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ABSTRACT

ADDITION AND REMOVAL ENERGIES VIA THE IN-MEDIUM SIMILARITY

RENORMALIZATION GROUP METHOD

By

Fei Yuan

The in-medium similarity renormalization group (IM-SRG) is an ab initio many-body method

suitable for systems with moderate numbers of particles due to its polynomial scaling in computa-

tional cost. The formalism is highly �exible and admits a variety of modi�cations that extend its

utility beyond the original goal of computing ground state energies of closed-shell systems.

In this work, we present an extension of IM-SRG through quasidegenerate perturbation theory

(QDPT) to compute addition and removal energies (single particle energies) near the Fermi level at

low computational cost. This expands the range of systems that can be studied from closed-shell

ones to nearby systems that di�er by one particle. The method is applied to circular quantum dot

systems and nuclei, and compared against other methods including equations-of-motion (EOM)

IM-SRG and EOM coupled-cluster (CC) theory. The results are in good agreement for most cases.

As part of this work, we present an open-source implementation of our �exible and easy-to-use

J-scheme framework as well as the HF, IM-SRG, and QDPT codes built upon this framework.

We include an overview of the overall structure, the implementation details, and strategies for

maintaining high code quality and e�ciency.

Lastly, we also present a graphical application for manipulation of angular momentum coupling

coe�cients through a diagrammatic notation for angular momenta (Jucys diagrams). The tool

enables rapid derivations of equations involving angular momentum coupling – such as in J-scheme

– and signi�cantly reduces the risk of human errors.



In memory of Shichao Yuan (1964-2016) and Erik “Kexie” Gustafsson (1992-2017)
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• ǎ — time-reversed angular momentum (Eq. 3.15)

• (
j

m m′) — Herring–Wigner 1-jm symbol (Eq. 3.16)

• ⟨a‖Q̂‖b⟩ — reduced matrix element (Sec. 3.6)

• ⟨a, b|ab⟩ = ⟨jamajbmb |jabmab⟩ — Clebsch–Gordan coe�cient (Sec. 3.2)

• (abc) = (
ja jb jc
ma mb mc)

— Wigner 3-jm symbol (Sec. 3.3)

•

{
ja jb jc

}
— triangular delta (Sec. 3.8.1)

•

{
ja jb jc
jd je jf

}
— Wigner 6-j symbol (Sec. 3.8.2)

xv



•

⎧⎪⎪
⎨⎪⎪⎩

ja jb jc
jd je jf
jg jℎ ji

⎫⎪⎪
⎬⎪⎪⎭

— Wigner 9-j symbol (Sec. 3.8.3)

xvi



Chapter 1

Introduction

Quantum many-body theory is a broad discipline concerned with the behavior of quantum particles

in large numbers. It is of critical relevance in many �elds ranging from nuclear physics, through

quantum chemistry, to condensed matter theory.

The fundamental challenge of quantum many-body theory lies in the di�culty of obtaining

accurate results for fermionic systems in an e�cient manner, owing to the combinatoric growth

of the many-body Hilbert space as the number of particles increases. Certain methods such as

full con�guration interaction (FCI) theory [SB09] can achieve arbitrarily accurate results, but

their cost scales factorially with respect to the basis size and the number of particles, rendering

them infeasible for all but the smallest systems. In contrast, methods that scale polynomially must

necessarily make certain approximations. This has led to a menagerie of many-body methods that

trade varying amounts of accuracy for computational e�ciency.

Nuclear science is an area where many-body theory has made substantial breakthroughs

over the recent decades. For a long time, theories for nuclear physics have been largely limited

to phenomenological methods such as density-functional theories and the nuclear shell model

[BW88], which often have limited predictive power beyond the domain in which the parameters

were �t.

With advances in experimental technology such as the Facility for Rare Isotope Beams (FRIB)

[Tho10], there is a growing demand for more accurate nuclear calculations and wider coverage

of the nuclear chart, both of closed-shell and open-shell nuclei, and of stable and exotic ones.
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The needs of nuclear astrophysics should also not be understated: accurate models of nuclear

systems are critical to the understanding of dense stars and supernovae. Many-body theory is

also needed to calculate the rates of processes such as the neutrinoless double-beta decay, which

has fundamental relevance in particle physics: whether neutrinos are Majorana fermions or not.

Hence, the development of many-body theory is an essential step toward these many goals.

The recent introduction of chiral e�ective-�eld theory (EFT) [ME11] and methods based

on renormalization group (RG) theory [Wil83; Wei79; Lep05] have dramatically changed the

landscape of nuclear theory. Although the derivation of nuclear interactions from quantum

chromodynamics (QCD) has not yet been achieved, there has been great progress through lattice

QCD approaches [Hoe14; Uka15; IAH07; Ish+12; Iri+16]. At the moment, chiral EFT o�ers an

intermediate, practical solution in which the symmetries of QCD are used to construct an ansatz

of the nuclear interaction in a highly systematic way [EHM09]. The development of RG theory

and methods have allowed the creation of soft interactions that are unitarily equivalent to the

original [BFP07]. Such interactions converge much more rapidly with respect to basis size, thereby

reducing the cost of computations. The increasing availability of computing power has also played

a role in amplifying the progress of nuclear many-body theory.

The fruits of this progress can be seen in Fig. 1.1. Just a decade ago, only a handful of nuclei

near or below oxygen-16 could be computed by ab initio methods, as shown by the blue squares in

the upper chart. The idea of calculating a nucleus as heavy as tin-100 through an ab initio method

would have been considered absurd.

One particular many-body theory, the so-called in-medium similarity renormalization group

method (IM-SRG) [Her+16], has gained signi�cant attention in nuclear theory of late. IM-SRG

fuses the �ow equation approach of similarity renormalization group (SRG) with the particle-hole

operator formalism to reduce computational cost, providing a novel ab initio approach for solving

2
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Figure 1.1: Nuclear chart showing the current progress of ab initio nuclear structure. Image

courtesy of Heiko Hergert [Her+16].

the many-body problem. Over the years, IM-SRG has proven to be a highly �exible and adaptable

method. It o�ers e�cient evaluation of observables beyond energy [MPB15; Mor16], the ability to

tackle excited states [PMB17; Par17], as well as extensions to open-shell nuclei [Her17].

Unlike coupled-cluster (CC) theory, IM-SRG theory is naturally Hermitian, making it straight-

forward to utilize its matrix elements as an e�ective operator for other methods such as the nuclear

shell model [Bog+14; Str+16; Str+17]. The renormalizing nature of IM-SRG eliminates many of the

couplings between components of the many-body operator, simplifying post-IM-SRG calculations.
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In our work, we take advantage of the softening property of IM-SRG to compute single-particle

energies (addition and removal energies) via quasidegenerate perturbation theory (QDPT) to third

order, also known as open-shell perturbation theory. Our expectation is that the use of IM-SRG

ought to improve the overall quality and convergence of the perturbative results.

Compared to more sophisticated approaches such as the equations-of-motions method (EOM),

QDPT at third order (QDPT3) is remarkably inexpensive. The ability to cheaply solve systems

that are one particle away from a closed shell system can be remarkably useful in practice. Not

only does it expand the scope of applicability of closed-shell IM-SRG, it can even permit access to

excited states under certain circumstances.

1.1 Contributions

Our main contributions in this work are:

• We have created a graphical tool for performing equality-preserving transformations of

angular momentum diagrams [Jucys]. The diagrammatic formalism we use extends the

work of [YLV62].

• We have developed an open-source J-scheme codebase with an easy-to-use, �exible, and

extensible framework for many-body calculations [Lutario]. With this framework, we have

implemented the Hartree–Fock (HF) method, Møller–Plesset perturbation theory at second

order (MP2), IM-SRG method with two-body operators (IM-SRG(2)), and QDPT3. Our

program supports several quantum systems, including circular quantum dots, homogeneous

electron gas, in�nite matter, and nuclei.

• We have performed calculations of the quantum dot ground state and single-particle energies

using HF, IM-SRG(2), and QDPT3 [Yua+17], benchmarked against similar calculations using

EOM and CCSD. The results have been analyzed and extrapolated to the in�nite basis limit.
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• We have performed calculations of nuclear ground state and single-particle energies using

HF, IM-SRG(2), and QDPT3, benchmarked against similar calculations using EOM and CCSD.

We discuss the results and some preliminary analysis in this work.

1.2 Outline

The remainder of this thesis is structured as follows:

• We begin with a review of the many-body formalism in chapter 2. The primary purpose of

this section is to establish the background theory, terminology, and notational conventions

used in this work, as the �eld of many-body theory tends to be plagued by di�erences in

nomenclature and notation.

• In chapter 3, we discuss the details of angular momentum coupling. This forms a critical part

of our J-scheme machinery, needed for e�cient nuclear calculations. We also discuss angular

momentum diagrams, which are an e�ective tool for manipulation of angular momentum

expressions, as well as the jucys software that we have developed to aid simpli�cation of

such diagrams.

• In chapter 4, we discuss each of the three major many-body methods that we use in our

thesis: Hartree–Fock, IM-SRG, and QDPT. We explain and show all the critical equations

that are needed to implement them.

• In chapter 5, we discuss the theoretical background for the main quantum systems that we

have chosen to study and analyze: circular quantum dots and nuclei.

• In chapter 6, we provide an overview of our concrete implementation of many-body methods

and the quantum systems. We o�er explanations, rationale, and discussion of various choices

that we have made throughout the evolution of the project.

• In the penultimate chapter 7, we discuss the numerical results obtained from our codes, and
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compare them with results of collaborators. We perform analysis and also extrapolation of

our results.

• Finally, we conclude in chapter 8 with a review of our main results and perspectives for the

future.

An online version of this thesis is available
1

along with any �xes to errors discovered after

publication. Issues may be reported through the website. The version of this document is

r44-g58051a3.

1
URL: https://github.com/xrf/thesis
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Chapter 2

Many-body formalism

In this section we review the fundamentals of many-body theory. While we have aimed to make

the presentation fairly pedagogical, the primary goal of this chapter is to de�ne the concepts,

terminology, notation, and conventions used throughout this work.

2.1 Many-particle states

In single-particle time-independent quantum mechanics, the Schrödinger equation takes the

following form in Dirac notation,

ℎ̂| ⟩ = "| ⟩

where

• ℎ̂ is the single-particle Hamiltonian operator,

• | ⟩ is a state vector, and

• " is the energy of the state.

The state | ⟩ is an abstract ket vector that lives in the Hilbert space ℍ of the single-particle

system. More concretely, we can also represent the state vector by a wave function  

| ⟩ ↔  (x)

7



where x stands for all degrees of freedom of the particle. For example, an electron with spin

in three-dimensional space would have x = (r1, r2, r3, ms), where (r1, r2, r3) are the three spatial

coordinates and ms is the spin projection quantum number.

To treat systems of multiple particles, one may add additional variables to the wave function

to represent the degrees of freedom of the additional particles, that is,

|	⟩ ↔ 	(x1, … , xN )

where

• |	⟩ is an N -particle state,

• 	 is its corresponding wave function,

• N is the number of particles, and

• x� represents the degrees of freedom of the �-th particle.

With more than one particle, the Schrödinger equation remains conceptually the same,

Ĥ |	⟩ = E|	⟩

but there are many more degrees of freedom and thus more variables. Here, Ĥ is the N -particle

Hamiltonian operator and E is the energy of the N -particle state.

2.1.1 Product states

The simplest multi-particle system that can be solved is that of a non-interacting Hamiltonian of

N homogeneous particles,

Ĥ ◦
N =

N
∑
�=1

ℎ̂(x̂� , k̂� )

8



where ℎ̂(x̂� , k̂� ) is some single-particle Hamiltonian with position x̂� and momentum
1 k̂� = −i∇̂�

of the �-th particle. We assume its single-particle Schrödinger equation has a known set of

solutions,

ℎ̂(x̂ , k̂)|p⟩ = "p |p⟩

These solutions form a set of single-particle basis states for the single-particle Hilbert space ℍ,

|p⟩ ↔ 'p(x)

each with energy "p and labeled by the quantum numbers p. For example, if ℎ̂ is a single-electron

atomic system, then we can choose p = (n, l, m� , ms), which are the four conventional quantum

numbers for atomic orbitals. The single-particle basis states |p⟩ would simply be the standard

atomic orbital states.

From the single-particle basis, we can de�ne a set of N -particle wave functions

|p1 ⊗ ⋯ ⊗ pN ⟩ ↔ �p1⊗⋯⊗pN (x1, … , xN )

1
We use k̂ for momentum to avoid confusion with p, which will be used to denote the quantum numbers of the

single-particle basis later on.
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via the tensor product construction
2

|p1 ⊗ p2⟩ = |p1⟩ ⊗ |p2⟩

|p1 ⊗ p2 ⊗ p3⟩ = |p1⟩ ⊗ |p2⟩ ⊗ |p3⟩

|p1 ⊗ ⋯ ⊗ pN ⟩ =
N
⨂
�=1

|p�⟩

In terms of wave functions, this is equivalent to the de�nition

�p1⊗p2(x1, x2) = 'p1(x1)'p2(x2)

�p1⊗p2⊗p3(x1, x2, x3) = 'p1(x1)'p2(x2)'p3(x3)

�p1⊗⋯⊗pN (x1, … , xN ) =
N
∏
�=1

'p� (x� )

These product states (also known as Hartree products) are eigenstates of the many-body

Schrödinger equation and form an orthonormal basis for the N -particle Hilbert space ℍN
of the

non-interacting N -particle Hamiltonian Ĥ ◦
N .

Formally, ℍN
is de�ned as the N -th tensor power of the single-particle vector spaces

3

ℍN =
N
⨂
�=1

ℍ

Each product state is labeled by the tuple (p1, … , pN ) and has the following energy in this non-

interacting system:

E◦p1⊗…⊗pN =
N
∑
�=1

"p�

2
A ket with ⊗ inside denotes a product state. Outside kets, ⊗ denotes the tensor product constructor, a multilinear

operation that constructs maps multiple vectors to a vector in their tensor product space.

3
To further add to the confusion, this ⊗ symbol denotes the tensor product of vector spaces.
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If we consider the special case N = 0, a system with no particles, we �nd that the tensor product

Hilbert space ℍ0
has precisely one basis state,

4
which we call the (physical) vacuum state |∅⟩.

Although the product states form a basis, they span both states in which particles are dis-

tinguishable as well as states in which particles are not distinguishable. Thus, unconstrained

use of product states would violate the key principle of quantum mechanics that particles are

indistinguishable.

Mathematically, indistinguishability means that, under particle exchange, the wave function

may only di�er by a phase factor s. Consider, say, the exchange of a two-particle wave function 	 ,

	(x2, x1) = ±	(x1, x2)

• For bosons, the phase factor s = +1. This means the state is symmetric under particle

exchange.

• For fermions, the phase factor s = −1. This means the state is antisymmetric under exchange.

To extract the relevant states, we need to either symmetrize or antisymmetrize the product

states.

2.1.2 Symmetrization and antisymmetrization

A mathematical object Xab is said to be ±-symmetric in the variables a and b if

Xab = ±Xba

Note that:

• +-symmetric is more commonly known as symmetric (without any quali�cation).

4
Mathematically, the space ℍ0

is isomorphic to complex numbers.
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• −-symmetric is more commonly known as antisymmetric or skew-symmetric.

Objects with more than two variables may be ±-symmetric in many combinations of variables.

In particular, if it is ±-symmetric for every pair of variables in a1…an, then it is said to be fully

±-symmetric in a1…an.

If an object is not fully ±-symmetric, we can make it so using the ±-symmetrization symbol

±, de�ned as

±∅X = X

±aXa = Xa

±abXab =
1
2
(Xab ± Xba)

±abcXabc =
1
6
(Xabc ± Xbac + Xbca ± Xcba + Xcab ± Xacb)

±a1…anXa1…an =
1
N !

∑
�∈Sn

(±)�X�(a1…an)

where

• Xa1…an is an arbitrary formula with free variables a1, … , an,

• Sn is the symmetric group, which contains all possible permutations of n objects,

• (−)� = sgn(�), i.e. the sign of the permutation � ,

• (+)� = 1, and

• �(a1…an) applies the permutation � to the sequence of indices a1…an.

We will often use the abbreviations  = + and  = −. We will also sometimes use the

shorthand

 (i) =  (−)
i
=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

+ if i is even

− if i is odd

12



Note that the ±-symmetrization symbol ± is merely a notational shorthand, much like the

summation symbol ∑. It is not a quantum operator, but we can use it to de�ne one. Let us

introduce the N -particle ±-symmetrizer Ŝ±N , an operator de�ned as
5

Ŝ±0 |∅⟩ = |∅⟩

Ŝ±1 |p⟩ = |p⟩

Ŝ±2 |p1 ⊗ p2⟩ =
|p1 ⊗ p2⟩ ± |p2 ⊗ p1⟩

2

Ŝ±3 |p1 ⊗ p2 ⊗ p3⟩ =
|p1 ⊗ p2 ⊗ p3⟩ ± |p2 ⊗ p1 ⊗ p3⟩ + |p2 ⊗ p3 ⊗ p1⟩ ± ⋯

6

Ŝ±N |p1 ⊗ ⋯ ⊗ pN ⟩ = ±p1…pN |p1 ⊗ ⋯ ⊗ pN ⟩

Despite the involvement of a speci�c single-particle basis |p⟩ in the de�nition of Ŝ±N , one can show

that the operator is actually independent of the basis choice.

The Ŝ±N operator is idempotent and therefore a projection operator. It projects the N -particle

Hilbert space ℍN
to the ±-symmetric subspace of ℍN

. By abuse of notation, we will denote this

subspace Ŝ±N (ℍ
N ).

We can now de�ne N -particle ±-symmetrized states in terms of product states,

|p1p2⟩
± =

√
2

Cp1p2
Ŝ±2 |p1 ⊗ p2⟩ =

|p1 ⊗ p2⟩ ± |p2 ⊗ p1⟩√
2(1 + �p1p2)

|p1p2p3⟩
± =

√
6

Cp1p2p3
Ŝ±3 |p1 ⊗ p2 ⊗ p3⟩

|p1…pN ⟩± =
√

N!
Cp1…pN

Ŝ±N |p1 ⊗ ⋯ ⊗ pN ⟩

5
The ±-symmetrizer Ŝ± should not be confused with the spin operator Ŝ introduced in later sections.
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where �ab denotes the Kronecker delta, and

Cp1…pN = ∏
p
np! (2.1)

is a factor that compensates for overcounting due to multiple particles occupying the same state.

Here, np is the occupation number of the single-particle state |p⟩, which counts the number of

times that p appears in the list p1…pN . In the case of fermions, np can never be more than one

due to the Pauli exclusion principle, and so Cp1…pN is always one.

Given a ±-symmetric state |p1…pN ⟩±, the particles are said to occupy the single-particle

states |p1⟩, … , |pN ⟩. Any remaining unused single-particle states are said to be unoccupied.

These states are solutions of the non-interacting Hamiltonian Ĥ ◦
and they form an orthonormal

basis for the N -particle ±-symmetric Hilbert space Ŝ±N (ℍ
N ). Symmetric states are associated with

bosons, and antisymmetric states are associated with fermions. Notationally, we distinguish

±-symmetrized states from product states by the absence of the ⊗ symbol in the ket.

In the case of fermions, antisymmetrized states are also known as Slater determinants,

because their wave functions

|p1…pN ⟩− ↔ �−p1…pN (x1, … , xN )

can be written as a matrix determinant

�−p1…pN (x1, … , xN ) =
1√
N !

||||||||||||

'p1(x1) ⋯ 'pN (x1)

⋮ ⋱ ⋮

'p1(xN ) ⋯ 'pN (xN )

||||||||||||

Slater determinants are guaranteed to satisfy the Pauli exclusion principle. One cannot construct a
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state in which two particles share the same single-particle state as such states are always projected

to zero by the antisymmetrizer.

2.2 Second quantization

In everything we have discussed so far, the number of particles N always appears as an explicit

parameter. We will now shift toward the second quantization formalism, which avoids explicit

mention of N by treating all values of N simultaneously. This o�ers signi�cant simpli�cations

to the mathematics at the cost of adding a new layer of abstraction. The prior formalism will

henceforth be known as �rst quantization.

The �rst step is to direct sum all of the N -particle ±-symmetric Hilbert spaces Ŝ±N (ℍ
N ) into a

uni�ed space, through the so-called Fock space construction,

F± =
∞
⨁
N=0

Ŝ±N (ℍ
N ) = ℍ0 ⊕ ℍ ⊕ Ŝ±2 (ℍ ⊗ ℍ) ⊕ Ŝ±3 (ℍ ⊗ ℍ ⊗ ℍ) ⊕ ⋯

Here, F± is the ±-symmetric Fock space.

Next, we introduce a set of creation and annihilation operators, collectively known as the

(physical) �eld operators, which serve to connect each N -particle Hilbert space to an adjacent

N ± 1-particle Hilbert space. The �eld operators are dependent on the choice of ±-symmetry but

we opt to suppress this detail for clarity.

The annihilation operator for the single-particle state |p⟩ is denoted âp and has the e�ect

of removing one of the particles that occupy the |p⟩ state,

âp |pp1…pN ⟩± =
√
np |p1…pN ⟩±
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where np denotes the occupation number of |p⟩ in |pp1…pN ⟩±, i.e. the number of occurrences of

p in pp1…pN . In particular, if |p⟩ is not occupied in a state |�⟩±, then the operator collapses it to

zero,

âp |�⟩
± = 0

The creation operator for the single-particle state |p⟩ is denoted â†p and is the Hermitian

adjoint of âp . It has the e�ect of adding a new particle that occupies the |p⟩ state,

â†p |p1…pN ⟩± =
√
1 ± np |pp1…pN ⟩±

where np denotes the occupation number of |p⟩ in |p1…pN ⟩±. For fermions, if |p⟩ is already

occupied, then the operator collapses it to zero,

â†p |pp1…pN ⟩− = 0

A ±-symmetric state can be constructed by a chain of creation operators applied to the vacuum

state |∅⟩,

|p1…pN ⟩ =
â†p1 … â†pN |∅⟩
√
Cp1…pN

where Cp1…pN is the compensating factor de�ned in Eq. 2.1. From the ±-symmetry of the the

state, we obtain the commutation relations that de�ne the essential behavior of �eld operators:

[âp1 , â
†
p2]∓ = �p1p2 [âp1 , âp2]∓ = [â

†
p1 , â

†
p2]∓ = 0
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where

• [X̂ , Ŷ ]− = [X̂ , Ŷ ] denotes the commutator, chosen for symmetric states, and

• [X̂ , Ŷ ]+ = {X̂ , Ŷ } denotes the anticommutator, chosen for antisymmetric states.

2.3 Many-body operators

From this section onward, we will focus mainly on fermions, so all �eld operators will be anticom-

muting.

Given a set of N -particle operators Q̂N acting on the N -particle Hilbert space, we can direct

sum all of them to form a particle-number-agnostic operator Q̂ that acts on the entire Fock space,

Q̂ =
∞
⨁
N=0

Q̂N

This can be applied to any operator from �rst quantization, including the ±-symmetrizer Ŝ±N ↦ Ŝ±

and the Hamiltonian ĤN ↦ Ĥ .

Many-body operators are classi�ed by rank, which determines the maximum number of par-

ticles that the operator can couple at any given instant. A rank-k operator is more conventionally

known as a k-body operator.

2.3.1 Zero-body operators

The most trivial kind of operator are zero-body operators, which multiplies a state by a number.

Formally, we can write a zero-body operator Ẑ in the form

Ẑ = Z 1̂
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where Z a complex number and 1̂ is the identity operator, but for simplicity, it su�ces to call Z

itself the “operator” as the distinction between Ẑ and Z is largely irrelevant. The value of Z can

be inferred from its expectation value in the vacuum state,

Z = ⟨∅|Z |∅⟩

although its expectation value in any state will still yield the same result. They do not contribute

anything if the bra and ket states di�er.

2.3.2 One-body operators

The next simplest kind of operator are one-body operators, which are of the form

T̂ = ∑
pq
Tpqâ

†
p âq

where Tpq de�nes a matrix of complex numbers indexed by p and q, known as the matrix

elements of T̂ . In �rst quantization, one-body operators are of the form,

T̂N =
N
∑
�=1

t̂ (x̂� , k̂� )

Kinetic energy and external potentials are examples of such operators. The matrix elements of

such operators may be obtained via the integral,

Tpq = ⟨p|T̂ |q⟩ = ∫ '∗p(x)t̂'q(x) dx

One-body operators have two notable properties:
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• Their expectation value in the vacuum state is zero:

⟨∅|T̂ |∅⟩ = 0

• They do not contribute if the bra and ket states di�er in more than one single-particle state.

That is, unless the set intersection {p1, … , pN } ∩ {q1, … , qN } has at least N − 1 elements,

then

⟨p1⋯pN |T̂ |q1⋯qN ⟩ = 0

2.3.3 Two-body operators

Two-body operators take the form
6

V̂ =
1
4

∑
pqrs

Vpqrs â
†
p â

†
q âs âr =

1
4

∑
pqrs

Vpqrs â
†
p âr â

†
q âs (2.2)

where Vpqrs denotes an antisymmetrized matrix element of V̂ . Such matrix elements have

the following symmetry properties,

Vpqrs = pqrsVpqrs ↔ Vpqrs = −Vqprs = Vqpsr = −Vpqsr

In �rst quantization, two-body operators are of the form,

V̂N =
1
2

N
∑
�=1

N
∑
�=1

v̂(x̂� , x̂� , k̂� , k̂� )

6
Note the reversal of âr and âs .
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Interactions, such as the Coulomb interactions, are two-body (or higher) operators. The matrix

elements of such operators may be obtained via

Vpqrs = ⟨pq|V̂ |rs⟩ = 2rsV
⊗
pqrs

where

V ⊗pqrs = ⟨p ⊗ q|V̂ |r ⊗ s⟩ = ∬ '∗p(x1)'
∗
q(x2)v̂'r (x1)'s(x2) dx1 dx2

are the non-antisymmetrized matrix elements of V̂ , which may considered matrix elements

in the product state basis. These matrix elements have a weaker symmetry,

V ⊗pqrs = (p,r)(q,s)V
⊗
pqrs

In other words, V ⊗pqrs = V
⊗
qpsr . This arises from the indistinguishability of particles.

Two-body operators have two notable properties:

• Matrix elements of states with one or fewer particles vanish:

⟨∅|V̂ |∅⟩ = 0 ⟨p|V̂ |q⟩ = 0

• They do not contribute if the bra and ket states di�er in more than two single-particle states.

That is, unless the set intersection {p1, … , pN } ∩ {q1, … , qN } has at least N − 2 elements,

then

⟨p1⋯pN |V̂ |q1⋯qN ⟩ = 0
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2.3.4 Three-body operators and beyond

Three-body and, more generally, k-body operators take the form
7

Ŵ =
1
36

∑
pqrstu

Wpqrstuâ
†
p â

†
q â

†
r âuât âs =

1
36

∑
pqrstu

Wpqrstuâ
†
p âs â

†
q ât â

†
r âu

X̂ =
1
k!2

∑
p1…pkq1…qk

Xp1…pkq1…qk â
†
p1 … â†pk âqk … âq1

=
1
k!2

∑
p1…pkq1…qk

Xp1…pkq1…qk (â
†
p1 âq1) … (â

†
pk âqk )

with non-antisymmetrized matrix elements

W ⊗
pqrstu = ⟨p ⊗ q ⊗ r|Ŵ |s ⊗ t ⊗ u⟩

X⊗p1…pkq1…qk = ⟨p1 ⊗ ⋯ ⊗ pk |X̂ |q1 ⊗ ⋯ ⊗ qk⟩

and antisymmetrized matrix elements

Wpqrstu = ⟨pqr|Ŵ |stu⟩ = 6stuW
⊗
pqrstu

Xp1…pkq1…qk = ⟨p1…pk |X̂ |q1…qk⟩ = k!q1…qkX
⊗
p1…pkq1…qk

and symmetries

W ⊗
pqrstu = (p,s)(q,t)(r ,u)W

⊗
pqrstu

X⊗p1…pkq1…qk = (p1,q1)…(pk,qk)X
⊗
p1…pkq1…qk

Wpqrstu = pqrstuWpqrstu

Xp1…pkq1…qk = p1…pkq1…qkXp1…pkq1…qk
7
Note the reversal of annihilation operators again.
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k-body operators have two notable properties:

• Matrix elements of states with one or fewer particles vanish. That is, if m < k, then

⟨p1…pm|X̂ |q1…qm⟩ = 0

• They do not contribute if the bra and ket states di�er in more than k single-particle states.

That is, unless the set intersection {p1, … , pN } ∩ {q1, … , qN } has at least N − k elements,

then

⟨p1⋯pN |X̂ |q1⋯qN ⟩ = 0

2.4 Particle-hole formalism

Any state in Fock space can be described by a chain of creation operators applied to the vacuum

state. In many-body systems, the number of particles can be quite large, leading to long chains of

creation operators.

Instead of starting from scratch (i.e. vacuum state), it can be more convenient to start from a

pre-existing N -particle Slater determinant |�⟩, called the reference state,

|�⟩ = â†p1 ⋯ â†pN |∅⟩

Then, to access other states we would create and/or annihilate particles relative to the reference

state. For example,

â†p âp1 |�⟩ = â
†
p â

†
p2 ⋯ â†pN |∅⟩
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In addition to simplifying the algebra, this also provides a coarse measure of “distance” from

the reference state, quanti�ed by the number of �eld operators applied to the reference state that

is needed.

Formally, we can construct a set of quasiparticle (particle-hole) �eld operators b̂†p and

b̂p ,

b̂p =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

âp if p is unoccupied in the reference state

â†p if p is occupied in the reference state

In this context, b̂†p applied to an occupied state p is said to create a hole state, whereas b̂†p applied

to an unoccupied state p is said to create a particle state. These operators de�ne the so-called

particle-hole formalism.

The quasiparticle operators have an algebra analogous to the original �eld operators â†p and

âp :

{
b̂p , b̂

†
q
}
= �pq

{
b̂p , b̂q

}
=
{
b̂†p , b̂

†
q
}
= 0 b̂p |�⟩ = 0

The quasiparticle �eld operators treat |�⟩ as their “vacuum” state, similar to how original �eld

operators treat |∅⟩ as their vacuum state. For this reason, the reference state |�⟩ is also known as

a Fermi vacuum.

So far, we have used the letters p, q, r , . . . to label single-particle states, which contain both

hole and particle states relative to the Fermi vacuum. We will continue to use this convention. It

is often convenient to sum over only hole states, or only particle states. To this end, we introduce

a convention where i, j, k, . . . are used to label hole states and a, b, c, . . . label particle states. We
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also introduce a special notation for summation over holes and particles:

∑
ijk…⧵abc…

⋯ (2.3)

The backslash serves as an additional reminder that i, j, k, . . . should be summed over hole states

only, and a, b, c, . . . should be summed over particle states only.

In this formalism, we use the following concise notation to denote states near the reference

state,

|�a1…aki1…ik⟩ = b̂
†
a1 … b̂†ak b̂

†
ik
… b̂†i1 |�⟩ = â

†
a1 … â†ak âik … âi1 |�⟩

Note that although this state has 2k quasi-particles, it still has exactly N physical particles, because

the particles and holes cancel out exactly. We also introduce a shorthand for its energy,

E�a1…aki1…ik
= ⟨�a1…aki1…ik |Ĥ |�a1…aki1…ik⟩

2.5 Normal ordering

We say a product of �eld operators is in normal order if all creation operators appear before all

annihilation operators.

More generally, we may de�ne normal ordering to be an arbitrarily chosen total order subject

to the constraint that if both �̂ �̂ and �̂�̂ are normal ordered then [�̂ , �̂]∓ = 0. But we will not need

this general de�nition here. Wick’s theorem (introduced later) does hold in this general setting,

though.
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Given a monomial c�̂ , where c is a numeric coe�cient and �̂ is a product of �eld operators,
8

we de�ne its normal ordering as

∶c�̂∶ = (±)� c �(�̂ )

where � is a permutation that rearranges the �eld operators in �̂ such that �(�) is in normal

order, and

• for bosons, (+)� = +;

• for fermions, (−)� is the sign of the permutation � .

Although the de�nition leaves the permutation underdetermined, the de�nition of normal

order ensures that normal ordering will yield the same result no matter which permutation is

chosen.

The operation is dependent on the choice of �eld operators. In this text, we have two choices:

• When normal ordering relative to the physical vacuum, the physical �eld operators â†p and

âp are used.

• When normal ordering relative to the Fermi vacuum, the quasiparticle �eld operators b̂†p

and b̂p are used.

We will typically work with normal ordering relative to the Fermi vacuum. For normal ordering

relative to the physical vacuum, we use three dots instead of a colon:

⋮ c�̂ ⋮
8
A product of �eld operators is sometimes referred to as an operator string.
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Several notations exist for this operation:

∶c�̂∶ N[c�̂ ]
{
c�̂

}

The colon notation is common in nuclear physics, [PMB17] whereas delimiters pre�xed with the

letter “N” [SB09] or curly braces [Rei13] are common in quantum chemistry.

As an example, consider the fermionic monomial −2b̂p b̂
†
q with coe�cient c = −2 and operators

�̂ = b̂p b̂
†
q . We can normal order it relative to the Fermi vacuum:

∶−2b̂p b̂
†
q∶ = 2b̂

†
q b̂p

Since this permutation has odd parity, the sign is �ipped.

As another example, consider the fermionic monomial âp â
†
q â

†
r âs ât . It has several normal-

ordered forms:

⋮ âp â
†
q â

†
r âs ât ⋮ = â

†
q â

†
r âp âs ât = −â

†
q â

†
r âp ât âs = â

†
r â

†
q âp ât âs = ⋯

They are all equally valid.

Normal ordering is idempotent, and moreover supersedes existing normal orderings:

∶(�̂ ∶�̂∶ �̂)∶ = ∶�̂ �̂ �̂∶

Bosonic/fermionic normal-ordered products are symmetric/antisymmetric under operator ex-

change, i.e. for any permutation � ,

∶�̂∶ = (±)� ∶�(�̂ )∶
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2.5.1 Matrix elements relative to the Fermi vacuum

The primary application of normal ordering is in the redistribution of matrix elements between

di�erent ranks of operators, as the rank of an operator is dependent on the vacuum used.

Usually, many-body operators are given relative to the physical vacuum. For example, a (0, 1,

2, 3)-body operator Ĥ has the standard form

Ĥ = E∅ + Ĥ
∅
1 + Ĥ∅2 + Ĥ∅3

where E∅ is the physical vacuum energy (0-body component) and Ĥ∅k denotes its k-body com-

ponent relative to the physical vacuum. In other words, the monomials of each component are

already in normal order relative to the physical vacuum,

Ĥ∅1 = ∑
pq
H∅pq ⋮ â†p âq ⋮

Ĥ∅2 =
1
4

∑
pqrs

H∅pqrs ⋮ â
†
p â

†
q âs âr ⋮

Ĥ∅3 =
1
36

∑
pqrstu

H∅pqrstu ⋮ â†p â
†
q â

†
r âuât âs ⋮

These de�nitions are identical to those in Sec. 2.3. The normal ordering notation is present only

for emphasis.

