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ABSTRACT

EFFECTIVE BETA–DECAY OPERATORS WITH COUPLED CLUSTER THEORY

By

Samuel John Novario

Coupled Cluster theory is a powerful ab initio framework for solving the many-body the

Schrödinger equation and has been utilized successfully to describe the highly-correlated

systems found in quantum chemistry and nuclear physics. This method uses a special sim-

ilarity transformation to decouple a system’s ground state from excitations from it. This

transformation contains significant correlations that can be used to extend coupled cluster

theory to excited states and open-shell systems with the equation-of-motions method. Ad-

ditionally, properties of these states can be obtained by consistently transforming relevant

operators using the coupled cluster similarity transformation. The coupled cluster method is

systematically improvable and scales polynomially with the system size. With this flexibility

and reach, coupled cluster theory can be applied across the nuclear chart to contribute to

many important open problems in physics.

Several fundamental questions in modern physics involve electroweak interactions within

nuclei, including the search for the elusive neutrinoless double-beta decay. Often the largest

uncertainty within these experiments is due to nuclear-structure-dependent quantities that

are calculated within some many-body framework. The main focus of this thesis is to ap-

ply the coupled cluster method to calculate effective Fermi and Gamow-Teller beta-decay

operators between open shell states. By confirming the validity of this method, it can be

extended to double-beta decay and other electroweak processes.
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Chapter 1

Introduction

Steady progress in any modern scientific endeavor requires a strong, dynamic relationship

between experimental data to paint an accurate picture of some natural phenomena and

theoretical models to interpret those phenomena with respect to the growing network of other

scientific models. Conversely, the predictive capability of theoretical models can highlight

blurry or unfinished areas of that picture which can be clarified or completed by new or

improved experimental techniques. In the pursuit to understand and describe the atomic

nucleus and the corresponding implications from quarks to neutron stars, this push-and-

pull coordination between theory and experiment makes progress in modern nuclear physics

robust and persistent.

An integral component of modern nuclear physics is describing the structure and emer-

gent properties of self-bound systems of protons and neutrons. The systems in questions can

be stable nuclei, rare isotopes far from stability, and even infinite nuclear matter which can be

used to model neutron stars. Relevant properties to nuclear structure include ground-state

energies–for determining nuclear masses, excited-state energies–for identification in gamma

or neutron spectroscopy, and transition or decay amplitudes–for calculating the respective

rates for those processes. This wide array of emergent properties inserts both nuclear struc-

ture theory and experiment into a prominent role within every other subfield of modern

nuclear physics, from lattice quantum chromodynamics (QCD) to nuclear astrophysics, and

beyond, to questions about fundamental symmetries and dark matter. However, two inex-

tricable characteristics of a comprehensive model of nuclear structure–the increasingly large
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size of many-body nuclear systems and the complexity and strength of the nucleon-nucleon

interactions–have been imposing hurdles for theorists to overcome.

1.1 A Brief History of Nuclear Structure Theory

A major step in the project to solve the correlation problem in many-fermion systems was

taken with the work of Brueckner, Bethe, and Goldstone [5, 6, 7] with the reformulation of the

nuclear interaction by accounting for two-body correlations from the nuclear medium. This

work continued with the work of Coester [8, 9] and Kummel [10], amongst many others, with

a further resummation of nuclear correlations in the form of an exponential ansatz into what

would become coupled-cluster (CC) theory. However, there were two major obstacles that

hindered the progress in this area for decades. First, while these methods were systematically

improvable by including progressively higher-level correlations, the highly nonperturbative

nature of the nuclear force required computationally infeasible summations. Second, there

wasn’t a reliable and consistent theory to model nucleon-nucleon interactions.

On the other hand, with the well-known and highly-perturbative Coulomb force, which

underlies the many-electron systems in atoms and molecules, the field of quantum chemistry

made consistent advances in ab-initio quantum chemistry possible since the 1950s. Along

with the quasi-exact method of configuration interaction (CI) theory [11, 12, 13, 14] which

have been utilized since the formulation of quantum mechanics, chemists successfully em-

ployed approximate methods like many-body perturbation theory (MBPT) [15, 16, 17, 18]

and coupled-cluster theory [19, 20, 21, 22, 18].

Fortunately, within the past decade, two breakthroughs have allowed ab initio nuclear

structure to resurface and thrive the way that quantum chemistry had done in the previous

decades. First was the invention of chiral effective field theory (EFT) [23, 24] which gave
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Figure 1.1: Nuclear chart of nuclei with ground-state energies which have been calculated
with ab-initio methods and NN+3N interactions. Figure taken from [1].

theorists the ability to construct nucleon-nucleon interactions consistent with the underlying

QCD of the strong nuclear force. Second was the application of renormalization group (RG)

methods to the nuclear force [25, 26]. This procedure can “soften” the NN interaction, to

decouple the high- and low-momentum components of the nuclear force and generate less-

correlated systems that can be calculated at a reasonable computational cost. These major

changes to nuclear structure theory made it possible to merge the field with the progress of

quantum chemistry and open a new area for additional developments in ab initio descriptions
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of many-fermion systems, see Fig. 1.1.

Along with exponential improvements to high-performance computing, these novel tech-

niques have allowed modern many-body methods to extend their reach and deepen their

applicability across the nuclear chart, see Fig. 1.2. The no-core shell model (NCSM), an

exact method for a given model space, has been useful in calculating the radii, transi-

tion strengths, and effective interactions of light nuclei and has been extended to nuclei

in the sd shell [27, 28, 29]. A quasi-exact technique which follows a completely different

methodology than NCSM, quantum Monte Carlo (QMC), has also progressed and is now

capable of calculating properties of light nuclei with modern chiral forces [30, 31, 32]. In

addition to these exponentially scaling techniques’ successes with lighter nuclei, polynomi-

ally scaling techniques–such as the in-medium similarity renormalization group (IMSRG)

[33, 34, 35, 36, 37, 38, 39, 40], self-consistent Green’s functions (SCGF) [41, 42, 43], and cou-

pled cluster theory [44, 45, 46, 47, 48, 49, 50, 51]–have been able to reach open-shell nuclei

through the pf shell and even up to the chain of even tin isotopes with equations-of-motion

and multi-reference techniques [52].

1.2 Electroweak Theory and Nuclear Structure

Nuclear structure is implicated in performing and analyzing experiments to probe funda-

mental symmetries and physics beyond the Standard Model. One example is determining

the Vud component of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which relates quark

eigenstates of the weak interaction to their mass eigenstates [53, 54]. This component can be

determined from by measuring the half-lives of superallowedbeta decays [55] and applying

a nucleus-dependent structure correction [56, 57, 58, 59, 60]. The value of |Vud| is used to

test the unitarity of the CKM matrix and the conserved-vector current hypothesis, which
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Figure 1.2: Progress of ab-initio nuclear structure from calculations of ground-state energies
with NN+3N interactions. Early progress was approximately linear as the problem size
scaled with Moore’s law while more recent progress has taken advantage of new algorithms
which have outpaced Moore’s law. Data taken from [1].

relates the ft-values of superallowed Fermi β decays of different nuclei, both predicted by

the standard model [61].

Another example of physics beyond the standard model is the neutrinoless double-beta

decay (0νββ) [62, 63]. The extremely-rare, two-neutrino double-beta decay (2νββ) has been

observed in many experiments [64, 65], which has motivated the search for its neutrinoless

counterpart, in which two Majorana neutrinos, being their own antiparticles, annihilate

one another, which is not possible in the standard electro-weak theory. The long half-lives

of these theoretical decays depend on a phase-space factor, which is highly dependent on

the decay Q-value, and a nuclear matrix element. The Q-value can be determined from

high-precision mass measurements of the relevant nuclei [66, 67, 68, 69], while the nuclear

matrix element, which contributes the largest source of uncertainty, must be calculated with
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a reliable many-body theory.

The weak interaction and nuclear structure can also be exploited for supernova neutrino

detection and spectroscopy. While these original detectors were based on electron-neutrino

scattering [70, 71], more recent experiments utilize correlated nucleon effects of large nuclei

to enhance the scattering cross section and therefore the ability to resolve energies and

distinguish neutrino flavors [72, 73, 74, 75]. Supernova models predict distinct distributions

for different neutrino flavors based on the temperatures at which they are emitted [76, 77].

With nuclear structure calculations that include sufficient nuclear correlations, these high-

resolution detectors can be used to verify specific models.

1.3 Ab-Initio Descriptions of Beta Decay

Since Enrico Fermi’s originally rejected paper describing beta decay in 1934 [78, 79], the-

orists have worked to refine this description within the ever-growing library of knowledge

concerning the nature of the weak force, the characteristics of the neutrino, and the structure

of nuclei. With the success of ab initio calculations for nuclear properties such as masses,

radii, and electromagnetic phenomena, these techniques also seem promising ways to calcu-

late relevant quantities involved in nuclear beta decay. Because the kinematics of the decay

and the underlying weak process are well understood, the remaining task for nuclear theory

to tackle is calculating the transition amplitudes between the initial and final nuclei.

Modern calculations of these beta-decay matrix elements were originally performed using

phenomenological interactions in the shell model framework [80, 81, 82, 83]. Also, predeces-

sors to current ab-initio techniques like the random-phase approximation (RPA) [84] included

core-correlation effects in these early descriptions. These methods were able to successfully

reproduce experimental lifetime data and address technical issues such as the quenching of
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the axial-vector coupling constant. More recently, the success of the shell model has inspired

an extension to the new method, known as the ab-initio shell model [29], where an effective

interaction is constructed within a certain valence space using a many-body method such as

CC [85] or IMSRG [86]. However, these techniques are computationally expensive and can-

not currently reach heavy nuclei of interest. The most common method used in their place

is known as the quasiparticle random-phase approximation (QRPA) [87, 88]. While these

calculations can be performed for heavy nuclei in large spaces, they also rely on phenomeno-

logical effective interactions. Therefore, there is a demand for computationally-economical,

ab initio techniques that can capture the relevant many-body correlations needed to accu-

rately describe the nuclear structure aspects of electro-weak processes.

1.4 Thesis Structure

The main goal of this work is to explore the ab initio description of nuclear beta decay within

the coupled-cluster theory framework of the equation-of-motion coupled cluster with singles

and doulbes (EOM-CCSD) method using renormalized chiral NN and 3N interactions. The

organization of the thesis builds from a general description of the many-body problem of

quantum mechanics in chapter 2. Then, in chapter 3, this many-body framework is applied

within the coupled-cluster theory and applied to various systems including, atomic nuclei. In

chapter 4, coupled-cluster theory is extended to the equation-of-motion method to describe

open-shell systems. Then, in chapter 5, different types of beta decay are described in detail

then outlines the procedure to express beta-decay observables as effective coupled-cluster op-

erators and how to calculate those observables in the equation-of-motion framework. Lastly,

conclusions and future perspectives are given in chapter 6 while technical details concerning

the formalism and implementation are given in the appendices A – D.
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Chapter 2

Many-Body Quantum Mechanics

Ab initio structure calculations of many-fermion systems such as those in nuclear and elec-

tronic structure aim to describe emergent phenomena from the constituent particles subject

to the underlying microscopic Hamiltonian. This amounts to finding the solution to the

many-body Schrödinger equation. However, a calculation of the exact solution needs to

account for all possible correlations among the particles and thus scales factorially. This mo-

tivates the need for approximations to the exact solution that account for the most important

correlations. This chapter first establishes the formalism necessary to define the many-body

problem then illustrates several successive approximations to its solution. Because the type

of fermions and the underlying Hamiltonian can be kept generic until specific systems are

considered, the formalism and many-body methods can be kept generic as well.

2.1 Independent-Particle Model

The nonrelativistic A-body quantum problem begins with the Schrödinger equation,

ĤΨν (r1, · · · , rA) = EνΨν (r1, · · · , rA) , (2.1)

for the correlated wave function Ψν (r1, · · · , rA) and the corresponding energy Eν . The

Hamiltonian can be written generically as a sum of k-body pieces which, in principle, can
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contain up to A-body interactions,

Ĥ = (1)Ĥ+ (2)Ĥ+ (3)Ĥ+ · · ·

=
A∑
i

(1)Ĥ(ri) +
A∑
i<j

(2)Ĥ
(
ri, rj

)
+

A∑
i<j<k

(3)Ĥ
(
ri, rj , rk

)
+ · · · . (2.2)

The one-body term can contain the kinetic energy operator, −~
2

2m ∇2
i , as well as any external

potential while the higher-order terms contain inter-particle interactions.

An intuitive way to formulate the solution to the many-body Schrödinger equation is to

express the collective wave function in terms of independent single-particle wave functions, or

orbitals φ (r). In this independent-particle model, a selection of single-particle wave functions,

known as the single-particle basis, are constructed by solving the Schrödinger equation for a

single particle in either a mean-field potential for bound systems or in free space for infinite

systems. Then a many-body wave function is constructed as a product of these single-

particle orbits. This simple model is justified because it becomes exact when inter-particle

interactions are completely suppressed and is useful because it provides an intuitive way to

interpret complicated many-body dynamics as processes involving few single-particle wave

functions.

A many-body wave function of fermions must be anti-symmetric with respect to particle

exchange so that the Pauli exclusion principle is followed, such that no single-particle wave

function is occupied by more than one fermion. This condition is satisfied by a wave function

in the form of a Slater determinant [89],

Φ (r1, · · · , rA) =
1√
A!

∣∣∣∣∣∣∣∣∣
φ1 (r1) φ1 (r2) · · · φ1 (rA)

φ2 (r1) φ2 (r2) · · · φ2 (rA)
...

...
. . .

...

φA (r1) φA (r2) · · · φA (rA)

∣∣∣∣∣∣∣∣∣ , (2.3)
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where A is the number of particles in the system and φp
(
rµ
)

is the p-th orbital filled with

the µ-th particle.

If the orbitals are constructed from an appropriate phenomenological potential, a Slater

determinant composed of the A lowest orbitals can represent a fairly good approximation

to the ground state for a closed-shell system, where the lowest-energy Slater determinant

can be uniquely determined. The set of all Slater determinants in a certain model space of

single-particle wave functions defines a complete A-body Hilbert space such that a generic

wave function can be written as a linear combination of Slater determinants,

Ψν (r1, · · · , rA) =
N∑
µ=1

C
µ
ν Φµ (r1, · · · , rA) , (2.4)

where C
µ
ν = 〈Ψ (r1, · · · , rA) |Φµν (r1, · · · , rA)〉. The number of Slater determinants N in an

A-body Hilbert space with N orbits is given by,

N =

(
N

A

)
=

N !

A!(N − A)!
, (2.5)

which shows the factorial scaling of the exact problem. However, to reduce the size of the

problem, progressively more significant Slater determinants can be chosen to systematically

refine approximations to the full solution.

2.2 Second Quantization

Even with the simplification of the independent-particle model, the many-body Schrödinger

equation is an unwieldy and complex system of coupled differential equations. A useful

reformulation of this equation is to promote the single-particle orbits to operators in a step
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known as second quantization (see e.g., [18, 90]). In this framework, a Slater determinant is

represented by a string of occupied orbitals,

Φ (r1, · · · , rA) ≡ A
(
φp1 φp2 φp3 · · ·φpN

)
≡ |p1 p2 p3 · · · pN 〉, (2.6)

where A represents a permutation and normalization operator to correspond with Eq. (2.3).

These second-quantized Slater determinants can be constructed with the use of operators

that correspond to specific orbitals. A creation operator, â
†
p, places a particle in the p orbital,

and an annihilation operator, âp, removes a particle from the p orbital,

â
†
p |0〉 = |p〉 âp |p〉 = |0〉, (2.7)

where |0〉 represents the true vacuum, a state void of any particles. Because there must

be a correspondence between the original first quantization and second quantization, these

creation an annihilation operators obey the following anticommutation relations ([Â, B̂]+ =

ÂB̂ + B̂Â),

[â
†
p, âq]+ = δpq [â

†
p, â
†
q]+ = [âp, âq]+ = 0, (2.8)

which guarantee that wave functions comprised of these operators obey antisymmetry and

the Pauli exclusion principle required of fermionic systems.

The Hamiltonian in the form of Eq. (2.2) can be written with second-quantized operators

as,

Ĥ =
∑
pq

(1)H
p
q â
†
p âq +

1

4

∑
pqrs

(2)H
pq
rs â

†
p â
†
q âs âr +

1

36

∑
pqrstu

(3)H
pqr
stu â

†
p â
†
q â
†
r âu ât âs + · · · , (2.9)

where the prefactors account for the double counting of particle-particle interactions, and
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the matrix elements represent integrals over the relevant single-particle wave functions,

(1)H
p
q ≡

∫
dr1 φ

∗
p (r1) (1)Ĥ(r1)φq (r1)

(2)H
pq
rs ≡

∫
dr1dr2 φ

∗
p (r1)φ∗q (r2) (2)Ĥ(r1, r2) [φr (r1)φs (r2)− φs (r1)φr (r2)]

... (2.10)

Matrix elements involving two or more particles include exchange terms which guarantee

that they are also antisymmetric,

(2)H
pq
rs = −(2)H

qp
rs = −(2)H

pq
sr = (2)H

qp
sr

(3)H
pqr
stu = −(3)H

qpr
stu = −(3)H

pqr
tsu = (3)H

qpr
tsu = · · · (2.11)

These definitions apply regardless of the form of the Hamiltonian, and thus this formalism

remains generic to the particular system. Second quantization is a crucial step in simpli-

fying the many-body Schrödinger equation because it reduces the complexity of the spatial

and spin degrees of freedom within the single-particle wave functions and interactions into

precomputed matrix elements. The remaining effort is reduced to algebraic expressions in-

volving creation and annihilation operators.

2.3 Normal Ordering

It’s convenient to define an A-particle reference state, where states are filled from the true

vacuum up to a closed shell, known as the Fermi level. This reference state must be uniquely

determined from the number of particles in the system and therefore nondegenerate with
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|Φ0〉 =

E F

Figure 2.1: A depiction of the closed-shell reference state in the independent particle model.
Each horizontal line represents a shell of single-particle orbits, represented by circles, and the
dotted line represents the Fermi level which separates the unoccupied particle states from
the occupied hole states.

other Slater determinants,

|Φ0〉 =


A∏
i

â
†
i

 |0〉. (2.12)

This reference determinant defines a new Fermi vacuum. States above the Fermi vacuum are

called particle states and will be denoted with the indices a, b, c, d... while states below the

Fermi vacuum are called hole states and will be denoted with the indices i, j, k, l.... Generic

states above or below the Fermi vacuum will be denoted with the indices p, q, r, s....

Any other Slater determinant can be constructed relative to this reference state by adding

particles and/or removing holes. A Slater determinant with A particles added and B holes

removed from reference state is known as a Ap -Bh excitation. A 1p -1h state is constructed

by removing a particle in the occupied state i and adding a particle in the unoccupied state

a,

|Φai 〉 ≡ â
†
a âi |Φ〉. (2.13)

Equivalently, a 2p -2h state is constructed by removing particles in states i and j then adding

them to states b and a,

|Φabij 〉 ≡ â
†
a â
†
b âj âi |Φ〉. (2.14)

13



|Φai 〉 =

E F

|Φabij 〉 =

E F

|Φa〉 =

E F

|Φi〉 =

E F

Figure 2.2: A depiction of 1p -1h, 2p -2h, 1p -0h, and 0p -1h Slater determinants defined
relative to the reference state in the independent particle model.

The number of creation and annihilation operators doesn’t neccessarily have to be equal. For

instance, a single particle can be added on top of the reference state with a single creation

operator,

|Φa〉 ≡ â
†
a |Φ〉, (2.15)

and a particle can be removed with a single annihilation operator,

|Φi〉 ≡ âi |Φ〉. (2.16)

Using these definitions, hole-creation and particle-annihilation operators vanish when act-

ing on the Fermi vacuum from the left, â
†
i |Φ0〉 = âa |Φ0〉 = 0. Conversely, hole-annihilation

and particle-creation operators vanish when acting on the Fermi vacuum from the right,

〈Φ0| âi = 〈Φ0| â†a = 0.

These results can be exploited to simplify expressions involving strings of creation and

annihilation operators by a procedure called normal ordering with respect to the Fermi

vacuum. Denoted by {· · · }, normal ordering permutes a string of creation and annihilation
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operators so that hole-annihilation and particle-creation operators are to the left of hole-

creation and particle-annihilation operators, which guarantees that normal ordered operators

vanish on the Fermi vacuum, 〈Φ0| {· · · } = 0 and {· · · } |Φ0〉 = 0.

{
â
†
j · · · âi · · · âb · · · â

†
a

}
= (−1)σ âi · · · â

†
a · · · â†j · · · âb, (2.17)

where σ is the number of two-state permutations required to do the normal ordering.

2.4 Wick’s Theorem

At this point, the many-body problem has been reduced to computing long strings of creation

and annihilation operators between the normal-ordered Hamiltonian and the correlated wave

function using Eq. (2.8). Instead of using a brute-force approach by permuting over and over,

a further simplification known as Wick’s theorem [91] can be introduced. A Wick contraction

of two operators with respect to the reference state is defined as

ÂB̂ = ÂB̂ −
{
ÂB̂
}
. (2.18)

Which, given the definition in Eq. (2.17) and the anticommutation relations int Eq. (2.8),

means that the only nonzero contractions are of the form,

â
†
i âj = δij and âaâ

†
b = δab. (2.19)

Because contracted operators simply represent a Kronecker delta, they can be removed from

a normal ordered product by permuting the product σ times so that the contracted operators
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are next to each other,

{Â · · · B̂ · · · Ĉ · · · D̂} = (−1)σ{Â · · · B̂Ĉ · · · D̂} = (−1)σB̂Ĉ{Â · · · D̂}. (2.20)

These different definitions for operator manipulation come together to define the time-

independent Wick’s theorem, which reformulates a product of operators as the sum of its

normal-ordered form and all possible contractions of its normal-ordered form,

ÂB̂Ĉ · · · =
{
ÂB̂Ĉ · · ·

}
+
∑
one-

contractions

{ÂB̂Ĉ · · · } +
∑
two-

contractions

{ÂB̂Ĉ · · · } + · · · +
∑
all-

contractions

{ÂB̂Ĉ · · · }.

(2.21)

Wick’s theorem is incredibly useful in many-body techniques because complicated ex-

pressions of operators can be expressed as diagrams that are easy to compute with simple

diagrammatic rules which correspond to Eqs. (2.8),(2.19), and (2.20). These diagrammatic

techniques are an integral component to deriving expressions used in this work, and their

underlying rules are extensively discussed in [18].

A powerful application of Wick’s theorem is to rewrite the Hamiltonian in Eq. (2.2) as a

sum of normal-ordered operators in the form of Eq. (2.21),

Ĥ = E0 +
∑
pq

f
p
q

{
â
†
p âq

}
+

1

4

∑
pqrs

V
pq
rs

{
â
†
p â
†
q âs âr

}
+

1

36

∑
pqrstu

W
pqr
stu

{
â
†
p â
†
q â
†
r âu ât âs

}
+ · · · .

(2.22)

This form of the Hamiltonian can be split into a zero-body component E0, known as the

reference energy, and the remaining normal-ordered Hamiltonian, ĤN,

ĤN =
∑
pq

f
p
q

{
â
†
p âq

}
+

1

4

∑
pqrs

V
pq
rs

{
â
†
p â
†
q âs âr

}
+

1

36

∑
pqrstu

W
pqr
stu

{
â
†
p â
†
q â
†
r âu ât âs

}
+ · · · .

