terra Incognita refers to the region of the chart with experimentally unobserved
nuclei that are predicted to exist. The dotted lines indicate the traditional magic numbers
of neutrons and protons discussed in the text. Figure adapted from [2].

One early framework for describing the nucleus is the liquid drop model. By approxi-



mating the nucleus as an incompressible fluid of nucleons, the nuclear binding energy can be
calculated [20]. Due to the attractive and short-range nature of the nucleon-nucleon interac-
tion, the interior matter density for nuclei is approximately constant (saturation). Therefore,
the droplet energy, which increases linearly with volume, is proportional to the number of
nucleons A. The nucleons at the surface, however, have fewer neighbors to interact with,
so a correction term proportional to the surface area, which goes as A2/ 3 must be added.
The Coulomb energy is approximately proportional to Z2 /Al/ 3. Since both neutrons and
protons are fermions with intrinsic spin s = 1/2, they each obey the Pauli exclusion prin-
ciple. Consequently, there is a term that penalizes neutron-proton asymmetry. Finally, the
observed systematic odd-even staggering in binding energy is accounted for using a pairing
term. Altogether, the semi-empirical mass formula for binding energy BE is:

Z? (N — 2)?
A3 AT

BE:aVA—aSA2/3—aC +6(N, 2), (1.1)

where .

CLPA*I/2 N and Z even

6(N, Z) A odd (1.2)

I
o

—apA~1/2 N and Z odd.

\

The values of the coefficients for the volume term ay,, the surface term ag, the Coulomb
term ac, the asymmetry term ay, and the pairing term ap are determined from fits to
experimental mass data and the signs are chosen here to yield positive coefficients. The
liquid drop model successfully reproduces the observed bend in the valley of stability shown
in Figure [1.2] and is accurate to within 10 MeV for most nuclei while the average binding

energy is about 8 MeV per nucleon.
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Figure 1.3: Differences between experimental binding energies and binding energies calcu-
lated using the liquid drop model for nuclei with Z > 8 as a function of neutron number.
The peaks at N = 28, 50, 82, and 126 indicate that nuclei have internal structure. Figure
taken from [3] with data from [4].

However, systematic deviations between the experimental and liquid-drop binding ener-
gies as a function of neutron number can be seen in Figure [I.3] suggesting that nuclei have
internal structure that is not accounted for in this simple picture. The experimental nuclear
binding energy is larger than predicted by this model for nuclei with neutron numbers 28,
50, 82, and 126. These neutron numbers, along with 2, 8, and 20, which are less clearly
visible in Figure [1.3] are known as magic numbers. The same phenomenon can be observed

for nuclei with magic numbers of protons. Nuclei with either a magic number of neutrons or



protons are referred to as singly-magic while nuclei with a magic number of both neutrons

and protons are called doubly-magic.

1.2 Nuclear Shell Model

Efforts to explain the existence of the neutron and proton magic numbers lead to the de-
velopment of the nuclear shell model [21, 22]. The shell model considers the motion of a
single nucleon in a mean field generated by all the other nucleons in the nucleus. By solving
the Schrodinger equation using this mean potential, the available single-particle orbitals and
their corresponding quantized energy levels are obtained. These orbitals are filled according
to the Pauli exclusion principle and the magic numbers correspond to large energy gaps
between successive groups of close-lying orbitals called shells.

Neglecting the Coulomb interaction, the Hamiltonian for a nucleus with A nucleons can

be written as:

2 A
p.
H=Y o T > Vig(r; — 1), (1.3)
i—1 M il

assuming only two-body interactions between nucleons. Here p; and m; are the momentum
and mass of each nucleon and Vj; is the two-body interaction between two nucleons. In
the mean-field approximation of the shell model, the A nucleons do not interact with each
other strongly and the system can be treated as A non-interacting nucleons in an external

single-particle potential:

A

A 2 A
i = Z(;ﬁ +Uz‘(r>> + | Y Vik(ri—rp) = D Ui(r)| = Ho+ Vies. (14)

¢ k=1 i=1

The first term H( describes the motion in the mean field while the second term Vg is known



as the residual interaction.
A convenient starting guess for the mean-field potential, the form of which is not known

exactly, is the three-dimensional harmonic oscillator:
L 22
U(r) = —uwr?, (1.5)

where 1 is the reduced mass of the system and w is the oscillator frequency. The energy
levels for Hy in this case depend only on the radial quantum number n, the orbital angular
momentum quantum number [, and the choice of w:

E, = <2n—|—l+;>hw— (N+;> huw. (1.6)

Here, A is the reduced Planck constant. The three-dimensional harmonic oscillator success-
fully reproduces the first few magic numbers (2, 8, and 20) but fails to reproduce the other
magic numbers, as shown Figure for the neutron single-particle energy levels of 298Pb.

Unlike the short-range nucleon-nucleon interaction, the harmonic oscillator potential goes
to infinity as the radial distance increases. A more realistic form for the mean-field generated
by all the nucleons is the Woods-Saxon potential:

_UO

v = R

(1.7)

where Uy is the potential depth, the nuclear radius is R = T()Al/ 3 and a is the diffuseness.
Although the Woods-Saxon potential breaks the degeneracy of orbitals with the same prin-
ciple harmonic oscillator quantum number N = 2n + [, Figure shows that this potential

also fails to reproduce the experimentally-observed magic numbers larger than 20.



Adding a strongly attractive spin-orbit coupling term [21, 22],

Uso(r, 1, 5) = —Uso(r) (I - 3), (1.8)

to the Woods-Saxon potential lifts the degeneracy for states with the same orbital angular
momentum quantum number [ and the gaps in energy between shells formed by the close-
lying orbitals shown in Figure [1.4] successfully explain the experimentally-observed magic
numbers. Similar results are obtained for the proton single-particle orbitals.

The single-particle orbitals are labeled by their quantum numbers n, [, and j using the
notation nl;. The radial quantum number n = 0,1,2,... counts the number of radial
nodes in the wavefunction. The orbital angular momentum quantum number [ is often
referred to using spectroscopic notation where the labels | = s,p,d, f,g,h,... represent
1=0,1,2,3,4,5,..., respectively. The maximum value of [ is the principle quantum number
N. The nucleon spin s couples with the orbital angular momentum [ to the total angular
momentum j = [+ S, giving the total angular momentum quantum number j = [ + 1/2.
Each orbital has 2j 41 magnetic substates, running over m; = —j, ..., j in integer steps, and
accordingly can hold a maximum of 25 + 1 neutrons or protons due to the Pauli exclusion
principle. Note that neutrons and protons are distinguishable and can share the same set of
quantum numbers.