If we rearrange their monomials so that they are in normal order relative to the Fermi vacuum,

portions of higher-rank operators would migrate to lower-rank operators. Take, for example, the

two-body component:

⋮ â†p â
†
q âs âr ⋮ = ∶â

†
p â

†
q âs âr∶ +4pqrsnq�qs ∶â

†
p âr∶ +2rsnpnq�pr�qs
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This leads to a di�erent decomposition of the operators into particle-hole components,

Ĥ = E� + Ĥ
�
1 + Ĥ�

2 + Ĥ�
3

where E� is the Fermi vacuum energy and Ĥ�
k denotes

9
its k-body component relative to the

Fermi vacuum |�⟩,

Ĥ�
1 = ∑

pq
H�
pq ∶â

†
p âq∶

Ĥ�
2 =

1
4

∑
pqrs

H�
pqrs ∶â

†
p â

†
q âs âr∶

Ĥ�
3 =

1
36

∑
pqrstu

H�
pqrstu ∶â

†
p â

†
q â

†
r âuât âs∶

and with matrix elements given by

E� = E∅ + ∑
i⧵
H∅ii +

1
2
∑
ij⧵
H∅ijij +

1
6

∑
ijk⧵

H∅ijkijk

H�
pq = H

∅
pq + ∑

i⧵
H∅piqi +

1
2
∑
ij⧵
H∅pijqij

H�
pqrs = H

∅
pqrs + ∑

i⧵
H∅pqirsi

H�
pqrstu = H

∅
pqrstu

(2.4)

Note that these particle-hole components Ĥ�
k do not conserve the number of quasiparticles, so

their algebraic properties are not entirely analogous to the physical components Ĥ∅k . Properly

rewriting the operators in terms of quasiparticle �eld operators would lead to tedious results such

9
In other literature, it is common to use the symbols F̂ = Ĥ�

1 , �̂ = Ĥ�
2 , and Ŵ = Ĥ�

3 .
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as:

Ĥ�
1 = ∑

i⧵a
H�
ai ∶b̂

†
a b̂

†
i ∶ + ∑

⧵ab
H�
ab ∶b̂

†
a b̂b∶ −∑

ij⧵
H�
ij ∶b̂

†
j b̂i∶ + ∑

i⧵a
H�
ia ∶b̂i b̂a∶

Fortunately, we do not need to do this.

The matrix elements in Eq. 2.4 can be derived using the de�nition of normal ordering and the

usual commutation relations, more e�ciently, using Wick’s theorem or many-body diagrams.

2.5.2 Ambiguity of normal ordering on non-monomials

The following expressions are not monomials:

1 + âp â
†
q eâ

†
p âq Ĥ

Normal ordering is ill-de�ned (ambiguous) on such non-monomial operators. The following

paradox illustrates the problem: consider the fermionic product â†p âqâr ,

â†p âqâr = ⋮ â†p âqâr ⋮

?= ⋮ �pqâr − âqâ
†
p âr ⋮

?= ⋮ �pqâr ⋮ − ⋮ âqâ
†
p âr ⋮

= �pqâr + â
†
p âqâr

To eliminate ambiguity one must expand the expression in a very speci�c way, causing normal

ordering of non-monomial expressions to be sensitive to how it is written (its syntactic form). It

is possible for two non-monomial expressions that are semantically equal to have semantically

unequal normal-ordered results, leading to the paradox above. This paradox does not occur if we
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focus solely on monomial operators.

When normal ordering is applied non-monomial expressions, it is conventional to choose the

most “direct” expansion without any usage of the ±-commutation relations. For example,

∶1 + b̂†p b̂q∶ → 1+∶b̂†p b̂q∶

∶eb̂
†
p b̂q∶ → 1+∶b̂†p b̂q∶ + ∶12 b̂

†
p b̂qb̂

†
p b̂q∶ +⋯

∶Ĥ∶ → E+∶Ĥ1∶ + ∶Ĥ2∶ +⋯

2.6 Wick’s theorem

Wick’s theorem [Wic50] is an algebraic theorem for simplifying products of bosonic (commuting)

or fermionic (anticommuting) �eld operators into sums of normal-ordered products. Many of the

equations in the previous sections can be derived much more quickly and systematically using

this theorem.

To describe the theorem, it is necessary to introduce the concept of Wick contractions.

2.6.1 Adjacent Wick contractions

In the simplest case, a Wick contraction between two adjacent �eld operators �̂ and �̂ , denoted

by a connecting line, is de�ned as,

�̂ �̂ = �̂ �̂− ∶�̂�̂∶ (2.5)

For Wick’s theorem to apply, we require the result of a contraction to be a number, not an

operator.
10

Intuitively, contractions are the “remainder” of normal ordering. We can elaborate the de�nition

10
That is, the result lie in the center of the algebra, commuting with all other elements.
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to

�̂ �̂ =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

0 if �̂ �̂ is in normal order

[�̂, �̂]∓ if �̂ �̂ is not in normal order

(2.6)

where commutator [, ]− = [, ] is chosen for bosons and anticommutator [, ]+ = {, } is chosen for

fermions. Observe that contractions have no e�ect if a product is already normal ordered.

For fermionic physical operators âp , we obtain these cases for contractions relative to the

physical vacuum:

âp â
†
q = �pq âp âq = â

†
p âq = â

†
p â
†
q = 0

Here, connecting lines are drawn at the bottom of the symbols to indicate that these are contractions

relative to the physical vacuum. That is,

�̂ �̂ = �̂ �̂− ⋮ �̂ �̂ ⋮

We obtain analogous relations for contractions of fermionic quasiparticle operators b̂p relative

to the Fermi vacuum:

b̂p b̂
†
q = �pq b̂p b̂q = b̂

†
p b̂q = b̂

†
p b̂
†
q = 0

However, contraction of physical operators âp relative to the Fermi vacuum are di�erent:

âp â
†
q = (1 − np)�pq â†p âq = np�pq âp âq = â

†
p â
†
q = 0
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where np is equal to 1 if p is occupied in the reference state, 0 otherwise.

2.6.2 Normal-ordered Wick contractions

Next, we consider non-adjacent Wick contractions, which is only de�ned within a normal-ordered

product. Note that the contraction operation takes place prior to the normal ordering operation,

otherwise the operation would be useless (it would always vanish according to Eq. 2.6).

Let �̂ be a product of m �eld operators. We de�ne the Wick contraction of �̂ and �̂ within a

normal ordered product ∶�̂�̂ �̂∶ as

∶�̂�̂ �̂∶ = (±)m�̂ �̂ ∶�̂∶

where the sign is (+) for bosonic operators and (−) for fermionic operators.

In e�ect, we unite the two contracted operators using the ±-symmetries of the normal-ordered

product before attempting to evaluate the contraction. Consider this example with fermionic

operators,

∶�̂�̂
̂ �̂∶ = − ∶�̂�̂ 
̂ �̂∶ = −�̂
̂ ∶�̂�̂∶

Note that it does not matter whether {�̂, �̂} is zero, because inside a normal-ordered product all

operators behave as though their ±-commutators are zero.
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2.6.3 Multiple Wick contractions

Given a normal-ordered product of n �eld operators, there can be multiple ways to contract its

contents. Consider the case n = 4,

∶�̂�̂
̂ �̂∶

∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶

∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶ ∶�̂�̂
̂ �̂∶

The �rst row contains all normal-ordered products with zero contractions. This is the trivial case.

The second row contains all normal-ordered products with exactly one contraction. We shall

denote the sum of all entries in the second row by

∶1(�̂ �̂ 
̂ �̂ )∶ = ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶

The third row contains all normal-ordered products with exactly two contractions. Analogous

to the second row, we shall denote the sum of all entries in the third row by

∶2(�̂ �̂ 
̂ �̂ )∶ = ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶ + ∶�̂�̂
̂ �̂∶

We can generalize this notation. If we have a product �̂ of n �eld operators, the notation

∶k(�̂ )∶ denotes the sum of all normal-ordered products with exactly k contractions. In particular:
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• If k = 0, then there are no contractions. Therefore,

∶0(�̂ )∶ = ∶�̂∶

• It is impossible to have more than ⌊n/2⌋ contractions. Therefore,

2k > n ⟹ ∶k(�̂ )∶ = 0

2.6.4 Statement of Wick’s theorem

We are now ready to state Wick’s theorem: A product of n �eld operators �̂ may be expanded

as

�̂ =
∞
∑
k=0

∶k(�̂ )∶ = ∶�̂∶ +
⌊n/2⌋
∑
k=1

∶k(�̂ )∶

That is, any product of �eld operators may be expanded as a sum of every possible combination

of contractions within its normal-ordered product.

The de�nition of contractions in Eq. 2.5 yields a special case of Wick’s theorem for exactly

two �eld operators,

�̂ �̂ = ∶�̂�̂∶ +�̂�̂

There is also a generalized Wick’s theorem: A product of two normal-ordered products

∶�̂∶ and ∶�̂∶ may be expanded as

∶�̂∶ × ∶�̂∶ =
∞
∑
k=0

∶k( ∶�̂∶ × ∶�̂∶ )∶
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where ∶k( ∶�̂∶ × ∶�̂∶ )∶ is a sum of every possible combination of k contractions between

elements of ∶�̂∶ and elements of ∶�̂∶ within the normal-ordered product ∶( ∶�̂∶ × ∶�̂∶ )∶.

Contractions among elements of ∶�̂∶ are excluded (and likewise for ∶�̂∶) because contraction

between elements that are already in normal order is zero (Eq. 2.6). Despite its name, the generalized

Wick’s theorem is not actually a generalization but a special case of Wick’s theorem when the

product is already partly in normal order.

2.6.5 Proof of Wick’s theorem

To prove Wick’s theorem, we need the following lemma:

�̂ 
̂1… 
̂j = (±)
j 
̂1… 
̂j �̂ +

j
∑
i=1
(±)i−1
̂1… 
̂i−1[�̂ , 
̂i]∓
̂i+1… 
̂j

which describes the process of moving �̂ from the left of a product 
̂1… 
̂j to the right. In doing

so, it accumulates a series of ±-commutators involving �̂ .

To prove the lemma by induction, we start with the obvious base case for j = 0,

�̂ = (±)0�̂ + 0

For the induction step, assume the lemma holds for j. Then, we can prove it holds for j + 1 as well,

�̂ 
̂1… 
̂j+1

= (±)j 
̂1… 
̂j �̂ 
̂j+1 +
j
∑
i=1
(±)i−1
̂1… 
̂i−1[�̂ , 
̂i]∓
̂i+1… 
̂j+1

= (±)j 
̂1… 
̂j (±
̂j+1�̂ + [�̂ , 
̂j+1]∓) +
j
∑
i=1
(±)i−1
̂1… 
̂i−1[�̂ , 
̂i]∓
̂i+1… 
̂j+1

= (±)j+1
̂1… 
̂j+1�̂ +
j+1
∑
i=1
(±)i−1
̂1… 
̂i−1[�̂ , 
̂i]∓
̂i+1… 
̂j+1
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thus we have proven the case for j + 1. ■

The lemma is very general but also verbose. If we assume the ±-commutators are all numbers,

then there is another way to state the lemma using Wick contractions and normal ordering.

Suppose we have a product 
̂1… 
̂j �̂ 
̂j+1… 
̂m that is in normal order. Observe that:

• If i ≤ j, then �̂ 
̂ i = [�̂ , 
̂i]∓ because either (a) �̂ 
̂i is not in normal order, or (b) both �̂ 
̂i and


̂i�̂ are in normal order, in which case both the ±-commutator and contraction are zero.

• If i > j, then �̂ 
̂ i = 0 because �̂ 
̂i is in normal order.

Therefore, we can replace the ±-commutators with Wick contractions and arti�cally raise the

upper limit of the summation from j to m because all those extra ±-commutators are zero, leading

to

�̂ 
̂1… 
̂m = (±)j 
̂1… 
̂j �̂ 
̂j+1… 
̂m +
m
∑
i=1
(±)i−1�̂ 
̂ i 
̂1… 
̂i−1
̂i+1… 
̂m

We can rewrite this using our de�nition of normal ordering and Wick contraction within normal-

ordered products,

�̂ ∶
̂1… 
̂m∶ = ∶�̂
̂1… 
̂m∶ +
m
∑
i=1

∶�̂
̂1… 
̂ i … 
̂m∶

If we de�ne ∶�̂∶ = s ∶
̂1… 
̂m∶ with some sign s, we may rewrite the previous equation as:

1
s
�̂ ∶�̂∶ =

1
s
∶�̂�̂∶ +

1
s
∶�̂�̂∶ (2.7)

where ∶�̂�̂∶ is a shorthand for

∶�̂�̂∶ =
m
∑
i=1

s ∶�̂
̂1… 
̂ i … 
̂m∶
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Then, Eq. 2.7 simpli�es to:

�̂ ∶�̂∶ = ∶�̂�̂∶ + ∶�̂�̂∶ (2.8)

Now we may prove Wick’s theorem using induction. The base case is obvious,

1 = ∶1∶

For the inductive step, we start by assuming that Wick’s theorem holds for the product �̂ and

wish to prove that it holds for �̂�̂ . From the assumption, we write

�̂�̂ =
∞
∑
k=0

�̂ ∶k(�̂ )∶

Now we may use the lemma in Eq. 2.8 with �̂ = k(�̂ ),

∞
∑
k=0

�̂ ∶k(�̂ )∶ =
∞
∑
k=0

∶�̂k(�̂ )∶ +
∞
∑
k=0

∶�̂k(�̂ )∶

= ∶�̂0(�̂ )∶ +
∞
∑
k=1

( ∶�̂k(�̂ )∶ + ∶�̂k−1(�̂ )∶ )

Observe that ∶0(�̂ )∶ = ∶�̂∶ and

∶k(�̂�̂ )∶ = ∶�̂k(�̂ )∶ + ∶�̂k−1(�̂ )∶

In other words, k contractions in �̂�̂ can be either

• k contractions only within �̂ , or

• one contraction between �̂ and �̂ and k − 1 contractions within �̂ .
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Hence,

�̂�̂ = ∶�̂�̂∶ +
∞
∑
k=1

∶k(�̂�̂ )∶

■

2.7 Many-body diagrams

Many-body diagrams [Gol57; Hug57] provide a graphical way to apply Wick’s theorem in the

Fermi vacuum and express summations of matrix elements. They are analogous to Feymann

diagrams [Fey49] but with single-particle states in lieu of fundamental particles. We will provide

an overview of many-body diagrams, but as it is a fairly substantial topic, we refer interested

readers to [SB09] for a more in-depth explanation.

A diagram is composed of a set of nodes (vertices) and a set of possibly directed lines

(edges), arranged in a layout similar to graphs. However, diagrams do have a few di�erences that

distinguish them from graphs in the conventional sense:

• Nodes may not be point-like entities. They may be drawn in various shapes, and the

particular arrangement of lines around a given node can be semantically meaningful.

• The ends of a line do not have to be attached to any node. Such lines, where at least one of

the ends is dangling, are called external lines, whereas lines that are attached to nodes on

both ends are called internal lines.

• In Feynmann-like diagrams, including many-body diagrams, one of the axes is de�ned to

be the so-called time axis and thus the orientation of the diagram can be semantically

meaningful. Either the vertical (upward) or horizontal (leftward) axis may be chosen as the

time axis depending on convention. We will use the vertical axis as the time axis. Particles
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that are created later in time will appear higher in the diagram.

In many-body diagrams, nodes represent operators. Speci�cally, a node representing a k-body

operator has k outgoing (creation) lines and k incoming (annihilation) lines, corresponding to a

normal-ordered operator of the form

1
k!2

∑
p1…pkq1…qk

Xp1…pkq1…qk ∶(â
†
p1 âq1) … (â

†
pk âqk )∶

There are two varieties of many-body diagrams, which render operators di�erently:

• In the Brandow diagrams (or antisymmetrized Goldstone diagrams) [Bra67], nodes

are represented by k dots connected by dashed lines. Each dot has exactly one outgoing

and one incoming line, thus a dot corresponds to a single creation-annihilation pair â†p âq .

The ordering of the dots among themselves is insigni�cant as creation-annihilation pairs

commute with each other within a normal-ordered product.

• In the Hugenholtz diagrams [Hug57], nodes are collapsed to a single dot with k outgoing

and k incoming lines. Since it is no longer feasible to track the pairing between the outgoing

and incoming lines, the sign of Hugenholtz diagrams is ambiguous. To transcribe Hugenholtz

diagrams into equations with a de�nite sign, it is necessary to expand Hugenholtz diagrams

to Brandow diagrams by pairing up the creation and annihilation operators in an arbitrary

manner.

Lines represent variables that label single-particle states. The direction of a line tells us which

end has the creation operator (tail) and which end has the annihilation operator (head). There are

three kinds of lines:

• Internal lines (neither end is dangling): these represent Wick contractions and are always

directed (have arrows). The orientation of their arrows with respect to the time axis is
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signi�cant:

– If the direction of the arrow goes along the time axis (in our convention, if the arrow

points up), then it represents a particle state a, b, c, . . . since its creation occurs before

its annihilation.

– If the direction of the arrow goes against the time axis (in our convention, if the arrow

points down), then it represents a hole state i, j, k, . . . since its creation occurs after its

annihilation.

• External lines where one of the ends is dangling: these represent the variables p, q, r , . . . of

uncontracted �eld operators and their orientation with respect to the time axis is irrelevant.

Outgoing lines (lines that leave the node) represent creation operators, and ingoing lines

(lines that enter the node) represent annihilation operators. If all operators conserve particle

number, then one can often elide the directions of external lines and have them inferred

from context.

• External lines where both ends are dangling: this is a degenerate case. Such a line represents

a Kronecker delta �pq , where p and q are the variables on each end of the line. The presence

or absence of an arrow is irrelevant.

To illustrate the various parts of a diagram, consider this normal-ordered, partially contracted

product R̂,

R̂ =
1
8

∑
pqrs
i⧵abc

WipqabcFai�bcrs ∶(â
†
i âaâ

†
p âbâ

†
q âc)(â

†
a âi)(â

†
b âr â

†
c âs)∶ (2.9)

where Ŵ is a three-body operator, F̂ is a one-body operator, and �̂ is a two-body operator, all

de�ned relative to the Fermi vacuum. The diagrammatic representation of this expression is

shown in Fig. 2.1.
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3-body node

1-body node

external line

internal line

2-body node

p q

r s

b cai

time axis

Figure 2.1: An example of a Brandow diagram representing to Eq. 2.9. We have intentionally

labeled many parts of this diagram to provide a clear correspondence to the algebraic expression.

To emphasize the distinction between internal and external lines, we have drawn the arrows of

external lines with a di�erent shape than those of internal lines.

The factor of 1/8 is the weight of the diagram. To obtain this number, we examine the

symmetries in the Hugenholtz diagram, shown in Fig. 2.2. Observe that {p, q} are topologically

equivalent, and so are {b, c} and {r, s}. Thus, the factor should be 1/(2! × 2! × 2!) = 1/8.

The Brandow diagram makes it simple to compute the resultant sign (phase) of the expression

in Eq. 2.9:

1. Pair up each outgoing external line with each incoming external line and connect them with

a dotted line. The assignment is arbitrary, but once the choice is made, it �xes the ordering

of the operators of the resultant expression.

For example, if we pick (p, r) and (q, s) in Fig. 2.1, then the resultant expression will have

the ordering ∶â†p âr â
†
q âs∶.

2. Count (a) number of dotted lines d , (b) the number of internal hole lines ℎ, and (c) the

number of loops � , including those that are completed by dotted lines. The sign is equal to

(−)d+ℎ+�

In the previous example, we have introduced two dotted lines connecting p to r and q to s.
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There is one hole line, and a total three loops (two of which contain dotted lines). The sign

is therefore positive.

This leads to the �nal result:

R̂ = +
1
8

∑
pqrs
i⧵abc

WipqabcFai�bcrs ∶â
†
p âr â

†
q âs∶

p q

r s

b

c

a

i

Figure 2.2: A Hugenholtz diagram representing to Eq. 2.9. This diagram is useful for determining

the weight.

2.7.1 Perturbative diagrams

A variant of many-body diagrams is used in perturbation theory, which introduces an unusual

kind of node called resolvents or energy denominators, drawn as a horizontal line that cuts

across the diagram.

An example of such a diagram is shown on the right-hand side of Fig. 2.3. Note that to

interpret such a diagram correctly, all incoming external lines must be folded upward, as shown

on the right-hand side. For every denominator line, one divides the summation by the following

Møller–Plesset denominator (see also Eq. 4.9):

�q1…qkp1…pk =
k
∑
i=1
("qi − "pi )
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p

q

a b

i

c

j

pq

a

b

i

c

j

unfolded
folded with

denominator lines

Figure 2.3: Interpretation of a perturbative Goldstone diagram

where q1…qk are all downward lines that cut across the denominator line (including ingoing

external lines), p1…pk are all upward lines that cut across the denominator line (including outgoing

external lines), and "p denotes the energy of the single-particle state p.

In the example, the upper denominator is given by

�ijqabp = "i + "j + "q − "a − "b − "p

whereas the lower denominator is given by

�ijcp = "i + "j − "c − "p

For presentation purposes, it is common to omit the denominator lines and to unfold a diagram

back into the usual non-perturbative layout, as shown on the left-hand side of Fig. 2.3. To interpret

this diagram perturbatively, simply refold the diagram and reinsert denominators between every

pair of the V̂ interaction nodes.
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Chapter 3

Angular momentum coupling

We shall �rst discuss the details of angular momentum coupling in general, and then more

speci�cally in the context of many-body theory. The objective of this chapter is to lay out the

formalism (J-scheme, Sec. 3.11) that one needs to derive the angular-momentum-coupled equations

in many-body theory, which are essential for e�cient computations in spherically symmetric

systems such as nuclei. We also include a brief discussion of our graphical angular momentum

software (Sec. 3.10) used for derivations of angular momentum quantities.

3.1 Angular momentum and isospin

In classical physics, orbital angular momentum L is de�ned as L = r × p, where r is position

and p is linear momentum. This de�nition carries over to quantum mechanics with the appropriate

replacement of each quantity by their corresponding operator:

L̂ = r̂ × p̂ = −iℏr̂ × (̂

In three-dimensional space, the standard eigenstates of orbital angular momentum are the spherical

harmonics

|�m�⟩ ↔ Y�m� (�, ')
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which are labeled by the orbital angular momentum magnitude � and orbital angular momentum

projection m� (also known as magnetic quantum number in chemistry), satisfying

� ∈ ℕ m� ∈ M�

where ℕ = {0, 1, 2, …} is the set of nonnegative integers and M� denotes the set

{−� , −� + 1, −� + 2, … , +� − 2, +� − 1, +�} (3.1)

The quantum numbers are related to eigenvalues of L̂2 and L̂3 (z-component of L̂):

L̂2|�m�⟩ = ℏ�(� + 1)|�m�⟩

L̂3|�m�⟩ = ℏm� |�m�⟩

Notice that these are not eigenstates of L̂1 or L̂2. It is impossible to �nd eigenstates of all three

components, because L̂1, L̂2, and L̂3 do not commute with each other, as evidenced by the non-

commuting nature of rotations in three-dimensional space. Instead, they satisfy the commutation

relations,

[L̂i , L̂j] = iℏ
3
∑
k=1

�ijk L̂k

where �ijk is the Levi–Civita symbol.

In quantum mechanics, there is the addition of spin Ŝ, a kind of angular momentum intrinsic

to each particle. There is an analogous set of standard eigenstates |sms⟩ labeled by spin magnitude
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s and spin projection ms ,

Ŝ2|sms⟩ = ℏs(s + 1)|sms⟩

Ŝ3|sms⟩ = ℏms |sms⟩

Again, note that these are not eigenstates of Ŝ1 nor Ŝ2.

Unlike orbital angular momentum, the quantum numbers of spin are not con�ned to integers,

but could be half-integers 12ℤ, given by

1
2
ℤ =

{
… , −

3
2
, −1, −

1
2
, 0, +

1
2
, +2,

3
2
, …

}
(3.2)

They are subject to the following conditions:

s ∈
1
2
ℕ ms ∈ Ms

where
1
2ℕ denotes the set of nonnegative half-integers:

1
2
ℕ =

{
0,
1
2
, 1,

3
2
, …

}
(3.3)

and Ms follows the same de�nition as Eq. 3.1, but with the argument s extended to support

nonnegative integers,

Ms = {−s, −s + 1, −s + 2, … , +s − 2, +s − 1, +s} (3.4)

Note that if s is a half-odd integer – a half-integer that is not also an integer – then Ms does not

contain 0.
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Spin states are not wave functions of position – they live within their own abstract Hilbert

subspace. Most fermions studied in many-body theory, such as electrons or nucleons, are spin-
1
2

particles, which means s is always
1
2 and the dimension of this subspace is two. Conventionally,

the spin operator for a spin-
1
2 particle may be represented by a vector of Pauli matrices �̂ :

Ŝ =
ℏ
2
�̂ =

ℏ
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂1

�̂2

�̂3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Each Pauli matrix �i acts on the two-dimensional Hilbert subspace of spin.

The spin operator satis�es commutation relations similar to the orbital angular momentum

operator,

[Ŝi , Ŝj] = iℏ
3
∑
k=1

�ijk Ŝk

Spin can be combined with orbital angular momentum to form the total angularmomentum

of a particle,

Ĵ = L̂ + Ŝ

Likewise, there is a standard set of total angular momentum eigenstates |jmj⟩, labeled by total

angular momentum magnitude j and total angular momentum projection mj , with completely
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analogous relations,

Ĵ 2|jmj⟩ = ℏj(j + 1)|jmj⟩

Ĵ3|jmj⟩ = ℏmj |jmj⟩

[Ĵi , Ĵj] = iℏ
3
∑
k=1

�ijk Ĵk

The quantum numbers are subject to the same constraints as for spin,

j ∈
1
2
ℕ mj ∈ Mj

Lastly, there is a mathematically similar quantity known as isospin Î , which arises in the

physics of nucleons. However, unlike spin, it is not physically considered as an angular momentum

despite the confusing name. The isospin eigenstates may be denoted |tmt⟩, labeled by isospin

magnitude t and isospin projection mt , with relations just like angular momentum,

Î 2|tmt⟩ = t(t + 1)|tmt⟩

Î3|tmt⟩ = mt |tmt⟩

[Îi , Îj] = i
3
∑
k=1

�ijk Îk

and analogous constraints on the quantum numbers as for spin or total angular momentum.

Because isospin is not a kind of angular momentum, the three components of isospin are

abstract and have no physical relation to the x-, y-, z-axes of space. They do not transform under

spatial rotations.

For neutrons and protons, isospin is mathematically isomorphic to the spin of spin-
1
2 particles,

so Î too can be de�ned in terms of Pauli matrices. However, these isospin Pauli matrices act on
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a di�erent subspace from the spin Pauli matrices, so they are conventionally denoted using �̂

instead of �̂ :

Î =
1
2
�̂ =

1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂1

�̂2

�̂3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Each Pauli matrix �̂i acts on the two-dimensional Hilbert subspace of isospin. The two eigenstates

of isospin |t = 1
2 , mt = ±12⟩ correspond to neutrons and protons, with two possible conventions:

• mt = −12 corresponds to neutrons and mt = +12 corresponds to protons (sometimes referred

to as the particle physics convention)

• mt = +12 corresponds to neutrons and mt = −12 corresponds to protons (sometimes referred

to as the nuclear physics convention)

Mathematically, the quantities L̂, Ŝ, Ĵ , and Î are all very similar. Speci�cally, these operators

are representations of the su(2) Lie algebra, which are generators of the special unitary group of

two-dimensional matrices, SU(2). Elements of the Lie algebra are characterized by commutation

relations of the form

[Ĵi , Ĵj] ∝
3
∑
k=1

�ijk Ĵk

from which many of the familiar properties follow, including the structure of eigenstates and

eigenvalues. The operator Ĵ 2 is known as the Casimir element in this context, and commutes with

each component Ĵi .

Incidentally, the SU(2) group is locally similar to the special orthogonal group of 3-dimensional

rotations, which means the corresponding so(3) Lie algebra is completely isomorphic to su(2).
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This explains algebraic similarity between L̂ and Ŝ despite L̂ being generators of three-dimensional

rotations.

3.2 Clebsch–Gordan coe�cients

There are many situations in which angular momentum is added. The total angular momentum

Ĵ = L̂ + Ŝ is one example. Another situation occurs in many-body systems, where the composite

angular momentum of two (or more) particles is of interest,

Ĵ (1,2) = Ĵ (1) + Ĵ (2)

where Ĵ (1) denotes the total angular momentum of particle 1, Ĵ (2) denotes the total angular

momentum of particle 2, Ĵ (1,2) denotes the total angular momentum of both particles together.

Let us consider a general angular momentum-like quantity de�ned as

Ĵ = L̂ + Ŝ

with L̂ and Ŝ being angular momentum-like quantities as well. The discussion in this section is

abstract: we do not assign physical interpretations to these quantities. They simply need to be

representations of the su(2) Lie algebra satisfying the usual commutation relations. (In particular,

L̂ need not be restricted to orbital angular momentum.)

Observe that Ĵ 2 commutes with L̂2 and Ŝ2, but does not commute with L̂3 nor Ŝ3, because

Ĵ 2 = L̂2 + 2L̂ ⋅ Ŝ + Ŝ2

The term 2L̂ ⋅ Ŝ does not commute with L̂3 nor Ŝ3. This means we can choose the eigenstates of
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(Ĵ 2, Ĵ3) to be eigenstates of L̂2 and Ŝ2 as well, but they cannot not in general be eigenstates of Ĵ3

nor Ŝ3. We may label such a state as

|jmj� s⟩

This is known in general as a coupled state, and if L̂ is orbital angular momentum and Ŝ is spin,

then this particular example would be referred to as LS coupling. Such states have the following

eigenvalues,

Ĵ 2|jmj� s⟩ = ℏj(j + 1)|jmj� s⟩

Ĵ3|jmj� s⟩ = ℏmj |jmj� s⟩

L̂2|jmj� s⟩ = ℏ�(� + 1)|jmj� s⟩

Ŝ2|jmj� s⟩ = ℏs(s + 1)|jmj� s⟩

In contrast, if we want an eigenstate of (Ĵ3, L̂
2, L̂3, Ŝ

2, Ŝ3), then we can simply construct it as a

tensor product of the standard eigenstates of (L̂2, L̂3) and (Ŝ2, Ŝ3), denoted

|�m� sms⟩ = |�m�⟩ ⊗ |sms⟩

51



with eigenvalues

Ĵ3|�m� sms⟩ = ℏ(m� + ms)|�m� sms⟩

L̂2|�m� sms⟩ = ℏ�(� + 1)|�m� sms⟩

L̂3|�m� sms⟩ = ℏm� |�m� sms⟩

Ŝ2|�m� sms⟩ = ℏs(s + 1)|�m� sms⟩

Ŝ3|�m� sms⟩ = ℏms |�m� sms⟩

These are known as uncoupled states.

The two sets of eigenstates are related by a linear transformation,

|jmj� s⟩ = ∑
m�∈M� ,ms∈Ms

|�m� sms⟩⟨�m� sms |jmj⟩ (3.5)

where ⟨�m� sms |jmj⟩ denotes a set of coe�cients known as the Clebsch–Gordan (CG) coe�-

cients.

The CG coe�cients are subject to a set of constraints – selection rules – that we divide into

two categories. First, there are the local selection rules:

� , s, j ∈
1
2
ℕ m� ∈ M� ms ∈ Ms mj ∈ Mj

These kinds of constraints are intrinsic to each (j, m)-pair and are omnipresent in angular mo-

mentum algebra. Thus, to avoid having to repeat ourselves, we will implicitly assume they are

satis�ed in all equations.

The pairing between the magnitude (j-like) and projection (m-like) variables is established by

a notational convention: the subscript on the m-like variable is used to to link to the j-like variable.
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For example, mj pairs with j, and m� pairs with � . If the j variable itself also has a subscript, then

we will typically use the subscript of j directly as a subscript of m, e.g. m1 pairs with j1, mp pairs

with jp , etc.

The second category are the nonlocal selection rules, consisting of

mj = m� + ms

which simply states the additive nature of projections, and

|� − s| ≤ j ≤ � + s

This latter constraint is called the triangle condition and is equivalent to the geometrical con-

straint that � , s, and j are lengths of a triangle. It can alternatively be restated as the symmetric

combination of constraints,

j ≤ � + s � ≤ s + j s ≤ j + �

It is convenient to de�ne the CG coe�cients such that if any of the selection rules are violated,

then the CG coe�cient is zero. This allows us to omit the constraints on the summation of m�

and ms in Eq. 3.5 and simply let the selection rule pick the terms that contribute.

In principle, there can be several conventions for CG coe�cients. The obvious choice is to

limit ourselves to only real coe�cients, but there remains an arbitrary choice in sign, which is

then �xed by the Condon–Shortley phase convention.

In this choice, the linear transformation of CG coe�cients is completely symmetric, so we can
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use the same coe�cients to undo the coupling:

|�m� sms⟩ = ∑
jmj

|jmj� s⟩⟨�m� sms |jmj⟩

where summation over j and mj is constrained by the selection rules of CG.

Hence, the CG coe�cients satisfy the orthogonality relations,

∑
jmj

⟨�m� sms |jmj⟩⟨�m
′
� sm

′
s |jmj⟩ = �m�m� �msm′s

∑
m�ms

⟨�m� sms |jmj⟩⟨�m� sms |j
′m′

j ⟩ = �jj′�mjm′j

{

� s j

}

where

{

� s j

}
is the triangular delta, de�ned as

{

a b c

}
=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1 if |a − b| ≤ c ≤ a + b

0 otherwise

(3.6)

In other words, the triangular delta is the analog of Kronecker delta for the triangle condition.

There are additional symmetry properties of CG coe�cients, but it is more convenient to state

them indirectly through a similar quantity known as the Wigner 3-jm symbol.
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3.3 Wigner 3-jm symbol

The Wigner 3-jm symbol is a function of six arguments used for coupling angular momenta

with a high degree of symmetry, denoted
1

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

The ji arguments could be any nonnegative half-integer
1
2ℕ (Eq. 3.3), including both integers and

half-odd integers. The mi arguments are constrained to the Mji set as de�ned in Eq. 3.4. These

form the local selection rules. The nonlocal selection rules are given by

|j1 − j2| ≤ j3 ≤ j1 + j2 m1 + m2 + m3 = 0

The 3-jm symbol is related to the Clebsch–Gordan coe�cient by the formula,

⟨j1m1j2m2|j12m12⟩ = (−)
2j2+j12−m12 |̆12

⎛
⎜
⎜
⎜
⎝

j1 j12 j2

m1 −m12 m2

⎞
⎟
⎟
⎟
⎠

(3.7)

where we introduce the shorthand

|̆ =
√
2j + 1 (3.8)

as the factor appears frequently in angular momentum algebra.

1
Unfortunately this shares the same notation as 2 × 3 matrices.
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When three angular momentum states are coupled using the 3-jm symbol,

∑
m1m2m3

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

|j1m1⟩ ⊗ |j2m2⟩ ⊗ |j3m3⟩

the result is invariant (a spherical scalar) under SU(2) transformations.

The 3-jm symbol is given by the following symmetric formula [Wig93]

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

=
√
�(j1 j2 j3) ∑

k1k2k3

3
∏
i=1

(−)j1/2+ki
√
(ji − mi)!(ji + mi)!

(J /2 − ji − ki)!(J /2 − ji + ki)!

where:

• J = j1 + j2 + j3

• The summation is performed over all half-integers ki subject to the following constraints:

1. m1 + k2 − k3 = m2 + k3 − k1 = m3 + k1 − k2 = 0

2. Argument of every factorial involving ki must be a nonnegative integer.

• �(j1 j2 j3) is the triangle coe�cient:

�(j1 j2 j3) =
∏3

i=1(J − 2ji)!
(J + 1)!

