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ABSTRACT

ASYMMETRY DEPENDENCE OF SPECTROSCOPIC FACTORS: A
STUDY OF TRANSFER REACTIONS ON ARGON ISOTOPES AT 70

MEV/U

By

Juan José Manfredi Jr.

Nuclear reactions are useful tools to study the structure of the atomic nucleus. One of

the most popular reactions over the last several decades is the transfer reaction, and the ad-

vent of rare isotope beam facilities has opened up new swaths of the nuclear chart available

for exploration with this technique. In principle, different techniques should give consistent

nuclear structure information (like the spectroscopic factor which quantifies single-particle

occupancy) for a given isotope. However there is a well-established discrepancy between

spectroscopic factors extracted from transfer reaction data and those extracted from knock-

out reaction data. In particular, reduction factors (ratios of extracted spectroscopic factors

to theoretical expectation) from knockout data show a strong dependence on nuclear asym-

metry, whereas the transfer measurements show at most a weak dependence. This discrep-

ancy not only raises important questions on the influence of nucleon-nucleon correlations in

nuclear structure, but also calls into question the validity of the relevant nuclear reaction

techniques.

This dissertation describes the measurement of the 34Ar(p, d)33Ar and 46Ar(p, d)45Ar

single-neutron transfer reactions at 70 MeV/u. The motivation of this study is to measure

the same transfer reactions on argon examined in earlier work at low energy, while matching

the high beam energy of previous knockout measurements on argon. Raising the beam

energy to a regime where few reliable measurements exist could illuminate potential defects

in the transfer reaction mechanism. We performed a kinematically complete measurement



of the differential cross sections for these (p, d) reactions at the National Superconducting

Cyclotron Laboratory using several detector systems. The High Resolution Array (HiRA)

detected the outgoing deuterons, the S800 Spectrograph detected the heavy argon recoil, and

two Microchannel Plates (MCPs) tracked the incoming beam to normalize the cross section

and to better localize the transfer on the reaction target. We carried out various calibrations

on each individual detector system (including a detailed characterization of silicon detectors

in HiRA) before merging and normalizing the data to generate the cross sections of interest.

We extracted spectroscopic factors using the adiabatic distorted wave approximation

(ADWA) framework implemented in the TWOFNR code. Both the CH89 global optical

potential as well as the microscopic Jeukenne, Lejeune, and Mahaux (JLM) optical potential

produced spectroscopic factors for each reaction system. The resulting reduction factors

corroborate the low-energy results and disagree with the knockout data by showing a weak

asymmetry dependence between the neutron-rich 46Ar and the proton-rich 34Ar. Therefore,

the transfer reaction mechanism yields consistent results even at a high beam energy. We

advocate for further transfer reaction measurements at high asymmetry, as well as a deeper

theoretical understanding of both the transfer and knockout reaction mechanisms.
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Chapter 1

Introduction

I, a universe of atoms, an atom in the

universe.

Richard Feynman

1.1 The Atomic Nucleus

The world around us is made ofatoms. Since Democritus �rst theorized the existence of

the atom in ancient Greece, science has ventured within this building block of matter to

study its secrets. Each atom consists of anucleusmade up of protons (that have positive

electric charge) and neutrons (no electric charge) surrounded by a cloud of negatively-charged

electrons. Ernest Rutherford's 1911 discovery of the atomic nucleus immediately made clear

two of its remarkable properties [1]. First, the nucleus is heavy, making up over 99.9%

of the total mass of the atom. Protons and neutrons, collectively referred to as nucleons,

are much heavier than electrons, and therefore constitute almost all the mass of ordinary

matter. Secondly, the nucleus is small. Typically the radius of the atom is more than 10,000

times bigger than the nuclear radius. This extraordinarily dense collection of interacting

neutrons and protons contains a rich and complex set of phenomena that is the focus of

nuclear physics.

Since the positively-charged protons in the nucleus repel each other via the electrical

force, there must be another force overpowering this repulsion to bind the nucleons together.
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Figure 1.1: Components of an atom (from [2]).

This nuclear forceis a residual e�ect of the strong interaction between the constituent quarks

that make up protons and neutrons, as shown in Figure 1.1 [2]. The aptly-named strong

force is the most powerful fundamental force in the universe, and the source of energy tapped

by nuclear energy and nuclear weapons.

Although the exact mathematical form of the nuclear force is not known, we do know

that this force acts only at very short distances. In contrast, the electrostatic force (also

called the Coulomb force) acts at long distances. The balance between short-range nuclear

attraction and long-range Coulomb repulsion limit the possible con�gurations of neutrons

and protons that form into allowed nuclei. Figure 1.2 shows the landscape of possible nuclei,

known as thechart of the nuclides[3]. Each square represents a single isotope, denoted by

proton number on the y-axis and neutron number on the x-axis. The black squares indicate

stablenuclei that make up most of the ordinary matter on Earth, and are collectively referred

to as the valley of stability. The green squares indicate all other observed nuclei, which are

unstable(also called exotic or rare) and will eventually decay towards the valley of stability.
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Figure 1.2: Chart of the nuclides, with neutron number on the x-axis and proton number on
the y-axis. The chain of calcium isotopes is magni�ed, showing that calcium can vary from
proton-rich to neutron-rich. Taken from [3].

The largest region of the chart (in yellow) remains unexplored.

The number of protons in a nucleus (given byZ) determines its element, and each element

has a variety ofisotopesdetermined by neutron number (given byN ). An isotope is typically

represented asAX , whereA = N + Z is the mass numberof the nucleus andX is the chemical

symbol for its corresponding element. In Figure 1.2, the calcium isotopic chain (Z = 20) is

enlarged to show the variety of isotopes possible for a single element. Some isotopes, like

35Ca have a relatively low number of neutrons (proton-rich) and others, like58Ca have a

relatively high number of neutrons (neutron-rich).

A central theme of modern nuclear physics research is understanding these exotic nuclei
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on both the proton-rich and neutron-rich sides of the chart. Producing rare isotopes is

challenging, so the American nuclear physics community has coordinated the construction of

large accelerator facilities, like the National Superconducting Cyclotron Laboratory (NSCL)

and the upcoming Facility for Rare Isotope Beams (FRIB), to create and study rare isotopes.

Researchers from all over the world use these rare isotope factories to address important

questions about nuclear physics. For instance, what are the properties of exotic nuclei away

from the valley of stability? How do nuclei on one side of an isotopic chain (e.g.35Ca)

behave di�erently from nuclei on the other side (e.g.58Ca)? And what is the best way

to study these properties? This dissertation will focus on addressing such issues. First, we

must formulate these questions more precisely via a basic introduction tonuclear structure,

the study of how protons and neutrons arrange themselves in the nucleus.

1.2 Inside the Nucleus

Unlike macroscopic objects (like planets, cars, or human beings), nuclei are too small to be

accurately described by Newton's Laws. Instead, nuclei obey the laws of quantum mechanics,

in which objects have properties of both particles and waves, and quantities like energy and

momentum are restricted to discrete values. A quantum system can exist in a superposition

of these discrete states, and so the complexity of a nucleus withA nucleons rises very quickly

with A. As a result, treating an arbitrary nucleus exactly as a quantum many-body problem

is an extraordinarily challenging, and often impossible, task from both the analytical and

the computational point of view.

Given the di�culty of solving this problem exactly, nuclear physicists employ di�erent

approximations in order to further theoretical understanding of the nucleus and to make
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sense of experimental observations. An early example of such an approach is the Bethe-

Weizsäcker formula, �rst published in the 1930s, based on the liquid drop model (LDM) of

the nucleus [4, 5]. The LDM considers the nucleus as a drop of incompressible �uid made

up of neutrons and protons, similar to a drop of water made up of H2O molecules [6, 7].