The states of the nucleus itself are characterized by their spin-parities J™. The parity 7
of a single-particle state indicates whether the wavefunction changes sign under inversion of
all the spatial coordinates and is given by (—1)1. For the nucleus itself, the total parity is
the product of the parities of the occupied single-particle levels. Similarly, the total angular

momentum J of the nucleus is found by coupling the spins j of all the occupied single-
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particle states. For a completely filled orbital, the nucleons couple to spin-parity 0. If all
of the orbitals in a shell are full, then the shell is called closed and the J™ of the nucleus
is determined by the remaining valence nucleons above the closed shell. For example, 170
has one valence neutron in the 0dy /2 orbital with respect to doubly-magic 10 and the spin-
parity of its ground state is 5/27. Furthermore, energy is typically minimized when nucleons
in the same orbital form pairs that couple to 0. In fact, the spin-parity of the ground state
for all nuclei with even numbers of both neutrons and protons (even-even nuclei) is 07
[23]. Typically, within this scheme, only nucleons outside of a so-called core are allowed to
contribute to nuclear excitations. Due to the properties of closed shells described above and
the large energy gaps at magic numbers, it is common to choose a core that corresponds to
a doubly-magic nucleus.

The nuclear shell model describes the properties of nuclei in the single-particle picture
and is therefore most successful near shell closures where the structure is dominated by only
a few nucleons outside a closed core. In this framework, nuclear excited states are formed
by rearranging one or a few nucleons in their orbitals. For example, in this simple picture,
the 1/27 first excited state of 17O arises from the promotion of the valence neutron in the
Ods /2 orbital to the 1sy /2 orbital. However, away from closed shells nuclei exhibit collective

behavior where many valence nucleons contribute coherently to nuclear excitations.

1.3 Collective Models

The excitation patterns in collective nuclei can be explained using macroscopic geometric
models of the nucleus that describe vibrations and rotations. In the vibrational model, even-

even nuclei have evenly-spaced energy levels associated with oscillations of an incompressible

10



liquid-drop nucleus about an average spherical shape. The first excited state has spin-parity
27 and the energy of a single phonon, the elementary excitation in the quantum-mechanical
treatment of the surface vibrations on the liquid drop. The second excited state is a triplet
of nearly-degenerate levels with J™ = 07,2%, 4™ at twice the energy of the first excited state
and comes from the coupling of two phonons. The three-phonon states, at three times the
energy of the first excited state, are a nearly-degenerate quintet with J™ = 01, 2%, 37 41T 6T
[23].

If an even-even nucleus is rigidly deformed, the excitation energies can be calculated as

those of a quantum-mechanical rigid rotor:

2

Bror(J) = 20074 1), (1.9)

where [ is the moment of inertia of the nucleus and J is even. Note that these rotations
are about an axis perpendicular to the symmetry axis of the deformed nucleus. As shown
in Figure [1.5] even-even nuclei evolve from displaying signs of magicity near closed shells
(e.g. high-lying first-excited 27 states) to spherically vibrational just outside of closed shells
to deformed and rotational with low-lying first-excited 27 states near mid-shell. The ratio
Ry /2 of energies for the first 27 and 47 states provides evidence for the type of collective
motion: Ry =2 for vibrations while Ryj9 =333 for rotations from Equation [23]. The
collective models described in this section can be extended to systems with odd numbers of

nucleons by coupling the unpaired nucleons to the vibrator or rotor (particle-rotor models).
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Figure 1.5: Energies of the first 27 excited state and ratios Ry /2 of energies for the first

27 and 471 states in even-even nuclei across the chart of nuclides. The neutron and proton
magic numbers are denoted by dashed lines. Figure taken from [6].

1.4 Electromagnetic Transitions

The properties of low-lying bound excited states in nuclei can be used to probe collectivity,
which is a measure of how many nucleons are involved in the excitation. The majority of
nuclear excited states bound to particle emission will decay to a lower-energy level via the
emission of a photon known as a v ray. Neglecting the small recoil energy of the nucleus,
the energy of this electromagnetic radiation is equal to the difference in energy of the initial
and final states.

Electromagnetic transitions are characterized by their multipolarity A and parity. Since
the photon is a boson with intrinsic spin 1, the total angular momentum A\ it carries cannot

be 0. The allowed multipolarities for the v ray are constrained by the spins of the initial

12



state (J;) and final state (J¢) due to conservation of angular momentum:
| Ji = Jp| <A< Ji+ Ty (1.10)

Generally, transitions are referred to as 2)‘pole: A =1 is dipole, A = 2 is quadrupole, A = 3
is octupole, and so on. In order to conserve parity, the following relation between the parity
of the initial state (m;), the parity of the final state (7 ), and the parity of the v ray must
be satisfied:

T = 7o (—1). (1.11)

For electric transitions (¢ = FE), 7y = 1 and for magnetic transitions (¢ = M), 7y = —1.
Transitions are often labeled using the scheme o\. For instance, the allowed transitions
for mimy = 1 are M1, E2,M3,FE4,... and the allowed transitions for mmy = —1 are
E1, M2, E3, M4, ... for all A allowed by Equation [1.10

The electric transition operator can be written as:
A
O(EN) = YN0, ¢)ese, (1.12)
1

where YM)‘(Q, ¢) are the spherical harmonics, p is the z-projection of A\, and e;e is the electric
charge of the ith nucleon. For free neutrons, e, = 0 and for free protons, e, = 1. Effective
charges for the nucleons can also be used to compensate for model space truncation in shell

model calculations [5]. The magnetic transition operator can be written as:

A

2 - -
O(MN) =) [A _g:zlli +gs¢5z’] \Y [TAYMA(@@} [N (1.13)
i
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where g;; and gg; are the orbital and spin g-factors for the ith nucleon and py = 0.105 efm
is the nuclear magneton. The g-factors for free neutrons are g;,, = 0 and gsy, = —3.826 and
the g-factors for free protons are gj, = 1 and gsp = 5.586. Effective values for the g-factors
can also be used to take into account model-space truncation [5].

The electromagnetic transition rate W between an initial state with wavefunction |.J; M;)
and final state with wavefunction |.J; M) can be calculated as a sum over the allowed electric
and magnetic transition operators using time-dependent perturbation theory:

87T(>\—|— 1) 1 /E 22+1
Wt My = %: <m> - (h—Z) (T Mp| O] M) (1.14)

Here, ¢ is the speed of light in vacuum. Averaging over the initial magnetic substates M;
and summing over the projections u and the final magnetic substates My, which are not

typically observed individually in experiments, results in:

2J +1 Z Z M, Mg, (1.15)

87T )\+1) 1 (BN (10N )|

through use of the Wigner-Eckart theorem and the orthogonality properties of the Clebsch-
Gordan coefficients [5]. The last factor in this expression is defined as the reduced transition

probability:
2
(T [O(@N)]] )]

B(oA; J; — Jp) = 57 1
7

(1.17)

The double-bar notation of the Wigner-Eckart theorem for the reduced matrix element

(Jr [|O(aA)[| J;) signifies that there is no dependence on Mj, u, or M.

