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ABSTRACT 

A MICROSCOPIC HYPER-SPHERICAL MODEL OF TWO-NEUTRON HALO 

NUCLEI 

By 

Ivan Brida 

We have developed a microscopic cluster model of light two neutron halo nuclei that 

incorporates the few-body asymptotics in full extent. The wavefunction of the system 

consists of a core and two valence neutrons. The core is given in terms of correlated 

Gaussians. The three-body dynamics between the core and valence neutrons is taken into 

account by means of the hyper-spherical functions containing an exponentially decaying 

hyper-radial part. To avoid the spurious motion of the center of mass, Jacobi coordinates 

are used for the entire system. 

In the present work, the model is applied to the lightest two-neutron halo nucleus, 

He. The central Minnesota nucleon-nucleon interaction with and without a spin-orbit 

addition is used to bind the nucleus. The results are compared to those obtained in other 

models and to experimental data. Basic structural observables, such as binding relative to 

He, radii and one-body densities are in agreement with other models. The microscopic 

description of the core allows us to test the efficiency of Pauli projection techniques 

employed in the few-body models. We demonstrate that proper antisymmetrization is 

crucial to bind "He against three-body break-up. Overlap functions between 6He and He 

have been extracted with the aim of reaction calculations involving "He. In particular, 

two-neutron transfer reaction p(6He, He)t at 25MeV/A is studied. 
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Chapter 1 

Introduction 

Atomic nuclei represent self-bound ensembles of strongly interacting fermions. Experi

mental and theoretical explorations of the chart of nuclei have revealed many intriguing 

features of nuclear matter. Among them, a structural hallmark—the nuclear halo—has 

been found in the realm of light nuclei near the limits of particle stability. 

In general, the halo phenomenon is a threshold effect occurring in loosely bound 

systems, in which particles are held in short-range potential wells. In favorable circum

stances, a barely trapped particle or particles (or a cluster of particles) may tunnel out 

into the classically forbidden region. This "leakage" populates very dilute and fragile 

structures near particle emission thresholds. The more loosely the halo particles are con

fined, the more clearly "the halo stratosphere" is developed. 

Besides nuclear physics, halo systems are known or expected to exist in other branches 

of physics as well. One of the most extended halo systems known to exist is the atomic 

helium dimer He2 which is about ten times larger than a typical diatomic molecule and 

is bound by only about 10~7 eV [1]. Halo states have been predicted or experimentally 

observed for a range of other systems, such as 3He-3He-39K [2], positron-atom complexes 

[3], hyper-nuclei such as j^H [4] among others. A comprehensive review of halo systems 

can be found for example in [5]. 
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1.1 Halo in nuclei 

The quantum-mechanical tunneling present in halo nuclei produces unexpected effects. 

The energy needed to remove halo nucleons is drastically less than particle separation 

energies for typical nuclei. Nuclear radii are enhanced; matter and charge radii may differ 

considerably. There is evidence that few-body effects may become crucial, leading to the 

formation of cluster structures beyond the reach of mean field theories. 

In a first approximation, the spatial separation of particles in the halo from the rest 

of the system justifies a simplified description with only a few active constituents. Halo 

nuclei can be thought of in terms of a few (typically one or two) single halo nucleons 

orbiting a tightly bound core, thus implying a major role of single-particle properties. 

In quantitative terms, it has been assessed [6,7] that for a quantum halo to develop, 

1. the probability to find halo particles in the forbidden region beyond the classical 

turning point should be more than 50%, 

2. and the core-halo configuration should occur with more than a 50% probability in 

a given system. 

It has been argued [8,9] that for a nucleus to meet these criteria: 

a. the energy needed to separate the halo part from the rest of the nucleus should be 

small, more precisely less than about 2 MeV A" ' , with A being the mass number 

of the nucleus, 

b. the halo nucleons should occupy s- or p-angular momentum orbits around the core, 

c. and the proton number of the nucleus should not exceed ten or so for a proton halo 

to develop. 

For three-body halo states containing two loosely bound nucleons, the condition b. should 

be supplemented by a requirement of hyper-momentum2 K = 0 or 1. The formation of 

1Here, we do not consider less straightforward cluster divisions with tightly bound subgroups of 
nucleons, such as 9Be consisting of two a clusters glued together by a neutron. 

2 To be introduced in Chapter 2. 
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Neutron Number 

p/n - Borromean p/n - Halo 

Figure 1.1: Lower part of the chart of nuclei. Stable nuclei are represented by black 
squares. In this figure, "p" stands for a proton, "n" for a neutron. The term "Borromean" 
is explained in Section 1.2. 

a charged halo is hindered by the Coulomb barrier. These conditions naturally favor light 

nuclei in Figure 1.1 to populate halo states. 

From the modern perspective, the best established nuclear halos live among light 

neutron-rich nuclei. Examples of one-neutron halo nuclei include the ground states of 

u B e (= 10Be + n) [10] and 1 9C (= 1 8C + n) [11], excited states in 12B (= n B + n) and 

1 3C (= 1 2C + n) [12] and several possible candidates, such as 31Ne (= 30Ne + n) and 

40Al (= 39A1 + n) [5]. In one-neutron halos, the tail of the relative core-n wavefunction 

falls off exponentially with the distance between the core and the extra neutron. The 

decay length, determined by the neutron separation energy, is typically 4-5 times that 

of ordinary, tightly bound nuclei [5]. 

In nuclear physics, the most obvious three-body halo candidates are light drip-line 

nuclei with two neutrons encircling a core. Among them, 6He (= He + n + n) and 

11 Li (= 9Li + n + n) are stereotypical prototypes of nuclear halo systems [13], and they 

enjoy all the attention of the present work. n L i is considered the prima donna of all halo 

nuclei thanks to its very small two-neutron separation energy 378 keV [14]. Other two-

neutron halo nuclei include 14Be (= 12Be + n + n) [15], possibly 2 2C (= 2 0C + n + n) 

[16], and other candidates [5]. 

For completeness, we should mention other nuclei in which some sort of halo may 



be developed. In the deuteron, for example, the proton (p) and the neutron are very 

likely to be found outside the range of the strong interaction. The binding energy of the 

deuteron (-2.2 MeV) is in absolute value small compared to a typical nucleon separation 

energy (7-8 MeV), arguably making the deuteron the forerunner of all nuclear halo 

states [17]. On the neutron-rich side of the chart of nuclei, 8He contains four neutrons 

believed to form a neutron skin around the He core [18]. On the proton-rich side, the 

population of halo nuclei is decimated by the Coulomb barrier. Hints of a proton halo have 

been seen in 8 B (= 7Be + p) [19], 17Ne (= 1 5 0 + p + p) [20], and some other nuclear 

states. Reference [5] contains a more complete list of possible halo states in light nuclei. 

As an example of theoretical studies on the existence of halo effects in heavier nuclei, 

medium-mass even-even nuclei have been scrutinized in [21,22]. The authors of these 

works concluded that on the large scale the halo phenomenon is very rare and can only 

exist at the very limit of neutron stability. 

In the present work, however, we shall focus only on light two-neutron halo nuclei, in 

particular on "He and Li. 

1.2 Two-neutron halo nuclei: 6He and n L i 

Apart from possessing all of the peculiar halo features, the known two-neutron halo 

nuclei including "He and Li are Borromean, meaning that the system core + n + n is 

bound, even though the binary subsystems core + n and n + n are unbound. The term 

Borromean is adopted after a heraldic symbol of three rings which are joined in such 

a way that if any one is broken, all three become free [13]. In the helium chain, for 

example, He binds two extra neutrons, but not one, and the di-neutron is unbound as 

well. This odd-even staggering is merely a consequence of nucleon-nucleon correlations. 

One then deals meticulously with two correlated neutrons revolving around a core in the 

low density regime. Thus, these nuclei are ideal playgrounds to study neutron correlations 

in an almost proton-free environment. It is possible that these nuclei give rise to the so-

called Efimov states [23,24]. 
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The Borromean nature of He and Li implies that, even at large distances, the 

core and the valence particles are correlated with no bound binary admixtures. Asymp

totically, the wavefunction vanishes exponentially with a decay rate depending on the 

three-body binding energy, i.e. on the amount of energy needed to break the nucleus up 

into a core and two free neutrons. The inverse of the decay rate gives a typical "three-body 

distance" within the nucleus, which is about 7.5 fm in Li. For better visual apprecia

tion, this value corresponds to a di-neutron at distance about 6 fm from a Li core or to 

the two neutrons being on opposite sides of the core at mutual distance of about 11 fm. 

These numbers are to be compared with the range of the nucleon-nucleon interaction of 

about 1-2 fm and also with the 2.32 fm radius of the 9Li core [13]. The situation is less 

dramatic in "He due to its larger two-neutron separation energy3 of about 970 keV [25]. 

One then anticipates that many properties of 6He and Li will depend chiefly on the 

asymptotic part of the wavefunction. 

Due to the proximity of particle emission thresholds, He and Li support only a 

single bound state, the ground state. Moreover, these nuclei are short-lived; the half-

life of 6He is 806.7 ms [25] and that of n L i is even shorter at about 8.8 ms [26]. To 

be studied, these nuclei have to be produced artificially. Most information about the 

anatomy of nuclear halos has been obtained in reaction processes leading to continuum 

excitations and ultimately to the destruction of the investigated nuclei. It is useful to put 

the most rewarding experimental methods into their historical context. In the following 

short historical overview, we focus mainly on Li, but some of the experiments have 

been carried out for other halo nuclei including "He. 

1.3 Overview of 6He and n L i : experiments 

The history of two-neutron halo nuclei started with the discovery of He back in the 

1930s [27]. It took three more decades to produce n L i for the first time [28]. Current 

3In what follows, the two-neutron separation energy is taken as an absolute value of the three-body 
binding energy, and the two terms will be used interchangeably. 

5 



interest in nuclear halos, however, was sparked by the advent of modern radioactive beam 

facilities. In 1985, the interaction cross section of helium and lithium isotopes colliding 

with ordinary nuclear targets was measured [29,30]. The surprisingly large values for Li 

were soon interpreted as a consequence of extended neutron densities, a neutron halo, 

consisting of a di-neutron coupled to a 9Li core [31]. This speculation was later supported 

by a measurement of the momentum distribution of 9Li after the break-up of Li [32]. 

Consistent with the di-neutron model, large spatial extent of the halo was, through the un

certainty principle, reflected by narrow relative momentum distributions. The di-neutron 

model also suggested large two-neutron removal cross sections via Coulomb dissociation. 

Soon after, the cross sections of electromagnetic dissociation of Li on high-Z targets at 

high [33] and low beam energies [34] were found to reach anomalously large values. Later, 

charge-exchange cross sections of °>9>nLi were measured to be about the same [35], thus 

implying that the 9Li core is little disturbed in ^ L i . One of the first attempts to indirectly 

deduce the neutron density profile of Li can be found in [36]. The authors concluded 

that only density distributions with very long tails consistently reproduce the observed 

interaction cross-sections. Furthermore, the angular distributions of Li and Li nuclei 

scattered elastically from protons are similar, but the elastic scattering cross-section is 

smaller by about a factor of two for Li [37]. In data analysis, both real and imaginary 

parts of the optical potentials had to be changed considerably for Li compared to global 

fit parameters, in order to account for break-up due to the extended tail of the neutron 

density. /3-decay represents an interesting alternative for extracting information about 

halo structure. Several theoretical works [38,39] have investigated the /3-decay of Li 

into 9Li and a deuteron (d). They concluded that the /3-decay matrix elements are to a 

large extent determined by the halo part in n L i . Experimental efforts in this direction 

reported in [40,41] and more recently in [42] provide evidence that the /3-decay takes place 

essentially in the halo of Li, and that it proceeds mainly to the Li + d continuum, 

opening up a new means to study the halo phenomenon in 11Li. 

The early reaction experiments were extended in later years, see for example reviews 

in [43-45]. They include transfer, stripping and break-up reaction studies providing differ-



ential, rather than integrated cross-sections. Reaction and decay experiments have been 

accompanied by precise measurements of static properties: measurements of two-neutron 

separation energy by methods of radio-frequency spectrometry [14] and Penning trap [46] 

for Li, nuclear charge radius determined by laser spectroscopy for "He [47] and Li [48], 

and electric quadrupole and magnetic moments of Li from nuclear magnetic resonance 

experiments [49]. 

In spite of all the experimental efforts, the detailed structure of the two-neutron halo 

has not been deciphered yet. The consensus seems to be that, in 6He, the two maverick 

neutrons coexist anywhere between two extreme configurations [13]: a di-neutron with 

valence neutrons closely spatially correlated, and a cigar configuration in which the two 

valence particles are on opposite sides of the core. In Li, the situation is less clear due 

to a strong competition between s- and p-waves in the halo part of the wavefunction 

[13,50]. The question of clustering in "He and 11Li is the subject of ongoing experimental 

quest [51-53]. 

Experimental data concerning two-neutron halos collected over the last decades has 

become so detailed that theoretical models must be more than merely qualitative to rise 

to the challenge. Even simple properties, such as the size of the nucleus, turn out to 

be model dependent and are not real experimental observables [54]. The study of halo 

nuclei as unstable species via reaction experiments involves tightly intertwined aspects of 

structure and reaction physics. Details of the reaction component are beyond the scope 

of this work. Nevertheless, reviews of reaction models used to probe the structure of light 

exotic nuclei can be found in [55,56]. 

1.4 Overview of 6He and n L i : structure theory 

Traditionally, theoretical considerations of structure and reactions of halo nuclei have 

been dominated by few-body models. Few-body structure models of two-neutron halo 

nuclei have built their success around the fact that, when viewed at a distance, the halo 

particles are decoupled from the core. Under such an approximation, the core's degrees 
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Figure 1.2: Schematic representation of structure models of 6He. In microscopic cluster 

models, a microscopically described He core is formed explicitly. 

of freedom can be reduced, and the wavefunction factorizes into the core and the valence 

part. The many-body problem then reduces to a three-body one—core + n + n—held 

together by effective core-n and n-n interactions. For "He, the transition from a fully 

microscopic to a few-body picture is schematically depicted in Figure 1.2. 

The early di-neutron models of 6He and n L i , such as [31], turned out to be too 

schematic to quantitatively describe experimental data and were soon followed by more 

sophisticated three-body approaches. In the first generation, the three-body models of 

these nuclei treated the core as a completely inert object. Several methods of tackling 

the three-body problem were applied, mostly to 6He and n L i . They include the Fad-

deev approach [13,57,58], the hyper-spherical harmonics method [13,59], the variational 

method on a harmonic oscillator basis [60], the two-body Green's function [61], and 

the cluster-orbital shell model [62,63]. Some calculations within a pairing model were 

reported in [64]. In all their generosity, the three-body models of the next generation 

rewarded the core with some degrees of freedom, namely with rotational modes [65]. 

With increasing computational power in recent years and new techniques to solve 

many-body problems, ab-initio microscopic competitors have emerged in the field of 

structure models of light exotic nuclei. The microscopic nature of these models allows 

them to employ realistic nucleon-nucleon and three-nucleon interactions. The Green's 

function Monte Carlo model has been successfully applied to light nuclei up to 1 2C [66,67]. 

The model reproduced the three-body binding energy and radius of He. The no-core 

shell model [68] is another sophisticated approach, which as its name suggests, is a shell 

model with all particles active in harmonic oscillator shells; i.e. there is no inert core 
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like in standard shell model calculations. The model has been applied to both "He [69] 

and Li [70]. The fermionic molecular dynamics and the antisymmetrized molecular 

dynamics represent conceptually similar approaches to the problem of light nuclei [71]. 

They both use superpositions of Gaussian wave packets for single-particle wavefunctions. 

Their application to helium isotopes can be found in [72,73]. As in Green's function 

Monte Carlo, the structure of ^ L i has not yet been successfully described by molecular 

dynamics models. 

Somewhere between few-body and truly microscopic models are microscopic cluster 

models, in which some degrees of freedom are frozen to reduce the computational de

mands. This is achieved through the formation of microscopic clusters with a simplified 

internal structure within the nucleus being modeled. To a certain extent, cluster struc

tures can also be recognized in some of the microscopic models mentioned above. The 

stochastic variational model [74] and its multi-cluster version [75] has been applied to 

helium [76] and lithium [77] isotopes. With simpler phenomenological forces of adjusted 

strength, the model has been able to reproduce basic (three-body-like) properties of 6He 

and 11Li. Other examples of microscopic cluster models applied to 6He include [78-80]. 

All these models rely on Gaussians of one sort or another to describe the inter-cluster 

motion. 

Our overview of structure models would not be complete without mean field theories. 

Widely dispersed halo particles barely feel the short-range nuclear forces exerted by 

nucleons in the core. As a consequence, valence and core particles experience different 

mean fields. For Borromean systems in particular, the term mean field is probably not 

appropriate, as the correlations between halo particles are crucial for the overall binding. 

Moreover, the last neutron in the core + n + n system can not be bound in the localized 

mean field of the core + n subsystem since such a bound subsystem does not exist in 

Borromean nuclei. The importance of unusually small neutron separation energies for 

mean field calculations was recognized early on [81]. In later shell model calculations, 

configuration mixing and adjustments to residual interactions have become unavoidable 

for a good description of exotic nuclei towards the drip-lines [82,83]. In general, mean 
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field approaches have found it rather challenging to obtain a reasonable description of 

halo effects in light nuclei. 

1.5 Motivation for present work 

The obvious advantage of few-body structure models of two-neutron halo nuclei is the 

exact treatment of halo dynamics. These models provide clear, intuitive insight into 

the relative motion between the core and valence particles, and as long as implemented 

properly, they are well suited to capture the long-distance halo characteristics and cor

relations. On the other hand, microscopic models tackle the many body problem in its 

full complexity. Thanks to our advancing knowledge of nuclear interactions and increas

ing computational power, brute force ab-initio models now yield very accurate structure 

results for many light nuclei. It is reasonable to believe that, sooner or later, ab-initio 

models will succeed in producing an accurate description of halo nuclei. 

We are now in the position to ask why we need yet another structure model to 

cope with two-neutron halo nuclei. The answer is buried in drawbacks of the above-

mentioned structure models and the lack of connection of some of them to reaction 

theories traditionally formulated in a few-body framework. 

The crucial assumption of few-body models, a macroscopic core, turns out to be a 

double-edged sword: on one hand, it allows us to focus on the most important correlations 

between core and halo nucleons, on the other hand, it is undoubtedly a (crude) simplifi

cation of the many-body problem. To argue in favor of inert cores, some authors indeed 

suggest that core polarization in halo nuclei is suppressed compared to normal nuclei [84]; 

but on the other side, there are works that admit the possibility of less inert cores inside 

halo nuclei [48,76]. Despite the occasional strong claims by few-body practitioners [85], 

realistic halo nuclei are unfortunately not ideal halo systems; the simple halo picture 

is always obscured by small idiosyncrasies, and one has always to check that the core 

is really unperturbed to justify the simplified inert-core few-body approach [86]. Stem

ming from the simplified picture of the core, probably the two most severe drawbacks 
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of few-body models are the lack of exact antisymmetrization and the usage of effective 

interactions [87]. Several Pauli blocking techniques have been developed to account for 

antisymmetrization in few-body models, however, when compared side by side, they may 

provide different results [88]. Effective interactions, especially those between the core and 

halo particles, are not necessarily known. Normally, the core-n potentials are adjusted to 

reproduce some set of experimental core-n findings and the three-body binding energy 

of the whole nucleus, or attempts are made to derive them from the underlying nuclear 

forces. Furthermore, there are indications that for reaction calculations three-body wave-

functions perhaps require additional renormalization to account for microscopic effects 

missing in the inert-core approximation [89]. Nevertheless, few-body models are presently 

used in most reaction calculations involving halo nuclei. 

Some of the above-mentioned drawbacks of few-body models are eliminated in micro

scopic (cluster) models with halo particles made indistinguishable from those in the core. 

The microscopic treatment allows one to antisymmetrize wavefunctions properly and 

use phenomenological or realistic nucleon-nucleon (and three-nucleon) forces. So, what 

is wrong with microscopic (cluster) models? Well, one could object to several things. 

The first one is the missing connection to reaction theories, a link so important for the 

understanding of halo species. To feed reaction calculations formulated in a few-body 

picture, one would have to extract the necessary information about halo particles from 

the full microscopic wavefunction, a task that is by no means trivial computationally. 

Even though recently we have witnessed some progress in this direction for two-body-like 

(but not halo) projectiles [90,91], most microscopic structure theories are still far from 

providing such few-body-like information relevant for three-body-like halo nuclei. This 

computational obstacle is accompanied by a more fundamental physics question of the 

adequacy of microscopic models in the asymptotic regions. 

From the previous short review of structure theories it has become obvious that to 

make calculations feasible microscopic (cluster) models exploit computationally tractable 

bases. Chief among them are the Gaussians and harmonic oscillators. One must remem

ber, however, that at large distances, where the halo nucleons are almost liberated from 
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the core, the wavefunction falls off exponentially. In principle, it should be possible to 

capture the slower exponential decay by using a large Gaussian or oscillator basis, but 

as argued in [5], quality precedes quantity in the halo world; that is the actual shape of 

basis functions matters more than the size of the basis. In other words, the basis func

tions themselves ought to possess the correct long-distance functional form to produce 

correct halo asymptotics. For this reason, the authors of [5] concluded that Gaussians 

are in general not at all suited as a computational basis for halo nuclei. Moreover, most 

microscopic calculations are variational with the binding energy used to assess the rate 

of convergence. In general, the convergence of the total binding energy does not guar

antee the convergence of other observables and definitely not the convergence of the 

wavefunction in asymptotic regions. 

Based on the arguments presented, one can conclude that both few-body and mi

croscopic structure models have their appealing aspects as well as their drawbacks. We 

wish to mix the best of the two approaches to create a microscopic structure model of 

two-neutron halo nuclei that would describe simultaneously short- and especially long

distance regions and allow us to link the structure and reactions of these nuclei. The 

concept of a microscopic cluster model with a carefully chosen functional form for the 

wavefunction seems to be ideal to meet our goals. Hereafter, the model of two-neutron 

halo nuclei developed in the present work shall be referred to as MiCH (microscopic core 

halos). 

In MiCH, a two-neutron halo nucleus will be described by a properly antisymmetrized 

product of a microscopic core and the valence part consisting of two individual neutrons, 

or schematically ^ = Acore~ {core x valence). We shall use terms "core" and "valence" 

in spite of the presence of the core-valence antisymmetrizer J\
core~v which, in principle, 

makes nucleons from the two parts of the wavefunction indistinguishable. A more precise 

meaning of "core" and "valence" will be provided as we go along. At large distances, 

the wavefunction naturally decouples into the three-body-like form ^ —> core x n x n, 

whereas at short distances it is equivalent to a fully antisymmetrized, many-body treat

ment. To bind the nucleus, effective nucleon-nucleon interactions shall be employed. The 
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theory developed in this work is designed to cope with bound states of two-neutron halo 

nuclei. The link between structure and reactions will be established for simultaneous 

two-neutron transfer. In this reaction channel, the two valence neutrons are transferred 

in one step from a halo projectile to a target nucleus. The transition probability of this 

process is directly proportional to the overlap integral between the original two-neutron 

halo projectile and its own core. 

1.6 Outline 

In the present work, we elaborate on all aspects of MiCH. First, the two major building 

blocks of the wavefunctions—the valence part and the core—are discussed separately. 

Chapter 2 focuses on the valence part. A particular three-body model is described, el

ements of which are later incorporated into MiCH. To find the appropriate functional 

form for the valence part, the three-body dynamics between the core and the two ex

tra neutrons is studied in interaction-free regions. Chapter 2 also contains results for 

"He and ^ L i studied within a three-body approach. Chapter 3 presents a microscopic 

model that meets requirements imposed on the core. MiCH is then finally assembled in 

Chapter 4 by putting the core and the valence part together. That chapter also includes 

the computational background needed for evaluation of matrix elements and optimiza

tion of variational parameters. Chapter 5 contains results for 6He studied within MiCH. 

Basic structural features of "He are elaborated on, and the results obtained within MiCH 

are compared to those from other models and to experimental data. As part of the 

discussion, the two-neutron transfer reaction p(6He,4He)t is studied using microscopic 

structure input for 6He modelled in MiCH. The work finishes with the conclusions and 

outlook in Chapter 6. 
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Chapter 2 

Valence part 

Contrary to standard nuclei, valence particles in two-neutron halo nuclei are weakly 

bound and the tail of the wavefunction offers large contributions to most physical ob-

servables. Any structure model aimed at the description of halo species should take into 

account the fact that the loosely bound neutrons swim in distant, low-energy regions and 

are subject to an interaction which is closer to the free rather than in-medium nucleon-

nucleon interaction. Thus, a proper treatment of the asymptotic regions is vital if one is 

to pin down any observable sensitive to the spatial extent of the nucleus. Moreover, the 

added Borromean peculiarity of two-neutron halos implies pure three-body rather than 

any other asymptotics. Few-body models are especially well suited to cope successfully 

with the few-body dynamics and asymptotics of two-neutron halo nuclei. In Chapter 4, 

the wavefunction in MiCH will be cast as an antisymmetrized product of a microscopic 

core and a three-body-like valence part describing the relative motion of the two valence 

neutrons relative to the core. 

In the current chapter, we focus on the valence part. To do so, we outline a well 

established three-body model [65,92,93]. To avoid repetition, the mentioned three-body 

model will be referred to as "the three-body model". First, we introduce coordinates 

and three-body basis sets used to attach the halo neutrons to the core in the three-body 

model, ingredients to be incorporated later into MiCH. Then, we outline details of the 

three-body model beyond what will be built into MiCH, such as interactions, the Pauli 
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principle, and the actual way of solving the three-body problem. In later chapters, we 

will have no use of these extra aspects of the three-body problem, but it is useful to lay 

them out before us to perform three-body calculations for 6He and n L i , results of which 

are included in this chapter. The results of three-body calculations for n L i were recently 

published by the author and collaborators [50]. For He, calculations originally published 

in [94] are repeated to reach results that were not included in that article but that are 

needed for comparison with results obtained within MiCH for this nucleus. 

2.1 Coordinates and bases 

The key ingredient of the three-body model is the Schrodinger equation in the hyper-

spherical formalism. The hyper-spherical method, which had been used in other areas of 

physics, was brought into nuclear physics in [95] with the aim to develop a general nuclear 

reaction theory. The value added to three-body models in [65,92] was the introduction of 

deformation and rotational degrees of freedom to an otherwise inert core. The Sturmian 

hyper-radial basis exploited in [65, 92] was later in [93] replaced by a more suitable 

Laguerre hyper-radial basis [96]. 

For clarity, we should define terms "core" and "valence" more precisely. In the current 

chapter, "valence" will refer to all features of the three-body core + n + n system except 

the properties of the core, i.e. it will encompass spins of the two neutrons as well as the 

full information about the relative motion between the three bodies. Later, in Chapter 4, 

the meaning of these terms will be elaborated. 

To see how the three-body model is assembled, let us first analyze a three-body 

core + n + n bound problem in interaction-free asymptotic regions where, as argued 

in [5], one ought to employ a basis with appropriate exponentially decaying form. At this 

point, we are solely interested in relative motion between the three bodies. To eliminate 

the spurious motion of the total center of mass, only relative Jacobi coordinates between 

core and neutrons are used as shown in Figure 2.1. In principle, the two sets of Jacobi 

*Long range Coulomb effects are absent due to charge neutrality of valence particles. 
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coordinates—Y and T—are completely equivalent and the three-body problem can be 

cast in any of them. The main advantage of Jacobi coordinates over other sets of relative 

coordinates is that the operator of kinetic energy decouples into two independent single-

particle-like pieces with no cross term: 

~ 2m 

1 A 1 A 

PI Xl M2 2 
*2 [A* + Ay-] , (2.1) 
2m 

where m is the mass of a nucleon. Then, the interaction-free three-body Schrodinger 

equation becomes: 

Tip (x, y) = E3body^ (x, y), (2.2) 

with Esfody < 0 being the three-body binding energy. 