The Bethe-Weizsäcker formula puts the LDM in quantitative form with only �ve terms to

calculate the binding energy for a particular nucleus1; these terms relate to the volume,

surface area, Coulomb repulsion of constituent protons, neutron-proton asymmetry, and

nuclear pairing energy contributions [4, 5, 9]. Despite its simplicity, this formula successfully

describes broad trends in nuclear binding energy, putting early mass measurements into

useful theoretical context.

The LDM's intuitive appeal outweighs its predictive power. For instance, experimental

evidence showed that nuclei with certain numbers of neutrons or protons (2, 8, 20, 28, 50, 82,

and 126) have excess binding energy compared to values predicted by the Bethe-Weizsäcker

formula [10, 11, 12, 13]. Eugene Wigner, intrigued by the discrepancy, referred to these points

of extra stability as magic numbers, which is how they have subsequently been referred to

since then [13].

In 1949, Marie Goeppert-Mayer and Hans Jensen left behind the LDM to develop the

�rst shell modelof the nucleus, shedding light on the mystery of these magic numbers [14, 15,

16]. The shell model had a transformative impact on nuclear physics, and to this day is the

most successful and robust nuclear structure framework. Mayer and Jensen were awarded

the Nobel Prize in 1963 for their work.

The simplest shell model is called the Independent Particle Model (IPM). The central idea

1The binding energy of a nucleus is the minimum energy required to dismantle that nucleus. By Einstein's
principle of mass-energy equivalence, the binding energy can also be expressed as a mass with the relation
E = mc2 [8]. In the present discussion, binding energy and mass will be used interchangeably.
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of the IPM is the assumption that each nucleon moves in amean-�eld potential independently

from all the other nucleons. This potential is meant to represent the average in�uence on

one particular nucleon from all the others, and is typically de�ned in a harmonic oscillator

or Woods-Saxon form [12, 16]. In the mean �eld, each nucleon occupies a single-particle

eigenstateorbital characterized by its discrete energy and quantum numbersn, l , and j ,

wheren is the number of nodes in the radial wave function, andl and j are the orbital and

total angular momenta. Figure 1.3 shows these orbitals for di�erent choices of the potential.

Due to the Pauli exclusion principle no two nucleons can occupy the same quantum state,

and the lowest energy con�guration comes from �lling in orbitals from the bottom up [17].

Protons and neutrons �ll orbitals independently. Groups of orbitals with similar quantum

numbers and energies are calledshells.

In Figure 1.3 we see that the IPM predicts energy gaps between separate shells. Therefore

exciting a nucleon to a higher energy orbital in a nucleus with a fully occupied, or closed,

shell bears a large energy cost. This is exactly what results in extra stability for nuclei with

a magic number of neutrons or protons (or both), and each magic number corresponds to a

fully-occupied shell of single-particle orbitals. Using a simple mean-�eld potential with an

added spin-orbit component (see the rightmost column in Fig. 1.3), the IPM can reproduce

all the magic numbers listed above [12, 16].

The IPM essentially substitutes a very di�cult A-body problem with A more tractable

single-body problems. In fact, we typically solve far less thanA single-body problems, as

we also assume that only the highest energy (orvalence) orbitals dictate nuclear structure

properties due to the inert nature of the �lled inner shells. Although these assumptions

substantially reduce the number of degrees of freedom, the IPM performs quite well. In

addition to reproducing the magic numbers, the IPM also provides the correct ordering of
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Figure 1.3: Single-particle orbitals generated by various mean-�eld potentials. Figure taken
from [12].
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single-particle states for the vast majority of stable nuclei, and a basic description of their

static and dynamic properties [18].

This mean �eld approach provides a useful basic framework for nuclear structure, but

the IPM does not generalize well beyond closed-shell nuclei. One reason is the in�uence

of nucleon-nucleon correlations. Short-range correlations, due to strong repulsion between

nucleons at very short distances, push nucleons to higher-momentum orbitals [19, 20]. Long-

range correlations between valence nucleons result in collective behavior like deformation

and giant resonances [21]. Both short and long range correlations disrupt the IPM mean

�eld picture, reducing the occupancy of single-particle orbitals [22, 23]. More sophisticated

models, like the large-basis shell model (LBSM), can account for some of these correlation

e�ects (mostly of the long range variety) by expanding to a larger single-particle model space

to describe con�guration mixing in the valence states, or by using specialy designed e�ective

interactions [22, 24]. Still, they are based on the foundation set by the mean-�eld theory of

Mayer and Jensen.

We are interested in evaluating how well state-of-the-art shell models actually describe

reality using experimental data. Which orbitals are occupied in a given nucleus, and to what

extent? How does this orbital structure change away from the valley of stability? And for

that matter, what type of data can we use to compare to theory? In the next section, we

will discuss one potential point of contact between experimental data and nuclear structure

theory.
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1.3 Understanding Nuclear Structure

The occupancy of a single-particle orbital in a particular state of a given nucleus is quanti�ed

by its spectroscopic factor(SF) [25]. This quantity is de�ned as follows:

SF =
Z

d~p
�
�
�
�

D
	 A� 1

�
�
�a~p

�
�
�	 A

E �
�
�
�
2

(1.1)

where ~p is the set of quantum numbers for a particular single-particle orbital and	 X is

a wave function for anX -nucleon system. The annihilation operatora~p acts on a wave

function to remove a nucleon in that single-particle state. SFs can be calculated directly

from shell model wave functions, and range from 0 (no overlap between	 A� 1 and a~p	
A )

to 2j + 1 (perfect overlap) wherej is the total angular momentum of~p. Normalizing to

a maximal value of 1, the SF can be interpreted as the probability that given anA-body

wave function 	 A , removing a nucleon in state~p will yield a particular A � 1-body core

con�guration 	 A� 1. In this work, we will normalize SFs to2j + 1.

Figure 1.4 illustrates this concept with an example. For the ground state of41Ca, the

spectroscopic factor of thef 7=2 orbital is approximately 1 [26]. This means that we can

consider 41Ca as consisting of a doubly-magic (Z=20, N =20) core with an extra single

neutron fully occupying the f 7=2 orbital. In this instance, the single-particle orbital is fully

occupied due to the stability of the inert core. For many other cases SFs will have sub-

maximal values, indicating the presence of nucleon-nucleon correlations disrupting the simple

picture of a single-particle in a mean �eld.

Spectroscopic factor calculation depends on details of the chosen Hamiltonian and basis

states used to de�ne the wave functions [27, 28]. Therefore, the SF is not a true observable

and cannot be directly measured in the same way as an energy or cross section. Instead, the
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Figure 1.4: Structure of41Ca.

standard procedure is to �rst induce a nuclear reaction on the nucleus of interest and measure

an observable quantity (e.g. reaction cross section). Experimental spectroscopic factors must

then beextractedfrom data via comparison of this observable to nuclear reaction theory [27].

The speci�c extraction procedure depends on the chosen reaction probe, but the general idea

is to use reaction theory to calculate the expected observableassuming the orbital of interest

is fully occupied. Then the ratio of the experimental observable to the calculated observable

gives a measure of the actual orbital occupancy. This will be discussed further in Chapter

2. The ratio of the resulting experimental SF to the SF from nuclear structure theory is

called the reduction factor (typically denoted R or Rs), and quanti�es how well the theory

describes the actual nuclear structure.

In the literature, some discuss whether the non-observability of the SF prevents it from

being a valid measure of nuclear structure [28, 29, 30]. Ultimately, many studies have

shown that meaningful information can be gleaned from SFs within a systematic extraction
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approach [23, 31, 32, 33, 34, 35], including the work of Tsang, Lee, and Lynch in which they

re-analyzed transfer reaction data from 80 nuclei within a consistent theoretical framework

to extract SFs [36, 37, 38]. A single SF in isolation su�ers from high theoretical uncertainty,

but comparing SFs from several nuclear states extracted in a similar way from similar data

can yield real insight about the structure within. Consider the previous example of41Ca:

the SF ranges from 0.75 to 1.06 depending on the optical potential used for the reaction

model in the extraction. However, the SFtrend across many calcium isotopes is consistent

for di�erent optical potentials as well as IPM calculations [39].

