ABSTRACT
PION INELASTIC SCATTERING

AND THE
PION-NUCLEUS EFFECTIVE INTERACTION

By

James Arthur Carr

This work examines pion inelastic scattering with the primary
purpose of gaining a better understanding of the properties of the
plon—nucleus interaction. The main conclusion of the work is that an
effective interaction which incorporates the most obvious theoretical
corrections to the impulse approximation does a good job of explaining
pion elastic and inelastic scattering from zero to 200 MeV without
significant adjustments to the strength parameters of the force.

Watson's multiple scattering theory is used to develop a theoret—
ical interaction starting from the free pion-nucleon interaction. Elas—
tic scattering was used to calibrate the isoscalar central interaction.
It was found that the impulse approximation did poorly at low energy,
while the multiple scattering corrections gave good agreement with all
of the data after a few minor adjustments in the force.

The distorted wave approximation for the inelastic tramsition
matrix elements are evaluated for both natural and unnatural parity
excitations. The isoscalar natural parity transitions are used to
test the reaction theory, and it is found that the effective inter—
action calibrated by elastic scattering produces good agreement with
the inelastic data. Thus the medium corrections required to obtain

the correct optical potential are just as important when calculating



James Arthur Carr

inelastic cross sections. It is also noted that low energy inelastic
scattering i1s much more sensitive to the choice of the distorting
potential than is inelastic scattering in the resonance region.

Calculations are also shown for other inelastic and charge
exchange reactions. It appears that the isovector central inter-
action is reasonable, but the importance of medium corrections cannot
be determined. The unnatural parity transitions are also reasonably
described by the theoretical estimate of the spin-orbit interaction,
but ﬁot enough systematic data exists to reach a firm conclusion.

In summary, it is seen that a consistent explanation of pion
inelastic scattering is possible. In some cases more complete ex—
perimental information is needed to properly test the theory. Other

areas where more theoretical work is needed have also been identified.



PION INELASTIC SCATTERING
AND THE

PION-NUCLEUS EFFECTIVE INTERACTION

By

James Arthur Carr

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

1981



ACKNOWLEDGMENTS

I would like to thank Prof. Hugh McManus for suggesting this
problem, and for his patience and guidance throughout my graduate
career. Our many discussions did much to develop my physical intui-

tion and I shall always treasure the opportunity I had to work with
him.

Thanks is also due to Dr. Karen Stricker, whose work on elastic
scattering was an indispensible prerequisite to this project, Prof.
Dan Olaf Riska for wany useful discussions, and Prof. Fred Petrovich
for invaluable insights and a very productive collaboration in the
last year of this work. I would also like to thank the Cyclotron
faculty, computer staff and Nuclear Beer Group for providing a stimu-
lating work enviromment, and many experimental groups for supplying
their data in advance of publication.

Finally, special thanks to some people who mean a great deal to
me. Joe Finck and I spent many years studying, teaching physics and
partying together —— those years were some of the best of my life.
(They were certainly unforgettable.) My parents and grandparents
have always supported and encouraged me -- I cannot thank them enough.
Kathleen McGleish, now my wife, gave me her unwavering love and
helped me through the long trying days and years it took to finish
this. She has made my life full and complete. Words cannot express
my gratitude. Last but not least, a big thank you to my mother-in-
law, Kelley, for the considerable effort involved in typing all of

these equations!

ii



TABLE OF CONTENTS

List of Figures

List of Tables

Chapter

1.

2.

INTRODUCTION

THE PION-NUCLEUS INTERACTION

Multiple Scattering Theory

The First Order Potential

Calculations with First Order Optical Potential
Higher Order Corrections to the Pion Potential
Calculations with Full Optical Potential
Summary of Elastic Scattering Results

INELASTIC SCATTERING FORMALISM

3.6

Overview of Scattering Theory and the DWBA
Reduction of the Cross Section Formula

© Expansion of the Transition Matrix Elements

Evaluation of the Form Factor for Natural
Parity Transitions

Evaluation of the Transition Matrix for
Unnatural Parity Transition

Summary

INELASTIC SCATTERING IN THE COLLECTIVE MODEL

4.1

Example of Collective Model at Low Energy
Example of Collective Model Near the Resonance
Distorted Wave Effects *

Other Low Energy Cases

Other High Energy Cases

Summary

MICROSCOPIC MODELS FOR INELASTIC TRANSITIONS

5.1

Comparison of Collective and Microscopic Models
Other Natural Parity Cases

Unnatural Parity Transitions

Other Unnatural Parity Cases

Summary

CHARGE EXCHANGE SCATTERING

6.1
6.2
6.3

Model for Charge Exchange Calculations
Sample Calculations
Summary

iii

12
19
29
36
45

48

49
52
59

63

70
72

74

75
81
87
104
125
137

139

139
152
162
166
174

176

176
179
185



Chapter
7. CONCLUSIONS

Appendix
A. PION SCATTERING AMPLITUDE

B. EQUIVALENT FORMS OF THE POTENTIAL
C. DENSITY PARAMETERS

> >
D. EVALUATE V-V TERM IN FORM FACTOR

E. FOLDING MODEL FORMULAE

REFERENCES

iv

Page
190

193
195
198
200

204

210



Figure

2-1

2-3

2-4

2-5

LIST OF FIGURES

Real and imaginary parameters of the pion-nucleon
Sscattering amplitude, isoscalar (isovector) shown
with a solid (dashed) curve.

Calculation of pionic atom shifts and widths using Set B,
which was fit to these data.

Elastic scattering with 50 MeV (left) and 162 MeV (right)
7+ calculated with parameters from sets A, (impulse
approximation), B and B', shown with dashed solid and
dash-dot curves, respectively.

Real and imaginary parameters used to describe absorption
of a pion on two nucleons, isoscalar (isovector) parts
shown with a solid (dashed) curve.

Pionic atom observables calculated with sets C (theory)
and D, shown with dashed and solid curves, respectively.

Elastic scattering calculated for 50 and 162 MevV nt

using parameters from sets C, D and D', shown with
dashed, solid and dash-dot curves, respectively.

Elastic and inelastic scattering of 50 MeV 7t from 1l2¢C
and its 4.44 MeV (2%) state, using optical parameters
from Set D and an inelastic scattering t-matrix
(plotted on the right) defined with parameters from
sets A, B and B', shown with dashed, solid and
dash-dot curves, respectively.

Same as Figure 4-1, except the t-matrix was calculated
with parameters from sets C and D, shown with dashed
and solid curves, respectively.

Elastic and inelastic scattering of 162 MeV ¢t from 12¢
and its 4.44 MeV (2%) state using optical parameters
from Set D and an inelastic scattering t-matrix
(plotted on the right) defined with parameters from
sets A, B and B', shown with dashed, solid and
dash-dot curves, respectively.

Same as Figure 4-3, except the t-matrix was calculated
with parameters from sets C, D and D', shown with
dashed, solid and dash-dot curves, respectively.

Plots of |S,|2 for elastic scattering of 50 and 162 MeV
r+ with parameters from sets A, B and B', shown with
dashed, solid and dash-dot curves, respectively.

Elastic and inelastic scattering of 50 MeV nt from 12¢
and its 4.44 MeV (2%) state using Set D to calculate
the inelastic scattering t-matrix, while the optical
used parameters from sets C (dashed curve) and D
(solid curve).

15

24

27

34

39

43

78

80

83

86

89

92



Figure
4-7

4-10

4-11

4-12

4-13

4-14
4-15

4-16

4-17

4-18

4-19

Same as Figure 4-6, except the optical potential used
parameters from sets A, B and B', shown with dashed,
solid and dash-dot curves, respectively.

Same as Figure 4-6, except the same parameters were used
for both the optical potential and the inelastic
scattering t-matrix, either Set B (dashed curve) or
Set D (solid curve).

Elastic and inelastic scattering of 162 MeV #+ from 12¢
and its 4.44 MeV (2%) state using”Set D to calculate
the inelastic scattering t-matrix, while the optical
potential used parameters from sets C, D and D', shown
with dashed, solid and dash~dot curves, respectively.

Same as Figure 4-9, except the optical potential used
parameters from sets A, B and B', shown with dashed,
solid and dash-curves, respectively.

Same as Figure 4-9, except the same parameters were used
for both the optical potential and the inelastic
scattering t-matrix, either Set B' (dashed curve) or
Set D (solid curve).

Elastic and inelastic scattering of 36 MeV nt and 7~
from 12¢ (top row) and 28Si with parameters from Set C
(dashed - curve) and Set D (solid curve) as described
in the text.

Elastic and inelastic scattering of 50 MeV 7+ from 12¢,
Si, 40ca and 208py with parameters from Set C
(dashed curve) and Set D (solid curve) as described
in the text.

Same as Figure 4-13, except calculated for 50 MeV 71~
scattering,

Comparison of |Sz[2 for elastic scattering of 50 MeV 1
(top) and 7~ from 208pp,

Elastic_and inelastic scattering of 67 MeV 7t and
from 12¢ using parameters from Set C (dashed curve)
and Set D (solid curve) as described in the text.

Elastic and inelastic scattering of 80 MeV «" from 12c,
0Ca, 90zr and 208py using parameters from Set C
(dashed curve) and Set D (solid curve) as described
in the text.

Same as Figure 4-17, except calculated for 80 MeV 7~
scattering.

Elastic and inelastic scattering of 116 MeV F and -
from 40ca (top row) and 208pp using parameters from
Set C (dashed curve) and Set D (solid curve) as
described in the text.

vi

94

96

99

101

103

108

111
113

116

118

121

123

128



Figure
4-20

4-21

4-22

5-1

5-5

Elastic and inelastic scattering of 130 MeV 7t and =~
from 2831 using parameters from Set C (dashed curve)
and Set D (solid curve) as described in the text.

Elastic and inelastic scattering of 162 MeV r+ and ¢~
from 12¢ using parameters from Set C (dashed curve)
and Set D (solid curve) as described in the text.

Elastic and inelastic scattering of 180 MeV s+ and 1~
from 2831 (top row) and 40¢ca using Set C (dashed curve)
and Set D (solid curve) as described in the text.

Radial transition density (top left) and longitudinal
form factor (top right) for collective (solid curve)
and microscopic (dashed curve) models of the 40Ca
(3.74 MeV) 3~ state, the 50 MeV % inelastic scattering
calculations at the bottom are described in the text.

Inelastic scattering of rt and r~ from the 3~ state 40ca
at 116 MeV (top row) and 180 MeV, using the microscopic
density with sets A and C (dashed and dash-dot curves,
respectively) and the collective model with Set C
(solid curve).

Radial transition density (top left) and longitudinal
form factor (top right) for collective (solid curve)
and microscoKic (dashed curve) models of the 12¢
(4.44 MeV) 27 state, the 50 MeV rt inelastic scattering
calculations at the bottom are described in the text.

Inelastic scattering of nt and"r~ from the 12¢ 2%+ state
at 68 MeV (top row) and 162 MeV, using the microscopic
density with sets A and C (dashed and dash-~dot curves,
respectively) and the collective model with Set C
(s0lid curve).