The summation over ki has only one e�ective degree of freedom. If we break the symmetry

by choosing

k =
J
2
− j3 − k3
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we obtain the more conventional form used by Racah [Rac42]

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

= �m1+m2+m3,0(−)
j1−j2−m3

√

�(j1 j2 j3)
3
∏
i=1
(ji + mi)!(ji − mi)!∑

k

(−1)k

k!(j1 + j2 − j3 − k)!(j1 − m1 − k)!(j2 + m2 − k)!

×
1

(j3 − j2 + m1 + k)!(j3 − j1 − m2 + k)!

The summation is performed over all half-integers k such that the argument of every factorial

involving k is a nonnegative integer.

The 3-jm symbol is invariant under even permutations of its columns,

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

j2 j3 j1

m2 m3 m1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

j3 j1 j2

m3 m1 m2

⎞
⎟
⎟
⎟
⎠

Odd permutations lead to a phase factor,

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

= (−)j1+j2+j3
⎛
⎜
⎜
⎜
⎝

j3 j2 j1

m3 m2 m1

⎞
⎟
⎟
⎟
⎠

The same phase factor arises from time reversal,

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

= (−)j1+j2+j3
⎛
⎜
⎜
⎜
⎝

j1 j2 j3

−m1 −m2 −m3

⎞
⎟
⎟
⎟
⎠

The 3-jm symbol also has an additional set of symmetries called Regge symmetries [Reg58], but
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these are seldomly used in angular momentum algebra. They are, however, useful for storage and

caching of 3-jm symbols in computations [RY04].

The orthogonality relations of CG coe�cients carry over to 3-jm symbols. The �rst orthogo-

nality relation is given by

∑
j3m3

|̆23

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m′
1 m′

2 m3

⎞
⎟
⎟
⎟
⎠

= �m1m′1
�m2m′2

(3.9)

while the second orthogonality relation is

∑
m2m3

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j2 j3 j4

m2 m3 m4

⎞
⎟
⎟
⎟
⎠

=
�j1j4�m1m4

|̆21

{

j1 j2 j3

}
(3.10)

In the case where one of the angular momenta is zero, the 3-jm symbol has a very simple

formula:

(−)j1−m1
⎛
⎜
⎜
⎜
⎝

j1 0 j2

−m1 0 m2

⎞
⎟
⎟
⎟
⎠

=
�j1j2�m1m2

|̆1
(3.11)

There is a special relation that converts a summation over a 3-jm symbol into Kronecker deltas,

∑
m2
(−)j2−m2

⎛
⎜
⎜
⎜
⎝

j2 j1 j2

−m2 m1 m2

⎞
⎟
⎟
⎟
⎠

= �j10�m10 |̆2

Read in reverse, this means one can also represent Kronecker deltas with zeros as a 3-jm symbol.
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3.4 Angular momentum diagrams

Angular momentum diagrams, originally introduced by Jucys (whose name is also translated as

Yutsis) [YLV62], provide a graphical way to manipulate expressions of coupling coe�cients of

angular momentum states. Our presentation of diagrams di�ers from [YLV62; WP06; BL09] in

the treatment of arrows.
2

In other literature, arrows are used to distinguish between covariant

and contravariant angular momenta. However, we treat them mechanically as 1-jm symbols (see

Sec. 3.4.3). Other di�erences in presentation are largely super�cial. For practical reasons we do

not use graphics to describe

√
2j + 1 factors unlike [BL09].

3.4.1 Nodes

1 2

3

1

3

2

Figure 3.1: Diagram of the 3-jm symbol (123) in Eq. 3.12

The main ingredient of angular momentum algebra are 3-jm symbols. Since they are functions

of six variables, one might be tempted to introduce a node with six lines emanating from it.

2
Conversion from our presentation to the traditional presentation in, say, [WP06] is done by a two-step process:

(1) use diagrammatic rules to ensure that every internal line has an arrow and that every arrow on external lines

(if any) point away from the terminal; (2) on any remaining external lines with no arrows, draw an arrow pointing

toward the terminal. Now the diagram can be interpreted in the traditional manner. To convert back, simply revert

step (2): delete all arrows on external lines that point toward the terminal.
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However, this quickly becomes unwieldy. Instead, it is better to treat each (j, m)-pair as a combined

entity.

In Fig. 3.1, we introduce the diagram for the 3-jm symbol,

(123) =
⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

(3.12)

for which we have assigned the shorthand (123). Note that 3-jm symbols are the only kind of

primitive node (vertex) that appears in angular momentum diagrams. Hence, they are the basic

building block of such diagrams.

Because 3-jm symbols are invariant under even permutations only, it is necessary to assign

a de�nite ordering to the lines. This is denoted by the circular arrow within the node. In other

literature, circular arrows are usually replaced by a sign: + for anticlockwise and − for clockwise.

3.4.2 Lines

The lines (edges) in angular momentum diagrams serve to link the m-type arguments on both

ends of the line. The domain Mj over which the m variable is valid is indicated by the label on the

line.
3

For example, if a line is labeled “1”, this means the m variable must lie within the domain

Mj1 of the j1 variable.

As a convenience (or perhaps a source of confusion), we introduce a special exception to this

interpretation when the label is “0”. In this case, we instead interpret it to indicate that the domain

is M0 = {0}, i.e. m = j = 0. To alert the reader of this special interpretation, the line is drawn in a

faded grey color.

Lines can appear in isolation, as shown in Fig. 3.2. The middle diagram of Fig. 3.2 represents

3
Because of this, unlike many-body diagrams, labels on lines are not optional.

60



1

1 1′

2

2 2′

0′ 0′′

0

Figure 3.2: Degenerate line diagrams: upper diagram: (0′0′′) in Eq. 3.14; middle diagram: (11′) in

Eq. 3.13; lower diagram: (2̌2′) in Eq. 3.15

the Kronecker delta,

(11′) = �m1m′1
(3.13)

The upper diagram is also a Kronecker delta, but with the extra constraint that m′
0 ∈ M0, hence

(0′0′′) = �m′0m′′0
�m′00

(3.14)

3.4.3 Herring–Wigner 1-jm symbol

In the lower diagram of Fig. 3.2, we introduce the notion of an arrow on a line. Lines with

arrows (directed lines) are associated with a (−)j−m phase as well as a sign reversal in m, i.e. the

time-reversal of angular momentum. More precisely, the diagram represents the quantity:

(2̌2′) = �m2,−m′2
(−)j2−m

′
2 (3.15)
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This is sometimes referred to as a Herring–Wigner 1-jm symbol, denoted by

⎛
⎜
⎜
⎜
⎝

j

m m′

⎞
⎟
⎟
⎟
⎠

= |̆
⎛
⎜
⎜
⎜
⎝

j 0 j

m 0 m′

⎞
⎟
⎟
⎟
⎠

= �m,−m′(−)
j−m′

(3.16)

It acts like a metric tensor for SU(2), since the quantity

∑
mm′

⎛
⎜
⎜
⎜
⎝

j

m m′

⎞
⎟
⎟
⎟
⎠

|jm⟩ ⊗ |jm′⟩

is invariant under SU(2) transformations.

3.4.4 Terminals

The terminals of lines, highlighted by the grey circles, represent the free m variables (i.e. those

that are not summed over). We label the terminals so as to provide a correspondence to the

algebraic equations. For example, in Fig. 3.1 we label the terminals “1”, “2”, and “3” to indicate

their correspondence to m1, m2, and m3.

1

2

0
1

ȷ2̆
—= 1 = 2

1

2

1

2

Figure 3.3: 3-jm symbol when an argument is zero: (1̌02) = (12)/|̆1 in Eq. 3.11

There is one exceptional situation where a terminal may be absent: when the line is zero. This

occurs in, for example, the simpli�cation of a 3-jm symbol when one of the angular momenta
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is zero in Eq. 3.11. This is depicted diagrammatically in Fig. 3.3, and shown here in shorthand

notation:

(1̌02) =
(12)
|̆1

3.4.5 Closed diagrams

1

3

2

4 1 = 4
=

3

2

1

1 4 41

Figure 3.4: Second orthogonality relation for 3-jm symbols: (123)(234) = (14)(1′23)(1′23) in Eq. 3.10

In lines with no terminals – the internal lines – their m variables are always summed over.

This is exempli�ed in Fig. 3.4, which depicts the second orthogonality relation for 3-jm symbols

in Eq. 3.10 as

(123)(234) = (14)(1′23)(1′23) = (14){1′23}

On the left-hand side, the m2 and m3 lines are both internal and therefore summed over. On the

right-hand side, 1 = 4 label indicates the presence of a j-relating Kronecker delta �j1j4 in addition

to the usual �m1m4 . In the upper right, there is a special subdiagram (1′23)(1′23), which is in fact

the triangular delta

{

j1 j2 j3

}
as de�ned in Eq. 3.6.
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3

1

2

Figure 3.5: Triangular delta: {123} = (123)(123) in Eq. 3.17

In diagrammatic notation, the triangular delta is represented by the following sum as shown

in Fig. 3.5:

{123} = (123)(123) = ∑
m1m2m3

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

2 =
{

j1 j2 j3

}
(3.17)

The triangular delta is the simplest irreducible closed diagram: it cannot be broken down

into simpler components in a nontrivial way (irreducible), and there are no free m-type variables

(closed). Speci�cally, we say a diagram is irreducible if it cannot be factorized into subdiagrams

without either (a) introducing a summation over a new j-type variable, or (b) introducing another

triangular delta. The (b) constraint comes from the fact that a triangular delta can be split

(factorized) into a �nite number of identical triangular deltas, which is not very interesting.

The triangular delta is a rather degenerate case of an irreducible closed diagram. In Secs. 3.8.2,

3.8.3, we introduce more interesting cases: the 6-j and 9-j symbols. In graph theory, irreducible

closed diagrams correspond to cubic graphs that are cyclically 4-connected, namely, 3-edge-

connected graphs in which every split by the deletion of 3 edges yields at least one disconnected

vertex. The triangular delta is unusual in that it is the only non-simple graph of this family.
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1

2

1′

2′

1

2

1

3

2

1

2

1′

2′

=

1

2

Σ ȷ̆3
j3

Figure 3.6: First orthogonality relation for 3-jm symbols: ∑j3 |̆
2
3 (123)(1

′2′3) = (11′)(22′) in Eq. 3.9

3.4.6 Summed lines

There are a few occasions where the j-type variables do need to be summed over. This occurs in

the �rst orthogonality relation in Eq. 3.9, shown diagrammatically in Fig. 3.6 as

∑
j3
|̆23 (123)(1

′2′3) = (11′)(22′)

The doubling of the line serves as an additional reminder that j3 is being summed over.

3.5 Phase rules

Let us begin by considering just one particular angular momentum pair (ji , mi) in isolation. In

this case, we have the properties

(−)4ji = 1 (−)2(ji−mi) = 1
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We may call this the local phase rules. Given an arbitrary phase (−)aji+bmi with a, b ∈ ℤ, one

can always use local rules to uniquely decompose the phase as

(−)aji+bmi = (−)cji+d(ji−mi)

where c ∈ {0, 1, 2, 3} and d ∈ {0, 1}. We will call this the locally canonical form of the phase.

Hence, phases of a single angular momentum may be represented as a pair (c, d) where c uses

modulo-4 arithmetic and d uses modulo-2 arithmetic. There are only 8 unique phases:

0j 1j 2j 3j

0(j − m) 0 +j 2j −j

1(j − m) j − m +m j + m −m

The table has a toroidal topology: it wraps around both horizontally and vertically.

Canonicalization provides a mechanical approach for deciding whether two phases are equiv-

alent. Unfortunately, when non-local rules are involved, there is no longer an obvious way to

canonicalize phases – the symmetries of the phases become entangled with the topology of the an-

gular momentum diagram. Nonetheless, local canonicalization provides an easy way to eliminate

one of the sources of redundancy.

It is common to work with only real recoupling coe�cients, thus it is unusual for (−)j or (−)3j

to appear in isolation. They typically appear in groups, such as triplets (−)j1+j2+j3 or quadruplets.

Note that the (−)ji−mi phase comes from the 1-jm symbol, which are arrows in diagrammatic

notation (see Eq. 3.16). The algebraic properties of the 1-jm symbol can be encoded as two arrow
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1

1 1′

1

1 1′

=

1

1 1′

1

1 1′

= (−)
2j1

Figure 3.7: Upper diagram: arrow cancellation: (1̌1̌′) = (11′) in Eq. 3.18; lower diagram: arrow

reversal: (1̌1′) = (−)2j1(11̌) in Eq. 3.19

rules in diagrammatic theory. The �rst rule is arrow cancellation:

∑
m′′1

⎛
⎜
⎜
⎜
⎝

j

m m′′

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j

m′ m′′

⎞
⎟
⎟
⎟
⎠

= �m,m′ (3.18)

which is depicted in the upper diagram of Fig. 3.7. In the lower diagram, we have the second rule

of arrow reversal:

⎛
⎜
⎜
⎜
⎝

j

m m′

⎞
⎟
⎟
⎟
⎠

= (−)2j
⎛
⎜
⎜
⎜
⎝

j

m′ m

⎞
⎟
⎟
⎟
⎠

(3.19)

Now let us consider the nonlocal phase rules, which govern phase triplets related by 3-jm

symbols. These arise from the properties of the 3-jm symbol and the selection rules.

One of the nonlocal selection rules of the 3-jm symbol is

m1 + m2 + m3 = 0

This implies that m1, m2, and m3 are either all integers or one of them is an integer and the rest

are half-odd integers. The j1, j2, and j3 variables are constrained by this same condition as a
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consequence. Thus we have the sweeping rule:

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

= (−)2j1+2j2+2j3
⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

This rule enables (−)2j-type phases to be introduced, eliminated, or migrated (“sweeped”) around

the diagram. In contrast, (−)j-type phases by themselves are generally immobile without the aid

of Kronecker deltas.

1 2

3

1 2

3

=

Figure 3.8: Triple arrow rule: (123) = (1̌2̌3̌) in Eq. 3.20

The analog of the sweeping rule for arrows is the triple arrow rule, which allows three

similar arrows to be introduced around any 3-jm node:

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

= (−)j1−m1+j2−m2+j3−m3
⎛
⎜
⎜
⎜
⎝

j1 j2 j3

−m1 −m2 −m3

⎞
⎟
⎟
⎟
⎠

(3.20)

Like the sweeping rule, these can be used introduce, eliminate, or migrate arrows around the

diagram.

Lastly, it is often necessary to reverse the order of arguments in a 3-jm symbol. This is handled

by the node reversal rule, which allows the orientation of a 3-jm symbol to be reversed at the
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1 2

3

1 2

3

= (−)
j1 +j2 + j3

Figure 3.9: Node reversal rule: (123) = (−)j1+j2+j3(321) in Eq. 3.21

cost of three (−)j-type phases:

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

= (−)j1+j2+j3
⎛
⎜
⎜
⎜
⎝

j3 j2 j1

m3 m2 m1

⎞
⎟
⎟
⎟
⎠

(3.21)

3.6 Wigner–Eckart theorem

The Wigner–Eckart theorem allows matrix elements of a spherical tensor operator to be fac-

torized into an operator-dependent, m-independent component and an operator-independent,

m-dependent factor. The latter factor is composed of a 3-jm symbol (or equivalently a CG coe�-

cient). The theorem is highly advantageous for numerical computations as summations over 3-jm

symbols can often be simpli�ed substantially.

The usual statement of the theorem is as follows: if T̂ jTmT is a rank-jT spherical tensor operator

with components labeled by mT , then its matrix elements can be factorized in the following

manner

⟨j1m1�1|T̂
jTmT |j2m2�2⟩ = (−)

j1−m1

⎛
⎜
⎜
⎜
⎝

j1 jT j2

−m1 mT m2

⎞
⎟
⎟
⎟
⎠

⟨j1�1‖T̂
jT ‖j2�2⟩

where ⟨j1�1‖T̂
jT ‖j2�2⟩ is called the reducedmatrix element under the 3-jm convention. This
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is the same convention as the one used in [Rac42].

There are several other conventions. Some conventions di�er by a factor of (−)2jT :

⟨j1m1�1|T̂
jTmT |j2m2�2⟩ = (−)

2jT +j1−m1

⎛
⎜
⎜
⎜
⎝

j1 jT j2

−m1 mT m2

⎞
⎟
⎟
⎟
⎠

⟨j1�1‖T̂
jT ‖j2�2⟩

′

=
1
|̆1
⟨j2m2jTmT |j1m1⟩⟨j1�1‖T̂

jT ‖j2�2⟩
′

This phase factor is often irrelevant as jT is commonly an integer. Another convention is to simply

use the CG coe�cient directly:

⟨j1m1�1|T̂
jTmT |j2m2�2⟩ = ⟨j2m2jTmT |j1m1⟩⟨j1�1‖T̂

jT ‖j2�2⟩
′′

We call ⟨j1�1‖T̂
jT ‖j2�2⟩

′′
the reduced matrix element under the CG convention. This con-

vention is convenient for scalar operators where it simpli�es to:

⟨j1m1�1|T̂
0
0 |j2m2�2⟩ = �j1j2�m1m2⟨j1�1‖T̂

0‖j2�2⟩
′′

An unusual way to state the Wigner–Eckart theorem is through the following inverse equation:

⟨j1�1‖T̂
jT ‖j2�2⟩ = ∑

m′1mTm
′
2

(−)j1−m
′
1

⎛
⎜
⎜
⎜
⎝

j1 jT j2

−m′
1 mT m′

2

⎞
⎟
⎟
⎟
⎠

⟨j1m
′
1�1|T̂

jTmT |j2m
′
2�2⟩

The advantage of this form is that it can be readily translated to diagrams. Of course, in practice
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the summation is unnecessary as one could simply compute:

⟨j1�1‖T̂
jT ‖j2�2⟩ =

(−)j1⟨j10�1|T̂
jT
0 |j20�2⟩

⎛
⎜
⎜
⎜
⎝

j1 jT j2

0 0 0

⎞
⎟
⎟
⎟
⎠

3.7 Separation rules

0= 0
1

2

3

2 2=
j2 j3

δ

4

6

=
5

ȷ2
2˘

4

6

5

4

6

5

in a yellow subdiagram,
all internal lines must have arrows

j10
δ(a)

(b)

(c)

Figure 3.10: Separation rules: (a) single-line separation rule: f (j1, m1) = �j10�m10f (0, 0) in Eq. 3.22;

(b) double-line separation rule; (c) triple-line separation rule.

There is a general diagrammatic rule that is closely related to the more specialized Wigner–

Eckart theorem. Suppose we have an angular momentum diagram f (j1, m1) composed of 3-jm
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nodes with exactly one external line and every one of its internal lines has an arrow. Then, we

can partition the diagram into two pieces:

f (j1, m1) = �j10�m10f (0, 0) (3.22)

In other words, f must be invariant (a spherical scalar). We call this the single-line separation

rule because it allows us to cut the lone external line to separate the diagram into two disconnected

pieces. This rule is shown in Fig. 3.10 (a).

→ →

Figure 3.11: A schematic derivation of the separation rule for �ve lines. The topologies of the

diagrams are shown but most details (such as phases or other factors) have been omitted. Double

lines indicate summed lines as before (Sec. 3.4.6). The meaning of the yellow rectangles is the

same as in Fig. 3.10.

This seemingly simple rule can be used to separate arbitrarily complicated diagrams through

a mechanical process (Fig. 3.11) in which lines are repeatedly pairwise combined using the �rst

orthogonality relation (Fig. 3.6) until a single line remains, which can then be cut using Eq. 3.22.

Separation rules for the special cases of two and three lines are shown in Fig. 3.10 (b) and

(c) respectively. Both can be derived using (a) and the �rst orthogonality relation. Analogous

separation rules for four or more lines can be derived, but they always introduce new angular

momentum variables to be summed over. With six or more lines, there can be multiple non-

equivalent separation rules.

Separation rules are used in the derivation of recoupling coe�cients. They can also be used to
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derive the second orthogonality relation of 3-jm symbols.

3.8 Recoupling coe�cients and 3n-j symbols

3.8.1 Triangular delta

Consider the usual CG coupling of |j1m1⟩ and |j2m2⟩ to form the coupled state |(12)j12m12j1j2⟩ as

in Eq. 3.5,

|(12)j12m12j1j2⟩ = ∑
m1m2

|j1m1j2m2⟩⟨1, 2|12⟩

Here, we introduce a shorthand for Clebsch–Gordan coe�cients:

⟨a, b|c⟩ = ⟨jamajbmb |jcmc⟩

We call this coupling “(12)” because in the CG coe�cient angular momentum 1 appears before

angular momentum 2. We could have also coupled them in reverse:

|(21)j12m12j1j2⟩ = ∑
m1m2

|j1m1j2m2⟩⟨2, 1|12⟩

This leads to a di�erent set of coupled eigenstates, which we call (21). They are still eigenstates

of (Ĵ (12))2, Ĵ (12)3 , Ĵ (1), and Ĵ (2), just like the (12) states. Since the two states are bases of the same

Hilbert space we expect there to exist a linear transformation between the two:

|(21)j12m12j1j2⟩ = ∑
j′12j

′
1j
′
2

|(12)j′12m12j
′
1j
′
2⟩⟨(12)j

′
12j

′
1j
′
2|(21)j12j2j1⟩
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The quantity ⟨(12)j′12j
′
1j
′
2|(21)j12j2j1⟩ denotes the recoupling coe�cient from (12)-coupling to

(21)-coupling, one of the simplest recoupling coe�cients. From symmetry considerations alone

(see Sec. 3.7) we already deduced that the coe�cient is both block diagonal in m12 and does not

depend on m12.

Each recoupling coe�cient has a set of selection rules that can be determined in a straightfor-

ward manner. In this case, we know that j′12 = j12, j
′
1 = j1, and j′2 = j2, because they are eigenvalues

of the same operators. Thus we �nd that

⟨(12)j′12j
′
1j
′
2|(21)j12j2j1⟩ = �j′12j12

�j′1j1
�j′2j2

⟨(12)j12j1j2|(21)j12j2j1⟩

The remaining part of this particular recoupling coe�cient has a very simple formula:

⟨(12)j12j1j2|(21)j12j2j1⟩ =
1
|̆212

∑
m1m2m12

⟨1, 2|12⟩⟨2, 1|12⟩

= (−)j1+j2−j12
{

j1 j2 j3

} (3.23)

We thus observe that the coupling of states is not commutative, even though the addition of

angular momenta operators is.

Notice that the recoupling coe�cient contains a triangular delta

{

j1 j2 j3

}
, which was

previously de�ned in Eq. 3.6 and shown diagrammatically in Fig. 3.5. As we have noted, the

triangular delta is the simplest irreducible closed diagram. This is a general property of recoupling

coe�cients: every recoupling coe�cient can be decomposed into a product of irreducible closed

diagrams, times simple factor containing phases or |̆-like quantities.

As we will see in the next few sections, the irreducible closed diagrams are more commonly

known as 3n-j symbols, which contains both 6-j symbols and 9-j symbols. The triangular delta

is part of this family too, thus it is �tting to give it the name of a 3-j symbol by analogy [WP06].
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However, we do not use this terminology to avoid the inevitable confusion with 3-jm symbols.

3.8.2 6-j symbol

Now, consider another case where we have a sum of three angular momenta

Ĵ (123) = Ĵ (1) + Ĵ (2) + Ĵ (3)

and we want to �nd a set of coupled eigenstates for (Ĵ (123))2 and Ĵ (123)3 . One possibility is to �rst

obtain eigenstates |j12m12j1j2⟩ of (Ĵ (12))2 and Ĵ (12)3 , where Ĵ (12) is de�ned as

Ĵ (12) = Ĵ (1) + Ĵ (2)

and then couple these states with |j3m3⟩, leading to states of the form

|((12)3)j123m123j12j1j2j3⟩ = ∑
m1m2m12m3

|j1m1j2m2j3m3⟩⟨1, 2|12⟩⟨12, 3|123⟩

which are eigenstates of (Ĵ (123))2, Ĵ (123)3 , (Ĵ (12))2, (Ĵ (1))2, (Ĵ (2))2, and (Ĵ (3))2.

It is clear that we have introduced a bias to the Ĵ (12) here. What if instead we couple Ĵ (2) to

Ĵ (3), and then couple Ĵ (1) to that? Then we would obtain the states

|(1(23))j123m123j23j1j2j3⟩ = ∑
m1m2m3m23

|j1m1j2m2j3m3⟩⟨2, 3|23⟩⟨1, 23|123⟩

Or we also couple Ĵ (1) to Ĵ (3), and then to Ĵ (2), leading to the states

|((13)2)j123m123j13j1j2j3⟩ = ∑
m1m3m13m2

|j1m1j2m2j3m3⟩⟨1, 3|13⟩⟨13, 2|123⟩
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These choices lead to very di�erent sets of eigenstates that are related by nontrivial coe�cients.

There are also several other ways to couple, such as ((21)3), (1(32)), (2(13)), etc, but they are

equivalent to one of the above three up to a phase factor akin to Eq. 3.23.

To convert from, say, ((12)3) to (1(23)), we would require the following m-independent recou-

pling coe�cient:

⟨((12)3)j′123j12j
′
1j
′
2j
′
3|(1(23))j123j23j1j2j3⟩

The selection rules tell us that the primed quantities have to match the unprimed quantities. So

the only nontrivial elements are:

⟨((12)3)j123j12j1j2j3|(1(23))j123j23j1j2j3⟩

=
1
|̆2123

∑
m1m2m3m12m23m123

⟨12, 3|123⟩⟨1, 2|12⟩⟨2, 3|23⟩⟨1, 23|123⟩

Hence, the coupling of states is also not associative, even though the addition of angular momenta

operators is.

The recoupling coe�cient ⟨((12)3)j123j12j1j2j3|(1(23))j123j23j1j2j3⟩ can be expressed in terms

of a quantity called the 6-j symbol, de�ned as

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j1 j2 j3

j4 j5 j6

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

= ∑
m1m2m3m4m5m6

(−)j4−m4+j5−m5+j6−m6
⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j1 j5 j6

m1 −m5 m6

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j2 j6 j4

m2 −m6 m4

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j3 j4 j5

m3 −m4 m5

⎞
⎟
⎟
⎟
⎠

(3.24)

Fig. 3.12 shows the diagram for a 6-j symbol, which corresponds to the following diagrammatic
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6

45

21

3

Figure 3.12: 6-j symbol: {123456} = (123)(15̌6)(26̌4)(34̌5) in Eq. 3.24

shorthand:

{123456} = (123)(15̌6)(26̌4)(34̌5)

We may now write the aforementioned recoupling coe�cient as:

⟨((12)3)j123j12j1j2j3|(1(23))j123j23j1j2j3⟩ = (−)
j1+j2+j3+j123 |̆12 |̆23

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j1 j2 j12

j3 j123 j23

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

The 6-j symbol has the nonlocal selection rules corresponding to those of its 3-jm nodes, which

are simply the following triangle conditions:

{

j1 j2 j3

} {

j1 j5 j6

} {

j2 j6 j4

} {

j3 j4 j5

}

Note that Fig. 3.12 is only one out of several ways to draw a 6-j symbol. It has in fact several

interesting symmetries that are not immediately obvious. For example, the columns of the 6-j
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symbol can be permuted arbitrarily (both odd and even permutations):

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j1 j2 j3

j4 j5 j6

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j2 j1 j3

j5 j4 j6

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j2 j3 j1

j5 j6 j4

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

= ⋯

It also has the following tetrahedral symmetries:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j1 j2 j3

j4 j5 j6

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j4 j5 j3

j1 j2 j6

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j4 j2 j6

j1 j5 j3

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

j1 j5 j6

j4 j2 j3

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

3.8.3 9-j symbol

1

4

5

2

8

9

7

6

3

Figure 3.13: 9-j symbol: {123456789} = (123)(456)(789)(147)(258)(369) in Eq. 3.25

Certain recouplings four or more angular momenta can lead to another type of irreducible
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diagram known as the 9-j symbol, de�ned as:

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

j1 j2 j3

j4 j5 j6

j7 j8 j9

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

= ∑
m1m2m3m4m5m6m7m8m9

⎛
⎜
⎜
⎜
⎝

j1 j2 j3

m1 m2 m3

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j4 j5 j6

m4 m5 m6

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j7 j8 j9

m7 m8 m9

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j1 j4 j7

m1 m4 m7

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j2 j5 j8

m2 m5 m8

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

j3 j6 j9

m3 m6 m9

⎞
⎟
⎟
⎟
⎠

(3.25)

This is shown diagrammatically in Fig. 3.13, which can be expressed as the following shorthand:

{123456789} = (123)(456)(789)(147)(258)(369)

The nonlocal selection rules of 9-j symbols are simply triangle conditions on all row and

column triplets. They are invariant under re�ections about either diagonal, and also invariant

under even permutations of rows or columns. An odd permutation would introduce a phase factor

of (−)∑
9
i=0 ji .

3.9 Calculation of angular momentum coe�cients

Numerical values of the coupling and recoupling coe�cients (i.e. 3-jm, 6-j, and 9-j symbols)

can be calculated readily using the formulas as given in this chapter. Due to the presence of

large alternating sums, use of arbitrary-precision arithmetic is highly recommended to avoid

catastrophic loss of precision.
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Optimized variants of the formulas for 3-jm, 6-j, and 9-j symbols have been described in detail

in [Wei99; Wei98]. These have been implemented in the wigner-symbols software packages

in Rust [WSR] and Haskell [WSH], which leverage the GNU Multi Precision (GMP) Arithmetic

Library [Gt16] for its highly optimized arbitrary-precision integer and rational arithmetic.

Even with the fastest algorithms, it is often more performant to reuse (re)coupling coe�cients

that have been previously computed and cached in memory than to recompute them again. For

this, the storage scheme devised in [RY04] based on Regge symmetries can help reduce the total

memory usage. The storage scheme consists of two main parts:

• A canonicalization scheme that uses the symmetries of the coupling coe�cients to link ones

that di�er by a trivial phase factor.

• An indexing scheme that translates canonicalized angular momenta into an array index,

allowing rapid lookup of elements.

In practice, we found the canonicalization scheme most useful for calculations as it provides a

guaranteed 1-2 orders of magnitude reduction in memory usage. In contrast, the indexing scheme

is not substantially faster than a plain hash-table lookup and comes with the disadvantage of

requiring all coe�cients to be precomputed up to some limit. This makes it somewhat di�cult to

use in practice and can result in wasted memory if the limit is overestimated.

3.10 Graphical tool for angular momentum diagrams

We have developed a graphical tool [Jucys] that can be used to perform graphical manipulation of

angular momentum coe�cients with the diagrammatic technique explained in this chapter, with

a few slight modi�cations. Speci�cally, non-diagrammatic objects such as phases, |̆-like factors,

Kronecker deltas, or summations over j-type variables are all tracked separately in a tableau that

is displayed beside the diagram.
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The primary motivation of the tool is to eliminate human errors that commonly occur in

angular momentum algebra and improve the speed of such derivations. To achieve this, the diagram

o�ers a special reduction mode that, when activated, ensures that all of the user’s diagrammatic

manipulations preserve equality. The user modi�es the diagram through various gestures and

clicks of the mouse cursor. The program is responsible for enforcing the diagrammatic rules,

including orthogonal relations, separation rules, various phase rules, etc.

The program comes with a separate input tool for writing angular momentum expressions,

without which the user would have to manually draw angular momentum diagrams node by node

– a tedious and error-prone process. The input tool provides fast means of describing coupling

coe�cients in text, reducing the room for human error. As an example, the Pandya transformation

coe�cient for spherical scalars is described by the following input:

rel (p + q) (r + s)

rec (p - s) (r - q)

Here, rel equates the two angular momenta p + q and r + s. The rec equates the two

angular momenta p - s and r - q but also includes an extra 1/|̆2ps factor. The plus sign in p +

q denotes the usual CG coupling

⟨p, q|pq⟩ = ⟨jpmpjqmq |jpqmpq⟩

whereas the minus sign in p - s denotes coupling with the second angular momentum time-

reversed:

⟨p, š|ps⟩ = (−)js−ms⟨jp , mp , js , −ms |jps , mps⟩ (3.26)
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After providing this input to the tool, the corresponding 6-j diagram can be rapidly derived along

with the associated phases and factors.

As another example, the Pandya transformation coe�cient for a spherical tensor ÂjAmA is

described by

wet (p + q) A (r + s)

wet (p - s) A (r - q)

Here, wet denotes the use of the Wigner–Eckart coupling and the central A variable is the rank

jA of the spherical tensor. After providing this input, one can quickly derive the corresponding 9-j

diagram with the associated phases and factors.

The tool is a web application written in a combination of JavaScript, HTML, and CSS. It can

therefore run in any modern Internet browser and is accessible to users on most desktop platforms.

An online version is available for immediate use, but the user can also run the application on their

own machine with the appropriate setup. It utilizes SVG technology to display diagrams, making

it straightforward to export diagrams as vector images, suitable for use in literature as we have

done in this work.

We will not attempt to explain the usage of the program here, as that information will very

likely become out of date as the program evolves. Interested users are advised to read the o�cial

documentation for usage information.

3.11 Fermionic states in J-scheme

J-scheme is a many-body formalism that takes advantage of angular momentum conservation to

reduce the dimensionality of the problem (i.e. the computational cost and size of matrices). In this
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context, the usual formalism where we do not take advantage of angular momentum symmetries

is dubbed M-scheme for contrast.

We use a, b, c, … to label single-particle states in this section. We assume each state has some

de�nite angular-momentum-like quantum numbers: magnitude j and projection m, along with

some other quantum number(s) � that are not relevant here.

3.11.1 Two-particle states

A two-particle J-coupled product state is de�ned as

|�aja ⊗ �bjb; jabmab⟩ = ∑
mamb

|a ⊗ b⟩⟨a, b|ab⟩

= ∑
mamb

|�ajama ⊗ �bjbmb⟩⟨jamajbmb |jabmab⟩

where ⟨a, b|ab⟩ = ⟨jamajbmb |jabmab⟩ is the Clebsch–Gordan coe�cient (Sec. 3.2) and |a ⊗ b⟩ =

|�ajama⊗�bjbmb⟩ denotes the (non-antisymmetrized) tensor product state (Sec. 2.1.1) in M-scheme.

To keep things concise, we will use the following shorthand for coupled product states:

|(12)a ⊗ b⟩ = |�aja ⊗ �bjb; jabmab⟩

Keep in mind that unlike M-scheme, the states in J-scheme do not depend on the individual

projections ma and mb , only total mab .

The coupled product states are eigenstates of the total Ĵ 2 of all particles,

Ĵ 2|(12)a ⊗ b⟩ = jab(jab + 1)|(12)a ⊗ b⟩

In contrast, uncoupled states are not eigenstates of Ĵ 2.
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For fermionic problems, we can form an antisymmetrized state for J-scheme. The most

straightforward way to do this is by coupling the antisymmetrized state,

|�aja�bjb; jabmab⟩ =
1√
Nab

∑
mamb

|ab⟩⟨jamajbmb |jabmab⟩

where the normalization factor is given by

Nab = 1 − (−)
2ja+jab��a�b�jajb (3.27)

If the normalization factor is zero, then the antisymmetrized state does not exist.

Note that Nab depends on only the non-m parts of a and b. If ja and jb are always half-odd,

then the normalization factor can be further simpli�ed to Nab = 1+ (−)
jab��a�b�jajb , which means

if �a = �b and ja = jb , then states with odd jab do not exist.

As before, we will also introduce a shorthand for the antisymmetrized states,

|(12)ab⟩ = |�aja�bjb; jabmab⟩

which depends on neither ma nor mb .