Several types of nuclear reactions can be used to access SFs. One possibility is the(e; e0p)

electron scattering reaction, in which a high-energy electron scatters o� a stationary target

nucleus and knocks loose a proton in the process. The major advantages of(e; e0p) are that

it penetrates the nuclear interior and that it occurs via the well-understood electromagnetic

interaction. In principle, using an electromagnetic probe rather than a hadronic one reduces

theoretical uncertainty related to our less developed understanding of the nuclear force com-

pared to the electromagnetic force. The results from(e; e0p) data show substantial reduction

(R � 0:6 � 0:7) compared to the IPM for stable nuclei across a wide mass range [40]. This

indicates signi�cant in�uence from nucleon-nucleon correlations. When compared to other

nuclear structure models, the reduction �uctuates [39].

Unfortunately, the (e; e0p) technique does not easily apply to the study of rare isotopes.

First of all, electron scattering cannot access particle states (for which nucleons must be

added rather than removed from the nucleus) or hole states involving neutron removal.

More importantly, most rare isotopes are too di�cult to produce and too short-lived to

serve as targets in an electron scattering experiment. Instead, we need reaction mechanisms

that allow for the study of isotopes in an accelerated beam.
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Transfer reactions, in which a nucleon is transferred from one nucleus to another, have

been a popular choice for extracting SFs since the 1950s [41, 42, 43]. Transfer reactions

experiments can study both hole and particle states, selectively, in either an accelerated beam

or stationary target nucleus. With the advent of fast radioactive beams, transfer reactions

have again come to prominence as an important tool for exploring the exotic regions of the

nuclear chart [43, 44, 45]. Single-nucleon transfer reactions (like(p; d), (d; p), and (d;3 He))

are particularly useful for probing single-particle states, and have been called �the perfect

tool for shell structure studies� [46]. The typical procedure is to measure the di�erential cross

section for a speci�c transfer reaction, and then divide by the calculated di�erential cross

section from reaction theory. The reaction theory (which we discuss in detail in Chapter

2) dictates that the shape of the di�erential cross section strongly depends on the angular

momentum, so the shapes of the measured and calculated cross sections usually match [41].

The SF then comes from the ratio of the magnitude between experiment and theory in the

di�erential cross section.

A more recently developed technique for extracting SFs is the single-nucleonknockout

reaction, in which a nucleon is removed from an intermediate-energy beam nucleus [44, 47,

48, 49, 50]. Knockout experiments can run with low beam intensity, and therefore can

reach further away from the valley of stability than other techniques [51, 44]. This reaction

probe is particularly well suited for studying the structure of weakly bound states [47, 48].

In a knockout experiment, the isotope in the beam impinges on a light reaction target.

When knockout occurs, the massA � 1 recoil is measured and identi�ed in a spectrometer.

Gamma ray detectors can then tag on individual �nal states in the recoil, while longitudinal

momentum distributions allow for angular momentum determination [44, 52]. The ratio of

the experimental total cross section to the theoretical value then gives the SF.
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1.4 Motivation

It stands to reason that if the structure of a given nucleus is invariant, then using di�er-

ent reaction probes to study the same nucleus should yield consistent results. Surprisingly,

di�erent techniques do in fact disagree signi�cantly on extracted spectroscopic factors for

well-bound nucleons in asymmetric nuclei. Figure 1.5 illustrates this inconsistency by sum-

marizing spectroscopic factor studies performed with several di�erent reaction mechanisms.

The y-axis is the reduction factor de�ned above (relative to LBSM calculations), and the

x-axis is de�ned as� S = Sn � Sp (for neutron removal) or � S = Sp � Sn (for proton re-

moval) whereSn is the neutron separation energy (i.e. the energy cost to remove a neutron

from the nucleus) andSp is the proton separation energy. For neutron-removal reactions,

proton-rich nuclei have a very positive� S since the neutrons, as the de�cient species, are

more bound relative to the protons. Removing a neutron from a neutron-rich nucleus has a

negative � S since the neutrons are relatively less bound. The opposite applies to proton-

removal reactions. The plot shows reduction factors extracted via single-nucleon transfer

(red), single-nucleon knockout (blue), and electron-induced proton knockout (black). The

red, blue, and black points mostly agree for stable nuclei with� S close to 0. For removal

of weakly bound nucleons, the transfer and knockout both show that reduction factors are

at least as high as for stable nuclei (although the trend is more clear from the knockout

results). However, in the case of tightly bound nucleon removal, the transfer and knockout

show drastically di�erent results. Although both data sets show decreased reduction factors

(which indicate the increased in�uence of correlations), the knockout results show a much

stronger decrease than the transfer results. The knockout also shows further reduction for

very asymmetric nuclei not currently accessible by transfer reaction studies.
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Figure 1.5: Spectroscopic factors extracted from transfer (red), knockout (blue), and electron
scattering (black) data for a variety of di�erent isotopes. Data compiled from [26], [52], [53],
[54], and references therein.
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To more carefully examine this strange phenomenon, we focus on a single isotopic chain.

Figure 1.6 shows the transfer-knockout discrepancy clearly for neutron removal from argon

isotopes [55, 56]. The reduction factors for single-neutron transfer in red come from [55,

56], and those extracted from single-neutron knockout in blue are from [57, 58, 59]. Again,

the red and blue points agree in the case of neutron-rich46Ar, in which the neutrons being

removed are loosely bound. For the proton-rich34Ar, in which neutrons are tightly bound,

the knockout data show a much stronger decrease in reduction factor than the transfer

results, and even further reduction for32Ar (which was not measured with transfer). Note

that the � S value for 34Ar di�ers between the transfer and knockout measurements. The

transfer measurement was exclusive, so Fig. 1.6 shows the� S value calculated with the

ground state of the �nal argon recoil. The knockout measurement, on the other hand, was

inclusive, so its� S value was calculated with a weighted combination of �nal states in33Ar.

The knockout reduction factor shown for34Ar therefore represents an upper limit on the

ground state to ground state reduction factor measured by the transfer. This potentially

widens the disagreement between transfer and knockout even further. We note that the

transfer reactions were measured at a lower beam energy (33 MeV/u) than the knockout

reactions (70 MeV/u).

In summary, transfer reactions and knockout reactions produce substantially di�erent

results regarding theneutron-proton asymmetry dependenceof single-particle structure in

argon isotopes. The transfer data tells us that the shell model calculations do a reasonably

good job of calculating, for instance, the34Ar single-particle structure (compared to the46Ar

case). On the other hand, the knockout data shows that the same shell model calculations

are in fact woefully inadequate, and correlations are playing a stronger role than expected.

This discrepancy has also been observed in asymmetric oxygen isotopes [53]. Tostevin and
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Figure 1.6: Spectroscopic factors extracted from transfer (red) and knockout (blue) data
along the argon isotopic chain. Data taken from [55] and [52].
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Gade present a summary of knockout results for many di�erent systems that consistently

show the samequenchingof the reduction factor [52]. Some recent knockout studies use the

systematic results from Tostevin and Gade to re-normalize SFs in order to compare them

to shell model calculations in the sum-rule limit without worrying about suppression due to

correlations [60, 61].

This disagreement between transfer and knockout has important consequences. Firstly,

the single-particle structure of the neutrons in34Ar (and other such cases of the de�cient

species in asymmetric nuclei) is still unresolved. Furthermore, the transfer-knockout discrep-

ancy reveals that at least one of the two reaction mechanisms is not completely understood.