(2.23)
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The reference energy, E0, contains fully-contracted terms, and because the Hamilto-

nian operators are ordered so that the creation operators appear before the annihilations

operators, only terms that contract hole states in the form {· · · â†i · · · âj · · · } are nonzero.

Therefore, the zero-body component of the normal ordered Hamiltonian can be written as a

sums over all hole states for each component of the original Hamiltonian,

E0 =
∑
i

(1)Hi
i +

1

2

∑
ij

(2)H
ij
ij +

1

6

∑
ijk

(3)H
ijk
ijk · · · . (2.24)

In a compact diagrammatic form, this sum can be drawn as the sum of connected vertices

( , , etc...) corresponding to the components of the original Hamiltonian in

Eq. (2.2),

E0 =
i

+
i j

+
i j k

+ · · · . (2.25)

The number of lines connected to each vertex defines its type such that the single vertex

corresponds to the one-body Hamiltonian, the double vertex corresponds to the two-body

Hamiltonian, etc... The looped lines represent a sum over all hole states. The reference

energy is also equivalent to the Hamiltonian expectation value for the reference state,

E0 = 〈Φ0|Ĥ|Φ0〉. (2.26)

The second component of the normal-ordered Hamiltonian, f
p
q

{
â
†
p âq

}
, contains terms

that have all operators contracted except for one pair. Like the fully-contracted term, these
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contractions must involve only hole states,

f
p
q = (1)H

p
q +

∑
i

(2)H
pi
qi +

1

2

∑
ij

(3)H
pij
qij + · · · . (2.27)

In diagrammatic notation, the uncontracted pair of operators is represented as two external

lines connected to each vertex which, because they are generic states, are drawn as unoriented

lines,

p

q

=

p

q

+

p

q

i

+

p

q

i j

+ · · · . (2.28)

When a line represents a particle state, it will contain an arrow directed upwards while a

line representing a hole state will contain an arrow directed downwards.

The two-body term, V
pq
rs

{
â
†
p â
†
q âs âr

}
, follows in the same manner such that it represents

all terms of the original Hamiltonian with all but two pairs of operators contracted. Like the

zero-body and one-body terms, the two-body term contains the original two-body term (2)Ĥ

as well as density-dependent terms that sum over hole states in higher-body Hamiltonian

terms, leaving four external lines for each diagram vertex,

V
pq
rs = (2)H

pq
rs +

∑
i

(3)H
pqi
rsi + · · ·

p q

r s

=

p q

r s

+

p q

r s

i

+ · · · . (2.29)

Three- and four-body normal-ordered terms can also be calculated by following the same
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procedure, but in practice are truncated at the two- or three-body level. Because normal

ordering the Hamiltonian has the effect of shuffling higher-order interactions into lower-order

terms, it becomes feasible to include computationally expensive many-body interactions as

normal-ordered few-body interactions. Also, it reorganizes many-body correlations into the

reference state so that additional correlations around the Fermi surface can be treated as a

perturbation. Therefore, from this point forward, the many-body problem will be formulated

in terms of the normal-ordered terms in Eq. (2.22), and the bare interactions will be truncated

beyond the three-body level for computational feasibility. Electronic systems are naturally

truncated at the level of the two-body Coulomb interaction, while nuclear systems can be

successfully described with the two-body normal-ordered piece of the three-body force, in

the form of Eq. (2.29).

With this new partition, the many-body Schrödinger equation for the ground state |Ψ〉

can be written in terms of the normal-ordered Hamiltonian as,

Ĥ|Ψ〉 = (E0 + ĤN)|Ψ〉 = E |Ψ〉

−→ ĤN |Ψ〉 = (E − E0) |Ψ〉 = ∆E |Ψ〉, (2.30)

where ∆E is known as the correlation energy.

Now that the many-body quantum problem has been formulated, different approaches to

solving that problem can be proposed and analyzed. Because taking account of correlations

from all particles simultaneously is a demanding–and for some systems, computationally

impossible–endeavor, methods for solving the many-body Schrödinger equation should be

systematically improvable. Successful methods with this quality incorporate the most dom-

inant correlations in lower-order solutions and approach the exact solution when more and
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more orders are included.

2.5 Hartree–Fock Method

A successful, first-order approximation to any many-body method comes from noticing that

each individual particle feels a mean-field potential from the cumulative interactions with all

the other particles. The Hartree-Fock (HF) method [92, 93] aims to transform the original

single-particle basis to a Hartree-Fock basis where each orbital is the eigenfunction of its

corresponding mean-field. Because the transformation of a single orbital changes its effect on

every other particle, this process must be performed iteratively until self-consistency between

all the orbitals is reached, which is why this method is also known as the Self-Consistent

Field (SCF) method.

This mean-field picture results from the following procedure. It begins by minimizing the

reference energy with respect to the reference state. This functional is just the zero-body

piece of the normal-ordered Hamiltonian,

EHF [Φ0] = 〈Φ0|Ĥ|Φ0〉 =
∑
i

(1)Hi
i +

1

2

∑
ij

(2)H
ij
ij +

1

6

∑
ijk

(3)H
ijk
ijk . (2.31)

Transforming the reference determinant can be accomplished by rotating the state within the

single-particle basis by use of the Thouless theorem [94], which states that any Slater deter-

minant can be written as the product of any other Slater determinant and an exponentiated

single-excitation operator,

|Φ′〉 = eĈ1 |Φ0〉, where Ĉ1 =
∑
ai

Cai

{
â
†
a âi

}
. (2.32)

20



If the difference between the two Slater determinants is dominated by single excitations, this

transformation can be approximated by expanding the exponential and ignoring higher-order

terms,

|Φ′〉 '
(

1 +
∑
ai

Cai

{
â
†
a âi

})
|Φ0〉. (2.33)

The reference energy functional can now be written as a sum of the original reference

state and new terms that incorporate the single-excitation variation,

EHF
[
Φ′
]

= 〈Φ′|Ĥ|Φ′〉 ' EHF [Φ0] +
∑
ai

Cai 〈Φ0|Ĥ|Φai 〉+
∑
ai

Ca∗i 〈Φai |Ĥ|Φ0〉. (2.34)

The minimum of this functional is found by differentiating the expression with respect to

the coefficients Cai and setting the result to zero,

δEHF
[
Φ′
]
'
∑
ai

δCai 〈Φ0|Ĥ|Φai 〉+
∑
ai

δCa∗i 〈Φai |Ĥ|Φ0〉 = 0. (2.35)

Because this expression is Hermitian, both terms must vanish independently so that,

〈Φ0|Ĥ|Φai 〉 = 〈Φai |Ĥ|Φ0〉 = 0. (2.36)

This condition is the result of the Brillouin theorem [95], which states that the Hamiltonian

matrix element must vanish between an optimized Hartree-Fock ground state and any single

excitation from it. The Brillouin condition is satisfied by diagonalizing the one-body piece

of the normal-ordered Hamiltonian f
p
q (Eq. (2.27)), known as the Fock operator, such that

off-diagonal pieces like 〈Φ0|Ĥ|Φai 〉 = f ia and 〈Φai |Ĥ|Φ0〉 = fai vanish. Diagonalizing the Fock
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operator can be written schematically as,

ε
p
qδpq ←− (1)H

p
q +

∑
i

(2)H
pi
qi +

1

2

∑
ij

(3)H
pij
qij

p

q

←−
p

q

+

p

q

i

+

p

q

i j

, (2.37)

where ε
p
q is the eigenvalue of the Fock operator, and its diagrammatic form vanishes when

the external indices differ.

A practical way of solving this system of equations is to express each new orbital in

the unknown Hatree-Fock basis, |p′〉 ≡ φp′ (r), denoted with primed labels, as a linear

combination of the known single-particle basis states, |p〉 ≡ φp (r), denoted without primed

labels. These two bases are related by a unitary transformation C
p
p′ ≡ 〈p|p

′〉,

|p′〉 =
∑
p

〈p|p′〉|p〉 =
∑
p

C
p
p′ |p〉. (2.38)

Then the Fock matrix can be written in terms of the Hartree-Fock basis,

f
p′
q′ = (1)H

p′
q′ +

∑
i′

(2)H
p′i′
q′i′ +

1

2

∑
i′j′

(3)H
p′i′j′
q′i′j′

=
∑
pq

C
p′∗
p

(1)H
p
qC

q
q′ +

∑
i′
prqs

C
p′∗
p Ci

′∗
r

(2)H
pr
qsC

q
q′C

s
i′ +

1

2

∑
i′j′

prsqtu

C
p′∗
p Ci

′∗
r C

j′∗
s

(3)H
prs
qtuC

q
q′C

t
i′C

u
j′ .

(2.39)

Defining the first-order density matrix γ
p
q as the product of expansion coefficients, summed
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over all shared hole states,

γ
p
q =

∑
i′
C
p
i′C

i′∗
q , (2.40)

Eq. (2.38) is simplified to,

f
p′
q′ =

∑
pq

C
p′∗
p

[
(1)H

p
q +

∑
rs

γrs
(2)H

pr
qs +

1

2

∑
rstu

γrt γ
s
u

(3)H
prs
qtu

]
C
q
q′ −→ ε

p′
q′δp′q′ . (2.41)

Therefore, the Hartree-Fock equations are ultimately expressed as an eigenvalue problem

according to Eq. (2.5) where the matrix to diagonalize is the Fock matrix in the form,

F̂
p
q

(
Ĉ
)

= (1)H
p
q +

∑
rs

γsr
(2)H

pr
qs +

1

2

∑
rstu

γtrγ
u
s

(3)H
prs
qtu , (2.42)

and the matrix of coefficients, Ĉ = C
p
p′ , is the unitary operator that transforms the matrix

to a diagonal form, ∑
pq

C
p′∗
p F

p
q

(
Ĉ
)
C
q
q′ = ε

p′
q′δp′q′ (2.43)

The iterative nature of the solution comes from the dependence of the Fock matrix on the

transformation coefficients. These Hartree-Fock equations are solved numerically by using

an iterative algorithm where the Fock matrix is built using a known set of coefficients and

diagonalized to obtain an updated set of coefficients. This process is repeated until the

unitary set of coefficients is unchanged within a certain tolerance. For most calculations,

using the identity matrix as an initial guess for the coefficients is sufficient. To improve

the rate of convergence, techniques such as the direct inversion of the iterative subspace

(DIIS) [96, 97] or Broyden’s method [98] can be implemented. And, to avoid any oscillatory

behavior around the solution, techniques such as the level-shifting method or ad hoc linear

mixing can be implemented to dampen the large changes between iterations.
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To make use of the HF solution as the reference state for post-HF calculations, the

Hamiltonian matrix elements must be transformed to the new basis and the normal-ordered

pieces redefined to account for the additional reordering of one-particle correlations into the

HF energy. The one-body piece from Eq. (2.27) is simply the resulting eigenvalues of the

diagonalized Fock matrix,

f
p′
q′ = ε

p′
q′δp′q′ . (2.44)

For the two-body term, Eq. (2.29), first the density-dependent component of the three-body

interaction is written with the first-order density matrix. Then the remaining states are

transformed according to Eq. (2.38),

V
p′q′
r′s′ =

∑
pqrs

C
p′∗
p C

q′∗
q

(
(2)H

pq
rs + (3)H

pqt
rsuγ

u
t

)
Cr
r′C

s
s′ . (2.45)

The reference energy from Eqns. (2.24) and (2.26) can be written in terms of the transformed

one- and two-body Hamiltonian, Eqns. (2.27) and (2.29), and the original three-body term

using first-order density matrices,

E0 =
∑
i′
εi
′
i′ −

1

2

∑
i′j′

V
i′j′
i′j′ +

1

6

∑
pqrstu

(3)H
pqr
stu γ

s
pγ
t
qγ
r
u. (2.46)

Additionally, any operators that are constructed in the original basis must be transformed

in a similar manner. For example, a one-body operator Ô in the Hartree-Fock basis is,

Ô =
∑
p′q′

O
p′
q′
{
â
†
p′ âq′

}
=
∑
p′q′pq

C
p′∗
p O

p
qC

q
q′
{
â
†
p′ âq′

}

−→ O
p′
q′ =

∑
pq

C
p′∗
p O

p
qC

q
q′ . (2.47)
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Because the Hartree-Fock basis is diagonal in the one-body piece of the Hamiltonian,

any terms that include off-diagonal elements automatically vanish, greatly simplifying any

post-Hartree-Fock methods. From this point on, all calculations will use the Hartree-Fock

basis unless stated otherwise, and prime symbols will be omitted.

2.6 Configuration-Interaction

The most generic way to write a correlated wave function in a given basis is as a linear

combination of all possible Slater determinants. This expansion can, in principle, consist of

the 0p -0h reference state and all possible Np -Nh excitations up to Ap -Ah excitations,

|Ψν〉 =
N∑
νi

Cνi |Φνi〉 = C0 |Φ0〉+
A∑

N=1

(
1

N !

)2 ∑
a1...aN
i1...iN

C
a1...aN
i1...iN

|Φa1...aN
i1...iN

〉. (2.48)

Using this form of the wave function in Eq. (2.48), the normal-ordered Schrödinger equation

can be reformulated as a standard matrix eigenvalue problem,

ĤN |Ψν〉 = ∆Eν |Ψν〉 −→ 〈Ψµ|ĤN |Ψν〉 = ∆Eν〈Ψµ|Ψν〉

=
∑
µiνi

C∗µi〈Φµi |ĤN |Φνi〉Cνi = ∆Eν
∑
µiνi

C∗µiCνiδµiνi

−→ CT
µ

(
〈Φµi |ĤN |Φνi〉 −∆EνI

)
Cν = 0. (2.49)

In this case, the matrix elements are Hamiltonian terms that connect two Slater determi-

nants, and the eigenvectors are the ground and excited states in the form of Eq. (2.48).

The matrix elements can be found with the help of the Slater-Condon rules [89, 99] which,

because the Hamiltonian is restricted to one- and two-body terms, require that any terms
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connecting Slater determinants which differ by more than two single-particle states vanish.

Also, because the one-body Hamiltonian is diagonal in the Hartree-Fock basis, it only con-

tributes to diagonal elements of the CI matrix. Some examples of these matrix elements

are,

〈Φai |Ĥ|Φai 〉 = εa − εi − Viaia,

〈Φabij |Ĥ|Φcdij 〉 = Vabcd,

〈Φabcijk |Ĥ|Φabdijl 〉 = −Vlckd. (2.50)

Because the configuration-interaction method exhaustively captures all the correlations

of a many-body system, it is considered an “exact” method within a certain model space and

becomes truly exact as the number of single-particle states is increased to infinity. However,

there is a price to pay for this exactness. The number of Slater determinants in a certain

model space, N , scales factorially according to Eq. (2.5) and the configuration-interaction

matrix scales as N 2. For sufficiently-sized model spaces, the memory required for this matrix

quickly becomes unmanagable even for the largest supercomputers, see Fig. 2.3.

However, for a reference state that is a good approximation to the true ground state,

few-body excitations generally dominate the wave functions for low-lying states [100]. This

can be exploited by truncating the expansion in Eq. (2.48). Owing to the two-body nature

of the interaction, the lowest appropriate truncation is also at the two-body level, known as

configuration interaction with singles and doubles (CISD),

|Ψν〉 = C0 |Φ0〉+
∑
ai

Cai |Φai 〉+
1

4

∑
abij

Cabij |Φabij 〉. (2.51)

This is a very straightforward and tractable way to approximate the many-body Schrödinger
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Figure 2.3: Scaling of the matrix size and number of non-zero matrix elements for nuclear CI
calculations of light nuclei. Even for modestly-sized model spaces, the memory requirements
approach the limit of petascale supercomputers (∼ 1010). Figure taken from [2].

equation, and it can be systematically improved by adding more excitations such as triples

(CISDT) or triples and quadruples (CISDTQ). But the drawback to this simplicity is that

any truncated CI method is not size-extensive such that any extensive property of a system,

like the energy, would scale with the size of the system. A desirable many-body method

will be both systematically improvable and size-extensive while maintaining computational

feasibility.

2.7 Many-Body Perturbation Theory

One many-body method that is both size-extensive and systematically improvable treats

particle-particle interactions as a perturbation to the mean-field potential and is known as

many-body perturbation theory (MBPT) [101, 15, 16, 18]. The Hamiltonian is partitioned
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into a diagonal piece and the interaction piece,

Ĥ = Ĥ0 + V̂ , with

Ĥ0 = E0 +
∑
p

f
p
p

{
â
†
p âp

}
and

V̂ =
1

4

∑
pqrs

V
pq
rs

{
â
†
p â
†
q âs âr

}
. (2.52)

When not in the Hartree-Fock basis, the interaction piece has the additional off-diagonal

Fock term,
∑
p6=q f

p
q

{
â
†
p âq

}
. This means that the reference state is an eigenstate of the

zero-order piece of the Hamiltonian,

Ĥ0 |Φ0〉 =

(
E0 +

∑
i

f ii

{
â
†
i âi

})
|Φ0〉 =

(
E0 +

∑
i

εi

)
|Φ0〉 = E

(0)
0 |Φ0〉. (2.53)

Using intermediate normalization, which sets 〈Φ0|Ψ〉 = 1, the Schrödinger equation, Eq.

(2.1) for the ground state becomes,

〈Φ0| (Ĥ0 + V̂ ) |Ψ〉 = 〈Φ0|Ĥ0 |Ψ〉+ 〈Φ0|V̂ |Ψ〉 = E〈Φ|Ψ〉

= E(0)〈Φ|Ψ〉+ 〈Φ0|V̂ |Ψ〉 = E(0) + ∆E0 = E, (2.54)

where the energy difference is ∆E0 ≡ 〈Φ0|V̂ |Ψ〉.

Next, the projection operators P̂ and Q̂ can be introduced,

P̂ = |Φ0〉〈Φ0| , (2.55)

Q̂ =
∑
n 6=0

|Φn〉〈Φn| = 1− |Φ0〉〈Φ0| . (2.56)

The P̂ operator isolates the reference-state component of any Slater determinant while the
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Q̂ operator isolates all components except the reference-state component out of any Slater

determinant. Both these operators are idempotent, which means that P̂ 2 = P̂ and Q̂2 = Q̂,

and because of intermediate normalization, the correlated wave function can be written as

|Ψ〉 = (P̂ + Q̂)|Ψ〉 = |Φ〉 + Q̂|Ψ〉. Also, both operators commute with the unperturbed

part of the Hamiltonian, Ĥ0P̂ = P̂ Ĥ0 and Ĥ0Q̂ = Q̂Ĥ0. These identities can be applied

to an alternate version of the Schrödinger equation which defines a particular version of

perturbation theory known as Raleigh-Schrödinger perturbation theory (RSPT) [102, 103].

In this version, the zeroth-order energy E(0) is added to both sides of the Schrödinger

equation. Acting with Q̂ and rearranging terms gives,

Q̂ (E(0) − Ĥ0) |Ψ〉 = Q̂ (E(0) + V̂ − E) |Ψ〉

Q̂ (E(0) − Ĥ0) Q̂|Ψ〉 = Q̂ (V̂ −∆E0)|Ψ〉, (2.57)

where ∆E0 ≡ E − E(0) = 〈Φ0|V̂ |Ψ〉. The operator Q̂ (E(0) − Ĥ0) Q̂ is invertible because

(E(0) − Ĥ0)−1 is never singular inQ-space. Therefore, the operator R̂0 = Q̂ (E(0) − Ĥ0)−1 Q̂,

known as the resolvent, can be applied to both sides which gives,

Q̂ |Ψ〉 = R̂0 (V̂ −∆E0)|Ψ〉. (2.58)

The left-hand side of this equation can be rewritten as Q̂|Ψ〉 = |Ψ〉 − |Φ0〉 to result in the

generating equation for RSPT,

|Ψ〉 = |Φ〉+ R̂0 (V̂ −∆E0) |Ψ〉. (2.59)

Because the single-particle states are eigenfunctions of the zeroth-order Hamiltonian, they
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are also eigenfunctions of the resolvent, with the resulting eigenvalues, ε, are known as energy

denominators. Applying the resolvent operator to any state orthogonal to the reference state,

see Eqs. (2.13) - (2.16), gives the following relation,

R̂0 |Φ
a1···aN
i1···iN

〉 =
1

ε
a1···aN
i1···iN

|Φa1···aN
i1···iN

〉, where

ε
a1···aN
i1···iN

= εi1 + · · ·+ εiN − εa1 − · · · − εaN . (2.60)

Equation (2.59) can be iterated infinitely to give the solution for the fully correlated wave

function,

|Ψ〉 =
∞∑
n=0

[
R̂0 (V̂ −∆E0)

]n
|Φ0〉. (2.61)

Applying this form of the correlated wave function into Eq. (2.54) results in the energy

difference,

∆E0 = 〈Φ0|V̂ |Ψ〉 =
∞∑
n=0

〈Φ0|V̂
[
R̂0 (V̂ −∆E0)

]n
|Φ0〉 (2.62)

The immediate problem with these equations is that the right-hand sides contain the

target energy difference ∆E0 for which these equations are meant to solve. This can be

remedied by expanding the right-hand sides and rearranging terms. Using the fact that

R̂0∆E0 |Φ0〉 = ∆E0R̂0 |Φ0〉 = 0, the first-order energy E(1) = 〈Φ0|V̂ |Φ0〉, and the shifted

term Ṽ ≡ V̂ − E(1), these simplify to,

|Ψ〉 − |Φ0〉 = R̂0V̂ |Φ0〉+ R̂0Ṽ R̂0V̂ |Φ0〉

+ R̂0Ṽ R̂0Ṽ R̂0V̂ |Φ0〉 − 〈Φ0|V̂ R̂0V̂ |Φ0〉R̂2
0V̂ |Φ0〉+ · · · (2.63)

∆E0 = 〈Φ0|V̂ |Φ0〉+ 〈Φ0|V̂ R̂0V̂ |Φ0〉+ 〈Φ0|V̂ R̂0Ṽ R̂0V̂ |Φ0〉

+ 〈Φ0|V̂ R̂0Ṽ R̂0Ṽ R̂0V̂ |Φ0〉 − 〈Φ0|V̂ R̂0V̂ |Φ0〉〈Φ0|V̂ R̂2
0V̂ |Φ0〉+ · · · (2.64)
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The order of each term can be easily identified by counting the numbers of times that V̂

or Ṽ appears. At the third order in the wave function and the fourth order in the energy,

renormalization terms make their first appearance. These terms contain separated and closed

factors in the form of lower-order energy terms, such as 〈Φ0|V̂ R̂0V̂ |Φ0〉 ≡ E(2). Terms that

do not contain normalization factors are known as principal terms.