It is convenient to seek the solution of Eq. (2.2) in the form with angular and radial 

parts decoupled, schematically: 

4>(x,y) = H(x,y)Ylx(nx)Yly(ny), (2.3) 

where Y\ are spherical harmonics (for now, their projection quantum numbers are omit

ted) and they take care of the angular part of Eq. (2.2). We stress that the orbital 

momenta lx and ly are associated with Jacobi coordinates, rather than any sort of single-

particle coordinates. Next, hyper-spherical coordinates from Figure 2.1 are involved. The 

main advantage of hyper-spherical coordinates is that, as it will soon become obvious, 

they allow the transformation of the original Eq. (2.2) into a one-dimensional, hyper-

radial equation. The radial function H.(x,y) can be equally well written in terms of 

hyper-spherical coordinates p and 0, i.e. H(x,y) = H(p,0). Plugging (2.3) into (2.2) 

yields: 

~1'H(p,e) = E3bodyH(P,9), (2.4) 
h2 

2m 
"!.£. 
p5 dp 

( 5 d \ l *2l 
r<*)+?A. 
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Let us consider a three-body system core + ni + ri2- In the laboratory frame, the three 
objects are at positions fcore, fn, and r n 2 . Then, there are two different—Y- and T-
like—sets of Jacobi coordinates x = {xi,i = 1, 2,3}: 

_ _ 

core core 

Relative Jacobi coordinates x\ and xi connect centers of masses of subgroups of objects; 
the last Jacobi coordinate x$ (not shown in the graphics) is equal to the position of the 
center of mass of the three-body system in the laboratory frame: 

Y 

xl — rni rcore xl — rn2
 — rn\ 

X2 = ?n2 ~ (^ni + Acoref core) I \Acore 
+ 1) X2 = {rn2 + r n i ) / 2 

rcore 

%2> = rCMS = {^corefcore + rni + rn2)/A 
The volume element corresponding to the two relative Jacobi coordinates is: 

dV = dr?idx2 = Xi X2dx\dx2d£t\dVt2-
Here, fli comprises the standard polar and azimuthal spherical angles associated with 
X{. Next, rescaled relative Jacobi vectors are defined as: 

x = y/jiixi, y = V^2^2 

with dimensionless reduced mass factors: 

Y T 

HI = Acore/(Acore + 1) m = 1/2 
m = (Acore + 1)M fJ,2 = 2Acore/A 

Note that spherical angles associated with x and y are the same as f̂ i and f̂ , i.e. 
Q,x = Q,\ and Q,y = 0,2- Finally, the hyper-spherical coordinates, the hyper-radius p 
and the hyper-angle 9, are introduced as: 

x = p sin 6, y = P cos 0. 

The volume element now becomes: 

dV = (pip2)~
3/2 p5 sin2 9 cos2 0 dpd6 dttx dQy. 

Figure 2.1: Definition of Jacobi and hyper-spherical coordinates for a three-body system 
core + ni + n2- Acore and A are the mass numbers of the core and of the whole system. 
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with the grand-angular operator A2: 

A2 - - J — A ("sin2 20°-\ - lx{lx + l) - h{ly + 1 } (2 5) 
A _ sin2 20 50 V <W sin20 cos 2 *?" ( 2 - 5 ) 

This operator contains dimensionless magnitudes lx(lx + 1) a n d ly(ly + 1) of orbital 

momenta as traces of the orbital motion. The grand-angular operator has a complete 

spectrum of eigenfunctions enumerated by hyper-momentum K: 

A2^ly(0) = -K(K + 4)4ly(e). (2.6) 

In [95], the eigenfunctions ip£- y (9) were found in terms of hyper-geometric functions. 

For the purposes of the three-body model, these functions are transformed by means of 

the relationship 22.5.42 from [97] into a more convenient form: 

<pZhV) = N%ly sin1* 6cosh 8P^ly+i(cos2e), (2.7) 
jac 

JX+T>,IV+7 

where P ^ ' ^ (cos 29) is a Jacobi polynomial of the order fijac. Then, the allowed 

values of the hyper-momentum K are: 

K = lx + ly + 2njac njac = 0 ,1 ,2 , . . . (2.8) 

For a given pair of orbital quantum numbers {lx, ly}, hyper-angular functions (pji y 

can be made orthonormal with respect to the weight factor sin 9 cos 9 from the hyper-

spherical volume element in Figure 2.1: 

JO 

7T/2^ly(9)^!v(9)sm29cos29d9 = 5KRl. (2.9) 

This requires: 

jlx ly _ jr)lx+ly+2njac+3 (lx + ly + 2rijac + 2)rijacl(lx + ly + Ujac + 1)! 

[2(njac + lx) + l]!![2(n iac + ly) + 1]!! vr 
N y= 2X+V 3nr ^"V^ *'*3ac ^ "I'^ae-Vx ~r <>y ~r '"3ac T >-)• (2 \Q) 
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with the aid of relationships 22.1.2 and 22.2.1 from [97]. 

Since the hyper-angular part of the wavefunction in Eq. (2.3) can be expressed in 

terms of functions Eq. (2.7), it is convenient to decompose the radial part Tt(p,0) of the 

wavefunction further into a product of hyper-radial and hyper-angular parts: 

}xhffQ\ _ . - 5 /2 , H(p,9) = K(p) <p£«{d) = P - ^ U ( P ) <PKUW (2.11) 

where the factor p~5> is chosen to cancel the factor p 5 in (2.4). By using this new form 

of the radial part of the wavefunction, Eq. (2.4) is brought to its final one-dimensional 

hyper-radial form: 

dp2 

(* + ! ) ( * + *) 
u(p) = 0, (2.12) 

which is the only equation that needs to be solved. The three-body binding energy is 

now hidden in a decay parameter to-be K: 

2 _ 2m\E3body\ 
Hi — -

n? 
(2.13) 

In Eq. (2.12), the term proportional to p~ 2 can be interpreted as an effective centrifu

gal barrier. This barrier combines not only the effects of single-particle-like centrifugal 

barriers associated with each Jacobi coordinate, but also an added effective barrier re

flecting the difficulty of finding the two neutrons close to the core simultaneously. In 

contrast to the two-body case, the barrier does not vanish even for the lowest possible 

hyper-momentum K = 0 and thus for the most trivial orbital motion lx = ly = 0. 

The hyper-radial equation Eq. (2.12) provides the remaining clues to build the skele

ton of the three-body model. At small hyper-radii, the hyper-radial function u(p) van

ishes: 

u(p) 
P^O ivr+5 

(2.14) 
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whereas at large hyper-radii, the hyper-radial part of the wavefunction falls off as: 

u(p) - ^ ^ exp(-Kp), K(p) ^ ^ p - 5 / 2 e x p ( - ^ ) . (2.15) 

Indeed, the three-body binding energy buried in K through Eq. (2.13) determines the 

decay rate of the wavefunction. The smaller the binding energy the more pronounced 

the halo effects. In the three-body approximation, two-neutron halo nuclei posses only 

the long-distance asymptotics in Eq. (2.15) due to the non-existence of any bound binary 

subsystem, and because the hyper-radius is invariant under the change of Jacobi sets, the 

asymptotics are the same in both Y and T Jacobi sets. Having in mind the importance 

of asymptotical behavior of the wavefunction, the three-body model employs a Laguerre 

hyper-radial basis introduced in [96]: 

where l \ (p/po) a r e associated Laguerre polynomials of the order n[ag = 0,1,2, 

A few comments regarding this basis are appropriate at this point. First and foremost, 

this basis is just a suitable mathematical basis, elements of which can not be interpreted 

as hyper-radial eigenfunctions of the physical three-body system. The basis explicitly 

contains the desired exponential part. The basis functions 1Zn, are orthonormal with 

respect to the weight p5 which occurs in the hyper-spherical volume element in Figure 2.1: 

JO 
Knlas(P,m)Kn,Jp,m)^ = Sniag,n,ag (2.17) 

with the help of the relationship 22.2.12 from [97]. Moreover, the basis is complete for any 

value of PQ. This fact is of great importance because any PQ can be used in calculations 

and yet the proper asymptotic exponential behavior determined by the a priori unknown 

three-body binding energy, or K, can be reconstructed. Last, the hyper-radial basis is 

privileged in that its index niag is not restricted by quantum numbers attached to the 
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spherical and hyper-angular parts of the wavefunction. 

Based on these schematic arguments, a single basis term for the valence part of the 

wavefunction is written as: 

^taff-WCi = ^ S ( ^ o ) ^val^al (e'n^y,XnvXn2) (2 .18) 

where & is a generalized hyper-harmonic function in an LS-coupled product form: 

^valjnje,nx,Qy,XnvXn2) = <p£ U(9) X 

Ylx(nx) <g> Yt (fiy) <g> [Xni ® xn2] 
L \s \J-* 

(2.19) 

val 

^val denotes the total angular momentum and the parity of the valence part. The 

parity is determined by orbital momenta lx and ly as TT = (—l)x+y. Xni and Xn2 

are spins of the two valence neutrons. Index jvai comprises quantum numbers related 

to all but the hyper-radial part, as well as the Jacobi channel identifier Y or T, i.e. 

Ival = {K,lx,ly,L, S, Y / T } . This form of valence terms is sufficient for the three-body 

model; later, in Chapter 4, each valence term will be enriched by isospins of valence 

particles. 

In this section, we have introduced only those elements of the three-body model that 

will be in Chapter 4 incorporated into MiCH. The next section details the remaining 

ingredients of the three-body model. 

2.2 Other ingredients of the three-body model 

In the three-body model, the core is a macroscopic object with states $j7r (£) that are 

eigenstates of the core's intrinsic Hamiltonian: 

hcore(0$j* (0 = e/* «V (£)• (2-2°) 
v , / Jcore• ' Jcore Jcore 
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To improve upon the inert-core assumption, the adopted three-body model assumes that 

the core behaves as a macroscopic deformed rotor and includes the lowest energy states 

of a rotational band built on the ground state of the core. The eigenstates of the core 

are the rotational matrices with Euler angles as coordinates £. Quadrupole deformation 

serves as the collective degree of freedom. 

A question may arise whether the assumption of a deformed rotor-like core is justified 

in light nuclei. Even though it is true that light nuclei in general do not show genuine 

rotor-like features, some of them are known to be deformed. In such cases, the quadrupole 

deformation can be adjusted to reproduce the strength of the E2 transition between 

the ground state and the first excited state in the core, as in the case of 10Be core in 

11 Be [10]. When the core does not exhibit rotor-like features or the E2 transition strength 

is not known, the quadrupole deformation is a free variational parameter taken from a 

reasonable physical interval, as in the case of a Li core in Li [50]. Besides three-body 

calculations for Li in Section 2.3, we will not rely on the assumption of a rotor-like core 

in this work. 

Having the basis in Eq. (2.18) for the valence part and the states of the core given by 

$ J-K , the three-body decomposition of the total wavefunction is finally written as: Jcore 

Vj«Mj= ^ E ^ CJZorenlaglvalJ*al 

Jcore Hag ^val Jval 

with numbers c being linear expansion coefficients. It is understood that parities •n in the 

last expression implicitly carry the same subscripts as corresponding J . The number of 

terms in the expansion is controlled through the number of included states of the core, 

maximum hyper-momentum K, maximum order niag of hyper-radial basis functions, and 

the parity requirements n = i^core^val a n d ^val = (—1) y- Additional constraints on 

the basis may be imposed by limiting the maximum orders lx, ly of partial waves. To 

take advantage of the completeness of the hyper-radial basis in Eq. (2.16), the nonlinear 

parameter po is the same in all terms in Eq. (2.21). Although, in principle, both Y and T 

Jacobi sets of coordinates work equally well and could even be mixed in the wavefunction, 
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Jcore 

nlag Ival Jval J^Mi 
(2.21) 



n l rnx~nl£s\ 2 

-* \ / Tcore—n2 
T core—rii X ^ t ^ 

core 

Figure 2.2: Pair-wise coordinates used to define two-body potentials in the three-body 
model. These coordinates are essentially the same as vectors x\ in Figure 2.1, but they 
are renamed here for the purpose of potential definitions. 

the three-body model starts with the wavefunction written solely in the T Jacobi basis 

for reasons explained later in this section. 

In Section 2.1, a simplified three-body problem in the interaction-free region was 

considered. We now extend our considerations to the full physical space where the three-

body Hamiltonian contains the kinetic energy T, the intrinsic Hamiltonian of the core 

hcore, two-body interactions Vcore~n and Vn~n for all pairs of interacting bodies, and a 

possible three-body interaction V y: 

H = T+hcore(0 + Vmre-n(fcore-nvO + VC^e~n(fcore-n2,0 + Vn-n(^^^ 

(2.22) 

Figure 2.2 depicts the corresponding pair-wise coordinates. The operator of kinetic energy 

expressed in Jacobi coordinates appears in Eq. (2.1). 

In three-body models in general, the exact form of two-body interactions, especially 

those between the core and the valence particles, is rather uncertain. In some works, inter-

cluster potentials were derived from underlying nucleon-nucleon interactions [98]. Such 

potentials are non-local, however. In most three-body applications to two-neutron halo 

nuclei, the core-n interactions are not founded microscopically; rather they are given an 

empirical form with parameters adjusted to reproduce some set of experimental findings 

for the core 4- n system and possibly the three-body binding energy. The three-body 

model in this chapter adopts the later approach. The exact form of potentials will be 
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shown later in this chapter when three-body results for "He and Li will be discussed. 

For some core-n systems, such as He-n, the interaction can be fitted to reproduce scat

tering phase shifts. For other systems, such as 9Li-n, the scattering phase shifts are not 

available. One then adjusts potential parameters to reproduce experimentally known low-

lying energy levels in the core + n system asserting that the levels can be constructed 

from a single neutron orbiting the core. Unfortunately, low lying energy spectra of the 

core + n system may not be well known, as it happens to be in the case of 10Li [99]. 

For the interaction between the valence neutrons some sort of realistic nucleon-nucleon 

potential is used. When the two-body interactions alone are not sufficient to bind the 

three-body system by the experimentally observed amount against the three-body break

up, an additional three-body interaction may be introduced. Overall, it becomes obvious 

that the uncertainty due to interactions remains one of the major drawbacks of three-

body models. 

In few-body models, it is impossible to account properly for the fermionic nature of 

nucleons. The wavefunction can not be fully antisymmetrized due to the macroscopic 

treatment of the core. The wavefunction can, however, be explicitly made antisymmetric 

under the permutation of valence neutrons, a requirement easily achieved in the T Jacobi 

basis by imposing: 

lx + S + T = odd (2.23) 

where lx is the orbital momentum of the relative motion between the two neutrons, and S 

and T are total spin and isospin of the valence part. For two neutrons, T = 1. This simple 

antisymmetry condition considerably reduces the number of available channels in the T 

Jacobi basis when compared to the Y set of coordinates. It is for this very reason that 

the three-body model starts with the wavefunction in Eq. (2.21) written in the T Jacobi 

basis. To account approximately for the Pauli blocking between the core and each valence 

neutron, the model space is restricted further. The three-body Hamiltonian in Eq. (2.22) 

does not provide information about the internal structure of the core. The model then 

assumes that the fictitious core's neutrons sit in the same core-n potential well defined 
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for valence neutrons which, as we have argued in Chapter 1, may not be adequate for 

halo systems. Nevertheless, the lowest states produced by the core-n interaction are said 

to be occupied by neutrons in the core and as such should be eliminated from the model 

space available for valence neutrons. Several different techniques exist to suppress the 

forbidden core-n states [88]. In the three-body model described in this chapter, such 

forbidden states are projected out before diagonalization [65]. 

The linear coefficients c in Eq. (2.21) can be obtained through the energy matrix 

diagonalization. Upon arbitrary reordering of terms in Eq. (2.21), the three-body wave-

function can be schematically written as: 

i 

When no core-n states are projected out of the valence model space, the expansion 

coefficients q are obtained by solving a set of simultaneous linear equations: 

HijCj = EIijCj (2.25) 

with energy and overlap matrix elements defined as: 

Hi:i = mmvj), iij = (^j). (2.26) 

The operator H is the Hamiltonian from Eq. (2.22). In Eq. (2.25), E is the binding 

energy of the nucleus. In the three-body model, E = E^dy- When the forbidden core-n 

states are projected out before diagonalization, matrix elements H and I take a more 

complicated form, which can be found in [65]. 

In actual calculations, it may be useful to move between the Y and T Jacobi sets. 

For example, the wavefunction in Eq. (2.21) is written in the T basis, but the matrix 

elements of the core-n interaction are most simply calculated in the Y basis. A change 

of Jacobi systems only affects the spherical and hyper-angular parts of hyper-harmonics 
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in Eq. (2.18). Under a transformation of Jacobi sets, hyper-harmonic functions undergo 

a unitary transformation: 

%va,J
nAe^x^y^nv^2) = J2{l'xl'y\

lxiy)KL%> JTT (e',n'x,n'y,xnvxn2), 
'a; 't/ 

(2.27) 

where the primed and unprimed quantities refer to different Jacobi sets. In ~fvai and 

Vval, quantum numbers K, L and 5 are the same. The coefficients (l'xly\lxly) vT, called 

the Raynal-Revai coefficients [100], have analytic forms. Because of the orthonormality 

of hyper-harmonic functions in all quantum numbers, squares of Raynal-Revai coeffi

cients can be interpreted as probabilities to find a basis state with quantum numbers 

K, l'x, ly, L, S in one Jacobi set in a state with numbers K, lx, ly, L, S in the other Jacobi 

set. For example, for K = 0, there exists only a single combination lx = ly = 0 allowed 

by Eq. (2.8). Therefore, in Eq. (2.18), basis states with K = 0 in different Jacobi sets 

are essentially identical. Also, low partial waves lxJy in one Jacobi set may contain all 

higher partial waves l'x,l'y allowed by Eq. (2.8) in the other Jacobi set. The Raynal-Revai 

coefficients will be useful in Chapter 5 where He will be scrutinized. 

To conclude the discussion of the three-body model, we establish basic relationships 

between geometrical measures within a three-body system. We assume, for a while, that 

the core in Eq. (2.21) is described by a microscopic wavefunction <E>j7r . Then, one would 

be dealing with a system of A nucleons consisting of Z protons and N neutrons. The first 

Acore nucleons including all protons would be contained in the core. For such an A-body 

system, an operator of the average squared distance of nucleons from the position of the 

total center of mass r(jMS = (1M) S i = i ^i could be defined as: 

A 

• m - A 

r™ = T E (fi ~ fCMS? , (2-28) 

where r*j would be the position of the i-th nucleon in the laboratory frame. After taking the 

square root of the mean value of this operator applied to the wavefunction in Eq. (2.21), 

26 



one would obtain the commonly computed root-mean-square (rms) matter radius ( r ^ ) 1 ' 2 

of the nucleus, which can be expressed as: 

A)1'2 = \l\{Acore(rUcore)) + {p*)\, (2.29) 

where () denotes an expectation value and {^(core)) is a square of the rms matter radius 

of the core relative to the core's center of mass. Similarly, one could define an operator 

with the summation over protons only: 

1 Z 

rp = z^2(rl _ fcMs)2 • (2-30) 

i= l 

The corresponding rms proton radius ( r^ ) 1 ' 2 of the nucleus could be computed as: 

<^>1 / 2 = ^r2
P(™re)) + {r*core_CMS), (2.31) 

where {rp{core)) is a square of the rms proton radius of the core and rcore_(jMs is the 

distance between the core's center of mass and the center of mass of the whole nucleus. 

Finally, an operator for the neutrons could be defined as: 

1 N 

rn = J} E (fi ~ ?CMS? (2-32) 
i=l 

with the summation restricted to neutrons only. The expectation values of r2^, r~, and 

r 2 would be related simply as: 

„2 1 „2\ ( C ) = J [Z(rz
p) + N(ri)\ (2.33) 

In reality, however, the core in Eq. (2.21) is a macroscopic object. Therefore, the 

core's rms matter and proton radii can not be directly computed in the three-body 

model. Rather, they must be inserted into Eq. (2.29) and Eq. (2.31) by hand. Within 

the three-body picture, all protons in a two-neutron halo nucleus are confined inside the 
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core. It is merely due to the core's motion relative to the center of mass of the nucleus 

that the rms proton radius of the nucleus in Eq. (2.31) is larger than that of the core. 

2.3 n L i in the three-body model 

As part of the present work, 11Li was studied within the three-body model introduced 

in this chapter. The Li core is allowed to be deformed and/or excited. The material 

presented in this section is based on the article [50]. In the paper, the value 295 ± 26 keV 

[101] was used for the two-neutron separation energy in u L i . However, as also commented 

in the paper, a new experimental value 376 ± 5 keV [102] was reported for the two-

neutron separation energy after the completion of our calculations, Later, this new value 

was finally corrected to be 378 ± 5 keV [14]. In this section, no attempt has been made to 

change the discussion and results to account for the change in the two-neutron separation 

energy. 

2.3.1 Introduction 

In the early days, three-body models of two neutrons and an inert Li core were developed 

to describe properties of Li [13,58,61,103]. At that time nothing was known about 

the core + n subsystem Li, and theorists could play the game of adjusting freely the 

effective 9Li-n interaction in order to produce a sensible Li ground state. In these 

models, two neutrons were coupled to the ground state of Li and the final composition 

of the valence part of the wavefunction varied significantly depending on the core-n 

interaction used. In [58] a three-body force was introduced in addition to the two-body 

core-n and n-n interactions. In [61,104], a density-dependent n-n delta force was used 

and emphasis was given to the importance of pairing. Three-body inert-core models have 

been expanded to generate three-body continuum states [105] and the complexity of 

these three-body scattering states was analyzed within the context of proton inelastic 

scattering. 

Early microscopic calculations were unable to reproduce a realistic binding energy 
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for Li without artificially renormalizing the interactions [81,106]. As pairing effects 

had been identified to be crucial [61], by introducing a phenomenological force in the 

pairing channel, a self-consistent description of the Li isotopic chain became possible 

within the relativistic Hartree-Bogolyubov framework [107]. Effective interactions valid 

near the driplines have meanwhile been developed in the shell model [108]. Nevertheless, 

configuration mixing, required to produce a realistic ground state for Li, is still intro

duced by hand. In the mean time, some ab-initio methods have reached nuclei with mass 

eleven [67,70]. Although the general spectra for light nuclei look promising, ab-initio 

models still have difficulties dealing with halo nuclei, Li in particular. 

There are still some open questions regarding Li, even when considering the ground 

state only. Should the excitation and quadrupole deformation of 9Li play a role in the 

structure of Li? Using the three-body framework, it was our aim to shed some light on 

these issues under the constraints provided by the new 10Li data. Besides the 3/2~ ground 

state, the l /2~ first excited state of Li should also be present in the model space due to 

its low excitation energy of 2.69 MeV [99]. We indeed carried out calculations in such an 

extended model space, but results were not sensitive to the inclusion of the first excited 

state of the core. This is probably due to the lower spin of this state when compared to 

the ground state; there are no new orbitals brought into the configuration space when the 

first excited state of the core is included. We then concluded that core excitation is not 

significant in Li. This conclusion is in contrary to Be (= Be + n + n), a nucleus 

differing from Li by a single proton, which has been studied within the same model [92]. 

There, the ground state and the first excited states of the 10Be core have spins 0 + and 2 + , 

respectively. Consequently, the model space of 12Be is enlarged by inclusion of the first 

excited state of the core, and as expected, core excitation was found to be important in 

12Be. For reasons given in this paragraph and to avoid unnecessarily tedious discussions, 

we only present results for Li built on the ground state of Li. 
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2.3.2 10Li 

In the three-body picture, one can not understand the Borromean nucleus Li without 

a good description of its particle-unbound core + n subsystem 10Li. The information on 

10Li is summarized in [99]. Therein, it is possible to see the large number of experiments 

that have been performed to measure the spectrum of Li, but also the contradictory 

energy, parity, and spin assignments made. 

Within the few-body picture, °Li is considered as a core + n system with a neutron 

above the Li core. The extra neutron is allowed to live in orbits around the core labelled 

by nlj, where n is the radial quantum number, / is the orbital momentum relative to 

the center-of-mass of the core, and j = I <g) s is the neutron's angular momentum with 

s = 1/2 being the neutron's internal spin. These orbits are assumed to be produced by 

a core-n potential to be defined later. Based on the experimental evidence and using 

the core + n decomposition, one can conclude the following regarding the low energy 

structure of 10Li [99]: 

1. The ground state of Li contains a valence neutron in a 2s ] / 2 state at about 

+50 keV or below. 

2. there is a lpi/2 resonant state at several hundred keV, to be also referred to as the 

p-resonance. This resonance is often assumed to be around +500 keV [58]. 

3. There is no clear evidence for a d-state (I = 2) below +3 MeV. This state will be 

referred to as the d-resonance. 

Along with other constraints, these observations are used to fix parameters of the core-n 

interaction. 

2.3.3 Interactions 

In this section, the potentials appearing in Eq. (2.22) used to bind u L i are discussed. 

In three-body models, the interaction between the two neutrons, Vn~n, is usually taken 

from a parameterization of the low energy nucleon-nucleon scattering phase shifts, which 
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are well understood. For Vn~n, we use the soft-core Gogny interaction (also known as 

the GPT interaction) [109]. It includes central, tensor, spin-orbit, and spin-spin terms. 

The quadratic LL term is neglected since its effects are not strongly felt. 

Most ambiguities reside in pinning down the effective interaction Vcore~n between 

the 9Li core and each neutron. In the following discussion, TCore—n stands for any of the 

two pair-wise coordinates between the core and the neutrons depicted in Figure 2.2. The 

form of the core-n interaction is based on the idea of the core being a rotor generating 

a deformed field. This field is taken as a deformed Woods-Saxon potential accompanied 

by a spin-orbit part proportional to a derivative of another non-deformed Woods-Saxon 

potential: 

ycore-n (-? /;\ _ yl 
'ws 1 + exp 

hi- s) 

frcore-n~R{e,4>)\A l ( h 

\ aws 

Vso d 

(2.34) 

core—n u ' core—n 

m-jrC 

• 1 

1 , / fcore—n Rso 
1 + exp 

V aso 

where I is the operator of the orbital momentum between the core and a neutron, s is 

the operator of a neutron's spin, and m^ is the mass of a pion. For practical calculations, 

(h/\m-nc)) = 2.0 fm . Both angular momentum operators are in units of h. 

The central Woods-Saxon part in Eq. (2.34) depends on the core's quadrupole de

formation /?2 through the radius R(6,(f>) = Rws(/32)[l + /^2^2o(^)^)]) where 9 and cf> 

are spherical angles in the rest frame of the core. When /?2 = 0, a standard value 

1/3 
Rws = 1.25ACore — 2.60 fm is used [110], where Acore is the mass number of the core. 

When /?2 7̂  0, the radius parameter RWs{P2) is adjusted to meet the volume conserva

tion imposed on the central part of the interaction [10], and the dependence of Rws on 

deformation is shown in Figure 2.3. In this and other figures, results are shown only up 

to fa = 0.7, a value that is unrealistically large. The spin-orbit term is left undeformed. 

Radius JRSO was made equal to Rws at any deformation. The diffusenesses are fixed to the 

standard value aws = aso = 0.65 fm [110]. To increase the flexibility of the interaction, 

the depth V^s of the central part depends on the relative orbital momentum I. Different 
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Figure 2.3: Radius of the Li-n interaction as a function of deformation. 

V^s and V£,s are considered for I = 0 and 1, respectively, and the same V^s is taken for 

all partial waves with I > 2. The depth Vso of the spin-orbit term is /-independent. 

The rotor-like picture for 9Li is probably an oversimplification, and thus we will not 

impose that the quadrupole deformation be determined by the strength of E2 transition 

between the ground state and the first excited state of the core, which in any case is not 

known. Therefore, in the three-body model of Li the deformation parameter fo is a 

free parameter chosen from a physically reasonable interval. In principle, the deformation 

parameter can take negative values if the core is oblate. We found that the quadrupole 

force for oblate shapes of Li produces more repulsion when compared to the prolate case 

and therefore less binding energy. For this reason, only the prolate deformation (/% > 0) 

of the Li core is considered in what follows. It should be noted that the preference of 

a prolate deformation contradicts a recently measured negative quadrupole moment of 

9Li [111]. 