This situation is analogous to two astronomers, each with a di�erent type of telescope (opti-

cal and x-ray, for instance), looking upon the same star: if they describe the star di�erently,

then perhaps the telescopes themselves are not well understood.

The nuclear physics community has attempted to address this inconsistency between

transfer and knockout probes. From a reaction theory perspective, Nunes, et al. suggested

that Lee's analysis of the argon transfer measurements was not de�nitive, and that an alter-

native treatment of the reaction theory resolves the discrepancy in asymmetry dependence

[62]. However other results have since provided further evidence of inconsistency between

transfer and knockout SFs [53, 63, 64]. Timofeyuk and others controversially advocate that

unresolved problems with nonlocality in the single-nucleon transfer reaction theory make it

an unreliable probe for SFs [65, 66]. In general, the large spread in the transfer data (e.g. in

Figure 1.5), as opposed to the more clearly de�ned knockout trend, hints at shortcomings

in the reaction theory. There are also theoretical challenges regarding the knockout mecha-

nism. Flavigny et al. have shown that for well-bound nucleons the approximations made in

knockout reaction theory break down, resulting in altered cross sections [67]. However, the
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tell-tale distorted momentum distributions of the non-sudden e�ects described by Flavigny

are not seen by Gade [57, 58, 59]. Another possibility is that core excitations, typically ne-

glected in knockout analysis, become important when knocking out a deeply bound nucleon

[68, 69].

From a structure point of view, the idea that nucleon-nucleon correlations play a more

important role for well-bound nucleons in asymmetric systems has some support. Calcula-

tions done with the dispersive optical model [70, 71], the self-consistent Green's functions

method [72], the inhomogeneous equation [73], and the microscopic coupled-cluster method

[74] all indicate an asymmetry-dependence in SF reduction, but (in most cases) weaker than

the one observed in the knockout data.

There is also experimental evidence for theslightly higher in�uence of nucleon-nucleon

correlations away from stability. For instance, some transfer reaction measurements already

discussed ([55, 56]) could indicate a weak asymmetry dependence. In addition, recent results

from (p;2p) quasi-elastic proton scattering experiments on oxygen isotopes show a similar

asymmetry trend as the transfer reaction results [75, 76]. These results are plotted in Figure

1.7 in comparison with relevant transfer and knockout data. Quasi-elastic proton scattering is

an entirely di�erent reaction mechanism from single-nucleon transfer: the fact that these two

probes agree with each other provides strong support for this weaker asymmetry dependence.

Finally, electron scattering results in stable nuclei suggest that short-range correlations more

strongly a�ect the de�cient species in asymmetric nuclei, but how much this e�ect manifests

in exotic nuclei is unclear [19]. To be clear, however, there is so far no experimental evidence

for strong asymmetry dependence outside of the single-nucleon knockout results.

Despite productive steps forward in understanding this problem, it remains unresolved.

Nuclear structure theorists are working to further understand the role correlations play in
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Figure 1.7: Spectroscopic factors extracted with transfer (red), knockout (blue) and quasi-
elastic proton scattering (magenta) reactions for the oxygen isotopic chain, along with cor-
responding trend lines.
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their models, while nuclear reaction theorists continue to study sources of uncertainty in SF

extraction. On the experimental side, we must gather more data while varying asymmetry,

mass number, and other variables to test the validity of both the transfer and knockout

reaction mechanisms. One possible variable to explore is the beam energy.

Single-nucleon knockout measurements are performed with intermediate-to-high beam

energy (70 MeV/u for the argon knockout data) to ensure the applicability of the eikonal

approximation, whereas transfer reactions are usually measured at lower energy (33 MeV/u

for the argon transfer data) where the cross sections are higher. Comparing these two

mechanisms at the same energy could provide important evidence either for or against the

validity of the transfer reaction probe. In this dissertation we present(p; d) transfer reaction

measurements (on46Ar and 34Ar) similar to those performed by Lee except with a beam

energy of 70 MeV/u to match Gade's knockout measurement. If this higher energy transfer

measurement agrees with Lee's results at low energy, then it bolsters con�dence in the

consistency of the transfer reaction method at high energies for well-bound nucleons. If

the two transfer measurements disagree, then there could be a problem with the current

understanding of the single-nucleon transfer mechanism.

1.5 Dissertation Outline

In this dissertation we present(p; d) transfer reaction measurements on two di�erent argon

isotopes, as well as the subsequent SF extraction. Chapter 2 introduces the relevant transfer

reaction theory and the methodology for extracting SFs from measured di�erential cross

sections. Chapter 3 details the experimental setup at the NSCL, with particular emphasis

on the three main radiation detector systems: the High Resolution Array (HiRA), the S800
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Spectrograph, and the Microchannel Plates (MCPs). In Chapter 4, we discuss calibration

and analysis procedures for each individual detector system. Then, in Chapter 5, we combine

data from these separate detectors, and further analyze them to produce di�erential cross

sections for the transfer reactions of interest. We then present the SF extraction from the

measured cross sections using transfer reaction calculations, in addition to the corresponding

reduction factors and asymmetry trend. We summarize this work and provide concluding

thoughts in Chapter 6.
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Chapter 2

Reaction Theory

I do not like it and I'm sorry I had

anything to do with it.

Erwin Schrödinger, on quantum

mechanics

Spectroscopic factors are not observable, and therefore must be extracted from exper-

imental data via comparison to reaction theory. This chapter motivates the basic mathe-

matical framework for calculating transfer reaction di�erential cross sections, along with the

relevant assumptions and commonly used potentials. The methodology used to extract SFs

presented in [26] and [36] will be followed.

2.1 Theoretical Framework

In the initial system of a nuclear reaction, an incoming nucleus (referred to as the projectile,

or the beam) moves towards a stationary target nucleus. Some sort of interaction between

the beam and the target occurs, resulting in a new system of reaction products. In atransfer

reaction, a nucleon or group of nucleons is transferred between the projectile and the target.

The primary concern of this thesis is a type of transfer reaction called neutron-pickup,

in which a neutron is transferred from the heavy target to the light proton beam1. For

1The distinction between beam and target is entirely dependent on reference frame. The reaction model
is motivated here assuming a proton beam, but in the experimental setup the proton acted as the target (see
Chapter 3).
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a neutron-pickup reaction on an argon isotope with mass numberA, the reaction can be

expressed as

AAr + p ! A� 1Ar + d

and can also be represented in the more convenient notationAAr(p; d)A� 1Ar.

The observable of interest is adi�erential cross section, given by d�
d
 (�; � ), which quan-

ti�es the likelihood that a particle will be detected coming out of the reaction system at

the solid angle elementd
 with angles � and � relative to the incoming beam axis. Due

to azimuthal symmetry, only � dependence is considered here. The general idea is to mea-

sure a di�erential cross section experimentally, calculate the di�erential cross section for the

same transfer reaction using a theoretical reaction model, and compare the experimental and

theoretical di�erential cross sections to extract the SF.

Calculating the di�erential cross section requires the appropriate mathematical infras-

tructure. We will �rst develop this framework in the context of two-body scattering: although

this is a simpler problem than the transfer reaction of interest, understanding it will be useful

in the subsequent description of transfer reaction formalism.

2.1.1 Scattering Theory

As previously mentioned, a fundamental principle of quantum mechanics is that particles

have wave-like properties, and in particular that a physical system can be described using a

wave function. This wave function is a complex-valued probability amplitude for properties

of the system like position and momentum. The Schrödinger equation describes the behavior
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Figure 2.1: An incoming plane wave interacts with a potential to produce outgoing spherical
waves. Figure from [77].

of a wave function:

�

T̂ + V
�

	 = E	

T̂ = �
�h2

2�
r 2

whereT̂ is the kinetic energy operator,V is the potential energy, and	 is the wave function.

In the de�nition of T̂ , �h is the reduced Planck constant,� is the reduced mass of the system,

and the Laplacian operator isr 2. E is the discrete energy value corresponding to the state

given by 	 .