2.7.1 Factorization Theorem

A powerful application of diagrammatic techniques known as the factorization theorem [16,

104, 105] can immediately be used to simplify these expansions. By factoring sums of unlinked

diagrams, where two or more parts of a diagram are closed and separated, from the principal

terms, it can be shown that they exactly cancel with the renormalization terms at each

order. In the following factorization, two fourth-order energy diagrams which differ by only

the time-ordering of the interaction vertices are added together. By multiplying each term

by an appropriate factor so that they share a common denominator, the additive property

of the energy denominators (εabij + εcdkl = εabcdijkl ) can be exploited to remove the addition of

both terms, now written as the product of two terms,

1

16

∑
abcd
ijkl

V
ij
abV

ab
ij VklcdV

cd
kl

εabij ε
abcd
ijkl ε

cd
kl

+
1

16

∑
abcd
ijkl

V
ij
abV

ab
ij VklcdV

cd
kl

εabij ε
abcd
ijkl ε

ab
ij

=
1

16

∑
abcd
ijkl

V
ij
abV

ab
ij VklcdV

cd
kl

εabij + εcdkl(
εabij

)2
εabcdijkl ε

cd
kl

=
1

4

∑
abij

V
ij
abV

ab
ij(

εabij

)2
· 1

4

∑
cdkl

VklcdV
cd
kl

εcdkl
= 〈Ψ(1)

n |Ψ(1)
n 〉E(2)

n . (2.65)

In diagrammatic form, these sums are represented by internal lines between vertices. The

common resolvent in each term, drawn as a line through the relevant state, is removed, and
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the common diagrams which result are shown as a product (see [18] for more details),

a i b j

c k d l

R0

R0

R0

+ a i b j
c

k d l

R0

R0

R0

= a i b j c k d l

R0

R0

R0

× . (2.66)

A similar factorization can be performed on the wave function terms. The following

example uses two similar third-order terms with different time-ordered interaction vertices.

Once again, the additive property of the energy denominators is used to factor the common

denominator between the terms, resulting in the product of two lower-order terms,

1

16

∑
abcd
ijkl

Vabij VklcdV
cd
kl

εcdklε
abcd
ijkl ε

ab
ij

|Φabij 〉+
1

16

∑
abcd
ijkl

Vabij VklcdV
cd
kl

εabij ε
abcd
ijkl ε

ab
ij

|Φabij 〉 =
1

16

∑
abcd
ijkl

Vabij VklcdV
cd
kl

εabij + εcdkl(
εabij

)2
εabcdijkl ε

cd
kl

|Φabij 〉

=
1

4

∑
abij

Vabij(
εabij

)2
|Φabij 〉 ·

1

4

∑
cdkl

VklcdV
cd
kl

εcdkl
=
|Ψ(1)
n 〉
εn

E
(2)
n

a i b j

c k d l

R0

R0

R0

+ a i b j
c

k d l

R0

R0

R0

= a i b j c k d l

R0

R0

R0

×

(2.67)

The factorization theorem is also valid with off-diagonal Fock terms and applies to the

MBPT expansions of both the wave function and energy. Therefore, the MBPT expansions

in Eqs. (2.61) and (2.62) can be written in terms of linked diagrams only [7],

|Ψ〉 =
∞∑
n=0

[
R̂0 (V̂ −∆E0)

]n
|Φ0〉L, (2.68)

∆E0 =
∞∑
n=0

〈Φ0|V̂
[
R̂0 (V̂ −∆E0)

]n
|Φ0〉L, (2.69)
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where “L” denotes that no diagrams with closed, disconnected pieces should be included.

This result not only simplifies the MBPT expressions, but it guarantees the size-extensivity of

the MBPT wave function at each order [18]. Also, it is a useful step towards coupled-cluster

theory which reorganizes the connected diagrams from MBPT such that certain classes can

be summed to infinite order, see section 3.2.
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Chapter 3

Coupled-Cluster Theory

Coupled-cluster theory is a powerful method for approximating solutions to the many-body

Schrödinger equation. Because of its effectiveness and economical scaling it has been a staple

of many-body quantum mechanics for decades. This chapter details various aspects of the

coupled-cluster approach and presents ground-state results for multiple systems. First, the

CC wave operator and the corresponding effective Hamiltonian will be introduced and used

to derive the CC equations. Then, results from MBPT are used to illuminate the underlying

many-body physics of the CC wave function. After the mathematical foundations of coupled

cluster theory are outlined, specific implementation details are discussed and demonstrated

by focusing on two simple examples. Finally, the nuclear many-body problem is formally

introduced, along with a brief description of the nuclear interactions used in this work, and

selected results are shown.

3.1 Exponential Ansatz

Coupled cluster theory is based on expressing the A-particle correlated wave function |Ψ〉

using the exponential ansatz [9, 19, 15, 16],

|Ψ〉 = eT̂ |Φ0〉. (3.1)
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The cluster operator T̂ ≡ T̂1 + T̂2 + · · · + T̂A, is composed of k-particle k-hole excitation

operators, T̂k, which have the form,

T̂1 ≡
∑
ai

tai

{
â
†
a âi

}
,

T̂2 ≡
1

4

∑
abij

tabij

{
â
†
a â
†
b âj âi

}
,

...

T̂k ≡
(

1

k!

)2 ∑
a1...ak
i1...ik

t
a1···ak
i1···ik

{
â
†
a1
· · · â†ak âik · · · âi1

}
, (3.2)

where the unknown matrix elements, t
a1...ak
i1...ik

, are known as cluster amplitudes [18].

Using the CC ansatz, the Schrödinger equation can be rewritten by left-multiplying with

〈Φ0| e−T̂ as,

Ĥ eT̂ |Φ0〉 = E eT̂ |Φ0〉

−→ 〈Φ0|H |Φ0〉 = E, (3.3)

where the coupled cluster effective Hamiltonian is defined as,

H ≡ e−T̂ Ĥ eT̂ , (3.4)

in which the wave operator, eT̂ , acts as a similarity transform on the Hamiltonian. Using

the normal-ordered Hamiltonian HN and the correlation energy ∆E from Eq. (2.4), this can
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rewritten as,

ĤN eT̂ |Φ0〉 = ∆E eT̂ |Φ0〉

−→ 〈Φ0|HN |Φ0〉 = ∆E, (3.5)

where the normal-ordered effective Hamiltonian is constructed equivalently to Eq. (3.6),

HN ≡ e−T̂ ĤN eT̂ . (3.6)

An important characteristic of the effective Hamiltonian, H and HN, is that because

the cluster operator, which contains no de-excitations, is not Hermitian, the exponential

wave operator cannot be unitary, and thus H is not Hermitian. This initially seems like

an explicit contradiction to any standard quantum mechanics formulation where observables

are associated with the real eigenvalues of Hermitian matrices. Technically, the existence

and reality of the CC solution is only guaranteed when the full cluster operator is used

T̂ = T̂1 + · · · + T̂A, see [106, 107, 108, 109]. However, while the non-Hermiticity does

require some special considerations which will be discussed, this fundamental problem does

not materialize in this work.

The effective Hamiltonian in Eq. (3.6) can be rewritten with commutators ([Â, B̂] =

ÂB̂ − B̂Â) according to the Baker–Campbell–Hausdorff expansion as,

H = Ĥ+ [Ĥ, T̂ ] +
1

2!
[[Ĥ, T̂ ], T̂ ] +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ] + · · · , (3.7)

which terminates at four-nested commutators when using a two-body interaction. This

commutator expression ensures that CC theory is size-extensive and contains only connected
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terms. In addition, because T̂ is an excitation operator, terms of the form T̂ Ĥ are necessarily

disconnected and thus vanish [18]. Therefore the CC effective Hamiltonian can be further

reduced to

H =
(
ĤeT̂

)
c
, (3.8)

where the subscript “c” indicates that only connected terms are used.

3.1.1 The Coupled Cluster Equations

In practice, the cluster operator T̂ must be truncated for calculations to be computationally

feasible. In this work, we use only single and double excitations where applicable,

T̂ = T̂1 + T̂2.

This is known as coupled cluster with singles and doubles (CCSD), with an asymptotic

computational cost that scales like O
(
n4
pn

2
h

)
, where nh is the number of hole states and

np is the number of particle states. This truncation has been successfully applied to many

problems in quantum chemistry [110] and nuclear physics [49, 111].

The unknown cluster amplitudes in CCSD, tai and tabij , can be calculated by left-multiplying

Eq. (3.1) with 〈Φai | e−T̂ and with 〈Φabij | e−T̂ , respectively,

〈Φai |H |Φ0〉 = 0,

〈Φabij |H |Φ0〉 = 0. (3.9)

After the Fock matrix has been diagonalized, the diagonal components of Eq. (3.9) can be

37



separated and, after expanding the exponent in Eq. (3.8), the non-vanishing terms of the

CCSD amplitude equations in the HF basis become,

〈Φai |
[
Ĥ2

(
T̂1 + T̂2 + T̂1T̂2 +

1

2!
T̂2

1 +
1

3!
T̂3

1

)]
c
|Φ0〉 = εai tai (3.10)

〈Φabij |
[
Ĥ2

(
1 + T̂1 + T̂2 +

1

2
T̂ 2

1 + T̂1T̂2 +
1

2!
T̂ 2

2 +
1

3!
T̂ 3

1 +
1

2!
T̂ 2

1 T̂2 +
1

4!
T̂ 4

1

)]
c
|Φ0〉 = εabij tabij ,

where ε are equivalent to the MBPT energy denominators from Eq. (2.7).

These non-linear equations are solved using an iterative procedure where the cluster

amplitudes on the right-hand side of Eq. (3.9) and Eq. (3.10) are updated by calculating

the terms on the left-hand side until a fixed point is reached. Like the HF iterative proce-

dure, employing convergence acceleration techniques can reduce the number of CC iterations

required. Detailed techniques for solving these equations are discussed in section 3.4.

3.2 Linked-Cluster Theorem and MBPT

The exponential ansatz in Eq. (3.1) and the cluster amplitudes in Eq. (3.1) are not just useful

mathematical constructs for solving the many-body problem. They represent physical many-

body dynamics and can be derived from the results of many-body perturbation theory, see

section 2.7. The linked-cluster theorem [16, 104, 105] states that the sum of all time orderings

of a disconnected diagram is equal to the product of the two subdiagrams. Using the results

and techniques from the factorization theorem, 2.7.1, the linked-cluster theorem can be used

to factorize specific MBPT terms such that they can be analytically summed to infinite

order. This infinite summation is the main principle behind coupled cluster theory and can

be shown to lead naturally to the exponential ansatz.

The first step in deriving the exponential ansatz is to group all the linked MBPT diagrams
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of Eq. (2.68) into classes according to their number of disconnected pieces. The first class,

where all the terms are connected, can be defined as the cluster excitation operator T̂ ,

depicted by the vertex type . The connected terms can then be characterized by their

excitation type such that T̂k corresponds to kp -kh excitations.

The T̂1 operator represents the class of all connected 1p -1h MBPT diagrams, which are

determined by the number of particle-hole pairs (or pair of up- and down-lines) at the top

of the diagram,

T̂1 |Φ0〉 ≡ =
(
T̂

(1)
1 + T̂

(2)
1 + · · ·

)
|Φ0〉 = + +

+ + + + + · · · , (3.11)

where only first-order T̂ (1) and second-order T̂ (2) terms are shown while resolvant lines and

labels are removed for clarity. The T̂2 operator similarly represents the class of all connected

2p -2h MBPT diagrams. The first- and second-order terms that belong to this class are,

T̂2 |Φ0〉 ≡ =
(
T̂

(1)
2 + T̂

(2)
2 + · · ·

)
|Φ0〉 = + +

+ + + + + + · · · .

(3.12)

Additionally, the T̂3 operator represents the class of all connected 3p -3h MBPT diagrams,

39



of which there is only two second-order terms,

T̂3 |Φ0〉 ≡ =
(
T̂

(2)
3 + · · ·

)
|Φ0〉 = + + · · · .

(3.13)

So far, this is merely a redefinition of the connected class of MBPT diagrams up to all orders

and is not particularly useful. But the disconnected diagrams, neglected up to this point,

can be recombined using the factorization theorem 2.7.1 to provide a powerful simplification

(see [18] for a more thorough derivation).

As an example, the remaining disconnected first- and second-order diagrams can be writ-

ten as the product of connected diagrams. First, the second-order disconnected diagram from

the term f̂2 |Φ0〉 can be rewritten by adding a duplicate with the left and right subdiagrams

exchanged, which doesn’t change the value because the state labels are generic. Then, the

two disconnected diagrams can be rewritten using the factorization theorem following the

example of Eq. (2.7.1),

a i

b j
R0

R0
=

1

2

 a i

b j
R0

R0
+ b j

a i
R0

R0

 =
1

2

 a i
R0


2

.

(3.14)

The resulting product involves the first-order component of the T̂1 operator in Eq. (3.11),
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T̂
(1)
1 . Algebraically, this process is written below,

∑
abij

fai f
b
j

εabij ε
a
i

|Φabij 〉 =
1

2

∑
abij

fai f
b
j

εabij ε
a
i

|Φabij 〉+
1

2

∑
abij

fai f
b
j

εabij ε
b
j

|Φabij 〉 =
1

2

∑
abij

fai f
b
j

εbj + εai

εabij ε
a
i ε
b
j

|Φabij 〉

=
1

2

(∑
ai

fai
εai
|Φai 〉

)∑
bj

fbj

εbj
|Φbj〉

 =
1

2

(
T̂

(1)
1

)2
. (3.15)

This procedure can be repeated for the single second-order disconnected term from

V̂ 2 |Φ0〉,

a i b j

c k d l
R0

R0
=

1

2

 a i b j

c k d l
R0

R0
+

a i b j

c k d l
R0

R0



=
1

2

 a i b j
R0


2

. (3.16)

A similar results gives the product involving the first-order component of the T̂2 operator in

Eq. (3.12), T̂
(1)
2 . Again, the factorization process is written algebraically,

1

16

∑
abcd
ijkl

Vabij Vcdkl

εabcdijkl ε
ab
ij

|Φabcdijkl 〉 =
1

32

∑
abcd
ijkl

Vabij Vcdkl

εabcdijkl ε
ab
ij

|Φabcdijkl 〉+
1

32

∑
abcd
ijkl

Vabij Vcdkl

εabcdijkl ε
cd
kl

|Φabcdijkl 〉

=
1

32

∑
abcd
ijkl

Vabij Vcdkl
εcdkl + εabij

εabcdijkl ε
ab
ij ε

cd
kl

|Φabcdijkl 〉

=
1

2

1

4

∑
abij

Vabij

εabij
|Φabij 〉

(1

4

∑
cdkl

Vcdkl
εcdkl
|Φcdkl 〉

)
=

1

2

(
T̂

(1)
2

)2
. (3.17)

Lastly, for the disconnected terms from V̂ f̂ |Φ0〉 and f̂ V̂ |Φ0〉, the first duplication step

41



can be skipped and the diagrams can be factorized following the procedure in Eq. (2.7.1),

a i b j

c k
R0

R0
+

a i b j

c k
R0

R0
=

c k a i b j
R0 R0

× . (3.18)

This factorization results in a mixed term between the first-order components from the T̂1

and T̂2 operators,

1

4

∑
abc
ijk

Vabij f
c
k

εabcijkε
ab
ij

|Φabcijk〉+
1

4

∑
abc
ijk

Vabij f
c
k

εabcijkε
c
k

|Φabcijk〉 =
1

4

∑
abcd
ijkl

Vabij f
c
k

εck + εabij

εabcijkε
ab
ij ε

c
k

|Φabcijk〉

=

(∑
ck

fck
εck
|Φck〉

)1

4

∑
abij

Vabij

εabij
|Φabij 〉

 = T̂
(1)
1 T̂

(1)
2 (3.19)

Adding these factorized contributions from Eqs. (3.15), (3.17), and (3.19) gives 1
2

(
T̂

(1)
1

)2
+

T̂
(1)
1 T̂

(1)
2 + 1

2

(
T̂

(1)
2

)2
= 1

2

(
T̂

(1)
1 + T̂

(1)
2

)2
. Repeating this procedure for all diagrams with

two disconnected parts (L = 2) adds similar terms of all orders. The final contribution from

the L = 2 class of diagrams with two disconnected parts is,

∞∑
n=0

[
R̂0 (V̂ −∆E0)

]n
|Φ0〉L=2 =

1

2
T̂2. (3.20)

A similar form results from any class of diagrams with k disconnected pieces,

∞∑
n=0

[
R̂0 (V̂ −∆E0)

]n
|Φ0〉L=k =

1

k!
T̂k. (3.21)

Therefore, summing over all classes of diagrams gives the final result that justifies the
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exponential ansatz,

|Ψ〉 =
∞∑
k=0

∞∑
n=0

[
R̂0 (V̂ −∆E0)

]n
|Φ0〉L=k =

∞∑
k=0

1

k!
T̂k |Φ0〉 = eT̂ |Φ0〉. (3.22)

This equation shows the true strength and elegance of coupled cluster theory. By an ingenious

reorganization and factorization of certain MBPT diagrams, the exponential ansatz captures

the contribution of these excitations to infinite order. A more comprehensive derivation of

the linked-cluster theorem can by found in [18].

3.3 Example: Pairing Model

It’s beneficial to illustrate a simplified example of coupled cluster theory. For this purpose,

we turn our attention to the simple pairing model. This system uses a model space of N

shells, or degenerate groups of single-particle states, each with two opposite spin orbitals.

E F

p=1

p=2

p=A/2

p=N

σ=-1/2 σ=+1/2

E
=

δ(p-
1
)

Figure 3.1: Schematic representation of the pairing model space. The shells are equally
spaced and doubly degenerate with one spin-up and one spin-down state.
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With a closed-shell reference state, the Hamiltonian is restricted to interact only between

unbroken pairs, which can be written as,

(1)Ĥ= δ
N∑
p

(p− 1)
[
â
†
p+ âp+ + â

†
p− âp−

]
, and

(2)Ĥ= −g
2

N∑
pq

â
†
p+ â

†
p− âq− âq+ , (3.23)

where δ and g are free parameters and the ± labels represent the spin-up and spin-down

states, respectively.

As with all other coupled cluster calculations in this work, the first step is transforming

the problem to the Hartree-Fock basis. In this case, the restriction to unbroken pairs means

that the original single-particle states do not mix with states in other shells. In fact, the

original basis is already an eigenbasis of the Fock operator, Eq. (2.5), so that the HF trans-

formation is reduced to a redefinition of the single-particle energies to their corresponding

Hartree-Fock energies, leaving the two-body interaction unchanged,

εpmp = (1)H
pmp
pmp

+
∑
imi

(2)H
pmpimi
pmpimi

= δ (p− 1)−g
2
,

V
pq
rs = (2)H

pq
rs . (3.24)

Because of the pairing restriction, only hole-state energies have to be redefined.

The next step in calculating the ground-state correlation energy is to solve the CCD

equations in the Hartree-Fock basis. The system of equations comes from the terms of Eq.

(3.10) that contain only the T̂2 operator, and are most easily derived with diagrammatic
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techniques, see [18].

〈Φabij | (Ĥ eT̂2)C |Φ0〉 − a i b

j

k

− i a j

b

c

=

a i b j

+ a

i

k

b

j

l

+ i

a

c

j

b

d

+ a

i

k

j

b

c

+

a b

ck

i j

l d

+

a j

dl

bi

c k
+

i a

b j

c k ld
+

a i

j b

c k dl

(εi + εj − εa − εb) tabij = Vabij +
1

2

∑
kl

Vklij t
ab
kl +

1

2

∑
cd

Vabcdt
cd
ij − P̂ (ij|ab)

∑
kc

Vkbic t
ac
kj

+
1

4

∑
klcd

Vklcdt
ab
kl t

cd
ij + P̂ (ab)

∑
klcd

Vklcdt
ac
lj t

bd
ki − P̂ (ij)

1

2

∑
klcd

Vklcdt
ab
lj t

cd
ki − P̂ (ab)

1

2

∑
klcd

Vklcdt
db
ij t

ca
kl .

(3.25)

The CCD equations are written in this particular form so that an initial guess for all the

amplitudes tabij can be used to calculate the right-hand side of Eq. (3.3) and update the

amplitudes on the left-hand side iteratively until the amplitudes do not change within a

certain tolerance.

Lastly, the CCD correlation energy can be found with the T̂2 term of Eq. (3.1),

∆ECCD = 〈Φ0| (Ĥ eT̂2)C |Φ0〉 = c k d l =
1

4

∑
klcd

Vklcdt
cd
kl . (3.26)

The correlation energies for a specific case, with δ = 1.0, N = 4, and A = 4, were calculated

for a number of different interaction strengths, g. The results are shown in Fig. 3.2 along
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with the MBPT correlation energies to third (MBPT3) and fourth (MBPT4) orders for

comparison. The nonzero MBPT expressions for second and third order are,

∆EMBPT2 =
1

4

∑
ijab

V
ij
abV

ab
ij

εabij
, (3.27)

∆EMBPT3 = ∆EMBPT2 +
1

8

∑
ijabcd

V
ij
abV

ab
cdVcdij

εabij ε
cd
ij

+
1

8

∑
ijklab

V
ij
abV

kl
ijVabkl

εabij ε
ab
kl

. (3.28)

Generally, the fourth-order expression contains 39 additional terms. However, most of these

vanish in this case because of the form of the pairing interaction.

1.0 0.5 0.0 0.5 1.0

Interaction strength, g

0.5

0.4

0.3

0.2

0.1

0.0

C
o
rr

e
la

ti
o
n
 e

n
e
rg

y

Exact
MBPT3
MBPT4
CCD

Figure 3.2: Correlation energy for the pairing model with exact diagonalization, CCD, and
perturbation theory to third (MBPT3) and fourth order (MBPT4) for a range of interaction
values, g.

Also shown are the exact results from the CI method. With an example this small, it’s

possible to diagonalize, and even show explicitly, the full CI Hamiltonian matrix for an exact

result. There are six possible Slater determinants with no broken pairs, one representing the
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reference state, four representing various 2p -2h excitations, and one representing a 4p -4h

excitation. The diagonal elements of the matrix include the single-particle energies of the

constituent states, and the matrix elements between Slater determinants with no overlap

vanish in accordance with the Slater-Condon rules, see Eq. (2.6) and [89, 99]. The full

Hamiltonian matrix to be diagonalized is,

H =



2δ − g −g/2 −g/2 −g/2 −g/2 0

−g/2 4δ − g −g/2 −g/2 −0 −g/2
−g/2 −g/2 6δ − g 0 −g/2 −g/2
−g/2 −g/2 0 6δ − g −g/2 −g/2
−g/2 0 −g/2 −g/2 8δ − g −g/2

0 −g/2 −g/2 −g/2 −g/2 10δ − g


. (3.29)

As methods to obtain the ground-state correlation energy, both CI and CC decouple, to

some degree, the reference state and excitations from it. This decoupling has the effect of

shuffling correlations into the reference state and suppressing matrix elements connected to

it. Full decoupling between the reference state and all other Slater determinants can only

be achieved with untruncated versions of these techniques, while decoupling of the strongest

correlations can be approximately obtained with appropriate truncations. However, unlike

other many-body methods, the most unique aspect of the CC similarity transformation is

that because of its non-unitarity, the resulting Hamiltonian will not be Hermitian. This

decoupling and non-Hermiticity can be seen in Fig. 3.3, which shows the effect of the CC

similarity transformation on the Hamiltonian for a pairing case with N = 6 and A = 4.

The effective Hamiltonian H shown in Fig. 3.3 can be explicitly built, and it happens to be

beneficial to do so as part of most CC calculations, both for solving the CC equations and

for use in post-CC methods. This topic is discussed in detail in the next section.

47



12

9

6

3

0

3

12

9

6

3

0

3

2p-2h 4p-4h0p-0h
2p

-2
h

4
p
-4

h

log(H)

-12

-9

-6

-3

0

3

2p-2h 4p-4h0p-0h

2p
-2

h
4
p
-4

h

log(H)

-12

-9

-6

-3

0

3

Figure 3.3: Visualization of the CCD similarity transform on the pairing Hamiltonian for
four particles and six shells. This shows the main function of CCD, which is to decouple
2p -2h excitations from the ground state, shown by the suppression of matrix elements on the
first column. In the pairing model, this also has the effect of decoupling 2p -2h excitations
from 4p -4h excitations. Also, the non-unitary nature of the transformation is obvious given
the asymmetry of the resulting Hamiltonian.