In case of an undeformed 9Li, all Jn states in 10Li originating from a given nlj neutron 

orbital are degenerate. The degeneracy is, however, removed as soon as the spherical 

symmetry is broken by non-zero deformation. When there is deformation, l,j are no 

longer good quantum numbers, and a nuclear state J7r( Li) contains a superposition 

of different nlj components coupled to the ground state of Li with J^^Li) = 3/2~. 

Nevertheless, for simplicity, we will refer to any multi-component state J77 ( L i ) , by the 
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nlj component into which the state collapses in the limit of no deformation. 

The depth of the core-n interaction can now be adjusted to reproduce low-lying levels 

in 10Li. Because the experimental data on 10Li from Section 2.3.2 is inconclusive about 

positions of the p- and d-resonances, these states can be moved around a bit to obtain 

reasonable results for 11Li. In particular, to reproduce the experimental binding of ^L i , 

we place the p-resonance in 10Li at +400 keV. By comparison of 10Li with ^ B e , a 

nucleus with the same number of neutrons, one would expect the d-resonance in 10Li to 

be close to +2 MeV [112]. In this work, the d-resonance is placed at +3.4 MeV. If the 

d-resonance were at much higher energy, the three-body binding energy of Li would 

not be reproduced; if it were at much lower energy, it would become bound more than 

the p-resonance at large deformations in contradiction to experimental data on ^L i . The 

final restriction on the core-n interaction is that the interaction must produce the IP3/2 

orbital at —4.1 MeV to match the neutron separation energy of 9Li. Under all these 

assumptions, the depths v£,s and Vso of the core-n interaction are adjusted so that the 

interaction produces a series of levels, lowest of which are shown in Figure 2.4 for the case 

of zero deformation. In the deformed cases, fitting the core-n potential means adjusting its 

depths so that the centroids of IP3/2, 2si/2> lPi/2 a n d W5/2 orbitals are kept at -4.1 MeV, 

+50 keV, +400 keV and +3.4 MeV, respectively. The variation of potential depths with 

deformation is finally shown in Figure 2.5. The corresponding two-body bound states 

and the lowest resonances in °Li are shown in Figure 2.6 and Figure 2.7, respectively. 

We note that, with this choice of the core-n and n-n potentials, no three-body force is 

needed to reproduce the three-body binding energy of Li. 

Finally, in order to approximately satisfy the exclusion principle, the bound l s 1 /2 and 

1^3/2 neutron orbitals are projected out of the model space before diagonalization [65]. 

2.3.4 Results 

Calculations were performed using the computer code EFADD [113]. The full model space 

in Eq. (2.21) contained all valence terms with n/a„ < 18 and K < 22. The hyper-radial 
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Figure 2.4: The lowest energy levels in °Li produced by the core-n interaction. It is 
assumed that the valence neutron is coupled to the Jn = 3/2~ ground state of 9Li and 
that the 9Li core is undeformed, i.e. fa = 0. The levels, energies of which are shown, 
were used to restrict parameters of the core-n interaction. The two lowest levels, lS]/2 
and IP3/2, are forbidden for valence neutrons in 10Li and need to be projected out of the 
valence model space. The other orbitals are free to be occupied by valence neutrons. 

Laguerre functions reach out to the maximum hyper-radius 20 fm. 

Figure 2.8 shows the convergence of the three-body binding energy of Li with the 

size of the model space measured by the maximum hyper-momentum. The figure contains 

three sets of results corresponding to /?2 = 0.0,0.3 and 0.6. On one hand, the convergence 

exhibits the well known exponential dependence when Kmax > 12 for all deformations 

studied. On the other hand, in all cases, the convergence rate is very slow, much slower 

than in the Be case [92]. Moreover, the convergence rate decreases with increasing 
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9Li) and the total spin of 10Li. 

deformation. It is thus necessary to use extrapolated energy values for three-body binding 

energies. 

The three-body binding energy of n L i as a function of deformation is presented 

in Figure 2.9. The figure contains both the values for the maximum hyper-momentum 

Kmax — 22 and those obtained through the extrapolation in Kmax. Contrary to the 

case of Be where the energy gain was large, in Li a very small additional binding is 

obtained from the quadrupole coupling, and as the deformation becomes large the system 
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Figure 2.7: Two-body binding energy of continuum states in °Li as a function of defor
mation. The legend refers to nlj valence neutron orbitals (coupled to the 3/2~ ground 
state of 9Li) the and total spin of 10Li. Both s-wave states refer to virtual states while 
the other states correspond to real resonances. 
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max 

Figure 2.8: Dependence of the three-body binding energy of Li on the size of the model 
space determined by the maximum hyper-momentum Kmax included in calculations. For 
any Kmax, all possible valence channels with K < Kmax are included in the wavefunction. 
The lines are exponential fits to the tails of data sets. 

becomes less bound. 

The rms matter radii of the corresponding wavefunctions are shown in Figure 2.10. To 

compute the matter radii of Li, the rms matter radius 2.32 fm of the Li core was used 

in Eq. (2.29) [13]. In Figure 2.10, the matter radii were obtained for the maximum hyper-

momentum Kmax = 22, but their variations between Kmax = 20 and Kmax — 22 were 

less than 1%. The experimental three-body binding energy and the rms matter radius 

impose a constraint on values of the deformation parameter, namely /?2 < 0.3. We note 

that the extrapolation was only done for three-body binding energies since it is the only 

observable that has a well established exponential dependence on Kmax. Our prediction 

for the rms proton radius obtained for /?2 = 0.3 is ( r | ) = 2.37 fm in agreement with 

the recent measurement of the charge radius of l xLi [48]. 

Figure 2.11 shows the probabilities to find the three main structural components in the 

ground state of n L i , namely (si/2) , (P1/2)2 a n d (<%/2)2 components. Here, jj coupling 

scheme {lxjx){lyjv)
 m the Y Jacobi basis is used (see Figure 2.1): lx and ly are orbital 

momenta along Jacobi vectors x and y, and j ' s are orbital momenta / coupled to spins 

of neutrons sitting at the ends of corresponding Jacobi vectors. When the deformation of 

the core is small, the ground state of 11Li is almost 60% {P1/2) > f° r large deformations 
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Figure 2.9: Three-body binding energy of n L i as a function of deformation. The squares 
correspond to values obtained for Kmax = 22, the circles are values obtained through 
the extrapolation in Kmax for Kmax > 12. Lines are to guide the eye. Shaded region 
corresponds to experimental value 295 ± 26 keV [101]. 

it becomes more than 80% ( s 1 / 2 ) 2 . The region around /% = 0.3 corresponds to the 

transition between these two configurations where both components are populated with 

equal probability. Regardless of the deformation, the weight of the (d^/2) configuration 

is small, less than about 7%. This result is in contrast with the three-body calculations 

for 12Be in [92] where the (<%/2)
2 configuration accounts for about 30% in the ground 

state of 12Be. 

Figure 2.10: Rms matter radius of ^ L i as a function of deformation. The squares cor
respond to values obtained for Kmax = 22, the line is to guide the eye. Shaded region 
corresponds to the value consistent with reaction data [54]. 
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Figure 2.11: Probabilities of the three main structural components in the ground state 

of u L i as a function of deformation. The lines are to guide the eye. 

One has to realize that there is no unique parameterization for the effective core-

n interaction. We have convinced ourselves, though, that the features shown here for 

the structure of the ground state of Li do not result from a specific parameterization. 

Rather, the main features emerge from the constraints imposed on continuum states in 

°Li. Other interaction parameterizations, using different interaction radii or spin-orbit 

parameters, produce exactly the same characteristics of n L i . 

It is important to understand the implications of the Li structure on n L i . Despite 

the large number of experiments, a close study of [99] raises questions about the preci

sion with which states in Li are known. We have explored the possibility of different 

assumptions for the neutron states to which the core-n interaction is fitted, namely 2s-|/2 

at +50 keV; lpi /2 at +400 keV and ld 5 / 2 at +3.4 MeV. Of these, the least uncertain 

is the 2sj/2 state. We have checked that the main features of the present work are not 

changed by moving the lpi/2 neutron orbital to +500 keV. More important is the un

certainty in the location of the ld5 /2 state. There is no clear experimental evidence for a 

d-resonance at +3.4 MeV or at any lower energy. If the d-resonance is broad or it is su

perposed by other states, it could be hard to observe experimentally. What happens if the 

d-resonance is pushed down? We refitted the core-n interaction for deformation /% = 0.3, 

fixing the centroid of the d-resonance at +2.5 MeV. An immediate consequence is a gain 
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in three-body binding in Li of about 150 keV. However this additional attraction would 

not be sufficient to change the structure of the ground state of Li, which would remain 

essentially (si/2) and (P1/2) •> with (^5/2) accounting only for about 10%. 

2.3.5 Conclusions 

We performed three-body calculations for the ground state of u L i including deformation 

and excitation of Li. We find that reorientation effects due to core deformation can 

account for the known configuration admixture of s-waves and p-waves in Li. With 

a three-body model, in which the core is treated as a deformed rotor, it is possible 

to reproduce the three-body binding energy, the rms matter radius, the rms proton 

radius, and the structure of Li consistent with experiment. On the other side, core 

excitation is found to be unimportant. In the three-body model, the strength of d-waves 

in Li is predicted to be very small ( « 7%), which is in disagreement with shell-model 

calculations [50]. So far, experiments have not been able to make a clear statement about 

the position of the d-resonance in Li. In the three-body calculations, we have assumed 

that such a resonance would be above +3 MeV; however, the shell model produces this 

state at a much lower energy around 2 MeV [50]. Resolving experimentally the position of 

d-states in 10Li will settle once and for all the structure of the ground state of n L i . Such 

an experiment should be done with a reaction starting from 9Li rather than knock-out 

from Li since there is not much d-waves in Li. One possibility would be to repeat the 

Li(d,p) Li experiment [114] at a higher beam energy. 

2.4 6He in the three-body model 

In this section, we repeat some calculations for 6He published in [94]. The goal is to gain 

access to three-body results for He and have them available for a comparative study with 

the outcome of MiCH for this nucleus in Chapter 5. The main purpose of the original 

three-body paper [94] was to investigate three-body continuum structure and response 

functions in "He, but as part of the work the wavefunction for the ground state of He was 
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constructed as well. In that work, hyper-spherical expansion and Pauli blocking along the 

lines described in this chapter were employed. The ground state of "He in the cited work 

is regarded as possibly the best within the formalism presented in this chapter [115]. 

2.4.1 Introduction 

The nucleus "He, the lightest of the two-neutron halo nuclei, has been used throughout 

the years as a reference nucleus in the realm of Borromean nuclei. This nucleus has been 

tackled in a variety of models, ranging from three-body [13,94,116] through microscopic 

cluster [76,78,79] to fully microscopic models [69,117]. Because of the fairly simple struc

ture of He, many theoretical models are in agreement on the bulk properties of the 

ground state, such as binding energies, radii and the occurrence of halo structure. How

ever, as will be demonstrated in Chapter 5, one needs to look deeper to find discrepancies 

between different models. Here, we focus on the three-body description of this nucleus. 

In the three-body picture, He in its ground state is considerably simpler to tackle 

than Li. In fact, He is probably the two-neutron halo nucleus on which any three-body 

model would stand the most firmly for several reasons. First, a free 4He is exceptionally 

well bound among light nuclei, its J77 = 0+ ground state has zero quadrupole moment, 

and the first excited state (also 0 + ) is above 20 MeV [118]. Moreover, from the microscopic 

point of view, He is a fairly simple object: in a first approximation, He contains four 

nucleons in the lowest possible spherical ls^ /2 mean-field orbit. Here, the nlj notation 

from Section 2.3.2 is used. Within the three-body approximation, it is then reasonable 

to assume that He remains hardly polarized in He, even though this assumption may 

contradict conclusions of some microscopic models in which distortion of the core in He 

has been found important [76]. Thus, in three-body calculations of "He, we consider 

the 4He core only in its non-deformed ground state. Second, the core-n potential can 

be conveniently fitted to experimentally known scattering phase shifts. But there is no 

such thing as a free lunch: even with the core-n interaction fitted to scattering data, He 

suffers from underbinding, as will be shown in Section 2.4.2. Third, ground states of both 
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4He and 6He are Jn = 0 + objects which considerably decreases the number of valence 

channels open for the two extra neutrons. Finally, the Isi/2 neutron orbital (consequently 

the lowest J77 = l / 2 + state of He+n subsystem) produced by the core-n potential is the 

only one that needs to be projected out of the valence model space. 

2.4.2 Interactions 

The two-body interactions from Eq. (2.22) are adjusted as follows. The He-n interac

tion ycore-n combines a central Woods-Saxon and a spin-orbit Woods-Saxon-derivative 

parts as in Eq. (2.34). The nuclear field is spherically symmetric because the core is 

undeformed. Parameters of the core-n interaction are taken from [94]: Rws = 2.0 fm, 

Rso = 1.5 fm, aws = 0.7 fm, aso = 0.35 fm, V*,8 = V%s = -43.0 MeV, V*8 = -21.5 MeV, 

Vs0 = —40.0 MeV. The core-n interaction is zero for partial waves with I > 2. This inter

action reproduces a-n scattering phase shifts satisfactorily. As for the interaction between 

valence neutrons Vn~n, a realistic Gogny (GPT) force is used [109]. 

With these two-body interactions, the three-body model of He suffers from the prob

lem of underbinding [13,116]. It is commonly argued that physics underlying the problem 

of insufficient three-body binding may have to be explored beyond three-body models. 

Possible reasons for underbinding include polarization of the core and the influence of 

closed channels, most important of which is 3 H+ 3 H; use of local energy-independent 

potentials neglecting exchange interactions that would be introduced through antisym-

metrization effects; and two-body interactions may not be the same in the presence of 

the third cluster as those in a free space. To cure the underbinding problem in [94], an 

effective three-body force was introduced: 

v3body = -1-50 , , ( 2 3 5 ) 

l + (p/5.0)3 L J V 

to simulate the effects of the closed 3 H + 3 H channel. 
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Figure 2.12: Dependence of the three-body binding energy of 6He on the size of the 
model space determined by the maximum hyper-momentum Kmax included in calcula
tions. For each point, all possible valence channels with K < Kmax are included in the 
wavefunction. 

2.4.3 Results 

In this section, some results for 6He studied in the three-body model are presented; the 

rest of the discussion will be delayed until Chapter 5. Because the three-body calculations 

of He are computationally cheap compared to the case of Li in Section 2.3, we can 

consider a much larger model space than for 11Li. The wavefunction for 6He is written 

in the T Jacobi basis, and all hyper-radial Laguerre basis functions with niag < 25 are 

included. 

The convergence of the three-body binding energy of He with the size of the model 

space determined by the maximum hyper-momentum Kmax is shown in Figure 2.12. For 

Kmax = 40, the three-body binding energy is -0.98 MeV, a value that would also be 

obtained from an exponential fit to the high-.K"maa; tail of data points in Figure 2.12. 

Therefore, results for Kmax = 40 are considered converged. 

For the converged state, the weights of the five dominant valence configurations in the 

T Jacobi basis are shown in Table 2.1. As we explained in Section 2.1, hyper-radial basis 

states do not have a well defined physical meaning. Therefore, the weights in the table 

were summed over niag for a given combination {K, lx,ly, L, S}. The five configurations 

account for nearly the entire wavefunction. However, this group of components is by itself 
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Table 2.1: Probabilities of the five dominant components in the T Jacobi basis in the 
ground state of "He. Here, lx and ly are orbital momenta associated with Jacobi coordi
nates x and y from Figure 2.1, L and S are the total orbital momentum and spin of the 
valence part of the wavefunction, as in Eq. (2.18). 

T Jacobi basis 

alias K lx ly L S probability [%] 

K = 2 s-waves 2 0 0 0 0 80.89 
K = 2 p-waves 2 1 1 1 1 11.03 
K = 0 s-waves 0 0 0 0 0 4.17 
K = 6 d-waves 6 2 2 0 0 1.64 
K = 6 f-waves 6 3 3 1 1 0.78 

X) = 98.51 

not large enough to deliver converged results, as can for example be seen from Figure 2.12 

where the three-body binding energy for Kmax = 8 is about 400 keV above its converged 

value. The ground state of 6He is controlled by K = 2 valence components. The spin-

singlet (S = 0) valence configurations account for about 86.7% of the wavefunction; the 

admixed spin-triplet (S = 1) components exist only due to a spin-orbit coupling. 

Similarly, the probabilities of dominant configurations in the Y Jacobi basis are shown 

in Table 2.2. In the Y Jacobi basis, the ground state of "He is dominated by valence 

terms with lx = 1, i.e. by terms in which the valence neutrons orbit the core in relative 

p-waves in agreement with the shell-model picture where the lowest p-shell is the first 

shell available for valence neutrons outside the 4He core. 

Figure 2.13 shows the hyper-radial dependence of valence configurations from Table 2.1. 

Again, for a given valence configuration, hyper-radial dependences were summed over niag 

and multiplied by a factor p ' to bring them to the form u(p) introduced in Eq. (2.11). 

This form of hyper-radial functions is preferred because of its simpler asymptotic prop

erties from Eq. (2.14) and Eq. (2.15). As expected, all hyper-radial functions vanish at 

small hyper-radii. Probabilities of valence configurations in Table 2.1 were obtained by 

integrating squared hyper-radial functions from Figure 2.13 over the hyper-radius. 

Further discussion on 6He is postponed until Chapter 5 where the three-body results 
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Table 2.2: Probabilities of the three dominant components in the Y Jacobi basis in the 
ground state of He. Here, jj coupling is used. Schematically ji = ^ ® Sj, i = x,y, where 
ll are orbital momenta associated with Jacobi vectors x and y in the Y Jacobi basis 
in Figure 2.1 and s^ are spins of neutrons sitting at the ends of corresponding Jacobi 
vectors. 

Y Jacobi basis 

''X Jx 

1 3/2 
0 1/2 
1 1/2 

h Jy 
1 3/2 
0 1/2 
1 1/2 

E = 

probability [%] 

85.01 
7.83 
5.79 

98.63 

6 8 10 12 14 16 
p[fm] 

Figure 2.13: Hyper-radial dependence of the five dominant channels from Table 2.1 in 

the three-body wavefunction of 6He. 

will be compared with those obtained in MiCH. 
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Chapter 3 

Core 

In the previous chapter, the formalism for the valence part attached to a macroscopic core 

was outlined. The three-body-like construction of the valence part should guarantee the 

proper Borromean asymptotics of the wavefunction. To develop MiCH further, we now 

wish to find a suitable microscopic model for the core to replace the core's macroscopic 

representation in Eq. (2.21). 

Let us start the search for the core's model by defining our needs. First, for the 

purposes of the present work, we need a microscopic model of He. Our ultimate future 

goal, however, is to tackle heavier two-neutron halo nuclei, especially Li. Therefore, to 

have MiCH developed in a unified fashion, the model for the core should be capable to 

describe heavier cores, such as Li. However, in the light of upcoming chapters, there is a 

risk of running into computational difficulties for systems heavier than "He. It is known 

that the size of calculations in microscopic models grows rapidly with mass number. In 

fact, some models such as Green's function Monte Carlo are currently limited to masses 

A < 12 [67] due to computational demand. For future applications, the model for the 

core needs to be flexible enough to provide either a fully microscopic or microscopic 

cluster picture of the core. In the later version, the core would be built from microscopic 

clusters with some internal degrees of freedom frozen. Second, the core's model should 

provide reasonably accurate structure information so that we can focus on effects due 

to the valence particles. This constraint requires a certain level of sophistication in the 
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description of the core. Third, the model must handle central as well as non-central 

nucleon-nucleon forces. This requirement is important because the studied two-neutron 

halo nuclei lie outside of the lowest s-shell in the region where non-central forces are 

known to play an important role. Fourth, unlike for the valence part, there is no need to 

impose special asymptotic requirements on the core's wavefunction, because all potential 

cores are tightly bound systems. Last, the wavefunction of the core should be expressed 

completely in Jacobi coordinates. Along with the valence part given in terms of Jacobi 

coordinates, fulfilment of this constraint removes by construction the spurious center-of-

mass motion. 

At first sight, the literature is very rich in microscopic structure models of light nu

clei, some of which were mentioned in Chapter 1. In [119], several sophisticated models 

were applied to 4He bound by the realistic AV8' nucleon-nucleon force [120] and their re

sults were found to be essentially the same. Models tested in [119] (see references therein) 

include: the Faddeev-Yakubovsky method, the coupled-rearrangement-channel Gaussian-

basis variational model, the stochastic variational model, the hyper-spherical variational 

model, the Green's function Monte Carlo, the no-core shell model, and the effective inter

action hyper-spherical harmonic method. Many microscopic structure models mentioned 

in Chapter 1 and [119] meet some of the criteria imposed above on microscopic treatment 

of the core, but the pool of models meeting all of them is very limited. The most restric

tive requirement turns out to be usage of Jacobi coordinates. From all the mentioned 

structure models, the stochastic variational model meets all our criteria. The rest of this 

chapter is dedicated to this model. 

3.1 Stochastic variational model 

As its name suggests, the stochastic variational model (SVM) represents a variational 

approach to many-body problems. SVM relies on the expansion of wavefunctions in terms 

of functionally simple basis states and a stochastic optimization of variational parameters. 

The original idea of stochastic optimization appeared in [121]. Later, the method was 
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improved further [74,122]. The basis functions used in the original and later version are 

different, though. Hereafter, we shall by SVM refer to the later version of the model. 

SVM has been also applied to a variety of problems in other branches of physics [123]. 

There are two versions of the model, differing by the treatment of the angular part of 

the wavefunction: vector-coupled and global. Following [124], the vector-coupled version 

of SVM is used in the present work. 

In this section, a microscopic version of SVM applied to the core nucleus in 6He, 

He, is described first. This version of the model has been used to calculate properties of 

nuclear systems with mass numbers less than eight bound by effective central nucleon-

nucleon interactions [74]. Later, the method was extended to include non-central nucleon-

nucleon interactions. Properties computed for 3H and He bound by non-central forces 

agreed with those from other microscopic structure models [119,125]. There also exists a 

microscopic cluster version of SVM, which has been applied to somewhat heavier nuclear 

systems, and which potentially could be used to describe 9Li core in u L i studied within 

MiCH. The microscopic cluster version of the model is outlined at the end of this section. 

The accuracy of any variational method crucially depends on the choice of trial wave-

functions. SVM prefers correlated Gaussians [126,127] as trial variational basis functions. 

Before their adoption in SVM, these functions proved to be remarkably flexible in various 

few-body calculations, mainly in atomic and molecular physics, see for example [128,129]. 

Also, the basis of correlated Gaussians allows analytical computation of many matrix el

ements and is easily adaptable to the permutational symmetry of fermionic systems. 

In principle, any one-body square-integrable function of vector f and with angular 

momentum I and its projection m can be approximated to any accuracy by a linear 

combination of Gaussians of continuous size parameter a: 

exp ( ~ ^ 2 ) ylm{r), ylm{r) = rl Ylm(nr), (3.1) 

where ^ / m and Y/m are solid and spherical harmonics, respectively, and Qr comprises 

the polar and azimuthal angles associated with f. The radial factor in solid harmonics 
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improves the short-range behavior of basis states. This simple observation for a sin

gle particle can be easily generalized to an A-body problem in either an uncorrelated 

or a correlated fashion [130]. In an uncorrelated approach, the many-body basis states 

would consist of Slater determinants of single-particle Gaussian packets; in a correlated 

approach, inter-particle correlations are explicitly built into basis states. 

SVM follows the correlated approach and employs basis states expressed fully in 

Jacobi coordinates. Jacobi coordinates for a four-particle system are defined in Figure 3.1. 

Being relative coordinates, Jacobi coordinates not only engage inter-particle correlations, 

but also make the removal of the spurious motion of the center of mass trivial. Then, a 

non-antisymmetrized basis term for He in either K- or H-like Jacobi basis is written as: 

KoreJ?oreTcoreMTcore&
A) = exp (^—xAxj X 

8ili2izLl2dx)®xsl2sl2zS X 
Jcore 

TTl2Tl23TcoreMTcore, (3-2) 

where J^, r e denotes the total angular momentum and the parity of the state, Tcore and 

Mxcore are the total isospin and its projection. The projection of J c o r e is suppressed for 

clarity. Index jcore comprises all other quantum numbers as well as the Jacobi channel 

identifier K or H, i.e. jCore = {h,h, k, ^12, L, S\2, Si 23, S, Ti2,Ti23, K/H}. The function 

®U WQLIOL(^ )
 1S c n o s e n ^ a vector-coupled product of solid harmonics of relative Jacobi 

coordinates: 

\l2l3Ll2L(x) = ^ ( ^ l ) ® ^ ^ ) ® 3^3(^3) 
12 

(3.3) 

The spin XSi2Si23S
 a n c i isospin TT12T123TCOreMT P a r t s consist of successively coupled 
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single-particle spins and isospins: 

^ s ' l 2 s ' l 2 3 ' s ' 

TT12Tl23TcoreMTcore 

[Xpl®XP2]Su®Xp3\s ®XP 4 

\\TPI®TP2]T^®TP^ 
-123 

JS 

TP4 

(3.4) 

• (3-5) 
J TCOreMTcore 

The projection number Mrpcore is fixed by the number of protons and neutrons in the nu

cleus. Constrained by vector coupling, different sets of orbital momenta {I1J2,13, £12, L}, 

spins {S\2,S\23,S}, and isospins {Ti2,7l23> Tcore} may exist and they shall be referred 

to as different orbital, spin, and isospin channels, respectively. 

The Gaussian part in Eq. (3.2) deserves closer attention. The symbol A stands for a 

3 x 3 dimensional positive-definite, symmetric matrix of non-linear parameters, specific to 

each basis element. The quadratic form xAx involves scalar products of Jacobi vectors: 

Acore—1 

zAx = Y~̂  A 
*J=1 

IjXi • Xj (3-6) 

with Acore = 4 being the mass number of the core nucleus. Due to the symmetricity 

requirement, the number of independent elements in matrix A is Acore(Acore — l ) /2 = 6. 

Also notice that, due to dimensions of matrix A, the summation in Eq. (3.6) goes only 

up to Acore — 1 = 3 which prevents the Acore-th. Jacobi coordinate £4, the position of 

the center of mass of the nucleus, to enter calculations. The Gaussian argument can also 

be written in a slightly different form: 

xAx= Y, aij{rpi-rPjy (3.7) 

i<j=l 

with a simple relationship between elements of matrix A and coefficients a: 

aij 

-Acore ~~ 1 Acore ~ 1 

= - Yl £ ukiAMuij, i < 3, (3.8) 

where U is a transformation matrix introduced in Figure 3.1. All coefficients a are non-
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Let us consider a system of four identical particles pi, i = 1,2,3,4 at positions fp- in lab
oratory frame. Then, there are two different—K- and H-like—sets of Jacobi coordinates 
x = {xj,j = 1,2,3,4}: 

K H 

Pi 9 

P 2 ' 

5 ®P3 

n* 
®P4 

The first three Jacobi coordinates are relative coordinates: they originate and terminate 
at centers of masses of subgroups of particles they connect. The last Jacobi coordinate 
X4 (not shown in the graphics) is the same in the two Jacobi sets and is equal to the 
position of the center of mass of the four-particle system in the laboratory frame. Jacobi 
and single-particle coordinates are related simply as: 

4 

with the transformation matrix U being: 

K H 

/ - 1 1 0 0 \ 
- 1 / 2 - 1 / 2 1 0 
- 1 / 3 - 1 / 3 - 1 / 3 1 

V 1/4 1/4 1/4 1/4 J 

( - 1 1 0 0 \ 
0 0 - 1 1 

- 1 / 2 - 1 / 2 1/2 1/2 
V 1/4 1/4 1/4 1/4 J 

Figure 3.1: Definition of Jacobi coordinates for a system of four identical particles. 

negative, and their number equals to the number of independent elements in matrix A. 

The advantage of coefficients a is that, unlike elements of A, they scale directly inter-

particle distances in the Gaussian and thus provide better intuitive feeling for the size of 

the nucleus. This advantage is useful during the process of parameter optimization. 