A schematic of the scattering problem is shown in Figure 2.1: the incoming projectile

plane wave packet approaches the target along thez-axis, and after the interaction, an

outgoing spherical wave emerges (along the radiusR). Asymptotically, the wave function

can be written as

	 asym(R; � ) = eikz + f (� )
eikR

R
(2.1)
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where k is the wavenumber andf (� ) is the scattering amplitude, which is the probability

amplitude of the scattered wave at angle� relative to the incident beam. Via consideration

of the incoming and outgoing �ux (e.g. in [78]), it can be shown that the di�erential cross

section is the square of this amplitude, meaning that

d�
d


(� ) = jf (� )j2 (2.2)

The boundary conditions of scattering are such that at in�nite distance, the beam and the

target do not interact (V � 0). So, the wave-function	 is given by the free wave function

� where [E � T̂ ]� = 0. As the beam approaches the target, the wave function changes due

to the in�uence of V. The naive solution to the Schrödinger equation that satis�es these

boundary conditions is given by theLippmann-Schwinger equation:

	 = � + Ĝ+
0 V	 (2.3)

whereĜ+
0 is the Green's function operator given by

Ĝ+
0 =

1
E � T + i�

(2.4)

We use the fact that the free solution� can be given by a plane wave (which we choose to

be in the z direction), and then take the position representation of the Lippmann-Schwinger

Equation to get

	( ~R) =
D

~R
�
�
�	

E
= eikz +

D
~R

�
�
�Ĝ+

0 V	
E

= eikz +
Z

d~R 0G+
0 ( ~R; ~R 0)V( ~R 0)	( ~R 0)

(2.5)
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Using contour integration (e.g. in [79]), we can �nd the following expression for the Green's

function:

G+
0 ( ~R; ~R 0) = �

�
2� �h2

e
ik

�
�
� ~R� ~R 0

�
�
�

�
�
� ~R � ~R 0

�
�
�

(2.6)

Now we plug in Equation 2.6 into Equation 2.5 to get

	( ~R) = eikz �
�

2� �h2

Z
d~R 0e

ik
�
�
� ~R� ~R 0

�
�
�

�
�
� ~R � ~R 0

�
�
�

V( ~R 0)	( ~R 0) (2.7)

We are concerned with the asymptotic behavior of this wave function, so we letR =
�
�
� ~R

�
�
�

go to in�nity to evaluate
�
�
� ~R � ~R 0

�
�
� by ignoring R02 terms and then applying the binomial

approximation:

lim
R!1

�
�
� ~R � ~R 0

�
�
� =

q
( ~R � ~R 0)2 =

q

R2 + R02 � 2~R � ~R 0= R

vu
u
t 1 �

(2~R � ~R 0)
R2

� R

vu
u
t 1 � 2

R̂ � ~R 0

R
� R

�

1 �
R̂ � ~R 0

R

�

= R � R̂ � ~R 0

(2.8)

Similarly, we can also neglect~R 0 in the denominator of the Green's function expression.

Plugging into Equation 2.7 yields

lim
R!1

	( ~R) = eikz �
�

2� �h2
eikR

R

Z
d~R 0e� ik R̂� ~R 0

V( ~R 0)	( ~R 0) (2.9)

By comparing Equation 2.9 to Equation 2.1, we can see that the scattering amplitude

f (� ) can be related to the potentialV via

f (� ) /
Z

d~R 0e� ik R̂� ~R 0
V( ~R 0)	( ~R 0) = h� � jV j	 i (2.10)
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For convenience, we can de�ne the quantity on the right of Equation 2.10 as thetransition

matrix (T-matrix)

T = �
2�
�h2k

h� � jV j	 i (2.11)

where � � denotes the complex conjugate of the plane wave� . Using the T-matrix and

scattering amplitude, we now have a way to directly calculate the di�erential cross-section

for a given potential V .

2.1.2 The Distorted Wave Born Approximation

Let V be given by two separate components so thatV = U1 + U2, whereU1 is larger. Then

consider separately thefull case withV = U1 + U2, the free �eld case with no potential at

all, and the distorted case with the potential given by onlyU1. The associated Schrödinger

equations and wave functions are given by

[E � T̂ ]� = 0

[E � T̂ � U1]� = 0

[E � T̂ � U1 � U2]	 = 0

As discussed above, with no potential the wave function is simply given by� . The

Lippmann-Schwinger equations for the distorted and full case, respectively, are

� = � + Ĝ+
0 U1�

	 = � + Ĝ+
0 (U1 + U2)	

(2.12)

We would like to derive a T-matrix expression to understand the di�erence betweenU1

scattering and U1 + U2 scattering. Plugging in U1 + U2 to Equation 2.11 givesT (1+2) =
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� 2�
�h2k

R
[� (U1 + U2)	] dR, from which follows

�
�h2k
2�

T (1+2) =
Z �

� (U1 + U2)	 � (Ĝ+
0 U1� )(U1 + U2)	

�

dR

=
Z �

�U 1� + �U 2	
�

dR

= h� � jU1j� i + h� � jU2j	 i

(2.13)

which we can equivalently write as the two-potential formula:

T (1+2) = T (1) + T 2(1) (2.14)

where T 2(1) = � 2�
�h2k

h� � jU2j	 i refers to the T-matrix contribution from U2 coupling with

U1. Equation 2.14 shows that to calculate scattering due toU1 + U2, one can calculate the

e�ect of the dominant potential U1 and then the e�ect of U2 on top of U1 (which shows

up via the distorted wave-function � in T 2(1)). We can rewrite the Lippmann-Schwinger

equation for the full U1 + U2 case to re�ect this:

	 = � + Ĝ+
1 U2	 (2.15)

whereĜ+
1 = [ E � T � U1 + i� ]� 1.

Since	 is on both sides of Equation 2.15, we can iterate this implicit equation to yield

a Born seriesthat converges for a weak enoughU2:

	 = � + Ĝ+
1 U2[� + Ĝ+

1 U2[� + Ĝ+
1 U2[: : :]]] (2.16)

Now, we can plug Eq. 2.16 into Eq. 2.14 and truncate after the �rst term, resulting in the
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Figure 2.2: Coordinates for a single-neutron transfer reaction. Based on Figure 4.3 in [77].

distorted-wave Born approximation(DWBA) given by

T DWBA = T (1) �
2�
�h2k

h� � jU2j� i (2.17)

The DWBA treats U2 as a perturbation onU1. In the case of elastic scattering,U1 is the

long-range Coulomb interaction andU2 is a short-range nuclear interaction. Equation 2.17

is linear in U2, which can be interpreted as corresponding to a single reaction �step,� and is

therefore called the�rst-order DWBA. Some reactions call for two or more steps, in which

case more terms from Equation 2.16 are included in the truncation.

The above considerations on elastic scattering can be generalized to the three-body trans-

fer reaction system. Figure 2.2 shows the three-body system of interest for the reaction

A(p; d)B : a proton (p), a neutron (n), and a nucleusB, treated as a structure-less core.

A consists of the neutron in a bound state withB . We can write the Hamiltonian using

coordinates (de�ned in Fig. 2.2) chosen to represent the three-body system either before
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(the prior form) or after (post) the transfer occurs:

H = Hprior = TR pA
+ Ui (RpA) + HA (rnB ) + Vi

= Hpost = TR dB
+ Uf (RdB ) + Hd(rnp) + Vf

(2.18)

whereTR pA;R dB
are kinetic energies,Ui;f are the entrance and exit channel potentials,HA;d

are the internal Hamiltonians ofA and the deuteron, andVi;f are the interaction terms given

by

Vi = Vnp(rnp) + UpB (RpB ) � Ui (RpA)

Vf = VA (rnB ) + UpB (RpB ) � Uf (RdB )

(2.19)

The post and prior forms provide equivalent descriptions of the three-body system, so for

convenience we choose to work in the prior form. This has the advantage that in the in-

teraction term Vi , the optical potential betweenp and A is most likely very similar to the

optical potential between p and B, and thereforeUpB (RpB ) � Ui (RpA) � 0 (for all but

light targets). Therefore the interaction term is simply given by the relatively well-known

neutron-proton interaction term Vnp(rnp).