3.4 Solving the Coupled Cluster Equations

As described above, the coupled cluster equations are solved by first initializing all of the

cluster amplitudes, then updating them by computing various sums over particle and hole

combinations, CC (T̂ ). This updating procedure is performed over multiple iterations until

the amplitudes stay unchanged within a certain tolerance,

Initialize : T̂ (0) = T̂ init,

Iterate : T̂ (n+1) ← CC (T̂ (n)) . (3.30)

Generally, the convergence of this algorithm depends on the relative magnitudes between

the inter-particle force and the single-particle energy spacing. For a relatively small Fermi

gap between the closed shell of occupied states and the unoccupied particle states, the energy

denominators will approach zero and cause a divergent or chaotic solution [112]. Physically,
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this situation occurs when a system exhibits strong many-particle clustering, which is difficult

to capture with only the single and double excitations of CCSD. A simple way to avoid this

ill-defined behavior is to scale the energy denominators for early iterations or to employ

linear mixing to dampen the solution,

T̂ (n+1) ← αCC (T̂ (n)) + (1− α) T̂ (n). (3.31)

If a solution to a highly-collective system does not diverge, it typically converges very slowly.

To improve the convergence rate, techniques already utilized for the Hartree-Fock iterations

can also be employed here, such as DIIS [96, 97] or Broyden’s method [98]. The additional

computational complexity for the CC iterations is simply a multiplicative factor equal to the

number of iterations performed. Typical calculations in this work with DIIS acceleration

are converged within ∼ 30 iterations. Therefore, any significant improvements to the CC

algorithm will involve the expensive sums embedded within the function CC (T̂ (n)).

3.4.1 Symmetry Channels

For the coupled cluster equations, as well as many other many-body methods, the first way

to simplify the various sums is to exploit any symmetries of the underlying Hamiltonian of a

particular problem. These symmetries manifest as conserved quantities, and because of the

underlying nature of the cluster operators, see Section 3.2, these must conserve these quan-

tum numbers as well. For example, the pairing Hamiltonian of Section 3.3 has a symmetry

that conserves both the total spin projection and the number of pairs. The Coulomb Hamil-

tonian of Section 3.5, which has translational symmetry, conserves the linear momentum of

any state. Finally, the spherical symmetry of the nuclear Hamiltonian ensures that angular

49



momentum and parity are conserved. To utilize these symmetries, any sums that contain

many-body states with different conserved quantum numbers can be ignored. For efficiency,

these symmetry groups can be pre-sorted into channels, Σ~ξ, where ~ξ represents the relevant

quantum numbers of a certain channel.

For CCSD calculations, useful types of channels include the direct two-body channels,

Σ~ξ1
–which categorizes the vector sum of two single-particle-state quantum numbers–and the

cross two-body channels, Σ~ξ2
–which categorizes the vector difference of two single-particle-

state quantum numbers or, equivalently, the vector sum of a the quantum numbers of a

single-particle state and a time-reversed single-particle state.

~ξpq = ~ξp + ~ξq −→ |pq〉 ∈ Σ~ξ1=~ξpq
(3.32)

~ξpq̄ = ~ξp − ~ξq = ~ξp + ~ξq̄ −→ |pq̄〉 ∈ Σ~ξ2=~ξpq̄
(3.33)

Also useful are the one-body channels, Σ~ξ3
, which categorize both single-particle states by

their conserved quantum numbers. These one-body channels can also characterize a special

type of three-body state: the vector difference between the quantum numbers of a direct

two-body state and a single-particle state or, equivalently, the vector sum of the quantum

numbers of a two-body direct state and a time-reversed single-particle state,

~ξp −→ |p〉 ∈ Σ~ξ3=~ξp
(3.34)

~ξpqr̄ = ~ξp + ~ξq − ~ξr = ~ξp + ~ξq + ~ξr̄ −→ |pqr̄〉 ∈ Σ~ξ3=~ξpqr̄
. (3.35)

Using these channel structures, the interaction matrix elements and cluster amplitudes

can be built in different ways. The full applicability of these structures are shown in detail
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in appendix C, but a few examples using sums in the CCD equations (3.3) are shown here.

The direct two-body channels can be used when two summed indices appear in the bra- or

ket-state of multiple matrix-elements,

1

2

∑
cd

Vabcdt
cd
ij =

1

2

∑
|cd〉

Vabcdt
cd
ij for |cd〉 ∈ Σ~ξab

= Σ~ξij
. (3.36)

The cross two-body channels are used when two summed indices appear in the opposite

corresponding bra- and ket-states of multiple matrix-matrix elements,

∑
kc

Vkbic t
ac
kj =

∑
|kc̄〉

Vkc̄
ib̄
t
aj̄
kc̄ for |kc̄〉 ∈ Σ~ξib̄

= Σ~ξaj̄
. (3.37)

Lastly, the one- and three-body channels are used when a single summed index appears

opposite a direct two-body state in multiple matrix elements,

1

2

∑
klcd

Vklcdt
db
ij t

ca
kl =

1

2

∑
|klc̄〉
|d〉

Vklc̄d td
ijb̄
taklc̄ for |klc̄〉, |d〉 ∈ Σ~ξijb̄

= Σ~ξa
. (3.38)

3.4.2 Matrix Structures and Intermediates

Symmetry channels not only provide an organized structure for the interaction matrix ele-

ments and cluster amplitudes, and remove any terms that violate the underlying symmetry

of a problem, but they also naturally provide an efficient way of performing sums using

matrix-matrix multiplications. For example, the sums in Eqs. (3.36)–(3.38) can be refor-

mulated as matrix-matrix multiplications by structuring the channel-separated interaction

matrix elements and cluster amplitudes into individual matrices. These operations can be

performed very quickly using highly optimized linear algebra algorithms like those found in
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BLAS (Basic Linear Algebra Subprograms) [113]. The matrices can be reordered so that the

summed indices correspond to the internal columns and rows of those matrices.

For the direct two-body case of Eq. (3.36), the structures are already in the correct order

such that the state |cd〉, indexed by the columns of V and the rows of t, is summed by

multiplying the two matrices,

1

2

∑
cd

Vabcdt
cd
ij =

1

2
Vab
cd · tcdij for |ab〉, |ij〉, |cd〉 ∈ Σ~ξ1

. (3.39)

For the cross two-body case of Eq. (3.37), the states |j〉, |b〉, and |c〉 are time reversed so

that the summed variables are collected in a state |kc̄〉. Then the matrix structures are

reordered so this state is indexed by columns and rows of t and V, respectively,

∑
kc

Vkbic t
ac
kj = t

aj̄
kc̄ ·V

kc̄
ib̄

for |aj̄〉, |ib̄〉, |kc̄〉 ∈ Σ~ξ2
. (3.40)

Lastly, for the case of Eq. (3.38), the states |b〉 and |c〉 are time-reversed so that the states

|d〉 and |klc̄〉 appear in two different matrix elements. Then, the matrix structures are

reorganized so the summed states occur in the appropriate rows and columns for matrix-

matrix multiplication,

1

2

∑
klcd

Vklcdt
db
ij t

ca
kl =

1

2
taklc̄ ·Vklc̄

d · tdijb̄ for |a〉, |ijb̄〉, |klc̄〉, |d〉 ∈ Σ~ξ3
. (3.41)

These sums correspond to different components of the updated cluster amplitudes accord-

ing to Eq. (3.30), so that different channel structures of the matrix-matrix multiplications

correspond to different amplitude structures according to the sum’s external indices. The

two external direct two-body states of Eq. (3.39), |ab〉 and |ij〉, naturally map to the direct
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amplitude structure,

tabij ←
1

2
Vab
cd · tcdij for |ab〉, |ij〉, |cd〉 ∈ Σ~ξ1

. (3.42)

Similarly, the two external cross two-body states of Eq. (3.40), |aj̄〉 and |ib̄〉, naturally map

to the cross amplitude structure,

t
aj̄
ib̄
← t

aj̄
kc̄ ·V

kc̄
ib̄

for |aj̄〉, |ib̄〉, |kc̄〉 ∈ Σ~ξ2
. (3.43)

Lastly, the one- and three-body external states of of Eq. (3.41), |a〉 and |ib̄〉, naturally map

to the one-body amplitude structure characterized by the index a,

ta
ijb̄
← 1

2
taklc̄ ·Vklc̄

d · tdijb̄ for |a〉, |ijb̄〉, |klc̄〉, |d〉 ∈ Σ~ξ3
. (3.44)

The last summation in the matrix-matrix form of Eqs. (3.41) and (3.44) involves two

multiplications, which suggests the need for an intermediate matrix to hold the result of

the first operation. This is the last main ingredient to an efficient CC algorithm. To see

the benefit of intermediate structures, it’s helpful to examine an expensive sum from the

CCD equations. For typical calculations, particle states outnumber hole states by an order

of magnitude, np ∼ 10nh, which means that one of the most expensive sums is,

1

4

∑
klcd

Vklcdt
ab
kl t

cd
ij . (3.45)

Because this term must be computed for each tabij , its computational cost naively scales as
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O
(
N4
hN

4
p

)
. However, using the matrix form of this sum and an intermediate matrix,

1

4

∑
klcd

Vklcdt
ab
kl t

cd
ij =

1

4
tabkl ·

(
Vkl
cd · tcdij

)
=

1

4
tabkl ·Xkl

ij → tabij . (3.46)

this term is now computed as the combination of two sums, each scaling as O
(
N4
hN

2
p

)
.

These intermediates can also be used as a way to combine similar sums. For example, the

last step of Eq. (3.46) has a very similar structure to the first sum in Eq. (3.3). Therefore,

the two sums can be written with a common intermediate as,

1

2

∑
kl

Vklij t
ab
kl +

1

4

∑
klcd

Vklcdt
ab
kl t

cd
ij =

1

2
tabkl ·

[
Vkl
ij +

1

2
Vkl
cd · tcdij

]
=

1

4
tabkl ·Xkl

ij → tabij ,

where, Xkl
ij = Vkl

ij +
1

2
Vkl
cd · tcdij . (3.47)

It just so happens that this form of the intermediate Xkl
ij is equivalent to the hhhh

component of the CCD similarity transformed Hamiltonian, H . Constructing other inter-

mediates in this way gives similar results, so it’s a natural extension to actually construct

the effective Hamiltonian at each iteration for the express purpose of using it as different

intermediate components for the CC equations. This has the added benefit of having already

computed the effective Hamiltonian for post-CC methods. The different components of the

CCD effective Hamiltonian, HCCD =
(
Ĥ eT̂2

)
c
, are written below in both algebraic and

diagrammatic form. One-body components correspond to the vertex type and two-

body terms correspond to the vertex type . The pp, one-body component of HCCD
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is,

a

b

=

a

b

+

a

b

k c l

Xa
b = fab −

1

2

∑
klc

Vklbct
ac
kl . (3.48)

The hh, one-body component is,

j

i

=

j

i

+

j

i

c d k

Xi
j = f ij +

1

2

∑
kcd

Vikcdt
cd
jk. (3.49)

The hhhh, two-body component, which appears as the intermediate in Eqs. (3.46) and (3.4.2),

is,

i j

k l

=

i j

k l

+

k l

i j

c d

X
ij
kl = V

ij
kl +

1

2

∑
cd

V
ij
cdt

cd
kl . (3.50)
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Lastly, the hphp, two-body component is,

i

j a

b

=

i

j a

b

+
1

2

j a

i b

c k

Xia
jb = Viajb −

1

2

∑
kc

Vikcbt
ca
jk. (3.51)

Using these terms, the CCD equations can be written in pseudo-linear form using the

2p -2h component of effective Hamiltonian form of the equations, Eq. (3.9). This also explic-

itly shows the decoupling of the effective Hamiltonian with 2p -2h excitations. The pphh,

two-body component, which should vanish when the CCS amplitudes have converged, is,

a i b j

= 0 =

a i b j

+
c

a

i b j +
k

i

a j b

+ i

a

c

j

b

d

+ a

i

k

b

j

l

+ a

i

k

j

b

c

Xab
ij = 0 = Vabij + P̂ (ab)

∑
c

Xa
c t
cb
ij − P̂ (ij)

∑
k

Xk
i t
ab
kj

+
1

2

∑
cd

X ′abcd t
cd
ij +

1

2

∑
kl

Xkl
ij t

ab
kl − P̂ (ab|ij)

∑
kc

Xkb
ic t

ac
kj . (3.52)

The components and intermediates of the CCSD effective Hamiltonian are much more com-

plicated and are shown with their corresponding sums in appendix B.
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3.5 Example: Homogeneous Electron Gas

Another relatively simple calculation using the CCD approximation is the homogeneous

electron gas. This example aims to calculate the ground state energy of a three-dimensional

gas of electrons subject to Coulomb repulsion. This is an approximate model of the valence

electrons in a metal, subject to a uniform background of positive charge from the nuclei and

core electrons [114]. As will be explained below, this calculation employs pure-momentum

eigenstates such that 1p -1h excitations from the reference state are forbidden by momentum

conservation. This means that the problem reduces to the doubles approximation. To obtain

realistic results, a sufficiently-sized basis with a sufficient number of electrons must be used.

Therefore, the improvements discussed in Section 3.4 are necessary to keep the computation

time manageable as the system size increases.

With a uniform background potential, the electron gas can be constructed using eigen-

functions of the kinetic energy operator, (1)Ĥ= T̂ = −~2

2m ∇2. In an infinite volume, however,

there are an unlistable number of plane wave modes which satisfy this condition due to the

continuous nature of the linear momentum eigenstates. Therefore, the single-particle orbits

will be constructed in a finite box of volume Ω and length L, and then the limit L→∞ can

be taken after various expectation values have been computed,

−~2

2m
∇2φkσ(r) = εkφkσ(r),

φkσ(r) =
1√
Ω

exp (ikr)ξσ, (3.53)

where m is the electron mass, k is the wave number, and ξσ is the spin function for either
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spin up or down electrons

ξσ=+1/2 =

(
1

0

)
ξσ=−1/2 =

(
0

1

)
. (3.54)

Assuming the single-particle orbits follow periodic boundary conditions within the con-

taining box (φ(ri) = φ(ri + L) for i = x, y, z) the wave numbers are quantized,

ki =
2πni
L

i = x, y, z ni = 0,±1,±2, . . . (3.55)

A state can therefore be characterized by the quantum numbers nx, nx, and nx as well as

the spin quantum number σ. The energy of such a state, independent of the spin, can be

written as

εnx,ny,nz =
~2

2m

(
k2
x + k2

y + k2
z

)
=

~2

2m

(
2π

L

)2 (
n2
x + n2

y + n2
z

)
. (3.56)

Now that the single-particle orbits are established, a particular basis consisting of these

orbits can be chosen such that all states are included up to a closed shell. This basis is then

filled with electrons until a closed Fermi level is obtained. Additionally, only the unpolarized

case, in which all orbitals are occupied with one spin-up and one spin-down electron, will be

considered here. For this spherical-type level structure, the number of electrons required for

closed shells increases quickly. For example, the first six shells contain 2, 14, 38, 54, 66 and

114 states, respectively.

A finite number of electrons A in a finite box of volume Ω naturally leads to the char-

acterization of an infinite system by its number density density ρ = A/Ω. The average
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Figure 3.4: Visulization of the Fourier transform of a finite box. This transformation charac-
terizes the construction of the single-particle basis for infinite matter, mapping plane waves
in coordinate space onto finitely-spaced points in momentum space.

inter-electron distance, or Wigner-Seitz radius, is defined as

4

3
πr3
s =

1

ρ
, rs =

(
3

4πρ

)1/3

. (3.57)

In practice, these calculations are defined by the total number of shells included in the basis,

the number of electrons, and the Wigner-Seitz radius, usually given in units of the Bohr

radius, rb = ~
mcα , where c is the speed of light and α is the fine-structure constant.

The last ingredient to this many-body calculation is the interaction between the electrons,

the well-known Coulomb force. Using atomic units, where the elementary charge e = 1 and

the Coulomb constant 1
4πε0

= 1, this potential is simply

V (r1, r2) =
1

|r1 − r2|
. (3.58)

As mentioned in chapter 2, this potential can be utilized in second-quantization by computing

59



antisymmetrized integrals over the basis states. In this case, the integrals have the form,

(2)H
pq
rs ≡

∫
dr1dr2 φ

∗
kpσp

(r1)φ∗kqσq(r2)
1

|r1 − r2|
[
φkrσr(r1)φksσs(r2)− φksσs(r1)φkrσr(r2)

]
.

(3.59)

The symmetries of the Coulomb potential guarantee that the total linear momentum and

total spin projection are conserved such that,

kp + kq = kr + ks and σp + σq = σr + σs. (3.60)

The integral is relatively simple given the form of the basis functions. The result is given in

terms of the momentum transfer, q1 = kp − kr and q2 = kp − kr,

(2)H
pq
rs =

4π~cα
Ω

[
δσpσrδσqσs

|q1|2
−
δσpσsδσqσr

|q2|2
]

(3.61)

The last preparation step before performing the coupled cluster algorithm is the Hartree-

Fock transformation. As with the pairing model, the single-particle orbitals are already

eigenfunctions of the Fock operator, in this case because the translational invariance of

the plane wave basis functions ensure that the HF terms of the form (2)H
pi
qi vanish due to

momentum conservation, see Eq. (2.5). Therefore, the HF transformation consists simply of

redefining the single-particle energies while the two-body interaction is left unchanged.

εp = εkp +
∑
i

(2)H
pi
pi

V
pq
rs = (2)H

pq
rs (3.62)

As mentioned above, in the plane-wave basis, any single excitation from the reference
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state vanishes automatically due to momentum conservation so that tai = 0. Therefore,

it’s necessary to include only double excitations (before adding triples, etc.). Therefore,

calculations for the electron gas use the pseudo-linear form of the CCD equations (B.21)

and an effective Hamiltonian that excludes single excitations in Eqns. (3.48)-(B.4). To

explore the HEG equation-of-state, the total energy per electron can be calculated as a

function of the Wigner-Seitz radius. In the limit N,L → ∞, the plot in Fig. 3.5 represents

2 4 6 8 10 12 14 16

Wigner−Seitz Radius (rs)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

E
/A

(H
a)

N=14

N=54

N=246

VMC

Figure 3.5: CCD energy per electron in Hartrees for the 3D homogeneous electron gas as
function of the Wigner-Seitz radius in units of Bohr radii. The calculation used periodic
boundary conditions and a basis with 25 shells, resulting in a total of 1238 single-particle
states. Also plotted are the variational quantum Monte Carlo (VMC) results from [3].

the equation-of-state for a 3D electron gas at absolute zero. This curve can reveal many

thermodynamic properties of the electron gas including the saturation density and saturation
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energy, which occur at the lowest point on the curve. The CCD results are compared

with the quasi-exact results from variational quantum Monte Carlo calculations from [3].

The discrepancies between the saturation energies from the two methods can be partially

attributed to an insufficient basis size. However, even an appropriate extrapolation to an

infinite basis won’t be able to recover all of the required correlations, which suggests that

CCSDT might be necessary. Regardless of the value to the saturation energy, these CCD

results do qualitatively reproduce the saturation radius at rs ≈ 5.0.

3.6 Coupled Cluster for Finite Nuclei

The main purpose of this work is to calculate properties of atomic nuclei with coupled cluster

theory. From a many-body perspective, the main process is computing the converged cluster

amplitudes and thus the important correlations of the system. These amplitudes comprise

the CC similarity transformation, which is versatile for constructing any effective operator,

such as the Hamiltonian, that can act on the correlated system. Therefore, the first step in

calculating beta-decay properties of nuclei is solving for the ground-state wave function of

specific closed-shell nuclei.

3.6.1 Harmonic Oscillator Basis

Calculations of finite nuclei follow the basic structure of the algorithms used for the pairing

model and the homogeneous electron gas, but they also differ in some significant ways. Like

the other examples, the first step is to construct a proper single-particle basis and reference

state. Because the nuclear Hamiltonian conserves angular momentum and parity, it’s useful

to construct orbits that are eigenfunctions of these operators. For a system with no external
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potential, like the electron gas, this suggests a basis made of plane waves. However, plane

waves do not represent the bound states of a nucleus very well. This property can be satisfied

by introducing a fictitious external potential that mimics the mean field from the collection

of nucleons. Some phenomenological potentials, like the Woods-Saxon potential, properly

consider the resonance and continuum states of realistic nuclei in addition to the bound

states. Many-body techniques discussed in this work have been applied to model spaces that

include all three types of single-particle states [115, 116] with some success. However, for

the many-body states considered in this work, it’s sufficient to consider only bound single-

particle states. Therefore, the nuclear basis will be constructed from the isotropic harmonic

oscillator,

V (r) =
1

2
mω2r2. (3.63)

An eigenstate of the harmonic oscillator potential is defined by its principal quantum

number n and its orbital angular momentum quantum number l, which is denoted by the

letters s, p, d, f... for the values l = 0, 1, 2, 3... respectively. Because of spin-orbit terms in

the nuclear Hamiltonian, the orbital angular momentum is coupled to a particle spin to a

total angular momentum of j = |l+ s|, which results in a degeneracy of 2j+ 1 for each orbit.

This basis does not provide any simplification to eliminate single excitations, so CCSD will

be used for all the following calculations. A schematic version of this single-particle basis is

shown in Fig. 3.6. The shell structure of this basis is characterized by the energy quantum

numbers, e = 2n + l, of the HO single-particle spectrum. This can be used to define the

maximum-energy shell and the size of a HO basis with the parameter emax.

One issue with this construction, is that while the single-particle orbits are eigenstates of

the angular momentum operator and localized to the external potential, they are not trans-

lationally invariant, which is required by the nuclear Hamiltonian. This means that there
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Figure 3.6: A schematic illustration of the harmonic oscillator basis used for calculations of
nuclei. Shown is an example of a initial reference state for carbon-14, with 6 protons filled to
the p3/2-subshell closure and 8 neutrons filled to the p1/2-shell closure. See text for details
on the single-particle states.

is a fictitious center-of-mass kinetic energy which must be removed from the Hamiltonian.

The COM kinetic energy can be written as the sum of one- and two-body pieces,

T̂ cm =
Pcm

2mA
=

A∑
pq

pp · pq
2mA

=
A∑
p

p2
p

2mA
+

A∑
p<q

pp · pq
mA

. (3.64)

The one-body piece is just a scaled form of the original kinetic energy operator, and the

two-body piece is given in a similar form to the original two-body Hamiltonian. Both can

be integrated into matrix elements like Eq. (2.2),

(1)T
p
q ≡

∫
dr1 φ

∗
p (r1)

p2
1

2mA
φq (r1) ,

(2)T
pq
rs ≡

∫
dr1dr2 φ

∗
p (r1)φ∗q (r2)

p1 · p2

mA
[φr (r1)φs (r2)− φs (r1)φr (r2)] . (3.65)

Subtracting the COM kinetic energy results in the intrinsic Hamiltonian for finite nuclear
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systems,

Ĥin =

(
1− 1

A

)∑
pq

(1)T
p
q â
†
p âq +

1

4

∑
pqrs

(
(2)H

pq
rs − (2)T

pq
rs

)
â
†
p â
†
q âs âr

+
1

36

∑
pqrstu

(3)H
pqr
stu â

†
p â
†
q â
†
r âu ât âs + · · · , (3.66)

This form of the bare Hamiltonian (up to the three-body force) is used in the Hartree-Fock

transformation. Then, after normal-ordering, the three-body piece is discarded, which is

referred to as a NN+3N-induced interaction. The use of a localized external potential has

further complications involving the COM wave function that are discussed in section 3.7.