14



For ~ decay, the initial state is higher in energy than the final state. Conversely, through
Coulomb excitation, a projectile nucleus can be inelastically excited due to electromagnetic
interaction with a target nucleus. Consider two states J; and Jp. From Equation [1.17] the

relation between the reduced transition probabilities in each direction is:

2Jq +1

B(oA; Jy — Jg) = 2,11

B(oA; Jg = Jp). (1.18)

From examination of Equation [1.16] it can be seen that the lowest allowed multipolarities
dominate the transition rate W. For a typical vy-ray energy of 1 MeV, the rate for the next
allowed electric (magnetic) multipole, A + 2, is about seven orders of magnitude smaller
than the rate for the lowest allowed electric (magnetic) multipole A [5]. For transitions that
can occur via both low-multipole electric and magnetic transitions, it is useful to define a
multipole mixing ratio . For example, for electromagnetic transitions that can occur via
M1 and E2:

§2(B2/M1) = —£2 (1.19)

b(E2) = - (1.20)

(1.21)

For even-even nuclei, the reduced electric quadrupole strength from the first 27 state
to the ground state, B(E2; 2? — Of), is an indicator of collectivity. This strength can be

expressed in terms of the Weisskopf unit, which is an estimate of the B(E2; 21+ — Of) for a
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single particle. In general, the Weisskopf units are given by [5]:

2
By (BX) = (i) {3%} (1.2AY/3)2X ¢2p2A (1.22)
10 3 17 1/3\2A=2 2 ¢ 2)\—2

B(E2; Qir — Of) strengths are largest at mid-shell and smallest near closed shells. Accord-
ingly, there is also a link between the deformation in the rotational model and the reduced
electric quadrupole strength. For an axially-symmetric quadrupole deformed nucleus, the

deformation can be expressed using the Hill-Wheeler parameterization [24]:
R(®) = Ry (1 + BY2(6, 0)) , (1.24)

where the radius Ry = roAl/ 3 Y02(9,0) is a spherical harmonic, and g is the quadrupole
deformation parameter. If § is positive, the nucleus has prolate deformation and if 3 is
negative, the nucleus has oblate deformation. The magnitude of the quadrupole deformation

parameter is related to the B(E2;0] — 2{) excitation strength:

47

5= 3Z¢R2

\/B(EQ; 0y —2). (1.25)

1.5 Configuration Interaction Method

Going beyond the independent particle picture by including the residual interactions of
Equation in the nuclear shell model is required in order to perform predictive calculations

of nuclear properties. However, solving the Schrédinger equation for all the nucleons in a
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nuclear system as large as 42Si, for example, is not feasible computationally. Instead, an
inert core of Acore nucleons, often taken as a nearby doubly-magic nucleus, is utilized to
simplify the problem. Only the A — A.re valence nucleons outside of the core are allowed
to contribute to the nuclear excitations. Furthermore, a model space limiting the available
single-particle orbitals for the valence nucleons must be chosen.

The excitation energies for nuclear states are calculated through diagonalization of an
effective interaction expressed in matrix form. Omitting higher-body terms, the Hamiltonian
can be written as a series of zero-, one-, and two-body operators in the form H = Hy+H{+ Ho>
where Hj is the binding energy of the core, H; is a one-body operator with matrix elements
given by the single-particle energies multiplied by the orbital occupancies, and Hg is the
two-body part [5]. The two-body matrix elements can be written in terms of the residual
interaction as (ab|Vyes| cd) jp where the nucleons in orbits a,b and ¢, d, respectively, are
coupled to total spin J and isospin T'. The wavefunctions for the nuclear states found by
diagonalizing the matrix are linear combinations of the different configurations of nucleons
possible in the model space given the number of neutrons and protons in the nucleus, giving
rise to the name “Configuration Interaction” for the method. The average number of nucleons
in an orbital for a given shell-model state from the calculation is referred to as the orbital’s

occupancy. Two examples of Hamiltonians used in the configuration-interaction framework

are SDPF-MU [25] and SDPF-U [26] which are described in detail in the following section.

1.6 Breakdown of the N=28 Magic Number

Studies of nuclei far from the valley of stability have revealed surprising changes in nuclear

structure. For example, in some regions of the chart of the nuclides, the conventional magic
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numbers disappear and new magic numbers emerge [27]. In particular, the neutron-rich
silicon and sulfur isotopes approaching the conventional neutron magic number N = 28 have
attracted much experimental and theoretical attention that has provided great insight into
the evolution of shell structure in exotic nuclei. Recall that magic nuclei characteristically
have high-lying first 27 excited states and small B(E2; OIF — 2?) values. The first evidence
for the breakdown of the N = 28 magic number was provided by the observation of moderate
deformation in 40-423 [28] and low-lying quadrupole collectivity in g [29]. Figure shows
the systematic trends in the energies of first 2 excited states E(2]") and B(E2;0{ — 2])
strengths across the Ca (Z = 20), Ar (Z = 18), S (Z = 16), and Si (Z = 14) isotopic chains.
The Ca isotopes show the tell-tale signs of magicity at both N = 20 and N = 28 while the
Ar isotopes at N = 20 and N = 28 only show small relative peaks in E(21+) However, for S
and Si near N = 28, the E(2T) values are low and the B(E2; OT — 2?) strengths are large
relative to their values closer to stability near N = 20. This provides evidence that while
the conventional neutron magic number N = 20 holds for these nuclei, N = 28 is no longer
a magic number at Z = 14 and Z = 16.

Reproducing the evolution of the N = 28 shell gap in the vicinity of *2Si has been
a major endeavor for modern nuclear shell model calculations. The mechanism driving
the breakdown of N = 28 as a magic number in this region has been attributed to the
neutron-proton monopole component of the tensor part of the nucleon-nucleon interaction
[30]. Consider a nucleon in a single-particle orbit with spin j,. The single-particle energy of
this nucleon depends on the mean field generated by all the other nucleons in the nucleus,
which changes when a nucleon is added to the orbit with spin 7. The nucleons in the two

orbitals couple to total spin .J. The shift in energy of the single-particle orbital for a proton
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Figure 1.6: Experimental energies of the first 27 states [7] (top) and B(E2;0{ — 27)
strengths [§] (bottom) for Si, S, Ar, and Ca isotopes showing the evolution of collectivity
around the conventional neutron magic numbers N = 20 and N = 28.

in the orbital with spin j, due to neutrons in the orbital with spin jj, is [9]:
N Lrer—0  pr=1 :
Aeplja) = 5 [Vay "+ Vit mali). (1.26)

where ny,(jp) is the number of neutrons in the orbital with j, and j, # jp. Here, Vajl; is the
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angle-averaged (monopole) tensor interaction between the orbitals:

) 97 4 1\ ix (V] 4.4
. 22 + 1) (ajp V] Jaje) T (1.27)

“ >.02J4+1)

Above, T is the isospin quantum number for the coupled nucleons where the projection
T, = %(N — Z). T = 0 for the neutron-proton interaction and 7" = 1 for the neutron-
neutron and proton-proton interactions. The T = 0 component of the tensor interaction is
stronger [9].

For a single nucleon with a given value of orbital angular momentum [, there are two
possible values for the total angular momentum j: jo =1 — % and j> =1+ % The tensor
interaction between orbitals with j, = j< and j, = j4 and with j, = j> and j, = j. is
attractive while the tensor interaction between orbitals with j, = j< and j, = jL and with
ja = j> and j, = jL is repulsive. From N = 20 to N = 28, the neutron 0f7/2(j>) orbital
is filled. The tensor force between the neutron 0f; /2(j>) orbital and the proton 0ds /2( J>)
orbital is repulsive while the tensor force between the neutron 0f; /2(j>) orbital and the
proton Odg /2(j<) orbital is attractive. Therefore, as shown schematically in Figure , the
Z = 14 sub-shell gap is reduced as the neutron 0f; /2( J>) orbital is filled.