Equation 2.17 can apply to transfer reactions with a few minor modi�cations. First,

the distorting potential U1 is typically chosen to be a spherical potential that describes the

elastic scattering between projectile and target. Since no angular momentum is exchanged,

this potential cannot induce a nucleon transfer. This means that the T-matrix contribution

due to U1 (T (1) in Equation 2.17) is 0, simplifying the DWBA expression. Secondly, the

outgoing reaction products of a transfer reaction are by de�nition di�erent from the incoming

reactants. The entrance and exit channels are characterized by particular combinations of
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mass and quantum numbers. We express the T-matrix from an entrance channel� to an

exit channel � by

T DWBA
�� = �

2�
�h2k

D
� �

� � p� A

�
�
�Vnp

�
�
�� d� B � �

E
(2.20)

where � are the internal wave functions of the incoming and outgoing particles for the

A(p; d)B reaction.

2.1.3 The Adiabatic Distorted Wave Approximation

The DWBA framework as described above assumes that the outgoing deuteron from a(p; d)

reaction remains intact as it travels away from the target. In reality, the breakup energy

of the deuteron is quite low (2.224 MeV), so it will break apart easily in the �eld of the

target nucleus. This clearly has a substantial e�ect on the measured reaction cross-section.

Johnson and Soper modi�ed the DWBA in order to take deuteron breakup into account

[80] by making theAdiabatic Distorted Wave Approximation (ADWA): the internal motion

of the neutron and proton in the deuteron is slow compared to the motion of the deuteron

center of mass. Therefore, the full three-body wavefunction for then + p + target system

is only needed within the small range of the neutron-proton interactionVnp. In the limit of

a zero-range potential, the interaction between the deuteron and the target can be simply

modeled as a combination of target-nucleon interactions, where the nucleons equally share

the deuteron energy between them. The deuteron adiabatic potential is de�ned by

Ud( ~R) =
1

D0

Z �

Un( ~R +
1
2

~r) + Up( ~R �
1
2

~r)
�

Vnp(~r)� d(~r)d~r (2.21)
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whereUn and Up are the neutron and proton optical potentials at half the deuteron energy

[81], Vnp is the neutron-proton interaction potential, � d is the deuteron wave function,~R

is the coordinate of the deuteron center of mass, and~r is the relative coordinate between

the neutron and the proton [80]. D0 is the strength of the neutron-proton interaction. In

addition to the explicit treatment of deuteron breakup, another advantage to ADWA is that

it uses nucleon optical potentials, which are typically better constrained experimentally than

deuteron optical potentials (see Section 2.1.6 for further discussion of optical potentials).

This approximation is valid as long as the deuteron energy is much larger than the

binding energy of the deuteron. The �nite-range ADWA has been benchmarked against the

exact (and more di�cult to solve) three-body Faddeev calculations for simple systems, and

is within 10% agreement [82].

2.1.4 Local Energy Approximation

We have assumed, so far, that the neutron-proton interaction is zero-range. Given that

the real neutron-proton interaction has a �nite range, using the zero-range potential risks

overestimating the transfer contribution from the interior of the nucleus. For a small �nite-

range, we can apply a �rst-order correction to the zero-range strength called thelocal energy

approximation (LEA) [83]. The LEA instructs us to simply replace the zero-range strength

D0 with an e�ective zero-range strengthD = (1 + k2
b� 2)D0, wherekb is the deuteron wave

number and� is a parameter that de�nes the �nite-range e�ective radius.
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2.1.5 Nonlocality

All potentials discussed so far have depended only on the distance in between the two inter-

acting particles. Reality is far messier. A potential is considerednonlocal if it depends on

the value of the potential and scattering wave function at all points in space. Nonlocality

can play a signi�cant role in transfer reactions, due to momentum dependence and reaction

channels coupling to other degrees of freedom. Exact three-body calculations for light sys-

tems show that nonlocality sometimes (but not always) signi�cantly a�ects the di�erential

cross section [84].

There are two angles by which to approach the problem of nonlocality. One can either

explicitly calculate the nonlocal potential (which is di�cult), or adjust a local potential in

order to e�ectively approximate the behavior of the fully nonlocal one (which is much easier).

Historically, the latter approach has been more common.

For example, Perey and Buck [85] modeled nonlocality with a simple Gaussian adjustment

to the local potential, where the Gaussian parameters are �t to experimental data. Since the

Perey-Buck approach is easy to implement, it is a common method of including nonlocality

in transfer calculations. Of particular importance to this work is that Lee et al. used

Perey-Buck in calculating ADWA (p; d) cross sections on argon isotopes at 33 MeV/u [26,

55, 56]. More recent ADWA studies by the University of Surrey group suggest calculating

the local nucleon potentials with large and positive energy shifts (around 40 MeV) from the

standard prescription of using half the deuteron energy [65, 66]. This shift is meant to take

into account the large relative kinetic energy between the neutron and proton induced by

their short-range interaction in the deuteron while still using well-known local potentials. A

follow-up study suggested also including the deuteron D-wave, increasing the average energy
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shift to 70 MeV [86, 87].

In light of the popularity of these simpli�ed methods for treating nonlocality, some have

taken a more rigorous approach to identify potential problems. Several studies have pointed

out that cross sections calculated with Perey-Buck can di�er substantially from those calcu-

lated with more explicitly nonlocal theoretical models by 20% or more [88, 89, 90, 91, 92].

Another recent paper shows that Perey-Buck requires nontrivial energy dependence to ac-

curately describe elastic scattering across a wide energy range [93]. The more contemporary

energy shift method of Timofeyuk and Johnson has also faced criticism. When compared to

the explicit nonlocal formalism, the energy shift method does not reliably improve (quanti-

tatively or qualitatively) the pure local calculation [90].

This is a fascinating and active area of research. Since in reality these many-body systems

are inherently nonlocal, much of the theoretical work thus far has justi�ably focused on

probing the details of the underlying physics rather than developing a widely-applicable

experimental tool. At this point, there is no settled upon solution for how to include nonlocal

e�ects into single-nucleon transfer reactions, and the importance of nonlocality (as well as

how to properly account for it) varies from system to system. Deeper investigation into the

e�ects of nonlocality on the speci�c argon isotopes that we focus on here is beyond the scope

of this thesis. So, for the purpose of comparison to the low-energy transfer work of [55, 56],

we will use the standard Perey-Buck nonlocality.

2.1.6 Optical Potentials

Above, we outlined how to calculate the di�erential cross-section using quantities that de-

pend primarily on the potentials. As such, the choice for which potentials to use can have

a signi�cant impact on the calculated cross section. The real, many-body potentials are ex-
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tremely complicated and beyond the reach of current theoretical tools: the nucleon-nucleus

optical potential reduces this di�culty to scattering of a single particle on a complex one-

body potential. Optical potentials use e�ective imaginary components to remove �ux due to

reactions not included in the model, analogous to the imaginary potentials used to account

for absorption as light passes through a cloudy medium.

Ideally, an optical potential for a given nucleus-nucleus interaction can be �t directly to

elastic scattering data for that particular system and beam energy. Unfortunately such data

does not typically exist for rare isotope beams. Below, we describe global optical models and

microscopic optical models, the two most common approaches in the face of this obstacle.