A special property of this single-particle basis that can be exploited to reduce the com-

putational complexity of the problem is the degeneracy of each orbital, due to the angular

momentum projection of each single-particle state, mj = {−j,−j+ 1, · · · , j−1, j}. Accord-

ing to the Wigner-Eckart theorem [117, 118], the geometrical component of a wave function,

dependent on its projection mj , can be isolated as a Clebsch-Gordon coefficient. Because

these coefficients have compact summation rules, any diagram and corresponding sum can be

written in terms of the j-orbitals instead of the single-particle mj states, commonly known as

J-scheme and M -scheme, respectively. Calculations in J-scheme require complicated angu-

lar momentum coupling, detailed in appendix D, but involve roughly an order of magnitude

fewer states compared with an M -scheme calculation in the same model space.

3.6.2 The Nuclear Interaction

Perhaps the most important component in nuclear structure calculations, and also perhaps

the most easily overlooked component from a many-body perspective, is the nuclear Hamil-

tonian. Further complicated by the composite nature of protons and neutrons, bound by
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gluon exchange within the nucleon, the inter-nucleon interaction is a residual force of virtual

pion exchanges and other, more exotic processes. Early ab initio calculations avoided this

complexity by using phenomenological interactions, tuned to reproduce certain properties of

a nucleus. These phenomenological forces were effectively used for calculations using shell-

model CI and density-functional theory, but were restricted by the conditions of the fitted

parameters.

These problems, along with the success of quantum field theories in high-energy physics,

motivated the effort to describe the inter-nucleon interaction in terms of the underlying

theory of the strong force, quantum chromodynamics (QCD) [119, 120]. However, while

calculations of nuclei in terms of their constituent quarks using lattice QCD have made

some progress with increases in computing power, they have been confined to few nucleon

systems [121]. The problem is finding a way to express the high-energy QCD interactions as

low-energy forces between nucleons. Such a problem, containing two vastly different scales,

can be rewritten as an effective theory.

Chiral effective field theory (χEFT), which exploits the large difference in scales between

the low-energy regime of nuclear physics and the high-energy regime of QCD, is built from a

general Lagrangian consistent with the broken chiral symmetry of QCD [23, 4]. This broken

symmetry, a consequence of non-zero quark masses, results in several hadronic structures

including protons, neutrons, and mesons, the lightest of which is the pion, mπ ≈ 140MeV/c2

[122]. This can be exploited by systematically writing a Lagrangian as the sum of pion

exchanges of increasing order. Additional contact interactions, which represent exchanges of

heavier mesons, are also included and must be fit to low-energy nuclear data. The hierarchy of

χEFT terms, which contain 3N and higher many-body forces, are ordered by power counting

the expansion term (mπ/Λ), where Λ is an energy cutoff between the low- and high-energy
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Figure 3.7: Diagrammatic form of the chiral EFT expansion up to N3LO. The solid lines
represent nucleons and the dashed lines represent pions. The different vertices represent
higher-order interactions. Figure taken from [4].

scales, and is shown up to N3LO in Fig. 3.7.

This work exclusively employs the NN force of the N3LO interaction from Entem and

Machleidt with a cutoff of Λ = 500 MeV [123]. For most calculations, this interaction

is coupled with the N2LO 3N interaction from Navrátil with a cutoff of Λ = 400 MeV

[124]. This NN+3N(400) interaction is successful at reproducing low- and medium-mass

nuclei, but begins to overbind beyond the sd-shell. As mentioned in the introduction, these

bare Hamiltonians exhibit strong repulsion at short ranges among high-momentum states.

Therefore to soften the interaction, the similarity renormalization group method is used to

integrate high-momentum modes out of the interaction while preserving observables [25, 26].
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3.6.3 Ground-State Results for Nuclei

The main object of this section is to demonstrate the validity of all the ingredients which have

been discussed so far: the harmonic oscillator basis, the NN+3N(400) chiral interaction, and

the J-scheme CCSD algorithm. To accomplish this, calculations for different nuclei will be

compared to the corresponding experimental values. Additionally, results for different input

parameters will be presented to verify that the observables are independent of non-physical

variables. Once again, all results are computed with a HF-optimized basis, see section 2.5.

First, the ground-state energies should be independent of the SRG cutoff parameter

λSRG. While the SRG evolution should preserve any observables, the renormalization process

induces 3N and higher-body forces which can be missed by truncations of the many-body

method in both the cluster amplitudes and the Hamiltonian. The trade-off here is that

larger cutoff parameters produce interactions that contain higher-momentum components,

which reduce a system’s convergence properties, but induce fewer many-body forces, so

that systems can be accurately described with fewer correlations. Conversely, a smaller

cutoff parameter means that solutions can be more easily converged, but it also requires a

many-body method that includes more correlations or higher-order forces [125]. To show

this effect, the ground state for oxygen-16 is shown for different cutoff parameters and for

both the NN and NN+3N-induced interactions. Accounting for both the small dependence

on the SRG cutoff parameter and the minor inaccuracies from the truncations made to the

cluster operator and the Hamiltonian, the rest of this work will use the NN+3N(400)-induced

interaction with an SRG cutoff parameter of λSRG = 2.0 fm−1.

Next, any nuclear observables calculated with this framework should be independent of

the fictitious confining potential. This can be verified by showing the ground-state energies

of various nuclei as a function of the underlying harmonic oscillator energy, ~ω. Convergence
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Figure 3.8: Ground-state energies for 16O for the EM N3LO NN only interaction and with
the added 3N interaction from Navrátil, both SRG softened with λSRG = 1.88, 2.24 fm−1.
The energies are plotted for emax = 10, 12. The most obvious difference is between the NN
and NN+3N calculations, showing the importance of including 3N forces. The differences
between the cutoff parameters are resolved within ∼ 1% with the inclusion of 3N forces
and can be rectified further by including additional correlations or full 3N forces. The
experimental binding energy is shown with the grey dashed line.

is reached by increasing the size of the model space until the resulting curve is flat. Figure

3.9 shows the convergence for the doubly-magic, N = Z nuclei, 4He, 16O, 20Ca, and 56Ni,

where both protons and neutrons fill the same major shell closure. All the results converge

to a variance of < 1% at emax = 12 for intermediate values of ~ω. While a larger model
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Figure 3.9: Ground-state energies for doubly magic nuclei as a function of the harmonic
oscillator energy ~ω with the NN+3N(400) interaction, SRG softened with λSRG = 2fm−1.
The energies are plotted for emax = 8, 10, 12, showing the convergence as the model space
increases. The results are independent of the underlying oscillator frequency to ∼ 1% for
emax = 12. The grey dashed line is the experimental binding energy. The overbinding of
this interaction becomes apparent as the system size increases.

space is always desirable, this level of variance justifies the use of emax = 12 for post-CC

calculations. Additionally, these results show the limitations of the NN+3N(400) interaction,

as overbinding increases with the system size, where the ground-state energies of 20Ca and

56Ni differ from their experimental binding energies by ∼ 8% and ∼ 13%, respectively.

The ground-state results are also shown for singly-magic nuclei, where either the protons
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or neutrons fill a sub-shell closure. This has the potential complication of a vanishing energy

gap between the hole and particle states, like the picture in Fig. 3.6, which causes undefined

behavior in the CC algorithm (see section 3.4). However, the subshell orbitals repel each

other when transformed during the Hartree-Fock algorithm [126], so these systems are valid

in some cases. The ground-state energies for 14C, 22O, and 34Si are plotted as a function

of the underlying oscillator potential in Fig. 3.10. The smaller energy gap involved in these

systems results in stronger excitations missed by the CCSD approximation, causing further

deviations from the experimental values.
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Figure 3.10: Ground-state energies for singly magic nuclei as a function of the harmonic
oscillator energy ~ω with the NN+3N(400) interaction, SRG softened with λSRG = 2fm−1.
The energies are plotted for different emax. The results are independent of the underlying
oscillator frequency to ∼ 1% for emax = 12. The grey dashed line is the experimental binding
energy. These results underbind with respect to their doubly-magic counterparts in Fig. 3.9.

3.7 Ground-State Center-of-Mass Factorization

While an intrinsic Hamiltonian can be built by removing the center-of-mass (COM) kinetic

energy, Eq. (3.66), there is still an inconsistency between the translational invariance of the

underlying harmonic oscillator basis and translationally-invariant nuclear many-body states

[127, 128]. This inconsistency can materialize in certain calculations in the form of spurious,
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non-physical states.

Of course, this problem can be avoided by using more complicated basis states that obey

translational invariance, such as the use of Jacobi coordinates, but such methods are limited

to few-body problems [129, 130]. Another possible solution is to use the harmonic oscillator

basis in an untruncated space of Slater determinants up to a certain harmonic oscillator shell.

Known as the Nmax space, this treatment can be successfully applied within no-core shell

model calculations [28]. However, the factorial scaling of this method restricts its use to light

nuclei. It can be shown that in the Nmax space, the eigenstates of the intrisic Hamiltonian

are also eigenstates of the COM Hamiltonian, and any state perfectly factorizes into a COM

component and a translationally-invariant, intrinsic component,

|Ψ〉 = |Ψin〉|Ψcm〉. (3.67)

This factorization results in a compound energy spectrum, where the intrinsic component

of the spectrum is degenerate for each COM excitation. Therefore, the intrinsic spectrum can

be recovered by offsetting the COM Hamiltonian by the corresponding excitation energies,

such that the COM energies vanish, Ecm = 0. However, with truncated methods like CCSD,

this factorization is not guaranteed, and COM energies, no longer eigenenergies of the COM

Hamiltonian, can take on valuesEcm 6= 0. In this case, the intrinsic spectrum is contaminated

with nonphysical, spurious states.

Because the specific form is irrelevant [131], the shifted COM Hamiltonian can be assumed

to take the form of a harmonic trap with a oscillator strength of ~ω̃, not necessarily equal

to the oscillator strength of the underlying basis ~ω̃,

Ĥcm (ω̃) =
Pcm

2mA
+

1

2
mAω̃2Rcm −

3

2
~ω̃, (3.68)
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offset by the ground-state energy, 3
2~ω̃. In the Nmax space, the factorization in Eq. (3.67)

occurs regardless of ~ω̃, while in truncated methods like CCSD, the COM oscillator strength

is a free parameter which can be used to probe the level of COM contamination. If a

frequency exists such that Ecm (ω̃) ≈ 0, then the wave function is approximately factorized,

and the COM wave function is in its ground state [132, 133].

The COM energy, Ecm, can be calculated by using a version of the Hellmann-Feynman

theorem by adding the COM Hamiltonian as a perturbation and computing the difference

quotient [134, 135],

Ecm (ω̃) ≡ 〈Ψ|Ĥcm |Ψ〉 ≈
1

2δ

(
〈Ψ|Ĥ+ δĤcm (ω̃) |Ψ〉 − 〈Ψ|Ĥ− δĤcm (ω̃) |Ψ〉

)
. (3.69)

Because the operator Rcm depends only on the underlying single-particle basis regardless of

the COM oscillator frequency, it can be rewritten in terms of Ĥcm to find the relationship

between ω and ω̃,

1

ω̃2

(
Ĥcm (ω̃)− T̂ cm +

3

2
~ω̃
)

=
1

ω2

(
Ĥcm (ω)− T̂ cm +

3

2
~ω
)
. (3.70)

Using the known value 〈Ψ|T̂ cm |Ψ〉 = 3
4~ω̃ and the requirement that Ecm (ω̃) = 0 gives

the following relation that relates the COM oscillator frequency to the underlying basis

frequency,

~ω̃ = ~ω +
2

3
Ecm (ω)±

√(
2

3
Ecm (ω)

)2

+
4

3
~ωEcm (ω). (3.71)

The ground-state COM energies are plotted for 16O and 40Ca using the COM Hamilto-

nian with two different oscillator strengths in Fig. 3.11: that of the underlying basis, ~ω,

and one of the two solutions to Eq. (3.71), ~ω̃±. Of the two ~ω̃±, which are shown as the
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solutions to Eq. (3.71) in the inset, one typically results in a large COM energy while the

other vanishes, which is plotted. Because the COM energies approximately vanish regard-

less of the underlying basis frequency, the COM wave function is in its ground state and

approximately factorized from the intrinsic nuclear wave function.

Unfortunately, when intrinsic states are coupled to COM excited-states, they can con-

taminate the spectrum of intrinsic states that are coupled to the COM ground-state. These

spurious states can be essentially removed from the ground-state spectrum with the Lawson-

Gloeckner method [128]. When the proper COM oscillator strength is chosen such that the

COM ground-state energy vanishes, the COM Hamiltonian can be added to the intrinsic

Hamiltonian at an arbitrarily large scale, β, without changing the ground-state spectrum,

Ĥin → Ĥin + βĤcm. (3.72)

When β is arbitrarily large, eigenenergies of intrinsic states coupled to COM excited states

will increase by the COM energy quanta, β~ω̃, such that they are removed from the range

of low-lying states of interest. The method will be used to remove spurious states from the

spectra of open-shell states in section 4.
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Figure 3.11: Ground-state COM energies, Eq. (3.68), for 16O and 40Ca at various harmonic
oscillator frequencies with the NN+3N(400)-induced interaction with λSRG = 2.0 fm−1 at
emax = 12. Using the proper COM oscillator frequencies shows the approximate factorization
of Eq. (3.67).
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Chapter 4

Equation-of-Motion Method

Once the ground state energy and the effective Hamiltonian have been calculated, any further

properties of the ground state can be calculated using the correlated wave function written

as an expansion of Slater determinants in the form of Eqn. (3.1). However, many of the

most interesting processes in nuclear physics involve excited-state properties. Additionally,

because the coupled cluster method requires a doubly closed-shell reference state, most topics

in nuclear physics that can benefit from an ab initio description are unreachable with the

standard coupled cluster approach alone.

These restrictions motivate a class of techniques known as the equation-of-motion (EOM)

methods [136]. Applied with the CC effective Hamiltonian, the equation-of-motion coupled

cluster (EOM-CC) method begins with a standard CC calculation of a closed-shell ground

state. Then, EOM target states are built onto the correlated ground-state wave function in

the same way that CI states were built from the reference state, Eqn. (2.48). Unfortunately,

because the CCSD similarity transformation only decouples the ground state from 1p -1h and

2p -2h excitations, these target states are still coupled to each other. Therefore, capturing

the relevant correlations to describe EOM states involves a CI-like diagonalization of the

effective Hamiltonian.
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4.1 Equation-of-Motion States

The CC equations-of-motion states are built by applying a particular type of excitation

operator to the correlated ground-state wave function in the same way that the correlated

ground-state wave function was built by applying the exponential cluster operator to the

reference state,

|Ψµ〉 = R̂µ |Ψ〉 = R̂µ eT̂ |Φ0〉. (4.1)

The EOM excitation operator can be written as a linear combination of strings composed

of particle creation operators and hole annihilation operators in increasing order, R̂µ =

(0)R̂µ + (1)R̂µ + (2)R̂µ + · · · . The form of these strings is determined by the structure of

the desired target state. For example, excited states maintain the particle number of the

reference state and ground state so that the constituent operator strings are kp -kh operators.

The A-particle excited-state EOM operator R̂Aµ is,

R̂Aµ = µr0 +
∑
ai

µrai

{
â
†
a âi

}
+

1

4

∑
abij

µrabij

{
â
†
a â
†
b âj âi

}
+ · · · , (4.2)

where (0)R̂µ = µr0 represents the ground-state component of an excited state with the same

conserved quantum numbers and the matrix elements, µrai ,
µrabij , · · · , are the normal-ordered

components of R̂µ.

In addition to excited states, particle-attached (PA) states can be reached by applying

strings of the form p, pph, ppphh, etc. to the ground state. These operator strings increase

the number of particles by one and gives the particle-attached equation-of-motion PA-EOM
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operator R̂A+1
µ = (1)R̂A+1

µ + (2)R̂A+1
µ + · · · ,

R̂A+1
µ =

∑
a

µra
{
â
†
a

}
+

1

2

∑
abi

µrabi

{
â
†
a â
†
b âi

}
+ · · · . (4.3)

Lastly, particle-removed (PR) states can be reached by applying strings of the form h, hhp, hhhpp,

etc. to the ground state. These operator strings decrease the number of particles by one

and give the particle-removed equation-of-motion PR-EOM operator R̂A−1
µ = (1)R̂A−1

µ +

(2)R̂A−1
µ + · · · ,

R̂A−1
µ =

∑
i

µri {âi}+
1

2

∑
aij

µraij

{
â
†
a âj âi

}
+ · · · . (4.4)

With these target states, the Schrödinger equation can be written by applying the Hamil-

tonian to Eq. (4.1),

Ĥ|Ψµ〉 = Eµ |Ψµ〉,

ĤR̂µ eT̂ |Φ0〉 = EµR̂µ eT̂ |Φ0〉. (4.5)

This equation can be written in terms of the effective Hamiltonian by multiplying with the

operator e−T̂ ,

e−T̂ ĤR̂µ eT̂ |Φ0〉 = Eµ e−T̂ R̂µ eT̂ |Φ0〉. (4.6)

Because both R̂µ and T̂ are excitation operators, containing only particle creation operators

and hole annihilation operators, no nonzero contractions can occur between them (see section

2.4). This means that the order of the two operators is inconsequential such that they

commute with each other (R̂µT̂ = T̂ R̂µ), which is also true for the exponential cluster

operator (R̂µ eT̂ = eT̂ R̂µ). This property can be used to rewrite Eq. (4.6) in terms of the
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effective Hamiltonian,

e−T̂ Ĥ eT̂ R̂µ |Φ0〉 = Eµ e−T̂ eT̂ R̂µ |Φ0〉

HR̂µ |Φ0〉 = EµR̂µ |Φ0〉. (4.7)

Using the normal-ordered Hamiltonian, the equation can be rewritten as,

HNR̂µ |Φ0〉 = ∆EµR̂µ |Φ0〉. (4.8)

Up to this point, extending the CC method from the ground state to excited and open-

shell states amounts to an energy eigenvalue problem involving the normal-ordered effective

Hamiltonian and the EOM excitation operators R̂µ. The signature component of EOM

methods is reached by multiplying the normal-ordered ground-state Schrödinger equation,

Eq. (2.4), with R̂µ and subtracting the result from Eq. (4.8),

(
HNR̂µ − R̂µHN

)
|Φ0〉 =

(
∆Eµ −∆E

)
R̂µ |Φ0〉. (4.9)

The right-hand side of this equation can be rewritten as the commutator
[
HN, R̂µ

]
and the

energy difference can be defined as ωµ ≡ ∆Eµ−∆E so that the fundamental EOM equation

is, [
HN, R̂µ

]
|Φ0〉 = ωµR̂µ |Φ0〉. (4.10)

The name equation-of-motion refers to the resemblance of this equation with the commutator-

based Heisenberg representation of quantum mechanics. The objective behind this formula-

tion is to reduce the dependence of EOM states on the ground state by removing common

terms between them. This reduction is accomplished by noticing that, like the commutator
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between HN and R̂µ, the commutator between uncontracted terms of
[
HN, R̂µ

]
vanishes.

This simplifies the commutator in Eq. (4.11) to only connected terms just as the effective

Hamiltonian was simplified in Eq. (3.8),

(
HNR̂µ

)
c
|Φ0〉 = ωµR̂µ |Φ0〉. (4.11)

Equation (4.6) constitutes a generalized eigenvalue problem which solves for the compo-

nents of the EOM operator, µr, and the energy difference, ωµ. If only the energy of excited

or open shell states are required, solving this equation is sufficient for such a task. However,

computing properties of EOM states requires the Hermitian conjugate of the EOM operator

R̂
†
µ, and as encountered before, the non-Hermiticity of the effective Hamiltonian complicates

this effort.

4.2 Dual Solutions

Because the CC effective Hamiltonian is non-Hermitian (H
†

N 6= HN), the eigenvalue problem

in Eq. (4.8) has a corresponding left-eigenvalue problem,

〈Φ0|L̂µHN = 〈Φ0|L̂µ∆Eµ. (4.12)

The operators L̂µ are de-excitation operators analogous to the corresponding right operators

R̂µ. The left EOM operator for particle-attached states has the form,

L̂A+1
µ =

∑
a

µla {âa}+
1

2

∑
abi

µliab

{
â
†
i âb â

}
+ · · · , (4.13)
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and the left EOM operator for particle-removed states has the form,

L̂A−1
µ =

∑
i

µli
{
â
†
i

}
+

1

2

∑
aij

µl
ij
a

{
â
†
i â
†
j âa

}
+ · · · . (4.14)

Again, the matrix elements µl are the normal-ordered components of L̂µ and map to a cor-

responding µr. Because there is not a corresponding left eigenvalue problem for the ground

state in the form of Eq. (2.4), the EOM eigenvalue problem for L̂µ cannot be reduced to the

form of Eq. (4.11). This amounts to calculating additional non-contracted terms between

the Hamiltonian and the left EOM state and computing the energy difference directly from

ωµ ≡ ∆Eµ −∆E.

The corresponding right and left EOM operators form a bi-orthogonal basis such that,

〈Φ0|L̂µR̂ν |Φ0〉 = δµν . (4.15)

When this condition is fulfilled, any scaling of the right and left solutions by the factors

α and 1/α, respectively, also fulfills the condition. Therefore, because the normalization

of each solution is not determined uniquely, both solutions must be used when computing

properties of EOM states. This is accomplished by applying the bi-orthogonal solutions as

the identity operator,

1̂ =
∑
µ

R̂µ |Φ0〉〈Φ0|L̂µ. (4.16)
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4.2.1 Induced Three-Body Interaction

Before solving the EOM equations, it’s beneficial to introduce relevant three-body effective

Hamiltonian terms which will be used in Eqs. (4.11) and (4.12). While the original three-

body Hamiltonian was only used for the normal-ordered zero- and one-body pieces, the CC

similarity transformation induces higher-body interactions from contractions between the

Hamiltonian and the cluster operators, see Eq. (3.8). In the CCSD approximation, the four-

body interaction is the highest-order term, generated from the contraction of the Hamiltonian

with the term 1
2 T̂

2
1. Fortunately, the PA-EOM-CCSD and PR-EOM-CCSD methods only

include certain three-body interactions, which are shown below. The effective hpphpp three-

body interaction can couple two particle-attached operators of the form µrabi

{
â
†
a â
†
b âi

}
and

is generated from a term of the form V̂ T̂2,

a b i

c j d

=
a b i

c j d
k

Xiab
jcd = −

∑
k

V
jk
cdt

ab
ki . (4.17)

Likewise, the effective hhphhp three-body interaction couples two particle-removed operators

of the form µraij

{
â
†
a âj âi

}
,

i j a

k b l

=
i j a

k b l
c

Xkla
ijb =

∑
k

V
jk
cdt

ab
ki . (4.18)
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Because the pphpph structure in Eq. (4.17) scales as O(n2
hn

4
p), it can quickly overtake

a calculation’s memory allocation. Therefore, these structures are never actually built. In-

stead, the different components are summed as special intermediates when they are needed

during PA-EOM-CC or PR-EOM-CC calculations.