The Gaussian in Eq. (3.2) as a whole is a spherically symmetric object. However, as 

long as the matrix A is non-diagonal, the Gaussian carries angular information due to 

cross terms xi • Xj. The power series expansion of exp(—A^x^ • Xj) contains high powers 

of X{ • Xj, which can describe higher partial waves associated with the coordinates x\ and 
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Xj. In such a case, quantum numbers I1J2J3 m
 ^/I/O/OLIOLIOQL (^0 loose their meaning 

of orbital momentum quantum numbers for a given basis state, and can be considered 

discrete variational parameters, instead. 

The full wavefunction is then written as an antisymmetrized linear combination of 

basis sets from Eq. (3.2): 

Jcore Tcore MTCOre ~ ^ Icore Jcore Tcore MTCOre 7 c o r e Jcore Tcore MTCOre ' 

Here, Acore is the antisymmetrization operator which runs over all permutations of par

ticles inside the nucleus, i.e. Acore = ^ 1 c o r e(—Vfp with P being the permutation 

operator and p being the permutation parity. The sum in Eq. (3.9) is left without any 

summation index because the wavefunction is constructed stochastically as will be ex

plained below. Due to the stochastic optimization, there may be several basis terms 

present in the wavefunction with exactly the same combination of jcore and differing 

only by A. Therefore, the linear coefficient c in Eq. (3.9) must also carry the A-matrix 

index. 

The nuclear Hamiltonian for the core nucleus includes kinetic energies of all nucleons 

Tj and nucleon-nucleon potentials V^: 

Acore Acore 

i=l l=i<j 

Note that the kinetic energy of the total center of mass does not need to be subtracted, 

because such component is removed by construction of basis terms in Eq. (3.2). Linear 

expansion coefficients c in Eq. (3.9) can be obtained through the energy matrix diagonal-

ization in Eq. (2.25). To do that, the wavefunction in Eq. (3.9) is written schematically 

as $ = Ylici^u a n d energy and overlap matrix elements are computed as in Eq. (2.26) 

with the Hamiltonian from Eq. (3.10). 

It is instructive to visualize the effects of the antisymmetrizer Acore on the wavefunc

tion in Eq. (3.9). To do that, a new set of vectors, a set of spots rj , i = 1,2,3,4, is defined. 
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For the non-antisymmetrized system of particles, spots coincide with single-particle vec

tors, that is f{ = fp-. When the antisymmetrizer is invoked, spots are not affected, but 

particles are: in particle permutations, particles are moved around between spots. As a 

consequence, each particle index in the definition of Jacobi coordinates in Figure 3.1 and 

also in Eq. (3.2) needs to be replaced by an index of the spot hosting that particle in a 

given permutation. This way, not only single-particle spins and isospins travel between 

spots, but also Jacobi coordinates are changed. As an example, the permutation swapping 

particles 2 and 3 causes the following reorientation of Jacobi vectors: 

Pi® X/ >®p2 Pi® ®P3 Pi® ? >©P2 

Xi 

P2< ®VA 

Through the distinction of particles and spots, the wavefunction automatically adjusts 

itself to the action of the antisymmetrizer. Once the antisymmetrizer has been com

pletely executed, spot indexes are the only ones prevailing, while all particle indexes 

have vanished. Needless to say, particles are dummy objects. Yet in literature, the term 

"particles" is used to refer to both our particles and what we call spots. For the clarity 

of the upcoming discussion, however, we find the concept of spots useful. 

In SVM, all variational parameters are optimized stochastically. The main arguments 

for random optimization go as follows: 

• The simplest choice of non-linear parameters would be to use only a diagonal matrix 

A, elements of which could be chosen deterministically, for example in a geometric 

progression [131]. The problem with such an approach is that the parameter grid 

for each diagonal element of A would need to be dense enough which would re

sult in wavefunctions with many terms. Even then, using deterministic methods of 

parameter selection, it would be hard to avoid local minima in multi-dimensional 

parameter spaces. Moreover, not all of the parameter grid points would be equally 

important. The reason is that for a given set of Jacobi coordinates and orbital, 
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spin, and isospin channels, a linear combination of correlated Gaussians forms a 

dense, non-orthogonal set. As a consequence, different sets of coefficients A (or a) 

represent the wavefunction equally well and none of them are really indispensable. 

This property of basis functions suggest the idea of a completely random selection 

of non-linear parameters. 

• Furthermore, the nuclear interactions are strongly state dependent and for a realis

tic description of a nucleus, many different orbital, spin, and isospin channels need 

to be considered. The number of possible channels grows rapidly with the number 

of nucleons; but again, some channels will receive larger weights in the wavefunction 

than others. 

• Also, in principle, all basis terms could be expressed in the same Jacobi set which 

would, as in three-body models, require inclusion of high partial waves to reach 

converged results. The convergence in orbital momentum is very slow in general, as 

we have seen for three-body results in Chapter 2, for example. Moreover, in practical 

many-body calculations, matrix element computation involving high partial waves 

is tedious and time consuming. On the other side, mixing different Jacobi sets in the 

wavefunction delivers faster convergence and only the low terms of the partial wave 

expansion are needed. This is because different Jacobi sets bring in different inter-

particle correlations and, as demonstrated by Eq. (2.27) for a three-body problem, 

low partial waves in one Jacobi set may contain higher partial waves in other Jacobi 

sets. 

• As a result, even for fairly simple systems, such as He bound by realistic nucleon-

nucleon forces, the combined number of orbital, spin, and isospin channels, Jacobi 

sets, and non-linear parameters becomes prohibitively large. Therefore, the calcu

lation of all of the matrix elements and diagonalization including all potentially 

important basis states of type Eq. (3.2) may be out of the question. In SVM, in 

addition to the random selection of the Gaussian non-linear parameters, a ran

dom selection of the orbital, spin, and isospin channels, as well as Jacobi sets is 
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introduced. Random sampling also eliminates the danger of local minima traps 

in the multi-dimensional parameter space. The linear expansion parameters c in 

Eq. (3.9) are determined via energy matrix diagonalization, as explained before in 

this section. 

Following these arguments, the wavefunction in Eq. (3.9) is constructed term by term in 

a trial-and-error method. Let us assume that the wavefunction already contains N — 1 

basis states. Then the "construction" part of the optimization procedure reads: 

1. Generate M random candidates to find the Nth basis function. Each new candidate 

is assembled in two steps: 

(a) Pick a Jacobi set and an orbital, spin, and isospin channel randomly from 

among all possible channels. 

(b) Randomly generate non-linear coefficients A (or a) from a "physically" rele

vant interval. 

2. Through energy matrix diagonalization, calculate the energy with the N basis states 

formed out of the already adopted N — 1 states complemented with each of the M 

new candidates. 

3. Among the random candidates, find the one providing the lowest energy in the 

previous step, add it to the wavefunction and increase the basis dimension to N. 

Discard all other random candidates. 

The construction process is continued as long as some minimum amount of binding 

energy is gained with the acceptance of each new basis state. After that, the energy 

can be improved further without increasing the basis size by fine-tuning the non-linear 

coefficients. The "refinement" is done by applying steps l(b)-3 to the already admitted 

basis states, i.e. by changing the non-linear parameters of one of the basis states already 

present in the wavefunction. The non-linear parameters of a single basis state are changed 

in the same way as before by randomly selecting the best combination. The refinement 
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is done cyclically for each term in the wavefunction. Again, this fine-tuning is continued 

as long as binding energy is being gained. After that, more basis terms are added to the 

wavefunction through the construction algorithm. Several construction-refinement cycles 

may be needed before full convergence of the binding energy is reached. 

We conclude this section by outlining a microscopic cluster version of SVM which 

was developed to account better for clustering in light nuclei and make the many-body 

calculations more tractable [132]. Over the years, the cluster version was applied to 

neutron-rich isotopes of elements with masses between six and eleven [75,77,133]. In this 

version, the nuclei are comprised of individual nucleons and microscopic clusters of H, 

He, and He. The intrinsic wavefunctions of composite clusters are constructed from 

simple Is harmonic-oscillator Slater determinants of a common width parameter. The 

inter-cluster wavefunction is modelled by correlated Gaussians and optimized by SVM. 

In such calculations, effective central nucleon-nucleon forces with occasional addition of 

spin-orbit and Coulomb interactions were used to bind the nuclei under study. 

3.2 4He in the stochastic variational model 

Having the framework of SVM outlined, we now wish to construct the wavefunction of He 

within this model. In Chapter 5, such He will serve as a core in "He. For He bound by 

effective and realistic nucleon-nucleon forces, SVM results are in perfect agreement with 

other microscopic models. For effective nucleon-nucleon interactions, converged results 

can be obtained with less than a hundred correlated Gaussians [74]; for realistic forces 

with strong repulsion at short distances, several hundred basis states are needed to reach 

convergence [125]. 

3.2.1 Interactions 

In microscopic calculations, the choice of the effective nucleon-nucleon interaction is of 

crucial importance. If one wants a model to have anything to do with the real physical 

problem, one must make sure that the inter-nucleon force is appropriate for all subsystems 
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appearing in the model. As we have learned in Section 2.4, spin-singlet configurations 

of valence neutrons dominate the three-body wavefunction of He, and as expected, 

these configurations have also been found to play a major role in this nucleus studied in 

microscopic models, e.g [134]. The spin-singlet state of two neutrons is unbound. Many 

effective nucleon-nucleon interactions do not take special care of this state, and in fact 

they often do not distinguish such state from a deuteron, which is a bound spin-triplet 

neutron-proton state. A popular potential of such kind is the Volkov force [135]. 

As the basis in the present work, the Minnesota nucleon-nucleon interaction [136] is 

used. This force reproduces the most important low energy nucleon-nucleon scattering 

data and therefore it does not bind the di-neutron. The force renormalizes effects of 

the tensor force into its central component and binds the deuteron by the right amount 

assuming a proton and a neutron in a relative s-wave. It also gives realistic results for 

the bulk properties of nuclei in the lowest s-shell. Furthermore, when supplemented by 

a spin-orbit force [137], the force reproduces low-energy a-nucleon scattering data. For 

two nucleons at positions (or spots) r*j and fj, the form of this interaction in Eq. (3.10) 

with the spin-orbit force included is: 

V%j(fij) = 
u 2 
2 + - 2 %3 + 

(3.11) 

Here, f^j = fj — r^. The exchange mixture parameter u has a default value 1.0 and can be 

tuned slightly to adjust the strength of the interaction. P^- is the spin-exchange operator 

exchanging spins at spots i and j . Pf- is the coordinate-exchange operator exchanging 

positions of spots i and j in the wavefunction. a are the Pauli vectors of the nucleonic 

spin. / is the orbital momentum of the relative motion of two nucleons at spots i and j : 

f = -ih(fj - fi) x (Vj - Vj). (3.12) 
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Finally, the potential has the following Gaussian form factors: 

Vn = V0n exp ( - f tn^ - J , n = 1 , . . . , 4 (3.13) 

with numerical parameters: 

n V0n[MeV] K„ [fm~2] 

1 200.00 1.487 

2 -178.00 0.639 

3 -91.85 0.465 

4 -591.10 3.000 

For the central components (n = 1,2, 3), the potential parameters are from [136]. In that 

reference, it is advised to employ a short-range spin-orbit force to supplement the central 

interaction. Therefore, in the present work, the parameters of the spin-orbit force (n = 4) 

are those of the set IV in Table 1 from [137]. In [137], several sets of spin-orbit parameters 

are given, and among them the set adopted in this work is of the shortest range. 

In Chapter 5, two cases of He bound by different nucleon-nucleon interactions will be 

considered. In one of them, to be called MN (Minnesota), only the central component of 

the Minnesota force with the mixture parameter u = 1.15 will be used. In the other case, 

referred to as MN-SO (Minnesota with spin-orbit), the entire force from Eq. (3.11) with 

the mixture parameter u = 1.015 will be used. In both cases, the mixture parameters 

were adjusted to bind 6He by approximately the right amount against the break-up into 

He and two neutrons. More emphasis will be put to MN-SO results, and for that case the 

radial behavior of the central part of the Minnesota interaction for different spin-isospin 

nucleon doublets is shown in Figure 3.2. The exchange parameter does not affect the two 

dominant interaction channels: S = 0, T — 1 and S = 1, T = 0. 
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r,j [fm] 

Figure 3.2: Radial dependence of the central part of the Minnesota potential from 
Eq. (3.11) with u = 1.015 in different spin-isospin channels of two nucleons coupled 
to total spin S and isospin T. Here, r^j = \fij\. 

3.2.2 Results 

For the two cases MN and MN-SO defined in the previous section wavefunctions of the 

ground state of He were obtained within SVM. Both K- and H-like Jacobi sets from 

Figure 3.1 were mixed in the wavefunction. Due to the absence of non-central forces in 

the MN case, the wavefunction of 4He contains only orbital channels with L = 0 and 

spin channels with 5 = 0. On the contrary, the spin-orbit force in MN-SO invites orbital 

and spin channels with L ^ 0 and S ^ 0 to the wavefunction. In both cases, all orbital 

channels with I < 2 were present in the model space. 

Convergence of the binding energy of He with the number of Gaussian basis states in

cluded in the wavefunction is shown in Figure 3.3. The convergence for MN-SO is slightly 

slower than for MN. Because the case MN-SO is more realistic due to the inclusion of 

the spin-orbit interaction, more effort was made to obtain a well converged wavefunction 

in that case. In converged states containing 20 and 75 basis states, He is bound by 

-30.85 MeV and -30.93 MeV in MN and MN-SO, respectively. Therefore, 4He turns out 

to be overbound relative to its experimental binding energy -28.30 MeV [118] which is 

not surprising given the effective nucleon-nucleon interactions employed. 

In this chapter, the treatment of microscopic cores in two-neutron halo nuclei has 
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been presented. Having the MN and MN-SO wavefunctions for He obtained within the 

SVM model, we now leave the discussion of microscopically described cores to be used 

in MiCH. Later in Chapter 5, 6He built on MN and MN-SO 4He cores will be studied in 

detail. 
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Chapter 4 

MiCH: final assembly 

Until now, we have separately introduced two building blocks of MiCH. To capture both 

the short- and long-distance correlations in two-neutron halo nuclei properly, we wish to 

combine the three-body-like approach from Chapter 2 to the valence part of the wavefunc-

tion with a microscopic core expressed within the SVM framework outlined in Chapter 3. 

We are now at the point where the two pieces, the core and the valence part, can finally 

be put together. 

In this chapter, we first present the final form of the wavefunctions within MiCH. 

Driven by a desire for physical insight into extended Borromean halo systems, we are 

trying to build wavefunctions from functionally very different components for the core 

and the valence part. In doing so, we sacrifice computational ease, which has serious 

computational implications that need to be elaborated. Variational Monte Carlo is in

troduced as a suitable computational framework. Several methods aimed on improving 

numerical integrations are outlined. The chapter concludes with a discussion of varia

tional optimization of wavefunctions in MICH. 

4.1 Core and valence together 

In essence, MiCH is a microscopic cluster model of two-neutron halo nuclei in which the 

clusters are a composite core and two valence neutrons. The form of the wavefunction 
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in MiCH is based on the three-body-like decomposition in Eq. (2.21) with the following 

modifications: 

1. The core is now a microscopic object described by a wavefunction $ T7T T M 
cove cove j cove 

from Eq. (3.9). 

2. Similarly to nucleons inside the core, the valence neutrons need to be treated care

fully as particles in the manner described in Section 3.1. This is necessary because 

the valence nucleons are indistinguishable from those inside the core. If the core con

tains Acore nucleons, then the two extra neutrons are labelled as particles pAcore+i 

and PAcore+2, and they are assigned isospins TP . -, and rp . 2 . Other than 

that, the valence particles are attached to the core as in the three-body model 

in Chapter 2. Accounting for isospins of valence particles, a definition of hyper-

harmonics in Eq. (2.19) is extended to: 

7valJvall l 

Yix(nx)®Ylv(ny) 

TPAcore+l ® TpACOre+'2\ i - i 

XPAcore+1 ® XPA core +2 X 

val 

(4.1) 

which gives the valence term from Eq. (2.18) the following form: 

t nlag 7val J
val 

J* 1-1 = nn,nn(p, PO) % . J* 1-1-^val J
val 

(4.2) 

By convention, neutrons are particles with isospin projection -1/2. Therefore, the 

total isospin and isospin projection of the valence part of the wavefunction are 1 

and - 1 , respectively. 

3. The final modification of Eq. (2.21) is needed to antisymmetrize the wavefunc

tion properly. The core itself comes already antisymmetrized. As it was argued in 

Chapter 3, it is advantageous to mix different Jacobi channels to accelerate the 

optimization of variational parameters. For the valence part, there exist Y and T 

61 



Jacobi configurations from Figure 2.1. All valence terms of the type of Eq. (4.2) 

are antisymmetrized in the T Jacobi basis by construction, but those in the Y 

basis are not. To ensure the proper antisymmetry between valence particles in a 

unified fashion, an additional antisymmetrization operator A = S l ( — ^ ) P P 1S 

needed to act on all valence terms. In addition, the antisymmetry between valence 

nucleons and those inside the core is ensured by the action of yet another antisym-

metrizer Acore~val = J2\ (~^)PP, where A = Acore + 2 is the mass number 

of the halo nucleus. In A , operators P act only on valence particles, whereas in 

j^core-val^ 0 p e r a t o r s P permute valence particles with those inside the core. 

With these modifications to Eq. (2.21), the wavefunction for a two-neutron halo nu

cleus modelled in MiCH takes the form: 

\T/ ~ — V rp0 Acore-val 
J 1 Jcore nlag 'val J

Val 

^Jcore Tcore MTcQre ® ^ V ^ %al J^ 1-1 (.4.3) 
J J*Mj T MT 

For reasons explained later in this chapter, the sum is left without a summation index 

and compared to Eq. (2.21), the linear expansion coefficient c carries an additional index 

PO to account for the possibility of different values of po m different valence terms. Also, it 

is implicitly assumed that parities -K carry the same subscripts as their corresponding J. 

More schematically, the wavefunction can be written as: 

* = Acore~val [core <g> vol]. (4.4) 

This form is used to clarify further the meaning of terms "core" and "valence" first defined 

in Section 2.1. These terms keep their definite intuitive meanings only until Acare~ 

is executed; after that, the nucleons belonging originally to the core and to the valence 

part become indistinguishable. Therefore, the terms "core" and "valence" will refer to 

the situation before the antisymmetrizer i/\
core~va'- has acted. 
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Similarly to Chapter 3, the nuclear Hamiltonian includes the kinetic energies Tj of all 

nucleons and two-body nucleon-nucleon potentials V{j\ 

A A 

The kinetic energy of the total center of mass does not need to be subtracted, because 

the wavefunction in Eq. (4.3) is expressed completely in the center-of-mass system. 

In spite of fixed isospin projections of the core and the valence part, the total wave-

function in Eq. (4.3) has good isospin T = \Mj<\ as long as the core is considered in 

its ground state only. In all potentially interesting two-neutron halo nuclei, cores have 

either the same number of protons and neutrons, and thus have isospin 0 (as in the 

case of 4He), or are on the neutron-rich side of the chart of nuclei, thus having isospin 

Tcore = \MTcore\ = \(Zcore ~ Ncore)/2\ where Ncore and Zcore are the proton and neu

tron numbers of the core. Because only neutrons are added on top of an already neutron-

rich core, the total isospin and its projection are simply equal to the sums of isospins of 

the core and the valence part. In the present work, the core is considered in its ground 

state only. 

In Chapter 5, 6He will be studied within MiCH. As we have argued in Section 2.4.1, 

this two-neutron halo nucleus is particularly simple to model, because both He and He 

have J% = 0+ ground states, leaving only valence channels with J j " , = 0 open. Then, 

the angular momentum couplings in Eq. (4.3) can be simplified and the wavefunction 

takes a simple product form: 

* _L (6He\ = V eP° Acore-val 

%+ooM^a\,valon~M) (4.6) 

The form of the wavefunction in Eq. (4.3) can be encountered in other microscopic 

cluster models, too. Among such models applied to 6He are SVM [76,133] and the hyper-
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spherical model from [79]. There are several differences between MiCH and the other 

models. The most obvious is the treatment of the valence part. In MiCH, a functionally 

correct, exponentially decaying valence basis is adopted from three-body models, while 

the other microscopic cluster models employ Gaussians of some sort in the valence part 

of the wavefunction to reduce the computational demand. As we argued in Chapter 1, 

however, a Gaussian basis may not be the optimal choice to capture the asymptotic trends 

in Borromean nuclei. Another difference is the amount of details built into the core. In 

other microscopic cluster models applied to He, the He core is normally approximated 

by a single Slater determinant of single-particle harmonic oscillator wavefunctions. It was 

pointed out in [76,134], however, that such a simplified treatment of the core may lead 

to underbinding of 6He relative to the three-body break-up threshold. It was argued that 

other configurations such as 3N + N (here, N stands for a nucleon) should be present 

in the He to account for a possible distortion of the core in He. In MiCH, on the 

other hand, a converged He from Section 3.2 is used as the core in He, which should 

diminish the underbinding problem. Last, but not least, in Chapter 5 we will extract 

information about the He + n + n decomposition of 6He modelled within MiCH in the 

form suitable for feeding calculations of transfer reactions through which halo nuclei are 

commonly studied. This step has not been reported from other microscopic structure 

models. 

In MiCH, the wavefunction in Eq. (4.3) is assembled in two steps. First, the core 

is constructed as a free nucleus. Once optimized, the core's variational parameters are 

excluded from optimizations in the second step of the wavefunction assembly. In other 

words, the distortion of the core due to valence neutrons is not considered explicitly, and 

like in many other microscopic models, a possible distortion of the core is accounted for 

only through the core-valence antisymmetrization. In the second stage of the wavefunc

tion construction, the focus is on the valence part containing discrete (niag,jvai,J^ai), 

continuous non-linear (po), and continuous linear variational parameters (c). These va-

64 



lence parameters are to be varied until the expectation value of the Hamiltonian: 

E - -j^w ( } 

is minimized. Here, $ is the wavefunction from Eq. (4.3). To minimize the energy, we 

need a reliable and efficient method to compute integrals in Eq. (4.7). 

Essentially the same integration/optimization problem from Eq. (4.7) was encoun

tered in both the three-body model in Chapter 2 and SVM in Chapter 3. In the three-

body model, the integrals involved in Eq. (4.7) are low-dimensional and can be easily 

evaluated. In the three-body model, it is then possible to have the same non-linear pa

rameter po in all valence terms and to simply enlarge the space of discrete variational 

parameters until energy convergence is reached. In SVM, the integrals are multidimen

sional, but because of the Gaussian basis, the integrals can be evaluated analytically in a 

closed form. Therefore, SVM can rely on a random trial-and-error selection of variational 

parameters. 

In MiCH, the situation is different. The wavefunction in Eq. (4.3) combines a core 

with a functionally very different valence part. Upon the action of v 4 c o r e ~ w a ' ) the core 

and the valence part of the wavefunction are blended together and there does not seem 

to be an easy way to move between permuted Jacobi sets in order to find the set most 

appropriate for the computation of a given matrix element. To make calculations easier, 

one could consider expanding the valence hyper-spherical functions in Eq. (4.2) in terms 

of Gaussians and thus make the core and the valence part functionally identical. Then, 

all calculations could be carried out in the SVM fashion. However, such an expansion 

could compromise the long-distance behavior of the wavefunction, and so was abandoned. 

In MiCH, the only option seems to be a numerical evaluation of the matrix elements in 

Eq. (4.7). In the case of 6He, the integrals involve 6 x 3 = 18 spatial and 2 x 6 = 12 

spin-isospin dimensions. 

Due to their numerical evaluation, matrix elements in Eq. (4.7) come with uncertain

ties. However, one must still be able to evaluate the integrals with sufficient accuracy to 
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perform a meaningful variational calculation. The computational problem at hand is far 

from trivial, especially in the context of nuclear physics, where the interactions are highly 

state-dependent. Moreover, due to the dimensionality of the integration space, standard 

methods of on-grid integrations are out of the question. In conventional quadrature meth

ods of numerical integration, the accuracy depends on the density of the integration mesh. 

For example, if one uses a d-dimensional cubic mesh to evaluate a d-dimensional integral 

using Simpson's rule, the error scales as iV / , where N is the total number of mesh 

points [138]. Therefore, as the dimension d increases, the error falls off increasingly slowly 

with N. Therefore, a better way to evaluate multidimensional integrals is to scan the in

tegration space to find the regions most relevant for a given physical problem. This opens 

the door to Monte Carlo integration techniques, in which the statistical error in the value 

of the integral falls off as N ' regardless of the integral's dimensionality. In particular, 

variational Monte Carlo has proven to be a very powerful tool to tackle mathematical 

problems of the type of Eq. (4.7). 

4.2 Variational Monte Carlo 

As stated in the previous section, we are dealing with a variational problem in which 

matrix elements must be evaluated by means of multi-dimensional numerical integrals. 

To simplify the notation in this section, we shall use \&(F, s,t,p) for the wavefunction in 

Eq. (4.3) depending on all spatial (f= { r i , . . . , r^}) , spin (s = {xi, • • •, XA\) a n d isospin 

(t = {ri, • • • ,TA}) degrees of freedom as well as on a set of variational parameters (p). 

The expectation value of the Hamiltonian H with the wavefunction gives an estimate of 

the ground-state energy: 

{H{)) = m = (»w..«,rt|g|»y,».i.p»- (4 8) 

On the left-hand side, the braces denote expectation (mean) value of the operator, on 

the right-hand side, they mean integration over all f, s and t. By minimizing E{p) with 
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respect to all variational parameters, one obtains the approximation to both the energy 

and the wavefunction of the true nuclear ground state. Integrals involved in Eq. (4.8) are 

to be computed by means of variational Monte Carlo (VMC). 

Mathematical foundations of various Monte Carlo techniques can be found for ex

ample in [139]. VMC has been applied to problems in nuclear [66,140] as well as other 

areas of physics [138]. For a general description of VMC, we shall lean mostly on [138-140] 

supplemented by other references. The term "variational Monte Carlo" comprises two as

pects of the problem in Eq. (4.8). The "variational" part refers to the variational nature 

of the problem, whereas the "Monte Carlo" part is responsible for the actual evaluation 

of the integrals involved. The general concept of VMC, however, does not provide any 

guidance on moving within the space of variational parameters that would help us move 

towards the variational energy minimum. 

In the following text, we first focus on numerical aspects of Eq. (4.8). The Metropolis 

algorithm along with other techniques used to evaluate integrals will be described. Then, 

VMC will be applied to a simplified case of 6 Heto convince ourselves that the integrations 

are done properly in MiCH. The section on VMC will conclude with the discussion of 

parameter optimization techniques used in MiCH. 

4.2.1 Monte Carlo essentials 

The Monte Carlo approach to the evaluation of multi-dimensional integrals relies on 

statistical sampling and averaging of the integrand. In this section, the essentials of the 

Monte Carlo integration are presented. 

Adhering to the physical problem at hand, let us consider many-body functions de

pending only on A spatial coordinates concisely denoted a s f = { r j , . . . , r ^ } ; complica

tions due to spins and isospins will be discussed later. The goal is to find the integral of 

some function f(r): 

I = Jf(r)df, (4.9) 

where the integral is taken over the relevant space of f. An underlying idea of Monte Carlo 
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integration lies in transforming the integrand into a product of two auxiliary functions 

p{r) and g(r). The former function, also called the importance or sampling function, is 

chosen first such that it obeys: 

p(r)>0, fp(f)dr = l, (4.10) 

and hence may be ascribed a meaning of a probability density. Consequently, the vector 

f may be considered a random variable. The other function g(r) is computed accordingly 

as g = f/p. Then, the original integral can be written as: 

= Jg(r)p(r)dr (4.11) 

and interpreted as nothing more than the mean or expectation value of the function g(f). 

Due to its dependence on the random vector f, the function g(r) is a random variable 

distributed around its mean value / with variance: 

var(9) = J [g(r) - I}2 p(r) dr. (4.12) 

In principle, the value of / may be obtained by drawing an infinite set of mutually 

independent random vectors from the distribution p(r) and computing the sample average 

of local values g(f): 

1= lim 
AT->oo hZ*(*n)) (4.13) 

ra=l 

Here, f^n' means the n-th set of vectors f. A Monte Carlo estimate of I may be obtained 

by averaging over a finite sample: 

1 N 

n = l 
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The variance of function g(r) from Eq. (4.12) can be estimated in an unbiassed way as: 

var(g) » ojf^g) = ^ — ^ A T G ? ) , (4-15) 

where Ojy(g) is a commonly computed biassed estimator of the variance of values g{r^n>) 

distributed around their mean value Ij\f. 