At the same time, removing protons from the filled 0dg /2( Jj<) orbital in 48(Ca causes the
energy of the neutron 0f; /2( j>) orbital to increase since the attractive interaction is weak-
ened. This energy shift is larger than the energy shift due to the weakening of the attractive
interaction between the proton 0ds /2( J<) orbital and the neutron 1pg /2(j>) orbital, result-
ing in a reduction of the N = 28 shell gap. The simultaneous narrowing of the Z = 14
and N = 28 shell gaps leads to mutually-enhanced deformation in the region surrounding

428i. The origin of this deformation has been argued in the context of a tensor-force-driven
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Figure 1.7: Schematic illustration of the tensor force. The repulsive interaction between the
neutron 0f7/(j>) orbital and proton 0ds /5(j>) and the attractive interaction between the
neutron 0f- /2(j>) orbital and proton 0Ods /2(j<) orbital reduce the Z = 14 sub-shell gap.
Figure modified from [9].

Jahn-Teller effect [25] and within the context of SU(3)-like models of quadrupole correlations
[26, BT}, 132].

The SDPF-MU effective interaction was constructed to describe the shell and shape evolu-
tion in the S and Si isotopic chains toward N = 28 [25]. The valence space for the SDPF-MU
Hamiltonian includes the proton 0ds /2> 151/ and 0ds /2 orbitals (sd shell) and the neutron
0f7/2, 1p3/2, 0f5/2, and 1p1/2 orbitals (pf shell). The interactions within the sd shell are
taken from the USD Hamiltonian [33], 34] except for the monopole interactions VOZ:/O;O d5/2
which were taken from SDPF-M [35]. The interactions within the pf shell are taken from the
GXPF1B Hamiltonian [36] except for the monopole and quadrupole pairing matrix elements

(0f7/20f7/2 [V]0f7 207 /2) 7=0,2 which were taken from KB3, another pf-shell Hamiltonian

[37]. Both the USD and GXPF1B effective interactions use the harmonic oscillator basis and
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start with a set of single-particle energies and two-body matrix elements derived from the
nucleon-nucleon interaction that are then allowed to vary to better reproduce experimental
data. The cross-shell interactions between the neutrons and protons are based on the Vs
interaction [38], which consists of a Gaussian central force, a two-body spin-orbit force taken
from the M3Y interaction [39], and a tensor force comprised of m and p meson exchanges.
Another shell-model interaction that has been successful in describing nuclei near N =
28 is the SDPF-U Hamiltonian [26]. SDPF-U also uses the USD interaction [33| [34] for
protons in the sd shell and a variant of the KB3 interaction [37] for neutrons in the pf
shell. The proton-neutron cross-shell matrix elements are taken from the Kahana-Lee-Scott
G matrix [40] with adjusted monopole terms to better fit experimental data. SDPF-U has
two formulations, one to be used for Z < 14 and one for Z > 15 with differences due to
consideration of proton excitations into the pf shell. The SDPF-U-MIX interaction extends

SDPF-U to include the sd shell for neutrons in addition to the fp shell [32].

1.7 Motivation for Studying the Neutron-Rich Sulfur

Isotopes

The breakdown of the magic number N = 28 discussed in the previous section is accompanied
by interesting changes in nuclear shell structure. For example, consider 433 which has 16
protons and 27 neutrons. If the single-particle orbitals are filled in their normal order then
the one unpaired neutron will occupy the 0 f- /2 orbital. Consequently, the ground state of 433
should have a spin-parity of 7/27. However, the ground state of 438 has been determined to
be 3/27 [41],/42]. In a simple shell-model picture, this corresponds to promoting the unpaired

neutron from the 0f; /2 orbital into the 1pg /2 orbital. Similarly, for even-even nuclei like #2Si
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and %18, the ground state would be expected to have a completely filled neutron 0 f7 /2
orbital. Instead, shell-model calculations suggest that the dominant configuration for the
ground state has two neutrons promoted to the 1pg /2 orbital, leaving two holes in the 0f; /2
orbital. Due to deformation, the energies of these so-called intruder configurations, which
normally correspond to excited states, are lower than the energies of the spherical normal-
order configurations. For this reason, the nuclei surrounding 42Si and 443 are said to belong
to the so-called N = 28 island of inversion [32]. Typically, the excited states with structure
dominated by the spherical normal-order configuration are at low excitation energy with
respect to the deformed ground state leading to a phenomenon known as shape coexistence.
The concept of an island of inversion is not restricted to the neutron-rich nuclei around the
conventional magic number N = 28. Historically, the first island of inversion investigated
was at N = 20 centered around 32Mg and it is now known that there are islands of shell
breaking for neutron-rich nuclei associated with normal-order shell closures and sub-shell
closures at N = 8, 14, 20, and 28 and the harmonic oscillator magic number N = 40 [43].
With 448 lying near the center of the island of inversion at N = 28, it is of interest to sys-
tematically study the structure of the sulfur isotopes with neutron numbers between 22 and
28 in order to gain understanding of the details of the mechanism driving shell evolution in
this region. Due to their importance, the even-even neutron-rich sulfur isotopes beyond the
heaviest stable isotope of sulfur at N = 20 have been studied using a variety of experimental
techniques. Levels in radioactive 38S have been studied using [ decay, proton scattering,
two-neutron transfer, two-proton transfer, intermediate-energy Coulomb excitation, and in-
beam ~-ray spectroscopy following fragmentation of 48Ca [7]. States in 408 have been studied
using [ decay, proton scattering, four-neutron transfer, intermediate-energy Coulomb exci-

tation, and in-beam ~-ray spectoscopy following fragmentation of #¥Ca and 46Ar [7. 429
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has been studied using [ decay, intermediate-energy Coulomb excitation, and in-beam ~-ray
spectroscopy following fragmentation of 48Ca, fragmentation of *6Ar, and knockout from
441 7. Finally, **S has been studied using intermediate-energy Coulomb excitation, in-
beam ~-ray spectroscopy following fragmentation of *¥Ca, following two-proton knockout
from 46Ar, and following one-proton knockout from 4°Cl [7. In particular, lifetime measure-
ments in 448 [44, 45] and supporting theoretical calculations [46, 47] have established the
coexistence of levels dominated by zero-, one-, and two-neutron particle-hole configurations.