Longitudinal form factor (top) and 162 MeV #t and 7~
inelastic scattering from the 2851 (9.70 MeV) 5~ state
with the two form factors described in the text.

Transverse electric form factor (top) and 162 MeV 7+
‘and ~ inelastic scattering from the 208ph (6.10 MeV)
12% pure neutron state using Set A (dashed) and Set D
(solid curve) parameters.

The top row shows elastic and inelastic scattering of
180 MeV 7% and 7~ from %8Ca and its 3.83 Mev 25
state with Set C (dashed) and Set D (solid curve),
the bottom row compares 180 MeV 7t (solid curve)
and 7~ (dashed curve) scattering from #40ca (3-)
and 48Ca (2+) with Set D.

Transverse magnetic form factor (top) and 162 MeV r+
and 7~ inelastic scattering from the 285i (14.36 MeV)
6~ state with the force and microscopic form factor
described in the text.

vii

Page

131

134

136

143

146

148

151

154

158

161

165



Figure

5-9

5-10

6-1

Transverse magnetic form factor (top) and 180 MeV nt
and 7~ inelastic scattering from the 12C (15.11 Mev)
1t state, as described in the text.

Transverse magnetic form factor (left) and 162 MeV ¢t
and 7~ inelastic scattering from the 160 (18.98, 17.79
and 19.80 MeV) 4~ states, as described in the text.

Angular distribution of single charge exchange with 50 MeV
and 162 MeV 77 on 13C, using the Lane model (dashed
curve) and single particle model (solid curve).

Excitation function for =t single charge exchange on

l3C, using Lane (dashed) and single particle (solid
curve) models.

Dependence of 100 MeV 7t single charge exchange on
target mass using the Lane model.

Single charge exchange with 50 MeV ¢t on 19N, calcu-
- lated with the Lane (dashed) and single particle
(solid curve) models.

viii

Page

169

172

182

184

187

189



« Table

1-1
2-1

2-3
2-4
2-5

4-1
4=2

4=4

5-1
5-2
5-3
5-4
5-5
5-6
Cc-1

LIST OF TABLES

Definitions of Symbols Used in This Work

Parameter Set A, Impulse Approximation Values for
the Four-Parameter Optical Potential

Parameter Sets B and B', Fitted Values for the
Four-Parameter Optical Potential as Described
in the Text

Parameter Set C, Multiple Scattering Theory Values
for the Second-Order Optical Potential

~ Parameter Sets D and D', Fitted Values for Second-Order

Optical Potential as Described in the Text

Reaction Cross Sections in mb for 162 MeV ™ Elastic
Scattering

Parameter Set C Theﬁry Values for Low Energy Scattering
Parameter Set D Fitted Values for Low Energy Scattering

Parameter Set C Theory Values for Resonance Region
Scattering

Parameter Set D fitted Values for Resonance Region
Scattering

RPA Vector and Traﬂsition Density for 40ca and 12¢
Transition Densities for 28Si 5~ State

Spin-Orbit Parameters from Rowe, Salomon and Landau
Transition Density for 12¢ 1+ state

Spectroscopic Z Coéfficients for the 160 4~ States
Cross—Section Ratids (r¥/7=) for 160 4~ States

Density Parameters

ix

21

21
37
37

44
105
105

126

126
141
156
163
167
170
173
199



CHAPTER 1

INTRODUCTION

This work arose from the need to develop a theory which would
enhance the use of pions as effective probes of nuclear structure.
Experimental facilities have improved greatly in recent years, leading
to a need for a quantitative description of pion inelastic scattering.
The energy resolution and beam intensity of early pion experiments
limited studies to isolated strong states of easily manufactured targets.
The advent of the large meson factories (LAMPF in Los Alamos, TRIUMF in
Vancouver, SIN in Switzerland), which were designed to produce useful
beams of pions from high currents of intermediate energy protons, led
to the study of a wider range of reactions and the discovery of some
previously unknown states. The theory of plon-nucleus scattering fol-
lowed a similar pattern, as sophisticated theories became necessary to
explain the more precise experimental results.

The pion was predicted to exist in 1935 [Yuk 35], and after its
discovery around 1947 it was soon applied to nuclear physics experiments.
One of the earliest experiments measured the angular distribution of
62 MeV 7t and 7~ scattered from l2¢C [Byf 52] in a cloud chamber. The
development of scattering theory [Wat 53, Gel 53] found applications in
photomeson production [Fra 53], nucleon-nuclear pion production [Kov 55]
and the Kisslinger model [Kis 55] for pion scattering. The Kisslinger
model was invented to explain the original data of Byfield et al., and
later data [Sap 56, Bak 58] were found to require [Bak 58a] this form of

the potential.



Another surge of activity followed the experiment of Binon et al.
[Bin 70] which measured pion scattering from 120 to 280 MeV at CERN. Two
calculations of the inelastic transitions were soon published, one with
collective [Edw 71] and the other with microscopic [Lee 71] models for
the transition density. These assumed the Distorted Wave Born Approxi~
mation (DWBA) [Sat 64, Aus 70] and used the impulse approximation (IA)
[Ker 59] for the pion-nucleus interaction. This thesis continues the
development begun at that time, but with greater emphasis on the impact
of recent improvements in the pion interaction on such calculations.

Once accurate data began accumulating, particularl} for pionic
atoms and low energy scattering, the need for higher order corrections
to the Kisslinger theory became clear. The most important of these was
the so-called Lorentz-Lorenz Ericson-Ericson (LLEE) effect [Eri 66].
A number of others, including phenomenological absorption terms, are
outlined in the review article of Hufner [Huf 75]. Several more recent
review articles [Bro 79, Tho 80, Eis 80] are useful background to the
work in this thesis.

It should be emphasized that the point of view here focuses on
a coordinate space potential. Many others are possible. A momentum
space potential is used by Lee [Lee 74, Lee 77]. The delta-hole model
[Hir 79, Ose 79, Ose 79a] is widely used in a microscopic description
of pion scattering. Although neglected here, these other models are
important to the understanding and interpretation of the optical model
results in terms of the fundamental pion-nucleon interaction.

The experimental situation is characterized by the same diversity.
Data exists for all pion reactions for some beam energy and target com—

t
bination: pion angular distributions for specific final states via



elastic and inelastic scattering, single and double charge exchange
reactions; inclusive measurements such as absorption, reaction, quasi-
elastic and total cross sectioms; excitation functions and angular
distributions for other quasi-elastic reactions involving nucleon knock-
out which result in specific final states. As data accumulates for a
systematic collection of targets and beam energies, an important role

of the theory is to build a coherent picture out of the many pieces.

The purpose of this thesis is to examine the inelastic scattering
data with the goal of understanding the properties of the effective
pion—-nucleus interaction. The starting point is a theoretical potential,
developed elsewhere [Str 79, Str 79a], which incorporates various cor-
rections to the IA result for the pion-nucleon interaction. The elastic
scattering data are used to identify deficiencies in this theoretical
potential and fix the strength of the isoscalar interaction. Comparison
with the fit to a four-parameter potential allows the identification of
general properties of this effective potential. These results are then
used to calculate the inelastic cross sections, testing the interaction
strength. This approach can then be extended to study isovector and
spin-flip transitions, which are not determined by the elastic scattering.

This thesis divides naturally into two parts: the development of
the equations and forces to be tested is done in the next two chapters,
while the applications to inelastic scattering are given in the follow-
ing three chapters.

Chapter 2 reviews the multiple scattering formulation of the pion-
nucleus optical potential. Two forms of the potential are used, one
related to the simple four-parameter Kisslinger potential, the other con-

taining all of the kinematic and other corrections used [Str 79a] to



explain the elastic scattering. Each of these is fit to the elastic
scattering data to define a phenomenological effective parameter set to
complement the theoretical values. Chapter 3 reviews the derivation
of the DWBA and works out the specific equations needed for these
calculations,

Chapter 4 is the focal point of this work. Here the collective
model is used to test the properties of the interaction and the effects
of the various changes introduced to improve the fit to elastic scatter-
ing. In addition, the effects of different choices for the distorting
potential are examined independently of the interaction that induces the
inelastic transition. Chapter 5 introduces the microscopic model of the
transition density, and also examines the spin-orbit interaction for S=1
transitions produced with pions. Chapter 6 introduces single charge
exchange reactions, and gives some results as a means of examining the
isovector part of the pion-nucleus interaction.

These results are summarized in Chapter 7, where the general
properties of the effective interaction are used to give perspective to
the discussion. There is much data, each with some systematic error,
so it is only with a consistent approach that one can form these results
into a unified whole.

The notation used here is listed in Table 1-1. Most of it is
conventional, with the main exception being the ordering of the argu-
ments in the symbol for a Clebsch-Gordon coefficient. The angular

momentum algebra follows Brink and Satchler [Bri 75].



Table 1-1
Definitions of Symbols Used in This Work

Kinematic Variables

E, 3-momentum and total energy of pion
p, E : 3-momentum and total energy of struck particle
primes indicate variables for final state
subscript cm plon-nucleon center of momentum system
subscript 2cm pion-two nucleon center of momentum system
subscript ACM plon-nucleus center of momentum system
no subscript ACM unless otherwise noted
u pion rest mass
nucleon rest mass
My rest mass of nucleus I AM
@ reduced total energy in progectlle—target center
of momentum system
Others
¢ plane wave
¥ total scattered wavefunction = ¢ + y
X scattered wave, also used for the "distorted"
wave = wave scattered by optical potential only
foN pion-nucleon scattering amplitude
taN pion-nucleon t-matrix
A antisymmetrization operator
A number of nucleons = Z+N
p(r) isoscalar ground state density normalized to
A nucleons (= pp + 0p)
Sp(r) isovector ground state density normalized to
Z-N nucleons (= o, ~ o)
€ pion charge

Angular Momentum

CI AR same as (IL m M|JM;) defined in Brink and Satchler
abe
X(abc, def, ghi) = ¢def) = 9-J symbol
ghi
J = 2041



CHAPTER 2

THE PION-NUCLEUS INTERACTION

The pion-nucleus interaction is a many body problem and there are
a number of approaches to its solution, some of which are described in
the previous chapter. Our approach is to reduce the problem to that of
the interaction of a single particle with a potential which describes
the average properties of the actual pion-nucleus interaction. This
potential is derived using multiple scattering theory, which says that
the pion-nucleus potential can be related to measured and calculated
properties of the pion-nucleon interaction. The derivation used here
follows that used by Stricker [Str 79a] and Brown [Bro 79], with an
emphasis on those parts which are critical to the interpretation of
inelastic scattering.

The first section outlines the multiple scattering theory as
applied here. The remaining sections break into two distinct parts.
In Sections 2.2 and 2.3 the first-order potential is obtained from the
pion-nucleon scattering amplitude, and then compared with elastic
scattering data. In Sections 2.4 and 2.5 the second-order terms are
introduced and then compared with the data. In each case a purely
theoretical potential will 5e presented, and then a potential fitted
to the data will be obtained. This will give us the flexibility to
compare phenomenological potentials with theoretical ones at various
stages in the distorted waves analysis of inelastic scattering. Sec~

tion 2.6 will summarize these results.