1 N r i2 

The quantity <?N-i(g) is called the unbiassed standard deviation of the sample g(f^n>). 

In the nomenclature of quantum Monte Carlo, the vector f is said to be a walker, 

wandering around the integration space. A random stop, f^n', of the walker is called 

a configuration or a sampling point, and a chain of sampling points is referred to as 

a random walk. In the present work, we prefer to use the term integration point over 

sampling point. Referring back to Chapter 3, an integration point f^n> consists of a set 

of spots Fj , . . . , F4 . 

It is important to realize that different random walks may yield different values of 

Iff. In fact, for any N, the Monte Carlo estimator Ijy by itself is a random variable 

distributed with its own probability density, the expectation value of which is equal to 

/ , and the variance of which is: 

,T . var(o) 
var(/Ar) = — ^ . (4.17) 

Using the Monte Carlo estimator from Eq. (4.15) for var(g), the variance of integral 

estimates Ipj can be estimated as: 

var(JAr) « ^ M . (4.18) 

We point out that, when the original integral Eq. (4.9) is estimated by Eq. (4.14) on short 

random walks, the distribution of values of 1^- may not be Gaussian and so ^/var(//v) 
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can not be attributed the typical meaning of an error bar. As N —• oo, however, the 

central limit theorem shows that the distribution of values Ijq will converge toward a 

normal distribution regardless of the sampling distribution p{r) or the distribution of 

local values g{f^n>). Only then is it meaningful to estimate a one-standard-deviation 

error of the Monte Carlo estimate of the mean (also called the standard error of the 

mean or simply the error): 

Se(IN) = aN-}[9\ wheniV -> oo. ' (4.19) 

Therefore, the error bar on the integral estimate i/y will decrease as l/y/N regardless 

of the integral dimensionality in Eq. (4.9). We emphasize again that the Monte Carlo 

estimate of the integral 1^ and the error Se are trustworthy only when they are estimated 

on large samples of statistically independent integration points r^n>. 

A judicious choice of the importance function significantly reduces the variance for 

a fixed sample size. The variance of the integral estimate var(ijv) in Eq. (4.17) would 

vanish for a constant function g(f) = const = / . However, this choice is not available 

since the integral / is not known a priori. In practice, we want an importance function 

that matches the general behavior of the function g(r). In many quantum-mechanical 

problems, the importance function is taken to be the square of the actual wavefunction. 

Once the importance function is chosen, the integral in Eq. (4.9) can be estimated 

by means of Eq. (4.14). We rely upon the Metropolis algorithm [141] for generating 

a random walk with integration points distributed according to the sampling function 

p(f). Considered a golden standard for integration space sampling, this algorithm has 

been employed in nearly all other variational Monte Carlo calculations. The description 

of the Metropolis algorithm with all non-trivial details can be found for example in [139]. 

For our purposes, we use the following simple version of the algorithm encountered in 

most practical applications: 

1. Given a walker at point r, generate a trial vector rtriai randomly from within a 

3yl-dimensional cube of volume ( A r ) 3 ^ surrounding the point f. 
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2. Calculate the probabilities p{f) and p(^ r j a / ) . The acceptance probability for a move 

from r to ftriai is given by the expression: 

D / - - \ • L Patriot) \ 
P{r - • rtrial) = mm 1 1 , ^ j . 

In actual calculations, the ratio in brackets is compared with a random number 

between 0 and 1; if the ratio is greater, the proposed move is accepted. 

3. If the move is accepted, set f= ffriai and return to step 1. Otherwise, discard the 

point ririai and generate the next trial move from the original position f. 

The very first sampling point is chosen completely randomly. By construction, the al

gorithm satisfies the condition of detailed balance. This condition ensures that if many 

walkers originating from different positions are launched simultaneously, at any time 

later the number of walkers flowing from one integration point to another is the same 

as the number of walkers flowing in the opposite direction. Therefore, any point in the 

integration space can be reached by the walker from any other point. 

Despite its simplicity, the Metropolis algorithm is of a great power, as it can be used 

to sample essentially any importance function regardless of the number of dimensions. 

Another advantage is that to generate a walk the importance function does not need to 

be normalized because the acceptance probability P(f —» ftriai) depends only on a ratio 

of local values of the importance function. There are, however, a few complementary 

disadvantages of the algorithm. First, the sampling is correct only asymptotically. The 

initial integration points generated depend on the starting point and should be discarded. 

In all our calculations, at least 1,000 generated integration points are discarded before 

local values of the operators are first evaluated. Second, successive integration points are 

correlated, which violates the assumption of their statistical independence needed to make 

the Monte Carlo estimates reliable. This correlation is obvious because the new point f in 

step 3 is either equal to f from step 1, or is somewhere nearby. Consequently, successive 

local values of the function g(r) are likely to be correlated. Due to such correlations, the 
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effective number of independent samples is less than the actual number of points in the 

random walk, which slows down the convergence of the integral estimate in Eq. (4.14) 

and also makes the formulae in Eq. (4.15) and Eq. (4.19) underestimate true statistical 

deviations. Therefore, great care must be taken to ensure that the integral is estimated on 

a sufficiently large set of statistically independent configurations r^n>, as will be discussed 

in Section 4.2.2. 

Having outlined the Monte Carlo integration, we now turn back to the evaluation of 

expectation values of physical observables depending on the many-body wavefunctions 

# = \&(f,s,t): 

W) J <*|*)8>4 dr 

where O is an operator and (\)s,t denotes the inner product in the spin-isospin space. In 

quantum mechanics, the square of the normalized wavefunction is a good candidate for 

the sampling function: 

^ = W' (421) 

With this choice of the importance function and the following definition of a local value 

of the operator O: 

Eq. (4.20) takes a very simple form: 

(0) = Joloc(r)p(r)df (4.23) 

suitable for the Monte Carlo evaluation. At each integration point, a local value in 

Eq. (4.22) is calculated and the expectation value (O) and its error are estimated by 

means of Eq. (4.14) and Eq. (4.19). Local values of total energy will be denoted as Eioc. 

In practical calculations, the norm (^\^) of the wavefunction is often not known and 

in fact is not needed. It is because the norm appears in Eq. (4.20) that we can adapt the 

Monte Carlo machinery to the computation of (O) and never actually compute the norm 
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of the wavefunction. Formally, the importance function in Eq. (4.21) is normalized to 

unity to make Eq. (4.23) work; however, as we explained before, the Metropolis algorithm 

does not care about whether the importance function is normalized or not. Therefore, to 

generate a random walk needed to evaluate Eq. (4.23), p{f) = (^\^)s t can be used. 

In a more general case, any importance function having sufficient overlap with the 

square of the actual wavefunction can be used to sample the physical space. One then talks 

about correlated sampling, in which the expectation value of an operator is computed as: 

/ —v(r\ S,tP(^ dr / °loc(r) w(f) p(r) df 
{0) = n-w^L = f ' (424) 

/ P(r) ' P^dff w(f)p(r)dr 

where w(r) is a local weight defined as: 

«*0 - £ ! g * (4.25) 

Both integrals on the right-hand side of Eq. (4.24) are approximated by finite sums of 

the type in Eq. (4.14). As far as the expectation values of operators are concerned, the 

sampling function in correlation sampling does not need to be normalized because its 

overall normalization would enter both integrals in Eq. (4.24) and so would be cancelled 

out. 

The material contained in this section is sufficient to evaluate multi-dimensional inte

grals encountered in the variational problem in Eq. (4.7). Further discussion on technical 

details and the implementation of VMC can be found in Appendix A. Before we proceed 

further towards techniques used to optimize variational parameters, we have to make sure 

that the integral estimates are reliable. As mentioned before, the Metropolis algorithm 

has several drawbacks that need to be thoroughly examined. 
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4.2.2 Can we t rus t ourselves? 

In this section, we examine the inner workings of the numerical Monte Carlo integrations 

presented in the previous section. In particular, we look at correlations between local 

values inherent in the Metropolis algorithm. We discuss several methods to attenuate the 

degree of such undesired correlations. 

As a test case, a simple He is considered bound by the central part of the Minnesota 

interaction from Eq. (3.11) with the mixture parameter set to its standard value u = 1.0. 

This interaction is similar to MN from Section 3.2. To optimize the wavefunction of the 

He core, both K- and H-like Jacobi channels and all orbital channels with I < 2 and 

L = 0 are present in the model space. Variationally optimized He core contains 20 

Gaussian basis terms and its binding energy is -30.77 MeV. To assemble the "He guinea 

pig, a single valence term in the T Jacobi basis with K = 2, lx = ly = L = S = 0 and 

nlag = 0 is attached to the core as in Eq. (4.6). The non-linear parameter in the valence 

part is set to po = 1.0 fm to reproduce approximately the experimentally known size 

of 6He. The choice of the valence channel is given by its major role in the three-body 

wavefunction of He in Section 2.4.3. Therefore, in spite of its simplicity, this He is 

expected to provide a reliable testing ground. Unless noted otherwise, this He is used in 

all calculations in the rest of the current section. 

As mentioned in Section 4.2.1, successive integration points generated by the Metropo

lis algorithm may be correlated, often very strongly. Let us consider a random walk 

containing N integration points. At each point, a local value of some function g(r) is 

evaluated. To assess quantitatively the degree of correlation between local values g(f^n>) 

k integration points apart, we use a biassed estimator of auto-correlation coefficient: 

with the notation preserved from Section 4.2.1. By definition, r(g, 0) = 1, and for N = 2, 

r(g, 1) = —1. The auto-correlation coefficient takes positive values for highly correlated 

0(f(n+*)) - / N (4.26) 
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local values g(f^n') and vanishes for uncorrelated samples. The distance k will be called 

the correlation distance. 

In this section, the focus is on correlations between local values of total (kinetic plus 

potential) energy, because in light of the variational principle in Eq. (4.8), the total 

energy is of primary interest. Hereafter, by energy we mean the total energy, and a local 

value of the total energy is shortened to a local energy, unless stated otherwise. In the 

Metropolis algorithm, the degree of correlation can be controlled by the linear size A r 

of the 3A-dimensional cube from which trial moves are drawn. To illustrate the effect of 

A r , three random walks were produced with values of A r = 4.5 fm, 1.4 fm and 0.15 fm, 

corresponding to Metropolis acceptance probabilities (or rates) of about 5%, 50% and 

95%, respectively. Each walk contains 10,000 integration points and the sampling function 

was taken as the square of the wavefunction of He. For each walk, auto-correlation 

coefficients were computed and are shown in Figure 4.1 along with fragments of Monte 

Carlo histories of local energies. 

It is evident from Figure 4.1 that local energies are tightly correlated, especially for 

extrema of Metropolis acceptance rates. The explanation in terms of Ar is simple. Imag

ine a walker at some point fin space with a presumably large probability p(f), Then a 

trial move drawn from a cube with large A r may easily end up in a region with much lower 

probability, and so be rejected, which gives raise to flat sections in Monte Carlo histories. 

On the other hand, when A r is small, a trial move does not disturb the probability p(f) 

too much and will most likely be accepted, which results in fairly smooth Monte Carlo 

histories. These arguments are also reflected by the very slow decay of auto-correlation 

curves in Figure 4.1. On the other hand, the case with moderate Metropolis acceptance 

produces fairly weakly correlated local energies. Based on this observation, we shall here

after adhere to the lore of quantum Monte Carlo holding that the Metropolis algorithm 

should accept about fifty percent of trial moves in order to produce good results. 

Even when the Metropolis acceptance rate is close to 50%, local energies are still 

correlated, but the degree of correlation is quickly attenuated as the correlation distance 

increases. This observation suggests an improved sampling algorithm in which every 
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Figure 4.1: Effects of correlations in the Metropolis algorithm on local energies. The 
results are for three random walks with A r = 4.5 fm, 1.4 fm, and 0.15 fm corresponding 
to Metropolis acceptance rates of about 5%, 50% and 95%, respectively. 

integration point is decorrelated a certain number of times before local values of operators 

are evaluated again, as is schematically illustrated in Figure 4.2. The auto-correlation 

curve in Figure 4.1(b) with Ar = 1.4 fm suggests that about 5-10 decorrelation steps 

should suffice to substantially decorrelate local energies. In Figure 4.3 we show auto

correlation curves for local energies produced in three new independent walks with 1, 

10, and 30 decorrelation steps. From this figure it is also clear that having about 10 

decorrelation steps is indeed good enough to break correlations between local energies. 

Using more decorrelation steps hardly improves the results. 

An alternative approach to decorrelated sampling is the data reblocking (or bunching) 

method [142]. The method works as follows. At reblocking level 0, a set of local values 

{g(f(n>),n = 1 , . . . ,N} is considered a set of N^ = N blocks, each block holding a 

single local value and thus having a block average value of g\ ~ g(f^n'). Then, for any 

higher reblocking level b, new blocks are formed by merging the two neighboring blocks 
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Figure 4.2: Flow chart for the decorrelated Metropolis algorithm. 

from the previous level. Therefore, the new block averages are equal to: 

a{b) - -
(6-1) (6-1) 

5W_ 1 + 9. J2n'-l 2n! 
6 = 1 , 2 , . (4.27) 

withn' = l , . . . ,M6) , where 

jV(&) = int(iV(6~1)/2). Here, the operation int means trun

cation to the nearest integer. The reblocking continues as long as at least two new blocks 

can be formed. At each level, the sample mean value and its error S^ are computed by 

applying Eq. (4.14) and Eq. (4.19) to the block averages g , . One can even estimate the 
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error on the standard error S^ as S^/^2{N(b) - 1) [142]. 

The idea behind the reblocking algorithm is the following. As the reblocking level 

increases, each new block contains more and more original local values and so, on the basis 

of the central limit theorem, block averages approach independent Gaussian stochastic 

variables. When the sample size iV is a power of two , the sample mean is invariant under 

the blocking transformation. Furthermore, for statistically independent block averages, 

the standard error Se is also blocking-invariant. For correlated data, blocking typically 

yields increasingly uncertain estimates of Se and the best error estimate is obtained for 

the smallest blocking level beyond which Se saturates. At very high reblocking levels, 

the error estimate may become unreliable because of the small number of remaining 

blocks. 

To see the effect of reblocking, in Figure 4.4 the bunching algorithm is applied to the 

data from Figure 4.3. In general, energy block averages become less correlated as the 

level of reblocking increases. However, for the walk with a single decorrelation step the 

reduction of correlations is still fairly slow, the error estimate Se barely saturates, and 

the error estimated directly from the local energies (reblocking level 0) severely underes

timates the true error. In agreement with previous observations, about ten decorrelation 

steps are needed for the error estimate of the mean energy to quickly form a distinct 

plateau, the appearance of which is a fully convincing signal that energy block averages 

have become statistically uncorrelated and saturated error estimates can be trusted. Note 

that for well decorrelated walks saturated error estimates are almost identical to those 

for no reblocking. In most of our calculations, blocks are formed from 100 local values 

which corresponds to reblocking levels 6-7. 

For the walk with 30 decorrelation steps from Figure 4.3, the evolution of the mean 

energy and the energy error estimate is plotted in Figure 4.5. At the beginning of the 

walk, the running mean energy is poorly defined due to low statistics. Later into the 

walk, the energy curve flattens and the statistical error in the energy is reduced. Even 

1 Otherwise, at some reblocking levels, single excess blocks are dropped in order for Eq. (4.27) to 
work, which results in a data loss. 
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though not visible in the figure, the error falls off as N ' towards the end of the walk 

where a sufficient number of integration points has been averaged. 

For an additional insight into the effects of correlations, Figure 4.6 shows block aver

ages and unbiassed standard deviations of local values within blocks of kinetic, potential 

and total energies for data from Figure 4.3. First, we notice large cancellations between 

kinetic and potential energy resulting in a fairly narrow interval of block averages of total 
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Figure 4.5: Mean energy and energy error estimate computed along the walk with 30 
decorrelation steps from Figure 4.3. Local energies are divided into blocks of 100 values. 
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(a) Block averages. (b) Standard deviations within blocks. 

Figure 4.6: Block values of kinetic (solid black squares), potential (empty red circles), 
and total (solid blue stars) energy for data from Figure 4.3. Each block contains 100 local 
values. Panels from bottom to top correspond to walks with 1, 10, and 30 decorrelation 
steps. 

energy. The undesired spread of block averages and deviations within blocks is reduced 

as the number of decorrelation steps increases, which can be explained as follows. Cor

related local values tend to follow one another more closely (see cases with A r = 4.5 fm 

and 0.15 fm in Figure 4.1(a)) such that there will be entire blocks of them with a fairly 

small internal spread, but which lie on average quite far from the walk average. On the 

contrary, well decorrelated local values are more evenly distributed on both sides of the 

walk average, the consequences of which are a more efficient averaging within blocks re

sulting in a narrower distribution of block averages and larger deviations within blocks. 

Again, taking more than ten decorrelation steps hardly improves the results. 

In summary it is obvious that the Metropolis algorithm used to generate random 

walks may easily provide biassed results. In this section, the focus was on the energy as 

the observable crucial for variational optimization, but the observations made are valid 
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for other observables as well. Based on the arguments presented, in this work we adhere 

to the following rules: 

• The Metropolis acceptance rate should be close to 50% of proposed trial moves. 

• Each walk is decorrelated by a sufficient number of decorrelation steps. In most 

calculations, we use 30 or more decorrelation steps. 

• The reblocking algorithm is used to reliably estimate the error in the energy. 

• For increased accuracy, results computed on several independent random walks may 

be averaged. 

Appendix B contains additional reliability tests. 

4.2.3 Wavefunction optimization 

Having introduced the Monte Carlo background needed for evaluation of integrals in 

Eq. (4.7), we now turn to the actual problem of wavefunction optimization. The goal is 

to optimize variational parameters in the valence part of the wavefunction in Eq. (4.3). 

In this section, these variational parameters are called simply parameters. VMC, as pre

sented so far in Section 4.2, provides a general framework to compute expectation values 

of energy for a given set of parameters, but the method must be accompanied by addi

tional tools to give any sort of guidance in the parameter space. 

From a physics standpoint, the parameter optimization is achieved via minimization 

of energy in Eq. (4.7). From a practical standpoint, the variational problem is more 

complicated due to the statistical evaluation of matrix elements required. Local energies 

fluctuate around the estimated mean energy and, as we have seen in Figure 4.5, along the 

course of a random walk the running mean energy may drop below its converged value. 

For a given set of parameters, it is a matter of luck whether the energy estimate is below 

or above the true energy, which is not known anyway. Therefore, energy estimates may 

be misleading, especially when one compares energies for different sets of parameters. It 

has been argued [143,144] that a numerically more stable parameter optimization can 
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be achieved by minimizing the variance, Eq. (4.16), of local energies, or by minimizing 

a linear combination of the energy and the variance of the energy [144]. The major 

argument for variance minimization is that at the minimum the variance is known to 

be zero a priori. Moreover, each term in the sum Eq. (4.16) is bounded from below 

by zero. The major drawback of variance minimization is that, from the physical point 

of view, one typically seeks the lowest energy, which is not guaranteed to be delivered 

by variance minimization unless the true eigenstate is found. Furthermore, it has been 

observed [145] that energy optimized wavefunctions give on average better expectation 

values for other observables. Sometimes, the energy and variance minimizations are used 

to optimize different parts of the wavefunction [146]. In the present work, the expectation 

value of energy is minimized. As the energy is minimized, the variance of local energies 

is reduced as well. 

Regardless of the actual optimization procedure, one needs to ensure that the energy 

is really being lowered. Correlated sampling introduced in Section 4.2.1 is a useful trick 

commonly employed to roughly disentangle the effect of a small change in the parameters 

on energy from ambiguities arising due to the statistical sampling. One begins with a 

wavefunction ^ref containing reference values of parameters. For this wavefunction, a 

reference random walk {f^n\n = 1 , . . . ,N} is generated and energy Erej is estimated 

from Eq. (4.23). Suppose (some of) the parameters in ^ref are slightly disturbed result

ing in a new wavefunction \P. Then, instead of generating a new walk for \&, we can use 

the reference walk to estimate the energy E corresponding to \&. Because both energies E 

and Eref are computed on the same walk, statistical ambiguities potentially arising from 

different walks are suppressed. One normally looks at the difference between the two en

ergies because they are highly correlated, and the error of the difference is much smaller 

than errors on the two energies themselves. Using Eq. (4.24) with p(r) = (^ref\^ref)s,t 

2The term "slightly" needs to be denned with care. It includes not only a slight change of continuous 
parameters, but also a change of discrete parameters due to a change, addition and/or removal of valence 
channels. A quantitative measure of "slightness" will be provided later in terms of local weights. 

3The importance function for correlated sampling does not need to be normalized, as discussed in 
Section 4.2.1. 
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for E, the energy difference is estimated as: 

AE-E- Eref _ ^ _ _ _ _ ^(Eloc)ref(r >) (4.28) 

with local values at any point f(n> defined as in Eq. (4.22) and Eq. (4.25): 

(9\H\9)s,t ,„ v {VrefWrefUt (*!*),,* 
l°C~ m)s,t ' [l°c)ref (*ref\*ref)s,t ' " ~ <*«/l*re/>-,t" 

(4.29) 

Taking advantage of correlated sampling, the same reference walk can be used in 

several subsequent adjustments of parameters before a new reference walk should be 

generated for the best new wavefunction. A good reason to produce a new reference walk 

is when the energy has been lowered significantly, i.e. when the absolute value of the 

energy gain AE between the reference and the best new energy becomes larger than 

the error on the reference energy, ideally by at least a factor of two. Another reason to 

update the reference walk is if the wavefunction \P with adjusted parameters starts to 

differ significantly from ^ref, which is signalled by local weights. Correlated sampling is 

reliable provided that local weights w{f^) in Eq. (4.29) do not significantly exceed their 

average value. If the parameters are changed too much, a single weight or a few large 

weights will dominate over the others in Eq. (4.28), thus biasing the energy difference 

estimate. To avoid this negative effect in MiCH, all local weights should be smaller than 

about 10-20 times their average. 

The valence part of the wavefunction in Eq. (4.3) is a linear combination of basis 

functions, each of which depends on continuous and discrete parameters. When these 

parameters are changed, the linear expansion coefficients c in Eq. (4.3) can be determined 

via the energy matrix diagonalization in Eq. (2.25). Formally, the wavefunction is written 

as \& = Y^i ci^i a n d matrix elements H^j and Jj j in Eq. (2.26) are computed in correlated 

sampling on a reference walk generated by the previous best guess for the wavefunction. 

Again, as for expectation values of operators in Eq. (4.24), the overall normalization 

of the sampling function is not needed. Unlike the overlap matrix I, the Hamiltonian 
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matrix H estimated on a finite random walk may not be symmetric. Following the 

arguments in [146], we do not symmetrize the energy matrix. The overlap matrix may 

be ill-conditioned because of the possible linear dependence of valence terms. When that 

happens, the overlap matrix is regularized by a singular value decomposition from Sect. 

2.6 in [147] and the non-symmetric generalized eigenvalue problem of type Eq. (2.25) is 

solved with the aid of numerical libraries [148]. 

In general, non-linear parameters p$ do not need to be the same in all valence terms in 

Eq. (4.3), as is common in three-body models. In fact, as suggested by the success of SVM, 

it could be beneficial to mix valence terms with different values of PQ, especially because 

the core-valence antisymmetrizer in Eq. (4.3) removes the orthogonality properties of 

valence terms. We have tested several methods to optimize non-linear parameters in tan

dem with energy matrix diagonalization and correlated sampling. A stochastic selection 

in the fashion of SVM turns out to be inefficient because of the computational demand 

required to calculate the energy for a single set of parameters. There exist determinis

tic optimization methods analyzing the local dependence of the mean energy (Newton 

method) [149] and the wavefunction [150] on variational parameters. These deterministic 

methods have been tuned for and proved efficient in atomic and molecular physics, but 

upon testing them in MiCH, they do not seem to be adequately robust to meet our needs. 

In MiCH, the added complexity is most likely due to spin-isospin contaminations in the 

wavefunction and highly state-dependent, (non-)central, nuclear interactions. Also, at 

the beginning of the optimization route, the nucleus is three-body unbound. This can 

be seen, for example, from Figure 4.5, where He containing a single valence term is 

bound by about -27.5 MeV, a value to be compared with the binding energy of the 4He 

core, -30.77 MeV, given in Section 4.2.2. All the optimization methods mentioned tend 

to break the nucleus apart, unless the radius of the nucleus is constrained. Additionally, 

correlated sampling is reliable only for small changes in non-linear parameters. 

The easiest way to control the size of the nucleus is to make the non-linear parameter 

po the same in all valence terms, and that is the approach in this work. Even then, 

however, this parameter is a true variational parameter, which needs to be tuned to 
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minimize the binding energy. From a distant view, our optimization method resembles 

that of three-body models: for an optimum value of the parameter pQ, the number of 

valence channels in the wavefunction is increased until convergence in energy is reached. 

However, on closer inspection, there are some major differences. 

All the previous comments on parameter optimization are valid in general. We now 

turn to 6He, the nucleus to be studied in Chapter 5. First, we consider the nucleus bound 

by a soft-core effective central nucleon-nucleon interaction, such as MN in Section 3.2.1. 

In this case, the He core contains only basis terms with L = S = 0, as we have seen in 

Section 3.2.2. This makes valence neutrons in spin-singlet and spin-triplet states orthog

onal. In the three-body analysis of He in Section 2.4.3, spin-triplet states were present 

in the wavefunction only due to the spin-orbit interaction. It is then sufficient to con

sider spin-singlet valence terms only. The optimization begins with a single, K = 0 or 2, 

nlag = 0 valence term attached to the core. Valence terms with higher hyper-momenta 

and degree of hyper-radial polynomials are added to the wavefunction until convergence 

in the binding energy is reached. The value of p§ is adjusted to keep the rms proton radius 

of "He close to its experimental value. To avoid high partial waves in the valence part, 

both Y and T Jacobi configurations are mixed. After each addition of (few) new valence 

terms, linear coefficients c in Eq. (4.6) are determined via energy matrix diagonalization. 

Despite numerical evaluation of energy and overlap matrices, the lowest eigensolution of 

Eq. (2.25) is numerically stable even when the matrices are of appreciable size, of the 

order of 100 x 100 elements. Starting with a converged wavefunction, different values 

of po are tested using correlated sampling and energy matrix diagonalization to finally 

locate the energy minimum. 

To prevent numerical difficulties, valence terms with niag ^ 0 should be avoided until 

a preliminary convergence of niag = 0 terms with the hyper-momentum K has been 

reached. The reason is that higher-order hyper-radial terms may produce extraordinarily 

large local values of kinetic energy making the Monte Carlo energy averaging harder to 

converge. In the present work, the problem of large local kinetic energies is called the 

problem of bad points and is discussed in detail in Section B.l. 
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Parameter optimization is more involved in the presence of the non-central spin-

orbit force between nucleons. As mentioned in Section 3.2.2, the spin-orbit force mixes 

L = S = 0 and L = S = 1 Gaussians in the wavefunction of 4He. When attached to 

such a core, valence spin-singlet and spin-triplet terms are not necessarily orthogonal in 

the fully antisymmetrized wavefunction of He; some of them may be almost orthogo

nal, though. Consequently, the overlap matrix I may contain many very small elements 

which are hard to distinguish from statistical noise. The energy matrix H is affected 

less severely. Under such circumstances, the energy matrix diagonalization may be nu

merically unstable yielding unreliable eigenvectors of linear coefficients c. Thankfully, 

the lowest energy eigenvalues are still numerically stable. These are effects at the edge 

of numerical stability and given the statistical sampling, their severity varies between 

random walks. To circumvent this problem, a major modification was introduced into 

the parameter optimization procedure described above for He bound by central forces, 

namely a comparative optimization on two independent random walks. The details of 

this improved method are rather technical and as such are relegated to Appendix C. 
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Chapter 5 

6 He in MiCH 

We are now ready to put the model developed in this work to the test. In previous 

chapters, we have described all components going into the model including numerical 

techniques needed to evaluate matrix elements and the variational optimization method. 