In a recent in-beam ~-ray spectroscopy measurement, an interesting systematic trend for
the 23’ — Of and 2; — 2? ~-ray branching ratios in the sulfur isotopic chain was observed
by Lunderberg et al. and discussed in comparison with shell-model calculations [10]. The
SDPF-MU interaction predicts that for 38S and 4°S, the 2; — 2f transitions will dominate
with 96.4% and 99.4% branching ratios, respectively. In 429 the reverse occurs with a
prediction of 84.2% for the 2; — Of transition and only 15.8% for the 2; — 2? transition.
These shell-model predictions were validated experimentally with the non-observation of the
23' — 0f branch in 383 [10, 48] and a measurement of 85(2)% for the tentative (2;) — 0]
branch in 428 [10]. Shell-model calculations link the abrupt change in decay pattern for 429
with the difference in occupancies for the neutron 0f; /2 and 1pg /2 orbitals for the 2?' and
2; states. The occupancies of the neutron 1pg /2 orbital for 07 and 27 levels up to 4.5 MeV
in excitation energy for 38:40:42448 from SDPF-MU calculations are provided in Figure [1.8
An increase in neutron 1psg /2 occupancy is strongly correlated with a decrease in occupancy
for the neutron 0f; /2 orbital. As seen in Figure , the neutron 1pg /2 occupancies of the
21+ and 2; states differ the most for #2S. The 1p3 /2 and 0f; /2 orbitals cannot be connected
by the magnetic dipole operator, leading to a strongly hindered B(M1; 2; — 21’) transition

strength in 428 of 0.14 x 1073 :“%V compared to 0.19 /‘%\f in 40S and 0.48 u%\, in 38S. As a
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result, the 2; — OT branch is favored in 42S. The dramatic increase in level density for
0" and 27 states below 4.5 MeV in 448 signals the sudden and massive gain in correlation
energy of the intruder configuration formed by moving two neutrons into the 1pg /2 orbital
compared to the closed 0f; /2 shell configuration, placing #*S inside of the N = 28 island
of inversion with 428 right at the boundary. Due to this particular interplay of the single-
particle configurations, a measurement of the B(E2) excitation strengths to higher-lying 27
states provides a unique window into the breakdown of the N = 28 shell gap at Z = 16
and the underlying driving forces that are a cornerstone in explaining shell evolution in rare
isotopes.

As discussed above, one of the characteristics of the N = 28 island of inversion is the
coexistance of multiple shapes at low excitation energy. Studies of 44S have indicated that
the ground state is prolate deformed while the second 01 state is spherical [42, 49]. One
neutron below 448, the discovery of a long-lived (isomeric) 7/27 state at 320 keV provided
evidence for shape coexistence in 43S [1]. The half-life (T} /2 =1n(2) - 7) of the isomer has
been reported as 415 ns [50, 51] and the structure of the isomeric state has been interpreted
as a spherical 0 f- /2 single-neutron hole state while the intruder 3/2~ ground state is prolate
deformed [50]. The spins and parities of other excited states have not been firmly established
[15, 52, 53], as will be discussed in later chapters. Furthermore, recent work has indicated
that proton-neutron correlations prevent the isomeric state from being regarded as purely
spherical and noted that it would be of great interest to experimentally identify the levels
belonging to the ground-state rotational band in order to give unambiguous evidence of
shape coexistence in 433 [51].

In this work, intermediate-energy Coulomb excitation is used to populate higher-lying

27T states in the even-even S isotopes and to search for collective structures built on the 439
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Figure 1.8: SDPF-MU neutron 1pg /9 occupancies for 0% (red) and 27 states (blue) below

4.5 MeV in 384042449 The increase in occupancy for the second 27 state in 428 relative to
383 explains the observed change in y-decay pattern. Figure modified from [10].

ground and isomeric states. Measurements of the experimental B(E2) strengths from the
0" ground state to higher-lying 2 states allow the onset of intruder configurations in the S
isotopic chain to be characterized. Shell-model calculations using the SDPF-MU interaction,
which predict a fragmentation of the strength over many different 2% states in 44S are shown
in Figure [1.9, Testing the predictions of the most successful effective Hamiltonian in this

region is an important step toward confirming the underlying mechanism of shell evolution.

26



5000

4500

4000

3500

W
S
S
(=)

Energy (keV)
N
n
(=3
[—]

2000

1500

1000

500

+
23 2; 2
2; 2+
2% 4
25 °
AN —
23
25
8 7| . 7l
& ® =
+
& 2] 27
- -
2t —
2t : =
= - 3
o = ~
S e
&
0* 0* 0t 0t
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charges of 1.35 and 0.35, respectively, were used in the SDPF-MU calculations.
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Chapter 2

Intermediate-Energy Coulomb

Excitation

Coulomb excitation is the inelastic excitation of a projectile (target) nucleus due to electro-
magnetic interaction with a target (projectile) nucleus and is a well-established experimental
probe in nuclear science [54H59]. With the high-intensity, low-velocity stable beams used in
the early days of this method, experiments were performed at energies below the Coulomb
barrier in order to ensure physical separation of the target and projectile, thus avoiding
nuclear contributions to the excitation mechanism [54] 55]. More recently, the in-flight pro-
duction of fast beams of radioactive nuclei has made it possible to study the structure of
nuclei far from the valley of stability, prompting the development of intermediate-energy
Coulomb excitation as an experimental tool [56] 57, 60, [61].

In intermediate-energy Coulomb excitation experiments, exotic nuclei at energies in ex-
cess of 30 MeV per nucleon are scattered off stable high-Z targets. The scattered nuclei
are detected in coincidence with the de-excitation v rays and the Coulomb excitation cross
section is calculated from the efficiency-corrected number of detected v rays. At these beam
energies, the analysis should be restricted to a maximum scattering angle, or equivalently
a minimum impact parameter, which is chosen to exceed the sum of the radii of the target

and projectile nuclei by several fm [57, 62]. The impact parameter b and center-of-mass
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Figure 2.1: Schematic of intermediate-energy Coulomb excitation. The projectile (target)
nucleus is inelastically excited in the Coulomb field of the target (projectile) nucleus. In
analysis, a maximum center-of-mass scattering angle # (minimum impact parameter b) is
considered to ensure no nuclear contribution to the cross section. Figure adapted from [I1].

scattering angle 6 are related by:

b= % cot (g) : (2.1)

where the Lorentz factor v = 1/4/1 — (v/c)? and aq is the half-distance of closest approach:

Ly Zpe?

ag 5 (2.2)

mov
which depends on the proton numbers of the target and projectile, Z; and Z,,, the reduced
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mass mq of the system, and the velocity v of the projectile. The scattering angle restriction
ensures that the Coulomb interaction dominates over nuclear and nuclear-Coulomb interfer-
ence contributions to the excitation. A schematic illustrating intermediate-energy Coulomb
excitation is provided in Figure From the angle-integrated cross section, the reduced
transition probability B(oA;i — f) from the initial state i of the projectile to the populated
excited state f can be calculated, for example, using the semi-classical theory of relativistic

Coulomb excitation developed by Alder and Winther [61].

2.1 Alder-Winther Formalism

In the Alder-Winther formalism [61], the relative motion of the projectile and the target
is described using the classical Rutherford trajectory while the single-step electromagnetic
excitation of the projectile is treated quantum mechanically using perturbation theory. Since
this theoretical framework assumes there is no overlap between the charge distributions of the
target and projectile, the excitation is pure Coulomb and the cross section can be expressed
in terms of the same electromagnetic multipole matrix elements as those in the expression
for the electromagnetic decay of nuclear states.