2.1 MULTIPLE SCATTERING THEORY
The purpose of this section is to develop a working basis for

the calculations and discussions which follow. The theory here is
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based on the work of Watson [Wat 53] and Kerman, McManus and Thaler
[Rer 59], among others. The starting point for the description of a wave
¥ scattered by a Hamiltonian H = K, + V, where Ky is the kinetic energy

and V the interaction with the scatterer, is the scattering amplitude

£, = - znmhz <¢blv qfa> ) | (2-1)

The scattering amplitude is just the projection of the scattered wave

onto the plane wave ¢ in the outgoing channel. The scattering cross

section 1s then

g—g= |fab|2 : (2-2)

It is convenient to describe this process entirely in terms of

operators. We write

Y =¢ +X =606 +GV Y (2-3)

where X is the scattered part of ¥ and G = (E - K, + ie)~! is the
Greens function for outgoing scattered waves., If we define ¥ = Q¢ we

get an operator equation

Q=1+GVQ (2-4)
to replace the equation for the scattered waves [equation (2-3)]. The
transition matrix is defined by

T=VQ (2-5)
so that V¥ = T¢ and the definition of the scattering amplitude becomes

m m
e - (ol - - T . (2-6)
ab o ﬁz bl . ﬁz ab




Since T = VQ, equation (2-4) gives us an integral equation for T,
T =V + VGT (2-7)

which is known as the Lippmann-Schwinger [Lip 50] equation, and is
the starting point for the derivation. Before we continue, however,
it will be necessary to examine the wave equation for the pion.

Since the pion is so light, it must be treated relativistically
although the massive nucleus can be treated non-relativistically
throughout. Then the Hamiltonian for the system is

1/2 2
H=<k2+u2> +MN+-—P—+V (2-8)

2My
where k, u, P, My are the momentum and mass of the pion and nucleus,
respectively. The Schrodinger equation for this system, HY = ErY¥, was
shown by Goldberger and Watson [Gol 64] to be equivalent to a Klein-

Gordon-like equation

: 2
2 2 P
(k +u)%’=<ET V- M 2M>w . (2-9)
N
This can be simplified to
<v2 + ki - 20V +%v2>\y= 0 (2-10)

where w = wE/(w + E) is the reduced energy and k§= w2 - w2, If we
separate out the electromagnetic potential and drop the smaller terms

we are left with

v >\y= 0o . (2-11)

Elei

EM

2 2 ~ -
<% + ko - 2w VTr - 2w VEM +



Returning to the Lippmann-Schwinger equation, it will be con-

venient to work with the equivalent equation

20T = 28 v+ 20 V.G 20 T (2-12)

24 kg + ie:)m1 with momenta defined in the w-nucleus

where G = (~k
system. The remainder of this section will show how this equation can
be rearranged so that all the important (large) terms can be integrated
over the target, thus reducing this to an equivalent one-body equation.
Kerman, McManus and Thaler [Ker 59] showed that it is particularly
convenient to use antisymmetrized intermediate states. We can do this
by introducing A, an operator that projects onto totally antisymmetric
target states, into equation (2-12) as is also done in [Mac 73]. This
is possible since A commutes with G and V and since we will only take

matrix elements of T between correctly symmetrized nuclear states.

Then our starting equation is
T=v+ VG(AZB)T - (2-13)

For convenience, the factor of 5ﬂ25 will be suppressed from here on
except when it is important for a particular result.

The first step is to define an auxillary potential matrix by
U=V + VGQOU (2-14)

where Q; = 1 - Py = 1 - Ié><b| projects off of the ground state. It is
the assumption of what follows that this subseries converges rapidly
since the matrix elements connecting the initial (ground) state to

excited states should be smaller than the diagonal matrix elements.
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This allows us to rewrite equation (2-13) by using V = U(1 + GQ,U)~1

so that

3
il

U(l’+ GQOU - GQOU)(l + GQOU)—l(l + GT)

U(l + GT) - UGQ U(L + GQOU)-l(l + GT)

U(1 + GT) - UGQOT

U + UG(1 - Qo)T (2-15)

which gives us the integral equation
T=U+ UGPOT (2-16)

for T in terms of U.

Returning to equation (2-14), we now use that V =Zv, where v
is the interaction with one nucleon, and the sum runs over all N target
particles. Because of the operator 4 in the definition, all of these

nucleons are equivalent and we can write
U=Nv + Nv GQO(;gza)u . (2-17)
We now define an effective two-body operator T by
T=v+v6eQ T . (2-18)
If we use v = T(1 + GQ,T)L in equation (2-17) we get

§)

NT(1l + GQOT)—l(l + 60

Nt(l + GQOU) - Nt GQo v(l + GT)

NT(1 + 6Q U) - Nt GQ_U/N

Nt+ (N- 1) GQOU . (2-19)
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If we define

U= §¥-1
(2-20)

and
U' =(N-1)t +(N-1T GQOU'

we get the multiple scattering series for U.
It remains to relate the effective operator T to the free pion-

nucleon t-matrix. The latter is defined by
tﬂN =v + vg 2wcm th (2-21)

where g = (-k2 + kg + ie)-l with momenta defined in the T-nucleon
system. Again, by writing v = ton(1 + g t:"N)_l and substituting into

equation (2-18) we obtain
= + o - I -

T=E th(GQo A2y - ¢ 2wcm) (2-22)

The Impulse

using the same algebraic technique as in equation (2-15).

Approximation (IA) assumes the higher order terms in equation (2-22)

can be neglected so that
(2-23)

T=t1rN
With this assump-

This approximation will be used throughout this work.

tion, the multiple scattering series for U can be written as

20U =N2we H+NN-1) 20t GQ A2t
(2-24)

7 - - -
- + s e e R
+ N(N - 1)" 24 th GQo A2 tTTN GQo A2uw tTTN
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This series for U will be the basis of our analysis of the pion-nucleus
‘ interaction. This work will not focus on the specific effects of each

of the terms in equation (2-24), as these are discussed in Stricker's

thesis [Str 79a], but will restrict the discussion to two broad cases.

In Section 2.2 the first order part of this,
20U = N 20 try (2-25)

will be examined. In Section 2.4 some of the higher order terms will

be evaluated and summed to give the second order corrections to the

interaction.

2.2 THE FIRST ORDER POTENTIAL

The starting point for this analysis is the measured pion—-nucleon

scattering amplitude. A convenient parametrization is

= <+ . -+
f (bo ‘bl t I) + (c0 c

> +'
™ Ekk

1
(2-26)
> > >
+ (so + s, teT) o ¢+ (k x k")

where t and T are the pion‘and twice the nucléon isospin operators,

; is the pion momentum in the center of mass (to be written kem from
here on), and g is twice the nucleon spin operator. Appendix A defines
the relationship between the parameters bj, ¢ij, si and the corresponding
pion-nucleon phase shifts. These phase shifts are computed from the
parametrization of Rowe, Salomon and Landau, [Row 78] who fit an analytic
function to the phase shift data below 400 MeV. This approach has the

advantage of producing smodth, well-behaved results even where the data

are particularly noisy, as is the case in the Sjj channel below 100 MeV.
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The values of these parameters are plotted in Figure 2-1. Notice
that Reb, (solid curve) is nearly zero at low energy, due to cancel-
lation between the S;; and S31 phase shifts, and becomes increasingly
repulsive with increasing energy. Reb; (dashed curve), the isovector
S-wave parameter, is roughly constant and repulsive. Rego (dash~dot
curve) includes second order corrections and will be discussed in Sec—
tion 2.4. 1Imb, increases slowly while Imby is small at all energies.
In contrast, the p~wave parameters ¢y (solid curve) and c; (dashed
curve) demonstrate simple resonance behavior, reflecting the &ominance
of the P33 channel due to the low-lying A(1232) resonance. The spin-
orbit parameters also vary rapidly as they are also dominated by the
A33 resonance.

The pion-nucleon transition matrix is simply related to the scat-

tering amplitude by

t (k

k') =22 6 (kL k) (2-27)
N cm cm

cm’ cm ~ ™

and

3
tnN(k, k', p, p') = (27)7 8(k'+p'~k-p) t, y kLD (2-28)

N(kcm
This is then used to generate the multiple scattering series for U as

defined in equation (2-24) above. The lowest order result for the

optical potential, with N=A nucleoms, is

2 v = {026 ufo)

A 26 e o>

A<0|(21r)3 8(k+p-k'-p') -4n_—5— f“N‘O> (2-29)
w

cm



14

Figure 2-1

Real and imaginary parameters of the pion-nucleon
scattering amplitude, isoscalar (isovector)
shown with a solid (dashed) curve.
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where 0 = ¥(p, vy vty py) and Ol ¥ (%, by, vy p,). stnce £,
is independent of p this can be reduced to

o = - S 1 _
26 Uopt 4n = an (k, k') o(q) (2-30)
cm

where q = k'-k and the factor A has been incorporated into p(q). If
we assume a nucleus with N=Z we can conveniently drop the isovector
terms. Further, the spin-orbit terms vanish for a closed-shell spin-0
nucleus, and will be small otherwise [Lov 81]. Then

WUk k') = —br (= fs o) + ()EE')
opt 6 ml [ RECHREOREC

or (2-31)

- w > -5
2w Uopt(r) = =47 |— (bo o(r) - V°[.c0 p(r):] V)

w

are the appropriate forms for the optical potential. Other forms, par-
ticularly the local Laplacian form, are described in Appendix B.
Although this is a reasonable representation for the first order
potential, it is not really complete because the potential will be used
in the pion-nucleus center of mass (ACM) while f;y has been defined in
the plon-nucleon center of mass (cm). The transformation needed is not
well defined in this case because the interaction is not written in
terms of invariants. Relativistic potential theory [Lan 73] gives one
prescription for this, and this widely used [Tho 80, Bro 79] method will
also be adopted here without further argument. Its effects are dis-

cussed in [Str 79a]. The prescription is to use

- o) = - 3 5 (k'+p'-k=p) =4 ' -
<k p ’tAcm)k p) = =4m(21)” §(k'+p'~k-p) == v £l s k) (2-32)

cm
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1 ]
w w
Cll Cm Cm cCm = (&1}

w E' @' w

where v = 7

and fry 1s evaluated at the pion-nucleon center of mass energy. The
reader is reminded that unsubscripted.variables are in the ACM system

in the remainder of this thesis. Since

(2-33)

the only change is the addition of this factor that multiplies the
entire potential.