In this chapter, the model is applied to the ground state of the simplest two-neutron halo 

nucleus, He. 

The chapter starts with a study of antisymmetrization effects in 6He. As we will 

see, these effects are crucial for binding of 6He. Then, basic observables computed for 

optimized He wavefunctions will be presented and compared with experimental data and 

values obtained in other theoretical models. To appreciate the amount of details going into 

different models, the discussion will continue with a more detailed comparison of results 

obtained within MiCH and within the three-body model from Section 2.4. Finally, the 

chapter will be concluded by an application of MiCH to a two-neutron transfer reaction 

involving He. 

5.1 Antisymmetrization effects in 6He 

In this section, the effects of antisymmetrization operators in Eq. (4.6) are studied. Unlike 

in three-body models, wavefunctions in MiCH can be properly antisymmetrized to ac

count for the fermionic nature of nucleons. Core-valence antisymmetrization should make 
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states occupied inside He unavailable for valence particles. The antisymmetrization of 

the valence part ensures the Pauli principle between valence neutrons, a requirement 

important especially in the Y Jacobi basis in which, unlike in the T basis, the valence 

basis terms from Eq. (4.2) do not meet the Pauli principle by construction. 

In the current section, "a (valence) channel" means 6He containing the MN-SO 

He core from Section 3.2 and a single valence term characterized by a set of numbers 

{K, lx,ly,L:S, n[ag, Y / T } . Ground states of both 4He and 6He have J71" = 0 + , and so 

the total angular momentum and parity of each valence channel must be J ^ = 0 + . The 

system is bound by the MN-SO interaction from Section 3.2.1. 

We focus on valence channels with the lowest hyper-momenta, namely with K = 0 

and 2. . Possible combinations of angular momentum quantum numbers for such channels 

are shown in Table 5.1. The table also shows whether a given channel in the T Jacobi 

basis is blocked by the Pauli principle between valence neutrons. Due to their trivial 

(constant) hyper-angular dependence, K = 0 channels contain the "lowest" core-valence 

s-waves (lx = 0) in the Y Jacobi basis, and as such are expected to be the most core-

valence Pauli-blocked.2 On the other hand, K = 2 channels are expected to be crucial 

for the structure of "He, as has been demonstrated in Section 2.4.3. For K = 2 channels, 

squares of the Raynal-Revai coefficients for angular transformations between Y and T 

Jacobi sets from Eq. (2.27) are shown in Table 5.2. 

Figure 5.1 shows binding energies of channels with K = 0 and 2, and n/afl = 0 and 

1 for different values of the valence hyper-radial parameter pQ. For each channel, three 

energy curves are shown differing by whether the antisymmetrizers A and J^core-va'' 

in Eq. (4.6) are active or not. For each channel, both antisymmetrizers are first disabled, 

then A is switched on, followed by the activation of Acore~~ . We observe in Figure 5.1 

that when the core-valence antisymmetrizer does not act, the valence antisymmetrizer 

has barely any effect on T Jacobi channels. It must be so because these channels satisfy 

XK = 1 channels are not allowed because they would have to combine s- and p-waves due to Eq. (2.8) 
The parity of such channels would be negative which violates the requirement of positive parity of the 
valence part. 

2Remember that in a first approximation 4He can be thought of as four nucleons sitting in the lowest 
s-shell. 
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Table 5.1: Possible combinations of angular momentum quantum numbers for K = 0 and 
K = 2 channels. 

K 

0 

2 
2 
2 

'a; 

0 

0 
1 
1 

ly 

0 

0 
1 
1 

L 

0 

0 
0 
1 

s 

0 

0 
0 
1 

Pauli blocked by Eq. (2.23) 
in T Jacobi basis 

no 

no 
yes 
no 

alias 

K = 0 s-waves 

K = 2 s-waves (spin-singlet) 
K = 2 p-waves spin-singlet 
K = 2 p-waves spin-triplet 

the Pauli principle between valence neutrons by construction. 

For a given n\a„: K = 0 s-waves are essentially identical in Y and T Jacobi bases, 

as we discussed in Section 2.2. Without core-valence permutations, K = 0 s-waves with 

nlag = 0 and 1 form deep energy minima in Figure 5.1(a). These minima, however, are 

removed upon the action of Acore~v . Interestingly enough, the fully antisymmetrized 

K = 0, niag = 1 channel is bound more than the most trivial of all valence channels, the 

channel with K = 0, niag = 0, which is simply a manifestation of the Pauli principle. 

The K = 0, niag
 = 0 channel puts a neutron in the Y basis into the radially most trivial 

s-wave (lx = 0) motion around the core, which makes this channel strongly forbidden by 

the core-valence Pauli blocking. On the other hand, due to its non-trivial hyper-radial 

dependence, the channel with K = 0, niag = 1 contains "less" trivial core-valence s-waves, 

which makes it "less" forbidden by the Pauli principle. 

We start the analysis of K = 2 channels by K = 2 s-waves in the T Jacobi basis, 

i.e. by Figure 5.1(b). When the valence neutrons are not antisymmetrized with nucleons 

Table 5.2: Squares of the Raynal-Revai coefficients {l'xlyVxly)KL from Eq. (2.27) for 
angular transformations of K = 2 valence channels between Jacobi sets. (lx^y\^xly)KT 
corresponds to a transformation from the unprimed to the primed Jacobi set, or schemat
ically unprimed —> primed. 

[(OOlOOho]2 [<ll|00)2o]2 [<Q0111)20]
2 [<11|11>2O]2 [<ll|H>2i]2 

Y - • T 0.04 0.96 0.96 0.04 1.00 
T - • Y 0.04 0.96 0.96 0.04 1.00 
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Figure 5.1: Three-body binding energy of valence channels as a function of the non
linear parameter p$ for different antisymmetrization settings. The legend is the same in 
all panels. For each channel, the OFF/ON switches indicate whether the corresponding 
antisymmetrizer in Eq. (4.6) is active or not: the first switch controls A , the second 
switch is for j \ c o r e - v a l . Energy curves are constructed in correlated sampling on walks 
for reference values of PQ; for each curve, reference energy is depicted by a star. Error 
bars appear on reference values only. 
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inside the core, He behaves as a pure three-body system core + n + n. It is three-body 

unbound with binding energy monotonically heading towards the three-body threshold 

(i.e. towards the binding energy of He) as the hyper-radial scaling length po increases. 

Larger po implies larger average hyper-radii and thus larger "He through the three-body 

relationship in Eq. (2.29). Therefore, the gain in binding energy with increased PQ is 

misleading, because the nucleus gradually breaks apart into the core and two neutrons. 

This undesired trend is changed dramatically once J^core~val [s switched on, because 

the core-valence exchange effects deliver extra binding to the system. Such a simple, 

fully antisymmetrized He with niag = 0 remains three-body unbound, but the binding 

energy saturates for a fairly large interval of po in Figure 5.1(b). This saturation forms a 

foundation on which a variationally optimized "He in Section 5.2 will eventually become 

bound against the three-body break-up. Using Table 5.2, K = 2 s-waves in the T Jacobi 

basis consist of 96% K = 2 p-waves spin-singlet state in the Y basis. Therefore, in the 

Y basis a neutron is mostly in a relative p-wave motion around the core, making the 

channel K = 2 s-waves in the T Jacobi basis mostly Pauli allowed. 

The response of the other two K — 2 spin-singlet channels from Table 5.1, s-waves 

and p-waves spin-singlet in the Y basis, can also be easily understood. We first look at 

K = 2 s-waves in the Y basis, i.e. by Figure 5.1(c). In the absence of both A" and 

^core-val antisymmetrizers, this channel (for a given n/a„) is bound the most among 

all K = 2 channels, as can be seen from Figure 5.1. The reason for this is that in this 

channel one of the neutrons would be in an s-wave (lx = 0) motion relative to the core, 

making the entire channel fairly bound. The binding is weaker than for K = 0 s-waves 

though. As soon as the valence particles are antisymmetrized, however, several MeV of 

the binding energy in Figure 5.1(c) are lost in this channel, which can be explained as 

follows. Using Table 5.2, we can write schematically: 

K = 2 s - waves in Y —• 4% K = 2 s - waves in T + 

96% K = 2 p — waves spin — singlet in T. 
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However, the p-wave admixture in the T basis is completely eliminated by the action of 

A , because it is Pauli blocked in Table 5.1, and the original channel effectively turns 

to K = 2 s-waves in the T basis. Upon a rotation back to the Y basis and using Table 5.2 

again, one obtains: 

K = 2 s — waves in Y >• K = 2 s — waves in T —> 

4% K = 2 s — waves in Y + 96% K = 2 p — waves spin — singlet in Y. 

The result is a dramatic structural change: the original s-waves in the Y basis become 

mostly p-waves in the same basis putting a neutron into a p-wave (lx = 1) relative to 

the core. The net result is the above-mentioned loss of binding. Similar analysis can be 

done for K = 2 p-waves spin-singlet in the Y basis (Figure 5.1(d)): 

Aval 
K = 2 p — waves spin — singlet in Y • K = 2 s — waves in T —> 

4% K = 2 s — waves in Y + 96% K = 2 p — waves spin — singlet in Y, 

and so the structural change due to the action of A is far less dramatic because the 

channel remains mostly p-waves in the Y basis. Once valence particles in K = 2 spin-

singlet states in the Y basis are antisymmetrized, these channels become equivalent to 

K = 2 s-waves in the T basis. Therefore, the core-valence exchange effects in these 

channels can be understood on the merit of the discussion for K = 2 s-waves in the T 

basis. 

The remaining K = 2 channels in Table 5.1 contain valence particles in a spin-triplet 

state. For a given niag, there is only one such state in the Y basis and one in the T 

basis. Therefore, they must be essentially identical upon rotations of Jacobi bases, as is 

also demonstrated by corresponding Raynal-Revai coefficients in Table 5.2. The energy 

gain in these channels due to antisymmetrization effects is not large enough to produce 

a saturated energy curve in Figure 5.1(e). 
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In summary, at the level of single valence channels, the antisymmetrization exchange 

effects have significant impact on "He. Not only do they enforce the fermionic nature of 

the nucleus, but they also deliver extra binding to the system. Similar analysis could be 

done for valence channels with higher hyper-momenta, but we have limited our discussion 

to valence channels that are crucial for the structure of 6He. We convinced ourselves that 

general observations made in this section depend neither on the value of the mixture 

parameter u in the Minnesota interaction nor on inclusion of the spin-orbit force. 

5.2 Converged 6He 

Having understood the behavior of single valence channels, we now proceed to the op

timization of the wavefunction of "He. Results are presented for two cases: MN and 

MN-SO defined in Section 3.2.1. More emphasis is put on MN-SO because it employs 

a more realistic nucleon-nucleon interaction due to the spin-orbit force. In both cases, 

the mixture parameter u in the central part of the interaction was adjusted to bind He 

by about the right amount against the break-up into 4He and two neutrons. Essentially, 

the interaction mixture parameter is the only free parameter in MiCH. The Coulomb 

interaction is neglected since it would barely shift absolute binding energies of both He 

and He by about the same amount. The wavefunctions for the He core are taken from 

Section 3.2.2. 

The convergence of the binding energy of He relative to the three-body threshold 

with the number of valence terms in the wavefunction is shown in Figure 5.2. The varia

tional optimization technique used in MiCH was described in Section 4.2.3. Here, a few 

comments are given on chronology in Figure 5.2. 

The case MN is discussed first. The construction of the wavefunction begins with a 

single K = 0, niag = 0 valence channel with which the nucleus is three-body unbound. 

The scaling length po is set to 0.80 fm to keep the rms proton radius of "He close to its 

experimental value 1.91 fm. Next, all valence channels with K < 10 and n\ag = 0 in both 

Y and T Jacobi bases are gradually added to form a fairly well defined wavefunction 
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I, p0 adjusted 

l-SO, p0 = 0.450 fm 

three-body threshold 

I 

0 25 50 75 100 125 
# of valence terms 

Figure 5.2: Convergence of the three-body binding energy of "He with the number of 
valence terms included in the wavefunction. In MN, the variational parameter po is 
adjusted along the optimization route; in MN-SO, the results are for a fixed value po = 
0.45 fm. See text for details. Error bars were not computed for all points, and even when 
present, they may be smaller than the actual symbol. 

before valence terms with higher hyper-radial orders niag are considered. The parameter 

P0 is slightly enlarged because the radius has become smaller due to stronger binding. 

The three-body binding energy of a still three-body unbound "He is about +0.5 MeV 

in Figure 5.2. Next, all valence terms with K = 0 and 2 and n/a„ = 1 are added to 

the wavefunction and the three-body break-up threshold is finally crossed. By crossing 

the three-body threshold, the binding energy as a function of po forms a variational 

minimum. From this moment on, PQ is adjusted to approximately minimize the energy. 

It then takes another 118 valence terms to reach the converged value —0.90 MeV for the 

three-body binding energy. At the end, all spin-singlet valence terms with K < 12 and 

nlag < 5 in both Y and T bases are included in the wavefunction. 

Figure 5.3 shows the dependence of the three-body binding energy and the rms pro

ton radius on the scaling length po for converged He. In the MN case, the variational 

energy minimum is located around p$ = 0.45 fm. The steep reduction in binding below 

P0 = 0.40 fm in Figure 5.3(a) reflects trends observed in Figure 5.1. By reducing po, the 

nucleus becomes smaller in Figure 5.3(b) because the valence neutrons are forced to stay 

closer to the core. As a consequence, the binding of "He is reduced due to the increase 

> 
CD 
2 
,*«—N 

(U 
I 

• * • 

LU 

'ST 
I 

co 

20 
10 

2 

1 

0 

HI 
exp. 

T 

• \ 
o |\, 

* o M . 
°<$o' QQO 

94 



-0.7 

© -0.8 

I"0'91 

5 -1.0 

LU 

-1.1 

. 

- \ 
^ 

- • - M N 
— o - MN-SO 

1.85 

0.3 0.4 0.5 0.6 0.7 

P0 [
fmJ 

(a) Three-body binding energy. 
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Figure 5.3: Dependence of the three-body binding energy and the rms proton radius of 
converged He on the non-linear parameter PQ. All curves are constructed in correlated 
sampling on walks for reference values of PQ. Reference values of observables are depicted 
by stars. 

of total kinetic energy of the system. On the other side, for very large values of p$, the 

valence neutrons are forced to spend more time farther from the core, and the size of the 

nucleus increases and the binding becomes weaker. 

The optimization procedure in the MN-SO case is more complicated, as described 

in Appendix C. In this case, the wavefunction is tailored to a specific value of PQ. The 

wavefunction is first optimized for PQ = 0.70 fm, a value that prevents 6He from get

ting too large at the beginning of the optimization when the nucleus is still three-body 

unbound. Using the method of a comparative optimization outlined in Appendix C, a 

fairly converged wavefunction is constructed. For this wavefunction, a reference walk is 

produced. On this walk in correlated sampling, the binding energy is estimated for an 

auxiliary He containing a set of all 222 valence terms with K < 14 and n;afl < 5 for 

different values of PQ. The corresponding energy curve is shown in Figure 5.3(a). Be

cause for this auxiliary "He only energy eigenvalues are reliably determined in the energy 

matrix diagonalization, neither error bars nor radii are shown. The energy minimum is 

formed around po = 0-45 fm, a value for which the wavefunction is optimized again, and 

the convergence plot is shown in Figure 5.2. At the point where 6He becomes three-body 
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bound, a subset of about 15 valence terms with K < 6 and n\ag < 2 is included in 

the wavefunction. Altogether ninety carefully selected valence terms having K < 14 and 

niag < 5 are needed to reach energy convergence in the MN-SO case. 

Several extra remarks regarding the variational optimization are appropriate at this 

point. First, the convergence plots in Figure 5.2 are not unique. If the history plots were 

constructed again, they would look differently depending on several factors, such as the 

order in which valence terms are added to the wavefunction; the exact values of po used 

throughout the optimization; statistical effects due to random sampling etc. However, 

we convinced ourselves that the converged results from Figure 5.2 would be reproduced. 

Second, in Chapter 2, the valence basis in Eq. (2.18) is orthogonal and complete, and 

converged results obtained within the three-body model should be independent of /jo

in MiCH, the orthogonality of valence terms is destroyed by the core-valence antisym-

metrizer. As expected, the non-linear parameter po is then a variational parameter, as 

would also be suggested by a formation of energy minima in Figure 5.3(a). Last, in the 

following discussion, converged results for 6He are for pQ = 0.45 fm in both MN and 

MN-SO cases. 

Once the wavefunctions have been optimized, we can calculate binding energies and 

rms point matter, point proton and point neutron radii for "He. Radii are computed as 

square roots of expectation values of operators in Eq. (2.28), Eq. (2.30) and Eq. (2.32). 

The results are shown in Table 5.3 along with experimental values and results obtained 

in a variety of other models: the macroscopic three-body model from Chapter 2 and 

Section 2.4 in particular, SVM [76] as a representative of microscopic cluster theories, 

and the Green's function Monte Carlo (GFMC) [117] representing microscopic models. 

Preliminary results from the MN model have been published in [153]. 

Let us first comment on experimental values of radii. What has become experimentally 

known with a great accuracy are nuclear charge radii ( r^ ) 1 ' 2 of He and 6He. However, 

in our calculations, nucleons are treated as point particles, and rms point proton radii 

(r») a r e calculated. Following [47], the charge and the point proton radii are related 
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Table 5.3: Binding energies E and three-body binding energies E^^y in [MeV] and rms 
point nucleon radii in [fm] of 4He and 6He from various models along with experimental 
values. MN and MN-SO are results of this work, the other models are the three-body 
model from Chapter 2, SVM [76] and GFMC [117]. Experimental proton radii were com
puted by means of Eq. (5.1) using charge radii from references cited in the table. Values 
labelled with * were computed; for radii, the relationship from Eq. (2.33) was used, 
GFMC three-body binding energy was obtained using binding energy -29.4(1) MeV of 
6He from [117]. The thickness of the neutron halo is defined as Ar = ( r 2 ) 1 / 2 - ( r 2 ) 1 / 2 . 

4 H e 

6He 

E 

(rW 
E3body 

(r'i)^ 

« ) i / 2 

{r'i)1'2 

Ar 

MN 

-30.85 

1.40 

-0.90(5) 

2.41(1) 

1.81(1) 

2.67(1) 

0.86(1) 

MN-SO 

-30.93 

1.40 

-1.02(3) 

2.32(1) 

1.75(1) 

2.56(1) 

0.81(1) 

3body 

N/A 

1.40 

-0.98 

2.49 

1.86 

2.75 

0.89 

SVM 

-25.60 

1.41 

-0.96 

2.42 

1.81 

2.68 

0.87 

GFMC 

-28.37(3) 

1.45(0) 

-1.03(10)* 

2.55(1)* 

1.91(1) 

2.82(1) 

0.91(1) 

exp. 

-28.30 [118] 

1.46(1) [151] 

-0.97 [25] 

2.48(3) [152] 
2.33(4) [18] 
1.91(2) [47] 

2.72(4)* 
2.51(6)* 

0.81(4) 
0.60(6) 

as 

(rj) = (r2c) - (4) ~ (^)f, (5-1) 

where ( i?2)1 /2 = 0.895(18) fm [154] is the rms charge radius of the proton, (.R2) = 

—0.120(5) fm [155,156] is the mean-square charge radius of the neutron, and N and 

Z are nuclear neutron and proton numbers. We used values 1.681(4) fm [151] and 

2.054(14) fm [47] for charge radii of 4He and 6He, respectively. The corresponding proton 

radii are shown in Table 5.3. In literature, matter radius of 6He has been extracted from 

relevant interaction cross-section data; however, the extracted values disagree, as listed 

in Table 5.3, according to the type of analysis performed. 

In our calculations, a free He in Table 5.3 turns out to be overbound and smaller 

relative to experimental data. The fact that we differ from experimentally known abso

lute binding energies was expected because of the effective nucleon-nucleon interactions 

employed. We are, however, mostly interested in three-body-like features of "He. The 
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three-body binding energy is approximately reproduced after a slight tuning of the mix

ture parameter u in the Minnesota interaction. Our proton radii of "He are smaller 

than they should be which may be a consequence of a smaller He core. On the other 

hand, matter radii are comparable with those deduced from experiments. Perhaps due 

to stronger three-body binding, MN-SO He is slightly smaller than its MN counterpart. 

Nevertheless, proton and neutron radii change consistently so that the thickness of the 

neutron halo does not change dramatically between MN and MN-SO. 

Next, MN and MN-SO results are compared with those of other models listed in 

Table 5.3. In the three-body calculations in Section 2.4, the binding energy and the size 

of 4He core do not enter the actual three-body calculations, but the radius of the core 

is needed to compute the size of "He. In the three-body picture, radii of He are simply 

related to the radius of the core via Eq. (2.29) and Eq. (2.31). For the best comparison 

between our and three-body results, we assume the same radius of He in the three-body 

model as in MN-SO. Then, in a naive three-body picture, the larger size of He in the 

three-body model (when compared to MN-SO) is solely due to the valence neutrons living 

on average slightly farther from the core. The three-body model is also useful to assess 

how strongly radii of 6He depend on the size of the core. If the radius of the core is 

increased to its experimental value 1.46 fm, then radii of "He become ( r^) ' = 2.51 fm, 

( r2)l/2 = 1.90 fm, (r-2)1/2 = 2.77 fm and Ar = 0.86 fm. With these new values, the ex

perimental proton radius of He is perfectly reproduced, and the neutron halo shrinks a 

bit. 

Within SVM, 6He has been studied in the past repeatedly [76,132,133]. In Table 5.3, 

SVM results obtained in [76] are quoted where central and spin-orbit Minnesota and 

Coulomb interactions were employed. In the later reference, several different cluster com

positions were considered to study break-up of the core in 6He. In Table 5.3, results for 

He correspond to model a.2 in [76], i.e. to an a-particle wavefunction of which is a su

perposition of three Is harmonic oscillator Slater determinants with common oscillator 

parameters set to minimize the a's ground-state energy. Due to this very simple picture, 

SVM 4He in table Table 5.3 is bound less than 4He in MN and MN-SO cases. The SVM 
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results for 6He in Table 5.3 are those from model (b) in [76]. In that model, 6He was 

modelled as a combination of He + n + n and t + t with tritons again built from simple 

Is harmonic oscillators. The importance of the triton channel was first observed in [134], 

where this channel was introduced to overcome the insufficient three-body binding of "He. 

SVM three-body binding energies and radii of He are comparable with ours, especially 

with the MN model. 

For the sake of completeness, we also show microscopic GFMC results in Table 5.3. 

These were obtained using realistic two-body AV18 and three-body IL2 interactions. We 

show GFMC results to point out that by using modern realistic potentials in microscopic 

calculations, absolute binding energies and proton radii of He and He can indeed be 

reproduced. However, as we argued in Chapter 1, questions may arise about how micro

scopic models treat asymptotic regions so important for Borromean halo nuclei. 

We have also computed the point nucleon density distributions. For the more realistic 

MN-SO case, they are plotted in Figure 5.4 along with density distributions obtained in 

other models from Table 5.3. For comparison, the figure also contains the proton (equal 

to neutron) density for the MN-SO He. These nucleon densities are calculated as simple 

(^-function expectation values: 

4?rr2 {*|*) 
# 

A 1 ± 7 V 
Yl ^££6 (r - I** _ fCMs\) 
i=l 

* ) (5-2) 

with ± for proton and neutron densities, respectively. Here, rz is the operator of isospin 

projection from Appendix A. For a nucleus with mass number A, the integral is carried 

over all spatial coordinates r*j as well as all nucleonic spins and isospins. To compute 

the densities corresponding to the three-body model, we constructed an auxiliary wave-

function of 6He of type Eq. (4.6) by combining the MN-SO 4He and the valence part 

taken from the three-body wavefunction of "He obtained in Section 2.4. In such auxiliary 

wavefunction, the core-valence antisymmetrizer in Eq. (4.6) was switched off because the 

Pauli principle was approximately taken into account when the three-body wavefunction 

was constructed in Section 2.4. In logarithmic scale, proton and neutron densities from 
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Figure 5.4: Point proton and point neutron density distributions in "He for models from 
Table 5.3 except MN. The GFMC densities are from [66]. Also, for comparison, the proton 
(=neutron) density of the MN-SO He is shown. All proton (neutron) distributions are 
normalized to the number of protons (neutrons). 

different models of He are close to one another with small differences reflecting slightly 

different radii and wavefunction compositions. All models reproduce the most pronounced 

property, namely the neutron distribution extending far beyond that of protons. In other 

words, they reproduce the neutron halo of 6He. Depleted at short distances, the proton 

density of He stretches farther out than that for a free He. A partial explanation of 

this effect comes from the three-body model: in 6He, the a core does not sit at the cen

ter of mass of the entire system, and its motion relative to the center of mass spreads 

out the proton distribution. Due to the same effect, the neutron density in He is also 

expected to be depleted at small distances relative to that of a free He, as is also visible 

in Figure 5.4. 

The effects of the Pauli blocking from Section 5.1 were tested further in the MN model. 

First we consider a case with the core-valence antisymmetrizer switched off. When the 

K = 0 valence channels are present in the wavefunction, the nucleus is three-body over-

bound by several tens of MeV, as one would expect based on Figure 5.1(a), where K = 0 

s-waves are deeply three-body bound. When, however, K = 0 s-waves are all removed 

from the wavefunction, the nucleus becomes three-body unbound regardless of inclusion 

of valence terms with higher hyper-momenta. When the core-valence antisymmetrizer 
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is switched back on, the converged "He is three-body bound by about -0.9 MeV from 

Table 5.3. When all the lowest K = 0 hyper-spherical channels are now removed from 

the converged wavefunction, the three-body binding decreases to about -0.75 MeV. It 

becomes evident that, to produce a meaningful He, it is not sufficient to simply neglect 

the most Pauli-blocked K = 0 valence channels. Rather, all contributing valence channels 

should be included in the model space and subjected carefully to the antisymmetriza-

tion. This message is important especially for few-body models in which the core-valence 

forbidden states are removed approximately by different Pauli blocking techniques. 

We can see that all models mentioned in Table 5.3, although different in their nature, 

are in a fair agreement on most commonly computed properties of He. The agreement 

between densities in the three-body and MN-SO models is especially remarkable given 

how those densities were obtained. In MN-SO, the valence part of the microscopic wave-

function was built from the very beginning on top of a microscopic He core; in the 

three-body model, the internal structure of the core was roughly accounted for through 

Pauli blocking, and only the final optimized three-body wavefunction was attached to 

a microscopic MN-SO core in order to obtain nucleon densities. In linear scale, densi

ties from MN-SO and the three-body model are shown again in Figure 5.5. It looks like 

highly integrated properties, such as radii and densities, may not appreciate the amount 

of details built into different models of 6He. We may then pose a question: is it really 

worthwhile to pursue a time-consuming microscopic approach to He if a computation

ally cheap three-body route works so well? Provided the three-body picture of "He is well 

suited for a problem at hand, can we not simply use three-body wavefunctions for all our 

needs? One way to shed more light at this issue is to compare three-body wavefunctions 

directly with their analogs extracted from MiCH, with overlap functions. 

5.3 Overlap functions 

For a more detailed comparison with results obtained in the three-body model, the three-

body-like core + n + n information needs to be extracted from MiCH. To access this 
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Figure 5.5: Point proton and point neutron density distributions in 6He for MN-SO and 
three-body models from Table 5.3. 

information, an overlap integral between a microscopically described two-neutron halo 

nucleus (^) and its core (<&) is computed: 

T, M j Jval 
. 1 - 1 = $ 

core J core u e J core 
\^J^MjTMT 

(5.3) 

The binomial factor accounts for the number of combinations to pick two out of A nucle-

ons. The integration is done over all degrees of freedom in the core $ , and so the overlap 

integral I depends on degrees of freedom of two valence neutrons remaining outside the 

core. The integral has a good isospin and isospin projection 1 and -1 , respectively, but 

it does not have a good angular momentum. It can be expanded in a complete set of 

hyper-harmonics with good angular momentum J ^ from Eq. (4.1): 

?Mi 
JM, 

Jval 
. 1 - 1 

ival J
val 

(5.4) 

where C are Clebsch-Gordan coefficients. As in Chapter 2, jvai = {K,lx,ly,L,S,T}. 