Alternatively, one can also obtain the same state from a J-coupled product state:

|(12)ab⟩ =
√

2
Nab

 (1+ja+jb−jab)|(12)a ⊗ b⟩

=
1√
2Nab

(|(12)a ⊗ b⟩ − (−)ja+jb−jab |(12)b ⊗ a⟩)
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where  (1+ja+jb−jab) is the ±-symmetrization symbol introduced in Sec. 2.1.2,

 (1+ja+jb−jab)Xab =
1
2(
Xab + (−)

1+ja+jb−jabXba)

Note that the antisymmetrizer Ŝ− (Sec. 2.1.2) operates di�erently in J-scheme compared to in

M-scheme: matrix elements of the antisymmetrizer Ŝ− are not always antisymmetric with respect

to (j, �) in J-scheme; instead they depend on the parity of ja + jb − jab . This becomes even more

complex for 3 or more particles as the matrix elements of the antisymmetrizer may contain 6-j or

higher symbols.

Under particle exchange, the J-scheme antisymmetrized state has the following property:

|(12)ab⟩ = −(−)ja+jb−jab |(12)ba⟩

In J-scheme, the two-body antisymmetrized matrix elements are related to the product matrix

elements by

⟨(12)ab|V̂ |(12)cd⟩

=
√

2
Nab

⟨(12)a ⊗ b|V̂ |(12)cd⟩

=
1√

NabNcd
(⟨(12)a ⊗ b|V̂ |(12)c ⊗ d⟩ − (−)jc+jd−jcd ⟨(12)a ⊗ b|V̂ |(12)d ⊗ c⟩)

3.11.2 Three-particle states

Three-particle states have 3 nontrivially distinct ways of coupling. We will stick to the convention

of coupling the �rst two, then the third, which we call the standard coupling order. In this case,
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the product state in J-scheme is given by

|((12)3)a ⊗ b ⊗ c⟩ = ∑
mambmc

|a ⊗ b ⊗ c⟩⟨a, b|ab⟩⟨ab, c|abc⟩

As usual, the J-scheme antisymmetrized state is formed by coupling the M-scheme antisymmetrized

state,

|((12)3)abc⟩ =
1√

N(ab)c
∑

mambmc
|abc⟩⟨a, b|ab⟩⟨ab, c|abc⟩

where the normalization constant N(ab)c is given by

N(ab)c = 1 − (−)
2ja+jab��a�b�jajb

− (−)2jabc |̆ab

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ja jb jab

jabc jb jab

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

��b�c�jbjc

− (−)2jabc |̆ab

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

jb ja jab

jabc ja jab

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

��a�c�jajc

+ 2(−)jab |̆ab

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ja ja jab

jabc ja jab

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

��a�b�jajb��a�c�jajc

3.12 Matrix elements in J-scheme

In this work, we do not use normalized J-scheme states: equations tend to be simpler if we

use unnormalized matrix elements in which the 1/
√
N factor (see Eq. 3.27) is omitted. This

convention is used throughout.
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3.12.1 Standard-coupled matrix elements

Given an M-scheme two-body matrix A
mpmqmrms
pqrs , we can couple p to q and r to s,

A
jpqmpqjrsmrs(12;34)
pqrs = ∑

mpmqmrms
⟨p, q|pq⟩⟨r, s|rs⟩A

mpmqmrms
pqrs

where ⟨p, q|pq⟩ = ⟨jpmpjqmq |jpqmpq⟩ is the CG coe�cient (Sec. 3.2). We call this the standard

coupling for two-body matrix elements and denote it by schematically as 12; 34. We will often

omit the (12; 34) superscript as we consider this the default coupling scheme.

If the matrix is a spherical scalar, then thanks to the Wigner–Eckart theorem we can omit

many of the superscripts:

A
jpqmpqjrsmrs(12;34)
pqrs = �jpqjrs�mpqmrsA

jpq(12;34)
pqrs

where A
jpq(12;34)
pqrs denotes the reduced matrix element in the CG convention (Sec. 3.6). Like any

reduced matrix element, it is entirely independent of m.

If Â is a spherical tensor of rank jA and projection mA, then it is more convenient to use the

reduced matrix element in the 3-jm convention

A
jAmAjpqmpqjrsmrs(12;34)
pqrs = (−)jpq−mpq

⎛
⎜
⎜
⎜
⎝

jps jA jrq

−mps mA mrq

⎞
⎟
⎟
⎟
⎠

A
jAjpqjrs(12;34)
pqrs

The standard coupling can be extended for higher-body operators: one simply couples the bra

and ket indices in the order as written. For example, a three-body matrix in standard coupling
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would be

A
jpqrmpqr jpqjstumstujst ((12)3;(45)6)
pqrstu

= ∑
mpmqmrmsmtmu

⟨p, q|pq⟩⟨pq, r |pqr⟩⟨s, t|st⟩⟨st, u|stu⟩A
mpmqmrmsmtmu
pqrstu

This is denoted schematically by (12)3; (45)6. In the case of spherical scalars, we have the following

reduced matrix elements in the CG convention:

A
jpqrmpqr jpqjstumstujst ((12)3;(45)6)
pqrstu = �jpqr jstu�mpqrmstuA

jpqr jpqjst ((12)3;(45)6)
pqrstu

3.12.2 Pandya-coupled matrix elements

Besides the standard coupling, two-body operators can be coupled in several other ways. Some

are equivalent to 12; 34 up to a phase factor. A nontrivial combination is the Pandya coupling

[Pan56; Suh07] 14̌; 32̌:

A
jpsmpsjrqmrq(14̌;32̌)
psrq = − ∑

mpmsmrmq
⟨p, š|ps⟩⟨r , q̌|rq⟩A

mpmqmrms
pqrs

where the ⟨p, š|ps⟩ uses the time-reversed CG notation introduced in Eq. 3.26.

The extraneous minus sign in front of the summation is conventional: if we treat this a

recoupling of �eld operators, we would obtain a minus sign due to antisymmetry since the

permutation 1234 → 1432 is odd. If instead we omit the extraneous minus sign, the coupling is

often referred to as cross-coupling [Kuo+81] rather than Pandya-coupling.

For spherical scalars, we have the following reduced matrix elements in the CG convention.

A
jpsmpsjrqmrq(14̌;32̌)
psrq = �jps jrq�mpsmrqA

jps(14̌;32̌)
psrq
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They are related to the standard-coupled reduced matrix elements the Pandya transformation:

A
jps(14̌;32̌)
psrq = − ∑

jpq
(−)2jpq |̆2pq

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

jp jq jpq

jr js jps

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

A
jpq(12;34)
pqrs

The inverse Pandya transformation is nearly the same:

A
jps(12;34)
pqrs = −(−)2jpq ∑

jps
|̆2ps

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

jp jq jpq

jr js jps

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

A
jps(14̌;32̌)
psrq

However, typically when Pandya-coupled matrices are involved, the fermionic antisymmetry

is temporarily broken. As a result, in our implementation, Pandya-coupled matrices are not

antisymmetrized even though standard-coupled matrices are. To restore the antisymmetry when

performing the inverse transformation, we must perform an explicit antisymmetrization during

the inverse transformation:

A12;34pqrs = −(−)
2jpq

(1+jp+jq−jpq)
pq  (1+jr +js−jrs)rs ∑

jps
|̆2ps

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

jp jq jpq

jr js jps

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

Ã14̌;32̌psrq

where the tilde symbol (Ã) indicates that the matrix element is not antisymmetrized and  (i) is

the (−)i-symmetrization symbol in Sec. 2.1.2.

For completeness, we also include the Pandya transformation for spherical tensor operators,

A
jAjpsjrq(14̌;32̌)
psrq = − ∑

jpqjrs
|̆pq |̆rs |̆ps |̆rq(−)

jq+js−jrs+jrq

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

jp jq jpq

js jr jrs

jps jrq jA

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

A
jAjpqjrs(12;34)
pqrs
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where we use reduced matrix elements in the 3-jm convention,

A
jAmAjpsmpsjrqmrq(14̌;32̌)
psrq = (−)jps−mps

⎛
⎜
⎜
⎜
⎝

jps jA jrq

−mps mA mrq

⎞
⎟
⎟
⎟
⎠

A
jAjpsjrq(14̌;32̌)
psrq

The inverse transformation is identical except the summation is over jps and jrq .

3.12.3 Implicit-J convention

To keep J-scheme of scalar operators concise, we will omit explicit mention of composite angular

momenta within the matrix elements:

A
jpq
pqrs  Apqrs

A
jpqr jpqjrs
pqrstu  Apqrstu

We will also omit mentions of Kronecker deltas between angular momenta as well as triangular

deltas. We call this the implicit-J convention.

As an example, consider the following scalar equation written in our implicit-J convention:

Cpq =
1
2
∑
jip

∑
i⧵ab

|̆2ip
|̆2p
AipabBabiq

To decode this, we follow these steps:

1. We �rst determine the set of composite angular momentum variables. This comes from a

combination of (a) the composite angular momenta from the left-hand side (there are none,

since Cpq is only one-body), (b) the composite angular momenta that are being explicitly
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summed over (namely jip).

Cpq =
1
2
∑
jip

∑
i⧵ab

|̆2ip
|̆2p
A
jip
ipabB

?
abiq

2. Next, we �ll in the remaining slots for composite angular momenta using conservation laws.

Since jip = jab , the missing angular momentum on B is simply jip :

Cpq =
1
2
∑
jip

∑
i⧵ab

|̆2ip
|̆2p
A
jip
ipabB

jip
abiq

3. We may use the conservation laws to determine the Kronecker deltas for the elementary

angular momenta:

Cpq =
1
2
�jpjq ∑

jip
∑
i⧵ab

|̆2ip
|̆2p
A
jip
ipabB

jip
abiq

4. Finally, we use selection rules to restrict the composite angular momenta via triangular

deltas:

Cpq =
1
2
�jpjq ∑

jip
∑
i⧵ab

|̆2ip
|̆2p

{

ji jp jip

}{

ja jb jip

}
A
jip
ipabB

jip
abiq

This can be generalized to spherical tensors by omitting the tensor ranks:

A
jAjpqjrs
pqrs  Apqrs

A
jAjpqr jpqjrst jrs
pqrstu  Apqrstu

The procedure to decode these is analogous: tensor ranks should be treated like composite angular
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momenta.
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Chapter 4

Many-body methods

We now discuss the many-body methods that form the core of our many-body code. In Sec. 2.1.2,

we have noted that antisymmetrized states (Slater determinants) provide solutions for any non-

interacting fermionic system. We have not yet discussed how to solve interacting systems however,

which is the principal focus of many-body theory.

In general, while solutions of the non-interacting Hamiltonian Ĥ ◦
are often not solutions of

any interacting Hamiltonian Ĥ , they do nonetheless provide a useful basis for the Fock space. We

expect from basic linear algebra that, if the degrees of freedom (including boundary conditions)

are the same between ĤNI and Ĥ , then any exact N -particle solution |	⟩ can be expanded as a

linear combination of antisymmetrized states,

|	⟩ =
1
N !

∑
p1…pN

	p1…pN â
†
p1 ⋯ â†pN |∅⟩

Solving a quantum system in this manner is the central theme of exact diagonalization methods,

such as full con�guration interaction (FCI) [Ols+88; KH84] and no-core shell model (NCSM)

[NVB00; Nav+09].

The key advantage of exact diagonalization is the ability to obtain exact numeric results within

the basis (up to machine precision), capturing all the details of the quantum system. However,

such methods are very costly as the number of N -particle basis states nB increases rapidly with
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the number of particles N and the number of single-particle states nb, speci�cally

nB = (
nb
N )

where (nk) denotes the binomial coe�cient. The combinatorial explosion quickly renders such

methods unfeasible in systems with even a moderate number of particles, beyond the computational

power that exists in the observable universe.

Alternative many-body methods strive to avoid this problem by limiting the N -particle Hilbert

space under consideration. It can be particularly bene�cial if the non-interacting Hamiltonian Ĥ ◦

that generates the basis states is to some extent similar to the interacting Hamiltonian Ĥ . That is,

one decomposes Ĥ into

Ĥ = Ĥ ◦ + V̂

where the contributions of the perturbation V̂ are expected to be small in some sense. In this

case, one or a few antisymmetrized states may serve as a good zeroth order approximation to the

system.

For now, we will only consider using a single antisymmetrized state as the initial approximation.

This limits our consideration to closed-shell systems in which the number of particles coincides

with a magic number. This distinguished antisymmetrized state will serve as our reference state

(Fermi vacuum).
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4.1 Hartree-Fock method

The reference state formed by basis states of the non-interacting Hamiltonian may not o�er a good

approximation of the true ground state (i.e. of the interacting Hamiltonian). The Hartree–Fock

(HF) method [Har28; Foc30] provides a way to optimize the basis states such that the reference

state provides the best variational estimate of the ground state energy.

4.1.1 Hartree–Fock equations

Using the variational principle, one can compute an approximate ground state |�⟩ by minimizing

the energy expectation value (Hartree–Fock energy)

E� = ⟨�|Ĥ |�⟩ (4.1)

with respect to a reference state |�⟩, subject to the restriction that |�⟩ remains a single Slater

determinant constructed from an unknown single-particle basis |p′⟩,1

|�⟩ = |i′1… i′N ⟩

where {i′1, … , iN } are an unknown set of occupied state labels drawn from the unknown single-

particle basis. The restriction of |�⟩ to a single Slater determinant is what enables the simplicity

and e�ciency of this method.

To perform numerical calculations, we further assume that each unknown state |p′⟩ is built

from a linear combination of known states |p⟩, with an unknown matrix of coe�cients C de�ned

1
The unknown basis is distinguished from the known basis by the prime symbol

′
in their labels.
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via the transformation equation

|p′⟩ = ∑
p
|p⟩Cpp′

This allows the problem to be reduced from an abstract minimization problem Eq. 4.1 to a concrete

numerical problem. The caveat is that the set of known functions must be large enough to capture

the relevant behavior of the system.

To ensure orthonormality of the states, we require there to be as many unknown states |p′⟩ as

known states |p⟩, and the coe�cient matrix C must be unitary,

C†C = 1

These conditions are more strict than needed, but they greatly simplify the calculations and allow

the states |p′⟩ to act as optimized inputs for methods beyond HF (post-HF methods). At the

end of the calculation, of the set of states |p′⟩ there would be exactly N occupied states that

participate in the optimized Slater determinant |�⟩. The remaining unoccupied states serve as the

complementary space into which particles can be excited by the interaction V̂ during post-HF

calculations.

Consider a Hamiltonian Ĥ that can be decomposed into a set of (1, 2, 3)-body operators relative

to the physical vacuum,

Ĥ = Ĥ∅1 + Ĥ∅2 + Ĥ∅3

where Ĥ∅k is its k-body component relative to the physical vacuum. (We will omit the ∅ su�x in
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this section.) The goal is to �nd the coe�cients C that minimize the Hartree–Fock energy E� ,

E� = ∑
i′⧵
⟨i′|Ĥ1|i

′⟩ +
1
2

∑
i′j′⧵

⟨i′j′|Ĥ2|i
′j′⟩ (4.2)

where

⟨p′|Ĥ1|q
′⟩ = ∑

pq
C∗
pp′

⟨p|Ĥ1|q⟩Cqq′

⟨p′q′|Ĥ2|r
′s′⟩ = ∑

pqrs
C∗
pp′

C∗
qq′

⟨pq|Ĥ2|rs⟩Crr′Css′

(4.3)

and ∑i′⧵ denotes a summation over all hole states |i′⟩ in the unknown basis (see Eq. 2.3).

With the method of Lagrange multipliers, the minimization problem can be reduced to the

solving of a nonlinear equation – the self-consistent Hartree–Fock equations:

FC = C" (4.4)

where the Fock matrix F is de�ned as

Fpq = ⟨p|Ĥ1|q⟩ + ∑
rs

∑
i′⧵
C∗
ri′

⟨pr|Ĥ2|qs⟩Csi′ (4.5)

with i′ ranging over occupied states only, and " is a vector of Lagrange multipliers, which serve

to constrain the orthonormality of the single-particle basis. Each multiplier "p′ is associated with

a speci�c single-particle state |p′⟩. Observe that the Fock matrix F contains precisely the matrix

elements of the one-body Hamiltonian Ĥ�
1 relative to the Fermi vacuum |�⟩ in the original basis

|p⟩ Eq. 2.4, and the HF energy E� is exactly the zero-body component in Eq. 2.4.
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4.1.2 HF equations in J-scheme

In this work, we use the implicit-J convention of Sec. 3.12.3 to describe J-scheme equations.

In J-scheme, the HF energy of Eq. 4.2 is given by

E� = ∑
i′⧵
|̆2
i′
⟨i′|Ĥ1|i

′⟩ +
1
2

∑
j
i′j′

∑
i′j′⧵

|̆2
i′j′

⟨i′j′|Ĥ2|i
′j′⟩ (4.6)

and the Fock matrix of Eq. 4.5 is given by

Fpq = ⟨p|Ĥ1|q⟩ + ∑
jpr rs

∑
i′⧵

|̆2pr
|̆2p
C∗
ri′

⟨pr|Ĥ2|qs⟩Csi′ (4.7)

The transformation equations of Eq. 4.3 remain super�cially identical to M-scheme.

4.1.3 Solving HF equations

Aside from trivial cases that are analytically solvable, the HF equation is generally solved nu-

merically using an iterative algorithm. We begin with an initial guess C(k) on the k-th iteration,

which is fed into Eq. 4.5 to produce the Fock matrix. This is then used in Eq. 4.4, which leads to a

standard eigenvalue problem from which C(k+1) arises as the matrix of eigenvectors and "(k+1) as

the vector of eigenvalues. This process can be repeated inde�nitely until C approaches a �xed

point (self-consistency). While in theory it is possible for the solution to never reach a �xed point,

or that it may require an unfeasibly large number of iterations, in practice this naive approach

can adequately provide solutions for many cases. In other cases where it is insu�cient, methods

such as direct inversion of the iterative subspace (DIIS) [Pul80; Pul82], Broyden’s method [Bro65],

or even ad hoc linear mixing can improve and accelerate convergence greatly. Therefore, the

possibility of slow or non-convergence is generally not a concern in practice.
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For the initial guess, we simply use the ground state of our noninteracting Hamiltonian, thus

C(0) = 1, the identity matrix. At each iteration, we calculate the sum of the Lagrange multipliers "

as a diagnostic for convergence: as the iteration approaches convergence, the change in the sum

per iteration should decrease rapidly.

4.1.4 Post-HF methods

Since HF restricts the ground state to merely a single Slater determinant of single-particle states,

it cannot provide an exact solution to a problem where multi-particle correlations are present

even if the single-particle basis is not truncated (in�nite in size). The discrepancy between the

HF energy and the exact ground state energy is often referred to as the correlation energy, by

de�nition. The focus of post-HF methods such as IM-SRG or CC is to add corrections beyond

mean-�eld approximations such as HF.

To make use of the HF solution as the reference state for post-HF calculations, we transform the

matrix elements via Eq. 4.3. In e�ect, this means we are no longer operating within the harmonic

oscillator single-particle basis, but rather a HF-optimized single-particle basis. However, we will

omit the prime symbols as the post-HF methods are generic and can be used in any basis, whether

optimized by HF or not.

A commonly used post-HF method is the Møller–Plesset perturbation theory at second

order (MP2) [MP34], which adds an energy correction to the Hartree–Fock result:

�E =
1
4

∑
ij⧵ab

VijabVabij
�ijab

(4.8)

where Vijab are two-body matrix elements of the HF-transformed Hamiltonian, � denotes the
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Møller–Plesset energy denominators [MP34],

�q1…qkp1…pk =
k
∑
i=1
("qi − "pi ) (4.9)

and "p are HF orbital energies. In J-scheme, the MP2 correction is given by:

�E =
1
4
∑
jij

∑
ij⧵ab

|̆2ij
VijabVabij
�ijab

(4.10)

The MP2 calculation is extremely simple and cheap, thus it is often used as a diagnostic for

estimating the strength of correlations that remain unaccounted for.

A more sophisticated post-HF method is the coupled-cluster (CC) method [SB09], in which the

N -particle correlated wave function |	⟩ is expressed as the exponential ansatz,

|	⟩ = eT̂ |�⟩

Here, |�⟩ is a Slater determinant reference state such as the one from HF and T̂ is the cluster

operator, which is a sum of k-particle-k-hole excitation operators of various k. The Schrödinger

equation with this ansatz becomes a set of non-linear algebraic equations (coupled-cluster equations)

with which one can solve for the matrix elements of T̂ and thereby obtain information about |	⟩.

The focus of this work is not on the coupled-cluster method, however, although we will present

benchmarks of it for comparison. Our focus is on the in-medium similarity renormalization group

(IM-SRG) method.
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4.2 Similarity renormalization group methods

4.2.1 Free space SRG

The central theme of similarity renormalization group (SRG) methods is the application of a

continuous sequence of unitary transformations on the Hamiltonian to evolve it into a band- or

block-diagonal form. This allows the decoupling of a small, designated model space from its

larger complementary space. The problem can thus be truncated to the small model space while

preserving a large amount of information about the system. See for examples [Keh06; Her+16;

HLK17] for derivations and calculational details.

The sequence of transformations is parameterized by a continuous variable s known as the

�ow parameter. Without loss of generality, we can de�ne s = 0 to be the beginning of this

sequence, thus Ĥ (0) is simply the original Hamiltonian. At any value of s, the evolving Hamiltonian

Ĥ (s) is related to the original Hamiltonian by

Ĥ (s) = Û (s)Ĥ (0)Û†(s)

where U (s) is a unitary operator that describes the product of all such transformations since s = 0.

Taking the derivative with respect to s, we obtain:

d
ds
Ĥ (s) =

dÛ (s)
ds

Ĥ (0)Û†(s) + Û (s)Ĥ (0)
dÛ†(s)
ds

If we de�ne the generator �̂(s) as

�̂(s) =
dÛ (s)
ds

Û†(s) (4.11)
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we �nd that it is antihermitian as a result of the unitarity of Û (s):

�̂(s) + �̂†(s) =
d
ds(

Û (s)Û†(s)) = 0

From this property we can derive a di�erential equation known as the SRG �ow equation:

dĤ (s)
ds

= [�̂(s), Ĥ (s)] (4.12)

This equation allows Ĥ (s) to be evaluated without explicitly constructing the full transformation

Û (s). The focus is instead shifted to the operator �̂(s), the generator of the transformation. When

�̂(s) is multiplicatively integrated (product integral), the full unitary transformation Û (s) is

recovered:

Û (s′) = lim
�s→0

→n
∏
i=1

e�̂(si )�s (4.13)

where si = i�s, n = ⌊s′/�s⌋, ⌊x⌋ denotes the �oor of x , and the product is ordered from left (i = 1)

to right (i = n). This is the formal solution to the linear di�erential equation Eq. 4.11. The product

integral in Eq. 4.13 may also be reinterpreted as “s-ordering” [Rei13] in analogy to time-ordering

from quantum �eld theory.

The power of SRG methods lies in the �exibility of the generator �̂, which is usually chosen

in an s-dependent manner. In particular, it is often dependent on the evolving Hamiltonian Ĥ (s).

The operator �̂ determines which parts of the Hamiltonian matrix would become suppressed by

the evolution, which are usually considered “o�-diagonal” in an abstract sense. The “o�-diagonal”

parts could be elements far away from the matrix diagonal, in which case the evolution drives the

matrix towards a band-diagonal form. Or, the “o�-diagonal” parts could be elements that couple
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the ground state from the excited state, in which case the evolution drives the matrix towards a

block-diagonal form that isolates the ground state. Or, the “o�-diagonal” could be literally the

elements that do not lie on the diagonal, in which case the evolution would simply diagonalize

the Hamiltonian. Through di�erent choices of �̂, the SRG evolution can be controlled and adapted

to the features of a particular problem.

4.2.2 In-medium SRG

The SRG �ow equation Eq. 4.12 can be solved in the second quantization formalism described in

Sec. 2.2, where �eld operators are de�ned with respect to the physical vacuum state. However,

since the basis of a many-body problem grows factorially with the number of particles and the

size of the model space, the applicability of the naive (free-space) SRG method is restricted to

comparatively small systems. A more practical approach is to perform the evolution in medium

[Keh06], i.e. using a many-body Slater determinant as a reference state, which is assumed to

be a fair approximation to the true ground state. This gives rise to the in-medium similarity

renormalization group (IM-SRG) method [TBS12; Her+16; HLK17].

We begin by decomposing the Hamiltonian Ĥ into normal-ordered components relative to an

appropriately chosen reference state (Fermi vacuum) |�⟩:

Ĥ = E� + ∑
pq
H�
pq ∶â

†
p âq∶ +

1
4

∑
pqrs

H�
pqrs ∶â

†
p â

†
q âs âr∶ +⋯ (4.14)

where E� is the energy of the reference state and H�
p1…pkq1…qk are matrix elements of the k-body

component Ĥ�
k . In IM-SRG we work exclusively with matrix elements relative to |�⟩, thus we

will omit the � su�x in this section.

The use of a Hamiltonian with components relative to the Fermi vacuum may seem like a
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triviality – it is still the same Ĥ after all. However, this makes a critical di�erence when the

operator expressions are truncated, i.e. higher-body components discarded from the computation

for e�ciency reasons. By normal-ordering the components relative to a reference state |�⟩, we

preserve a portion of the higher-body contributions within the lower-body operators, signi�cantly

decreasing the importance of higher-body operators.

Higher-body operators arise from integrating the �ow equations of Eq. 4.12, which is one of

the main challenges of the SRG method. With each evaluation of the commutator, the Hamiltonian

gains terms of increasingly higher order, and these induced contributions will in subsequent

integration steps feed back into terms of lower order. Thus, the higher-body contributions are

not irrelevant to the �nal solution even if only the ground state energy (zero-body component) is

desired.

Computationally, higher-body terms rapidly become unfeasible to handle: naive storage of the

matrix elements of k-body operator requires an exponentially increasing amount of memory,

(n2kb )

where nb is the number of single-particle basis states. Moreover, the �ow equations are capable

of generating an in�nite number of higher-body terms as the Hamiltonian evolves. To make the

method tractable, the IM-SRG �ow equations must be closed by truncating the equations to a

�nite order. We call this operator truncation.

In this work, we truncate both Ĥ and �̂ at the two-body level, leading to an approach known

as IM-SRG(2). This normal-ordered two-body approximation appears to be su�cient in many

cases and has yielded excellent results for several nuclei [TBS11; Rot+12; Her+16].

Operator truncation is but one out of the two primary sources of error in this method. The
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other source of error comes from basis truncation: the size of the single-particle is �nite and

therefore does not encompass the full in�nite-dimensional Hilbert space. This is a concern for any

�nite-basis approach, including HF, IM-SRG, CC, and many others. This source of error can be

reduced by increasing the size of the basis at the expense of greater computational e�ort, albeit the

cost increases much less rapidly in this direction. The CPU cost of IM-SRG methods is polynomial

with respect to the number of states in the single-particle basis nb. For IM-SRG(2) in particular,

the CPU cost scales roughly as

(n6b)

This is comparable to coupled cluster singles-and-doubles (CCSD), which also scales as (n6b).

The commutator in the �ow equations Eq. 4.12 ensures that the evolved state Û (s)|�⟩ consists

of linked diagrams only [SB09]. This indicates that IM-SRG is a size-extensive [Bar81] method by

construction, even if the operators are truncated.

An accurate and robust solver is required to solve ordinary di�erential equation (ODE) in

Eq. 4.12. In particular, the solver must be capable of handling the sti�ness that often arises in

such problems. For our numerical experiments, we used a high-order ODE solver algorithm by

L. F. Shampine and M. K. Gordon [SG75], which is a multistep method based on the implicit Adams

predictor-corrector formulas. Its source code is freely available [ODE; SgOde].

IM-SRG has relations to several other well-known methods of quantum chemistry such as cou-

pled cluster theory [SB09], canonical transformation theory [Whi02; NYC10], the irreducible/anti-

Hermitian contracted Schrödinger equation approach [Maz07b; Maz07a], and the driven similarity

renormalization group method [Eva14]. These connections are explored in more detail in [Her17].
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4.2.3 IM-SRG generators

With an appropriate choice of the generator �̂, the evolved state Û (s)|�⟩ will gradually approach

a more “diagonal” form. If the “diagonal” form decouples the ground state from the excited states,

then Û (∞)|�⟩ would yield the exact ground state solution of the problem if no operator or basis

truncations are made. In particular, E�(∞) would be the exact ground state energy.

The traditional Wegner generator [Weg01] is de�ned as

�̂Wg = [Ĥd, Ĥ − Ĥd] = [Ĥd, Ĥ ]

where Ĥd
denotes the “diagonal” part of the Hamiltonian and Ĥ − Ĥd

denotes the “o�-diagonal”

part. This is in the abstract sense described at the end of Section Sec. 4.2.1. Since Ĥ depends on

the �ow parameter s, so does �̂ in general.

Since �̂Wg
is a commutator between two Hermitian operators, it is antihermitian as required

for a generator. Additionally, it can be shown that the commutator has the property of suppressing

o�-diagonal matrix elements as the state evolves via the �ow equation [Keh06], as we would like.

Matrix elements “far” from the diagonal – i.e. where the Hamiltonian couples states with large

energy di�erences – are suppressed much faster than those “close” to the diagonal.

There exist several other generators in literature. One choice, proposed by White [Whi02],

makes numerical approaches much more e�cient. The problem with the Wegner generator is the

widely varying decaying speeds of the Hamiltonian matrix elements. Terms with large energy

separations from the ground state are suppressed initially, followed by those with smaller energy

separations. This leads to sti�ness in the �ow equation, which in turn causes numerical di�culties

when solving the set of coupled di�erential equations.

The White generator takes an alternative approach, which is well suited for problems where
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one is mainly interested in the ground state of a system. Firstly, instead of driving all o�-diagonal

elements of the Hamiltonian to zero, the generator focuses exclusively on those that are coupled

to the reference state |�⟩ so as to decouple the reference state from the remaining Hamiltonian.

This reduces the amount of change done to the Hamiltonian, reducing the accuracy lost from the

operator truncation. Secondly, the rate of decay in Hamiltonian matrix elements are approximately

normalized by dividing the generator matrix elements by an appropriate factor. This ensures that

the a�ected elements decay at approximately the same rate, reducing the sti�ness of the �ow

equations.

The White generator is explicitly constructed in the following way [TBS11; Whi02]:

�̂Wh = �̂′ − �̂′† (4.15)

where �̂′ is de�ned as

�̂′ = ∑
i⧵a

Hai
�̃ai

∶â†a âi∶ +
1
4

∑
ij⧵ab

Habij
�̃abij

∶â†a â
†
b âj âi∶ +⋯

The symbol �̃ denotes the Epstein–Nesbet energy denominators [Eps26; Nes55; SB09], de�ned

as

�̃ai = E�ai − E�

= �ai − Haiai

�̃abij = E�abij − E�

= �abij + Habab − Haiai − Hbibi + Hijij − Hajaj − Hbjbj

�̃a1…aki1…ik = E�a1…aki1…ik
− E�
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whereas � denotes the Møller–Plesset energy denominators [MP34] de�ned in Eq. 4.9. White

generators can also use Møller–Plesset energy denominators directly in lieu of Epstein–Nesbet

energy denominators [Her+16], which leads to a slightly di�erent variant of the White generator.

In our calculations, we use exclusively Epstein–Nesbet denominators.

Compared to the Wegner generator, where the derivatives of the �nal �ow equations contain

cubes of the Hamiltonian matrix elements (i.e. each term contains a product of 3 one-body and/or

two-body matrix elements), the elements in White generators contribute only linearly. This reduces

the sti�ness in the di�erential equation, providing a net increase in computational e�ciency as

sti� ODE solvers tend to be slower and consume more memory.

4.2.4 IM-SRG(2) equations

In the 2-body operator truncation scheme, the generator �̂ can be written as a generic 2-body

operator:

�̂ = ∑
pq
�pq ∶â

†
p âq∶ +

1
4

∑
pqrs

�pqrs ∶â
†
p â

†
q âs âr∶

where �pq and �pqrs respectively are its one- and two-body matrix elements normal ordered

relative to |�⟩ and subject to the antihermittivity constraint.

The main complication of the IM-SRG �ow equation Eq. 4.12 lies in the commutator,

[�̂, Ĥ ] = �̂Ĥ − Ĥ �̂

By expanding the commutator diagrammatically, we �nd that all terms where �̂ and Ĥ are

connected (disconnected diagrams) vanish because they commute. The remaining terms are
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simply the linked products between the two operators, which we denote Ĉ(�̂, Ĥ ), in either order:

[�̂, Ĥ ] = Ĉ(�̂, Ĥ ) − Ĉ(Ĥ , �̂)

Consider a generic linked product Ĉ(Â, B̂) where Ĉ is a (0, 1, 2, 3)-operator given by

Ĉ = C� + ∑
pq
Cpq ∶â

†
p âq∶ +

1
4

∑
pqrs

Cpqrs ∶â
†
p â

†
q âs âr∶

+
1
36

∑
pqrstu

Cpqrstu ∶â
†
p â

†
q â

†
r âuât âs∶

To write out the linked product, we start considering all possible Hugenholtz skeletons
2 Ĉcab

where a is the rank of the �rst operator from Â, b is the rank of the second operator from B̂, and c

is the rank of the product diagram. This leads to the following terms:

Ĉ0 = Ĉ011 + Ĉ022 Ĉ1 = Ĉ111 + Ĉ112 + Ĉ121 + Ĉ122

Ĉ2 = Ĉ212 + Ĉ221 + Ĉ222 Ĉ3 = Ĉ322

We can then elaborate on this by considering all possible assignments of the arrows. We classify

these diagrams as Ĉcabd where d is the number of arrows going from B̂ toward Â, which is also

2
Hugenholtz skeletons are Hugenholtz diagrams without arrows.
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the number of particle lines.

Ĉ011 = Ĉ0110 Ĉ022 = Ĉ0220

Ĉ111 = Ĉ1110 + Ĉ1111 Ĉ112 = Ĉ1120

Ĉ121 = Ĉ1210 Ĉ122 = Ĉ1220 + Ĉ1221

Ĉ212 = Ĉ2120 + Ĉ2121 Ĉ221 = Ĉ2210 + Ĉ2211

Ĉ222 = Ĉ2220 + Ĉ2221 + Ĉ2222 Ĉ322 = Ĉ3220 + Ĉ3221

Finally, we write out the diagrams as,

C0110� = + ∑
i⧵a
AiaBai C0220� = +

1
4

∑
ij⧵ab

AijabBabij

C1110pq = −∑
i⧵
AiqBpi C1111pq = +∑

⧵a
ApaBaq

C1120pq = + ∑
i⧵a
AiaBapiq C1210pq = + ∑

i⧵a
AipaqBai

C1220pq = −
1
2

∑
ij⧵a

AijaqBapij C1221pq = +
1
2

∑
i⧵ab

AipabBabiq

C2120pqrs = −2rs ∑
i⧵
AirBpqis C2121pqrs = +2pq ∑

⧵a
ApaBaqrs

C2210pqrs = −2pq ∑
i⧵
AiqrsBpi C2211pqrs = +2rs ∑

⧵a
ApqasBar

C2220pqrs = +
1
2
∑
ij⧵
AijrsBpqij C2221pqrs = −4pqrs ∑

i⧵a
AiqarBapis

C2222pqrs = +
1
2
∑
⧵ab

ApqabBabrs

C3220pqrstu = −9pqrstu ∑
i⧵
AiqstBpriu C3221pqrstu = +9pqrstu ∑

⧵a
ApqatBarsu

Fig. 4.1 shows these diagrams in diagrammatic form.
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0-body 2-body

1-body 3-body

Figure 4.1: Hugenholtz diagrams representing the linked product Ĉ(◦, ∙) in the IM-SRG �ow

equation, with open circles representing Â and �lled circles representing B̂. We omit diagrams

that are related by permutations among the external bra lines or among the external ket lines.