It is also necessary to express the momenta k.p, kém in the
plon-nucleus center of mass as well. This will affect both the p-wave

.
and the spin-orbit terms. The Lorentz transformation for ky is

- > -> ¥ - -
kcm =k + B T+ 1 B sk -uw (2-34)

>

>
where 8 = (k + p)/(E + w), with a similar result for key. To first

order this simplifies to

> > > >
; - kE-pw = k=ep
cm E+w 1+€

. (2-35)

A particularly convenient way to do this "angle transformation' is

to rewrite the equations in terms of

- 1 - > > ->
P =3 (ptp") p=p'-p
(2-36)
- -> > -> > > >
Q = k+k' q=k'-k = =P
since the equations corresponding to (2-35) are
- > -> § 2¢ 7
Yem 1 and Qcm 1+e  1+e ( )
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Then the transformation gives

s
1 2 2
oelpe?! = = -
kcm kcm 4 <§cm qc%)

(2-38)
2 2 > > 2
T i o e L
(1+€) (1+€) (1+¢)
so that
> > 1 > > e 2
k k' = 5 kek' - 2-;-—
M Cm (1+e) (1+¢€)
- (2-39)
> > 2
_ € 5 PeQ + € . P2
(1+¢) (1+¢)

The integration over the ground state momenta, called Fermi averaging,
causes [Bro 79] the third term to vanish and the fourth term becomes pro-

portional to the kinetic energy density in the Thomas-Fermi approximation,

2/3

K(r) = -g-(% Tr2> SN (2-40)

This term, which acts like an attractive s~wave term in the potential,
will be ignored, as in [Str 80], by incorporating it in the second order
corrections added in Section 2.4. In the fixed scatterer approximation
it is ignored altogether.

The transformation of the spin-orbit term involves

k xk =1Q xq =Ll g,o_ 7.2 (2-41)
cmX em 2 Qcmx qcm 2 1l+e Qxq 1+¢ xq
so that
- - ) e > > ’
k xk' =—kxk'+—pxp . (2-42)

cm cm 1+¢€ 1+¢€
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The second term will be dropped. This term can contribute to elastic
scattering from nuclei with spin-unsaturated subshells [Lov 81], such
as 48ca. In additiom, it can affect normal parity inelastic transi-
tions, but will not be a significant part of the interaction for the
states considered in this work. Notice that the spin-orbit force comes
in with one less factor of (l+¢) in the kinematics. Since this part of
the potential only contributes to S=1 inelastic transitions, we will
not return to it until much later.

If we collect together what we already have and include the 1iso-
vector terms, we get the first order optical potential that will be

used here. It is

2u Upe(®) = -4w{pl [b, o(r) + e b 8o(r)]

Py

;- [co o(r) + e ¢ So(r)] ;

+-% (l - pzl) v [cop(r) +eoe Gp(r)]} (2-43)

where P, = (1+€)/(1+€/A), €. = plon charge, 8p(r) = pP(r) - pn(r) and
P, pP’ pn are normalized to A, Z, N, respectively. The densities are

usually assumed to have the same radial dependence so that

e Sp(r) = e Eig o(r) . (2-44)

2.3  CALCULATIONS WITH FIRST ORDER OPTICAL POTENTIAL

The properties of this potential will be illustrated with a series
of calculations at a representative set of energies —- zero, 50 MeV and
162 MeV -- for a range of nuclei. The zero energy calculations are for
the shifts and widths of levels in pionic atoms. The calculations use

a modified version of MATOM [Seki] and are compared to the available
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data. The other calculations are for elastic scattering from 160, 40ca
(at 50 MeV only), 208phb. These results are obtained using a modified
version of the program PIRK [Eis 74]. The density parameters for these
calculations are taken from electron scattering. Tables are given in
Appendix C.

Three sets of calculations will be described. The first, desig-
nated as Parameter Set A throughout this work, uses the phase shift
values for the parameters b, b1, ¢g, c¢1 in the optical potential
defined in equation (2-43). These are listed in Table 2-1. This
illustrates the effect of the lowest order estimate to the optical
potential. The second, designated as Parameter Set B, results when
fitted values for Reb, and Imb,, (at 50 MeV only) Recy and Imc, are
used. The fitting procedure was to minimize the average x2/point for
all the data available at the given energy. These parameters are listed
in Table 2-2. An auxillary Set, B', as defined at 50 MeV, varies only
3 independent parameters since the ratio of Imb,/Imc, was held fixed
at the value determined by pionic atoms. These sets illustrate the
effective potential required by the data at these energies which will
be valuable when we look at the effects of the second order corrections
in the next part of this chapter. A different Set B' is defined at
higher energies. In this case the fit varies Rec, and Imc, as before,
except the y2 term in the optical potential is ommitted. This set allows
a comparison to the potential used by Holtkamp and Cottingame [Cot 80].

The first illustration of the effects of these potentials will be
taken from pionic atoms. Measurements of the strong interaction shift
of level energies for 1ls [Tau 74] and 2p [Bat 78] levels provide infor-

mation on the real parts of the s- and p-wave potentials, respectively.
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Table 2-1

Parameter Set A, Impulse Approximation Values
for the Four-Parameter Optical Potential

T=Atom 50 MeV 162 MeV

b, -0.006 -0.030 + 0.019 i -0.079 + 0.041 i

by =-0.133 -0.131 - 0.005 i -0.125 + 0.005 i

Co 0.65 0.75 + 0.090 i 0.36 + 0.96 1
c1 0.47 0.45 + 0.044 i 0.21 + 0.48 i
Table 2-2

Parameter Sets B and B', Fitted Values for the Four-Parameter
Optical Potential as Described in the Text

m=—Atom 50 MeV (B') 50 MeV 162 MeV 162 MeV (B')
bg -0.0445 -0.0680 -0.0686 -0.079 -0.079
+0.0148 i +0.017 i +0.0064 1 +0.041 1 +0.041 i
Co 0.513 0.550 0.557 0.58 0.72
+0.0343 1 +0.038 i +0.091 i +0.66 i +0.68 i

The corresponding widths of these levels provide information on the
imaginary parts of the s— and p-wave potentials. Since the potential
under consideration has only four parameters (the isovector parameters
are kept fixed), the effect of each one is easily identified. Specifi-
cally, the negative value of Reb, produces the repulsive shift of the
s-wave levels while the positive value of Rec, produces the attractive
shift of the p-wave levels. The level widths result from absorption

which is modeled by the imaginary parts of b, and c,. This makes the
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fitting procedure straightforward -— the values of by and ¢, are varied
to minimize the x2 for the s- and p-wave shifts and widths separately ——
although there is an interdependence between some of these parameters
that requires careful checking of the fit.

The results of this fit are given as Set B; the calculated shifts
and widths are shown in Figure 2-2. It is not possible to calculate
and plot similar results for the values of Parameter Set A as they do
not produce a solution for a bound state in MATOM. However, the tabu-—
lated values for Set A are sufficient for a comparison. A reference
to Tables 2-1 and 2-2 makes it immediately clear that the IA value for
Reby is much too small to explain the s-wave repulsion required by the
data. 1In contrast, the IA value for Rec, is too large to explain the
p-wave attraction indicated by the data. Since the IA potential is
purely real at zero energy, Set A cannot explain the absorption of the
pion in the nucleus. These phenomena -- increased s-wave repulsion,
decreased p-wave attraction, true absorption of the pion -- are critical
to the understanding of low energy pion scattering. Much of the study
of the second-order potential is directed towards explaining these
properties.

The other illustrations of the application of these potentials are
taken from elastic scattering. These measurements are no less sensitive
to the different pieces of the potential, although the effects cannot
be clearly separated as is the case for pionic atoms. The low energy
(50 MeV) scattering is dominated by the interference between the s— and
p-wave potentials, which shows up as a minimum near 60° in the elastic

scattering angular distribution. Furthermore, absorption dominates the
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Figure 2-2

Calculation of pionic atom shifts and widths
using Set B, which was fit to these data.
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reaction cross section and has important effects on the elastic scat-
tering process. Higher energy (162 MeV) scattering is dominated by
the p-wave (A33) resonance, so Co 1s the important parameter. Since
the nucleus is quite "black" at these energies, diffraction effects
dominate the angular distribution. Sample calculations for sets A, B
and B', described below, are shown in Figure 2-3.

The calculations using IA values (Set A) are shown with dashed
curves. At low energy these results are clearly wrong. The IA values
of Reb, and Rec, produce an interference minimum near 75° and the mag-
nitudes are incorrect. On the other hand, the high energy results are
much closer to reproducing the data. This occurs because the potential
has sufficient absorption to produce the diffractive scattering that is
observed. Several authors [Thi 76, Joh 78] have remarked on the fact
that a sharp cutoff model will reproduce the angular distribution at
small angles.

The calculations using fitted potentials require some discussion.
The fits are global in the sense that a single set of optical parameters
was determined by simultaneously fitting all nuclei for which data were
available. The average Xz/point was minimized for the entire data set.
At 50 MeV there were seven nuclei used: 12C, 16O, 2881, 56Fe from Dyt-
man et al. [Dyt 79] and 1l2¢, 16O, 4OCa, 90Zr, 208pyh from Preedom et al.
[(Pre 81]. At 162-163 MeV there were six nuclei available: 12¢ from
Piffaretti et al. [Pif 77], 2851, 58Ni, 208pb from Olmer et al. [Olm 80]
and 16O, 40ca from Ingram et al. [Ing 78].

The 50 MeV fits were obtained for a four-parameter fit (Set B)
and a three-parameter fit (Set B') where the ratio of Imb,/Imc, was

held constant at the pionic atom value. These are shown with the solid
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and dash-dot curves, respectively. Set B provides a slightly better

fit but the difference is not very significant except at small angles,
where the s-wave interferes with the coulomb amplitude. Notice that

the improved agreement for these fitted sets comes about due to an in-
crease in the s-wave repulsion and a decrease in the p—wave attraction,
just as for pionic atoms. Notice also that the distribution of absorp-
tion between s- and p-wave is quite different for Set B compared to

Set B'. Dytman [Dyt 77] obtained.similar results for an unconstrained
four-parameter fit, with all of the absorption going into Imc, due to
the lack of the vy term [Yoo 81l]. The difficulty with this is that it
lacks continuity with the pionic atom results. Set B' shows that a good
fit can be obtained without substantially altering the energy dependence
of the parameters. Since the model to be developed in the next section
will use parameters that connect smoothly to pionic atoms, Set B' will
be useful for comparison.

The 162 MeV fits were more difficult to obtain. Part of this
seems related to normalization differences between the data taken at
different laboratories by different groups. The solution was to examine
a few nuclei in detail; adjustment of the normalization of the 160 data
by 10% produced consistent results. Others [Holt] seeking global fits
have had to do similar things. The results are always presented without
renormalization so the trends will be clear and not obscured by any
scaling. For consistency, the data were only fit out to the second
minimum, since the data sets cover quite different angular ranges. The
fit with Set B (solid curve) is not substantially different from the

results with Set A (dashed curve); the location of the minima are not
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correctly reproduced. The fit with Set B' (dash-dot curve) is much
better although the parameters are nearly the same as those in Set B.
The increase in Rec, and decrease in Imc, is consistent with the energy
shift proposed by [Cot 80]. This method is crude, but the results in
Figure 2-3 serve to indicate the sensitivity of the calculation to
variations of the parameters on this scale.