2.1.6.1 Global Optical Potentials

A globaloptical model is a parameterized, simultaneous �t across many angular distributions

for a wide range of target nuclei with a given projectile. This global model can then be used

to interpolate (or even extrapolate) to the case of interest. The nucleon-nucleus global optical

potential is given by

U(r ) = � Vr f ws(r; RV ; aV ) � iW r f ws(r; RW ; aW ) + 4 iWsaw
d
dr

f ws(r; RW ; aW )

+2( Vso + iWso)
� 1

r
d
dr

f ws(r; R so; aso)L � �
�

+ VC

(2.22)

where f ws is the Woods-Saxon potential given byf ws(r; R; a) =
�

1 + e
r � R

a
� � 1

. V and W

refer to real and imaginary potentials, respectively. Potentials due to the interior volume

(given by subscript r ) as well as the exterior surface (s) are both included, as well as a

spin-orbit potential (so) and a Coulomb term (c) that treats the nucleus as a homogenous

sphere of charge.R is the nuclear radius parameter anda indicates the di�useness of the
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nuclear surface.L is the orbital angular momentum of the projectile relative to the target,

and � is the spin operator.

The global potential used in this work is the Chapel-Hill 89 (CH89) potential developed

by Varner, et al. [94]. CH89 is �t to nearly 300 proton and neutron di�erential cross sections

with A = 40 � 209 and E = 10 � 65 MeV, and has been shown to describe single-nucleon

transfer data better than other global models on the market [95, 26].

2.1.6.2 Microscopic Optical Potentials

In a microscopicoptical model, nucleon density distributions (known from electron scattering

experiments or nuclear structure calculations) are folded together via a convolution integral

to generate the optical potential. As opposed to the global optical model approach in which

data from a wide range of nuclei is �t, a microscopic optical model leverages nuclear structure

theory to generate a potential speci�c to a single nucleus given a particular nucleon-nucleon

interaction. Suppose a structureless projectile (e.g. a proton) is approaching a target with

many nucleons. If we know the interaction potential between the projectile and individual

nucleons in the target, we can estimate the overall potential via the following convolution

integral:

U(r ) =
Z

dr t VpN (r � r t )� t (r t ) (2.23)

where r is the position of the projectile relative to the target, r t is the internal position

coordinate over the target,VpN is the potential between the projectile and each nucleon of

the target, and � t is the target density.

The microscopic potential used in this work was developed by Jeukenne, Lejeune, and

Mahaux (JLM) [96, 97]. The JLM model uses Reid's hard core nucleon-nucleon interaction
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[98] in the many-body framework of the Brueckner-Hartree-Fock approximation. Reasonable

agreement between theoretical and empirical cross-sections [97, 99, 100, 101, 102] shows that

the JLM is valid for A = 12 � 208and energies up to 160 MeV.

As shown in Equation 2.23, nucleon densities are required as input to calculate the JLM

potential. In this case, these densities are taken from Hartree-Fock calculations with the SkX

parameter set [103] that accounts for a wide range of experimental observables [104, 105,

106]. When using the JLM potential, we adjust the radius parameterr0 to reproduce the

mean squared radius of the transferred neutron orbital obtained via Hartree-Fock calculation

[39].

2.1.6.3 Optical Potential Uncertainty

Earlier in this chapter, the theoretical di�erential cross section was connected directly to

the interactions in the three-body system. Di�erent potentials, therefore, yield di�erent

cross sections. This is problematic given that in most cases the relevant potentials are not

directly constrained to data from the system of interest, and are instead obtained from

a phenomenological �t (CH89) or from a microscopic calculation using nuclear densities

(JLM). In other words, there is ample room for theoretical error. As an example, Figure

2.3 shows the di�erential cross section for a transfer reaction calculated with CH89 (black)

and JLM (red). Although the shapes of the calculations match, the magnitude of the JLM

cross section is slightly higher due to larger neutron bound-state wave functions [26, 95,

39]. More recent work on uncertainty quanti�cation suggests that theoretical uncertainties

due to the optical potential are often underestimated [107]. The validity of the ADWA for

transfer reactions at high energies has even been called into question in the past [108, 109].

How can meaningful physics information be extracted using transfer reactions with so much
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Figure 2.3: Di�erential cross section calculations for46Ar( p; d)45Arg.s. with CH89 (black)
and JLM (red) optical potentials.

theoretical ambiguity?

Lee, Tsang, and Lynch directly addressed this problem by studying a wide range of di�er-

ential cross sections and extracting spectroscopic factors using a single systematic approach

[36, 26, 38, 39]. For a given individual cross section or spectroscopic factor, one can expect

the theoretical error to be quite large. However, within a consistent framework, the rela-

tive trends across a range of isotopes can provide insight that is often independent of the

choice in optical potential. This point is exempli�ed in Figure 2.4, which shows (in red)

the reduction factors of the previous argon transfer study calculated with both the CH89

and JLM potentials. The reduction factors di�er in magnitude, but the trend shown by the

CH89 reduction factors is the same as for the JLM: both choices of optical potential show

substantial disagreement with the knockout reaction results (in blue), and so in this sense

the large error bars for a speci�c SF are not of crucial importance.
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Figure 2.4: Spectroscopic factors extracted from transfer (red) and knockout (blue) data
along the argon isotopic chain. SFs extracted with two di�erent optical models are shown:
the JLM (solid) and the CH89 (open). Data taken from [55] and [52].
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2.2 Methodology

To extract spectroscopic factors, we will measure the di�erential cross section of(p; d) transfer

reactions in inverse kinematics, and then compare this experimental data with the theoreti-

cally calculated cross section. The ratio of the experimental cross section to the theoretical

cross section gives the spectroscopic factor.

The T-matrix amplitude expressed in Equation 2.20 can be expressed in terms of spec-

troscopic factors. First, the matrix element
D
� �

�
�
�Vnp

�
�
�� �

E
can be expanded using the nuclear

overlap integral that de�nes the SF:

h� A j� B i =
X

nljm
hJA jM AmjJB MB i

q
Snlj � nljm (2.24)

where hJA jM AmjJB MB i is a Clebsch-Gordan coe�cient, Snlj is the spectroscopic factor

(SF), and � nljm is the single-particle bound-state wave function for theA = B + n system.

Rearranging the integration variables and plugging Equation 2.24 into Equation 2.20 yields

T DWBA
�� /

X

nljm

q
Snlj

D
� �

� � nljm

�
�
�
D
� p

�
�
�Vnp

�
�
�� n

E�
�
�� � � �

E
(2.25)

Since the square of transition amplitude given by the T-matrix is proportional to the di�er-

ential cross section (as shown in Equations 2.10 and 2.11), Equation 2.25 gives us a direct

connection between SF and di�erential cross section. For a theoretical cross section, the

SF is typically assigned to its maximum value (1 or2j + 1 depending on normalization).

Therefore, the ratio of the experimentally measured cross section to the theoretical cross

section will equal the ratio of the experimental SF to the maximal SF. The shape of the

cross section is dominated by the angular momentum exchanged (which is known), so we
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can have con�dence that the shape of the theoretical cross section will match the shape of

the data.

2.2.1 The TWOFNR Reaction Code

Our approach follows the one prescribed by Lee, which is described in detail in [26]. The

(p; d) reaction calculations in this work were performed with the University of Surrey version

of TWOFNR, a direct reaction code for calculating DWBA with �nite-range [110].

All calculations were performed using the �nite-range ADWA described by Johnson and

Soper [80] using as input experimentally determined angular momenta and reaction Q-values.