4.2.5 IM-SRG(2) equations in J-scheme

Once again, we use the implicit-J convention (Sec. 3.12.3) to write J-scheme equations. Although

some equations in J-scheme appear super�cially identical to those in M-scheme, they are not

interpreted in the same way due to the lack of m-type variables in J-scheme.

The Epstein–Nesbet energy denominators that arise in White generators contain two-body

terms that cannot be expressed in J-scheme. As a practical workaround, one could replace

occurrences of Hpqrs in the denominator with the monopole matrix element

Hmonopqrs =
∑jpq |̆

2
pqHpqrs

∑jpq |̆
2
pq

{

jp jq jpq

}

Unlike the usual matrix element Hpqrs , the monopole matrix element Hmonopqrs does not depend on

jpq .
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The replacement by monopole matrix elements leads to the following Epstein–Nesbet energy

denominators:

�̃monoai = �ai − H
mono
aiai

�̃monoabij = �abij + H
mono
abab − Hmonoaiai − Hmonobibi + Hmonoijij − Hmonoajaj − Hmonobjbj

These do result in a di�erent White generator, however. The generator in M-scheme is no longer

equivalent to that in J-scheme if monopole matrix elements are used.

Finally, here are the J-scheme IM-SRG(2) equations using the implicit-J convention (Sec. 3.12.3):

C0110� = + ∑
i⧵a
|̆2i AiaBai C0220� = +

1
4
∑
jij

∑
ij⧵ab

|̆2ijAijabBabij

C1110pq = −∑
i⧵
AiqBpi C1111pq = +∑

⧵a
ApaBaq

C1120pq = + ∑
jap

∑
i⧵a

|̆2ap
|̆2p
AiaBapiq C1210pq = + ∑

jip
∑
i⧵a

|̆2ip
|̆2p
AipaqBai

C1220pq = −
1
2
∑
jap

∑
ij⧵a

|̆2ap
|̆2p
AijaqBapij C1221pq = +

1
2
∑
jip

∑
i⧵ab

|̆2ip
|̆2p
AipabBabiq

C2120pqrs = −2rs ∑
i⧵
AirBpqis C2121pqrs = +2pq ∑

⧵a
ApaBaqrs

C2210pqrs = −2pq ∑
i⧵
AiqrsBpi C2211pqrs = +2rs ∑

⧵a
ApqasBar

C2220pqrs = +
1
2
∑
ij⧵
AijrsBpqij C̃2221psrq = +4 ∑

i⧵a
ÃiarqB̃psia

C2222pqrs = +
1
2
∑
⧵ab

ApqabBabrs

where the tilde symbol (C̃) denotes non-antisymmetrized Pandya-coupled matrix elements

(Sec. 3.12.2).
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4.3 Quasidegenerate perturbation theory

The IM-SRG method provides a means to calculate the ground state energy of any system that is

reasonably approximated by a single Slater determinant. This works well for closed-shell systems,

but it does not provide a direct means to obtain the ground state energy of open-shell systems.

While there exist more complicated multi-reference approaches to IM-SRG that seek to tackle the

general problem [Her+16], we opted to use a perturbative approach, which is simple, inexpensive,

and as we shall see from the results, quite e�ective for many problems.

Quasidegenerate perturbation theory (QDPT) [Lin74; Kva74] is an extension to the usual

perturbation theory framework to support multiple reference states instead of just one. This is

useful for solving open-shell systems in which there are multiple reference states sharing similar

(quasidegenerate) or equal (degenerate) energies. It is particularly useful if the open-shell system

is only a few particles away from a closed-shell system. We will focus primarily on states that

are one particle di�erent from a closed-shell system. Speci�cally, we wish to calculate addition

energies "a and removal energies "i of such systems, de�ned as

"a = E�a − E� "i = E� − E�i

respectively.

As usual in perturbation theory, we start by splitting the Hamiltonian Ĥ into two components,

Ĥ = Ĥ ◦ + V̂

Here Ĥ ◦
is the zeroth-order model Hamiltonian that is easy to solve (typically a non-interacting

Hamiltonian) and V̂ is the perturbation that makes the problem di�cult. We choose a few of the
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eigenstates of the model Hamiltonian as our set of model states |u′◦⟩,

Ĥ ◦|u′◦⟩ = E◦
u′
|u′◦⟩

and we want to solve for the corresponding unknown eigenstates |u⟩ of the full Hamiltonian,

Ĥ |u⟩ = Eu |u⟩

We de�ne a wave operator 
̂ that projects some set of states |u◦⟩ from the model space to

the true ground state |u⟩ (i.e. of the full Hamiltonian):

|u⟩ = 
̂|u◦⟩ (4.16)

where |u◦⟩ is taken to be a linear combination of our selection of model states |u′◦⟩,

|u◦⟩ = ∑
u′
|u′◦⟩Cu′u

with Cu′u being some coe�cient matrix.

There is some freedom in the choice of the wave operator 
̂. We assume it has the following

form:


̂ = P̂ + Q̂
̂P̂ (4.17)

where
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• P̂ is a projection operator for the model space,

P̂ = ∑
u
P̂u

• P̂u is the projection operator for |u◦⟩,

P̂u = |u◦⟩⟨u◦|

• Q̂ is the complement of P̂ ,

Q̂ = 1 − P̂

This de�nition of 
̂ entails that the exact states |u⟩ are no longer normalized but instead satisfy

the so-called intermediate normalization,

⟨u|u◦⟩ = 1

From Eqns. 4.16, 4.17 we observe that


̂Ĥ ◦ = 
̂P̂Ĥ ◦P̂ 
̂ = 
̂Ĥ ◦
̂

Ĥ 
̂ = ∑
u

̂Eu
̂P̂u = 
̂Ĥ 
̂

These equations can be used to simplify the commutator [
̂, Ĥ ◦], leading to the generalized

Bloch equation [LM86] that de�nes QDPT:

[
̂, Ĥ ◦] = (1 − 
̂)V̂ 
̂
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The commutator on the left may be “inverted” using the resolvent approach [SB09, p. 50], resulting

in the relation:

Q̂
̂P̂u = R̂u(1 − 
̂)V̂ 
̂P̂u

where R̂u is the resolvent,
3

R̂u = Q̂(E
◦
u − Q̂Ĥ

◦Q̂)−1Q̂

Now de�ne 
̂ as a series of terms of increasing order, quanti�ed by the exponent (degree) of the

perturbation V̂ ,


̂ =
∞
∑
n=0


̂(n)

We can then derive a recursion relation that allows 
̂ to be calculated to any order


̂(n) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

P̂ if n = 0

∑u R̂u(V̂ 
̂
(n−1) + ∑n−1

k=1 
̂
(k)V̂ 
̂(n−k−1))P̂u if n > 0

3
In some literature, the resolvent R̂u is denoted by

Q̂
E◦u − Ĥ ◦
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Up to third order, we have


̂(1)P̂u = R̂uV̂ P̂u


̂(2)P̂u = R̂u(V̂ R̂u − ∑
v
R̂vV̂ P̂v)V̂ P̂u


̂(3)P̂u = R̂u(V̂ R̂uV̂ R̂u − V̂ R̂u ∑v
R̂vV̂ P̂v − ∑

v
R̂vV̂ P̂vV̂ R̂u

− ∑
v
R̂vV̂ R̂vV̂ P̂v + ∑

v
R̂v ∑

w
R̂w V̂ P̂w V̂ P̂v)V̂ P̂u

We can de�ne an e�ective Hamiltonian

Ĥ eff = P̂Ĥ 
̂

which acts only in the model space but yields the correct eigenvalues of the full space,

Ĥ eff |u◦⟩ = Eu |u
◦⟩

Thus, the energy corrections are given by:

E(n)u =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⟨u◦|Ĥ ◦|u◦⟩ if n = 0

⟨u◦|V̂ 
̂(n−1)|u◦⟩ if n > 0

The coe�cients Cu′u are obtained by diagonalizing the e�ective Hamiltonian through the eigen-

value problem,

∑
v′
⟨u′◦|Ĥ eff |v′◦⟩Cv′u = Cu′uEu (4.18)
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4.3.1 QDPT equations

We now consider the application of QDPT to the treatment of addition and removal energies via

the particle-hole formalism. Take each reference state to be a Slater determinant constructed by

adding or removing a single particle u to an existing closed-shell Fermi vacuum |�⟩,

|u◦⟩ = |�u⟩

Take note that in QDPT Fermi vacuum and reference state are no longer synonymous.

We choose u to be close to the Fermi level: it should be a single-particle state within an adjacent

shell (valence shell). Therefore, the number of reference states in the model space of QDPT is

equal to the number of particles in either the lowest unoccupied shell or the highest occupied

shell of |�⟩, depending on whether we are considering addition or removal energies, respectively.

We can then express the perturbation expansion in terms of summations over matrix ele-

ments as we did for the IM-SRG �ow equation. We will restrict ourselves to the case where the

perturbation V̂ is a two-body operator.

The second-order QDPT corrections of the left-shift operator (or reaction operator) Ŵ =

Ĥ eff − Ĥ ◦
are:

W (2)
pq = +

1
2

∑
i⧵ab

VipabVabiq
�iqab

−
1
2

∑
ij⧵a

VijaqVapij
�ijap

Here, Vabiq are matrix elements of the two-body operator V̂ and � denotes Møller–Plesset de-

nominators as de�ned in Eq. 4.9. These second-order corrections are depicted as perturbative

diagrams (Sec. 2.7.1) in Fig. 4.2.
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Third-order QDPT corrections are:

W (3)
pq =

+
1
4

∑
i⧵abcd

VipabVabcdVcdiq
�iqab�iqcd

−
1
4

∑
ij⧵abc

VijaqVapbcVbcij
�ijap�ijbc

−
1
4

∑
ij⧵abc

VijabVabcqVcpij
�ijqabp�ijcp

−
1
4

∑
ijkl⧵a

VijaqVklijVapkl
�ijap�klap

+
1
4

∑
ijk⧵ab

VipabVjkiqVabjk
�iqab�jkab

+
1
4

∑
ijk⧵ab

VijabVkpijVabkq
�ijqabp�kqab

−
1
2

∑
ijk⧵ab

VijabVkpjqVabik
�ijqabp�ikab

+
1
2

∑
ij⧵abc

VijabVbpcqVacij
�ijqabp�ijac

+
1
2

∑
ij⧵abc

VipaqVajbcVbcij
�ia�ijbc

+
1
2

∑
ij⧵abc

VijabVabicVcpjq
�ijqabp�jqcp

−
1
2

∑
ijk⧵ab

VipaqVjkibVabjk
�ia�jkab

−
1
2

∑
ijk⧵ab

VijabVakijVbpkq
�ijqabp�kqbp

+ ∑
ij⧵abc

VipacVjcbqVabij
�iqac�ijab

+ ∑
ij⧵abc

VijabVbpjcVaciq
�ijqabp�iqac

+ ∑
ij⧵abc

VipacVjabiVbcjq
�iqac�jqbc

− ∑
ijk⧵ab

VikaqVajibVbpjk
�ikap�jkbp

− ∑
ijk⧵ab

VikaqVjpbkVabij
�ikap�ijab

− ∑
ijk⧵ab

VijabVbkjqVapik
�ijqabp�ikap

Perturbative diagrams (Sec. 2.7.1) of third-order corrections are also shown in Fig. 4.2.

One of the bene�ts of applying QDPT to an IM-SRG-evolved Hamiltonian is that many of the

QDPT terms vanish. In IM-SRG, a generator that decouples the ground state energy is required to

drive certain classes of matrix elements to zero. Consider for example the White generator, which

eliminates matrix elements of the form:

Vijab = Vabij = 0

This means certain kinds of vertices in the diagrams become forbidden, reducing the number of

nonzero diagrams at third order from 18 to only four. Out of these four, two of them contribute

only to the correction of hole states (removal energies), while the other two contribute only to the

correction of the particle states (addition energies).

Note that the �nal step of diagonalizing the e�ective Hamiltonian (Eq. 4.18) is usually not
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second order

third order

addition

removal

nonzero for

IM-SRG + QDPT:

Figure 4.2: Perturbative Hugenholtz diagrams (Sec. 2.7.1) of the second- and third-order QDPT

corrections. Denominator lines have been elided. When QDPT is performed on IM-SRG-evolved

Hamiltonians, many of the diagrams vanish. The remaining nonvanishing diagrams for addition

energy are highlighted in blue and for removal energy are highlighted in red.

needed for the calculation of single-particle energies with one valence shell as the matrix is often

already diagonal due to conservation laws of the quantum system.

In J-scheme, the second-order corrections are:

W (2)
pq =

1
2
∑
jip

∑
i⧵ab

|̆2ip
|̆2p

VipabVabiq
�iqab

−
1
2
∑
jap

∑
ij⧵a

|̆2ap
|̆2p

VijaqVapij
�ijap

As usual, these equations use the implicit-J convention (Sec. 3.12.3).

For e�ciency, the third-order corrections in J-scheme make use of the non-antisymmetrized

Pandya-transformed matrix elements of V̂ , which are denoted Ṽpsrq (Sec. 3.12.2). Using these
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matrix elements, we may write the third-order terms as:

W (3)
pq =

+
1
4
∑
jip

∑
i⧵abcd

|̆2ip
|̆2p

VipabVabcdVcdiq
�iqab�iqcd

−
1
4
∑
jap

∑
ij⧵abc

|̆2ap
|̆2p

VijaqVapbcVbcij
�ijap�ijbc

−
1
4
∑
jcp

∑
ij⧵abc

|̆2cp
|̆2p

VijabVabcqVcpij
�ijqabp�ijcp

−
1
4
∑
jap

∑
ijkl⧵a

|̆2ap
|̆2p

VijaqVklijVapkl
�ijap�klap

+
1
4
∑
jip

∑
ijk⧵ab

|̆2ip
|̆2p

VipabVjkiqVabjk
�iqab�jkab

+
1
4
∑
jkp

∑
ijk⧵ab

|̆2kp
|̆2p

VijabVkpijVabkq
�ijqabp�kqab

−
1
2

∑
jkpjij

∑
ijk⧵ab

|̆2kp |̆
2
ij

|̆2p |̆
2
j

VijabVkpjqVabik
�ijqabp�ikab

+
1
2

∑
jbpjab

∑
ij⧵abc

|̆2bp |̆
2
ab

|̆2p |̆
2
b

VijabVbpcqVacij
�ijqabp�ijac

+
1
2

∑
jipjij

∑
ij⧵abc

|̆2ip |̆
2
ij

|̆2p |̆
2
i

VipaqVajbcVbcij
�ia�ijbc

+
1
2

∑
jcpjij

∑
ij⧵abc

|̆2cp |̆
2
ij

|̆2p |̆
2
j

VijabVabicVcpjq
�ijqabp�jqcp

−
1
2

∑
jipjab

∑
ijk⧵ab

|̆2ip |̆
2
ab

|̆2p |̆
2
a

VipaqVjkibVabjk
�ia�jkab

−
1
2

∑
jbpjab

∑
ijk⧵ab

|̆2bp |̆
2
ab

|̆2p |̆
2
b

VijabVakijVbpkq
�ijqabp�kqbp

+ ∑
jcp

∑
ij⧵abc

|̆2cp
|̆2p

ṼiacpṼcqbj Ṽbjia
�iqac�ijab

+ ∑
jcp

∑
ij⧵abc

|̆2cp
|̆2p

Ṽiabj ṼbjcpṼcqia
�ijqabp�iqac

+ ∑
jcp

∑
ij⧵abc

|̆2cp
|̆2p

ṼiacpṼjbiaṼcqjb
�iqac�jqbc

− ∑
jpk

∑
ijk⧵ab

|̆2pk
|̆2p

ṼiaqkṼjbiaṼpkjb
�ikap�jkbp

− ∑
jpk

∑
ijk⧵ab

|̆2pk
|̆2p

ṼiaqkṼpkbj Ṽbjia
�ikap�ijab

− ∑
jpk

∑
ijk⧵ab

|̆2pk
|̆2p

Ṽiabj ṼbjqkṼpkia
�ijqabp�ikap
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Chapter 5

Application to quantum systems

The two main systems that we study in this work are quantum dots and nuclei. Quantum dots

are a remarkably simple system for studying quantum phenomena and provide a testbed for both

theoretical calculations and experimental measurements as the strength of its correlations can be

easily tuned by adjusting the width of the external trap. In contrast, nuclei are natural, self-bound

systems with a nuclear force that is both complicated and uncertain.

For simplicity, we begin with quantum dots and use it to test the e�ectiveness of our many-

body methods. Ultimately, nuclei are the more challenging and intriguing system to study, and

they tend to be more practically relevant.

5.1 Quantum dots

Quantum dots, also known as “arti�cial atoms”, are prototypical quantum systems consisting of

electrons con�ned by an external potential.

5.1.1 Quantum dot Hamiltonian

We will devote our focus on circular quantum dots, consisting of a collection of nonrelativistic

electrons trapped in a two-dimensional harmonic oscillator potential, interacting through the

standard Coulomb interaction. The parameters of the system are:

• N : the number of electrons,
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• m: the mass of each electron,

• e: the charge of each electron,

• �: the permittivity of the medium, and

• !: the angular frequency of the harmonic oscillator potential.

The three basic components of the Hamiltonian are the kinetic energy t(p), the potential

energy u(r), and the Coulomb interaction v(R):

t(p) =
p2

2m
u(r) =

m!2r2

2
v(R) =

e2

4��|R|

where r is the position of an electron relative to the center of the trap, p is its linear momentum,

and R is the distance between two electrons. The kinetic and potential energies combine to form

the standard harmonic oscillator Hamiltonian ℎ(r, p):

ℎ(r, p) = t(p) + u(r)

The quantum many-body problem is described by the Hamiltonian

Ĥ = Ĥ1 + Ĥ2

where Ĥ1 and Ĥ2 are respectively its one- and two-body components,
1

namely

Ĥ1 =
N
∑
�=1

ℎ(r̂� , p̂� )

Ĥ2 =
N
∑
�=1

�−1
∑
�=1

v(|r̂� − r̂� |)
(5.1)

1
These components are de�ned relative to the physical vacuum.
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The operator r̂� is the position operator of the �-th particle,
2

and p̂� = −i(̂r� is its momentum

operator.

Even though the model system contains �ve parameters, many of them are redundant. With

an appropriate choice of units, the number of parameters in the system can be reduced to just two.

For this system, it is convenient to choose atomic units where

ℏ = m = e = 4�� = 1

Here, Hartree Eh is the unit of energy and Bohr radius a is the unit of length:

Eh = m(
e2

4��ℏ)
2 a =

4��ℏ2

me2

This leaves us with (N , !) as the only two parameters needed to specify the quantum dot system,

with ! in units of Eh/ℏ.

5.1.2 Fock–Darwin basis

We will use the noninteracting part of the many-body Hamiltonian Ĥ1 to de�ne the single-particle

basis. The single-particle Hamiltonian is of the form:

ℎ̂ =
1
2
(̂2 +

1
2
!2r̂2

In Cartesian coordinates, the two-dimensional harmonic oscillator is trivially reducible to the

well-known one-dimensional problem. However, to exploit the circular symmetry, we prefer to

use Fock–Darwin states [Foc28; Dar31], which are written in polar coordinates r = (r , '). Such

2
The ordering of the particle labels � is unimportant as they exist only for the purpose of bookkeeping.
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states have the computationally useful property of conserving orbital angular momentum,

L̂3 = −i
)̂
)'

The Fock–Darwin wave functions can be decomposed into radial and angular compo-

nents,[Loh10]

Fnm� (r , ') =
√
m!
ℏ
Rn|m� |(

√
m!
ℏ
r)Am� (')

Rn�(�) =
√
2e−�

2/2�� L̄�n(%2)

Am� (') =
1√
2�
eim� '

(5.2)

in ordinary units. Here,

√
ℏ/m! is the characteristic length of the harmonic oscillator, �(x) is the

gamma function, and L̄�n (x) is the normalized variant of the associated Laguerre polynomial L�n (x)

of degree n and parameter � [DLMF]:

L̄�n (x) =
√

n!
�(n + � + 1)

L�n (x)

L�n (x) =
1
n!
x−�ex

dn

dxn
(e−xx�+n)

(5.3)

The normalized Laguerre polynomials satisfy the following orthogonality relation:

∫
∞

0
u�e−uL̄(�)m (u)L̄(�)n (u) du = �mn

The states are labeled by two quantum numbers: the principal quantum number n ∈ {0, 1, 2, …}

and orbital angular momentum projection m� ∈ {… , −2, −1, 0, +1, +2, …}. For a wave function, n

indicates the degree of the Laguerre polynomial, whereas m� is the eigenvalue of L̂3.

Since electrons are spin-
1
2 fermions, they can occupy either of the two possible spin states �−12
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or �+12
. Thus, every single-particle basis state |nm�ms⟩ contains both a spatial component (5.2)

and a spin component,

⟨r'm′
s |nm�ms⟩ = Fnm� (r , ')�msm′s

(5.4)

Here we have introduced spin projection ms ∈
{
−12 , +

1
2
}

as the third quantum number, which is

the eigenvalue of the spin projection operator Ŝ3.

mℓ

0

−½

+½
ms

1

3

5

E
/ω

 =
 k

 +
 1

+3−3

0
1

2

n

Figure 5.1: The 42 lowest single-particle states (the �rst 5 shells) in the 2D harmonic oscillator

basis. Each box represents a single-particle state arranged by m� , ms , and energy, and the up/down

arrows indicate the spin of the states. Within each column, the principal quantum number n
increases as one traverses upward.

The energy of the single-particle state |nm�ms⟩ is given by

"nm�ms = (2n + |m� | + 1)ℏ! (5.5)

in ordinary units. These energies are degenerate with respect to the spin projection ms as our

Hamiltonian ℎ̂ does not distinguish between them. Additionally, they are degenerate with respect

to the number of quanta k, de�ned as

k = 2n + |m� | (5.6)
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We also call k the shell index of the two-dimensional harmonic oscillator as this nonnegative

integer labels each shell starting from zero. The shells are equidistant with an energy spacing of

ℏ!. This is depicted graphically in Fig. 5.1.

When the number of particles N satis�es N = KF(KF + 1) for some nonnegative integer KF,

there would be just enough particles to form a closed-shell Slater determinant, leading to a unique,

well-isolated ground state. These speci�c values of N form the magic numbers of this system.

We call KF the number of �lled shells (or “Fermi level”). In particular, a single-particle state is

occupied in the ground state Slater determinant if and only if k < KF, where k is the shell index of

the single-particle state as de�ned in Eq. 5.6.

5.1.3 Coulomb interaction in the Fock–Darwin basis

For many-body calculations, we will need matrix elements of the Coulomb interaction in the

Fock–Darwin basis that we chose. The antisymmetrized matrix elements, needed for Eq. 2.2, are

given by

⟨(nms)1(nms)2|Ĥ2|(nms)3(nms)4⟩

= ⟨(nm)1(nm)2|Ĥ2|(nm)3(nm)4⟩�s1s3�s2s4

− ⟨(nm)1(nm)2|Ĥ2|(nm)4(nm)3⟩�s1s4�s2s3

where for brevity we have relabeled the quantum numbers with m = m� and s = ms , and

⟨(nm)1(nm)2|Ĥ2|(nm)3(nm)4⟩

=
e2

4π� ∬
F(nm)1(r)F(nm)2(r

′)F(nm)3(r)F(nm)4(r
′)

|r − r′|
d2r d2r ′

(5.7)
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denotes the non-antisymmetrized matrix element in ordinary units, and Fnm(r) denotes a Fock–

Darwin wave function.

Analytically, the integral may be evaluated [AM98] as

⟨(nm)1(nm)2|Ĥ2|(nm)3(nm)4⟩√
ℏ!Eh

= �m1+m2,m3+m4

√
4
∏
i=1

ni!
(ni + |mi |)!

n1
∑
j1=0

n2
∑
j2=0

n3
∑
j3=0

n4
∑
j4=0

(
4
∏
i=1

(−)ji
ji! (

ni + |mi |
ni − ji ))

1
2(G+1)/2


1
∑
l1=0


2
∑
l2=0


3
∑
l3=0


4
∑
l4=0

�l1+l2,l3+l4(−)

2+
4−l2−l4�(1 +

�
2)

�(
G − � + 1

2 )
4
∏
i=1(


i
li)

G =
4
∑
i=1


1

� =
4
∑
i=1

l1


1 = j1 + j3 +
|m1| + m1

2
+
|m3| − m3

2


2 = j2 + j4 +
|m2| + m2

2
+
|m4| − m4

2


3 = j3 + j1 +
|m3| + m3

2
+
|m1| − m1

2


4 = j4 + j2 +
|m4| + m4

2
+
|m2| − m2

2

However, the analytic approach is rather ine�cient: it has e�ectively 7 nested summations,

which means the computational cost of each matrix element grows as (k7)where k is the number

of shells. It is also prone to precision losses due to the highly oscillatory terms.

A more e�ective way to compute the integral is through the technique described in [Kva08] as

implemented in the OpenFCI package. By transforming product states |(nm)1 ⊗ (nm)2⟩ into their
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center-of-mass frame, one arrives at a radial integral

C�
nn′

= 2(−)n+n
′
∫

∞

0
R2� L̄�n(R2)L̄

�
n′
(R2)v(

√
2R)e−R

2
R dR

where L̄�n (x) is the normalized associated Laguerre polynomial de�ned in Eq. 5.3 and v(R) is our

central interaction, although this technique generalizes to many kinds of central interactions. The

radial integral may be calculated exactly using Gauss–Hermite quadrature of su�ciently high

order. The results are transformed back into the laboratory frame using Talmi–Brody–Moshinsky

transformation brackets [Tal52; BM67; Mos59].

5.2 Nuclei

The nuclear many-body problem is challenging problem due to the strength of as well as the

uncertainty in the interaction.

5.2.1 The nuclear Hamiltonian

A nucleus is a self-bound system of nucleons: neutrons and protons. The nucleons interact with

each other through the nuclear interaction. The parameters of the system are:

• A: the number of nucleons,

• N : the number of neutrons,
3

• Z : the number of protons,

• m: the mass of each nucleon, and

• V̂ : the nuclear interaction.

Note that for simplicity we treat neutrons and protons as having the same mass, which is

3
Note the di�erence in notation compared to quantum dots.
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generally adequate given the current levels of accuracy.

The many-body Hamiltonian consists of two components, the relative kinetic energy T̂ rel and

the nuclear interaction V̂ ,

Ĥ = T̂ rel + V̂

The relative kinetic energy is given by:

T̂ rel =
A
∑
�=1

p̂2�
2m

−
1

2mA(
A
∑
�=1

p̂�)
2 =

A
∑
�=1

�−1
∑
�=1

(p̂� − p̂� )
2

2m

In second quantization, this can be written as a combination of a one-body and a two-body

operator:

t̂rel1 (p) = (1 −
1
A)

p̂2

2m
t̂rel2 (p, p′) = −

p̂ ⋅ p̂′

mA

T̂ rel1 =
A
∑
�=1

t̂rel1 (p� ) T̂ rel2 =
A
∑
�=1

�−1
∑
�=1

t̂rel2 (p� , p� )

The units we use in nuclear theory areMeV, fm, and combinations thereof. We set the constants

ℏ = c = 1.

5.2.2 The nuclear interaction

The nuclear interaction V̂ is generally quite complicated. Typically it is either a two-body operator,

or a combination of two-body and three-body operators. In principle, this interaction could even

have higher-body operators than three.

Unlike quantum dots, there are many possible choices for V̂ , none of which could be considered

canonical. This is due to current limitations in the understanding of the nuclear interaction.
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So far, the state of the art in nuclear interactions lies in chiral e�ective �eld theory (chiral EFT

or � -EFT) [ME11; EHM09], which uses a power-counting scheme to build an e�ective Lagrangian

with nucleons as the degrees of freedom. Most of the coupling constants of this Lagrangian are

not known a priori and must be determined by �tting experimental data.

Chiral EFT interactions are characterized by the level of truncation in the power-counting

scheme, as well as the cut-o� momentum � used for regularization. A commonly used choice in

the literature is the nucleon-nucleon interaction of [EM03] computed to the next-to-next-to-next-

to-leading order (N
3
LO) with a momentum cuto� at � = 500MeV. This interaction has proven to

be quite accurate in practice.

Many kinds of nuclear interactions, including chiral EFT ones, are typically hard in that they

couple low-momentum states with high-momentum ones, caused by the presence of a strongly

repulsive core [BFS10]. This can signi�cantly hinder the convergence of many-body methods,

necessitating the use of a large single-particle basis.

To mitigate this, free-space SRG may be used to renormalize the interaction, decoupling

the low-momentum states from high-momentum states, thereby softening the interaction. This

extra preprocessing step confers signi�cant bene�ts to the convergence of many-body methods,

reducing computational cost [BFP07].

The SRG softening is characterized by the �ow parameter sSRG, or equivalently by the mo-

mentum

�SRG =
1

s4SRG

which is not to be confused with the cuto� momentum � in chiral EFT. In our calculations, we

choose sSRG = 0.0625 fm
4

or equivalently �SRG = 2 fm
−1

.
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5.2.3 Spherical harmonic oscillator basis

The standard basis used for nuclei is that of the three-dimensional harmonic oscillator, chosen for

both its analytic properties and similarity to the nuclear problem. Note unlike quantum dots, the

spherical oscillator basis are not the eigenstates of the one-body part of the nuclear Hamiltonian.

The frequency ! of the basis is not associated with the physical system, unlike in the case of

quantum dots. Therefore, it adds an additional, arbitrary parameter for the nuclear many-body

problem. The parameter can be used to evaluate the quality of the result: in a perfect calculation

where the results are well converged, there should be no dependence on ! since it is not a physical

parameter.

There are several kinds of bases for the three-dimensional harmonic oscillator. We choose the

spherical version to take advantage of angular momentum symmetries. They are given by:

 n�m� (r , �, ') =
√
2(

m!
ℏ )

�+3/2r�e−m!r
2/(2ℏ)L̄(�+1/2)n (

m!r2

ℏ )Y�m� (�, ')

where n is the principal quantum number, � is the orbital angular momentum magnitude, m� is

the orbital angular momentum projection, L̄�n are normalized associated Laguerre polynomials

de�ned in Eq. 5.3, and Y�m� are spherical harmonics.

0s1/2

1s1/2 0d3/2 0d5/2

0p1/2 0p3/2

1p1/2 1p3/2 0f7/20f5/2

Figure 5.2: Shell structure of the spherical harmonic oscillator
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The energy is given by:

En�m� = ℏ!(e +
3
2)

where e is the shell index of the three-dimensional harmonic oscillator:

e = 2n + � (5.8)

which counts shells starting at zero. Compare with Eq. 5.6, which is for the two-dimensional

harmonic oscillator. These shells are also equidistant with an energy spacing of ℏ!.

Nucleons are associated with two additional non-spatial quantum numbers: spin projection

ms = ±1/2 and isospin projection mt = ±1/2. This means a proper nucleonic state should have 5

quantum numbers:

|n�m�msmt⟩

In practice, however, it is more bene�cial to use LS coupled states as the nuclear Hamiltonian

conserves not L̂ but Ĵ :

|n� jmjmt⟩ = ∑
m�ms

|n�m�msmt⟩⟨�m�
1
2
ms |jmj⟩

The corresponding harmonic oscillator shell structure is shown in Fig. 5.2 using spectroscopic

notation n�j , where s, p, d, f correspond to � = 0, � = 1, � = 2, and � = 3.

The nuclear Hamiltonian also conserves parity, thus it can be convenient to use the parity
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quantum number � = (−)� in lieu of � , since from � and j one can recover � :

|n�jmjmt⟩ ≃ |n� jmjmt⟩

For calculations, it is necessary to truncate the single-particle harmonic oscillator basis. The

simplest way is to impose a limit on the number of shells by the maximum shell index parameter

emax:

e ≤ emax (5.9)

We can analogously limit n and/or � :

n ≤ nmax � ≤ �max (5.10)

On two-particle states constructed from the harmonic oscillator, we may also impose a limit

through the Emax parameter (not to be confused with energy):

e1 + e2 ≤ Emax (5.11)

Currently, for our calculations we only use the emax truncation. In future, we may require other

forms of truncation in addition to emax to keep the basis from growing too rapidly as we explore

higher numbers of shells.
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5.2.4 Matrix elements of kinetic energy

For calculations in a harmonic oscillator basis, one often needs to compute matrix elements of the

kinetic energy,

⟨n′� ′m′
� |
p̂2

2m
|n�m�⟩

Since linear momentum squared p̂2 is a scalar, it commutes with angular momentum L̂ and

therefore matrix elements with di�ering � and m� must vanish.

For now, let us use natural units – we will return to ordinary units shortly. To simplify the

calculation, observe that

p̂2

2
= Ĥ −

r̂2

2

This way, instead of calculating an integral involving a Laplacian, we can get away with an integral

involving just r2.

Using the recurrence relation of Laguerre polynomials,

(2n + � +
3
2
− r2)L

(�+1/2)
n (r2) = (n + 1)L(�+1/2)n+1 (r2) + (n + � +

1
2)

L(�+1/2)n−1 (r2)

we can expand

r̂2|n�m�⟩ = −
√
n(n + � +

1
2)

|(n − 1)�m�⟩

+ (2n + � +
3
2)

|n�m�⟩

−
√
(n + 1)(n + � +

3
2)

|(n + 1)�m�⟩
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Hence, in ordinary units the matrix elements of potential energy are

⟨n′� ′m′
� |
m!2r̂2

2
|n�m�⟩ =

�� ′��m′�m�
ℏ!

2 ((2n + � +
3
2)

�n′n −
√
�(� + � +

1
2)

�|n′−n|1)

where � = max{n′, n} is the larger of the two. From here it is straightforward to compute the

matrix elements of kinetic energy,

⟨n′� ′m′
� |
p̂2

2m
|n�m�⟩ =

�� ′��m′�m�
ℏ!

2 ((2n + � +
3
2)

�n′n +
√
�(� + � +

1
2)

�|n′−n|1)

(5.12)

with the same � as de�ned earlier.
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Chapter 6

Implementation

We now discuss the details of our speci�c implementation of the many-body methods that we

have discussed. In our experience, we �nd a dearth of such documentation in scienti�c literature,

potentially leading to the loss of valuable practical knowledge. We hope readers will �nd this

information helpful for either developing their own codes, reproducing our results, or utilizing

our code.

The many-body methods in this work are implemented as part of the Lutario project [Lutario],

an open-source library written in Rust, dual licensed under the permissive MIT [MIT] and Apache

2.0 licenses [Apache2]. Lutario implements a J-scheme framework for many-body calculations,

upon which HF, Møller–Plesset perturbation theory to second order (MP2), IM-SRG(2), and QDPT3

are written. The code supports several systems, including quantum dots and nuclei, whose results

we discuss in detail in the next chapter. The code also contains implementations of in�nite matter

and homogeneous electron gas, but we have not included any of those results in this work.

6.1 Programming language

Rust is a systems programming language focused on memory safety and performance [Rust;

RustBook]. It is intended to ful�ll a niche similar to those of other close-to-metal languages

such as C, C++, or Fortran. These languages are characterized by extremely low overhead on all

operations and they o�er a high degree of manual control over memory usage and layout. This

contrasts with the higher level, garbage-collected languages such as C#, Java, Python, or R, where

137



the manual memory management is eschewed in favor of an automatic memory management

with the aid of a garbage collector (GC) that reclaims unused memory without the programmer’s

assistance.