We can summarize the low energy results by observing that the
s-wave repulsion (b,) must be increased and the p-wave attraction (cq)
decreased. The absorption at 50 MeV is about 60% of the pionic atom
value. The agreement with the data at higher energies is much better,
with the uncorrected first order potential doing a reasonable job.
Dropping the V2 term improves the fit at low angles by making the
nucleus look smaller; large angle cross section measurements may be

a means to test whether this is a reasonable form of the potential.

2.4 HIGHER ORDER CORRECTIONS TO THE PION POTENTIAL

This sgction will discuss the contributions to the pion nucleus
interaction from second and higher order terms in the multiple scatter-
ing series [equation (2-12)]. There are essentially three changes that
occur. First, there is é second order correction to b, that increases
the s-wave repulsion, working against the kinetic energy density term.
- This is important since Reb, is so small at low energies. Second, it
is possible to sum the series for the p-wave part of the potential, an
effect first described by Ericson and Ericson. [Eri 66]. Known as the
Lorentz~Lorenz Ericson-Ericson (LLEE) effect because of the analogy to
the Lorentz-Lorenz effect in dielectrics, it reduces the p-wave attrac-

tion. Third, the true absorption of a pion, which must occur on two or
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more nucleons to conserve energy and momentum, will be included. The
absorpﬁion of pions is a dominant part of the cross section at low ener-
gles and must be included in any discussion of the optical potential.
The first correction is to add the second order contribution to
by. This is very important since the first order value for by, is nearly
zero due to the cancellation between the S11 and S37 phase shifts. The

second order part of the optical potential is

2 A-1 2 2 (2-48)
by P i <}o + 2bl > I o(r)
so that we can define
= 2 2
=ph - b -4
b, o Py <o +2bl>I (2-49)

where I involvés the expectation value of the two-nucleon correlation
function. The result at zero momentum is
3kf
IL=5—, (2-50)

assuming the Fermi Gas Model for the correlation function, and decreases
rapidly as energy increases [Str 79a]. This parameter is plotted as the
dash—~dot curve in Figure 2-1, where its importance at low energies can
be clearly seen. There are new results [McM 81] that suggest a further
enhancement of Bo due to medium effects involving p-wave rescattering.

There is a second order correction, exactly analogous to Bo, that
comes in for the p-wave as well. This is small at low energies, but
works against c, in the resonance region. We will not investigate

it here, but it should be important in getting the magnitudes of the

theoretical parameters correct.
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The most important second ‘order correction is the Lorentz-Lorenz
Ericson-Ericson (LLEE) effect, which is also the least well understood.
First derived by Ericson [Eri 66], it is a result of summing the p-wave
terms to all orders in the multiple scattering series. Assuming hard

core repulsion between nucleons, the p-wave potential is

> -1 } : 4m A-1 -1 |® 2
. S v
Voo oam P %P [ 3 a2 %P1 p]

m
(2-51)
-1
> 4Trpl Cop —V*
ST EAL, T
3 A P P

The original derivation, in analogy to the electrostatic Lorentz-
Lorenz effect, assumed the only effect was due to the "polarization"
of the medium by the strong p-wave interaction through the A33 reso-
nance. Subsequent calculations, particularly those by Brown [Bay 75],
Weise [Ose 79], Eisenberg [Eis 73] and their collaborators, have in-
cluded effects due to 7, 0, w intermediate states and finite range
effects. These modify the form of the LLEE effect by introducing a

parameter A in the formula

-1
4w Py cop(r)
1

X (2-52)

22 -
1+ pl

3 cop(r)

so that the original result corresponds to A = 1. The consensus of
recent calculations [Bay 75, Thi 76a] is that 1 < A < 2, with values
around 1.6 to 1.8 being preferred [Ose 79] at low energy. The value

of 1.6 will be used here as it falls in a range p?eferred by low energy

data. These larger values serve to substantially decrease the p-wave
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strength at low energies, a decrease that is important if agreement
with the data is to be obtained. The value at higher energies is very
poorly known, the choice of A = 1 reflects that the value of X should
decline as energy increases and correlations become less important.

Last but not least, the effect of true absorption must be included.
The absorption of a pion by two nucleons is the dominant part of the
reaction cross section at low energies. Early pionic atom analyses

assumed that

B 0%(zr) - c, 7 0%y 7 (2-53)

would be a convenient parametrization, with the p2 terms reflecting the
fact that a two-nucleon density is required. It seems reasonable to
cast the absorption into this form, but others [Ose 79] strongly suggest
that this is only true below 50 MeV. Since approximate calculations
[Cha 79] of these parameters, based on Fermi gas wave functions for the
struck nucleons, exist over the full range of energies to be studied,

we will adopt this form. Specifically, we take

> ->

B +C k + k! (2-54)
o} o 2cm 2cm

to represent the absorption, where kjy., is defined in the two-nucleon
pion center of mass. The transformation from the plon-nucleus system to
this system is the same as before except that (1+€) becomes (1+€/2).

The parameters calculated by Chai and Riska [Cha 79] are given in
Figure 2-4. The short dashed lines at low energy indicate the values
determined by pionic atoms, as will be described below. Although there

are good arguments both against and in favor of these theoretical



33

Figure 2-4

Real and imaginary parameters used to describe

absorption of a pion on two nucleons, isoscalar

(isovector) parts shown with a solid (dashed) curve.
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values, an empirical argument for them is that they have the behaviour
that one would expect for absorption dominated by the A33 resonance.

When the absorption is included explicitly, it becomes necessary
to identify Imb, and Imc, with the quasi-elastic cross section. When
this is done it is necessary to reduce their phase shift value by a
factor Q which accounts for Pauli blocking of inelastic scattering of
the nucleon. Following [Str 79], this 1s evaluated from Goldberger's
formula [Gol 48] using Landau and McMillan's approach [Lan 73]. This
factor is 0.31 at 50 MeV, 0.54 at 100 MeV and 0.72 at 162 MeV. Results
for cq‘e. appear consistent [Str 79a] with the limited data that is
available.

When these new terms are combined with the first order terms

already included in Uopt in equation (2-43), we get

- 2
= - 8
2w Uopt 4 {pl[bo p(r) + o bl o(r)] + P, Bo P (r)
- -V*' Z‘C(r) _V>
1+ ?’I A C(r)

+% (1—p1-l) v> [e, o(r) + e, ¢ Se(r)]

1 -1 2 2
+—2- (l—p2 ) v [Co 0 (r)]: (2-55)
where

Cr) = o™ e, o) + e ey 6o + 2, ¢ oX(r)

where it has been assumed that the p-wave absorption terms are modified
by the LLEE effect. The inclusion of Co 02 in the LLEE effect compli-
cates the analysis, since a change in C0 affects the p-wave strength

of c and vice-versa. In addition, some authors [Huf 75] believe it
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should be kept separate. From the point of view of this analysis, the
difference is a moot point since it only affects the final magnitude of
parameters needed to produce the same scattering, and these parameters
are not particularly well known. The tradeoffs that are required be-

tween these two alternatives have been given elsewhere [Str 79].

2.5  CALCULATIONS WITH FULL OPTICAL POTENTIAL

The properties of the full optical potential will be illustrated
with the same series of calculations used in Section 2.3. However, the
increased complexity of the potential increases the number of options
we have for choosing optical parameter sets. One way of dealing with
this complexity is to relate all of these potentials to an equivalent
four-parameter potential, so that a common set of four effective
strengths can be used to relate all of these potentials to each other.
This will be dome in the next section when these results are summarized.

Two sets of calculations will be focused on at low energy, reflect-
ing varying degrees of adjustment in the parameters. The first, Set C,
uses the phase shift values for Eo: b1, cg, c¢1 and the Chai and Riska
values for B, and Coe We fix A = 1.6 as listed in Table 2-3. This set
is analogous to Set A and illustrates the effect of a purely theoretical
model for the optical potential. The second, Set D, results when Reb,
and Recy, and the amount of absorption (with ImB,/ImC, held constant)
are adjusted to fit the data in the same way as described earlier for
Set B'. Three sets are used at 162 MeV.‘ Set C is defined using the
theoretical values for bo, cg, By, Co as described above, with A=1,

Set D is the same except that Rec, and ImC, are fit to the data, in
analogy to Set B. Set D' is also a fit, except the Vz terms are omitted

in analogy to Set B'. The results are given in Table 2-4.
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Table 2-3-

Parameter Set C, Multiple Scattering Theory
Values for the Second-Order Optical Potential

T=Atom 50 Mev 162 Mev
-0.033  -0.045 + 0.006 i -0.083 + 0.029 i
-0.133  -0.131 - 0.002 i -0.125 + 0.003
0.65 0.75 + 0.028 i 0.37 + 0.67 1
0.47 0.45 + 0.013 i 0.21 + 0.33 1
1.6 1.6 1.0
0.007 -0.02 + 0.14 1 -0.15 + 0.28
+0.08 i
0.29 0.36 + 0.59 i 1.29 + 2.95 i
+0.34 1

Table 2-4

Parameter Sets D and D', Fitted Values for
Second-Order Optical Potential Described in the Text

T—Atom 50 MeV
+0.006 i
0.70 0.75
+0.028 1
1.6 1.6
0.007 -0.02
+0.19 1 +0.12 1
0.29 0.36
+1.06 i +0.66 1

162 MeV 162 MeV (D')
+0.029 i +0.029 i
0.45 0.62
+0.67 i +0.67 i
1.0 1.0
-0.15 -0.15
+0.28 1 +0.28 i
1.29 1.29
+2.0 i +2.1 1
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These sets will be compared in the same way as in Section 2.3,
starting with the pionic atom calculations shown in Figure 2-5. The
dashed curve shows Set C, which does reasonably well but fails to get
the details correct. The parameters of Set D were fit as described
earlier, except that ImB, and ImC, were varied instead of Imb, and
Imc,. The results with Set D, shown with the solid curve, are quite
similar to the results with Set B in Figure 2-2. This illustrates that
the fit results are not particularly sensitive to the form of the poten~
tial. What is promising is that the values of the purely theoretical
potential of Set C are now quite close to those required to fit the
data. Indeed, some recent results [McM 81] suggest that p~wave medium
corrections to So will increase its value to that required by the
data. The absorption parameters are low, but the theoretical situation
is far from clear. Recent work by Saraffian [Ris 80] indicates that
medium corrections to the calculation of By will bring agreement with
the fit value in Set D. Calculations by Weise and coworkers [Ose 79]
have produced values of InC, that are much larger than those used in
Set C. One set gave the value of ImC, = 0.68 fm6, which is much closer
to the number determined here. Their value of ReCy = 0.97 fmb would
drastically change the result for Co, reducing it to 0.60 fm3. However,
the value of A significantly affects these predictions since all of the
p~wave parameters are interrelated by the LLEE effect. It is large
ambiguities like this that force us to fix on a single set and adjust
it to the data, with the understanding that future theoretical work may
clarify the exact values for different parts of the potential but will
probably not alter the overall strength of the real and imaginary parts

of the potential.
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Figure 2-5

Pionic atom observables calculated with
sets C (theory) and D, shown with
dashed and solid curves, respectively.
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The conclusions about low energy elastic scattering are similar.
As can be seen in Figure 2-6, the results with Set C (the dashed curve)
are a big improvement over those with Set A in Figure 2-3. This is
primarily due to the increase in s-wave repulsion due to the use of Bo,
and the decrease in the p-wave attraction due to the LLEE effect. The
solid curves show the result of a fit, producing Set D. This is a
three~parameter fit, with Reb,, Rec, and the absorption (ImB,/ImC,
fixed) adjusted to fit the data in the same way as was done for Set B'.
A comparison of sets C and D indicates that the change in So required
is almost the same as for pionic atoms, -0.015 fm. The p-wave param—
eters agree very well, but this is mostly due to the deliberate choice
of A = 1.6.