The expansion is carried out in the T Jacobi basis where the hyper-harmonics ty sat

isfy the Pauli principle by construction. The numerical factor (//1//2) ' is included to 

make the spatial part of hyper-harmonics orthonormal with respect to the weight factor 

102 



(//i/i2) ' sin #cos 0 from the hyper-spherical volume element in Figure 2.1. Note 

that the hyper-radial part in Eq. (5.4) is not expanded in the Laguerre basis from 

Eq. (2.16) because the basis functions TZn, do not have a good physical meaning. 

Instead, the overlap functions O are computed directly from: 

^J^MjTMT fJcoreTcoreMTcore®^valJ-all^l 
JnMjTMT Ph 

where the integration is carried over degrees of freedom of all nucleons. Using these 

overlap functions, the three-body-like core + n + n component of the wavefunction \P 

can be written as: 

l^Sfrur " „ £ „ <w"2)3/4 x (5'6) 

Jcorelval Jval 

®J?ore Tcore MTme ® O ^ j . ^ % ^ j ^ y 
J*MjTMT 

in the form similar to the three-body decomposition in Eq. (2.21). Moreover, the overlap 

wavefunction \J/we™aP satisfies a three-body Schrodinger equation with an additional 

source term due to the residual interaction between valence particles and those in the 

core [157]. Therefore, at least in the asymptotical regions, the three-body wavefunction 

from Eq. (2.21) and the overlap wavefunction •fyoverlaP from Eq. (5.6) should behave 

similarly. On this merit, the three-body results and those from MiCH for 6He can now 

be compared at the level of wavefunctions rather than integrated observables. A valence 

term characterized by a set jvai will be refereed to as an overlap or a three-body channel. 

For He, the three-body decomposition takes a simple product form: 

^Tofl ( S = <2/3)3/4*0+00 £ O - W O * ^ . - ! <5 '7> 

3Even though not mentioned, this factor was also included in three-body terms in Eq. (2.18). 
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In analogy with the three-body model and Eq. (2.11), it may be useful to work with 

modified overlap functions u: 

U(p) = p5/2 0{p) ( 5 . 8 ) 

Because of the orthonormality of hyper-harmonics, the norm of an overlap channel is 

given by: 
roo /-oo 

\^rl °W^5tW„ "Wrfd'' (5-9) 
The last quantity is often called a spectroscopic factor. We will use this term also in con

nection with the three-body results for He, where a spectroscopic factor gives the prob

ability of a given channel in the three-body wavefunction, as we have seen in Table 2.1. 

To compute overlap functions in a meaningful way, wavefunctions of both He and He 

need to be normalized. The normalization of the the core's wavefunction is known from 

SVM. The norm of He wavefunction can be computed numerically, as is demonstrated 

in Appendix D. Here, both wavefunctions are assumed to be normalized to unity. The 

integration space in Eq. (5.5) is sampled by the square of the wavefunction \& (6He). 

We extracted overlap functions for the MN-SO 6He. To ensure small statistical errors, 

overlap functions were computed on two separate random walks, each containing four 

million integration points. At the end, the overlap functions from such two walks were 

averaged in each overlap channel to improve statistics even further. 

Ordered by spectroscopic factors, the five strongest overlap channels in the MN-

SO 6He are listed in Table 5.4. These are the only channels that could be resolved, all 

other potential overlap channels have spectroscopic factors too small and as such are 

buried in numerical noise. The table also contains spectroscopic factors for 6He studied 

in the three-body model from Table 2.1. Surprisingly enough, not only the dominant 

channels are exactly the same in MN-SO and the three-body model, but also their order 

is preserved. In the three-body model, these five channels account for more than 98% 

of the wavefunction. Therefore, we expect that these channels should also grasp most 
4It seems that an overlap channel can be resolved if its spectroscopic factor is larger than about 0.01, 

or equivalently about one hundredth of that for the strongest K = 2 s-waves channel. 
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Table 5.4: Spectroscopic factors of the five dominant overlap channels in "He. Three-body 
results are from Table 2.1. Numbers in parentheses are relative errors. 

T Jacobi basis 

alias 

channel 

K lx ly L S 3body 

S 

MN-SO MN-SO / 3body 

K = 2 s-waves 2 0 0 0 0 0.8089 1.1155(0.5%) 1.38 
K = 2 p-waves 2 1 1 1 1 0.1103 0.1859(0.7%) 1.69 
K = 0 s-waves 0 0 0 0 0 0.0417 0.0555(2.1%) 1.33 
K = 6 d-waves 6 2 2 0 0 0.0164 0.0266 (3.5%) 1.62 
K = 6 f-waves 6 3 3 1 1 0.0078 0.0122 (3.0%) 1.56 

X) = 0.9851 1.3957 

of the He + n + n decomposition of the MN-SO He. In the three-body model, the 

wavefunction is normalized to unity, and as a consequence, all spectroscopic factors are 

less than one. In MN-SO, however, K = 2 s-waves channel has a spectroscopic factor 

larger than one. To understand this difference, we need to dig deeper. 

To see more clearly the difference between the three-body and the microscopically de

rived overlap wavefunctions, Figure 5.6 and Figure 5.7 show the hyper-radial dependence 

of the five channels from Table 5.4. We chose to show these functions as u(p) because of 

their simpler asymptotic fall-off in Eq. (2.15). It is satisfying to observe that for all five 

channels, three-body and overlap hyper-radial functions agree on their rough properties, 

such as overall shape, and number of nodes. There are, however, a few obvious differences. 

First, absolute values at peaks are larger for overlap functions than for three-body func

tions. This difference is responsible for larger spectroscopic factors in Table 5.4 associated 

with overlap functions. Second, overlap functions tend to peak and reach nodes (other 

than the trivial node at p = 0 fm) slightly before three-body functions do. Also, peaks 

of overlap functions are steeper. Third, at larger hyper-radii, overlap functions decay a 

bit faster, as can also be seen from both Figure 5.6 and Figure 5.7. Overall, the overlap 

functions on average put more weight on smaller hyper-radii. We could then speculate 

that this shift of preferred hyper-radii might be indirectly reflected by smaller radii of 

the MN-SO 6He in Table 5.3 when compared to radii from the three-body model. 
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Figure 5.6: Hyper-radial dependence of overlap and three-body wavefunctions for channels 
from Table 5.4. The three-body functions are from Figure 2.13. The legend is the same 
in all panels. 

At hyper-radii beyond about 12 fm, MN-SO overlap functions in Figure 5.6 and 

Figure 5.7 become unreliable and their statistical fluctuations take over. The reason is 

that very large hyper-radii would place two neutrons into regions very distant from the 
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Figure 5.7: Hyper-radial dependence of absolute values of overlap and three-body wave-
functions for channels from Table 5.4. The three-body functions are from Figure 2.13. 
The legend is the same in all panels. 

core. In extreme configurations, a hyper-radius of 15 fm would correspond to a di-neutron 

at distance of about 13 fm from the center of the 4He core, or to two neutrons on op-
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posite sides of the core at a mutual distance of about 21 fm. And because the sampling 

probability is proportional to (\&(6He)|\P(6He))S)£, such extreme spatial configurations 

are very unlikely to be visited by a walker during the course of a random walk. Moreover, 

samples in such distant regions may be highly correlated, an effect that has been seen in 

other Monte Carlo calculations, for example [90]. 

It is interesting to look at asymptotics of overlap functions a bit closer. As two neu

trons are pulled out of 6He, effects of the core-valence antisymmetrizer in Eq. (4.6) grad

ually vanish, and the full six-body wavefunction decouples into its 4He + n + n asymp

totical form. In asymptotic regions, the six-body wavefunction can be written as nothing 

else but a sum of overlap functions. Therefore, the asymptotics of overlap functions goes 

hand in hand with asymptotics of the many-body wavefunction in the core + n + n 

cluster channel. Both three-body and overlap hyper-radial functions should fall off ex

ponentially with the decay parameter K depending on the three-body binding energy 

via Eq. (2.13). For E3body (6He) = - 1 MeV, we get n w 0.22 fm - 1 . However, as dis

cussed before, we found the value PQ = 0.45 fm to be optimal for the valence part of the 

fully antisymmetrized wavefunction. Relating the two decay parameters as K = l/(2po), 

PQ = 0.45 fm would correspond to K = 1.11 fm - 1 , or E^^y « —25 MeV. In other 

words, individual valence terms in our microscopic wavefunction decay much faster than 

the expected asymptotic form of overlap (and three-body) functions. The asymptotical 

form should be most clearly realized for K = 0 s-waves thanks to a small, yet non-

vanishing, centrifugal barrier in Eq. (2.12). In Figure 5.8, we plot again the three-body 

and overlap hyper-radial functions for K = 0 s-waves along with two asymptotical forms 

corresponding to decay scales K = 0.22 f m - 1 and po = 0.45 fm. It is gratifying to see 

that the overlap function is almost perfect asymptotically in the computationally safe 

region of p < 12 fm. The right asymptotical trend is recovered regardless of the fact that 

all valence terms in the wavefunction are asymptotically wrong. These results have been 

obtained from the MN-SO wavefunction containing hyper-radial Laguerre polynomials 

of order five and less. Perhaps, if needed, the asymptotics could be improved further 

with inclusion of Laguerre polynomials of higher orders. In either case, presented results 
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Figure 5.8: Behavior of K = 0 s-waves overlap and three-body functions from Figure 5.6 
at large hyper-radii. Also shown are two different predictions for asymptotics, one corre
sponding to the three-body binding energy E^0^y = —1 MeV (K = 0.22 fm - 1 ) of 6He, 
the other to the asymptotics of individual valence terms in the MN-SO wavefunction of 
6He (po - 0.45 fm). 

clearly demonstrate that the three-body hyper-spherical/hyper-radial basis is suitable 

not only for few-body, but also for microscopic calculations. The basis is flexible enough 

to catch simultaneously short- as well as long-distance correlations, a quality especially 

appreciable in the realm of Borromean halo systems. Based on these arguments, we be

lieve that microscopic wavefunctions in MiCH have asymptotics very close to the proper 

one, indeed. 

Using the analogy between overlap functions and three-body wavefunctions, we can 

also estimate relative probabilities of MN-SO overlap channels in the 4He + n + n de

composition of He. Because of the orthogonality of overlap channels, we can define such 

probability simply as a ratio of a spectroscopic factor and the value 1.3957, the sum of 

spectroscopic factors from the MN-SO model in Table 5.4. These probabilities are listed 

in Table 5.5 and they are very similar to the weights of corresponding channels in the 

three-body wavefunction of 6He. Such a comparison is only approximate because the 

five overlap channels account for only 98.5% of the three-body wavefunction and overlap 

channels with spectroscopic factors smaller than about 0.01 were not extracted from the 

MN-SO 6He. Nevertheless, mixing of overlap channels in both models is about the same. 
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Table 5.5: Probabilities of overlap channels from Table 5.4 in the 4He + n + n decom
position of "He. Three-body probabilities are those from Table 2.1. MN-SO probabilities 
were computed as ratios of MN-SO spectroscopic factors from Table 5.4 and the value 
1.3957 also from that table. 

channel probability [%] 

3body MN-SO 

K = 2 s-waves 80.89 79.92 
K = 2 p-waves 11.03 13.32 
K = 0 s-waves 4.17 3.98 
K = 6 d-waves 1.64 1.91 
K = 6 f-waves 0.78 0.87 

We now present two more comments regarding spectroscopic factors. Even though not 

mentioned so far, we also computed overlap functions from the MN model. Because the 

central nucleon-nucleon interaction does not mix valence spin-singlets and spin-triplets in 

the full microscopic wavefunction, overlap channels containing spin-triplets were absent 

in the MN model. At the same time, spectroscopic factors of the spin-singlet channels 

were about the same as those for the MN-SO model in Table 5.4. By not having spin-

triplet overlap channels in the MN case, about 14% of spectroscopic strength resolved in 

the MN-SO case would be missing in MN. This potentially missing spectroscopic strength 

is estimated as a sum of MN-SO probabilities of spin-triplet channels in Table 5.5 and 

it represents one possible way to estimate the importance of non-central forces on the 

structure of "He. 

Another comment regards the fact that the MN-SO spectroscopic factor for the dom

inant K = 2 s-waves overlap channel is larger than one in Table 5.4. This is expected [89] 

because in the overlap integral in Eq. (5.3), the a particle does not sit at the center 

of mass of He. In other words, spectroscopic factors larger than one are there due to 

recoil effects. In [89], an upper limit on the spectroscopic factor of the dominant K = 2 

s-waves channel was estimated to be about 25/16=1.5625 times the probability of this 

state in the shell-model. If we further assume that the probability in the shell-model can 

be approximated by the three-body model (as was in fact done in the cited work), then 
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using Table 5.4 the upper limit on the spectroscopic factor of K = 2 s-waves channel 

would be 1.26, a value indeed larger than that extracted the MN-SO model. But the 

ratio of MN-SO and three-body spectroscopic factors in Table 5.4 varies between chan

nels. This observation suggests that to account for microscopic information missing in the 

three-body model, it may not be sufficient to simply renormalize the entire three-body 

wavefunction by a common factor such as 25/16 suggested in [89]. 

Finally, overlap functions (also three-body wavefunctions) can be used to shed more 

light on clustering in "He. Additional insight is gained by calculating the probability of 

finding definite distances within the three-body decomposition of 6He from Eq. (5.7): 

"{fn-n,fcore—nn) — rn-nrcore~-nn I dttxdQy, 

(5.10) 

where r n _ n and rcore-nn are the valence neutron-neutron separation and the distance 

between centers of masses of the core and the valence neutron pair, respectively. These 

distances would correspond to lengths of vectors x\ and x<i in the T Jacobi basis in 

Figure 2.1. The probability plot for the MN-SO 6He is presented in Figure 5.9. The 

figure exhibits two peaks: a di-neutron-like peak positioned at about rn-n = 1.93 fm and 

rcore-nn = 2.63 fm (p = 3.33 fm) with the two neutrons close together located outside 

4He, and a cigar-like peak at r n _ n = 3.82 fm and rcore-nn = 1.03 fm (p = 2.95 fm) 

with the two neutrons positioned on opposite sides of the core. Qualitatively the same 

clustering picture would be obtained within the three-body model and has also been 

reported from other models, such as SVM [133]. 

The occurrence of two prominent clustering peaks in Figure 5.9 is not surprising 

because the overlap channels are dominated in the T Jacobi basis by K = 2 s-waves. 

Using definitions from Figure 2.1, the distances rn-n and rcore-nn in He are related to 

hyper-spherical coordinates as 

rn-n = V2p sin 9; rcore-nn = y/3/4 p cos<9. (5.11) 
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Figure 5.9: Correlation density plot for the ground state of the MN-SO "He. The di-
neutron and cigar-like configurations are shown schmetically. 

Neglecting for a while the constant factors in Eq. (5.11), the hyper-angle serves as the 

polar angle in Figure 5.9, and the directional distribution of the clustering probability is 

given by the probability to find different hyper-angles. For K = 2 s-waves, the hyper-

angular probability is shown in Figure 5.10. There are indeed two peaks in Figure 5.10 

allowing the formation of two prominent peaks in Figure 5.9. Despite the symmetricity 

of the hyper-angular distribution in Figure 5.10, the clustering probability is not sym

metrical due to mass factors in Eq. (5.11) and the influence of overlap channels other 

than K = 2 s-waves in the three-body decomposition of He. 

In summary, it becomes obvious that to appreciate the amount of details involved 

in few-body and microscopic models of 6He, one should look beyond the few commonly 

studied features such as the three-body binding energy, nuclear radii and nucleon densi

ties. At the level of wavefunctions, the differences between macroscopic and microscopic 

models are clear. To our knowledge, the overlap functions for 6He have been extracted 

in this work for the first time from a microscopic structure model in a form that allows 

their direct comparison with few-body wavefunctions. By comparing our micrscopically 

derived overlap functions with three-body wavefunctions we concluded that a simple 

renormalization of three-body wavefunctions may not be sufficient to account properly 

for the microscopic information missing in few-body models. Besides their usefulness for 

a comparative study of different structure models, the overlap functions presented in this 
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Figure 5.10: The probability to find different hyper-angles in the K = 2 s-waves 
overlap channel. For this channel, the hyper-angular probability is proportional to 
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1 /2 '1 /2(cos2^) sin 9 cos 9 shown in the plot. The factor sin 9 cos 9 is the hyper-

angular part of the hyper-spherical volume element in Figure 2.1. 

section provide a crucial input to reaction calculations involving 6He, in particular, to 

two-neutron transfer reaction models. 

5.4 Two-neutron transfer reactions 

An immediate practical application of overlap functions obtained in the previous section is 

in reaction calculations involving He. In particular, overlap functions enter directly in the 

formulation of two-nucleon transfer reactions. Several experiments have been performed 

to study the two-neutron transfer from He onto hydrogen, helium, carbon, and copper 

targets [53,158-161]. Of those experiments, we concentrate on p(6He, He)t with incident 

energy of 6He 25 MeV/A [160], which is simpler to model due to the trivial structure 

of the target nucleus. This reaction was later reanalyzed in [89], where several possible 

drawbacks of the original analysis in [160] were indicated. It is clear from previous works 

that, for a given beam energy, the reaction mechanism contains both sequential and 

simultaneous transfers. In the former reaction mechanism, two neutrons are transferred 

one by one whereas in the later case they are transferred both at once as a pair. However, 

given that the sequential process involves the continuum and we do not yet have a fully 
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microscopic description in that case, the comparative study here will focus only on the 

simultaneous transfer component, which is the only two-neutron transfer mode considered 

in previous works [89,160]. 

Let us first analyze the transfer reaction p( He, He)t qualitatively. At the beam 

energy 25 MeV/A, the reaction happens well above the Coulomb barrier between proton 

and He. Therefore, the neutron transfer can happen at any impact parameter. If the 

two neutrons are transfered in a single step as a pair, it is reasonable to expect that they 

are preferably picked from the di-neutron configuration in He. Located almost entirely 

outside of He, the di-neutron peak in Figure 5.9 reaches its maximum at a distance 

of about 2.6 fm between He and the di-neutron. Given the radius 1.46 fm of He, we 

then expect the reaction to be mostly peripheral relative to 4He with small scattering 

angles in the reaction center-of-mass system. In terms of hyper-radii, peripherality of the 

reaction may be misleading, because the location of the di-neutron peak in Figure 5.9 

corresponds to a fairly small hyper-radius of about 3.3 fm in Figure 5.6. Therefore, the 

transfer should be sensitive not only to distant tails of overlap functions in Figure 5.6, 

but also to their volume parts, or in other words to spectroscopic factors. 

Quantitatively, the transfer reaction is analyzed within the distorted wave Born ap

proximation (DWBA). Here, we briefly present the main ingredients of DWBA linking 

us to overlap functions; details can be found elsewhere [162]. Under the 1-step DWBA, 

the reaction amplitude for the simultaneous transfer of two neutrons in the p( He, He)t 

reaction can be written in prior form as (see for example Eq. (9) in [89]): 

r P
D

r r A = ( 4 L / ' \yeHnn)+sv\ *&-,**.) • ("2) 

where </>t and (/)§„ are overlaps between pairs of initial and final composite systems (t,p) 

and ( H e , 6He), respectively. XQJ a n d x \ a r e the distorted waves in the entrance 

"He-p and exit 4He-t channels. The interaction causing the transition from the initial 

to the final state has two parts. The first part is the sum of potentials binding the two 

transferred neutrons to a proton: yP~( n n) = \ZP_nl + y P _ n 2 . The other term 5V, the so 
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called remnant potential, contains potentials for a proton interacting with He and He: 

8V = y 4 H e " P - [/6 H e"P. 

Traditionally, both overlaps fa and 06u would be taken as three-body wavefunctions 

of a triton and He, an approach perfectly justified for the triton but arguable for He. 

It is here where overlap functions from Section 5.3 obtained within MiCH enter the 

game: they are exactly fa„ . To examine the impact of the differences seen in Figure 5.6 

between three-body wavefunctions and overlap functions on a physical observable, we 

calculate the reaction cross section for simultaneous two-neutron transfer between 6He 

and a proton. Within DWBA and apart from additional constants, the differential cross-

section is proportional to the square of the reaction amplitude from Eq. (5.12): 

da 

dTT 
TDWBA 

prior 
(5.13) 

All DWBA reaction calculations presented here are finite-range and have been per

formed with the code Fresco [163]. The triton three-body wavefunction fa and the binding 

potential V H e _ P as well as optical potentials U He~P and U H e _ t are the same as in [89]. 

For consistency, the nucleon-nucleon interactions in Vp~^nn' are the same as those used 

to bind the triton [115]. For the optical potential between triton and 4He in the exit 

channel, we adopted the parameter set I from Table I in [89], in which the potential was 

fitted to elastic scattering data, thus significantly reducing uncertainties in cross-sections. 

We have found the effects of the remnant potential to be large. Therefore, all presented 

cross-sections were obtained with the full complex remnant term included. 

The cross-sections of simultaneous two-neutron transfer in the reaction p( He, He)t 

are finally shown in Figure 5.11. We considered two scenarios differing by treatment of 

the overlap (f)Q„ : three-body, where the overlap was taken as the three-body wavefunc

tion from Section 2.4, and MN-SO with the overlap replaced by microscopically founded 

overlap functions from the MN-SO model of 6He in Section 5.3. We have found that 

the cross-sections are mostly sensitive to the components of fa-^ containing s-waves be

tween the two neutrons, and between He and the di-neutron. This sensitivity is expected 
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Figure 5.11: Cross-section of the p( He, He)t reaction at 25 MeV/A. Lines are theoretical 
results for the simultaneous two-neutron transfer process in the three-body, MN-SO and 
rescaled three-body model. See text for details. 

because the reaction favors low momentum transfer. From the structure point of view, 

the major role of overlap channels containing s-waves is due to their dominance in the 

three-body He + n + n decomposition of 6He, as we have seen in Section 5.3. 

At small angles, the ratio of the three-body and MN-SO cross-sections in Figure 5.11 

is very close to the ratio of spectroscopic factors for K = 2 s-waves in Table 5.4, i.e. 

close to 1.38. This observation reflects our suspicion that the reaction at small angles is 

sensitive to almost the entire overlap functions from Figure 5.6. except perhaps at very 

small hyper-radii. Moreover, at small angles, the effects due to slightly different shapes 

of three-body and overlap functions are "integrated out", and the only thing that seems 

to matter is the difference in spectroscopic factors. For comparison, Figure 5.11 also 

contains the three-body cross-section renormalized by an additional spectroscopic factor 

25/16 = 1.5625 suggested in [89]. When one uses three-body wavefunctions in place of 

overlaps </>6H , a simple additional renormalization of cross-sections is the only way to 

account for missing microscopic structure input. Observing the similar shapes of cross-

sections in the three-body and MN-SO cases in Figure 5.11, one could try to argue in favor 

of such ad-hoc renormalization of three-body cross-sections. However, we have to realize 
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that here we study only one reaction mechanism at a single energy; the cross-sections for 

other reactions and/or at different energies could be more sensitive to differences between 

three-body wavefunctions and microscopically derived overlap functions. Also, the three-

body renormalization factor 25/16 is just an upper estimate based on a simple shell-model 

picture of He. In either case, by using microscopically derived overlap functions, the 

cross-section is increased by about 40% compared to that obtained by using three-body 

wavefunctions, which by itself is significant given the quality of the experimental data in 

Figure 5.11. 

Looking at Figure 5.11, one can see the disagreement between experimental data and 

theoretical calculations despite using microscopically derived overlap functions. It has 

been concluded in [89] that the disagreement most likely indicates the influence of other 

reaction channels not included in calculations, such as sequential transfer and/or 6He 

break-up. Also, in the range of angles where the theory predicts a strong rise of the 

cross-section, there are no experimental data to guide the theory in the right direction. 
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Chapter 6 

Summary and outlook 

6.1 Summary 

Halo nuclei are composite systems with prominent features of few-body correlations. The 

best examples of nuclear halo species are known to exist among light neutron-rich nuclei, 

in which a single or few neutrons may be partially decoupled from the rest of the system, 

from the core. The weak attraction to the core experienced by halo neutrons allows them 

to swim in distant, classically forbidden regions. 

Particularly interesting are two-neutron halo nuclei, such as 6He and 11Li, with two 

correlated neutrons forming the halo. Typically, these nuclei are studied within few-

body models, in which the long-distance inter-cluster motion is treated properly, but 

the inert-core picture used in such models is undoubtedly a simplification to the many-

body problem. Nevertheless, few-body models supply the structure information for many 

reaction calculations involving two-neutron halo nuclei. On the other hand, microscopic 

models find halo species very challenging and these models may fail to capture the few-

body long-distance correlations so important for halo nuclei. 

At the heart of this dissertation is MiCH, a microscopic cluster model of two-neutron 

halo nuclei. Designing MiCH, the goal was to combine advantages of few-body and mi

croscopic nuclear structure models to create a microscopic model capable to deal simul

taneously with short- and long-range effects in two-neutron halo nuclei. To accomplish 
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this goal, a properly antisymmetrized wavefunction in MiCH consists of a microscopic 

core-like piece and a three-body-like valence part expressed in terms of hyper-spherical 

functions. In the present work, MiCH has been applied to the ground state of the sim

plest two-neutron halo nucleus, He, bound by the effective nucleon-nucleon Minnesota 

interaction. The results for this nucleus can be summarized as follows. 

The Pauli principle is crucial for the binding and structure of He, because it does not 

only eliminate forbidden states between the core and the valence neutrons and between 

the valence neutrons themselves, but it also delivers extra binding to the system through 

exchange effects. Through explicit antisymmetrization done in MiCH we have found, 

that the lowest hyper-spherical K = 0 three-body states are strongly blocked by the 

Pauli principle between the core and the valence neutrons. This observation is important 

especially in connection to three-body models, from which the hyper-spherical basis has 

been adopted,and which employ different methods to account approximately for the core-

valence Pauli principle. The message here is that all three-body hyper-spherical states, 

but especially those with K = 0, ought to be subjected carefully to the Pauli principle 

if one is to describe He realistically. It is through the core-valence exchange effects that 

the nucleus becomes three-body bound. 

For a variationally optimized He, the binding energy relative to the three-body 

threshold, rms radii, the thickness of the neutron halo, and nucleon densities were com

puted and found to agree with experimental values and results obtained in a variety of 

structure models. The halo nature of the nucleus can be seen from its extended neutron 

density resulting in the large difference between the matter and proton radius. It seems 

that commonly computed and highly integrated observables such the three-body binding 

energy and radii may not appreciate the amount of details built into different models of 

He. For these observables, a three-body approach with its simplistic description of the 

He core is as reliable as microscopic models. 

To extract information about the He + n + n component in "He, we have computed 

the overlap integral between He and He. The integral was expanded in hyper-spherical 

functions to make it comparable with three-body wavefunctions and applicable to re-
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action calculations involving He. To our knowledge, this is the first time that overlap 

functions for He have been calculated in this form from a microscopic structure model. 

In agreement with three-body models, the microscopically founded three-body decom

position from MiCH suggests that the same overlap channels dominate the He + n + n 

cluster-division in 6He. On the other hand, MiCH predicts spectroscopic factors larger 

by at least 30% than those from a three-body model for the dominant overlap channels 

in 6He. This difference in spectroscopic factors reveals a deficiency of few-body models, 

namely the inert-core approximation. Moreover, the relative enhancement of spectro

scopic factors in MiCH varies between overlap channels, and so it may not be sufficient 

in three-body models to simply renormalize the wavefunction to account for missing 

microscopic information. In agreement with other models, we predict two major cluster

ization patterns in "He: the di-neutron-like and the cigar-like. In the former pattern, two 

neutrons stay close together outside the He core, in the later pattern, two neutrons are 

positioned on opposite sides of the core. 