4.3 Solving the EOM equations

At this point, after solving for the CC ground-state wave function with a truncated cluster

operator, a full accounting of the remaining many-body correlations would scale factorially

like the full CI method, see section 2.6 and Fig. 2.3. Therefore it’s necessary to truncate

the EOM operators with the assumptions that the lower-order excitations will dominate

the EOM states. In this work, the particle-attached and particle-removed operators are

truncated at the 2p -1h and 1p -2h levels, respectively, which is referred to as the EOM(2)

truncation. Like other effective ab initio methods, this approximation can be systematically

improved by including higher-order terms. For the PA-EOM(2) method, the EOM operators

have the form,

R̂A+1
µ =

∑
a

µra
{
â
†
a

}
+

1

2

∑
abi

µrabi

{
â
†
a â
†
b âi

}
and

L̂A+1
µ =

∑
a

µla {âa}+
1

2

∑
abi

µliab

{
â
†
i âb â

}
. (4.19)
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Likewise, the PR-EOM(2) method, the EOM operators have the form,

R̂A−1
µ =

∑
i

µri {âi}+
1

2

∑
aij

µraij

{
â
†
a âj âi

}
and

L̂A−1
µ =

∑
i

µli
{
â
†
i

}
+

1

2

∑
aij

µl
ij
a

{
â
†
i â
†
j âa

}
. (4.20)

The EOM matrix eigenvalue equation can be solved in a computationally practical way

with power-iteration methods. Traditionally, the Lanczos algorithm is used to produce the

lowest energy eigenvalues and their corresponding eigenvectors from a Hermitian matrix

[137]. In this case, with a non-Hermitian matrix, the generalized Arnoldi algorithm [138] is

used instead. These methods remove the need to build the entire matrix, 〈Φ0|L̂µHNR̂µ |Φ0〉,

to be diagonalized, instead relying on matrix-vector products performed as a step in an it-

erative process. In this work the iterative procefure was implemented with the numerical

software library ARPACK [139]. The matrix is simply the effective normal-ordered Hamil-

tonian HN and the vectors are EOM operators. Like the coupled cluster equations, this

matrix-vector product is best computed with diagrammatic techniques and are shown be-

low.

The matrix-vector product for the right eigenvalue problem of the PA-EOM(2) method

consists of two components which can be seen clearly by left-multiplying Eq. (4.11) with the

particle-attached bra states, 〈Φa| and 〈Φabi | , respectively. This has the effect of projecting

out the corresponding components µr,

〈Φa|
(
HNR̂µ

)
c
|Φ0〉 = ωµ

µra, (4.21)

〈Φabi |
(
HNR̂µ

)
c
|Φ0〉 = ωµ

µrabi . (4.22)
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Like the coupled-cluster equations, the EOM equations are best derived with diagrammatic

techniques. For these purposes, the right EOM excitation operators are depicted by the

vertex type . Equation (4.21) generates the following expressions and corresponding

diagrams, suppressing the state identifier µ for clarity,

ωra =
∑
c

Xa
c r
c +

∑
kc

Xk
c r
ac
k +

1

2

∑
kcd

Xak
cd r

cd
k

a =
c

a

+ a

c k

+

a

c d k

. (4.23)

The corresponding expressions and diagrams for Eq. (4.22) are,

ωrabi =
∑
c

Xab
ci r

c + P̂ (ab)
∑
c

Xb
cr
ac
i −

∑
k

Xk
i r
ab
k +

1

2

∑
cd

Xab
cdr

cd
i

− P̂ (ab)
∑
kc

Xak
ci r

cb
k −

1

2

∑
klcd

Vklcdt
ab
kir

cd
l

a b i =

a

c

b i

+ a i

c

b

+ a

i

k

b +

a

c

b

i

d

+

a

c

i

b

k

+
a b i

d l c
k

. (4.24)

The vector-matrix product for the left eigenvalue problem of the PA-EOM(2) method

also consists of two components achieved in a similar fashion by right-multiplying Eq. (4.12)

with the particle-attached ket states, 〈Φa| and 〈Φabi | , respectively, which has the effect of
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projecting out the corresponding components µl,

〈Φ0|L̂µHN |Φa〉 = ∆Eµ
µla, (4.25)

〈Φ0|L̂µHN |Φabi 〉 = ∆Eµ
µliab. (4.26)

Because Eqns. (4.25) and (4.26) do not use commutators between HN and L̂µ, the diagrams

which describe these equations include disconnected diagrams and corresponding expressions

with matrix elements that share no indices. For these diagrams, the left EOM de-excitation

operators are depicted by the vertex type . Equation (4.25) generates the following

expressions and diagrams, again suppressing the state identifier µ,

Ela =
∑
c

lcX
c
a +

1

2

∑
kcd

lkcdX
cd
ak

a =
c

a

+
c

a

d k

. (4.27)
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The corresponding expressions and diagrams for Eq. (4.26) are,

Eliab = P̂ (ab) laX
i
b +

∑
c

lcX
ci
ab −

∑
k

lkabX
i
k + P̂ (ab)

∑
c

liacX
c
b

+
1

2

∑
cd

licdX
cd
ab − P̂ (ab)

∑
kc

lkcbX
ci
ak −

1

2

∑
klcd

llcdV
ki
abt

cd
kl

a b i = a

b i

+
c

a b i

+ a

i

k

b + a i

c

b

+

a

c d

b

i +

a

c k

i

b +
a b i

d l c
k

. (4.28)

The particle-removed equations are generated in exactly the same way. The matrix-

vector product for the right eigenvalue problem of the PR-EOM(2) method consists of two

components corresponding to the particle-removed bra states, 〈Φi| and 〈Φaij | , respectively,

〈Φi|
(
HNR̂µ

)
c
|Φ0〉 = ωµ

µri, (4.29)

〈Φaij |
(
HNR̂µ

)
c
|Φ0〉 = ωµ

µraij . (4.30)

Equation (4.29) generates the following expressions and diagrams,

ωri = −
∑
k

Xk
i rk +

∑
kc

Xk
c r
c
ik −

1

2

∑
klc

Xkl
ic r

c
kl

i =

i

k

+ i

ck

+

i

k cl

. (4.31)
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The corresponding expressions and diagrams for Eq. (4.30) are,

ωkr
a
ij = −

∑
k

Xka
ij rk − P̂ (ij)

∑
k

Xk
j r
a
ik +

∑
c

Xa
c r
c
ij +

1

2

∑
kl

Xkl
ij r

a
kl

− P̂ (ij)
∑
kc

Xak
ci r

c
kj −

1

2

∑
klcd

Vklcdt
ca
ij r

d
kl

i j a =

i

k

j a

+ i a

k

j

+ i

a

c

j +

i

k

j

a

l

+

i

k

a

j

c

+
i j a

dl k
c

. (4.32)

Finally, the vector-matrix product for the left eigenvalue problem of the PA-EOM(2)

method consists of two components which correspond with the particle-removed ket states,

〈Φi| and 〈Φaij | , respectively,

〈Φ0|L̂µHN |Φi〉 = ∆Eµ
µli, (4.33)

〈Φ0|L̂µHN |Φaij〉 = ∆Eµ
µl
ij
a . (4.34)

Again, Eqns. (4.33) and (4.34) do not remove disconnected diagrams with commutators
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between HN and L̂µ. Equation (4.33) generates the following expressions and diagrams,

Eli = −
∑
k

lkXi
k −

1

2

∑
klc

lklc X
ic
kl

i =
k

i

+
k

i

cl

. (4.35)

The corresponding expressions and diagrams for Eq. (4.34) are,

Ekl
ij
a = P̂ (ij) liX

j
a −

∑
k

lkX
ij
ka +

∑
c

l
ij
c X

c
a − P̂ (ij)

∑
k

lika X
j
k

+
1

2

∑
cd

lkla X
ij
kl − P̂ (ij)

∑
kc

l
kj
c X

ci
ak −

1

2

∑
klcd

lkld V
ij
catcdkl

i j a = i

j a

+
k

i j a

+ i

a

c

j + i a

k

j

+

i

k l

j

a +

i

k c

a

j +
i j a

dl k
c

. (4.36)

These expressions must be computed for every iteration of the Arnoldi algorithm and

contain expensive sums that can benefit from the techniques of section 3.4. The major

difference in this case is that while the cluster operators and the Hamiltonian are scalar

operators that define the conserved quantum numbers of a symmetry channel, see section

3.4.1, the EOM operators are tensor operators that carry their own quantum numbers and

can change the symmetry of the reference state to that of the target state.
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4.4 EOM-CC for 2D Quantum Dots

To examine some properties of the EOM-CC method, it’s useful to focus on the results

from the two-dimensional quantum dot. This system, also known as an “artificial atom”,

consists of A electrons confined within a 2D harmonic oscillator and subject to the inter-

electron Coulomb force. These nanoscale structures are easily tunable which makes them

relevant for probing many different quantum phenomena in experiments and theoretical

models [140, 141, 142], and because the quantum dot shell structure is similar to those of

atomic nuclei, they provide a useful system to quantify the impact of quantum effects at

different levels of correlation [143].

4.4.1 Quantum Dot Formalism

The circular quantum dot system is characterized by a harmonic-oscillator potential of the

form V (r) = mω2r2/2, where ω is its angular frequency, r is the radial distance from

the center, and m is the electron mass. The single-particle states can be constructed as

eigenfunctions of the 2D quantum harmonic oscillator,

(−~2

2m
∇2 +

1

2
mω2r2

)
φnm`σ(r) = εnm`φnm`σ(r). (4.37)

These states are characterized by a radial quantum number n, a spin quantum number σ, and

because this systems conserves orbital angular momentum, a corresponding angular momen-

tum projection number, m`. The energy of each single-particle state φnm`σ(r), independent

of the spin quantum projection, is given by,

εnm` ≡ (2n+ |m`|+ 1)ω. (4.38)
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In addition to the spin projection σ, they are degenerate with respect to the shell index k,

k ≡ 2n+ |m`|, (4.39)

which labels each shell from zero with a total number of shells, K. The shell structure is

illustrated in Fig. 4.1.

mℓ

0

−½

+½ ms

1

3

5

E
/ω

 =
 k

 +
 1

+3−3

0
1
2

n

Figure 4.1: The 42 lowest single-particle states (the first 5 shells) in the 2D harmonic os-
cillator basis. Each box represents a single-particle state arranged by m`, ms, and energy,
and the up/down arrows indicate the spin of the states. Within each column, the principal
quantum number n increases as one traverses upward.

The specific form of these basis states can be solved with the cylindrically symmetric

Fock–Darwin states Fnm` , which conserve the orbital angular momentum projection L̂z ≡

−i ∂∂ϕ . Apart from their spin component, the states are defined as [144],

Fnm`(ρ, ϕ) ≡ √ωRn|m`|(
√
ωρ)× 1√

2π
eim`ϕ, where (4.40)

Rnm(%) ≡
√

2× n!

(n+m)!
e−%

2/2%mL
(m)
n (%2)

and L
(α)
n denotes the generalized Laguerre polynomial [145] of degree n and parameter α.
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Like the homogeneous electron gas, (see section 3.5), the electrons in the quantum dot

interact with each other through the standard Coulomb interaction, V (r1, r2) = 1/|r1− r2|,

which is expressed in atomic units where m = c = e = (4πε0)−1 = 1. With the form of the

single-particle wave functions, the second-quantized form of the two-body interaction can be

analytically calculated,

(2)H
pq
rs ≡

∫
dr1dr2 φ

∗
p(r1)φ∗q(r2)

1

|r1 − r2|
[φr(r1)φs(r2)− φs(r1)φr(r2)] , (4.41)

where φp(r) is shorthand for φnpm`pσp
(r).

With these ingredients in hand, the ground state energy, as well as particle-attached and

particle-removed energies, can be calculated for different values of the oscillator frequency,

ω, and the number of shells, K.

4.4.2 Quantum Dot Results

Here, CC results are shown along with results from the in-medium similarity renormalization

group (IM-SRG) method, and quasi-degenerate perturbation theory (QDPT) [146]. As for

all calculations in this work, each method applies a Hartree-Fock transformation of the basis

states from Eq. (4.37) before employing the primary many-body method. Before analyzing

the EOM results, the ground state energies calculated using CCSD and IM-SRG(2) are

shown in Fig. 4.2. Also included are results from Møller–Plesset perturbation theory to

second order (MP2), DMC [147], and full CI [148] for comparison where available.

With respect to the number of shells, both IM-SRG(2) and CCSD appear to converge

slightly faster than second order perturbation theory (MP2), mainly due to the presence

of higher order corrections in IM-SRG(2) and CCSD. However, the main conclusion that
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Figure 4.2: Ground state energy (in Hartrees) of quantum dots with N particles and an
oscillator frequency of ω calculated with several different methods.

can be reached from Fig. 4.2 is the overall convergence between vastly different methods, a

hallmark of properly-treated ab initio methods.

Additionally, the results for addition and removal energy calculations are summarized

in Fig. 4.3 and Fig. 4.4 respectively. Not only do these results reaffirm the validity of the

CCSD method amongst other ab initio methods, they also provide benchmark calculations

for the following CC-EOM calculations of open-shell finite nuclei.

4.5 Quality of EOM Solutions

Applying the CC similarity transformation to the Hamiltonian implicitly re-sums contribu-

tions from higher order excitations beyond the EOM(2)-CC truncation (3p -2h, 4p -3h, . . . for

PA-EOM and 2p -3h, 3p -4h, . . . for PR-EOM) into the lower-order excitations which com-

prise the EOM(2)-CC operators (1p -0h, 2p -1h, . . . for PA-EOM and 0p -1h, 1p -2h, . . . for

PR-EOM). This means that EOM states are weighted towards few-body excitations when
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Figure 4.3: Particle-attached energy (in Hartrees) of quantum dots with N particles and an
oscillator frequency of ω calculated with several different methods.
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Figure 4.4: Particle-removed energy (in Hartrees) of quantum dots with N particles and an
oscillator frequency of ω calculated with several different methods.
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compared to the corresponding state calculated with the CI method and the bare Hamilto-

nian.

Despite this improvement on the corresponding CI method, the EOM(2) truncation of

Eqs. (4.3) and (4.3) is not guaranteed to capture the primary components of certain collective

states. Therefore, the quality of the solution can be judged by measuring the amount of

overlap between the EOM solution and 1p -0h states for PA-EOM or 0p -1h states for PR-

EOM. This overlap can be computed with partial norms,

n1-particle =

√∑
a

〈Φa|R̂µ |Φ0〉〈Φ0|L̂µ |Φa〉 =

√∑
a

|rala|, (4.42)

n1-hole =

√∑
i

〈Φi|R̂µ |Φ0〉〈Φ0|L̂µ |Φi〉 =

√∑
i

|rili|. (4.43)

If the single-particle overlap is small, the state is dominated by higher-order excitations and

requires a less-restricted truncation in order to describe it properly, which can be accom-

plished directly or perturbatively [149, 52]. On the other hand, large single-particle partial

norms indicate that the EOM truncation is reasonable for the relevant state.

Figure 4.5 shows this relationship using the difference between EOM-CC and full CI

energies for quantum dot particle-attached and particle-removed states, ∆E/E, as function

of the single-particle overlap. The energy difference with the exact FCI result grows as the

single-particle character of the wave function shrinks. Therefore, care should be taken when

encountering unphysical states with a small single-particle overlap.
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Figure 4.5: Energy difference of particle-attached and particle-removed states between the
EOM-CC method and the exact FCI method for a quantum dot with various parameters
plotted against the single-particle overlap of the FCI state, n1-particle or n1-hol, see Eqs.
(4.42) and (4.43). The strong correlation shows that the quality of EOM states can be
judged by this metric.

4.6 EOM-CC for Finite Nuclei

Like its ground-state counterpart, the EOM extension to coupled cluster theory was first

applied to nuclear systems [150, 151, 152]. However the progress was again halted by the non-

perturbative nucleon-nucleon interaction, so again it quickly gained prominence in quantum

chemistry [153, 18]. Since the introduction of SRG-softened chiral interactions, the EOM-

CC method has been established as a powerful and reliable method for reaching open-shell

systems and excited states [44, 50, 133, 154, 155]. This section shows results for the PA-

EOM-CC and PR-EOM-CC methods calculated with the NN+3N(400) interaction, SRG

softened with λSRG = 2.0 fm−1. The initial closed-shell calculations were performed for 16O

and 22O.

The ground-state energies for particle-attached nuclei are shown in Fig. 4.6. Unlike
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the ground states for closed-shell nuclei, which is uniquely determined, the particle-attached

ground state must be identified as the state corresponding to the lowest eigenvalue of the

converged solution. All the results are in close agreement with the experimental values while

the subshell nuclei, 23O and 23F, are slightly underbound like their closed-shell counterpart,

16O (see Fig. 3.10).
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Figure 4.6: Ground-state energies for the particle-attached nuclei 17O, 17F, 23O, and 23F
as a function of the harmonic oscillator energy ~ω with the NN+3N(400) interaction, SRG
softened with λSRG = 2fm−1. The energies are plotted for emax = 8, 10, 12, showing the
convergence as the model space increases. The grey dashed line is the experimental binding
energy.
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The ground-state energies for particle-removed nuclei are shown in Fig. 4.7. These

results follow the same pattern as the particle-attached states, converging to within ∼ 1%

at emax = 12 and overbinding for EOM states constructed from the 22O ground state.
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Figure 4.7: Ground-state energies for the particle-removed nuclei 15N, 15O, 21N, and 21O as
a function of the harmonic oscillator energy ~ω with the NN+3N(400)-induced interaction,
SRG softened with λSRG = 2fm−1. The energies are plotted for emax = 8, 10, 12, showing
the convergence as the model space increases. The grey dashed line is the experimental
binding energy.

The problem of center-of-mass contamination discussed in section 3.7 extends to the

EOM states as well. To ensure that the EOM wavefunction has been sufficiently factorized
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from the COM wave function, an equivalent diagnostic to Fig. 3.11 can be performed. First,

the ground-state COM energy is computed using Eq. (3.69) and the corresponding COM

oscillator strength is obtained from Eq. (3.71). By using A + 1 particles for PA-EOM and

A− 1 particles for PR-EOM in the intrinsic Hamiltonian, Eq. (3.66), the A-body problem is

not properly treated. However, the approximate COM factorization for the A+ 1 and A− 1

systems, according to Eq. (3.67), is reached when the COM energy vanishes at this new

oscillator strength. The results from the COM diagnostic on the PA-EOM and PR-EOM

states is shown in Fig. 4.8.

With the underlying COM oscillator strengths determined from Fig. 4.8, the excitation

spectra of the corresponding open-shell nuclei can be treated with the Lawson-Gloeckner

method [128] by artificially raising COM-coupled, spurious states out of the range of interest

by adding the COM Hamiltonian to the intrinsic Hamiltonian, Eq. (3.72). The EOM low-

lying excited states of 17O and 17F are shown in Fig. 4.9 with and without the Lawson-

Gloeckner term. When the term is added, the spurious negative-partiy states are removed

from the lower portion of the spectra. The non-spurious states, 1/2+ and 3/2+, are not

removed but do increase slightly due to the imperfect COM factorization.

While the experimental excited states of the particle-attached nuclei 23O and 23F are not

well-known, the EOM states can be treated in an equivalent way to remove the negative-

parity states in 23O, shown in Fig. 4.10. The low-lying excited states of the particle-removed

nuclei 15N and 15O are shown in Fig. 4.11 and those of 21N and 21O are shown in Fig. 4.12.

These EOM-CC states can now be used to calculate properties of excited-states and open-

shell systems. In particular, the transition amplitudes between neutron- and proton-attached

states, or between neutron- and protron-removed states, describes the nuclear structure

components of the corresponding beta-decay.
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Figure 4.8: Ground-state COM energies, Eq. (3.68), for open-shell nuclei at varies harmonic
oscillator frequencies with the NN+3N(400)-induced interaction with λSRG = 2.0 fm−1 at
emax = 12. The top row shows the results for the particle-attached nuclei 17O, 17F, 23O,
and 23F, and the bottom row shows the results for the particle-removed nuclei 15N, 15O,
21N, and 21O. The right column shows that the COM wave function practically vanishes
according to Eq. (3.67).
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Figure 4.9: Low-lying PA-EOM states for 17O and 17F with and without a Lawson-Gloeckner
term, along with the experimentally determined spectra. The negative-partity states are
COM contaminants and are removed by artificially raising the COM excitation energy with
the parameter β according to Eq. (3.72).
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Figure 4.10: Low-lying PA-EOM states for 23O and 23F with and without a Lawson-
Gloeckner term. The negative-partiy states in 17O are COM contaminants and are removed
by artificially raising the COM excitation energy with the Lawson-Gloeckner method, Eq.
(3.72). The excited states of these nuclei have not been experimentally detemined.
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Figure 4.11: Low-lying PR-EOM states for 15N and 15O with and without a lawson-gloeckner
term, and the experimentally determined spectra. The 1/2+ state is a COM contaminant
and is removed by artificially raising the COM excitation energy with the parameter β
according to Eq. (3.72).
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Figure 4.12: Low-lying PA-EOM states for 21N and 21O with and without a Lawson-
Gloeckner term, Eq. (3.72), and the experimentally determined spectra. The negative-partiy
states in 17O are COM contaminants and are removed by artificially raising the COM exci-
tation energy. The excited states of these nuclei have not been experimentally detemined.
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Chapter 5

Beta–Decay Effective Operators

Now with the ability to calculate open-shell states, properties of and transitions between

these states can be obtained. In particular, this chapter focuses on beta-decay transitions

between two particle-attached states and between two particle-removed states. However,

because these techniques are formulated in a general way, they can be applied to any type of

one-body operator and any type of EOM-CC state. First, this chapter describes beta-decay

processes in detail and the relevant operators are introduced. Then, these operators are

used to construct effective coupled cluster operators that take important correlations from

the ground-state wave function into account. Finally, the effective operators are applied to

EOM-CC states to calculate transition amplitudes for the corresponding processes. These

amplitudes can then be used to calculate observables like decay strengths and half-lives.

5.1 Beta-Decay Properties

Nuclear beta decay describes a class of radioactive decays of the atomic nucleus that result

as a consequence of the weak interaction. These processes involve the exchange of a W

boson which allows a quark within a proton or neutron to change type, thus converting

a neutron to a proton or vice versa. Additionally, this conversion is accompanied by an

electron-antineutrino or positron-neutrino pair which ensures the process conserves charge

and lepton number. This work focuses on the three most common types of weak processes

that occur within atomic nuclei: β− decay, β+ decay, and electron capture (EC). The first,
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β− decay, is the process whereby a down quark becomes an up quark, converting a neutron

to a proton along with the creation of an electron, or β− particle, and an antineutrino.

Schematically, this decay can be written as,

β− decay : n −→ p+ e− + ν̄e.

The corresponding mirror process is the β+ decay, whereby an up quark becomes a down

quark, converting a proton to a neutron with the creation of a positron, or β+ particle, and

a neutrino. This decay is represented by,

β+ decay : p −→ n+ e+ + νe.

A closely related process is the electron capture, whereby an atomic electron interacts with

an up quark of a proton via a W boson, causing the conversion to a down quark and the

release of a neutrino. This process can be written as,

Electron capture : p+ e− −→ n+ νe.

These three processes are schematically represented in Fig. 5.1.