It is particularly interesting to note that the absorption re-
quired is about 62% of the pilonic atom values for Set D. The implica-
tion is that the absorption parameters decrease as energy increases,

a result contrary to the predictions of all theories. However, calcu-
lations of absorption cross sections agree reasonably well with some
recent absorption measurements [Car 81] if the absorption data [Nak 80]
are systematically renormalized within the stated errors. Whether this
correctly reflects the physical situation remains to be seen, as it
will require additional experimental measurements.

The situation at higher energy is less clear. The results with
Set C are shown with a dashed curve in Figure 2-6. The change from
Set A is not very great; although differences at backward angles are
significant, there is little data in this region. Set D is fit in the

same way as Set B, with the same renormalizations of the data, and the



42

*£19AaF31dadsa1 *saaind jop-ysep pue pJ[os ‘paysep
Y3ifm umoys ¢ ,q pue ( *) sies woaJ saajauweied Suysn
+% ASKH 79T pue (G 10J paje[nd[ed 3uilialjeds OIIserd

9-7 2an31g



MSUX-8I-098

43

ALLLR ILELINL S (L1 L% IO e L0 l—]'I'l'le'r'T‘—pﬁun L 1LL.0 [ S N (L100 B ]'M'ITI'T"T_]'ITTTTI'I LIS UL R B

0.001

TTUR N (1YY B WG TV TS 1T A T VIR V1T RWETEE TR TS PR YT P T T
=] = o - o =) o - - >
b= Q — (=] Q - (=] .
Q -— R [=] - (=]
— —
[JS/QLU] ij/.Dp
LLALELER B T L} Il"' 7T T T Il||| | LA L 'llll] L T ""ll ¥ T L II'll 7T T

il Lisead ooy ln\vnlu P Liaasd o a h\v‘nln TR Daps g 4

(=] [~ —
8 8 2 2 2 2

Q - —

-—

(48, /qw) P, /0P

60
ec.m.weg]

30

Figure 2-6

6c.m.[deg)



44

results are comparable. Removal of the V2 term improves the fit, as
Set D' (dash-dot curve) shows. The shift of the minimum is about the
same as observed for Set B'. One reason that the calculations are
similar is that the reactive content of the potentials is similar.
Table 2-5 gives the reaction cross sections for these parameter sets.
Although it is not always possible to decompose the reaction cross
section into absorption and quasi-elastic cross sectiomns, it is clear
that the model used here produces reasonable values for the imaginary
part of the optical potential.

A short summary of these results is that the increased s-wave
repulsion (Eo) and decreased p-wave attraction (LLEE effect)'obtained
from the second order corrections do much to improve agreement with the
low energy data. Further, it is observed that absorption is important,
contributing markedly to back-angle cross sectiomns, and that it is

possible to define absorption parameters which are consistent with the

Table 2-5

Reaction Cross Sections in mb for
162 MeV 7T Elastic Scattering

169 40c, 208pp

Set A 517 914 1955
Set B - 510 899 1966
Set B' 510 901 1968
Set C 503 883 1930
Set D 509 893 1957

Set D' 507 894 1962
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trend in Oypg and Gplagtic from zero to 50 MeV. The higher energy data
are reasonably reproduced by all sets, although dropping the Vz terms
improves the fit. Both fitted sets have larger values of Rec, and

smaller values for ImC,, as was observed for the sets B and B'.

2.6 SUMMARY OF ELASTIC SCATTERING RESULTS

The most straightforward way to compare these potentials is to
formulate an "equivalent" potential so that changes in a few parameters
can be related to the changes in the calculations. A convenient form

is the simple Kigslinger form
- -+ ->
20 U = =47 beff p(r) - Cofs Ve o(r) V (2-56)

so that terms of higher order in p are incorporated into s-wave and

p~wave strengths. We use a simple ansatz to define

B

=pb +
Page = P1P T Py By Pgs

and ' (2-57)

-1
pl %o + P Co Paff

1 C
o pef%}peff

c =
eff 4 -1 -
— +
l+3 A[pl ¢, TPy
where isovector temms are suppressed. This prescription does not pro-
duce a four-parameter potential that will generate exactly the same
result as the full interaction; the density dependence cannot be re-
placed by a simple constant except within a small region of parameter

space. Despite this restriction, the use of pgff = 0.7 Po = 0.12 fm™3

provides a basis for a qualitative comparison [Str 80] of quite dif-

ferent potentials.
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This form is particularly useful for interpreting the tradeoffs
that occur between parameters. For example, the pionic atom data deter-
mined ImB, = 0.19 for Set D, hence ImB, pegf pz/pl = 0.021 which is only
30% greater than the fitted value for Imb, in Set B. 1In a similar vein
it was observed above that increasing ReCy from 0.29 to 0.97 had to be
compensated by a decrease of Rec, from 0.70 to 0.6l. Since the change
in ReC, translates into (0.68) Paff p2/pl = 0.076, we see that the
simple model explains 80% of this change. The LLEE term is much more
complicated, but implicit differentiation can be used to relate changes
in X to changes in the other parameters. For example, we can get

-1
2

—La 4m i?.-{-f.‘?. (2-58)
d(Reco) 3 Peff P1 P Py Peff

which is 3.7 for Set D at 50 MeV. This compares favorably with the
value of (1.4-1.6)/(0.70-0.75) = 4.0 deduced from comparing this set to
the best fit set with A = 1.4 [Car 81]. These results serve to indicate
how this equivalent potential provides a basis for a qualitative inter-
pretation of the full potential in terms of a more easily understood
four-parameter potential.

In summary, the simple four-parameter potential with IA fails
miserably at low energy. The s-wave repulsion (Rebgsf) must be in-
creased while the p-wave attraction (Receff) is reduced. Also, there
must be a large amount of absorption added, although the distributioa
between s~ and p-wave is not clear. The results with IA values in the
full potential outlined in Section 2.4 are much improved. This occurs

since the second order corrections all go in the direction required by
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the data. The use of So increases the repulsion in Rebgff, while the
LLEE effect substantially reduces Receff. Fits indicate that only

small adjustments are required to remove the remaining discrepancies.
The calculated absorption is still too small for T—Atoms, although
reasonable at 50 MeV. It remains to be seen if the 60% decrease in the
absorption parameters from zero to 50 MeV can be explained theoretically,
it is clearly required by the data.

The higher energy results were that the simple four-parameter
potential is reasonable, but is improved by using p~wave parameters
that correspond to a shift of the resonance by 20-30 MeV. The full
potential gives better results to begin with, but is also improved by
a similar adjustment in the p-wave parameters. Omitting the VZ kine—-
matic term makes the nucleus appear smaller, improving the fit to the
low angle data, but decreasing the cross section at larger angles.

If one is willing to adjust the size of the nuclear density [0lm 80],
a similar improvement in the fit would also result. More complete
studies will be needed to sort out these differences.

In summary, we have obtained four potentials that reflect varying
degrees of theoretical sophistication and phenomenological input. Each
is suitable for the exact calculation of the distorted waves needed for
the inelastic scattering calculations, allowing investigation of the
sensitivity of inelastic scattering to the distorted waves used. Fur-
ther, they provide reference values for the pion-nucleon interaction
that will generate the inelastic transition, allowing a test of whether
inelastic scattering is as sensitive to second-order corrections in the

interaction as elastic scattering is.



CHAPTER 3

INELASTIC SCATTERING FORMALISM

The analysis of inelastic pion-nucleus scattering usually makes
use of the Distorted Wave Born Approximation (DWBA), based on the
assumption thét this is a direct reaction process involving the exci-
tation of a single nuclear state without the involvement of other reac-
tion channels. There are transitions for which this assumption is not
valid; they should be analyzed in the Coupled Channels Born Approxima-
tion (CCBA) which we are not investigating here. This introduces an
ambiguity into the analysis of some states which will be pointed out
when appropriate.

This chapter will detail the theory and equations necessary for the
analysis of inelastic pion scattering. First, the formal theory of the
DWBA will be outlined. The expressions for the transition matrix are
worked out, relating the cross section to matrix elements of the pion-
nucleon interaction. These matrix elements are then worked out, separ-
ating terms involving the pion~nucleus interaction and nuclear structure,
which include the "physics" of the process being studied, from angular
momentum factors that reflect the rotational properties of space. The
formulae of angular momentum algebra follow the conventions of Brink and
Satchler [Bri 75] with the exception of the notation for the Clebsch-
Gordon coefficient, which is given in Table 1-1. Finally, the details of

the form factor are presented for the specific models considered here.

48
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3.1 OVERVIEW OF SCATTERING THEORY AND THE DWBA

The DWBA has its origins in the Gell-Mann-Goldberger [Gel 53]
relation for scattering from two potentials. The details of the formal
theory of scattering used in deriving this result will not be given here,
as they can be found in many places [Gol 64, Aus 70, Jac 75, Sat 64,
Sch 68]. However, a summary is presented here for completeness. In
Chapter 2 it was shown how the cross section was related to the transi-

tion matrix T, which satisfies the Lippman-Schwinger equation
T=V+VGeT . (3-1)
The expansion of this gives
T=V + VGV + VGVGV + e (3-2)

which is recognized as the Born series for T. If we keep only the
first term of this series, which corresponds to taking the first term
of the series for @ = 1 + GT, we obtain the Plane Wave Born Approxima-

tion (PWBA). This gets its name from the fact that

T = <¢a]v]¢b> . (3-3)

Although simple, this approach fails when V is strong, so that the
series in equation (3-2) does not converge quickly, if at all.
The Gell-Mann-Goldberger relation provides a way around this prob-

lem when the potential can be broken into two parts, V = Vo + V1, where

Vo << V1 and is known so that scattering by V, can be calculated exactly.
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We define
T =V + VGT
o o o o
and (3-4)

Q@ =1+ GT
0 0

for scattering from the potential Vo. Then the expression for T

becomes

~3
]

(L+T c;)"1 T +V. + (L+Tg) L T + V. GT
(o} [o] Q [o]

1 1

T +(1+TG) V_.(1+ GT)
o o 1

=T + Q V_ @ (3-5)

where ﬁo = 1 + TyG is the time-reversed (incoming) solution correspond-
ing to Q4. This relation is exact and involves no approximations. How-
ever, it still involves the unknown scattered wave Q, so we still have
an integral equation for T analogous to that defined in equation (3-1).