Assuming the relative motion takes place on the classical Rutherford trajectory, the
differential cross section for exciting the projectile from its initial nuclear state ¢ to final state
f can be written as the Rutherford differential cross section multiplied by the probability of

excitation:

do ) ( do )
o) (@ Py (2.3)
(dQ i—f df Rutherford el

The Coulomb excitation probability can be calculated using first-order time-dependent per-
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turbation theory:

Pz‘%f: ‘%’ﬁf’Qv (2'4)

where

oy = [ VGO D 2.5)

Here, wy; = (Ef — E;)/h = AE/h and V(r(t)) is the Coulomb potential which depends on
the relative positions of the projectile and target nucleus.
The transition amplitude a;_, s can be expanded in terms of electric and magnetic mul-

tipole matrix elements and written as a product of two factors:

. A
aissy =1y XA, (2.6)
A
with Xfﬁ ! being a measure of the strength of the interaction:

Z 4
Xy & ST OGN i), (27)

The function f)(§) incorporates the dependence of the amplitude on the adiabaticity of the
reaction. The adiabatic parameter £ is the ratio of the amount of time the projectile spends
in the vicinity of the target nucleus (called the collision time 7..;) to the timescale of internal

motion in the nucleus being excited muc. The collision time is expressed as:

Teoll = —» (2.8)
CO ,_)/
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while the internal motion timescale is:
_ = . 2.9
(2.9)

Therefore, the adiabaticity parameter can be written as:

Teoll  AE
: Tnuc hryv ( )

For large values of £, corresponding to low projectile velocity, large impact parameter, or
high excitation energy, the reaction is referred to as adiabatic. In these cases, the projectile
is unlikely to be excited. Consequently, fy(£) decreases exponentially as a function of &.
Conversely, for violent reactions with ¢ nearing 0, excitation is likely to occur and f) (&)
approaches 1.

At relativistic velocities, the violent reactions that have nuclear contributions are avoided
by considering small scattering angles (large impact parameters). Furthermore, excitations
are predominantly single-step due to the limited amount of time the projectile is in the
vicinity of the Coulomb field of the target nucleus. Therefore, Winther and Alder have made
the approximation that the projectile travels on a straight-line trajectory in the equations
above. In order to account for the distortion of the trajectory due to the Coulomb interaction
in first order, the impact parameter is rescaled by:

T ag

b—b
—>+27

: (2.11)
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correcting the adiabaticity parameter to:

§

AE AE
- (b+ MO) ba. (2.12)

N h_'yv 57 - hyv
Neglecting fy (&) for simplicity, the Coulomb excitation cross section can be approxi-
2
mated by integrating ’Xfi) f‘ over impact parameters from by,i, to bpmax. The lower limit
is the experimentally-chosen minimum impact parameter and the upper limit is the impact
parameter corresponding to {=1:
hryv
b =by = —. 2.13
max a AE ( )
Note that this also sets the maximum excitation energy to be AE = hyv/bpmax. The cross

section is then:

bmax bmax
o\ = 27r/b bdbP;_, y ~ 27r/b bdb

min min

2
xf-i)f‘ . (2.14)

Evaluating this expression results in the Coulomb excitation cross section in terms of the

reduced transition probability:

2 A—1)"1 for A > 2
Zye? ( >
Og)\ R ( ;Li ) 2b;T/\_QB(U/\;O — A) (2.15)
e )
i 2In(bmax/bmin) for A =1,

and the total cross section is the sum over all allowed electric and magnetic multipolarities:

Tinf =Y Ogh. (2.16)
oA

Here, o is electric £ or magnetic M in the sum and subscript. As seen in Equation [2.15]
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the Coulomb cross section is directly proportional to the reduced transition strength B(o\).
For the OT — 27 excitations of interest in this work, the multipolarity is pure E2 and the
cross section is proportional to B(E2; Of — 271) strength.

The exact expression for the Coulomb excitation cross section is derived in detail by

Winther and Alder in [61]. Their result for the excitation amplitude is:

g = 2SS Gy (£ (1P (€0) (%)A Yors

y (JpMy|O(oN)—p| JiM;)

- . (2.17)

where K, are the modified Bessel functions of the second kind. For electric transitions, the

function Gy, is defined for p > 0 as:

c , us N2 /e —1/2
GEx (E) :ZHNA(zAlf: 1! (EiJrZi:) ((5)2 N 1)

X((A+1)(A+M)Pu (E)_Mp# (C)) (2.18)

2N+ 1 A-1\y 2N+ 1 A1\ y

and for magnetic transitions, the function Gry,, is defined for p > 0 as:

c s N\ Y2 /e —1/2 c
Cainn (5) ﬂAﬂLHA(QAT 1! (8+Z§:> ((5)2 B 1) nEy (5) (2.19)

In these expressions, P;f are the associated Legendre polynomials. Note that for negative

there are the relations:

GEx—p (5) = (—=)"GEx (g) : (2.20)
Gara—p <§) — (=11 G o, (%) . (2.21)

34



The full Coulomb excitation cross section is then:

Tjsf = 27r/b . bdeJZ- 1 Z ‘az’—>f{ (2.22)
min MZMf
2 2(A-1) 7
B Zye? AFE B(o; Jz—>Jf) o (2
-(%) 2 () I G ()] o i) (228)

where the function g, (§(byin)) is:

2 ro0
o €)= 27 () [ vab | )P (224
=27 K, (2)|? zdz. 2.25
1) (225)

This integral can be evaluated in terms of the modified Bessel functions of the second kind.

For y > 0:

0u() = g (€)= 7€ || K i (6)]° — |, (f)!z—%“mﬂ OK. 0| (220

The full result of Equation [2.23] also shows a direct proportionality between the Coulomb
excitation cross section and the reduced transition strength. A Mathematica script has been
developed to perform the full Alder-Winther calculations and is used in this work to deter-
mine reduced transition strengths given the experimentally-measured Coulomb excitation

cross sections. The basis of the Mathematica script is provided in [63].
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2.2 Experimental Considerations

As seen in Equation the Coulomb excitation cross section is proportional to Zf. In this
work, the heaviest stable nuclide 209Bi (Z = 83) is utilized for the target material in order to
maximize Z;. 299Bi is one proton above doubly-magic 298Pb and the adopted B (E2;9/27 —
7/27) strength between the ground state and first excited state at 896.28(5) keV is only
26.1(16) e*fm* [7]. Consequently, the Coulomb excitation of target nuclei due to the S
(Z = 16) projectiles is hindered and 7 rays from the target do not significantly contribute

to the observed ~v-ray spectra. The general expression for the experimental cross section is:

N vf—g

. 2.27
Nbeamntarget ( )

Ti—sf =
Here, N, r_,, s the efficiency-corrected number of y-ray transitions from the populated state
to all levels g it y decays to, Npean is the number of incoming beam particles, and ngarget is
the areal number density of the target (number of target nuclei per unit area). Cross sections
in nuclear physics are often given in units of millibarns (1 mb = 10731 m? = 0.1 fm?).