Rust di�ers from mainstream close-to-metal languages like C or C++ in a few critical ways:

• The Rust language is partitioned into safe and unsafe subsets. While the unsafe subset is as

�exible and performant as C, the safe subset sacri�ces a bit of �exibility or performance so

as to prevent the dreaded unde�ned behavior that plagues similar languages. Use of the safe

subset is heavily encouraged by design.

• Among many ideas adopted from research in functional programming languages, it o�ers a

novel a�ne type system augmented with borrowing semantics, allowing easy management

of scarce resources such as memory and �le handles.

In a way, the design choices of Rust is a natural consequence of making safety a top priority

and then making pragmatic trade-o�s between �exibility and performance.

Nonetheless, our motivation for choosing Rust is not simply because of safety, which is

certainly important but not the most important concern in numerical software. Instead, we chose

Rust for a combination of reasons:

• Rust includes a subset of the features commonly found in functional programming languages,

greatly enhancing productivity. These features include closures, algebraic data types, and

traits. While they have also made their way to other languages such as C++, Java, or C#,

which were originally object-oriented but have become increasingly multi-paradigm, Rust

was originally designed with these features from the outset, and as a result they integrate

better into the language’s design, whereas older languages have had to retro�t these features.

• Rust comes with an o�cial package manager Cargo [Cargo] with high adoption among the

community. It makes it extremely easy to build and install Rust crates (packages) from the
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Rust package registry [CratesIo], while encouraging sharing and reuse of code.

• Rust has a �ourishing and close-knit community from many diverse backgrounds, ranging

from system programmers to high-performance computing specialists. This aids adoption

of the young language and o�ers a helpful environment for learners.

With that being said, there are also reasons to not choose Rust:

• Rust remains a very young language by any measure. While the language is o�cially stable,

some portions remain under experimentation. Large parts of the library ecosystem are still

in their infancy stages, so there is a high risk of immature, rapidly evolving libraries.

• Rust puts safety above all else. As a result, highly performant but unsafe Rust code can be

awkward and non-idiomatic to write. This can often be mitigated with the design of safer

data abstractions, but these are also active areas of research.

• The lack of a garbage collector requires signi�cant compromises on abstractions in Rust.

For example, closures in Rust are more complex (but also more performant) than those

in languages with GC such as Python or JavaScript. One should consider whether these

complications are a worthwhile trade-o�.

We will discuss the project with a perspective heavily in�uenced by Rust, but conceptually

many of these apply to C and C++ just as well. We will use Rust snippets to illustrate concepts,

but we expect any reader familiar with C++ should have little trouble adjusting to the slightly

di�erent notation.

In the next two subsections we will provide some motivations to the design of Rust, which

can be safely skipped.
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6.1.1 Unde�ned behavior

Unde�ned behavior (UB) is any behavior that is not de�ned by the language. Compilers are not

obliged to detect whether a program has UB. If a program does have UB, the compiled program is

not guaranteed to function correctly at all. It should not be confused with implementation-de�ned

behavior, in which the behavior is allowed to vary from platform to platform but must remain

documented and predictable.

In C and C++, the list of potential UB is numerous [C11, Annex J.2, p. 557 - 571]. To name a

few:

• bu�er over�ow: use of memory beyond the range that was allocated;

• null pointer dereference: attempting to dereference an invalid (null) pointer;

• use after free: use of memory that has already been deallocated;

• use of uninitialized data: attempting to read uninitialized variables or arrays

• data races: use of the same memory location from multiple threads without proper synchro-

nization, in which at least one of the them is performing a write; and

• signed arithmetic over�ow: when the result of an arithmetic operation is too large or too

negative to �t in the signed integer type.

In software infrastructure, UB can be a bountiful source for security vulnerabilties. In high-

performance computing (HPC), the concern of UB lies less so in security, but more in the risk of

incorrect computations with possibly subtle and/or non-deterministic e�ects. This is especially

pernicious as many optimizing compilers for C, C++, and Fortran take for granted that UB never

occur, leading to miscompilations when they do inevitably occur as a result of programmer error.

The following C program gives an example of miscompilation due to UB:

int main(int argc, char **argv)

{
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if (argc == 1) {

int *p;

return *p;

}

return 42;

}

If the program is executed with no arguments, then argc is 1.
1

In that scenario, the program

has UB: one is not permitted to dereference an uninitialized pointer p. Naively, one would expect an

uninitialized variable to contain a random memory address, which is highly likely to be unallocated.

Therefore, one would expect the program to crash with a segmentation fault (memory access

violation) with high probability. Indeed this is what typically happens if the program is compiled

without optimizations (the so-called -O0 compiler �ag).

However, when compiled with optimizations at level 1 (-O1) or higher under Clang or GNU

C Compiler (GCC),
2

the program would simply exit silently with 42, despite argc being 1. It is

as if the compiler had entirely excised the if block from the code, treating argc == 1 to be an

unful�llable condition because return *p has unde�ned behavior, which the compiler assumes

is not supposed to ever happen.

In most languages, the programmer may reduce the risk of unde�ned behavior through

appropriate discipline, defensive checks at run time, or the use of safer abstractions. A large

fraction of these errors are avoided entirely through automatic memory management.

1
Note that argc counts the name of the program as an additional argument.

2
This was tested on Clang 5.0.1 and GCC 7.2.1.
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6.1.2 Uniqueness and borrowing

Rust tackles UB from a di�erent angle than most languages: it tries to prevent such mistakes from

happening through static analysis of the code (the type system, in particular). This is achieved

through two unconventional features adapted from its predecessor Cyclone [Jim+02].

The �rst idea is that of uniqueness. Some forms of data are designated as unique, which

means once they are consumed or given away they cannot be used again – the compiler assures

this. With the guarantee that a piece of data is unique, one e�ectively has exclusive control over

it. Speci�cally:

• We can modify its contents without the possibility that another agent might accidentally

observe the changes. In particular, if we destroy the object, no-one – not us nor anyone else

– can use it again, preventing use-after-free bugs.

• We can be certain that its contents will stay the same unless we change it or relinquish

control to another part of the program. This is extremely bene�cial for not only optimization

purposes, but also for readability.

• No other thread has this data, so there is no possibility of data races.

Uniqueness is a powerful guarantee, but it can also be very limiting. To overcome this Rust

o�ers a complementary feature called borrowing, where a unique data is temporarily yielded to

another agent for a limited amount of time. This duration of time is known as the lifetime of the

borrow. Borrowing is classi�ed into two kinds:

• When data is mutably borrowed, the borrower will be granted temporary but exclusive

control over the data. The borrower is free to do anything it pleases with the data, but it

must guarantee that under all circumstances the data remains valid when the lifetime ends.
3

During the lifetime of the borrow, the lender is denied all access to the data and cannot lend

3
It can, for example, destroy the data object, but it must immediately recreate a similar one in its place.
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it again until the end of the lifetime.

• Alternatively, one can grant a shared borrow of a data, which yields restricted access of the

data to the borrower, which typically means the data becomes read-only. During the lifetime

of the borrow, the lender can continue granting shared borrows of the data, or access the

data directly under the same restrictions.

This leads to a general programming principle referred to as aliasing XOR mutability: data

should be modi�ed only if it has exclusive control over the data. While this principle is not a hard

and fast rule, it can aid both readability and compiler optimizations. With the idea of exclusive

control encoded within the type system, Rust makes this principle enforceable by the compiler.

The downside of this approach lies in the complications that uniqueness and borrowing intro-

duce to the language and data abstractions. Programming with uniqueness types and borrowing

remains fairly novel and under-explored in practice.

6.2 Structure of the program

Calculations in our many-body program follows a linear pipeline:

1. Basis: Set up data structures needed to organize matrix elements.

2. Input: Read and/or compute Hamiltonian matrix elements.

3. HF: Compute coe�cient matrix and HF-transformed Hamiltonian.

4. Normal ordering: Obtain Hamiltonian relative to Fermi vacuum.

5. IM-SRG: Evolve Hamiltonian using IM-SRG.

6. QDPT: Compute perturbative corrections to addition and removal energies.

The �rst two steps are highly dependent on the quantum system involved, whereas the

remaining steps are designed to be independent of the details of any particular system.

We emphasize that the design of the program grew out of the needs of the program rather
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than some idealistic vision. From our experience, attempting to dictate an “intuitive” structure to

programs generally leads to leaky abstractions and lackluster performance. It is more preferable

to allow the program to evolve organically to meet its own computational demands, and develop

abstractions and models around the natural �ow of data to aid human comprehension.

6.3 External libraries

We utilize several external libraries in our program. Noteworthy ones include:

• BLAS (Basic Linear Algebra Subprograms [Law+79]) is used for its vector and matrix

operations, especially the GEMM (General Matrix-Matrix Multiplication) routine. Note that

we do not use the reference implementation of BLAS from Netlib. We instead use highly

optimized implementations such as OpenBLAS [XQS17; GG08; Wan+13].

• LAPACK (Linear Algebra Package, [And+99]) is used for solving the eigenvalue problem in

the Hartree–Fock method.

• The Shampine–Gordon ODE solver [SG75; ODE; SgOde] is used for solving the IM-SRG

�ow equation.

• The wigner-symbols library [Wei99; Wei98; WSR] is used to calculate of angular momen-

tum (re)coupling coe�cients needed for J-scheme.

• The non-cryptographic Fowler–Noll–Vo (FNV) [FNV] hash algorithm is used for hash tables.

Rust’s default choice is more secure, but slower.

6.4 Basis and data layout

A critical question in computational many-body theory is how one should store the matrix elements,

which can be numerous. Generally speaking, while there is no one-size-�ts-all solution, there are
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a few distinct storage layouts that are of use to our three many-body methods. We must also be

wary of introducing too many storage layouts, which would introduce bloat and redundancies to

our code, reducing compilation speed, and hindering comprehension and maintenance.

One of the �rst choices lies in the scheme: M-scheme or J-scheme? Since we wish to study

nuclei and similar systems, using J-scheme is necessary as the performance of M-scheme code is

noticeably worse even for something as small as helium. The divergence in performance will only

worsen as one adds more particles and/or shells. But there is also a trade-o�: J-scheme code can

be more di�cult to understand and more di�cult to verify. In fact, an easy way to verify J-scheme

code would be to perform computations using both J- and M-scheme and compare their results.

One might be tempted to write code that performs both, but fortunately this is mostly un-

necessary. J-scheme code can be used to perform pseudo-M-scheme calculations by associating

each particle with a �ctitious j quantum number that is always zero, which must not be confused

with the physical j quantum number. There are certain optimizations that can be done when j is

always zero, but this su�ces for verifying the correctness of the code.

For codes up to two-body interactions with real matrix elements, we use four separate kinds

of operators:

• zero-body operator

• standard-coupled one-body operator

• standard-coupled two-body operator

• Pandya-coupled two-body operator

Zero-body operators are simply �oating-point numbers. All other operators are stored as

block-diagonal matrices to exploit the sparsity of the matrix. Speci�cally, because of conservation
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laws such as

[Ĥ , Ĵ3] = 0

our Hamiltonian matrices are guaranteed to have a certain block diagonal form:

mj ≠ m
′
j ⟹ ⟨mj�|Ĥ |m′

j�⟩ = 0

6.4.1 Matrix types

The most basic data type is that of a matrix. A (dense) matrix containing entries of type T, denoted

Mat<T>, is a combination of three items,
4

struct Mat<T> {

ptr: *mut T // data pointer

num_rows: usize, // number of rows

num_cols: usize, // number of columns

}

• Here, ptr is declared to have type *mut T, namely a mutable pointer to T.5 This is con-

ventional but also somewhat deceptive, because we are actually storing a whole array of

T objects at the location. The pointer simply provides the address to the �rst entry in this

array, assuming the array is at least one element long.

• The dimensions are declared to have type usize,6 which is the pointer-sized unsigned

integer type conventionally used to store lengths of data in memory.

4
We aim to use valid Rust code throughout to illustrate concepts, but the actual implementation may di�er slightly

in details.

5
This is equivalent to (T *) in C or C++.

6
This is equivalent to size_t in C or C++.
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We use zero-based indices throughout the discussion.

There are two common matrix layout conventions: row-major (colloquially known as C

order), where the matrix is laid out row by row, or col-major (Fortran order), where the matrix

is laid out column by column. In both cases, the index f (i, j) of an element within the array at ptr

is given by the equation

f (i, j) = in + j (6.1)

What di�ers is the interpretation of the variables:

• In the row-major convention, i is the row index, n is the number of columns, and j is the

column index.

• In the column-major convention, i is the column index, n is the number of rows, and j is the

row index.

In our code, we adhere to the row-major convention.

We use the Mat<T> data type to represent an owning matrix: it has exclusive ownership of its

contents. When a Mat<T> object is destroyed, its associated memory is automatically deallocated

by the destructor we implemented.

To share the matrix or submatrices of it, we introduce two separate types MatRef<'a, T>

(shared matrix reference) and MatMut<'a, T> (mutable matrix reference). The reference types

both have a lifetime parameter 'a that determines the lifetime of the borrow. Unlike Mat<T>,

we introduce an additional �eld to the contents of MatRef<T> and MatMut<T>:

struct MatRef<T> { // or MatMut<T>

ptr: *const T // data pointer

num_rows: usize, // number of rows
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num_cols: usize, // number of columns

stride: usize, // gap between each row

}

The stride parameter allows us to extract references of submatrices (incomplete matrices).

This is useful because in many situations we only want to operate on, say, the hole states but

not the particle states, or vice versa. In this case, the indexing formula in Eq. 6.1 is interpretedly

di�erently: n is now the stride of the matrix.

We also use a triangular matrix data type TriMat<T>, which can represent not just triangular

matrices but also ±-symmetric and ±-Hermitian matrices. In a (non-strict) triangular matrix data

type, we store the diagonal and all elements above it, or the diagonal and all elements below it.

Because we chose row-major matrices, the latter convention turns out to be more convenient, as

we can write the indexing formula as:

g(i, j) = (
i + 1
2 ) + (

j
1)

=
(i + 1)i
2

+ j

which is independent of the matrix’s dimensions. This formula readily generalizes to higher-rank

simplex-shaped tensors.

A block-diagonal matrix is conceptually a matrix composed to square matrices arranged along

the diagonal. In terms of data, a block-diagonal matrix is simply an array of matrices. In Rust, this

can be represented by the nested type Vec<Mat<T>>, where Vec<M> denotes a growable array
7

of objects of type M.

Each block (or channel as we often call them in code) is indexed by l (channel index) and

each element is indexed by a triplet (l, u, v), with u being the row index within the block and v
7
This is approximately equivalent to std::vector<T> in C++.
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being the column index within the block. The indices u and v are known as auxiliary indices.

The size of blocks may vary within the matrix. Programmatically, block-diagonal matrices are

represented by an array of matrices. In Rust, this would be Vec<Mat<f64>> where Mat<T>

denotes our own custom matrix data type with entries of type T.

E�ectively, all operations on block-diagonal matrices are performed block-wise. For example,

matrix multiplication between two block matrices Aluv and Bluv can be written as:

C luw = ∑
v
AluvB

l
vw

which is equivalent to

Cl = ∑
v
AlBl

This is a very convenient computational property. It provides an avenue for the parallelization of

block-diagonal matrix multiplication, since the block operations are independent of each other.

We can generalize block-diagonal matrices such that the blocks are no longer required to be

square nor do they have to lie on the diagonal. Instead, they simply need to be arranged so as to

touch each other at their top-left/bottom-right corners. Implementation of operations on these

generalized block-diagonal matrices remains identical.

There are additional optimizations one can apply to the layout of block-diagonal matrices.

One can, for example, pack the contents of all matrices into a single contiguous array and store

the matrix dimensions in a separate array along with o�sets to each of these blocks. The array of

o�sets ℎ(l), which we call block o�sets, is given by the formula

ℎ(l) =
l−1
∑
l′=0

e(l′)
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where e(l) is the extent of the l-th block, which for an ordinary rectangular block with dimensions

m(l) × n(l) is simply e(l) = m(l)n(l). For convenience, we allow the indices of ℎ(l) to range from 0

to l rather than 0 to l − 1 as would be typical with zero-based indexing. The value of ℎl is simply

the length of the entire array. To save memory, the block o�sets can be shared between matrices

that have precisely the same layout of blocks.

6.4.2 Basis charts

A row index pair (l, u) can be considered an abstract label for a left basis vector in this matrix,

whereas a column index pair (l, v) can be considered a label for a right basis vector.

For a one-body operators, each index pair corresponds to a one-particle state in J-scheme,

|j��⟩

with j being the angular momentum magnitude, � representing all remaining conserved quantum

numbers, and � representing all remaining non-conserved quantum numbers. Since J-scheme

states are reduced states, the angular momentum projection m is absent entirely. The combination

of (j, �) is conserved, thus we have the bijection

l ≃ (j, �)

in the one-particle basis. In code, we can store this bijection using a special bidirectional lookup

table that we call a chart, which is a pair of two data structures:

struct Chart<T> {

encoder: HashMap<T, usize>,
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decoder: Vec<T>,

}

The encoder is a hash table that maps from a T object into an index, whereas the decoder is a

vector that maps from an index to a T object. Here, T can be any hashable object with an equality

relation. In this case, we choose T = (Half<i32>, K), where Half<i32> is our custom data

type for representing half-integers like j, and K is the type of �.

In our code, we do not store � directly, but represent � using another abstract index k iso-

morphic to �. This design allows the type of the l ≃ (j, k) chart to be completely independent

of the type of �, avoiding code bloat due to monomorphization. The rationale for this is that

most operations in many-body theory only require knowledge of the total angular momentum

magnitude j and not of �.

There is also a bijection between � and u but it is l-dependent,

(l, u) ≃ (l, �)

This bijection is needed to recover the non-conserved quantum numbers and is needed to interpret

matrix elements (e.g. reading input matrix elements, displaying output), but is irrelevant within

the core of the many-body methods.

For two-body operators, each index pair corresponds to an unnormalized two-particle state in

J-scheme,

|j12�12j1�1�1j2�2�2⟩
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Since j12�12 is conserved, we have the bijection,

l12 ≃ (j12, �12)

akin to one-particle states.

Notice that the two-particle state can be compressed to

|j12p1p2⟩

where p is some index isomorphic to (j, �, �) that we call the orbital index,

p ≃ (j, �, �)

The �12 disappears because it is determined uniquely by the relation

�12 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

�1+̇�2 if operator standard-coupled

�1−̇�2 if operator is Pandya-coupled

(6.2)

where the dotted plus sign (+̇) denotes the Abelian operation used to combine the conserved

quantum numbers and the dotted minus sign (−̇) denotes its inverse. Usually, this is simply addition,

but for certain multiplicative quantum numbers like parity this would translate to multiplication.

We thus have the bijection

(l12, u12) ≃ (j12, p1, p2)

which allows us to relate two-particle states to one-particle states (orbitals) entirely independent of
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the concrete quantum numbers. It is not necessary to relate the two-particle index pairs (l12, u12)

to the concrete quantum numbers directly.

For convenience, we use a speci�c choice of orbital index, de�ned as

p(l, u) = M(l) + u

where M(l) is an array of channel o�sets, de�ned as

M(l) =
l−1
∑
l′=0

m(l′) (6.3)

where m(l′) is the number of one-particle states in the one-particle channel l′.

For standard-coupled two-body operators, we impose an additional constraint to save memory:

p1 ≥ p2

The antisymmetry of the states allows us to easily invert the order if this constraint is violated:

|j12p2p1⟩ = (−)
j1+j2−j12 |j12p1p2⟩

In overall, we classify the bijections into two broad categories:

• Bijections that are dependent on the concrete quantum numbers � and � are stored in a

generic
8

data structure that we call the atlas, which necessarily depend on the types of �

and �.

• Bijections that are independent of the concrete quantum numbers, as well as layout in-

formation (dimensions and o�sets, as in Eqns. 6.3, 6.4) are stored in a non-generic data

8
Generic data structures are known as templated types in C++.
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structure that we call the scheme.

The scheme is stored within the atlas for convenience, but most many-body methods do not

require the atlas at all; they only need the scheme. The atlas is typically only needed during the

input stage where matrix elements are read in, for conversion between J-scheme and pseudo-M-

scheme, or for identi�cation of basis states in debugging/display.

6.4.3 Access of matrix elements

Within each block, we partition the states into several contiguous parts, indexed by a part label � .

• For the one-body operator, states are divided into hole (� = 0) and particle (� = 1) parts.

• For the standard-coupled two-body operator, states are divided into hole-hole (� = 0),

hole-particle/particle-hole (� = 1), and particle-particle (� = 2) parts.

• For the Pandya-coupled two-body operator, states are divided into hole-hole (� = (0, 0)),

hole-particle (� = (0, 1)), particle-hole (� = (1, 0)), and particle-particle (� = (1, 1)) parts.

This partitioning scheme makes it possible to avoid unnecessary iteration over states that do

not contribute to a many-body diagram.

Implementing this requires subdividing the channels according to � , thus we will need analo-

gous quantities to those in Eq. 6.3, such as:

M(l, �) =
l−1
∑
l′=0

�−1
∑
�′=0

m(l′, � ′) (6.4)

which we call the part o�set. Here,m(l′, � ′) is the number of one-particle states in the one-particle

channel l′ within part � ′.

While the implicit antisymmetrization of standard-coupled two-particle states saves a sig-

ni�cant amount of memory, they do complicate the translation of many-body equations into
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code. To reduce this cognitive load, we introduce an augmented two-particle state index triplet

(t12, l12, u12) that includes an extra permutation parameter t12. The permutation t12 can be either

0 or 1 if p1 ≠ p2, or it can only be 0 if p1 = p2.

• If t12 = 0, then we interpret (t12, l12, u12) as the usual state |j12; p1p2⟩.

• However, if t12 = 1, then we interpret (t12, l12, u12) as the permuted state |j12; p2p1⟩ =

(−)j1+j2−j12 |j12; p1p2⟩.

The augmented state (t12, l12, u12) has the advantage of being in a one-to-one correspondence

to our intuitive notion of a two-particle state on paper. Thus it o�ers a useful abstraction that

hides the internal complications of implicit antisymmetrization.

When a matrix element is accessed using an augmented state index, we must perform a phase

adjustment depending on the value of t ,

function get(V , (t12, l12, u12), (t34, l34, u34))

if l12 ≠ l34

0

else

�12�34V
l12u12u34

where

�ab =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

0 if tab = 0

−(−1)ja+jb−jab if tab = 1

When a matrix element is set using an augmented state index, we perform the same phase
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adjustment to the value being set,

function set(V , (t12, l12, u12), (t34, l34, u34), x)

assert(l12 = l34)

V l12u12u34 ← �12�34x

where the left arrow (←) denotes array element assignment. If l12 ≠ l34, the operation aborts with

an error. However, this setter is a rather leaky abstraction. Suppose we attempt to, say, increment

every matrix element by one,

Vpqrs ← Vpqrs + 1

using the naive algorithm

for pq in all_augmented_states

for rs in all_augmented_states

set(V , pq, rs, get(V , pq, rs) + 1)

As it turns out, this will cause many of the matrix elements to be incremented twice instead of just

once. This is because multiple augmented states map to the same unaugmented state. To remedy
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this, we introduce a separate abstraction for the addition-assignment operation de�ned as

function add(V , (t12, l12, u12), (t34, l34, u34), x)

assert(l12 = l34)

V l12u12u34 ← V l12u12u34 +
�12�34
N12N34

x

whereNab is the normalization factor in Eq. 3.27, which simpli�es toNab = 2−�papb if non-existent

states are excluded. The denominator helps compensate for the overcounting.

6.4.4 Initialization of the basis

6.4.4.1 Input single-particle basis

To set up all the necessary basis structures for many-body theory, we require the following data,

all of which are speci�c to each quantum system:

• We need a list of all single-particle states (“orbitals”) in the quantum system.

• For every single-particle state, we need to know its part label � , which tells us whether it is

a hole (occupied) state or a particle (unoccupied) state relative to the Fermi vacuum Slater

determinant.

• For every single-particle state, we need to know to its j, �, and � quantum numbers. We

allow both � and � to be of practically any type and leave them as generic type parameters.

• We require �-type values (1) to be cloneable, (2) to have a total equality relation, (3) to

be hashable, and (4) to form an abelian group (i.e. to support the +̇ and −̇ operations in

Eq. 6.2). The �rst three conditions are needed to set up e�cient mappings between arbitrary

� values and k indices using hash tables.
9

The last condition is needed to compute conserved

9
We could have asked for a total ordering instead of hashability, in which case we would use ordered trees instead

of hash tables. However, trees are slower and the inherent ordering of trees does not convey any advantages for our
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quantum numbers for multi-particle states.

• We require �-type values (1) to be cloneable, (2) to have a total equality relation, and (3) to

be hashable. These conditions are needed to set up e�cient mappings between arbitrary �

values and u indices.

Once we have this information, we can construct both the atlas and the scheme data structures

for the system.

6.4.4.2 Channelized atlas initialization

The general process for setting up any channelized basis is straightforward. The input is a sequence

of (�, � , �) states, where

• � is the channel,

• � is the part, and

• � is any auxiliary information needed to uniquely identify it within all states of the same �.

The output are various charts, including l ≃ � and (l, u) ≃ (l, �), and layout information (arrays

of dimensions and o�sets, such as M(l) in Eq. 6.3). The process goes as follows:

1. Iterate over each state (�, � , �) and incrementally build the single-particle chart for l ≃ �.

Store each (l, � , �) to a temporary array.

2. Sort the temporary array in lexicographical order, grouping the states by l and then by � .

3. Iterate over the sorted array to derive the charts p ≃ (l, u) ≃ (l, �) and layout information

(see Eqns. 6.3, 6.4).

6.4.4.3 Many-body atlas initialization

The channelized atlas initialization procedure is then applied to one-particle, standard-coupled

two-particle, and Pandya-coupled two-particle bases:

purposes.
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1. To build the one-particle basis for the one-body operator, iterate over the input single-

particle basis (Sec. 6.4.4.1) states (� , j, �, �) and incrementally update the single-particle

channel chart k ≃ �. The states (� = (j, k), � , �) are then passed to the channelized atlas

initialization procedure (Sec. 6.4.4.2) to obtain the necessary charts and layouts.

2. To build the two-particle basis for the standard-coupled two-body operator, iterate over the

Cartesian product of the single-particle states with itself, yielding (l1, u1, l2, u2) per iteration:

a. Use the single-particle chart to recover p1, p2, j1, j2, �1, �2, �1, and �2.

b. Skip the iteration if p1 < p2.

c. Compute �12 = �1+̇�2 and �12 = �1 + �2 (�1, �2 ∈ {0, 1} and �12 ∈ {0, 1, 2}).

d. Update the two-particle channel chart k12 ≃ �12.

e. For each j12 compatible with

{

j1 j2 j12

}
, push the state (� = (j12, k12), � = �12, � =

(p1, p2)) into a temporary array.

Finally, pass the temporary array of states to the channelized atlas initialization procedure

(Sec. 6.4.4.2) to obtain the necessary charts and layouts.
10

3. To build the two-particle basis for the Pandya-coupled two-body operator, iterate over the

Cartesian product of the single-particle states with itself, yielding (l1, u1, l4, u4) per iteration:

a. Use the single-particle chart to recover p1, p4, j1, j4, �1, �4, �1, and �4.

b. Compute �14 = �1−̇�4 and �14 = �1 + 2�4 (�1, �4 ∈ {0, 1} and �14 ∈ {0, 1, 2, 3}).

c. Update the two-particle channel chart k14 ≃ �14.

d. For each j14 compatible with

{

j1 j4 j14

}
, push the state (� = (j14, k14), � = �14, � =

(p1, p4)) into a temporary array.

Finally, pass the temporary array of states to the channelized atlas initialization procedure

10
The temporary array isn’t technically needed, especially if the language has good support for corou-

tines/generators, allowing the data to be passed into the generic channelized atlas initialization procedure in parallel.

We found it easier to describe the algorithm this way, and regardless the temporary array has a negligible impact on

performance.
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(Sec. 6.4.4.2) to obtain the necessary charts and layouts.

Note that step 2 and 3 di�er in only two aspects: the abelian operation used for � (addition vs

subtraction), and the presence or absence of the implicit antisymmetrization constraint p1 ≥ p2.

6.4.4.4 Basis initialization for quantum dots

The Fock–Darwin basis is used for quantum dot calculations.

In our implementation of the quantum dot system, j is not used, so we can simply set it to zero

throughout. The set of conserved quantum numbers are � = (m� , ms), the projections of orbital

angular momentum and spin. This leaves us with � = n, the principal quantum number.

The abelian group on � = (m� , ms) is de�ned in a straightforward manner:

0̇ = (0, 0)

(m� , ms)+̇(m
′
� , m

′
s) = (m� + m

′
� , ms + m

′
s)

(m� , ms)−̇(m
′
� , m

′
s) = (m� − m

′
� , ms − m

′
s)

The occupied states for quantum dots are always selected in complete shells – a shell consists of

all states that share the same single-particle energy in Eq. 5.5. Moreover, systems we study always

contain complete shells �lled from the bottom. These are the N -particle electron con�gurations

we use:

• N = 2: 0s2

• N = 6: 0s20p4

• N = 12: 0s20p41s20d4

• N = 20: 0s20p41s20d41p40f4

• etc.
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Here, the notation n� i means there are i particles in states with n and |m� | = � and s ↔ 0,

p ↔ 1, d ↔ 2, f ↔ 3, as usual for spectroscopic notation.

6.4.4.5 Basis initialization for nuclei

The 3D harmonic oscillator basis is used for nuclei calculations.

In J-scheme nuclear calculations, the input j quantum number is simply the total angular

momentum magnitude j. The set of conserved quantum numbers are � = (�,mt ), parity and

isospin projection. This leaves us with � = n, the principal quantum number.

The abelian group on � = (�,mt ) is de�ned as:

0̇ = (+, 0)

(�, mt )+̇(�
′, m′

t ) = (��
′, mt + m

′
t )

(�, mt )−̇(�
′, m′

t ) = (��
′, mt − m

′
t )

In pseudo-M-scheme nuclear calculations, which we use mainly for testing purposes, the

input j quantum number
11

is arti�cially set to zero. The set of conserved quantum numbers are

� = (�,mj , mt ), parity and the projections of total angular momentum and isospin. This leaves us

with � = (n, j), the principal quantum number and total angular momentum magnitude. Note that

j cannot be put into � because we are using uncoupled two-particle states.

11
Not to be confused with the physical j quantum number, which is put in �.
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The abelian group on � = (�,mj , mt ) is de�ned as:

0̇ = (+, 0, 0)

(�, mj , mt )+̇(�
′, m′

j , m
′
t ) = (��

′, mj + m
′
j , mt + m

′
t )

(�, mj , mt )−̇(�
′, m′

j , m
′
t ) = (��

′, mj − m
′
j , mt − m

′
t )

6.5 Input matrix elements

The procurement of input matrix elements varies wildly from system to system and there is not

much code that can be shared among them outside of I/O utilities.

6.5.1 Inputs for quantum dots

The one-body matrix for quantum dots is diagonal and can be computed using Eq. 5.5.

Two-body matrix elements are more di�cult to compute. We outsource the bulk of the work

to the OpenFCI package [Kva08] and precompute the non-antisymmetrized matrix elements of

Eq. 5.7 with the frequency-dependence factored out:

⟨(nm)1(nm)2|Ĥ2|(nm)3(nm)4⟩√
ℏ!Eh

(Recall that m is a shorthand for m� for quantum dots.)

The elements are stored in a simple binary �le format. In this format, the �le is contiguous

array of 16-byte entries, where the �rst 8 bytes of each entry contains the quantum numbers

n1, m1, n2, m2, n3, m3, n4, m4 in that order. Each n is an 8-bit unsigned integer and each m is a 8-bit
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signed integer. The remaining 8 bytes contain the value of the matrix element as a little-endian

64-bit IEEE 754 double-precision �oating-point number. Schematically, we can depict an entry as

the following structure:

struct Entry {

n1: u8,

m1: i8,

n2: u8,

m2: i8,

n3: u8,

m3: i8,

n4: u8,

m4: i8,

value: f64,

}

To save space, not all matrix elements are stored. We restrict matrix elements to those that

satisfy both of the following canonicalization conditions:

(p1, p2) ≤ sort(p3, p4) (p1, p3) ≤ (p2, p4)
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where

sort(p3, p4) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

(p3, p4) if p3 ≤ p4

(p4, p3) otherwise

pi =
ki(ki + 2) + mi

2

ki = 2ni + |mi |

Note that comparisons such as (a, b) ≤ (c, d) use lexicographical ordering.

6.5.2 Inputs for nuclei

The one-body matrix for nuclei is the kinetic energy operator, which is not diagonal but can still

be easily computed using Eq. 5.12. Note that the equation does not include the (1 − 1/A) factor

that arises from the center-of-mass kinetic energy subtraction.

The two-body matrix elements consists of two parts. Firstly, there is a two-body component

arising from the center-of-mass kinetic energy subtraction:

⟨pq|(−
p̂1 ⋅ p̂2
mA )|pq⟩

This quantity can be computed easily in the center-of-mass frame. The Talmi–Brody–Moshinsky

transformation brackets [Tal52; BM67; Mos59] can be used to convert the result back into lab

frame.

The second part is the actual nuclear interaction. There are many possible choices here, and

they are often available precomputed in a variety of tabular formats.

A common format that used for nuclear matrix elements is the Darmstadt ME2J format
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[Bin14; Cal14; Lan14]. The chiral-EFT interactions, including [EM03], are often distributed in

this format. In this format, all matrix elements are stored in a prede�ned order without explicitly

writing out the quantum numbers. The iteration order is parametrized by (emax, nmax, �max, Emax)

as de�ned in Eqns. 5.9, 5.10, 5.11. The �rst three parameters constrain the single-particle basis,

which is constructed by the following algorithm:

for e in 0, … , emax

for � in 0, … , ⌊
e
2⌋

let � = 2� + (e mod 2)

let n =
e − �
2

if � > �max

break

if n > nmax

continue

for � in
||||
� −

1
2
||||
−
1
2
, … , �

let j = � +
1
2

yield (e, n, � , j)

The algorithm establishes an ordering on the single-particle states, which we denote

(e1, n1, �1, j1), (e2, n2, �2, j2), … , (enb , nnb , �nb , jnb)

where nb is the number of single-particle states. Then, we must iterate over the two-body matrix
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elements in the following order, constrained by Emax:

for p in 1, … , nb

for q in 1, … , p

if ep + eq > Emax

break

for r in 1, … , p

for s in 1, … , (if r < p then r else q)

if er + es > Emax

break

if (�1 + �2 + �3 + �4) mod 2 ≠ 0

continue

for J in max{|jp − jq |, |jr − js |}, … ,min{jp + jq , jr + js}

for T in 0, 1

for MT in −T ,… , T

yield (np , �p , jp , nq , �q , jq , nr , �r , jr , ns , �s , js , J , T , MT )

Note that in ME2J, the particle physics convention is used for isospin, so mt = −12 is for neutrons

and mt = +12 is for protons.

6.6 Implementation of HF

The overall structure of our HF program is as follows:
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1. Begin with the initial coe�cient matrix C(0) set to the identity matrix.

2. Now we loop over i from 1 and terminate at some high cut-o� (e.g. 1024):

a. Compute the Fock matrix F (new) using C(i−1).

b. Mix F (i−1) and F (new) to obtain F (i) using Eq. 6.6.

c. Solve the Hartree–Fock equation as a Hermitian eigenvalue problem on F (i). This

results in a new set of coe�cients C(i) and a vector of eigenvalues (orbital energies)

"(i). We use heevr from LAPACK for this, applied separately to every block of the

matrix.

d. Compute the sum of orbital energies S(i) = ∑p |̆
2
p"
(i)
p as a diagnostic for convergence.

e. Adjust the linear mixing factor using Eq. 6.7.

f. Test how much S(i) has changed compared to S(i−1). If this is within the desired

tolerance, break the loop.