If we expand out Q we obtain that

Q=0 +GV(g-q)+Gv q. (3-6)
o o o 1

Under the condition that V, >> V1, © will be well approximated by Q,

and we can drop the higher order terms in equation (3-6). Then we get

T=T +Q Vg (3-7)
o] olo

which defines the Distorted Wave Born Approximation (DWBA). Since Qg

includes the effects of V, (the stronger part of the total potential V)
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-to all orders, this is a much better approximation than the PWBA de-
fined by equation (3-3).

For our applications to inelastic scattering, Vo is chosen to be
the elastic scattering part of V, so that V; then includes the inter-
action that excites the inelastic transition of interest. We can
identify V, with the U, obtained in Chapter 2 since they both satisfy
the same integral equation (2-16 or 3-4). Since T, does not contribute

to inelastic scattering, the formula for T simplifies to be

Tab =<¢b ﬁolvllgo ¢a> - <Xblvl| Xa> (3-8)
where X4 = Q5 ¢, 1s the elastically scattered distorted wave which is
the solution to the Hamiltonian Hy + V,.

At this point it is easy to identify three limitations on the cal-
culations performed this way that are essentially beyond our control.
(1) The optical potential used for Vo 1s necessarily approximate since
the elastic scattering of pions is not fully understood. It is presumed
here that the choice is reasonable if the elastic scattering is fit by
Vo. This will be examined in later chapters. (ii) The interaction Vj
is not completely known, and we will include only the most important
terms that should contribute to inelastic scattering. (iii) The assump-
tion that V; is small may not be satisfied, particularly in the case
where coupled channels effects may be important. With these caveats
in mind, we can now proceed to the evaluation of the formulae that are
realized in the scattering program MSUDWPL [Carr] for use in performing

the calculation which will appear later in this thesis.
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3.2 REDUCTION OF THE CROSS SECTION FORMULA

The T-matrix is defined in DWBA [Aus 70] as

™ =/fd%i ﬁ%f Xg-)*(?f)<f|"1|i> NRER (3-9)

whereﬂﬁ'is the Jacobian for the transformation to relative coordinates
(omitted from here on) and where <fIV1|%> = <?f ¢f[v'- Vo'wi ¢£> is
igteg;ated over the internal coordinates of the scattered particle wave
function (¥) and the nuclear state wave function (¢). This leaves
<I'M'|VlIIM> where I, M (I'M') and the initial (final) state spin and

Z-projection. After a partial wave decomposition we obtain

DW (=)* >, A
T =Z fj sz'm'(r ) ¥ (k)
o
'm'

(3-10)

d * ~
x <I'M'|V |IM> x P& v (&) dd ad
1 llm im i

-> A
where Xgn(r) = 1% (4W)[§1(r)/r]Y2m(r) and where ug(r) has the normaliza-

tion that
1 L i62
gim u (r) = = gin (kr -2 o In(2kr) + 6 + 0 ) e . (3-11)
U k 2 L )

The formula (3-10) can be rewritten to give

DW= tet Tt '| " * A
T Z Z <z m' I'M JMJ> <2m IM’JMJ> ¥y () Y, (R
ta JH
prgr  J
(3-12)

N IM - M
XIJ‘([XQ.(I") x I'] lell [x,(r) x I‘] d% dg'
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We define a transition-matrix element

JM JM
J* = ' ' J J .3 3,
where the quantum number My is not included in the definition of Till'l'

since, as will be shown in equation (3-41) of the next section, this
matrix element is independent of Mj. Note in particular that it is the
complex conjugate of T that is defined here. This is done to be compat-
ible with the definitions used in the original version of DWPI.

The expression for the cross section is

do _ ( w 2 Ef_ 1 ITDWI2 (3-14)
w == ca oy
2m & i M
Mi
b

where the extra factors of k account for differences in the flux defini-
tion in the two channels and the sum does the average over initial and
sum over final spin projections required for the unpolarized cross sec-—

tion. Using the definitions in equations (3-12) and (3-13), we obtain

that
J
1
ZTT ZZZZ Z QIQI'TllfLiI'
V
Qm JM zlml JlMJ
g'm' 1
2%

<2,m me| M ) <9,m | M) < 1MJ1> (3-15)

x . N
' ' tMmt k
x < p'qm' I'M IJlMJ1> Yk ¥ k) Y’lel(ki) Y"imi( e

This can be separated into two pieces. 'We first use the sum or M(M') -

to simplify the clebsches using triangular relations. Then the first

plece is
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Z (em T M -m|JMJ><5L m, IM -mIJlMJDY;m(Izi) Y, (k) (3-16)

1™t

*
Using that Y = Yz_m(')m and then redefining m in the sum we get

Z < o IM ijMJ‘) <z @, IM-n lJlMJ>(-)m Ym(ﬁi) ) (k)
1

e
(3-17)
These two clebsches can be rewritten using
I, J-I+m
<52.~m I MJ-Hn]JMJ> : (=) <2m mJ]I MJ+m>
and (3-18)
~ + - -
Jl 21 21 J1+MJ1m1
M J == (- -m_J .
Sl J_mlj M) =) <I R l“l “‘1>
1 1 L 1
Since

<2m JMJ_}I MJ+m><I M ™ 3 ' ) ml>
Z <JM J,M {L MJ-MJ> <5Lm L-(mtm )! l-ml>

. : J+JLl-I—L
x IL W(mlJl; IL) (=) W(2L IJl; zlJ) s (3-19)

we obtain the result that equation (3-17) is now

3 31 L ZJ—Jl_LmJl—ml . .
Z Z ) Y atk) Yo p (k)

(3-20)

3 ILM-M ba L-Oerm ) [o -m>W(Jz,LIJ,JLJ) i
Jl 1
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Since

~

<5Lm L—(ml+m)|zl—ml> =-::— (=¥ <Jl.m L.m lL m+ml> (3-21)

we can write equation (3-20) as

2J-Jl+JL—L+M
Z J 31(-) L woL L 4,9 <JM I IL M_~M 1>
L
(3-22)
m+m1 . R
x) ) (o |Lamy v Gy, LG
1
We can now use the result that
Z <5Lm zlml|LM> I AKOR JES
- 11
1
(3-23)
2%

% Ym(fc)((zo 210‘L0)>

1
Jom L
when M = ml+m2 is held fixed. Since M is not fixed in the sum above, we

get a sum on M and the final result for equation (3-16) is given by

SRR 2J-J H-L |

L M 1
Z —1 1 1w 13,5 49

(3-24)

<JM 3,-u ILM><JLOJLO|LO> 4 (k)
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The second factor that we can remove from equation (3~15) is

) ey | p——
Z <Zm IMJmIJMJ>
zm'mi

(3-25)
*

Lim! I'M_ -m'|J M\ ¥ < c
* < 1" Yy mllJl Jl> a8 Yy ()
1 11
In a derivation that follows the same pattern as we used for equa-
tion (3-16), we rewrite this using

*

Y, 0 = O™ Y@
m L'=-m

2'
and reorder the clebsches. When the clebsches are combined into a Racah

coefficient we get

A A PN -] 1 —m !
I3 i 2J+Jl L +-MJ ml

Z N E— (= 1 W(g'L! I'Jl; leJ)
2

(3-26)

* ~ ~
- ' - I P 'y -m\ Y k) Y , k
x (M I MJllL M MJ1> <g m'L' - (M ml)lzl ml> prgr O i (k)

which is analogous to equation (3-20). Then the sum on m and my is

used to obtain

A alA 2T+ =L'+2'+M :
J Jlg'gi 1 . Jl
Z —_— (=) W(Q,'L'I'Jl; zlJ)
L
™

(3-27)

* ~
-, 1 L 1 1
x<JMJ 3, MJllL M> <z 0 zlo!L o> Y e ()
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for the equation (3-25) parts of equation (3-15). These temms can now

be inserted into equation (3-15) which becomes

Ly T Y J;}ﬁ%“l B %
2

gy I M
14
fa¢ iyt Mj
24 1 H 1] -
x < ozlo[Lo> <z OQ.lOIL o> WL 13 ; )

tT 1 ' . ' - - L'™'
x W('L' I'95 ¢43) <JMJ 3 MJlILM> <JMJ I MJlI M>

J
g+ ~L-L' _J* 1
1

We now use that

- - M\ =
Z <JMJ 1 MJllLM> <JMJ 3 MJ1| L M> I N
M
1

Il"‘)

<zo 210|L0> =L (! <zo LO|2,10>,

=

1

<z'o 2i0]LO> =—5- (- ¥ <SL'O LO|JLiO>,

and
<12)Y*(£) L2 5 (cos 9)
ZYLMi g T am L%
N

where § is the (scattering) angle between fzf and 1?1, to reduce equa-

tion (3-28) to
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5202 ~2 e

2 JI LT
ZITI = ?‘ Z Z > <;Lo LO]2,10> <SZ,'O Lolzlo>
mm' i ' J (4m)
?
4 Iy
J
J* 1
. 1Tt t . ]
x W(oL IJl, 11J) W(L'L' I I3 llJ) TlIﬁ'I' Tzlllil' PL(cos 8)
S Z o, P_(cos 9) (3-29)
(4m? & L L

L

This final equation defines the quantity ¢_, which allows a compact

L

expression for the cross section,

2k
£ 1 1
— E g. P_(cos 8) . (3~30)
) ki (21 + 1) (An)z - L L

@
da (21r1=x2

Although this is a correct result, a correction must be made in
the formula to make contact with the assumptions included in the program
DWPI. The wave functions calculated by the program [Eis 76] are normal-

ized so that

and (3-31)

D S " (i - 22 - 1sy
2im uz(r) = % sin |kr 3 n 1n(2kr) + 62 + o, ] e

-0

rather than as given in equation (3-11)., In order to convert equa-

tion (3-30) to this normalization, a factor of

k1 f2g .1 [ka
41 e mk  he 8 3
™
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must be absorbed into the TJI - for each of the four wave functions.
2LL

If we remove this factor of

_2

ki ke ©

64 10 8%

from the factors in equation (3-30) and include it in the wave function

normalization, we are left with

do
-— = g, P.(cos 8) . (3-32)
da k(21+1)Z L

This is used in the main program of DWPI to calculate the cross sections

from the matrix elements, which are described in the next section.

3.3 EXPANSION OF THE TRANSITION MATRIX ELEMENTS

The matrix element defined in equation (3~13) is

JM JM
J J Ve Ty ) .3 3, _
TzIz'I'.j]r<(2 ® I) IVll(z ®1') > dr dr (3-33)
where
Vl = Ang:;: TAOA,u(r) qu(r) (3-34)
i

for natural parity (S=0) transitions. Equation (3-33) can be expanded

to give

J = 1 ] 1RVAS
L Z <2,m IMIJMJ> <z m' I'M lJMJ>
— ,

n'M' (3-35)

3 .3

1 [} ,

Jl Y Goal o (o) Ty [y 4
Au

The second half of this equation can be further simplified to give
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L () , )
, i uz(r) i ul,(r)
Tt ———— ™! ———— —
E :<,Q,m lez m> - AtﬂN<IMlT)\O>\,U|I M> - (3-36)

Au
where the fact that the angular integral can be brought through tyy for
the interactions used here is proven in Appendix D.