Finally, as a practical application of overlap functions obtained in MiCH, we car

ried out a calculation for the reaction p( He, He)t at 25 MeV/A assuming that the 

reaction proceeds only through the simultaneous transfer of two neutrons. The angu

lar distribution of the reaction cross-section is similar to that obtained with three-body 

wavefunctions for "He, but the cross-section with microscopically derived overlap func

tions is larger by about 40% due to the above-mentioned difference in spectroscopic 

factors between MiCH and three-body models. Even with microscopically derived input 

for this reaction about the He + n + n component in He, theoretical predictions for the 

cross-section assuming only the simultaneous two-neutron transfer do not reproduce ex

perimental data. Therefore, we assert that other reaction mechanisms such as sequential 

transfer and break-up should be included in theoretical considerations for this reaction. 
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6.2 Outlook 

In the present work, the model MiCH has been formulated for bound states of two-

neutron halo nuclei and applied to the simplest case, 6He, bound by an effective soft-core 

nucleon-nucleon interaction. For this nucleus, the model has proved to be working and the 

original goal of combining advantages of few-body and microscopic models to describe 

simultaneously the short-distance and the long-distance few-body halo correlations in 

He have been met. This success opens the door to possible future applications and 

improvements of the model. 

Even for 6He, there is still work to be done. An interesting application aimed on the 

halo aspects would be the /3-decay of He to Li. There is experimental evidence that the 

decay takes place essentially in the halo region in 6He. For such a study, a microscopic 

wavefunction for "Li is needed and we could attempt to produce it within MiCH despite 

the fact that the ground state of Li does not have a Borromean character. Li would be 

modelled as He + n + p with a microscopic He core. 

The most exciting case to study among two-neutron halo nuclei is Li. This nucleus 

has a very small two-neutron separation energy and a well developed neutron halo. As 

part of the present work, Li has been studied within a deformed-core three-body model, 

and it has been found that the core deformation plays an important role in the structure 

of this nucleus. Given the physics insight built into MiCH, the model is well suited to 

face the challenge of the unique neutron halo in ^L i . Going to mass eleven, however, 

we would most likely encounter (serious) computational difficulties due to the memory 

and CPU time required to carry out the Monte Carlo integration of matrix elements. 

We believe that with the increasing computational power, improved algorithms and code 

parallelization, this computational difficulty could be overcome which would bring 11Li 

to our grasp. 

A further improvement of the model could be achieved by the implementation of more 

realistic nucleon-nucleon interactions and the inclusion of excited states. For light two-

neutron halo nuclei, including excited states means extension to the continuum, which is 
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important for reaction calculations involving these nuclei due to the proximity of break-up 

thresholds. This brings us to the interplay between the structure and reactions. 

In the present work, we have studied a two-neutron transfer reaction involving "He 

in the approximation of simultaneous transfer. Our results and those of other works 

suggest that the experimental transfer data can not be reproduced unless other reaction 

channels, such as sequential transfer and break-up, are included in the calculation. These 

other channels involve continuum states of 6He as well as of 5He. Our long-term goal is to 

describe transfer reactions involving two-neutron halo nuclei in their full complexity with 

a microscopically derived structure input for all nuclei involved in the reaction. This task 

is important because it is at the intersection between nuclear structure and reactions, 

where we have learnt most about two-neutron halo nuclei. 

Finally, MiCH could be extended to study other light nuclei with less-straightforward 

cluster divisions, but still showing few-body features. Among them are 8He with its 

neutron-skin and C with its famous Hoyle state. For °He (= 4He + n + n + n + n), 

the hyper-spherical formalism in MiCH adopted from few-body models would be extended 

to deal with the five-body inter-cluster motion, and for 1 2C (= 4He + 4He + 4He), the 

two valence neutrons in the current version of MiCH would be replaced by two microscopic 

4He clusters. In both nuclei, all binary subsystems are unbound which makes MiCH well 

suited to deal with such nuclei. 
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Appendix A 

Implementation details 

Along a random walk, local values of matrix elements in the spin-isospin space are com

puted many times. This is done not only at each integration point, where local values 

of operators such as 0 / o c in Eq. (4.22) and local weights such as w in Eq. (4.25) are 

evaluated, but also at each trial move proposed by the Metropolis algorithm, where a 

local value of importance function needs to be calculated. In either case, the first thing 

we need is a local representation of the wavefunction in Eq. (4.3). 

A.l Local representation of wavefunction 

The concise coupled form of the wavefunction in Chapter 4 is not suitable for local ma

nipulations. The reason is at least twofold. First, the angular momentum couplings hide 

projections of orbital momenta along Jacobi coordinates, which are needed to evaluate the 

spatial part of the wavefunction locally. Second, operators such as Hamiltonian contain 

pair-wise (between two spots) operators acting on spin and isospin degrees of freedom in 

the wavefunction, and so one must be able to identify spin-isospin "values" of each spot. 

A convenient basis of spin/-sospin states is provided by those sets in which each spot 

has a definite third components of spin and isospin [140]. Therefore, at any set of spots 

r = { n . , . . . , fX\, angular momentum couplings in the wavefunction are decoupled so that 

third components of orbital momenta along Jacobi coordinates and those of single-spot 
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spins and isospins can be identified. The difference between spots and particles has been 

explained in Section 3.1. 

In the system with A spots (particles), there are 2A possible permutations of spin 

projections over spots. To represent a single spin in the computer, 0 is used for spin 

"down" and 1 for spin "up". Each spin basis state in the wavefunction can then be 

represented in a simple binary fashion. For example, for 4 particles we have: 

spots -

binary bits -

-> 1 

-»• 3 

0 

0 

0 

1 

2 

2 

0 

0 

0 

1 

3 

1 

0 

0 

1 

1 

4 

0 

0 

1 

0 

1 

binary # 

0 

1 

2 

15 

This basis only keeps a record of how spin projections are distributed over spots. Under 

particle permutations imposed by A and tA
core~v antisymmetrizers in Eq. (4.3), 

particles carrying spins jump between spots, but once the antisymmetrization of the 

wavefunction has been completed, the only thing one needs to know is whether there is 

a spin up or down at a given spot regardless of which particle brought it in. 

The isospins can be handled similarly, but due to charge conservation, the number of 

isospin basis states can be reduced to: 

(3-
where Z is the number of protons. The number of isospin basis states could be reduced 

further by constructing states with good total isospin, but then the action of isospin-

related operators would be more involved. 

After spatial parts of the wavefunction have been evaluated for each particle permu

tation, all pieces of the antisymmetrized wavefunction belonging to a given spin-isospin 

basis state are gathered. Ultimately, the wavefunction is represented locally as a two di-
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mensional array of complex numbers with elements corresponding to different spin-isospin 

basis states. 

A. 2 Operators 

In the spin-isospin basis described in the previous section, the Hamiltonian containing 

two-nucleon interactions is a sparse matrix, since two-body interactions can only change 

the spins or isospins of two nucleons at a time. Any operator involving spins or isospins 

is written in the form in which it acts directly on spin or isospin projections. Under the 

action of such an operator, spin-isospin projections at some spots may be changed, and 

the spin-isospin basis states are transformed among themselves. Spin-dependent operators 

include for example interaction terms, the spin-orbit force, operators S and Sz of the 

total spin and J and Jz of the total angular momentum. 

At the level of individual spots, a single spin operator s = ^a is expressed in terms 

of raising s+, lowering s~ and az operators: 

sx = 2°x = 2 ' Sy = 2ay = — 2 % — ' Sz = ~2°z' (A - 1) 

When permitted, the z-projection of a single spin is raised and lowered upon the action 

of s+ and s~, respectively. The spin projection is not changed by az, but an extra 

factor (—1) is acquired when the spin is down. An equivalent treatment is given to a 

single isospin operator t= \T. The interaction spin-exchange operator P?- in Eq. (3.11) 

simply swaps spin projections at spots i and j . The coordinate-exchange operator Pf-

in Eq. (3.11) is written as Pf- = {—l)Pf-PJ-, where the isospin-exchange operator Pf-

swaps isospin projections at spots i and j . Sometimes, the central part of a two-nucleon 

interaction is written in a form containing <TJ • a- and Tj • r» operators instead of Pf- and 

PJ-. These operators can be written as: l3 

ai-aj = 2Pfj-l, ri-rj = 2Pfj-l. (A.2) 
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Momentum-dependent operators, such as the kinetic energy, the spin-orbit force, op

erators Lz and I? of the total orbital momentum and operators Jz, J 2 of the total 

angular momentum, involve first- and second-order derivatives of the wavefunction. All 

required derivatives are obtained simply by moving each spot by a small distance in both 

the positive and negative directions along each axis. If, for brevity, we consider a function 

f(x, y) of two variables x and y, then its partial first- and second-order derivatives may 

approximately be obtained from: 

,/ _ f(x + A,y)-f(x-A,y) 
Jx — ^ > KA-6) 

fn _ f(x + A,y) + f(x-A,y)-2f(x,y) 
Jxx — A2 ' v-^-v 

f„ _ fix + A, y + A) + f(x - A, y - A) - 2 / ( s , y) _ „ _ „ 
Jxy ~~ A 2 Jxx Jyyi \-™-°) 

where A represents a small shift and the subscripts on / denote differentiating variables. 

First- and second-order derivatives with respect to y would be obtained by making a small 

shift in y instead of x. The dependence of derivatives on A must be tested carefully to 

ensure their reliability. There should exist an interval of optimal values of A within which 

the approximations to derivatives are A-independent. In MiCH, the value A = 0.001 fm 

is used. 

To obtain first- and second-order derivatives of the wavefunction in MiCH, Eq. (A.3)-

Eq. (A.5) are applied to each spot in each x, y, z direction which requires 2 x 3 x ^ ad

ditional evaluations of the wavefunction. This is the reason why, from the computational 

point of view, short but well decorrelated random walks may be much cheaper to work 

with than long but highly correlated walks. Remember that when integration points are 

being decorrelated, a single new evaluation of the wavefunction at f^ai is needed in each 

decorrleation step to check the Metropolis acceptance condition. 
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Appendix B 

Further tests 

For a success of any variational calculation in the framework of VMC, the reliability 

and accuracy of matrix element evaluation are crucial. In Section 4.2.2, the Metropolis 

algorithm has been checked for reliability, issues related to correlations inherent in the 

algorithm were pointed out and methods of their suppression were outlined. In this Ap

pendix, additional tests are presented to convince ourselves that numerical manipulations 

and integrations in MiCH are carried out properly. Also, the problem of "bad points" 

first mentioned in Section 4.2.3 is discussed 

B.l Triton tests and the story of bad points 

This section summarizes some numerical results obtained within MiCH for the simplest 

core + n + n bound nuclear system, the triton. In triton, the wavefunction in Eq. (4.3) 

does not need to be core-valence antisymmetrized, because the core contains a single 

proton distinguishable (by its isospin projection) from valence neutrons and there are no 

core-valence forbidden states. This makes the triton a perfect case to check the imple

mentation of the valence part of the wavefunction in Eq. (4.3). 

We start with a triton containing a single valence term in the T Jacobi basis charac

terized by {K, lx, ly, L, S, Jvai,niag} and po from Section 2.1. By using the definition of a 

local value of an operator from Eq. (4.22) and after applying the kinetic energy operator 
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from the left-hand side of Eq. (2.4) on triton's wavefunction *& from Eq. (4.3), the local 

kinetic energy can be written as: 

Tlocif) = 
<tf|T|#)8 ) t n2 i 

<*|*>flft 2 m p 2 L 5 ^ 

15 5 p 1 / p \ 2 \ r 5 f.p ( p\2\ r 6 f P\2
 T7 

\ 4 + 2 P 0 4 U J J L"^ + V5«) U J j V r 1 W Ln^~2 

ft2(X + 3/2)(X + 5/2) 
+ 2^ ? ( R 1 ) 

with indexes on \? omitted. Here, all Lk(p/pq) are associated Laguerre polynomials having 

the following explicit form taken from the relationship 22.3.9 in [97]: 

Lf((X)= E ( - l ) m ( ^ * ) ^ m . ;>0,fc>0. (B.2) 
k 

m=0 

By definition, we set L_^ = L_ 2 = 0. For small hyper-radii, the local kinetic energy 

diverges as: 

K = 0, any nlag : Tloc(p - 0) » ( l + n,0 5 /3) //o, (B.3) 

K ^ 0, any n /aff : TZoc(p -^ 0) « AT(A: + 4)/p2 , (B.4) 

where the advantage was taken of the limiting form of Eq. (B.2). Furthermore, hyper-radii 

in the triton are distributed according to: 

nP) = P" (nniag)\ (B.5) 

where TZn, is a hyper-radial basis function from Eq. (2.16) and / r is the phase-factor 

from the hyper-spherical volume element in Figure 2.1. By using Eq. (B.2), the hyper-
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radial probability at small hyper-radii is: 

P ( P - 0 ) « ^ £ ± ^ P 5 , (B.6) 

and it increases with the fifth power of niag. At small hyper-radii, however, the local 

kinetic energy in Eq. (B.3) and Eq. (B.4) diverges. Therefore, valence terms with higher 

n\ag may trigger "bad points", i.e. integration points with extraordinarily large local 

kinetic energies. When that happens, the Monte Carlo energy averaging is harder to 

converge. 

To illustrate the effect of bad points, we consider a triton containing a single valence 

term in the T Jacobi basis with lx = ly = L = S = 0 and pQ = 0.50 fm. For the 

hyper-spherical part of the wavefunction, two scenarios are considered: K = 0, niag = 0 

and K = 4, niag = 2. The former case represents spatially the simplest possible triton, 

whereas the later case contains non-trivial hyper-angular and hyper-radial parts. For 

each of these tritons, a random walk is produced and the local kinetic energies and the 

distribution of hyper-radii are shown in Figure B.l. 

In the figure, our suspicion about bad points is clearly confirmed. Compared to the 

hyper-radial distribution for the triton with K = 0, niag = 0 in Figure B.l(e), hyper-radii 

for the triton with K = 4, n[ag = 2 in Figure B.l(f) are shifted towards smaller values and 

their probability grows rapidly near the origin, which gives birth to very large local kinetic 

energies in Figure B.l(b) and Figure B.l(d) for that triton. Even though the number of 

bad points is small, once they occur, they severely bias the Monte Carlo estimate of the 

triton's kinetic energy, sometimes making the estimate completely unreliable. A similar 

effect has been observed in a fully antisymmetrized He, where inclusion of valence terms 

with higher n;a„ may trigger bad points, especially when there are only a few valence 

terms in the wavefunction. In "He, bad points may occur if any two spots and the 

center-of-mass of remaining spots are close to each other. Then, in some core-valence 

permutations, the valence part of the wavefunction is susceptible to large local kinetic 

energies. Therefore, valence terms with n[ag ^ 0 should be added to the model space 
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(a) Triton with K = 0, niag = 0. Dependence (b) Triton with K = 4, riiag = 2. Dependence 
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of hyper-radii. of hyper-radii. 

Figure B.l: Local kinetic energies, their distribution, and the distribution of hyper-radii 
for simple tritons with single K = 0, niag = 0 and K = 4, niag = 2 hyper-spherical 
channels.. Theoretical curves correspond to Eq. (B.l) for kinetic energy and Eq. (B.5) 
for the hyper-radial probability. 
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of "He only after a preliminary convergence in hyper-momentum has been reached for 

Hag = fl

it is gratifying to see that the theoretical predictions from Eq. (B.l) and Eq. (B.5) 

are perfectly reproduced by MiCH in Figure B.l. Finally, local kinetic energies can be 

negative, as can be seen from Figure B.l(a) for the triton with K = 0, niag = 0. When 

the wavefunction contains more valence terms, local kinetic energy can take negative 

values even for small hyper-radii due to interference effects. 

To put MiCH to a further test, we now try to reproduce basic observables of an 

auxiliary triton produced within the three-body model described in Chapter 2. For this 

purpose, we use the three-body code FaCE [93] to generate the wavefunction of a triton 

within a limited model space containing all valence terms in the T Jacobi basis with 

niag < 10 and p 0 = 0.50 fm. The nucleus is bound by the Volkov I interaction 

with the mixing parameter set to m — 0.0 [135]: 

Vij = -83.34exp [-(ry/1.60) 2 ] + 144.83exp [-(ry/0.82)2] (B.7) 

where r^j = \ri — fj\ is the distance between nucleons i and j . For several values of Kmax, 

the binding energy and the rms radius of a triton produced by FaCE are estimated by 

MiCH. The results are shown in Figure B.2. The binding energy of the triton predicted 

by the three-body model is perfectly reproduced numerically by MiCH in Figure B.2(a). 

For rms matter radii, there is a slight discrepancy (< 1%) between the three-body and 

MiCH values in Figure B.2(b). Even in the three-body calculations, some integrals are 

carried out numerically with no error estimates provided. Therefore, the origin of the 

mentioned discrepancy remains unknown. The actual difference between three-body and 

our values may be beyond the accuracy of three-body calculations. 

In summary, passing these triton and other tests, we have convinced ourselves that the 

valence part of the wavefunction is implemented properly in MiCH. It is the valence part 

of the wavefunction that is responsible for bad points plaguing Monte Carlo estimates of 

matrix elements. 
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Figure B.2: The binding energy and the rms matter radius of a triton bound by the 
Volkov I nucleon-nucleon interaction (m = 0). Empty squares are values calculated by 
the three-body code FaCE. For Kmax = 0, 2, 4 and 10, the observables are estimated 
by MiCH using wavefunctions produced by FaCE. Each value shown for MiCH is the 
average value from eight independent random walks each containing 100,000 integration 
points. 

B.2 Additional tests and checks 

Here, we briefly comment on some other tests of the accuracy of calculations in MiCH: 

• For any wavefunction for the core produced within SVM as described in Chapter 3, 

the binding energy is also estimated in MiCH by simply switching off the valence 

part in Eq. (4.3). Our numerical estimates of the binding energy of the 4He core 

are always in perfect agreement with values predicted by SVM. 

• Occasionally, local values of the kinetic energy of the total center of mass are 

computed at several integration points. Typically, the values for He are of the 

order of 10 MeV, i.e. at the level of numerical noise. 

• At the beginning of each random walk, local values of the total orbital momentum 

L = Y^i=\ h a n d L2, total spin S = YA=\ ^i a n d S2, a n d total angular momentum 

J = L + S and J2 are computed at a single integration point. Among them, only 

local values of Jz and J2 are conserved. In 6He bound by central nucleon-nucleon 

interactions, the core has L = S = J = 0 and the same is true for the valence part. 
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Then all operators have definite eigenvalues equal to 0. In such a case, typical local 

values of operators are: 

local value 
operator 

real part imaginary part 

Lx -1.781E-16 -2.079E-07 

Ly -2.664E-16 -2.282E-07 

Lz 2.559E-16 -1.273E-07 

L2 1.300E-06 1.521E-11 

Sx 0.000E+00 0.000E+00 

Sy 0.000E+00 0.000E+00 

Sz 0.000E+00 0.000E+00 

S2 5.099E-31 -4.902E-51 

Jx -1.781E-16 -2.079E-07 

Jy -2.664E-16 -2.282E-07 

Jz 2.559E-16 -1.273E-07 

J 2 1.300E-06 1.521E-11 

Thus, all expected values are reproduced up to a numerical noise. 

• Also, at the beginning of each walk, the antisymmetry of the wavefunction is checked 

at a single integration point. A properly antisymmetrized wavefunction ty changes 

its phase by (-1) when two particles are permuted under the action of the permu

tation operator P. Therefore, the sum vj> + P^f must vanish for any P. Again, this 

is confirmed numerically up to numerical noise. 
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Appendix C 

Comparative optimization on two 

independent random walks 

This Appendix presents the details of the improved optimization method employed 

for He bound by central and non-central spin-orbit nucleon-nucleon interactions. The 

method has been developed to circumvent numerical instabilities encountered for such a 

He due to the mixing of spin-singlet and spin-triplet valence terms in the wavefunction, 

as mentioned in Section 4.2.3. The idea behind the method is to attenuate the effects of 

statistical noise in the computation of overlap and energy matrix elements by comparing 

results obtained on two independent random walks. In this section, energy means the 

binding energy of He. 

Let us suppose that somewhere along the optimization route, we have produced a 

new best guess for the "stable" wavefunction containing "stable" valence terms. Two 

independent "reference" (random) walks are produced for this wavefunction and the 

reference energy of He is estimated on each of them. Then, several (many) "trial" valence 

terms are temporarily added to the stable wavefunction. Such a temporary wavefunction 

is called a "trial" wavefunction. Normally, trial terms include all valence terms absent 

among the stable terms up to some maximum values of the hyper-momentum K and the 

order of hyper-radial valence functions nja„. Actually, two identical trial wavefunctions 

(called trial wavefunctions) are created, each linked to one reference walk. For a given 
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trial wavefunction, all computations will be done on the reference walk attached to it. In 

the following, energies are determined via the energy matrix diagonalization in correlated 

sampling on reference walks. "A gain" is a difference between energy and the reference 

energy. Trial terms are thinned out as follows: 

1. Estimate the gain for each trial wavefunction. Except pathological situations, these 

gains represent the maximum possible gains due to all trial terms. 

2. On each reference walk, determine gains for all possible wavefunctions containing 

"all stable + single trial" terms. A trial term is removed from a trial wavefunction 

if its gain is positive, or is small in absolute value relative to the maximum possible 

gain from step 1. 

3. Compare trial terms outstanding in both trial wavefunctions and remove those 

terms not present in both wavefunctions. This condition is highly selective. 

4. On each reference walk, compute "cumulative" gains due to a singlet, doublet, 

triplet, . . . of remaining trial terms with largest (in absolute value) individual gains 

from step 2. Due to interference effects, a cumulative gain is not equal to a sum of 

individual gains from step 2. A trial term is removed whenever its addition makes 

the cumulative gain increase by more than a factor 2-3 compared to its individual 

gain from step 2; large contribution to the cumulative gain could be an interference 

effect or a numerical instability, two effects hard to disentangle. 

5. Apply point 3 again on remaining trial terms. 

6. At this point, there should be only few (< 10) trial terms left and they are the same 

in both trial wavefunctions. The number of remaining trial terms is controlled by 

restrictions in steps 2 and 4. On each reference walk, find a trial term lowering 

the energy the most, a pair of trial terms lowering the energy the most among all 

pairs of trial terms, and so on for triplets, quadruplets, etc. When taken as absolute 

values, the gain due to the most contributing singlet, doublet, . . . of trial terms is an 
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increasing function. The combination of trial terms for which the gain (in absolute 

value) begins to saturate can be finally accepted to the stable wavefunction. The 

selected final combination of trial terms must be the same on both reference walks, 

though, which is normally true; when it is not true, all trial terms remaining after 

step 5 can simply be accepted because they are guaranteed to be the same on both 

reference walks. If the number of trial terms about to be admitted to the stable 

wavefunction is too high, we restrict the pool of remaining trial terms by imposing 

stricter conditions in steps 2 and 4. 

Note that up to this point, we are only concerned about energy eigenvalues, which 

are numerically stable. 

7. In the previous step, a winning set of several trial terms has been found. These trial 

terms came as winners on two independent reference walks. Therefore, their selec

tion should be barely affected by possible numerical instabilities in the computation 

of overlap and energy matrix elements and the energy matrix diagonalization. The 

final energy matrix diagonalization for the system containing all stable + selected 

trial terms provides numerically stable lowest eigenvalues and eigenvectors of linear 

expansion coefficients in the wavefunction. The winning set of trial terms can be 

safely accepted to the family of stable terms and a new stable wavefunction is thus 

obtained. 

However, the eigenenergies and eigenvectors in the last mentioned diagonalization 

will most certainly differ on the two reference walks, which implies that two new sta

ble wavefunctions are actually produced. The final check involves cross-correlated 

runs, in which energy of a new stable wavefunction obtained on one reference walk 

is computed in correlated sampling on the other reference walk and vice versa. If 

everything is OK, linear coefficients in the two new stable wavefunctions can be av

eraged coefficient by coefficient and the final new stable wavefunction is constructed 

by using the averaged linear coefficients. 

As described in Section 4.2.3, several optimization cycles can be executed on the same 
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pair of reference walks. It needs to be emphasized that any failed trial valence term from 

one cycle will appear on the list of trial terms in any subsequent cycle. Again, it is wise 

to first build a wavefunction with several niag = 0 terms before higher-order Laguerre 

polynomials are considered as trial terms. As optimization process progresses, the pool 

of trial terms is broadened by an addition of terms with higher hyper-momentum and 

nia„. The optimization continues until the convergence in the binding energy is reached. 

In the present work, the non-linear parameter pQ is the same in all valence terms. 

The optimization procedure described above assumes a constant value of PQ. Therefore, 

the optimal value of the non-linear parameter corresponding to the energy minimum still 

needs to be found. An attempt to localize the global energy minimum by simply changing 

the non-linear parameter in the converged wavefunction (accompanied by the energy 

matrix rediagonalization) is doomed to fail. Such search would point to a fake energy 

minimum formed at or close to the value of pQ, for which the wavefunction was originally 

constructed. This is because due to the competitive selection, many valence terms have 

not been admitted to the wavefunction, which makes the converged wavefunction firmly 

tailored to a given non-linear parameter. This is to be compared with the case of central 

forces, where all possible valence terms up to maximum values of K and niag are present 

in any converged wavefunction, as explained in Section 4.2.3. To localize the global energy 

minimum, we have to use a wavefunction containing all possible valence terms present 

and absent in the originally optimized wavefunction. Once the global energy minimum is 

found, the entire optimization process outlined above must be repeated for the optimum 

value of PQ. 
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Appendix D 

Wavefunction normalization 

In this Appendix, we discuss how to calculate the normalization of the He wavefunction. 

In the present work, the normalization of "He is needed to compute the overlap integral 

between He and He in Section 5.3 in a meaningful way. 

We rely on the Monte Carlo formalism developed in Section 4.2.1 and assume that 

the wavefunction of a nucleus depends on all spatial, spin and isospin degrees of freedom, 

i.e. \P = $(F, s, t). By using the Monte Carlo estimator from Eq. (4.14), the norm of the 

wavefunction can be estimated as: 

1 N 

<*l*>*^5> ( f ( B ) ) ' (D-1} 

n=l 

where w is a local weight: 

The sampling function p(r) satisfies Eq. (4.10) and can be chosen as a square of an 

auxiliary sampling wavefunction \&samplingi^) depending on spatial coordinates only: 

P(0 = *lmPlin9(rl- (P.3) 

The sampling wavefunction should span the integration space of ^f as closely as possible, 

and yet the norm (\&sampling]^sampling) m us t be known analytically to be equal to one. 
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For compact nuclei such as He, the norm (^1^) can be estimated accurately by using 

a simple Gaussian as the sampling wavefunction: 

*sampling ~ ° e x P 
1 

i<j=l 

- M 2 
(D.4) 

where C is a normalization coefficient and a is adjusted to reproduce the rms matter 

radius of the nucleus. 

For 6He, however, the sampling wavefunction from Eq. (D.4) is not flexible enough 

to mimic the extended neutron density and a more sophisticated sampling function is 

needed. For He, we have tested several sampling wavefunctions. The most accurate 

results for Eq. (D.l) have been obtained with the symmetrized product of a Gaussian 

for the He core (particles p\,... ,7)4) and a hyper-radial Gaussian for the valence part 

(particles P5 and PQ): 

^Gauss+Gauss,sym _ ^core-val^Gauss+Gauss 
sampling sampling ' (D.5) 

where: 

tf,Gauss+Gauss __ f p x r ) 
sampling " 

1 4 '< 

2° E (^-^y 
i<j=l 

exp (D.6) 

and Score~ = Y^i P is the core-valence symmetrizer running over all particle 

permutations between the core and the valence part. The hyper-radius p is computed 

assuming two valence particles attached to the core as in Figure 2.1. Parameters a and 

PQ are adjusted to produce the most reliable estimate in Eq. (D.l). The normalization 

coefficient C in Eq. (D.6) can be computed analytically. 

Using the sampling function $ Samvii n a
a U S S , S y n \ ^ n e wavefunction of "He can easily 

be normalized to unity with an accuracy of 0.3% or better. This accuracy is sufficient for 

the computation of the overlap integral between 4He and 6He in Section 5.3. 
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