The decay Q-value is a measure of the net energy of these processes. In free space,

only β− decay has a positive Q-value and can occur spontaneously. However, within a

nucleus, correlations between nucleons cause the relatively simple exchanges in Fig. 5.1 to

take on more complicated, higher-order processes involving pion exchanges between different

nucleons, see Fig. 5.2. This also has the effect of changing the energetics of the β+ decay and

electron-capture processes such that their Q-values are positive and can occur within certain
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Figure 5.1: Schematic representations of the three free-space weak processes in this work:
β− decay (a), β+ decay (b), and electron-capture (c). The coupling constant for the point
interaction vertex is the weak-interaction coupling constant gW .
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Figure 5.2: Schematic representations of a higher-order weak interactions involving pion-
exchange that occur within a nucleus, for β− decay (a), β+ decay (b), and electron-capture
(c). These processes are not included in the impulse approximation. The coupling constant
for the point interaction vertex is the effective weak-interaction coupling constant GF .

nuclei. However, these complicated processes can be approximated by assuming that the

weak interaction occurs at very short length and time scales due to the large mass of the W

boson, mW . Known as the impulse approximation, this treatment of weak processes within

nuclei ignores any nucleon-nucleon interactions involved in weak decays, instead treating a

single nucleon as a spectator to the other nucleons during the weak interaction, shown in

Fig. 5.3. In addition, this motivates the simplification of the W boson exchanges in Fig.

5.1, with coupling constant gW , to a point interaction, shown in Figs. 5.3 and 5.2, with an

effective coupling constant GF =
√

2g2
W /8(mW c2)2 [156].

These beta-decay processes can be further characterized by the character of their angular

momentum. Allowed beta decays involve an electron-antineutrino or positron-neutrino pair
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Figure 5.3: Schematic representations of the impulse approximations to the different weak
processes within an A-body nucleus: β− decay (a), β+ decay (b), and electron-capture (c).
The active nucleon doesn’t interact with the initial and final nuclei during the weak process.
The coupling constant for each interation vertex is the weak-interaction coupling constant
GF .

with no angular momentum, L = 0. In this case, there can be no parity change between

the initial and final nuclear states. Also, each pair of spin-1
2 leptons carries a coupled spin

of either S = 0 or S = 1. Therefore, the initial and final nuclear states must have angular

momenta that only differ by 0 or 1, (∆J = 0, 1). Additionally, parity must be conserved

for these interactions. Fermi transitions (F) occur when the nuclear states are coupled to

leptons with S = 0, and Gamow-Teller transitions (GT) occur when the lepton have a

spin S = 1. The summary of these selection rules are shown in table 5.1. It should be

Decay Type ∆J = JF − JI πFπI

Fermi 0 +1
Gamow-Teller 1(JF = 0 or JI = 0) +1
Gamow-Teller 0, 1(JF > 0 and JI > 0) +1

Table 5.1: Summary of the selection rules for allowed beta decays according to the angular
momentum J and parity π of the initial (I) and final (F ) states.

stated that while Gamow-Teller transitions can occur without a change in the nuclear spin

(∆J = 0 for JF > 0 and JI > 0), the Gamow-Teller operator carries an angular momentum

of J = 1.

The half-life of these processes T1/2 can be calculated using a combination of both the
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Fermi and Gamow-Teller type transitions in the form of their reduced transition amplitudes,

BF and BGT, respectively,

BF =
g2
V |MF |2
2Ji + 1

BGT =
g2
A|MGT |2
2Ji + 1

, (5.1)

where Ji is the final state angular momentum. The factor gV is the vector coupling constant,

and its value can be shown to be exactly gV = 1.0. The axial-vector coupling constant gA

has a free-space value of gA = −gV , but is altered within nuclei due to nucleon-nucleon

correlations. The exact problem of how to treat the value of the axial-vector constant has

been a widely studied topic for decades [157, 158, 159, 160], but this work will use the value

gA/gV = 1.261(8) [161]. The transition matrix elements MF and MGT are measures of the

overlap integral between the initial and final nuclear states for the different transitions and

will be discussed in the next section. Inserting these reduced transition amplitudes into the

standard result from time-dependent perturbation theory gives the decay half-life,

T1/2 =
f

K0 (BF +BGT)
. (5.2)

The factor f represents a phase-space integral over the final nuclear and lepton states and

depends on the decay Q-value. The factor K0 encodes the relevant constants involved,

K0 =
2π3~7 ln 2

m5
ec

4G2
F

≈ 6147 s, (5.3)

where me is the electron mass, and GF is the effective coupling constant. The next section

describes the process of improving upon the impulse approximation by using coupled cluster

theory to include higher-body interactions with the CC similarity transformation.
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5.2 Coupled Cluster Effective Operators

The main step in calculating dynamic properties within an ab initio framework is to calculate

the transition matrix elements of the relevant operator between two correlated many-body

states. In the cases considered in this thesis, the correlated many-body states are given by

right and left expansions for the PA-EOM(2) and PR-EOM(2) operators in Eqs. (4.3) and

(4.3), respectively. Beta-decay properties are computed with the Fermi and Gamow-Teller

operators which are one-body operators that change a neutron to a proton or vice versa and

carry the quantum numbers that correspond to the rules in table 5.1.

In the impulse approximation, the Fermi operator, which has no spin component, is

simply equivalent to the isospin raising operator for the β− Fermi transition, which changes

a neutron to a proton, or the lowering operator for the β+ transition, which changes a proton

to a neutron,

ÔF∓ =
∑
pq

〈p‖ τ̂± ‖q〉
{
â
†
p âq

}
. (5.4)

The reduced matrix element, see appendix D, 〈p‖ τ̂± ‖q〉, is given by, see [162],

〈p‖ τ̂± ‖q〉 =
√

2jp + 1 δnpnqδlplqδjpjqδtptq±1 , (5.5)

where the quantum numbers n and l can refer to the quantum numbers of any spherical

basis, such as the harmonic oscillator basis, and t is the states isosping projection. Similarly,

the Gamow-Teller operator also includes the isospin raising/lowering operator in addition to

the spin operator σ̂,

ÔGT∓ =
∑
pq

〈p‖ σ̂τ̂± ‖q〉
{
â
†
p âq

}
. (5.6)
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Here, the reduced matrix element, 〈p‖ σ̂τ̂± ‖q〉, is also given by, see [162],

〈p‖ σ̂τ̂± ‖q〉 =
√

6(2jp + 1)(2jq + 1)

{
1
2

1
2 1

jq jp lp

}
(−1)lp+jp+3

2 δnpnqδlplqδtptq±1. (5.7)

These operators can now be used to calculate the transition matrix elements in Eq. (5.1)

by applying them between an initial state, |Ψi〉, and a final state, 〈Ψf | . The Fermi reduced

transition amplitude is,

MF = 〈Ψf‖ ÔF∓ ‖Ψi〉 = δJfJi

∑
pq

〈p‖ τ̂± ‖q〉 〈Ψf‖
{
â
†
p âq

}
‖Ψi〉 . (5.8)

Similarly, the Gamow-Teller reduced transition amplitude is,

MGT = 〈Ψf‖ ÔGT∓ ‖Ψi〉 =
∑
pq

〈p‖ σ̂τ̂± ‖q〉 〈Ψf‖
{
â
†
p âq

}
‖Ψi〉 . (5.9)

Within the coupled cluster framework, the initial and final states take the form of PA-

EOM or PR-EOM states given generically in Eq. (4.1). According to Eqs. (4.7) and (4.12),

the left and right eigenstates of the bare Hamiltonian can be given by 〈Ψf | = 〈Φ0|L̂f e−T̂

and |Ψi〉 = eT̂ R̂i |Φ0〉. Inserting these EOM states into Eqs. (5.8) and (5.9), gives,

MF = δJfJi

∑
pq

〈p‖ τ̂± ‖q〉 〈Φ0‖ L̂f e−T̂
{
â
†
p âq

}
eT̂ R̂i ‖Φ0〉 . (5.10)

Similarly, the Gamow-Teller matrix element becomes,

MGT =
∑
pq

〈p‖ σ̂τ̂± ‖q〉 〈Φ0‖ L̂f e−T̂
{
â
†
p âq

}
eT̂ R̂i ‖Φ0〉 . (5.11)

The resemblance of these equations to Eq. (3.6) motivates the construction of an effective
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operator, λŌ. The Fermi and Gamow-Teller effective operators have the form,

ŌF∓ =
∑
pq

〈p‖ τ̂± ‖q〉 e−T̂
{
â
†
p âq

}
eT̂ , (5.12)

ŌGT∓ =
∑
pq

〈p‖ σ̂τ̂± ‖q〉 e−T̂
{
â
†
p âq

}
eT̂ . (5.13)

The similarity-transformed component, e−T̂
{
â
†
p âq

}
eT̂ , is known as the one-body density

matrix. Using the Baker-Campbell-Housedorf expansion like Eq. (3.7) and the reduction to

connected diagrams like Eq. (3.8), the one-body density matrix can be reduced to the form,

e−T̂
{
â
†
p âq

}
eT̂ =

({
â
†
p âq

}
eT̂
)

c
. (5.14)

The effective operators are best calculated using diagrammatic techniques like those used

for the effective Hamiltonian. In this case, the bare one-body operators are depicted by

the vertex type while the effective one- and two-body operators are depicted by

and , respectively.

The one-body beta-decay operators can be split into hp, hh, pp, and ph components

which are analogous to the one-body components of the effective Hamiltonian, see appendix

B. The hp component has no connected terms in Eq. (5.14), and so it is unchanged by the

similarity transformation,

i a

=

i a

λOia = λOia. (5.15)
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The pp component is augmented by single excitations from the reference state. This com-

ponent’s diagrammatic and algebraic expressions are,

a

b

=

a

b

+

a

b
k

λOab = λOab −
∑
k

λOkb t
a
k. (5.16)

Similarly, the hh component is also augmented by single excitations from the reference state,

j

i

=

j

i

+

j

i
c

λOij = λOij +
∑
c

λOict
c
j . (5.17)

The ph component of the effective beta-decay operator includes effects from single and double

excitations from the reference state. The diagrammatic and algebraic expressions for this

component are,

ia

=

ia

+ i

a

c

+ a

i

k

+ ia

c k

λOai = λOai +
∑
c

λOac t
c
i −

∑
k

λOki t
a
k +

∑
kc

λOkc t
ac
ik . (5.18)

Like the higher-body interactions induced by the CC similarity transformation, two-body

effective operators are induced from the one-body bare beta-decay operator. Calculating

properties using PA-EOM(2) and PR-EOM(2) states requires only two components of the
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effective two-body operator. The pphp component is the results of double excitations from

the reference state and is given by the following diagram and the corresponding expression,

b

c

a i

=

b

c

ia

k

λOabic = −
∑
k

λOkc t
ab
ik . (5.19)

Similarly, the hphh component is represented by the following diagram and its corresponding

algebraic expression,

i

j k a

=

j

i

ak

c

λOiajk =
∑
c

λOict
ca
jk. (5.20)

After constructing the effective operators, the reduced transition amplitudes in Eq. (5.1)

can be calculated. Because of the ambiguity in the bi-orthonormalization discussed in section

4.2, the square-norm of the matrix elements, |M |2, must be written using both the left and

right solutions for each of the initial and final states. Expanded in terms of the EOM states,

these reduced amplitudes for the Fermi and Gamow-Teller operators become,

BF =
g2
V

2Ji + 1
δJfJi

∑
f

〈Φ0‖ L̂iŌF±R̂f ‖Φ0〉 〈Φ0‖ L̂f ŌF∓R̂i ‖Φ0〉 , (5.21)

BGT =
g2
A

2Ji + 1

∑
f

〈Φ0‖ L̂iŌGT±R̂f ‖Φ0〉 〈Φ0‖ L̂f ŌGT∓R̂i ‖Φ0〉 . (5.22)

Using the machinery developed in this thesis and the techniques discussed in this chapter,
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the calculated half-lives of various nuclei will be presented in an upcoming paper.
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Chapter 6

Conclusions and Perspectives

6.1 Summary and Conclusions

Accurate ab initio calculations of beta-decay transition amplitudes are necessary for answer-

ing many open questions from a wide range of areas in modern physics from nucleosynthesis

to fundamental symmetries. The accuracy and scope needed to answer such questions neces-

sitate a technique that is widely applicable, systematically improvable, and scalable to large

systems. In this thesis, we have developed the formalism for and achieved the application of

techniques based on coupled cluster theory that fulfill these requirements.

The large and versatile program that implements these techniques can be used for many

different fermionic systems including the homogeneous electron gas, quantum dots, and fi-

nite nuclei. Because of the program’s modular form, additional systems like neutron drops,

infinite nuclear matter, and atomic systems can easily be added in subsequent updates. Im-

portantly, we extended the single-determinant coupled-cluster method to open-shell systems

using the equation-of-motion method which grants a broader reach across the nuclear chart.

Also, we added the crucial ability to perform calculations with and without three-body forces

which ensures accurate results. Also modular, these components of the program can be eas-

ily extended to higher-order EOM approximations, two-particle-attached and two-particle-

removed EOM states, and the inclusion of full three-body forces. Lastly, we’ve implemented

the ability to construct any effective one-body operator and calculate the corresponding
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observables using ground and excited EOM states. In future iterations of this code, higher-

order effective operators, like those required for double-beta-decay experiments, can also be

implemented. Also, these higher-order operators can be constructed from two-body chiral

weak currents and used to investigate the quenching of the axial vector coupling constant.

In addition to developing and implementing these various techniques, we performed cal-

culations at each step to verify the results. In particular, we provided a proof of principle by

comparing our results with those from other ab initio methods for various different systems.

Also, we calculated ground-state energies as well as particle-attached and particle-removed

spectra for various light nuclei, focusing mainly on the oxygen chain. In future publications,

this machinery will be extended up the nuclear chart to heavier nuclei and out to the limits

of stability to calculate beta-decay properties of nuclei around 78Ni and 100Sn, which are

important to future experiments at FRIB. For example, consistent beta-decay lifetime cal-

culations from ab initio methods will be invaluable for astrophysical simulations of different

nucleosynthesis processes.
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Appendix A

CCSD Diagrams

The following diagrams and their corresponding algebraic expressions comprise the differ-

ent contributions to the CCSD cluster amplitudes without directly building the effective

Hamiltonian, H . The boxed diagrams are automatically zero in a Hartree-Fock basis. The

contributions to the CCSD singles equation, (3.10), are given by Eqs. (A.1)-(A.8).

f̂N t̂1|Φ0〉c =

a i

+ a

i

k

+ i

a

c

= fai −
∑
k

fki t
a
k +

∑
c

fac t
c
i (A.1)

V̂N t̂1|Φ0〉c =

a i

c k

= −
∑
kc

Vkaic t
c
k (A.2)
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f̂N t̂2|Φ0〉c = ia

c k

=
∑
kc
fkc t

ac
ki (A.3)

V̂N t̂2|Φ0〉c =

a

i

dc k

+

i

a

lc k

=
1

2

∑
kcd

Vkacd t
cd
ki +

1

2

∑
klc

Vklic t
ca
kl (A.4)

f̂N t̂
2
1|Φ0〉c = a

i

l d

=
∑
kcd

f ldt
a
l t
d
i (A.5)

V̂N t̂
2
1|Φ0〉c =

a

i

dc k

+

i

a

lc k

=
∑
kcd

Vkacd t
c
kt
d
i +

∑
klc

Vklic t
c
kt
a
l (A.6)
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V̂N t̂1t̂2|Φ0〉c = a

i

l d c k

+ i

a

d l c k

+ a i

c k d l

= −1

2

∑
klcd

Vklcdt
cd
kit

a
l −

1

2

∑
klcd

Vklcdt
ca
kl t

d
i +

∑
klcd

Vklcdt
ad
il t

c
k (A.7)

V̂N t̂
3
1|Φ0〉c = a

i

l d c k

= −
∑
klcd

Vklcdt
c
kt
d
i t
a
l (A.8)

The contributions to the CCSD doubles equation, (3.10), are given by Eqs. (A.9)-(A.19).

V̂N |Φ0〉c =

a i b j

= Vabij (A.9)

f̂N t̂2|Φ0〉c = i a j

b

c

+ a i b

j

k

= P̂ (ab)
∑
c

fbc t
ac
ij − P̂ (ij)

∑
k

fkj t
ab
ik (A.10)
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V̂N t̂1|Φ0〉c = a

i

k

b j

+ i

a

c

j b

= − P̂ (ab)
∑
k

Vkbij t
a
k + P̂ (ij)

∑
c

Vabcj t
c
i (A.11)

V̂N t̂2|Φ0〉c = a

i

k

b

j

l

+ i

a

c

j

b

d

+ a

i

k

j

b

c

=
1

2

∑
kl

Vklij t
ab
kl +

1

2

∑
cd

Vabcdt
cd
ij − P̂ (ij|ab)

∑
kc

Vkbic t
ac
kj (A.12)

V̂N t̂
2
1|Φ0〉c = a

i

k

b

j

l

+ i

a

c

j

b

d

+ a

i

k

j

b

c

=
∑
kl

Vklij t
a
kt
b
l +

∑
cd

Vabcdt
c
i t
d
j − P̂ (ij|ab)

∑
kc

Vkbic t
a
kt
c
j (A.13)

120



V̂N t̂
2
2|Φ0〉c =

a b

ck

i j

l d
+

a j

dl

bi

c k
+

i a

b j

c k ld

+

a i

j b

c k dl

=
1

4

∑
klcd

Vklcdt
ab
kl t

cd
ij + P̂ (ab)

∑
klcd

Vklcdt
ac
lj t

bd
ki − P̂ (ij)

1

2

∑
klcd

Vklcdt
ab
lj t

cd
ki

− P̂ (ab)
1

2

∑
klcd

Vklcdt
db
ij t

ca
kl (A.14)

f̂N t̂1t̂2|Φ0〉c =

a i

b j

k c
+

i a

j b

c k

= −P̂ (ab)
∑
kc
fkc t

a
kt
cb
ij − P̂ (ij)

∑
kc
fkc t

c
i t
ab
kj (A.15)
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V̂N t̂1t̂2|Φ0〉c =

a i

b j

l c k

+

i a

j b

d c k

+

a i

b

d

j

k c

+

i a j

l

b

c k
+

a i

b j

dc k

+

i a

j b

lc k

= P̂ (ij|ab)
∑
kcd

Vkacd t
bc
jkt

d
i − P̂ (ij|ab)

∑
klc

Vklci t
bc
jkt

a
l − P̂ (ab)

1

2

∑
kcd

Vkbcdt
cd
ij t

a
k

+ P̂ (ij)
1

2

∑
klc

Vklcjt
ab
kl t

c
i + P̂ (ab)

∑
kcd

Vkacd t
c
kt
db
ij − P̂ (ij)

∑
klc

Vklci t
c
kt
ab
lj (A.16)

V̂N t̂
3
1|Φ0〉c =

a i

b

d

j

k c
+

i a j

l

b

c k

= − P̂ (ij|ab)
∑
kcd

Vkbcdt
a
kt
c
i t
d
j + P̂ (ij|ab)

∑
klc

Vklcjt
c
i t
a
kt
b
l (A.17)
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V̂N t̂
2
1t̂2|Φ0〉c =

a b

ck

i j

l d
+

a b

ck

i j

l d
+

a j

dl

bi

c k

+

i a

b j

c k ld
+

a i

j b

c k dl

=
1

2

∑
klcd

Vklcdt
ab
kl t

c
i t
d
j +

1

2

∑
klcd

Vklcdt
cd
ij t

a
kt
b
l + P̂ (ij|ab)

∑
klcd

Vklcdt
ac
lj t

b
kt
d
i

− P̂ (ij)
1

2

∑
klcd

Vklcdt
ab
lj t

c
kt
d
i − P̂ (ab)

1

2

∑
klcd

Vklcdt
db
ij t

c
kt
a
l (A.18)

V̂N t̂
4
1|Φ0〉c =

a b

ck

i j

l d

=
∑
klcd

Vklcdt
a
kt
b
l t
c
i t
d
j (A.19)
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Appendix B

Effective Hamiltonian Diagrams

The following diagrams and their corresponding algebraic expressions comprise the different

components of the CCSD effective Hamiltonian, H . Because some components are used as

intermediates to build other components, they must be built in the order written. Some

intermediate components overcount some diagrams which motivates the need for further

intermediates, denoted by X ′, X ′′, and X ′′′. The boxed diagrams are automatically zero in

a Hartree-Fock basis. The one-body components to the CCSD effective Hamiltonian, Eq.