In the Coulomb excitation process, the magnetic substates p are not populated equally
[64]. Therefore, the de-excitation v rays are not emitted isotropically in the center-of-mass
frame. The ~-ray angular distribution can be parameterized in terms of Legendre polyno-
mials P:

W(g)= ) apPilcose), (2.28)

k even

where ¢ is the center-of-mass angle of the v ray with respect to the beam axis. The index k

runs from 0 to the smaller of 2)\ or 2.J;. The angle measured in the center-of-mass frame ¢

36



is related to the laboratory-frame angle ¢p,}, by:

oS P1an, —

cos ¢ = :
1 — 3 cos g1ap

(2.29)

The coefficients aj, found using the Alder-Winther excitation amplitudes are [63]:

e |12 Ak
a = Y |G ()] gu(@)(-1
pLL! poo—p 0
Jr Jr k
e Fk(L,L/,Jff,Jf)v2k+15L5L/, (2.30)
A A

where Jyr is the spin of the state the v decay populates and the 7~y correlation function

Fk(L, L/, Jf? Jl) is:

F(L, L, g, i) = (=) i Jek s g + DL+ )LD + 1)

L L' k L L k
X . (2.31)

1 -1 0 Jp S Jy
The effect of the y-ray angular distribution on the detection efficiency must be taken into
account when determining the efficiency-corrected number of v decays if the y-ray detection

array does not cover the full 47 solid angle.

The uncertainties associated with the approximations used in the semi-classical method
of Winther and Alder have been studied through fully quantal coupled-channels calcula-

tions. Due to nuclear effects, mult-step excitations, and unobserved feeding, the theoretical

uncertainty for the semi-classical model is approximately 13% compared to a theoretical
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uncertainty of less than 7% for the coupled-channels analysis [65]. The results obtained for
reduced transition strengths from intermediate-energy Coulomb excitation experiments have

shown excellent agreement with the results found using other experimental probes [66].

2.3 Reduced Transition Probabilities and Lifetimes

The lifetime 7 of a nuclear state is the inverse of the transition rate W introduced in Sec-

tion 1.4:

st(A+1) \ 1 [/E,\*M
_w Z( ORI >h<hc) B(oX; J; = Jy). (2.32)

Therefore, lifetime measurements can be performed to extract B(o\) strengths for v decay,
which are related to the B(o\) strengths for Coulomb excitation by Equation 1.18. Plugging
in the values, the B(c\) strengths for v decay are related to the partial lifetimes (7, = 7/b

where b is the branching fraction) by [5]:

0.629 e2tm?MeV3fs, (2.33)

B(E1) = —
yTp

816

5
E,y T

B(E2) = e?fm*MeVps, (2.34)

1760

B(E3) = e2fmMeV s, (2.35)

7
E7 T

56.8
v'p

ko)
E,?,Tp
0.1585
EZTp

B(M2) = pi3,fm?MeVons, (2.37)

B(M3) = 3 m*MeV s, (2.38)
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Chapter 3

Experimental Method

The neutron-rich isotopes 38:40:42:43.449 were studied using intermediate-energy Coulomb
excitation at the National Superconducting Cyclotron Laboratory (NSCL) [67] at Michigan
State University. In this experiment, each sulfur isotope was studied at a different time over
the period of a week. Roughly 12 hours of data were taken for 3340S and about 24 hours
of data were taken for #2:43:44S The five separate beams of radioactive 38404243449 were
all produced by the Coupled Cyclotron Facility using the projectile fragmentation method
[68] and transported to the experimental hall where they were impinged on a 492 mg/cm?
209B; target to electromagnetically excite the levels of interest. The de-excitation  rays were
detected using the CsI(Na) scintillator array CAESAR [14] and the outgoing beam particles

and reaction products were identified on an event-by-event basis with the S800 magnetic

spectrograph [69]. The following sections describe these experimental systems in detail.

3.1 Beam Production and Purification

A schematic of the NSCL Coupled Cyclotron Facility is provided in Figure 3.1} In order
to produce the radioactive sulfur isotopes of interest in this work, a stable primary beam
of ¥Ca was first developed. A solid block of metallic ¥Ca was heated in an oven until

vaporization. Once in gaseous form, the 48 atoms were ionized via the electron cyclotron

resonance (ECR) technique in the Advanced Room TEMperature Ion Source (ARTEMIS)
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Figure 3.1: Layout of the Coupled Cyclotron Facility at the National Superconducting Cy-
clotron Laboratory showing the ion sources, K500 and K1200 cyclotrons, and A1900 fragment
separator [12]. Figure adapted from [13].

[70]. In Figure , ARTEMIS is represented by RT-ECR standing for room temperature
ECR. In the ECR method, the gas is injected into the ion source and confined in a magnetic
trap. Electrons are accelerated using microwave radiation tuned to the resonant frequency

w of the cavity:
eB

)
Me

(3.1)

w =

where e and m, are the charge and mass of an electron and B is the strength of the magnetic
field. The accelerated electrons ionize the gas atoms by stripping electrons during collisions.
In this experiment, *¥Ca was ionized in ARTEMIS to a charge state of 8+ meaning that
eight electrons were removed from the neutral atom.

Next, the ¥¥Cadt ions were injected into the K500 cyclotron. According to the Lorentz
law, particles with charge ¢ and momentum p perpendicular to a magnetic field B will follow
a radius of curvature p given by:

(3.2)



where m and v are the mass and velocity of the particle and ~ is the relativistic factor. The

quantity Bp is referred to as the magnetic rigidity:

Bp =

g = (3:3)

4q

The K500 and K1200 cyclotrons at the NSCL operate using this principle. The cyclotrons
consist of three “dees”, copper electrodes surrounded by a superconducting electromagnet,
which produce a radio-frequency (RF) electric field that accelerates the ions in the gaps
between the dees. The trajectories of the ions are confined by the applied magnetic field
from the superconducting electromagnets. As the energy of the ions increases, the radius of
curvature gets larger. Once the ions reach the maximum energy given the radius constraints
of the cyclotron, they are extracted at a port on the outer edge. For the 48Ca8t jons in
this experiment, the primary beam energy was accelerated to 12.28 MeV per nucleon (12.28
MeV /u) after the K500 cyclotron.

After extraction from the K500 cyclotron, the ions are transported and injected into the
K1200 cyclotron. A carbon stripper foil is located at the center of the K1200 cyclotron to
increase the charge state of the ions in order to increase the maximum possible final energy.
In this work, the 4¥Ca ions were fully stripped (*¥Ca20%) and accelerated to 140 MeV /u.