3. Report whether the HF calculation has reached convergence (i.e. whether the loop was

broken because the tolerance has met). Usually, the program will abort if this fails.

4. Transform the Hamiltonian using the �nal coe�cient matrix.

6.6.1 Calculation of the Fock matrix

From C, we compute an auxiliary matrix Q de�ned as

Qrs = ∑
i⧵
C∗
ri′
Csi′

This summation may be readily computed using GEMM.

Using Q, we can reduce the cost of computing the Fock matrix, which is now described by
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this equation in J-scheme:

Fpq = ⟨p|Ĥ1|q⟩ + ∑
jpr rs

|̆2pr
|̆2p
Qrs⟨pr|Ĥ2|qs⟩ (6.5)

Compared with Eq. 4.7, which has a triply-nested sum, this equation only has a doubly-nested

sum.

As a demonstration of our J-scheme framework, we include the code used to calculate the

two-body contribution to the Fock matrix below.

pub fn fock2(

h2: &OpJ200<f64>,

q1: &OpJ100<f64>,

f1: &mut OpJ100<f64>,

)

{

let scheme = h2.scheme();

for pr in scheme.states_20(&occ::ALL2) {

let (p, r) = pr.split_to_10_10();

for q in p.costates_10(&occ::ALL1) {

for s in r.costates_10(&occ::ALL1) {

for qs in q.combine_with_10(s, pr.j()) {

f1.add(p, q,

pr.jweight(2)

/ p.jweight(2)

* q1.at(r, s)
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* h2.at(pr, qs));

}

}

}

}

}

The inputs to this function are the three operator matrices h2 (H2, the two-body Hamiltonian),

q1 (Q), and f1 (F ). The output is f1 (F is mutated in-place).

The function begins by binding a reference of the scheme of h2 to the scheme variable. This

is done out of convenience. One could just as well have chosen q1.scheme(), or f1.scheme(),

since all three operators are expected to have the same scheme as a pre-condition.

The outermost loop over iterates over all standard-coupled two-particle states |jpr ; pr⟩. Keep

in mind that although in storage we deduplicate states related by antisymmetry, the high-level

interface here takes great pains to avoid exposing this internal detail.

The two-particle state |jpr ; pr⟩ is then split into two single-particle states |p⟩ and |r⟩. Note

that this is a many-to-one process: multiple two-particle state can split into the same pair of

single-particle states.

The next loop iterates over all |q⟩ that are also co-states of |p⟩: these are all states that share

the same channel as |p⟩. These states have the same l ≃ (j, �) and thus reside within the same

one-body matrix block, allowing us to avoid wasting time on matrix elements that are trivially

zero. Another loop iterates over all |s⟩ that are co-states of |r⟩.

In the innermost loop, we combine |q⟩, |s⟩, and jpr to form the state |jpr ; qs⟩. This loop is

somewhat unusual in that it iterates at most once. If for some reason the state |jpr ; qs⟩ is forbidden,

the innermost loop would do nothing. Otherwise, there can only be one state |jpr ; qs⟩ that satis�es
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the requirements.

Lastly, we add the appropriate contributions to f1 using the usual formula. The add function

and at (getter) automatically handle the antisymmetrization phases behind the scenes. Note that

the p.jweight(n) function computes |̆np .

This code is written in a rather naive way and utilizes the high-level interface of our J-scheme

framework. It is certainly not the most e�cient way of calculating the Fock matrix, but we consider

its simplicity to be an advantage. Compared to other parts of the calculation, this sum is far from

being the bottleneck, thus optimizing this code is not a high priority.

6.6.2 Ad hoc linear mixing

In some systems, the convergence of Hartree–Fock calculations can sometimes be very slow. This

is usually the result of a highly oscillatory convergence. Several methods exist to mitigate this

problem, including direct inversion of the iterative subspace (DIIS) [Pul80; Pul82] and Broyden’s

method [Bro65].

In our code, we implement a very simple ad hoc linear mixing strategy that, in practice, can

aid convergence in many cases. The general idea is that if the sum of energies S is changing sign,

then we attempt to dampen the oscillations by mixing in some portion of the old Fock matrix. If

this converging is not oscillatory, then we try to keep most of the new Fock matrix.

The mixing is determined by a factor c(i) that is updated from iteration to iteration. The next

Fock matrix to be used F (i) is computed as:

F (i) = c(i)F (i−1) + (1 − c(i))F (new) (6.6)

where F (new) is the Fock matrix as computed via Eq. 6.5.
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At each step, we update the mixing factor c(i) via the logic:

c(i) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

min{12 , bc
(i−1)} if (S(i) − S(i−1))(S(i−1) − S(i−2)) < 0

c(i−1)
b otherwise

(6.7)

where b > 1 is some arbitrary constant that controls how rapid c should respond to the presence

or absence of oscillations. We usually choose b = 2. The min{12 , …} prevents the calculation from

stalling because too much of the old matrix is being retained.

6.6.3 HF transformation of the Hamiltonian

The HF transformation is describe by Eq. 4.3, which we reproduce here in J-scheme (not that there

is any di�erence):

H ′
p′q′

= ∑
pq
C∗
pp′

HpqCqq′

H ′
p′q′r′s′

= ∑
pqrs

C∗
pp′

C∗
qq′

HpqrsCrr′Css′

The one-body term is very cheap and can be written in a naive way like the Fock matrix calculation.

The two-body term can be fairly expensive. Naive implementation of the equation would

result in an 8-th power scaling, which is unbearably slow. Fortunately, the calculation can be

broken down into two 6-th power steps at the cost of a temporary two-body matrix ,

Tp′q′rs = ∑
pq
C∗
pp′

C∗
qq′

Hpqrs

H ′
p′q′r′s′

= ∑
rs
Tp′q′rsCrr′Css′

(6.8)

This could be broken down even further into four 5-th power steps, but we generally �nd this
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an unnecessary complication – in particular, it would involve a temporary non-antisymmetrized

two-body matrix, which would require introducing yet another matrix data type.

Eq. 6.8 can be programmed naively, which results in a slow but tolerable transformation.

Alternatively, one could perform the transformation using GEMM. Our benchmarks indicate that

the use of GEMM can provide a two-orders-of-magnitude improvement in speed. Unfortunately,

it causes the internal details of implicit antisymmetrization to leak, complicating the phase factor.

In any case, the technique is as follows. De�ne the following two-body antisymmetrized

coe�cient matrix G:

Grsr′s′ = Nrs
(1+jr +js−jrs)rs 

(1+j
r′
+j
s′
−jrs)

r′s′
Crr′Css′

where Nrs is the normalization factor in Eq. 3.27 and  (i) is the (−)i-symmetrization symbol of

Sec. 2.1.2. Then we can compute the transformation using GEMM:

Tp′q′rs = ∑
p≥q

G∗
pqp′q′

Hpqrs

H ′
p′q′r′s′

= ∑
r≥s

Tp′q′rsGrsr′s′

6.7 Implementation of normal ordering

Before performing IM-SRG(2), it is necessary to obtain matrix elements of Ĥ relative to the Fermi

vacuum. This step is often referred to as the normal ordering of Ĥ (the terminology is somewhat

overloaded). As part of this step, we also obtain the Hartree–Fock energy.

In the case of two-body operators, there are only two interesting operations here. One is the

calculation of the zero-body component (HF energy) using Eq. 4.2 or Eq. 2.4, which we reproduce
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here in J-scheme:

E� = E∅ + ∑
i⧵
|̆2i H

∅
ii +

1
2
∑
jij

∑
ij⧵
|̆2ijH

∅
ijij

We have omitted the primes because at this point normal ordering itself can be applied independent

of HF. This calculation can be done naively as it is very cheap.

The other part is the folding of the two-body component into the one-body component as

shown in Eq. 2.4 and reproduced here in J-scheme:

H�
pq = H

∅
pq + ∑

jpi
∑
i⧵

|̆2pi
|̆2p
H∅piqi

This calculation can also be done naively as it is still very cheap.

6.8 IM-SRG(2) implementation

The overall structure of the IM-SRG implementation is centered around an ODE loop with tests

for convergence, much like HF. The inputs to IM-SRG are the normal-ordered, zero-, one-, and

two-body operator matrices in their standard-coupled forms.

1. Pack all three standard-coupled Hamiltonian components into a single array y for the ODE

solver to consume. In doing so, deduplicate elements that are related by hermitivity.

2. Initialize and maintain a cache of 6-j symbols, needed for the Pandya transformations.

3. Initialize the Shampine–Gordon ODE solver.

4. Now enter the main IM-SRG loop, starting with the �ow parameter s set to zero. If the loop

exceeds some prede�ned limit on s, abort.

a. Request the solver to proceed to s + �s, for some �s speci�ed by the user. Provide
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the derivative function ẏ = f (s, y) to the solver. While the solver is stepping, it will

attempt to evaluate our function f :

• Unpack y back into the standard-coupled operator matrices H .

• Compute the generator � from H .

• Compute the comutator D = [�,H], making use of the 6-j cache.

• Pack the comutator D into the derivative array ẏ.

b. If the stepping failed, abort.

c. Get the ground state energy E� , which in our packing convention is simply the �rst

element of y.

d. Check how much the ground state energy has changed since the previous iteration. If

it is less the user-speci�ed tolerance, break the loop with success.

We use the White generator for our IM-SRG calculations, as described in Eq. 4.15. Our

implementation supports both Møller–Plesset and Epstein–Nesbet denominators, using monopole

matrix elements in the latter case.

6.8.1 Calculation of the IM-SRG(2) commutator

The bulk of the implementation complexity and computational cost lies in the calculation of the

commutator D = [�,H]. At the moment, we implement this as by calculating the linked products

of �̂Ĥ and subtracting the linked products of Ĥ �̂. This allows us to reuse the linked product

code. However, in the future, we may disrupt this symmetry for optimization reasons – to take

advantage of �̂’s higher sparsity as compared to Ĥ .

Since the linked product corresponds to the Ĉ operator in Secs. 4.2.4, 4.2.5, we will discuss the

various terms using the naming convention in that chapter. We will not attempt to discuss all of

the terms but instead focus on a few interesting ones.
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6.8.1.1 Optimization of terms 2220 and 2222

These are one of the most costly terms in the commutator, but also one the easiest to optimize:

C2220pqrs =
1
2
∑
ij⧵
AijrsBpqij

C2222pqrs =
1
2
∑
⧵ab

ApqabBabrs

Calculating these terms using GEMM is quite straightforward and o�ers orders of magnitude in

improvement.

However, a subtlety arises due to the implicit antisymmetrization, which we also encountered

earlier in the HF transformation optimization: we must not double-count the i = j (or a = b) states.

With this taken into account, the equations become

C2220pqrs =
1
2

∑
i≥j⧵

NijAijrsBpqij

C2222pqrs =
1
2

∑
⧵a≥b

NabApqabBabrs

where Nab denotes the normalization factor in Eq. 3.27. This is an unfortunate consequence of

using unnormalized matrix elements; had we used normalized ones, the spurious Nab factor would

not appear.

Note that the above two equations are extremely similar and can be implemented as just one

function. The di�erence between the two is the that A and B have been swapped, and that the

parts of states being summed over are di�erent.
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6.8.1.2 Optimization of terms 2221

The 2221 term is one of the most interesting and costly terms. It is actually described by a three-

step process. First, use the Pandya transformation to convert the standard-coupled operators into

Pandya coupling (Sec. 3.12.2):

Ãpsrq = − ∑
jpq
(−)2jpq |̆2pq

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

jp jq jpq

jr js jps

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

Apqrs

Then, use GEMM to compute the product using Pandya-coupled matrices:

C̃2221psrq = +4 ∑
i⧵a
ÃiarqB̃psia

Finally, convert back into standard coupling using the antisymmetrizing inverse Pandya transfor-

mation.

The GEMM part is probably the most straightforward. Unlike 2220 or 2221, there are no

unusual phase factors because we do not use implicit antisymmetrization here.

Our benchmarks show that a very signi�cant amount of time is spent on the Pandya trans-

formation, thus it is worthwhile to optimize that operation despite being a roughly 5-th power

operation.

One technique is to rewrite the Pandya transformation itself as a GEMM-compatible product:

Ã
jpjqjr js
jps ;�p�q�r�s

= − ∑
jpq

W
jpjqjr js
jps ;jpq

A
jpjqjr js
jpq;�p�q�r�s
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where

W
jpjqjr js
jps ;jpq

= (−)2jpq |̆2pq

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

jp jq jpq

jr js jps

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

In this “four-j” matrix layout, each diagonal block of A or Ã is indexed not by the usual channels,

but by (jp , jq , jr , js). The right axis of both matrices is labeled by (�p , �q , �r , �s), where �p denotes

all the non-j quantum numbers of p. The use of this layout, in conjunction with a GEMM-powered

Pandya transformation, saves about 40% time.
12

The gains are not as dramatic as in the case

of 2220 or 2222 because the matrix-matrix multiplication is only over jps whose dimensions are

usually not very big.

The dominant work is now pushed onto the conversion from the standard- or Pandya-coupled

matrices into this four-j layout. This can be expensive due to the large number of hash table

lookups for translation between two-particle states and pairs of single-particle states. To mitigate

this we cache the translated indices within a separate four-j-layout matrix, bypassing the need for

expensive hash table lookups. This saves another 50% time at the cost of extra memory usage.
13

6.9 QDPT3 implementation

The QDPT3 implementation is fairly tedious as it involves coding about 20 or so terms from

Sec. 4.3.1. It is also quite error-prone, much like the IM-SRG commutator, therefore extensive

testing is necessary.

Fortunately, all terms up to third order are fairly inexpensive, therefore writing them out

naively using the high-level J-scheme interface would su�ce as the cost of IM-SRG dwarfs the

12
Benchmarked using emax = 4 for an

16
O-like system.

13
Benchmarked using emax = 4 for an

16
O-like system.
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cost of QDPT.

Additionally, a large number of QDPT terms share similar topologies: there is one unique

topology at second order (type A), and only three unique topologies at third order (types B, C, and

D). Thus, they can reuse with the same code simply by tweaking a the state parts that are being

summed over and customizing the denominator. As an example, consider the type B QDPT term:

W (B)
pq (�r , �st , �uv , D) =

1
4

∑
r∈�r

∑
st∈�st

∑
uv∈�uv

|̆2rp
|̆2p

HrpstHstuvHuvrq
D(r, s, t, u, v)

All of the �rst six terms/diagrams at third-order, shown in the equations of Sec. 4.3.1, have this

type B topology. The arguments �r , �st , and �uv indicate which parts of the states should be

summed (i.e. hole or particle) for |r⟩, |st⟩, and |uv⟩ respectively.

The code to compute type B terms is shown below:

pub fn qdpt_term_b<F>(

h1: &OpJ100<f64>,

h2: &OpJ200<f64>,

p: StateJ10,

q: StateJ10,

// these are denoted "chi" in the equations

r_occ: Occ,

st_occ: [Occ; 2],

uv_occ: [Occ; 2],

// the denominator (closure / function object)
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denom: F,

) -> f64 where

F: Fn(StateJ10, StateJ10, StateJ10,

StateJ10, StateJ10) -> f64,

{

// make sure p and q are within the same block

// (i.e. have the same conserved quantum numbers)

assert_eq!(p.lu().l, q.lu().l);

let scheme = h1.scheme();

let mut result = 0.0;

for r in scheme.states_10(&[r_occ]) {

for jrp in Half::tri_range(r.j(), p.j()) {

// combining states can fail,

// in which case we just continue

let rp = match r.combine_with_10(p, jrp) {

None => continue,

Some(x) => x,

};

let rq = match r.combine_with_10(q, jrp) {

None => continue,

Some(x) => x,

};
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for st in rp.costates_20(&[st_occ]) {

let (s, t) = st.split_to_10_10();

for uv in rp.costates_20(&[uv_occ]) {

let (u, v) = uv.split_to_10_10();

result += 1.0 / 4.0

* rp.jweight(2)

/ p.jweight(2)

* h2.at(rp, st)

* h2.at(st, uv)

* h2.at(uv, rq)

/ denom(r, s, t, u, v);

}

}

}

}

// in Rust syntax, the last expression of a function is

// implicitly returned if not terminated by semicolon

result

}

Observe that we allow the denominator argument denom to be a closure of any type F, allowing

it to be easily inlined by the compiler for e�ciency. This permits the use of anonymously-typed

closures, each with a distinct type, making it trivial for the compiler to tell di�erent closures apart.

As long as the type of the closure is not erased, the compiler is guaranteed to create distinct copies

of the qdpt_term_b function for each closure type F, greatly improving optimizability. This is an
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inherent feature of monomorphization in both Rust and C++.

Here is a snippet of code that demonstrates the use of qdpt_term_b to compute the �rst

third-order term shown in the equations of Sec. 4.3.1:

qdpt_term_b(

h1, h2, p, q,

// notation: I = hole state, A = particle state

occ::I, occ::AA, occ::AA,

// we define the denominator using a lambda function;

|i, a, b, c, d| {

// the "hd" function extracts the diagonal part

// of the one-body Hamiltonian

(hd(i) + hd(q) - hd(a) - hd(b))

* (hd(i) + hd(q) - hd(c) - hd(d))

},

)

6.10 Testing and benchmarking

The �rst line of defense for ensuring correct code is through properly designed abstractions

and data types. By categorizing values into distinct types one can avoid accidental confusion of

quantities.

For example, we have introduced a special data type called Half to represent half-integers.

Since no native machine type exists for half-integers, the usual workaround is to represent half-

integers with twice its e�ective value. For example, the half-integer m = 3/2 would be represented
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as m = 3 on a computer.

This leaves room for human error, if one say, adds a half-integer m = 3/2 to a normal integer

n = 1. The result would be 3 + 1 = 4, which is incorrect. The Half data type, de�ned below,

prevents this problem,

pub struct Half(pub i32);

It is not possible to add Half to an i32, because no such operator is de�ned. Thus the human

error becomes a compile error, preventing the incorrect program from compiling.

As another example, we have distinct types for standard-coupled and Pandya-coupled two-

body matrices, which prevents us from accidentally using a Pandya-coupled state to look up a

standard-coupled matrix.

Types cannot catch all bugs, but with judicious use they certainly catch a lot of the obvious

ones. We use tests to catch bugs that cannot be detected at compile time, either because the

solution would be too complex, too awkward to use, or downright impossible. Not only do tests

ensure that the code is correct right now, they also guard against future mistakes as the code

evolves. Several kinds of testing strategies are used in Lutario.

The most basic ones are unit tests, which are short tests intended to verify basic functionality.

These are often suitable for small functions that require little to no setup. For example, we have

the following test for our implementation of Euclidean division and modulo:

#[test]

fn test_euclid_div_mod() {

assert_eq!(euclid_div(10, 5), 10 / 5);

assert_eq!(euclid_mod(10, 5), 10 % 5);

assert_eq!(euclid_div(-10, 5), -10 / 5);

182



assert_eq!(euclid_mod(-10, 5), -10 % 5);

assert_eq!(euclid_div(10, -5), 10 / -5);

assert_eq!(euclid_mod(10, -5), 10 % -5);

/* etc ... */

}

The function attribute #[test] informs the Rust compiler that this function is part of the test

suite. The test explores all the potential sign errors that could happen in an implementation of

Euclidean division and modulo.

It is generally impossible to check programs over all possible inputs as the input space is

usually far too large. One way to ensure that the interesting cases are tested is through code

coverage tools. These tools can track which lines of the source code are executed during the tests.

If there are certain lines that are never executed because an if-condition is never true during the

tests, then those lines e�ectively untested. Full code coverage is not a guarantee that the test is

exhaustive, however.

When the input space is too large to explore, one could also consider randomized testing, in

which inputs y are generated randomly and then the test is responsible for verifying the results

y = f (x) in some way. One could either (1) compare the results using another function f ′ that

reproduces the result, or (2) check whether certain properties P(x, y) hold (property testing).

We o�er a more concrete example in Sec. 6.10.1.

While it is generally di�cult to prove that testing has exhaustively covered all cases, it is

nevertheless better to have at lesat one test case than none. These are often called smoke tests and

they are still remarkably useful in practice.

Larger tests, where multiple components of the program are tested together, are known as

integration tests. These are used to test the many-body methods, as they are fairly complicated
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and require several components working together to achieve a result. We have numerical results

for, e.g. ground state energy, from other implementations of the same many-body methods that

we can test against.

From time to time, bugs will inevitably slip past the existing tests. Whenever such a bug is

discovered, it is important to add additional tests to ensure the bug will not go undetected again

in the future – these are known as regression tests.

Tests are only useful if they are being run. Unfortunately, tests may require a substantial

amount of time to run, which discourages the programmer from running such tests. Frequent runs

of tests are important: they ensure that code remains valid at all times, and they allow problems

to be discovered at the earliest opportunity.

In Lutario, we have con�gured a continuous integration (CI) system that automatically

runs tests on every commit pushed to the repository and noti�es failures by email. It ensures

that problems are always discovered quickly. Furthermore, it allows us to keep the build process

streamlined and reproducible as otherwise the automated testing script, which runs in a clean

environment, would fail. It helps prevent environmental problems where the code functions

correctly only on the developer’s machines, but not on the users’.

6.10.1 Randomized testing of numerical code

The sheer number and tedious nature of the IM-SRG commutator terms and QDPT terms o�ers

a ripe environment for human errors. To mitigate against this, we use tests to verify that the

commutators are performing the calculations we expect.

There is a chicken-or-egg problem regarding numerical computations: we generally do not

know the answers a priori without running a program to calculate it – manual calculations are

usually impractical – yet we do not know if the program is calculating the formula we intended.
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To break this loop, we have to trust at least one program to compute the result – to “bootstrap”

our test suite.

We assign the most trust to the simplest and most naively implementation of the program.

Even if it is very slow, it is often su�cient to test just a few small nontrivial cases. This would

serve as our reference program.

With a reference program in hand, we need some input (matrix elements) to test against.

We could use actual matrix elements from physical systems, but it su�ces to use a randomly

generated set of matrix elements, provided that these matrices satisfy the necessary symmetries

and conservation laws for the formula to remain valid. This has the added advantage that as long

as the random number generator is deterministic, we only need to store the seed to recover the

entire suite of test matrices.

In the predecessor to Lutario, we have generated a set of random test matrices in the quantum

dot basis for testing the commutator. They were veri�ed by comparing against an extremely naive

implementation that does not take advantage of the sparsity of the matrix. These input matrices,

along with the expected output, have now been inherited by Lutario’s test suite. They ensure that

the new J-scheme implementation remains correct for j = 0 (i.e. pseudo-M-scheme).

To test cases where j ≠ 0 (proper J-scheme), we construct random matrix elements in the

nuclei basis in J-scheme and compute the commutator in two di�erent ways:

• We perform the commutator in J-scheme (operation CJ), and then convert the resulting

matrices to pseudo-M-scheme (operation ').

• We convert the matrices to pseudo-M-scheme (operation '), and then perform the commu-

tator in pseudo-M-scheme (operation CM).

We expect the results to be identical in both cases. This is mathematically described by the
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commutative square:

'◦CJ = CM◦'

This is a general approach of testing J-scheme equations that does not require us to know

what the correct answers are, as long as the pseudo-M-scheme code is correct.

6.10.2 Linting, static analysis, and dynamic sanitization

Several kinds of automated tools exist to aid the detection of bugs.

Static analyzers read the source code of a program and attempt to look for bugs without

actually running it. Due to the halting problem, it is impossible for a static analyzer to avoid false

negatives in any Turing-complete language.

Linting tools are a subtype of static analyzers designed to �nd not only bugs, but also suspicious

constructs, non-idiomatic code, and, in some cases, code that does not conform to a particular

stylistic convention.

Modern compilers are also capable of giving useful warnings for potentially buggy code. C and

C++ compilers by default are very conservative about warnings, but it is possible to request more

comprehensive diagnostics using a �ag similar to -Wall. This alone can catch many common

mistakes.

In contrast, the Rust compiler by default issues all warnings. Our code is always written

to avoid such warnings, even if the warning is of low priority or not justi�ed. This ensures

that if an important warning appears later on, it is not drown out by the deluge of low-priority

warnings that had been intentionally ignored. If a warning is a false positive, we can either �nd a

workaround or, failing that, silence the warning at that particular location using an attribute such
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as #[allow(...)] in Rust.

Dynamic sanitizers are designed to detect errors during the execution of a program. Dynamic

sanitizers are naturally better at detecting problems, but aside from the need to actually execute

the program, they also introduce some performance overhead. Examples of such tools include

Valgrind [Valgrind], as well as various Clang and GCC sanitizer �ags (-fsanitize=...) .

Sanitizers can be extremely helpful at �nding the cause of bugs when there is suspicion of

memory errors in a given program. In our experience, Valgrind has been particularly e�ective at

detecting memory errors in our C and C++ projects. The tools can even be used pre-emptively,

run routinely as part of the test suite, to reduce the risk of memory errors being introduced as the

codebase evolves.

6.10.3 Benchmarks and pro�ling

For benchmarking, we make use of Rust’s o�cial (but unstable) test library, which o�ers a very

simple interface:

#![feature(test)]

extern crate test; // import the test library

#[bench]

fn my_bench(b: &mut Bencher) {

b.iter(|| {

// code goes here

});

}

The code within the closure || { ... } is executed several times by the benchmark runner

187



to obtain an accurate timing along with an estimated uncertainty. This means the code being

benchmarked must avoid irreversibly changing the environment, or else the timing will not be

accurate.

It is important to write the benchmarked code in a way such that the compiler cannot delete

the code entirely. Consider this example, where one is attempting to benchmark the addition of

two integers:

b.iter(|| {

let x = 1 + 2;

});

There are several reasons why this naive benchmark would not yield any meaningful results:

• The compiler can easily precompute the result “3” without any e�ort. This means the input

must not be predictable to the compiler. To mitigate this, one could either read the input

from a �le, randomize the input, or use a special black_box function to obscure the input

from the optimizer, e.g. black_box(1) + 2.

• Even if the compiler does not know the inputs, it does know that addition is a pure operation

with no side-e�ects. Thus it would safe to hoist the statement outside the loop (b.iter(...)

is really a loop in disguise). One could insert black_box(x) within the loop to prevent this.

• Moreover, the compiler can easily see that the output variable x is not being used. This

means the compiler will likely delete the entire calculation through dead-code elimination

(DCE). To mitigate this, one could either print the output, or again use a black_box.

• Lastly, addition of integers is such a fast operation that the overhead from the benchmark

runner as well as environmental noise will heavily skew the results.

We use the nuclei system for benchmarks, but with randomized matrix elements. We split the

commutator into groups of terms that are benchmarked separately so that we can analyze the
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individual terms separately without the expensive ones drowning out the cheap ones.

To analyze the performance costs of given implementation, we make use of pro�lers. We

generally avoid pro�lers that instrument code, because the instrumentation itself can easily add a

substantial amount of overhead that can completely distort the results. For this reason, we use Perf

[Perf], a sampling pro�ler for Linux that captures stack traces of the program periodically. Similar

tools exist other platforms. Perf pairs quite well with �ame graphs [Gre16] for visualization,

allowing easy identi�cation of hotspots in the code.

Perf can run an optimized program as-is, with no instrumentation. The only extra information

needed for sensible output is debugging information (-g �ag in most compilers), which is tracked

separately and does not pessimize the program. Unfortunately, high levels of optimization usually

renders the debugging information inaccurate, so it remains important to compare against the

assembly code.

6.11 Version control and reproducibility

The codebase for Lutario is stored in a distributed version control system (DVCS) and can be

viewed online [Lutario]. We use the Git [Git] as our DVCS but one could equally well have chosen

other DVCSes such as Mercurial [Hg].

Version control systems (VCS) are tools designed to store the entire history of a codebase. At a

rudimentary level, it may be considered a special kind of database tailored speci�cally for projects

that are dominated by plain text �les like code. By recording all changes that occur in a project, it

becomes easy to track down the origin of both code and bugs.

VCSes are also designed to support collaboration on projects. Collaborators may work inde-

pendently on di�erent parts of the project, accumulating their own history of changes. They can

periodically synchronize and merge their changes together to form a uni�ed timeline. The merge
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can be automated as long as the collaborators work on di�erent parts of the project.

Distributed VCSes are unique in that, unlike centralized VCSes, each repository – i.e. the

directory managed by the VCS – maintains its own database of histories and is on equal footing

as all other repositories. This means there is no centralized point of failure if any one of the

repositories becomes inaccessible, allowing it act as a distributed backup system. The histories

need not match either: a repository might store the main history of the project, but may also keep

a private fork of this history, or of a new feature, or something entirely unrelated.

VCSes are most useful when they store predominantly relevant, textual data. It is particularly

important to avoid storing large �les as they can rapidly grow the size of the database. It is also

important to avoid storing �les that could be easily regenerated, such as executable �les, library

�les, or any non-essential or transient �les. Ignore lists are useful for �ltering out irrelevant �les.

Changes in a VCS are stored in the unit of a commit, which should generally perform a single

task or add a single feature. Maintaining a clean commit history ensures that if problems appear

later on, one can easily isolate the cause down to a single commit, with the aid of strategies such

as bisection (e.g. git-bisect).

The use of a version control aids in the reproducibility of results. One can accurately refer

to a speci�c version of code within a version-controlled repository using commit identi�ers or

human-readable tags. In particular, Git and Hg use hashes as the commit identi�er, thus knowing

the hash one can verify whether the �les of the commit are correct with a high degree of con�dence,

as it is very di�cult to forge these hashes.
14

Of course, knowing that one has the correct code alone does not guarantee that the results

will be reproduced perfectly. One may also need to track the version numbers of all transitive

14
Unfortunately, SHA-1 attacks are becoming more and more possible, which means it may be possible for an

attacker to forge commit hashes. Nonetheless, by accident it remains extremely di�cult to have two di�erent commits

sharing identical commit hashes.
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dependencies of the program, the compiler, as well as the environmental conditions under which

the program is run. Nondeterminism caused by environmental �uctuations (e.g. in parallel code)

can further complicate reproducibility.

6.12 Documentation

There are two orthogonal ways to categorize documentation. On one axis, there is

• external documentation (for users), and

• internal documentation (for developers of the project).

On another axis:

• There is reference documentation (manuals, technical documents, speci�cations, API
15

documentation), which aims to describe every detail of the program including corner cases.

It is usually written to follow the structure of the program (modules, functions, data types).

Their target audience are the advanced users who already know their way around the

software.

• There is also review documentation (tutorials, guides, overviews), which are usually ped-

agogical in nature. They are used to teach the important parts of a program, without

overwhelming the reader with details. They generally do not follow the structure of the

program, but are structured more like a book intended for human consumption. The target

audience are the new users who are not yet familiar with the software.

At the moment, external documentation for Lutario is very sparse, given the recency of the

project. As the project is still under heavily development, we expect the user-facing interfaces to

change substantially. We will consider adding external documentation when a point of stability is

reached.

15
API is a common programming acronym for application programming interface, or simply interface.

191



Internal documentation is primarily through this chapter – which may become out of date as

the project progresses – as well as the source code comments. This chapter is intended to be an

overview of the machinery in Lutario without focus on any one particular aspect. Source code

comments may be categorized into two types:

• Documentation comments are designated by the /// or //! pre�x in Rust.
16

They are useful

for documenting public interfaces (APIs). These special comments can be automatically

exported by the Rustdoc documentation generator. The tool outputs a book in HTML format

with the comments displayed against the corresponding module, function, data type, etc.

Similar tools exist for other languages, including Sphinx [Sphinx] for Python, Haddock

[Haddock] for Haskell, and Doxygen [Doxygen] for C, C++, and Fortran.

They can also be used to provide examples. These snippets of code are automatically tested

by the Rust build system, ensuring that the example code does not fall out of date as the

code evolves.

• Normal comments (// or /* ... */ in Rust) are used to explain tricky aspects of the code

for the developers. They are generally used sparingly, because such comments are meant

to convey important information that is not evident from the code itself. Excessive use

of comments can hinder the readability of code. Moreover, comments – which are not

sanity-checked by the compiler – are always at risk of becoming out of sync with the actual

code.

Tests themselves can also serve as useful examples, if they are written cleanly. Such dual-

purpose tests are extremely useful: they are automatically tested for validity, moreover a learning

user can immediately read from the test code what the expected output of the program should be.

We currently have three major integration

16
In other languages, one might �nd /** or /*! pre�xes for documentation comments.
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6.13 Coding style

While source code is to be ultimately consumed by compilers and interpreters, it is equally

important for it to be comprehensible to human readers. This reduces mistakes, encourages

collaboration, and simpli�es maintenance of the program over the long run.

6.13.1 Formatting of code

On a super�cial level, code should be formatted neatly and, most importantly, consistently. One

should adhere to the o�cial style guide of the language (if any), or any prevailing style used by the

language community, domain, project, and/or subproject. These style conventions help establish

many aspects of formatting, including indentation, spacing, line length, wrapping, and naming

conventions.

Some languages such as Fortran, C, C++, or Haskell lack o�cial style guides, but there may ex-

ist one or more de facto styles from which one can adopt. Others, like Go, Rust, Python have o�cial

style guides [Gofmt; FmtRFCs; PEP8] with varying degrees of strictness, which improves collabo-

ration and avoids unnecessary bikeshedding (trivial arguments) among the language community.

In either case, various automatic reformatting tools are available to help maintain uniformity in

coding style, such as clang-format for C and C++ [ClFmt], gofmt for Go [Gofmt], and rustfmt

for Rust [Rustfmt].

6.13.2 Coupling and complexity

A major source of complexity in programs arises from coupling: an interaction between di�erent

components of a system. It is analogous to coupling in physics. A system of non-interacting

particles is generally easy to study. As the interactions become stronger and stronger, the system
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becomes increasingly di�cult to understand.

The same principle applies to programming. Coupling should generally be avoided where

possible. But that is unlikely in any non-trivial program. When it is not avoidable, coupling should

always be explicitly visible to the reader. This helps avoid “e�ect at a distance” where, say, a

programmer attempts to �x a bug, only to break something else entirely unrelated.

Many kinds of coupling exist. The most common one is aliasing: when di�erent parts of a

program have a shared reference or pointer to the same variable, and at least one them modi�es it.

As discussed in Sec. 6.1.2, if one has exclusive control over a piece of data, they can modify

it without other components of the program observing the e�ects of the modi�cation. If one

has shared a piece of data with other components of the program and the data is never modi�ed

by anyone, then no-one will know the di�erence either. However, if the data is mutated, then

problems can arise because the value of the variable may unexpectedly change. Thus, aliasing

makes it di�cult to reason about code.

Without thread synchronization, aliasing generally breaks thread-safety. This is because

modern CPUs like to cache data as much as possible. Without some sort of noti�cation to the

CPU that data has been modi�ed by another thread, it will by default assume that it has exclusive

control over it and continue using the cached value. The only way to ensure this is safe is through

synchronization (e.g. memory fences, mutexes), which carries a performance penalty.

Even without threads, there are other performance penalties that arise from aliasing. The

compiler can make fewer assumptions about the behavior of an aliased variable, therefore code

that involves aliasing may be less well optimized.

Aliasing is not always avoidable. It is generally a good idea to document where aliasing occurs.

Rust, in particular, takes a fairly draconian stance with regard to aliasing: all aliasing is forbidden

except through one of the alias-enabling wrapper types (e.g. Cell, RefCell, Mutex, RWLock).
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C and C++ have a set of rules (type-based alias analysis / strict aliasing rule) that determine

when aliasing is acceptable and when it is not (in which case aliasing becomes unde�ned behavior).