Calculations were carried out over 30 fm integration ranges with 0.1 fm steps and 70 partial

waves. The bound-state wave function potential was a Woods-Saxon shape, in which the

depths of the central potential wells were adjusted to reproduce experimentally determined

Q-values. For the CH89 calculations, we used typical values for the radius (1.25 fm) and

di�useness (0.65 fm) parameters. For the JLM calculations, we followed the procedure

described in [39] to tune the radius parameter in order to reproduce the mean-squared

radius of the neutron orbital. In every case, we use the local energy approximation (with

� = 0:7457 fm) to account for �nite-range e�ects in the neutron-proton interaction. The

Reid soft-core3S1 � 3D1 neutron-proton interaction was chosen with the zero-range strength

D2
0 = 15006:25 MeV2 fm3 and the range� = 0:7457fm. Nonlocality corrections for both the

proton and deuteron channels were included, with ranges of 0.85 fm and 0.54 fm, respectively.

In this chapter we developed the theoretical machinery needed to extract spectroscopic

factors from transfer reaction data. Next, we will discuss the transfer reaction experiment

itself.
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Chapter 3

Experimental Methods

One must imagine Sisyphus happy.

Albert Camus

Measurements of the transfer reactions46Ar( p; d)45Ar and 34Ar( p; d)33Ar were performed

with a beam energy of 70 MeV/u at the National Superconducting Cyclotron Laboratory

(NSCL) at Michigan State University. This chapter discusses the experimental methods used

in this measurement. Section 3.1 describes the method of measurement and motivation for

the experimental design. Section 3.2 discusses the production of the rare isotope beams used

for this experiment. Sections 3.3, 3.4, and 3.5 include descriptions of the High Resolution

Array (HiRA), the S800 Spectrograph, and the Micro-Channel Plate Detectors (MCPs),

respectively. In Section 3.6, we discuss the precise position characterization of the setup.

3.1 Experimental Design

Transfer reactions have been a crucial tool to study nuclear structure for many decades. In

the 1950s, a typical transfer measurement consisted of an accelerated beam of light particles

(usually an isotope of hydrogen) impinging upon a �xed �target� composed of stable, heavy

isotopes [42]. These normal kinematic measurements require that the target isotope have a

relatively long half-life and that it can be easily produced in large quantities. Exotic isotopes

satisfy neither of these two criteria, and so we cannot study them using normal kinematics.
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Therefore, contemporary transfer reaction measurements are done ininverse kinematicsin

which the roles are reversed: an accelerated beam of heavy (usually radioactive) nuclei

impinges upon a much lighter target. In the center-of-mass frame of the system, inverse

kinematics is equivalent to the traditional normal kinematics. Inverse kinematics not only

opens up large swaths of the nuclear chart for study with transfer reactions, but also ensures

that all fragments originating from the incoming beam escape the target, due to their high

momenta.

Since the argon isotopes of interest in this work are unstable, we measured the trans-

fer reactions46Ar( p; d)45Ar and 34Ar( p; d)33Ar in inverse kinematics. The radioactive, 70

MeV/u argon beams were produced at the Coupled Cyclotron Facility (CCF) at the NSCL

as described in Section 3.2. This beam energy was chosen to match that of the corresponding

knockout measurement (see [59] and Chapter 1). For each reaction, a (CH2)n polyethylene

target provided the proton. Although this plastic target is not purely composed of protons,

the background from reactions on carbon is low and in fact can be measured (and then

subtracted) using a pure carbon target. Furthermore, polyethylene can be obtained easily at

a wide range of thicknesses and with good uniformity, in stark contrast to the considerable

technical challenges involved in using a liquid or gaseous pure hydrogen target.

Figure 3.1 shows a schematic of the experimental setup. The observable of interest in this

experiment is the di�erential cross section of the transfer reaction from which a spectroscopic

factor can be extracted, as discussed in Chapter 2. Measuring a cross section corresponding

to a particular reaction requires knowledge of both the outgoing �ux from that reaction (i.e.

the number of times that reaction occurs) as well as the incoming �ux into the target (i.e.

the number of incoming beam particles). The former quantity we measure using the High

Resolution Array (HiRA) for detecting the outgoing deuterons and the S800 Spectrograph for
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Figure 3.1: Cartoon of the experimental setup. The incoming beam (either34Ar or 46Ar) was
produced with the Coupled Cyclotron Facility (CCF) at the NSCL. A polyethylene target
was inserted into the beamline to measure (p; d) reactions on the incoming beam. Upstream
of the target, two Microchannel Plates (MCPs) were placed to normalize the cross-section
and also track the beam position on target. The outgoing heavy recoil from the transfer
reaction (either 33Ar or 45Ar) was detected and identi�ed in the S800 Spectrograph. The
outgoing deuteron was detected and identi�ed with the High Resolution Array (HiRA).

detecting the outgoing heavy argon recoils in coincidence. The latter quantity we determine

using Micro-Channel Plate detectors (MCPs), which measure the incoming beam particles

before they impinge upon the target. The MCPs also enable event-by-event beam tracking,

which provides a valuable boost to the angular resolution of the emitted particles detected

in HiRA. The MCPs and HiRA sat with the reaction target in a vacuum chamber at the

entrance of the S800. A gap was left in HiRA at very forward angles to allow the heavy

recoil and unreacted beam to pass through the array into the S800. Since both the deuteron

as well as the appropriate heavy recoil must be detected to reconstruct the transfer reaction

of interest, the key trigger condition of the data acquisition was a coincidence between HiRA

and the S800.
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Figure 3.2: Kinematic curves for46Ar( p; d)45Ar for di�erent excitation energies of the out-
going recoil45Ar. This energy-angle relationship of the emitted deuteron can be measured
with HiRA.

Due to the straightforward two-body kinematics of the outgoing transfer reaction prod-

ucts, the energy and angle of the deuteron uniquely determine the �nal state in the45Ar

recoil. For example, Figure 3.2 shows the calculated relationship between deuteron energy

and angle for46Ar( p; d) transfer into di�erent states of 45Ar. Clearly, di�erent �nal states of

the heavy recoil can be distinguished by measuring the emitted deuteron. By transforming

the deuteron energy from the laboratory frame to the center-of-mass frame, we can calculate

the excitation energy spectrum for the Ar recoil. We then use the number of counts in each

peak for a given angular range to calculate a di�erential cross section for a transfer reaction

into the corresponding state in the argon recoil.

Nuclear physics experiments like this one often feature multiple detectors and a high

quantity of data being generated from each of those detectors every second. Therefore, a

well-designeddata acquisition system(DAQ) is critical in order to properly coordinate and

record the data. The vast majority of this data is uninteresting, so ideally the DAQ will
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recognize in real-time what data is important, and what data is not worth recording. The

trigger condition determines when the DAQ does or does not record data. In this experiment,

the most crucial ingredient of the trigger was a coincidence between HiRA and the S800, as

discussed above, while the MCPs ran as slaves (i.e. signals from the MCPs would be recorded

when the trigger condition was satis�ed). An electronic pulser was included in the trigger

to properly track the dead time of the silicon detectors in HiRA (more details are provided

in Chapter 5). The DAQ also recorded downscaled counts from the HiRA and MCPs. A

CAEN V830 scaler continuously counted logic signals for a variety of electronics circuits.

Each of the detector electronics systems fed into the DAQ (written with the NSCLDAQ

software suite [111]) that managed and merged the data �ows. NSCLDAQ employs a ring

bu�er structure that allows for fast and �exible data transfer. The SpecTcl C++ framework

interfaced with the DAQ allowed for online monitoring of the data in real-time [112].

As described in Chapter 1, the vital information this work seeks to study is thecomparison

between two transfer reactions:46Ar( p; d) and 34Ar( p; d). Maximizing the validity of this

comparison requires making systematic uncertainties for these measurements as similar as

possible. Therefore, the most important principle of the experiment design is that it allows

each of these two reactions to be studied, one immediately after the other, with an identical

setup. The experimental systems detailed below have the necessary �exibility to achieve this

goal.

3.2 Beam Production

The NSCL's Coupled Cyclotron Facility (CCF) consists of two superconducting cyclotrons

that can accelerate a wide range of stableprimary beams[113, 114, 115] to semi-relativistic
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