The *8Ca primary beam was then impinged on a thick ?Be production target, producing
a cocktail secondary beam of different fully-stripped ions, including the rare neutron-rich
sulfur isotopes, through projectile fragmentation. To purify the secondary beam, the A1900
fragment separator [12] was utilized. The A1900 consists of four large 45° dipole bending
magnets and 24 quadrupole focusing magnets with additional magnets for higher-order cor-

rections and achieves isotopic separation using the Bp-AE-Bp technique [I2]. In the initial
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Bp stage, the secondary beam is purified by tuning the magnetic fields of the first two dipoles.
From Equation the chosen magnetic rigidity selects the momentum-to-charge ratio p/q
of the ions that will pass through the fixed-radius dipoles. However, particles with similar
p/q ratios to the projectiles of interest will also make it through this selection process. In
order to limit these contaminants, slits at the image points and focal plane of the A1900 (see
Figure can be employed to only allow a certain range of momenta. However, particles
with the same p/q ratio cannot be unambiguously selected with Bp alone. Therefore, in
the AF step, the beam is impinged on an achromatic aluminum wedge degrader (actually a
curved aluminum foil) located at the mid-acceptance position of the A1900. The differential
energy loss of the ions traversing the wedge per differential path length is described by the

Bethe formula [71]:

= () e e

where e is the electron charge, ne is the electron number density of the degrader, Z is the
atomic number of the incoming ion, m, is the electron mass, v/c is the ion velocity relative
to the speed of light, v is the relativistic factor, and [ is the mean excitation potential of the
degrader. From this equation, the energy loss is proportional to the square of the charge of
the ion. Consequently, particles starting with the same momentum but with different atomic
numbers Z will have different momenta after passing through the wedge. A 450 mg/ cm?
Al wedge was used for all settings in this experiment. The final step in the purification
process is another Bp selection using the magnetic rigidities of the final two dipole magnets.
In this experiment, the slits were adjusted to give a momentum acceptance dp/p of about

1% for 384042438 anq 2% for 44S. The production targets used for each secondary beam
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are provided in Table along with the energies of the projectiles before the 209Bi reaction

target calculated using the program LISE-++ [72].

Table 3.1: Production target, momentum acceptance dp/p, and energy as inferred from the
magnetic rigidity setting of the segment of the analysis line just before the 492 mg/ cm? 209B;
reaction target in front of the S800 spectrograph for each secondary beam setting.

Setting 9Be Production Target (mg/cmz) dp/p  Energy (MeV/u)

389 1034 1.07% 81.85
40g 987 1.07% 82.18
d2g 940 1.08% 86.48
43g 1034 1.07% 83.03
d4g 1081 2.02% 79.40

3.2 S800 Magnetic Spectrograph

After separation in the A1900, the secondary beam passed through a thin plastic scintillator
at the extended focal plane of the A1900 (XFP scintillator) and was delivered through the
transfer hall to the analysis beam line where it was impinged on the 2Y9Bi reaction target at
the target position of the high-resolution, high-acceptance, S800 magnetic spectrograph [69].
In this experiment, the analysis line, which consists of four dipoles, five sets of quadrupole
triplets, one quadrupole doublet, and four sextupole magnets [73], was operated in focus
mode, where the focal point for the beam is at the 209Bi reaction target and the beam is
dispersed at the S800 focal plane. Following the reaction target, there is a quadrupole magnet
that refocuses the beam and two large dipole magnets that bend the charged particles based
on their momentum-to-charge ratios. The magnetic rigidity of the dipoles is set to center
the reaction products of interest in the focal plane of the S800. The analysis line and S800
magnetic spectrograph are shown in Figure |3.2]

There are a number of detectors at the focal plane of the S800 that are used for particle
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Figure 3.2: Illustration of the S800 magnetic spectrograph including the analysis line. The
target position was surrounded by the CsI(Na) array CAESAR. Figure taken from [I1].

identification and trajectory reconstruction [74]. A diagram of the S800 focal plane is shown
in Figure 3.3 The reaction products first pass through two cathode readout drift chambers
(CRDCs). The upstream (CRDC1) and downstream (CRDC2) CRDCs are spaced one meter
apart and are used to determine the xy-positions and angles necessary for the reconstruction
of the trajectory for each ion. Next, the energy loss of the ions is measured in an ionization
chamber to determine the atomic number of the ion. Afterward, the ions traverse a thin
plastic scintillator (E1 scintillator) that is used for timing measurements and to trigger the
data acquisition system. As described in detail in the sections below, timing measurements
and the S800 focal plane detectors allow the incoming beam particles and the reaction

products to be identified event-by-event.
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Figure 3.3: S800 focal plane diagram showing the cathode readout drift chambers (CRDCs),
ionization chamber, and E1 plastic scintillator. Figure modified from [13].

3.2.1 Particle Identification and Trajectory Reconstruction

Near the beginning of the analysis line, there is another thin plastic scintillator at the ob-
ject position of the S800 (OBJ scintillator). The XFP and OBJ scintillators are used in
conjunction with the E1 plastic scintillator at the S800 focal plane to perform time-of-flight
measurements. The scintillators are coupled to photomultiplier tubes that detect the fluo-
rescence light generated when ions pass through the plastic. The incoming secondary beam

ions have been selected by Bp = ymuv/q. Therefore, assuming a fixed flight path through
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the analysis line and S800, the time of flight, which is inversely proportional to velocity,
is proportional to the mass-to-charge ratio. Since the ions are fully stripped, selecting on
the ratio m/q is equivalent to selecting on A/Z. Consequently, the time-of-flight difference
XFP-OBJ (both relative to E1) is sensitive to the A/Z of the incoming beam components.
Since the proportionality to A/Z depends on the assumption that the flight path is fixed,
correcting for the correlations between time of flight (for XFP-E1 and OBJ-E1) and the
dispersive angle and position in the S800 focal plane provides significant improvement in
timing resolution.

To unambiguously identify the reaction products, the time-of-flight difference between
the OBJ and E1 scintillators is used in conjunction with the energy loss in the ionization
chamber. The ionization chamber consists of 16 individual parallel plate chambers and is
filled with P10 gas (90% Ar and 10% methane). When the reaction products travel through
the ionization chamber, the P10 gas is ionized and the electrons drift toward the anode
providing a signal proportional to the energy deposition. The energy loss in the ionization
chamber is proportional to Z?2 as seen in Equation . As discussed above, the time-of-flight
difference is proportional to A/Z. Therefore, reaction products are uniquely identified by
plotting the energy deposited in the ionization chamber against the time of flight through
the S800 spectrograph (so-called AFE-ToF technique).

In intermediate-energy Coulomb excitation, analysis must be restricted to small scatter-
ing angles to limit nuclear contributions to the cross section (see Chapter 2). The position
information from the CRDCs in the S800 focal plane is used to track the trajectory of the
scattered particles back to the reaction target. As a result, the scattering angle for each
particle on an event-by-event basis can be determined.

Each CRDC has an active depth of 1.5 ¢cm and an active area of about 60 cm in the
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x (dispersive) direction and 30 cm in the y (non-dispersive) direction [74]. The CRDCs
are filled with 80% carbon tetrafluoride (CF4) and 20% isobutane (C4H1g). A negative bias
voltage is applied across each CRDC in the y direction. When nuclei pass through the CRDC
the gas is ionized and the electrons drift toward the anode wire. Bordering the anode wire
are 224 cathode pads, each 2.54 mm wide [74]. The collection of charge in the anode induces
a positive charge on the cathode pads. The interaction point in the x (dispersive) direction
for the incoming particle is determined by fitting the measured charge on the pads with a
Gaussian distribution. The y (non-dispersive) position of the interaction is determined from
the drift time of the electrons to the anode measured with respect to the timing signal from
the E1 scintillator.

In order to calibrate the x and y positions of the CRDCs during the experiment, thick
masks with ho