In C, one may assert the absence of aliasing through the restrict keyword, but the compiler

make no e�ort to verify that assertion.

Global variables are a special case of aliasing, except more sinister because they are much less

obvious, since whether a function accesses a global variable cannot be deduced from the function

signature. The only way to tell whether a function uses a global variable is by inspecting the

contents of the function and all its transitive dependencies.

Aliasing may be considered a type of side e�ect. A function is said to have side e�ects if it

modi�es some kind of state that is externally visible. Aliased variables are examples of such state,

but so are things like input/output (I/O), spawning/killing a process, sending/receiving data over

network, etc.

Side e�ects are a form of coupling as well, except the coupling may involve the external

environment: other processes, other machines, or even other people. Like any coupling, it is

always good idea to document side e�ects to aid reasoning of programs.

To help manage side e�ects, one should keep them contained and isolated. In particular, code

that has lots of side e�ects should be kept separate from code with no side e�ects (pure code).

Complicated logic are best written without side e�ects, allowing it to be easily refactored without

concern of temporal ordering. Furthermore, pure code is generally more reusable and composable,

whereas code with side-e�ects are usually less �exible. Some languages such as Haskell or

PureScript explicitly track side-e�ects through the type system, encouraging the programmer to

manage side-e�ects in a principled manner.

As an example, in our Lutario codebase, we generally refrain from performing any sort of I/O

except in designated functions. In cases where it is not obvious, we name the function with a do_
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pre�x to indicate that it does I/O.

6.13.3 Trade-o�s

We advise against blind adherence to any particular paradigm, principle, or pattern in programming.

After all, programming is best described as a form of engineering where one must constantly make

compromises and trade-o�s. There are no hard and fast rules in programming: it is normally a

good idea to follow them, but it is even more important to understand their provenance, costs, and

bene�ts so that the programmer can judge whether the pay-o�s are worthwhile. Over-engineering

can increase the size of the codebase, which can impede understanding just as much as unruly

one does.

196



Chapter 7

Results and analysis

Finally, we discuss the results we obtained with our many-body methods for quantum dots and

nuclei.

7.1 Methodology

ground state
energy

addition and
removal energies

matrix elementsinput

output

Hartree–Fock

CC or IM-SRG

EOM or QDPT

improve ground
state energy

improve addition
and removal energy

Figure 7.1: A schematic view of the various ways in which many-body methods in this work could

be combined to calculate ground state, addition, and removal energies.

There is signi�cant �exibility in the application of many-body methods. The approaches we

use are shown in Fig. 7.1. Applying the methods in this order maximizes the bene�ts of each

method: HF acts as an initial, crude procedure to soften the Hamiltonian, followed by IM-SRG or

CC (coupled cluster method) to re�ne the ground state energy, and then �nally QDPT or EOM

(equations-of-motion method) to re�ne the addition and removal energies. We expect single-

197



reference IM-SRG and CC to recover a substantial part of the dynamical correlations, while QDPT

and EOM help account for static correlations.

The general process begins with setting up the input matrix elements. Afterward, there are

several paths through which one can traverse Fig. 7.1 to obtain output observables. Our primarily

focus is on the three combinations:

a. HF + IM-SRG(2) + QDPT3, computed by us,

b. HF + IM-SRG(2) + EOM2, computed and contributed by Nathan M. Parzuchowski, and

c. HF + CCSD + EOM2, computed and contributed by Samuel J. Novario.

It is possible to omit some steps of the process. For example, one can omit HF, but continue

with the remaining two steps. While this is doable, from our experience HF signi�cantly improves

the results of the later post-HF methods at very low cost compared to the post-HF methods.

Therefore, in practice there is little reason to omit HF. We will however investigate the e�ects of

removing one or more of the post-HF methods.

Since every calculation in this work begins with the HF stage, we will not explicitly state HF

unless there is no post-HF method used at all, in which case we write HF only.

All calculations of ground state energy EN in this work are restricted to cases where the

number of particles N is a magic number, i.e. a closed shell system. This is a limitation of the

many-body methods used in this work and while there are ways to overcome this limit they

are beyond the scope of this work (see [Her17]). Addition/removal energies "(±) are similarly

restricted in that we only calculate the energy di�erence between EN of a closed shell system and

EN±1 of the same system but with one particle added/removed:

"(+) = E(N+1) − EN

"(−) = EN − E(N−1)
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7.2 Results for quantum dots

The results in this section have been previously presented in [Yua+17]. There is a di�erence,

however, in the numerical data for HF + QDPT3 presented here. In the original paper, one of

the QDPT3 was calculated with the incorrect sign, a�ecting all HF + QDPT3 results. It has been

corrected in this chapter. The conclusions remain unchanged.

Ideally, ground state energies should be characterized entirely by the two system parameters

(N , !), whereN is number of particles and ! is the oscillator frequency. However, the methods that

we study are limited to a �nite (truncated) basis and the results depend on the level of truncation.

This is characterized by K , the total number of shells in the single-particle basis. Thus, results are

generally presented as a graph plotted against K . In Sec. 7.2.4 we discuss how to estimate results

as K → ∞ (in�nite-basis limit) through extrapolations.

The addition and removal energies are similar, but they require an additional parameter: the

total orbital angular momentum M� , de�ned as the sum of the m� of each particle. This is due to

the presence of multiple states with near-degenerate energies. For this work, we will consider

exclusively the addition/removal energies with the lowest |M� | subject to the constraint that the

particle added/removed lies within the next/last shell. This means the N + 1 states of interest

are those with |M� | = KF mod 2 (where mod stands for the modulo operation) where KF is the

number of occupied shells, while the N − 1 states of interest are those with |M� | = 1 − (KF mod 2).

Not all cases are solvable with our selection of many-body methods. Low frequency systems

are particularly strenuous for these many-body methods due to their strong correlations, leading

to equations that are di�cult and expensive to solve numerically. In the tables, n.c. marks the

cases where IM-SRG(2) or CCSD either diverged or converged extremely slowly. This also a�ects

the extrapolation results in Sec. 7.2.4, as for consistency reasons we chose to extrapolate only

when all �ve points were available.
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Numerical calculations in this section are performed with a relative precision of about 10−5 or

lower. This does not necessarily mean the results are as precise as 10−5, since numerical errors

tend to accumulate over the multiple steps of the calculation, thus the precision of the �nal results

is expected to be roughly 10−4.

7.2.1 Ground state energy

Table 7.1: Ground state energy of quantum dots with N particles and an oscillator frequency of !.

For every row, the calculations are performed in a harmonic oscillator basis with K shells. The

abbreviation *n.c.* stands for *no convergence*: these are cases where IM-SRG(2) or CCSD either

diverged or converged extremely slowly.

N ! K HF MP2 IM-SRG(2) CCSD

6 0.1 14 3.8524 3.5449 3.4950 3.5831
6 0.28 14 8.0196 7.6082 7.5731 7.6341
6 1.0 14 20.7192 20.1939 20.1681 20.2000
12 0.1 16 12.9247 12.2460 12.2215 12.3583
12 0.28 16 26.5500 25.6433 25.6259 25.7345
12 1.0 16 66.9113 65.7627 65.7475 65.8097
20 0.1 16 31.1460 29.9674 29.9526 30.1610
20 0.28 16 63.5388 61.9640 61.9585 62.1312
20 1.0 16 158.0043 156.0239 156.0233 156.1243
30 0.1 16 62.6104 60.8265 60.6517 61.0261
30 0.28 16 126.5257 124.1279 124.1041 124.3630
30 1.0 16 311.8603 308.8611 308.8830 309.0300
42 0.1 20 110.7797 108.1350 108.0604 108.5150
42 0.28 20 223.5045 219.9270 220.0227 220.3683
42 1.0 20 547.6832 543.2139 543.3399 543.5423
56 0.1 20 182.6203 179.2370 n.c. 179.6938
56 0.28 20 363.8784 359.1916 359.1997 359.6744
56 1.0 20 885.8539 879.9325 880.1163 880.3781

Fig. 7.2 and Tbl. 7.1 display a selection of ground state energies calculated using HF + IM-SRG(2)

and HF + CCSD as described in Sec. 7.1. We include results from Møller–Plesset perturbation

theory to second order (MP2), DMC [Høg13], and FCI [Ols13] (see Tbl. 7.2) for comparison where

available.
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Figure 7.2: Plots of ground state energy of quantum dots with N particles and an oscillatory

frequency of ! against the number of shells K . Since DMC does not utilize a �nite basis, the

horizontal axis is irrelevant and DMC results are plotted as horizontal lines.

We do not include results from HF only to avoid overshadowing the comparatively smaller

di�erences between the non-HF results in the plots. Some HF results can be found in Fig. 7.5

instead. Generally, the HF ground state energies di�er from the non-HF ones by a few to several

percent, whereas non-HF energies tend to di�er from each other by less than a percent.

With respect to the number of shells, both IM-SRG(2) and CCSD appear to converge slightly

Table 7.2: Similar to Table 7.1, this table compares the ground state energies of quantum dots

calculated using IM-SRG(2), CCSD, and FCI [Ols13].

N ! K IM-SRG(2) CCSD FCI

2 0.1 5 n.c. 0.4416 0.4416
2 0.28 5 0.9990 1.0266 1.0266
2 1.0 5 3.0068 3.0176 3.0176
2 0.1 10 n.c. 0.4411 0.4411
2 0.28 10 0.9973 1.0236 1.0236
2 1.0 10 2.9961 3.0069 3.0069
6 0.1 8 3.4906 3.5853 3.5552
6 0.28 8 7.5802 7.6446 7.6155
6 1.0 8 20.2020 20.2338 20.2164
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faster than second order perturbation theory (MP2), mainly due to the presence of higher order

corrections in IM-SRG(2) and CCSD.

There are a few cases where the IM-SRG over-corrects the result, leading to an energy lower

than the quasi-exact DMC results. This is not unexpected given that, unlike the HF results, the

IM-SRG method is non-variational in the presence of operator truncations, which in turn results

in small unitarity violations. This over-correction tends to occur when the frequency is low (high

correlation), or when few particles are involved.

7.2.2 Addition and removal energies

Table 7.3: Addition energy of quantum dot systems. See Table 7.1 for details.

N ! K HF IM-SRG(2) IMSRG(2) CCSD

+QDPT3 +QDPT3 +EOM +EOM

6 0.1 14 1.1849 1.2014 1.1809 1.1860
6 0.28 14 2.4737 2.5003 2.4916 2.4833
6 1.0 14 6.4374 6.4546 6.4532 6.4453
12 0.1 16 1.9129 1.9248 1.9094 1.9014
12 0.28 16 3.9266 3.9394 3.9354 3.9205
12 1.0 16 9.9182 9.9256 9.9274 9.9136
20 0.1 16 2.7383 2.7143 2.7149 2.7040
20 0.28 16 5.5552 5.5400 5.5409 5.5226
20 1.0 16 13.7902 13.7799 13.7844 13.7667
30 0.1 16 3.7185 3.6467 3.6536 3.6454
30 0.28 16 7.3230 7.2719 7.2810 7.2615
30 1.0 16 17.9321 17.9022 17.9088 17.8875
42 0.1 20 4.6931 4.5751 4.5867 4.5750
42 0.28 20 9.2021 9.1072 9.1188 9.0963
42 1.0 20 22.3494 22.2941 22.3012 22.2766
56 0.1 20 5.9292 n.c. n.c. 5.7661
56 0.28 20 11.3123 11.1683 11.1813 11.1518
56 1.0 20 26.9828 26.9033 26.9118 26.8842

The results of our addition and removal energy calculations are summarized in Fig. 7.3 and

Fig. 7.4 respectively. The �gures show the addition/removal energies for using the approaches

202



Table 7.4: Removal energy of quantum dot systems. See Table 7.3 for details.

N ! K HF IM-SRG(2) IMSRG(2) CCSD

+QDPT3 +QDPT3 +EOM +EOM

6 0.1 14 1.0073 0.9500 0.9555 1.0054
6 0.28 14 2.0778 2.0346 2.0398 2.0782
6 1.0 14 5.2217 5.1950 5.1970 5.2220
12 0.1 16 1.7518 1.6961 1.7017 1.7503
12 0.28 16 3.5782 3.5334 3.5366 3.5779
12 1.0 16 8.8426 8.8104 8.8102 8.8409
20 0.1 16 2.5610 2.5133 2.5184 2.5670
20 0.28 16 5.2061 5.1639 5.1660 5.2105
20 1.0 16 12.7548 12.7201 12.7185 12.7546
30 0.1 16 3.5161 3.4445 3.4485 3.5113
30 0.28 16 6.9697 6.9282 6.9289 6.9785
30 1.0 16 16.9584 16.9243 16.9215 16.9613
42 0.1 20 4.4481 4.3868 4.3902 4.4451
42 0.28 20 8.8124 8.7765 8.7766 8.8263
42 1.0 20 21.3807 21.3453 21.3421 21.3848
56 0.1 20 5.6254 n.c. n.c. 5.6341
56 0.28 20 10.8917 10.8471 10.8454 10.8957
56 1.0 20 26.0420 26.0094 26.0056 26.0507

mentioned in Sec. 7.1. Where available, results from di�usion Monte Carlo (DMC) [Ped+11] are

shown as a dashed line.

As before, we do not include results from HF only in these plots as they are signi�cantly further

from the rest. Analogously, we also exclude results from pure IM-SRG (i.e. without QDPT nor

EOM) or pure CCSD, as QDPT or EOM both add signi�cant contributions to addition and removal

energies. Some HF only and pure IM-SRG results can be seen in Fig. 7.5.

There is strong agreement between IM-SRG(2) + QDPT3 and IM-SRG(2) + EOM2 in many

cases, and slightly weaker agreement between the IM-SRG and CCSD families. This suggests that

the EOM2 corrections are largely accounted for by the inexpensive QDPT3 method. However, in

some cases, most notably with few particles and high correlations (low frequency), the IM-SRG(2)

+ QDPT3 result di�ers signi�cantly from both IM-SRG(2) + EOM2 and CCSD + EOM2.

203



5 10

2.5

2.6

2.7 =
= .

5 10

6.5
6.6
6.7 =

= .

10.0 12.5 15.0
7.25

7.50

7.75 =
= .

10.0 12.5 15.0

18.0

18.2 =
= .

16 18 20

27.0

27.2
=
= .

IM-SRG(2) + QDPT3
IM-SRG(2) + EOM2
CCSD + EOM2
DMC

 (number of shells)

(+
)

Figure 7.3: Addition energies for a selection of quantum dot parameters. See Fig. 7.2 for details.

7.2.3 Rate of convergence

To analyze the rate of convergence more quantitatively, we de�ne �K as the relative backward

di�erence of the energy (relative slope):

�K =
"K − "(K−1)

"K

The denominator allows the quantity to be meaningfully compared between di�erent systems.

We expect this quantity to become increasingly small as the calculations converge towards the

complete basis set limit.

In Fig. 7.6, we plot the �15 for IM-SRG(2) + QDPT3. The many-body methods were tested against

a modi�ed Coulomb-like interaction, parametrized by two lengths �A and �B that characterize the

range of the interaction:

V�A,�B(r) =
(1 + c)1−1/c

c (1 − e
−r2/(2�2A)

)e
−r2/(2�2B)

1
r
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Figure 7.4: Removal energies for a selection of quantum dot parameters. See Fig. 7.3 for details.

where c =
√
�B/�A. The coe�cient is chosen to ensure the peak of the envelope remains at unity.

With (�A, �B) = (0, ∞) one recovers the original Coulomb interaction. By increasing �A one can

truncate the short-range part of the interaction, and analogously by increasing �B one can truncate

the long-range part of the interaction. For our numerical experiments we considered the following

four combinations of (�A, �B): (0, ∞), (12 , ∞), (0, 4), (
1
2 , 4).

Reducing the short-range part of the interaction appears to improve the rate of convergence

substantially. Many of the cases have reached the precision of the ODE solver (10−5 to 10−6). In

contrast, eliminating the long-range part of the interaction had very little e�ect. This suggests

that the main cause of the slow convergence lies in the highly repulsive, short-ranged part of the

interaction, which leads to the presence of nondi�erentiable cusps (the so-called Coulomb cusps)

in the exact wave functions that are di�cult to reproduce exactly using linear combinations of the

smooth harmonic oscillator wave functions.

The convergence is negatively impacted at lower frequencies and, to a lesser extent, by the

increased number of particles. Both are expected: lower frequencies increase the correlation in
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Figure 7.5: The behavior of ground state, addition, and removal energies as a function of the

oscillator frequency !, with K = 10 shells in the basis. The energy is normalized with respect

to the HF values to magnify the di�erences. Lower frequency leads to stronger correlations and

thereby a more di�cult problem.

the system, while higher number of particles naturally require more shells to converge.

In general, there does not appear to be any di�erence between the convergence behavior of

addition energies as compared to that of removal energies.

7.2.4 Extrapolation

To reduce errors from the basis set truncation, one can either use explicitly correlated R12/F12

methods that account for the correct cusp behavior in many-electron wave functions [Kut85;

KK87; KBV12], or one can use basis extrapolation techniques. In the present work, we focus on

the latter. As derived by Kvaal [Kva09; KHM07], the asymptotic convergence of quantum dot

observables in a �nite harmonic oscillator basis can be approximately described by a power law
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Figure 7.6: The impact of the interaction on convergence of addition and removal energies using

IM-SRG(2) + QDPT3. For clarity, the plot does not distinguish between addition and removal

energies. The horizontal axis shows the system parameters, where N is the number of particles

and ! is the oscillator frequency. The vertical axis shows |�15| (relative slope), which estimates the

rate of convergence at 15 total shells. The lower the value of |�15|, the faster the convergence. The

data points are categorized by the interactions. The trends suggest that the singular short-range

part of the interaction has a much stronger impact on the convergence than the long-range tail.

model:

�E ∝ K−�

where �E is the di�erence between the �nite-basis result and the in�nite-basis result, K is the

number of shells in the single-particle basis, and � is some positive real exponent. The smoothness

of the exact wave function determines the rate of the convergence: the more times the exact wave

function can be di�erentiated, the higher the exponent � .

We note that this model was derived under the assumption that all correlations are included

in the calculation (i.e. FCI), thus we are making an assumption that our selection of methods

approximately obey the same behavior. The validity of this assumption will be assessed at the end

of this section.
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Table 7.5: Extrapolated ground state energies for quantum dots with �t uncertainties, computed

from the approximate Hessian in the Levenberg–Marquardt �tting algorithm. These uncertainties

also determine the number of signi�cant �gures presented. Extrapolations are done using 5-point

�ts where the number of shells K ranges between K
stop

− 4 and K
stop

(inclusive). The abbreviation

*n.c.* stands for *no convergence*: these are extrapolations where, out of the 5 points, at least one

of them was unavailable because IM-SRG(2) or CCSD either diverged or converged extremely

slowly.

N ! K
stop

MP2 IM-SRG(2) CCSD

6 0.1 14 3.5108(4) 3.4963(5) 3.581 83(2)
6 0.28 14 7.5608(3) 7.569 71(2) 7.628 12(7)
6 1.0 14 20.129 98(5) 20.1481(3) 20.1791(3)
12 0.1 16 12.198(7) 12.2217(2) 12.3575(4)
12 0.28 16 25.548(1) 25.6146(1) 25.7190(2)
12 1.0 16 65.627(2) 65.6970(7) 65.7579(8)
20 0.1 16 29.87(5) 29.950(1) 30.13(2)
20 0.28 16 61.88(1) 61.946(3) 62.114(5)
20 1.0 16 155.758(3) 155.912(4) 156.010(3)
30 0.1 16 59.8(2) n.c. 60.3(2)
30 0.28 16 123.95(8) 124.00(4) 124.26(5)
30 1.0 16 308.80(5) 308.85(3) 309.00(3)
42 0.1 20 106.3(4) 107.0(1) 107.1(4)
42 0.28 20 219.6(2) 219.89(8) 220.2(1)
42 1.0 20 542.686(9) 543.074(3) 543.276(4)
56 0.1 20 172.9(6) n.c. 174(1)
56 0.28 20 357.3(6) n.c. 358.1(5)
56 1.0 20 879.86(8) 880.07(7) 880.33(7)

In general, the exponent � cannot be determined a priori, thus we will empirically compute �

by �tting the following model through our data:

E = �K−� + 
 (7.1)

As a nonlinear curve �t, it can be quite sensitive to the initial parameters. Therefore, good guesses

of the parameters are necessary to obtain a sensible result. For this, we �rst �t a linear model of
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Table 7.6: Extrapolated addition energies for quantum dots with �t uncertainties. The abbreviation

*n.c.* has the same meaning as in Table 7.5. The abbreviation *n.f.* stands for *no �t*: this particular

extrapolation resulted in unphysical parameters (� ≤ 0). See Table 7.5 for other details.

N ! K
stop

IM-SRG(2) IMSRG(2) CCSD

+QDPT3 +EOM +EOM

6 0.1 14 1.206(2) 1.180 95(5) 1.185 81(2)
6 0.28 14 2.63(8) 2.490 39(2) 2.482 13(4)
6 1.0 14 6.4536(1) 6.4491(7) 6.440 747(1)
12 0.1 16 n.f. 1.909 274(1) 1.901 39(2)
12 0.28 16 3.925(5) 3.9339(3) 3.918 520(9)
12 1.0 16 9.9235(2) 9.9235(5) 9.9070(1)
20 0.1 16 2.708(4) 2.705(3) 2.682(2)
20 0.28 16 5.539 15(1) 5.5405(3) 5.521 80(7)
20 1.0 16 13.7759(8) 13.779(1) 13.760(2)
30 0.1 16 n.c. n.c. 3.40(2)
30 0.28 16 7.18(3) 7.18(5) 7.16(4)
30 1.0 16 17.897(4) 17.902(6) 17.880(6)
42 0.1 20 4.19(6) 4.28(4) 4.33(2)
42 0.28 20 9.068(6) 9.08(1) 9.05(1)
42 1.0 20 22.2943(7) 22.301 47(1) 22.2768(9)
56 0.1 20 n.c. n.c. 3(3)
56 0.28 20 n.c. n.c. 10.7(3)
56 1.0 20 26.86(4) 26.87(4) 26.84(4)

log |)E/)K| against log K :

log
||||
)E
)K

||||
= −(� + 1) log K + log |��|

This is useful because linear �ts are very robust and will often converge even if the initial

parameters are far from their �nal values. It also provides a means to visually assess the quality of

the �t. The derivative is approximated using the central di�erence:

)E
)K

≈ E(K +
1
2)

− E(K −
1
2)

The process of numerically calculating the derivative can amplify the noise in the data and
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Table 7.7: Extrapolated removal energies for quantum dots with �t uncertainties. See Table 7.6 for

details.

N ! K
stop

IM-SRG(2) IMSRG(2) CCSD

+QDPT3 +EOM +EOM

6 0.1 14 0.9509(2) 0.9561(4) 1.004 943(8)
6 0.28 14 2.033 96(1) 2.0387(2) 2.076 20(2)
6 1.0 14 5.188 89(8) 5.186(3) 5.2154(1)
12 0.1 16 1.696 24(8) 1.701 81(6) 1.750 31(7)
12 0.28 16 3.532 236(5) 3.535 12(9) 3.575 27(1)
12 1.0 16 8.8039(4) 8.803 90(1) 8.8331(2)
20 0.1 16 2.5112(6) 2.5163(8) 2.55(1)
20 0.28 16 5.163(1) 5.165(1) 5.208(3)
20 1.0 16 12.7122(4) 12.7101(5) 12.7442(2)
30 0.1 16 n.c. n.c. 3.35(6)
30 0.28 16 6.88(2) 6.88(2) 6.94(3)
30 1.0 16 16.925(2) 16.923(2) 16.963(2)
42 0.1 20 4.04(8) 4.06(7) 4.1(2)
42 0.28 20 8.73(3) 8.73(3) 8.76(6)
42 1.0 20 21.338(1) 21.335(1) 21.378(2)
56 0.1 20 n.c. n.c. 5.3(1)
56 0.28 20 n.c. n.c. 10.75(9)
56 1.0 20 26.008(9) 26.004(8) 26.050(9)

distorts the weights of the data points. Moreover, it does not provide a means to compute 
 , the

extrapolated energy. Thus a second accurate nonlinear curve �t is necessary.

The parameters � and � are extracted from the linear �t and used as inputs for a power-law �t

of E against K . It is necessary to estimate the in�nite-basis energy 
 as well, which is done by

�tting Eq. 7.1 while the parameters � and � are �xed to the initial guesses. The �xing ensures that

the �t is still linear in nature and thus highly likely to converge. Afterward, we do a �nal �t with

all three parameters free to vary. All �ts are done using the traditional Levenberg–Marquardt

(LM) optimization algorithm [Lev44; Mar63] as implemented in MINPACK [Mor78; MGH80], with

equal weighting of all data points.

There is still one additional tuning knob for this model that is not explicitly part of Eq. 7.1: the

range of data points taken into consideration (�t range). Since the model describes the asymptotic
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Figure 7.7: A �ve-point �t of the addition energies of the (N , !) = (6, 1.0) system with K
stop

= 15.
The grey shaded region contains the masked data points, which are ignored by the �tting procedure.

The left �gure plots the central di�erence of the addition energies "(+) with respect to the number

of shells K . On such a plot, the power law model should appear as a straight line. The �ts are

optimized using the procedure described in Sec. 7.2.4. Note that the lines do not evenly pass

through the points in the left plot as the �tting weights are tuned for the energy on a linear scale,

not the energy di�erences on a logarithmic scale.

behavior, we do not expect the �t to produce good results when the energy is still very far from

convergence. To account for this, we only �t the last few data points within some chosen range.

If the range is too large, then the non-asymptotic behavior would perturb the result too much,

whereas if the range is too small, there would be more noise and less con�dence in whether the

trend is legitimate rather than accidental. Empirically, we chose to �t the last 5 points of our

available data. The results are shown in Tbls. 7.5, 7.6, and 7.7. A speci�c example of the �t is

shown in Fig. 7.7

The LM �tting procedure also computes uncertainties for the parameters from an approximate

Hessian of the model function. It is therefore tempting to use the uncertainty of the �t to quantify

the uncertainty of the extrapolated energy. We certainly would not expect this to account for the

error due to the operator truncation, but how accurately does it quantify the discrepancy of our

extrapolated result from the true in�nite-basis energy?

We investigated this idea by performing a �t over all possible 5-point �t ranges [K
stop

−4, K
stop

].
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By comparing the extrapolated results at varying values of K
stop

with the extrapolated result

at the highest possible K
stop

and treating the latter as the “true” in�nite-basis result, we can

statistically assess whether the �t uncertainties are a good measure of the discrepancy from the

true in�nite-basis result. Our results show a somewhat bimodal distribution: when the relative �t

uncertainty is higher than 10−3.5, the �t uncertainty quanti�es the discrepancy well; otherwise,

the �t uncertainty underestimates the discrepancy by a factor of 10 or less.

Unlike the other methods, HF energies are somewhat unusual in that they generally do not

conform to the power-law model. In fact, the plots indicate an exponential convergence with

respect to the number of shells, which has also been observed in molecular systems [Hal+99]. We

surmise that HF is insensitive to the Coulomb cusp.

Nonetheless, despite the poor �ts that often arise, the extrapolated energies are often quite

good for HF. This is likely due to its rapid convergence, which leaves very little degree of freedom

even for a poorly chosen model. Moreover, we found that the �t uncertainties of the energy are

fairly good measures of the true discrepancy.

Not all �ts yield a positive value of � for addition and removal energies, which suggests that

the data points do not converge, or require a very high number of shells to converge. This a�ects

exclusively IM-SRG(2) + QDPT3 for systems with few particles and low frequencies, indicating

that perturbation theory is inadequate for such systems.

7.3 Results for nuclei

In this section, we provide a few selected results for nuclear systems as a proof of concept. Due to

time constraints, we have not been able to run calculations with higher values of emax (Eq. 5.9) or

to explore a greater span of the oscillator frequency ! of the basis. We expect to gather a more

diverse collection of results in a future publication [Yua+].
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Figure 7.8: Ground state of
16

O, computed using IM-SRG(2) and CCSD with the N
3
LO(� =

500MeV, �SRG = 2 fm
−1) interaction

Fig. 7.8 shows the computed ground state energies of oxygen-16 plotted as a function of the

basis oscillator frequency !. The results were computed using two many-body methods: HF +

IM-SRG and HF + CCSD (coupled cluster singles and doubles). The interaction we use is the

N
3
LO(� = 500MeV) interaction of [EM03], softened by SRG evolution to �SRG = 2 fm

−1
. We use a

strictly two-body nuclear interaction here.

We observe that both methods agree with each other to about 1MeV. Furthermore, we see that

the results are very close to convergence with respect to emax. The cup-shaped curve suggests the

existence of a local minimum near ! = 24MeV/ℏ. The curve is quite �at, which again suggests

that the results are nearly converged.

For reference, the experimental value is about −128MeV. The reason for this large discrepancy

is that the SRG softening of the interaction has introduced a signi�cant three-body component to

the nuclear interaction that we are neglecting. With the appropriate treatment of this three-body

component, one can achieve values much closer to experimental data. Readers interested in more
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elaborate ground state energy calculations using IM-SRG may consult [Her+13].
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Figure 7.9: Addition energy from
16

O to
17

O, computed using IM-SRG(2) + QDPT3 and CCSD +

EOM2 with the N
3
LO(� = 500MeV, �SRG = 2 fm

−1) interaction

We now consider the addition energy going from oxygen-16 to oxygen-17, achieved by adding

a neutron to the 0d5/2 state. This is presented in Fig. 7.9. The energies were calculated using HF +

IM-SRG(2) + QDPT3 and HF + CCSD + EOM2 with the same nuclear interaction as before.

Both methods agree with each other to about 0.2MeV. With respect to emax, both curves

are converging at a rate of 0.05MeV per shell, which is also quite good. Unlike the ground state

however, the curve is no longer cup-shaped, but increasing with the frequency. This is not entirely

unusual, as such shapes have been observed in other non-energy observables. It may also be

possible that there is a local minimum to the left side of the graph, though we consider this unlikely

given our removal energy results in the next �gure.

For comparison, the experimental value is about −4.1MeV. We suspect that the absence of

three-body forces is a signi�cant reason for this discrepancy.

The removal energy going from oxygen-16 to nitrogen-15 is achieved by removing a proton
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Figure 7.10: Removal energy from
16

O to
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N, computed using IM-SRG(2) + QDPT3 and CCSD +

EOM2 with the N
3
LO(� = 500MeV, �SRG = 2 fm

−1) interaction

from the 0p1/2 state. This is presented in Fig. 7.10. The energies were calculated using HF +

IM-SRG(2) + QDPT3 and HF + CCSD + EOM2 with the same nuclear interaction as before.

Both methods agree with each other to about 0.3MeV. With respect to emax, both curves are

converging at a rate of 0.02MeV per shell, which is really good considering the magnitude of the

removal energy. Like the addition energies, the curve is not cup-shaped, but leans to the side.

However, in this case we clearly see a point where the curves at di�erent emax values cross each

other, at around ! = 25MeV/ℏ.

For comparison, the experimental value is about −12MeV. Again, our values are signi�cantly

di�erent, likely due to missing three-body contributions.

For reference, we have also attached the results for nitrogen-15 in the excited state J� = 3
2
−

in

Fig. 7.11, oxygen-23 in Fig. 7.12, and oxygen 21 in Fig. 7.13. All these results were calculated using

the same approach as before. In all cases, the di�erence between the two methods is very small

and the convergence with respect to emax appears to be quite good.
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Figure 7.11: Removal energy from
16
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N in the excited J� = 3
2
−

state, computed using

IM-SRG(2) + QDPT3 and CCSD + EOM2 with the N
3
LO(� = 500MeV, �SRG = 2 fm

−1) interaction

From the preliminary results so far, we see that our perturbative results agree quite well with

the EOM results. In conjunction with the testing and veri�cation described in Sec. 6.10, this helps

con�rm the correctness of our J-scheme implementation. We believe these results indicate a

promising start for more extensive studies of nuclei through this approach.
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Figure 7.13: Removal energy from
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Chapter 8

Conclusions

In this work, our focus has been on the calculation of single-particle energies (addition and

removal energies) of quantum dots and nuclei using a combination of Hartree–Fock (HF) theory,

in-medium similarity renormalization group theory up to two-body operators (IM-SRG(2)), and

quasidegenerate perturbation theory at third order (QDPT3). We have compared the results to

other methods like equations-of-motion up to two-particle excitations (EOM2) and coupled cluster

with singles and doubles (CCSD) and found good agreement in the majority of the systems. Thus,

we have a reasonably e�ective and inexpensive way to compute energies of states near closed-shell

nuclei.

To achieve this calculation, we have developed an open-source J-scheme implementation of

the three major many-body methods veri�ed by a variety of tests. It is capable of calculating

various quantum systems, including quantum dots and nuclei. The framework of the code is

highly �exible: one can readily add additional quantum systems simply by writing a module that

supplies the appropriate input single-particle basis (Sec. 6.4.4.1).

In concert with the J-scheme implementation, we have also developed a graphical tool for

painless manipulation of angular momentum coupling diagrams. This greatly reduces the e�ort

required to derive J-scheme equations and eliminates many sources of human error. We expect

this to be particularly useful in theories where spherical tensor operators occur.

218



8.1 Future perspectives

There are many directions in which our current work can be improved upon. The most immediate

extension is the exploration of additional parameters for our nuclear calculations, including

additional oscillator frequencies !, additional values of emax (maximum shell index, Eq. 5.9), and

of course additional nuclear isotopes. There are numerous possibilities here.

After obtaining nuclear results with more parameters, we could perform a more detailed

analysis of the convergence patterns with respect to both emax and !. We can also compute

extrapolations using, for example, the prescription in [Her+16].

As we have already implemented systems like in�nite nuclear matter [HLK17] and homoge-

neous electron gas [SG13], we could explore these systems and analyze the quality our method in

these systems. Neutron drop calculations can also be readily achieved with our code since it uses

essentially the same basis as nuclei.

It is possible to construct valence shell model Hamiltonians using only QDPT [HKO95], but

concerns were raised about its convergence due to the strength of the nuclear interaction. Given

our preliminary but promising results, it may be possible to use IM-SRG + QDPT to construct

valence shell model Hamiltonians and operators with comparable quality to those from EOM-based

approaches, which are signi�cantly more expensive.

The inclusion of three-body force is likely a necessity for results that are comparable with

experimental data. We can introduce a large fraction of its contribution through the three-body

normal-ordering process, which is computationally tractable, unlike IM-SRG(3). We could also

upgrade the HF framework to include three-body forces.

We could improve the IM-SRG(2) approximation by incorporating some of the truncated

higher-body terms in the commutator through approximate techniques such as those described

in [Her+16; Mor16]. It may also be worth evaluating additional QDPT terms at fourth order
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for greater accuracy. Since the nature of IM-SRG can eliminate a large number of QDPT terms,

QDPT4 may be feasible. Some classes of diagrams could even be summed to in�nite order through

resummation techniques.

Our J-scheme implementation is not yet fully optimized. Some of the expensive commutator

terms are still coded fairly naively and could be improved. We have also made very little use of

parallelization at either the shared-memory or distributed-memory level – currently, parallelization

occurs primarily within the external GEMM implementation, which is limited to threads. The

Shampine–Gordon ODE solver library that we use is very much designed for distributed-memory

parallelization – if we enable this feature, it would help distribute both the computational and

memory load across multiple nodes. Several of the expensive GEMM calculations could be

distributed between nodes on a block-by-block basis similar to [Akt+11].
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