(3.8), are given by Eqs. (B.1)-(B.4).

i a

=

i a

+
i a c k

Xi
a = f ia +

∑
kc

Vikact
c
k (B.1)

a

b

=

a

b

+

a

b

k c l +

a

b c k

+

a

b
k

Xa
b = fab −

1

2

∑
klc

Vklbct
ac
kl +

∑
kc

Vkacb t
c
k −

∑
k

Xk
b t
a
k (B.2)
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j

i

=

j

i

+

j

i

c d k +

j

i c k

X ′ij = f ij +
1

2

∑
kcd

Vikcdt
cd
jk +

∑
kc

Vikjct
c
k (B.3)

j

i

=

j

i

+

j

i
c

Xi
j = X ′ij +

∑
c

Xi
ct
c
j (B.4)

Once the one-body components have been constructed, the pseudo-linear form for the

CCSD singles equation, Eq. (3.9), can be evaluated,

ia

= 0 =

ia

+ i

a

c

+ a

i

k

+

a i

c k

+

a

i

dc k

+

i

a

kc l

+ ia

c k

Xa
i = 0 = fai +

∑
c

Xa
c t
c
i −

∑
k

X ′ki t
a
k +

∑
kc

Vkaci t
c
k

+
1

2

∑
kcd

Vkacd t
cd
ki −

1

2

∑
klc

Vklic t
ac
kl +

∑
kc

Xk
c t
ac
ik . (B.5)

During a CC iteration, it’s possible to use these updated singles amplitues T̂1 when evaluating

the doubles amplitudes T̂2 in the same iteration, which can accelerate the convergence.
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The two-body components to the CCSD effective Hamiltonian, Eq. (3.8), are given by

Eqs. (B.6)-(B.20).

a

c b i

=

a

c b i

+
1

2

a

c b i
k

X ′iabc = Viabc −
1

2

∑
k

Vikbct
a
k (B.6)

a

c b i

=

a

c b i

+

a

c b i
k

Xia
bc = Viabc −

∑
k

Vikbct
a
k (B.7)

k

i j a

=

k

i j a

+
1

2

k

i j a
c

X
′ij
ka = V

ij
ka +

1

2

∑
c

V
ij
cat

c
k (B.8)

k

i j a

=

k

i j a

+

k

i j a
c

X
ij
ka = V

ij
ka +

∑
c

V
ij
cat

c
k (B.9)
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a b

c d

=

a b

c d

+

a b

c d
k

X ′abcd = Vabcd − P̂ (ab)
∑
k

X ′kbcd t
a
k (B.10)

a b

c d

=

a b

c d

+

a b

c d

k l

Xab
cd = X ′abcd +

1

2

∑
kl

Vklcdt
ab
kl (B.11)

i j

k l

=

i j

k l

+

k l

i j

c d +

k l

i j
c

X
ij
kl = V

ij
kl +

1

2

∑
cd

V
ij
cdt

cd
kl + P̂ (kl)

∑
c

X
′ij
kct

c
l (B.12)

i

j a

b

=

i

j a

b

+

j

i

a

b
c

+
1

2
i

j a

b
k

X ′iajb = Viajb +
∑
c

X ′iacb t
c
j −

1

2

∑
k

Vikjbt
a
k (B.13)
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i

j a

b

=

i

j a

b

+
1

2

j

i

a

b
c

+
1

2
i

j a

b
k

X ′′iajb = Viajb +
1

2

∑
c

X ′iacb t
c
j −

1

2

∑
k

Vikjbt
a
k (B.14)

i

j a

b

=

i

j a

b

+
1

2

j

i

a

b
c

+
i

j a

b
k

X ′′′iajb = Viajb +
1

2

∑
c

Xia
cbt

c
j −

∑
k

Vikjbt
a
k (B.15)

i

j a

b

=

i

j a

b

+

(
1

2

) j a

i b

c k +
1

2

j

i

a

b
c

Xia
jb = X ′′′iajb −

(
1

2

)∑
kc

Vikcbt
ca
jk +

1

2

∑
c

Xia
cbt

c
j (B.16)

The factor of
(

1
2

)
is applied when solving the CCSD equations but omitted when applying

the effective Hamiltonian in post-CC methods.

b

c

a i

=

b

c

a i

+
1

2

b

c

a

i

d

+

b

c

i

a

k

X ′abic = Vabic +
1

2

∑
d

Vabdct
d
i − P̂ (ab)

∑
k

X ′′kbic t
a
k (B.17)
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b

c

a i

=

b

c

a i

+

b

c

a

i

d

+

b

c

i

a

k

+

b

c

ia

k
+

b

c

ia

kd

+

b

c

l k

i a

Xab
ic = Vabic +

∑
d

Vabdct
d
i − P̂ (ab)

∑
k

X ′kbic t
a
k

−
∑
k

Xk
c t
ab
ik + P̂ (ab)

∑
kd

Xkb
dc t

ad
ik +

1

2

∑
kl

Xkl
ic t

ab
kl (B.18)

i

j k a

=

i

j k a

+
1

2
i

j k

a

l

X ′iajk = Viajk −
1

2

∑
l

Viljkt
a
l (B.19)

i

j k a

=

i

j k a

+
i

j k

a

l

+
i

j a

k

c

+
i

j

ak

c l

+

j

i

c d

a k

+

j

i

ak

c

Xia
jk = Viajk −

∑
l

Viljkt
a
l + P̂ (jk)

∑
c

X ′′′iajc t
c
k

+ P̂ (jk)
∑
lc

Xil
jct

ca
lk +

1

2

∑
cd

Xia
cdt

cd
jk +

∑
c

Xi
ct
ca
jk (B.20)
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a i b j

= 0 =

a i b j

+
c

a

i b j +
k

i

a j b

+ i

a

c

j

b

d

+ a

i

k

b

j

l

+ a

i

k

j

b

c

+

ia jb

k

+

a i b j

c

Xab
ij = 0 = Vabij + P̂ (ab)

∑
c

Xa
c t
cb
ij − P̂ (ij)

∑
k

Xk
i t
ab
kj

+
1

2

∑
cd

X ′abcd t
cd
ij +

1

2

∑
kl

Xkl
ij t

ab
kl − P̂ (ab|ij)

∑
kc

Xkb
ic t

ac
kj − P̂ (ab)

∑
k

X ′kbij t
a
k + P̂ (ij)

∑
c

X ′abic t
c
j

(B.21)
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Appendix C

Computational Implementation

The sums involved in building the CC effective Hamiltonian, solving the CC equations,

solving the EOM-CC equations, and building effective operators can all be reformulated

as matrix-matrix multiplications and thus performed with efficient LAPACK and BLAS

routines. To take advantage of this efficiency, the various cluster amplitudes and matrix

elements must be grouped into structures with similar index organization so that summed

indices map to the same states and matrix elements. An additional benefit to these structures

is that angular-momentum-coupling coefficients are automatically removed by summing over

Clebsch-Gordon coefficients, see chapter D.

Symmetry Channels

Each matrix structure is separated into different symmetry channels for different perutations

of its indices. The channels are denoted as Σ~ξ, where ~ξ represents the relevant quantum

numbers of a certain channel. There are four different channel types that are relevant for

the structures used in this work.

The direct two-body channel categorizes the vector sum of two single-particle-state quan-

tum numbers, Σ~ξ1
,

~ξpq = ~ξp + ~ξq −→ |pq〉 ∈ Σ~ξ1=~ξpq
. (C.1)

The cross two-body channel categorizes the vector difference of two single-particle-state
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quantum numbers or, equivalently, the vector sum of a the quantum numbers of a single-

particle state and a time-reversed single-particle state, Σ~ξ2
,

~ξpq̄ = ~ξp − ~ξq = ~ξp + ~ξq̄ −→ |pq̄〉 ∈ Σ~ξ2
. (C.2)

The one-body channel categorizes single-particle states by their vector quantum numbers,

Σ~ξ3
,

~ξp −→ |p〉 ∈ Σ~ξ3
. (C.3)

The cross three-body state categorizes the vector difference between the quantum numbers

of a direct two-body state and a single-particle state or, equivalently, the vector sum of the

quantum numbers of a two-body direct state and a time-reversed single-particle state, Σ~ξ3
,

~ξpqr̄ = ~ξp + ~ξq − ~ξr = ~ξp + ~ξq + ~ξr̄ −→ |pqr̄〉 ∈ Σ~ξ3=~ξpqr̄
.

Channel-Partitioned Structures

Different matrix structures are indexed by their channel type: 1 for direct channels, 2 for cross

channels, and 3 for one-/three-body channels. For matrices with more than one structure

of the same type, there is an additional index that depends on the specific permutation

involved.

For a one-body operator A
p
q

{
â
†
p âq

}
, there is a direct-channel matrix element and a
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cross-channel matrix element,

A1 = A
p
q , A2 = Apq̄. (C.5)

For a two-body operator A
pq
rs

{
â
†
p â
†
q âs âr

}
, there is a direct-channel matrix element, four

cross-channel matrix elements, and four one-channel matrix elements,

A1 = A
pq
rs,

A21
= A

ps̄
rq̄, A22

= A
qr̄
sp̄, A23

= A
pr̄
sq̄ , A24

= A
qs̄
rp̄,

A31
= A

p
rsq̄, A32

= A
q
rsp̄, A33

= A
pqs̄
r , A34

= A
pqr̄
s . (C.6)

For an EOM operator of the form A
pq
r

{
â
†
p â
†
q âr

}
, there is a direct-channel matrix ele-

ment, a one-channel matrix element, and two cross-channel matrix elements,

A1 = A
pq
r , A3 = Apqr̄,

A21
= A

p
rq̄, A22

= A
q
rp̄. (C.7)

EOM operators of the form A
p
qr

{
â
†
p âr âq

}
have similar structures,

A1 = A
p
qr, A3 = Aqrp̄,

A21
= A

pr̄
q , A22

= A
pq̄
r . (C.8)
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Matrix Form of H =
(
ĤN eT̂

)
c

Xi
a = f ia + Viā

ck̄
tck̄

X
hp
2 ←− f

hp
2 + V

hhpp
23

· t2 (C.9)

Xa
b = fab −

1

2
taklc̄V

klc̄
b + Vab̄

ck̄
tck̄ − takXk

b

X
pp
3 ←− −

1

2
t31
·Vhhpp

33
− t3 ·X

hp
3

X
pp
2 ←− f

pp
2 + V

hppp
24

· t2 (C.10)

X ′ij = f ij +
1

2
Vi
cdk̄

tcdk̄j + V
ij̄
ck̄
tck̄

X′hh3 ←−
1

2
V
hhpp
31

· t33

X′hh2 ←− fhh2 + V
hhhp
23

· t2 (C.11)

Xi
j = f ij +

1

2
Vi
cdk̄

tcdk̄j + V
ij̄
ck̄
tck̄ +Xi

ct
c
j

Xhh
3 ←−

1

2
V
hhpp
31

· t33
+ X

hp
3 · t3

X′hh2 ←− fhh2 + V
hhhp
23

· t2 (C.12)
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Xa
i = fai +Xa

c t
c
i − takX ′ki − Vaī

ck̄
tck̄ +

1

2
Va
cdk̄

tcdk̄i − 1

2
taklc̄V

klc̄
i + taīkc̄X

kc̄

X
ph
3 ←− X

pp
3 · t3 − t3 ·X′

hh
3 +

1

2
V
hppp
32

· t34
− 1

2
t31
·Vhhhp

33

X
ph
2 ←− f

ph
2 −V

hphp
22

· t2 + t23
·Xhp

2 (C.13)

X ′iabc = Viabc −
1

2
takVkbc̄i

X′hppp32
←− V

hppp
32

− 1

2
t3 ·V

hhpp
32

(C.14)

Xia
bc = Viabc − takVkbc̄i

X
hppp
32

←− V
hppp
32

− t3 ·V
hhpp
32

(C.15)

X
′ij
ka = V

ij
ka +

1

2
V
ijā
c tck

X′hhhp33
←− V

ij
ka +

1

2
V
hhpp
33

· t3 (C.16)

X
ij
ka = V

ij
ka + V

ijā
c tck

X
hhhp
33

←− V
ij
ka + V

hhpp
33

· t3 (C.17)
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X ′abcd = Vabcd − P̂ (ab) takX
′k
cdb̄

X′pppp1 ←− V
pppp
1

X′pppp31(2)
←− ∓t3 ·X′

hppp
31

(C.18)

Xab
cd = X ′abcd +

1

2
tabklV

kl
cd

X
pppp
1 ←− X′pppp1 +

1

2
t1 ·V

hhpp
1 (C.19)

X
ij
kl = V

ij
kl +

1

2
V
ij
cdt

cd
kl + P̂ (kl)X

′ijk̄
c tcl

Xhhhh
1 ←− Vhhhh

1 +
1

2
V
hhpp
1 · t1

Xhhhh
33(4)

←− ∓X′hhhp34
· t3 (C.20)

X ′iajb = Viajb +X ′iab̄c tcj −
1

2
takVkjb̄i

X′hphp21
←− V

hphp
21

X′hphp33
←− X′hppp33

· t3

X′hphp32
←− −1

2
t3 ·V

hhhp
32

(C.21)
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X ′′iajb = Viajb +
1

2
X ′iab̄c tcj −

1

2
takVkjb̄i

X′′hphp21
←− V

hphp
21

X′′hphp33
←− 1

2
X′hppp33

· t3

X′′hphp32
←− −1

2
t3 ·V

hhhp
32

(C.22)

X ′′′iajb = Viajb +
1

2
Xiab̄
c tcj − takVkjb̄i

X′′′hphp21
←− V

hphp
21

X′′′hphp33
←− 1

2
X′hppp33

· t3

X′′′hphp32
←− −t3 ·V

hhhp
32

(C.23)

Xia
jb = Viajb +Xiab̄

c tcj − takVkjb̄i −
(

1

2

)
Vib̄
ck̄
tck̄jā

X
hphp
21

←− V
hphp
21

−
(

1

2

)
V
hhpp
21

t21

X
hphp
33

←− X
hppp
33
· t3

X
hphp
32

←− −t3 ·V
hhhp
32

(C.24)

X ′abic = Vabic +
1

2
Vabc̄d tdi − P̂ (ab) takX

′′k
icb̄

X′pphp33
←− V

pphp
33

+
1

2
V
pppp
33
· t3

X′pphp31(2)
←− ∓t3 ·X′′

hphp
31

(C.25)
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Xab
ic = Vabic + Vabc̄d tdi − P̂ (ab) takX

′k
icb̄
− tab̄ik Xk

c + P̂ (ab) taī
kd̄
Xkd̄
cb̄

+
1

2
tabklX

kl
ic

X
pphp
33

←− V
pphp
33

+ V
pppp
33
· t3

X
pphp
31(2)

←− ∓t3 ·X′
hphp
31

X
pphp
34

←− −t34
·Xhp

3

X
pphp
22(3)

←− ∓t23
·Xhppp

23

X
pphp
1 ←− 1

2
t1 ·X

hhhp
1 (C.26)

X ′iajk = Viajk −
1

2
tal Vljkī

X′hphh32
←− V

hphh
32

− 1

2
t3 ·Vhhhh

32
(C.27)

Xia
jk = Viajk − tal Vljkī + P̂ (jk)X

′′′iaj̄
c tck + P̂ (jk)X

ij̄
cl̄
tcl̄kā +

1

2
Xia
cdt

cd
jk +Xi

ct
c
jkā

X
hphh
32

←− V
hphh
32

− t3 ·Vhhhh
32

X
hphh
33(4)

←− ∓X′′′hphp34
· t3

X
hphh
21(3)

←− ∓X
hhhp
23

· t23

X
hphh
1 ←− 1

2
X
hppp
1 · t1

X
hphh
31

←− X
hp
3 · t31

(C.28)
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Xab
ij = Vabij + P̂ (ab)Xa

c t
c
ijb̄
− P̂ (ij) t

abj̄
k Xk

i +
1

2
X ′abcd t

cd
ij +

1

2
tabklX

kl
ij

− P̂ (ab|ij) taj̄kc̄X
kc̄
ib̄
− P̂ (ab) takX

′k
ijb̄

+ P̂ (ij)X ′ab̄ic tcj

X
pphh
1 ←− V

pphh
1 +

1

2
X′pppp1 · t1 +

1

2
t1 ·Xhhhh

1

X
pphh
31(2)

←− ±X
pp
3 · t31

∓ t3X′hphh31

X
pphh
33(4)

←− ∓t33
·Xhh

3 ±X′pphp34
t3

X
pphh
21(2)

←− −t21
·Xhphp

21

X
pphh
23(4)

←− t21
·Xhphp

21
(C.29)

Matrix Form of
(
HNR̂

A+1
µ

)
c
= ωµR̂

A+1
µ

ωkr
a = Xa

c r
c + rakc̄X

kc̄ − 1

2
Xa
cdk̄

rcdk̄

ωkr ←− X
pp
3 · r + r21

·Xhp
2 −

1

2
X
hppp
32
· r3 (C.30)

ωkr
ab
i = −Xab̄i

c rc + P̂ (ab)Xb
cr
c
iā − rabk Xk

i +
1

2
Xab
cdr

cd
i − P̂ (ab) rbkc̄X

kc̄
iā −

1

2
tab̄ik Vk

cdl̄
rcdl̄

ωkr3 ←− −X
pphp
34
· r − 1

2
t33
·Vhhpp

31
· r3

ωkr21(2)
←− ∓X

pp
3 · r22

± r22
·Xhphp

21

ωkr1 ←− −r1 ·Xhh
3 +

1

2
X
pppp
1 · r1 (C.31)
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Matrix Form of L̂A+1
µ HN = EµL̂

A+1
µ

One main difference for the left eigenproblem is that the disconnected term is computed as

an outer product rather than with matrix-matrix multiplication.

Ekla = lcX
c
a −

1

2
l
cdk̄

Xcdk̄
a

Ekl ←− l ·Xpp
3 −

1

2
l3 ·X

pphp
34

(C.32)

Ekl
i
ab = P̂ (ab) laX

ib̄ − lcXc
ab̄i −X

i
kl
k
ab + P̂ (ab) liāc X

c
b +

1

2
licdX

cd
ab

− P̂ (ab)Xiā
kc̄l

kc̄
b −

1

2
l
cdl̄
tcdl̄k Vkab̄i

Ekl3 ←− −l ·Xhppp
32
− 1

2
l3 · t33

·Vhhpp
31

Ekl21(2)
←− ±l ⊗X

hp
2 ∓ l22

·Xpp
3 ±X

hphp
21

· l22

Ekl1 ←− −Xhh
3 · l1 +

1

2
l1 ·X

pppp
1 (C.33)

Matrix Form of
(
HNR̂

A−1
µ

)
c
= ωµR̂

A−1
µ

ωkri = −rkXk
i +X

ck̄
rck̄i −

1

2
rklc̄X

klc̄
i

ωkr ←− −r ·Xhh
3 + X

hp
2′ · r21

− 1

2
r3 ·X

hhhp
33

(C.34)
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ωkr
a
ij = −rkXk

ijā − P̂ (ij) raīk X
k
j +Xa

c r
c
ij +

1

2
raklX

kl
ij − P̂ (ij)Xaī

ck̄
rck̄j −

1

2
r
kld̄

Vkld̄c tcijā

ωkr3 ←− −r ·Xhphh
31

− 1

2
r3 ·V

hhpp
33

· t31

ωkr21(2)
←− ±r22

·Xhh
3 ±X

hphp
22

· r22

ωkr1 ←− X
pp
3 · r1 +

1

2
r1 ·Xhhhh

1 (C.35)

Matrix Form of L̂A−1
µ HN = EµL̂

A−1
µ

Again, the disconnected term is computed as an outer product rather than with matrix-

matrix multiplication.

Ekl
i = −Xi

kl
k − 1

2
Xi
klc̄l

klc̄

Ekl ←− −XHH
3 · l − 1

2
X
hphh
31

· l3 (C.36)

Ekl
ij
a = P̂ (ij) liXaj̄ −X

ijā
k lk + l

ij
c X

c
a − P̂ (ij)X

j
kl
k
aī +

1

2
X
ij
kll

kl
a

− P̂ (ij) l
j
ck̄
Xck̄
aī −

1

2
V
ijā
c tc

kld̄
lkld̄

Ekl3 ←− −X
hhhp
33

· l − 1

2
V
hhpp
33

· t31
· l3

Ekl21(2)
←− ±l ⊗X

hp
2′ ±Xhh

3 · l22
± l22

·Xhphp
22

Ekl1 ←− l1 ·X
pp
3 +

1

2
Xhhhh

1 · l1 (C.37)
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Appendix D

Angular Momentum Coupling

Before deriving useful equations for J-scheme angular momentum coupling, it’s necessary to

list some shorthand notations, definitions, and useful relationships:

p̂ ≡
√

2jp + 1 (D.1)∑
{m}
≡ sum over all m (D.2)

Clebsch-Gordan coefficients:

〈pq|J〉 ≡ 〈jpmp; jqmq|JM〉 (D.3)

〈pq̄|J〉 ≡ 〈jp,mp; jq,−mq|JM〉(−1)(q−mq) (D.4)∑
JM

〈pq|J〉〈p′q′|J〉 = δmpmp′δmqmq′ (D.5)

∑
mpmq

〈pq|J〉〈pq|J ′〉 = δJJ ′δMM ′ (D.6)

(D.7)
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Clebsch-Gordan coefficient symmetries:

〈jpmp; jqmq|JM〉 = (−1)jp+jq−J 〈jpmp; jqmq|JM〉 (D.8)

= (−1)jp+jq−J 〈jqmq; jpmp|JM〉 (D.9)

= (−1)jp−mp
Ĵ

q̂
〈jpmp; J −M |jq −mq〉 (D.10)

= (−1)jq+mq Ĵ

p̂
〈J −M ; jqmq|jp −mp〉 (D.11)

= (−1)jp−mp
Ĵ

q̂
〈JM ; jp −mp|jqmq〉 (D.12)

= (−1)jq+mq Ĵ

p̂
〈jq −mq; JM |jpmp〉 (D.13)

Six-J symbols:

{
p q r

s t u

}
≡
{
jp jq jr
js jt ju

}
(D.14)

∑
j3

ĵ2
3

{
j1 j2 j3
j4 j5 j6

}{
j1 j2 j3
j4 j5 j′6

}
=
δj6j
′
6

ĵ2
3

(D.15)

∑
M ′
〈ps̄|J ′〉〈rq̄|J ′〉 = Ĵ ′2

∑
JM

{
p q J

r s J ′

}
〈pq|J〉〈rs|J〉 (D.16)

∑
M

〈pq|J〉〈rs|J〉 = Ĵ2
∑
J ′M ′

{
p q J

r s J ′

}
〈ps̄|J ′〉〈rq̄|J ′〉 (D.17)

Two-body, scalar J-scheme matrix elements (T̂ , Ĥ, H ), in terms of M-scheme matrix
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elements:

X
pqJ

rsJ
=
∑
{m}

X
pmpqmq
rmrsms

〈pq|J〉〈rs|J〉 (D.18)

X
ps̄J
′

rq̄J
′ =

∑
{m}

X
pmpqmq
rmrsms

〈ps̄|J ′〉〈rq̄|J ′〉 (D.19)

X
p

rsJ q̄
=
∑
{m}

X
pmpqmq
rmrsms

〈rs|J〉〈Jq̄|p〉 (D.20)

X
pqJ s̄
r =

∑
{m}

X
pmpqmq
rmrsms

〈pq|J〉〈Js̄|r〉 (D.21)

Two-body M-scheme matrix elements in terms of J-scheme, scalar matrix elements:

X
pmpqmq
rmrsms

=
∑
JM

X
pqJ

rsJ
〈pq|J〉〈rs|J〉 (D.22)

=
∑
J ′M ′

X
ps̄J
′

rq̄J
′ 〈ps̄|J ′〉〈rq̄|J ′〉 (D.23)

=
∑
JM

X
p

rsJ q̄
〈rs|J〉〈Jq̄|p〉 (D.24)

=
∑
JM

X
pqJ s̄
r 〈pq|J〉〈Js̄|r〉 (D.25)

To find the relationship between the scalar matrix elements of T̂ , Ĥ, and H with different

couplings, the M-scheme expressions are written in terms of their different couplings, then the

Clebsch-Gordon coefficients are reorganized using Eqs. (D.8)–(D.17) so that they have the

same form. A few examples of this recoupling are shown below with the relevant equation

used at each step. The shorthand X ≡ X
pmpqmq
rmrsms

is used for clarity. The relationship
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between X
pqJ

rsJ
and X

ps̄J
′

rq̄J
′ is,

X
pqJ

rsJ
=
∑
M{m}

X〈pq|J〉〈rs|J〉 =
∑

J ′M ′{m}
XĴ2

{
p q J

r s J ′

}
〈ps̄|J ′〉〈rq̄|J ′〉 (D.17)

=
∑
J

X
ps̄J
′

rq̄J
′ Ĵ

2

{
p q J

r s J ′

}
(D.19) (D.26)

As another example, the relationship between X
pqJ

rsJ
and X

p

rsJ q̄
is,

X
pqJ

rsJ
=
∑
{m}

X〈pq|J〉〈rs|J〉 =
∑
{m}

X〈qp|J〉〈rs|J〉(−1)jp+jq−J (D.9)

=
∑
{m}

X
Ĵ

p̂
〈Jq̄|p〉〈rs|J〉(−1)jp+jq−J (D.12)

= X
p

rsJ q̄

Ĵ

p̂
(−1)jp+jq−J (D.19) (D.27)

When sums are formulated in the terms of channel-partitioned matrices like those in

sections 3.4.2 and C, the factors related to a structure’s angluar momentum coupling are

automatically summed with the identity Eq. (D.6). To demonstrate this, an example is

shown here. First, from the CCSD equations the sum in Eq. (3.44) is rewritten in terms

of the J-scheme structures. The indices represent single-particle states in the M-scheme
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expression but represent degenerate shells in J-scheme,

1

2

∑
klcd

Vklcdt
db
ij t

ca
kl −→

1

2

∑
klcd

J1J2J3
{m}

ta
klJ1 c̄

〈kl|J1〉〈J1c̄|a〉Vkl
J2 c̄

d 〈kl|J2〉〈J2c̄|d〉td
ijJ3 b̄
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2
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ta
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Vkl
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d td
ijJ3 b̄
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=
1

2

∑
klcd
J1J3
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d td
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This final form has the same structure as Eq. (D.24) so that the sum can be collected into

the following structure with no angular-momenutm coupling coefficients,

ta
ijJ b̄

← 1

2

∑
klcd
J1J3

ta
klJ1 c̄

Vkl
J1 c̄

d td
ijJ3 b̄

. (D.29)

Amplitudes of different coupling structures are then gathered using relationships like those

in Eq. (D.26) and (D.27).
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