At this point it is convenient to define a new operator

- PRI ~
TAOA,-u ) TAOA,u (3-37)

Then equation (3-36) becomes

N R RN ERATA L

Au (3-38)
—, (=)* v ($)
1™ u (1) 3 a0
1
fx T At N <I“ TAO)\” I> T r" dr
and equation (3-35) then includes a sum on four clebsches
- H Tt IM!
Z Z( ) <5LmIMJMJ> <9,m I'M JMJ>
u mM
m'M’
(3-39)

o ol oo 2 )

in addition to the integral and the reduced matrix elements. The sum

in equation (3-39) can be reduced to a single Racah coefficient. The

procedure is to rewrite

<I'M' z - u|IM> =%T (_)A-U <>\u IMII'M'>
I
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and use the sums on m, M and M' to satisfy the triangular conditions

so equation (3-39) becomes, for fixed M3,

—-( ) Z <2'm Aulz m+u> <52,m +u IM IJMJ>
<)\uIM—m—u|IM—m> <52,m I'M—m' >

~

=L w1
I'
=12 ()T g II'; AJ) (3-40)

which is independent of Mj. Substituting this into equation (3-35)

gives

= I (=yd I vorpr. < H ” '>
Tim,l, Z LI (=) W(ee' II'; aJ) (o Tl
A

(3-41)
*

—) Q! (+)
() z'(r) 2

1™y (
= R e

The final step is to evaluate the reduced matrix element and put the

equations into a standard form. First we use

<z” Y}\” z'> = (lnr)"l/z (—))‘i <JLO AOISLO>

and

>

<I” Toox ”I> - (')I-I'<I'” T,04] D)

H>|

and

(+) (-)*

uz(r) = uz(r)



62

to get
- +I' -~
A
L. - H
< (__)2 1% 2<20 >\0|2.’0> (_)A I+I

(=)* (+)

S e ] 22 L o

This can be more conveniently written as

J - -1/2 _\JR2IHL -, A
Torgrpr = (4m) Z( ) I' W(I'e' Iy; IV F,

LA
A
where
= (¥ A= s l ,> _yA=IFL!
Fu'x )" 1i z<zoxozo<)
(3-43)
%*
u u
L' 3 '3 2
%ji—;— Fx(r)';— r” dr
and

Fy(x) = Ath<I'” Toall I>

J
Thus we have an expression for TQIQ'I’

properties of the matrix elements from the physics contained in t

that separates the rotational

TN
and <I'|‘EAOA” €>. Although the formula written here is restricted to
natural parity transitions, it 1s modified in a straightforward way for
unnatural parity (S=1) transitions. These details, along with those

for normal parity transitions, follow in the next sections.
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3.4 EVALUATION OF THE FORM FACTOR FOR NATURAL PARITY TRANSITIONS

The form factor Fx(r) defined in equation (3-43) can be evaluated
for a number of different cases; we will examine only a few of them
here. First, the transition density <I'” TLSJI|€> will be evaluated in
the collective and microscopic models. Then it will be shown how the
Impulse Approximation (IA) form of try® 38 defined in equation (2-43),
can be used to form Fl(r) in several different ways. Finally, an
ansatz will be shown for including the second order terms of eqﬁa—
tion (2-55) in F,(r).

A collective model transition density is particularly convenient
for comparison to scattering by other probes because of its common use
and simple definitiom. However, its use is best limited to those
(usually low lying) states in nuclei where rotational or vibrational
degrees of freedom dominate. This model assumes the nucleus behaves
like a quantized liquid drop where the surface is deformed from a spher-

ical shape to

R(6,¢) = Ro[l +Z -1 EL_M Y (e,¢)] (3-44)
M

where

- M ~-1 M+
apy = () apy = By L I:bLM+() bL-M]

includes the operators byy (bIM) which destroy (create) an excitation

with angular momentum L and the amplitude of the excitation BL‘ This
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deformation produces a change in the density from a spherical form po(r)
to
p(r,8,¢) = p(xr) + &

(3-45)

- - 30(r)
o) =) e R 2y (6,0)
M

in lowest order. This deformed part is assumed to give rise to the

nuclear transition. In this case

<I' ”TJOJ "1> = F (1) <I' "aJ" I> (3-46)

where Fg(r) = -R, 30/3r, since Yj has already been factored out [see

equation (3-34)]. This matrix element 1s evaluated by writing

@l - o) 5 oo

I'-

= (=) J-I W(Jo I'1; JI) <Jllajlld>

IG5 9

[

and then using
Gl 19 = i
O <JM|0LJ_MIO>

- 8, 5 <JMIbJ__M + ()" bjM|0>

8, it <m|bjM]o> -8 it (3~48)
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Combining these we obtain the result that
= £~1 , (I'=x-I
FA(r) Ath F(r) By A7 () (3-49)

for a collective model transition. Notice that use of this result in

equation (3-43) gives us

2 2'
Fm,A B, =) <zo Aolz o>

(3-50)

- 30 2 2
Ro ar | dr

f———At

which is the standard formula included in the original version of DWPI.

A microscopic model for the transitiop density has the advantage
of allowing direct calculation of transitions between states which can
be described by simple configurations in the nuclear shell model. The
equations written here will be specialized to the case of transitions
from a closed shell ground state to an excited state made up of a par-

ticle and a hole coupled to good J. Such a state can be written as
| ) - Z Z<J By B [e)
ij pi Py h mh
m.hi
(3-51)

S
x (=) 3 3 a;i ahj|C>

since a hole state lhjm> = (=)jm ajm|q> has quantum numbers j;, and “mip.
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The Cij can be obtained by diagonalizing a shell model Hamiltonian
for the residual interaction between pairs of particle-hole states. The
core C 1is assumed to be a filled shell. Such a process is known as
the Tamm-Danckoff Approximation (TDA). A better approximation, ome
that accounts partially for the effects of ground state correlations,
is the Random Phase Approximation (RPA). Here the ground state is
assumed to include 2p-2h (and 4p-4h, etc.) componments, so tﬁat a lp-lh
state can be reached by annihilating a particle-~hole pair (with ampli-
tude Yij) as well as by creating one (with amplitude Xij)' This case
can be treated in exactly the same way, where we replace Cij with
X13 + (-)S Y44 [Pet 70].

What remains 1is to evaluate the reduced matrix elements of

S -
T E: <}M SA}JMJ> Y, 0 (3-52)
J MA

-
where 00=1 and Gl=0, for a tramsition to the state in equation (3-51).
Although only S=0 transfers are considered here, 1t is convenient to
also do the S=1 transfer that will be used in Section 3.5. The par-

ticle~hole matrix element is

(g, M o =) Z Z <P1mPi LY "m>

ij m

jhj"mhj
x (=) <inmpi’TLSJsMJ’jhjmhj> R, () Rj(r)

A
.

J
Py /. .
-0 “1 7—<in “TLSJ ” th> S Ry (9 Ry

ij (3-53)
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where Rj(r) is the radial part of the shell model wave function. A

convenient formula for these is

1/2
+2+1 2.2
_ 14 27T (a1 3/2 g ~a‘r%/2
an(r) =T [(Zn T3 - DT o (ar) e Pnl(ar) (3-54)
where the Png are the associated Laquerre polynomials
n
- _1S-1 ,S-n (2n + 22 - )1} 2s-2 .
Paplor) Z( ) [(n—s)! (s-1)! (22 + 28 - 1)!!](‘")
S=1 (3-55)
Clearly the product wave function can be written as
2.2
LR, &ZAH (r)* e ¢ T (3-56)
11 272

o

where n runs from 23+% to 21+% + 2(nj+ny) in steps of 2. Finally, the

reduced matrix element in equation (3-53) can be evaluated as
; N\ = 3 35 L 4T .11
<31 I Tssll 32> I X (JlJ?.J’ Rl 73 S)

SO AR RIS

- 11 -
X(leZJ, LLL 55 s) <Lozzo|zlo> (3~57)

S
o

s a1 aea
1% 3 LS
4o
The results in equations (3-53), (3-56) and (3-57) can be combined to

give the result that

Fy(r) = At B (r) | (3-58)
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where

f 2.2
_ o 3 § N -a7r
FM(r) =1 ¢ CN(ar) e
N

Hn

22
=-Kg a3 [A(ar)x + B(ar)k+2 + D(ccr)Mq4 + -~l e_a r

where Cy includes the Cij’ the reduced matrix elements, and the coef-
ficients of the polynomial, and where N runs from the smallest value of
L1+% to the largest value of %+% + 2(nj+nj) for the configurations
involved. Fy is divided by A (the number of nucleons) to correct for
the A included explicitly, and the nomalization f, 1s used to correct
for the extraneous spin factor ofvng-which is often included in micro-
scopic form factors calculated for proton scattering.
The next step is to include the pion force for a normal parity

transition. In the notation of equation (2.43) this takes the form

— —->
Fo(r) = i‘-f—[AlF(r) + T aR(r) T+ v2

A F(r) (3-59)
2w 3 ]

for F(r) = Fg(r) or Fy(r). Notice that when Fc(r) is used this is just

U
F = -p —9Pt .
FA(r) Ro or (3~60)

where the first order form of Uppt 1s used. If we make the ansatz that
the form factor can be calculated in the same way (i.e., by differenti-
ating the potential) from the second order form of Uopt» equation (2.55),

then the effects of second order tems in tyn can be included by using
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’(A2+2A6 p) Fc(r)

) =38 s soa, o(0] F () + T

2w
A
[1+3

7 v

A2p+A6 91]
(3-61)

+ 70 (245 0(r) ()] T+ 7 (4,424,0) Fc<r>£

We can extend this ansatz to include Fy(r) based on the similar struc-
ture of these transition densities. Although reasonable, this model has
less theoretical basis than the extension of equation (3-59) to second
order potentials in the collective model.

An alternative approach for including the pion force is to do a
simple folding calculation, described in Appendix E, where the force is

used in momentum space. This takes the form

- 2 . _
Fy(m) = 4my Wl g (k) 5,0k 0,(k) (3-62)
n
where wi = 2q2/Ryay, kg = n(m/Ryax), and p,(ky) is the Fourier transform
of the transition density Fy(r), and go(ky) 1is the pion-nucleus inter-

action expressed in the local form

2 2
(fic) 2 _2 _
g,(a) = = [:l-Az(k -]+ 4,(-q )] . (3-63)

This form can also be used with the ansatz used in equation (3-62)

by replacing Ay, Ay and A3 with the corresponding terms, except that
p(r) must be replaced with p(q). However, the non-local form in equa-
tion (3-60) or (3-62) is a better interaction than the local form in
equation (3-64) (with or without the second-order ansatz). In any case,
this local form is quite useful for getting a qualitative picture of the

effects of the corrections to tqy since it allows us to plot the force.'
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3.5 EVALUATION OF TRANSITION MATRIX FOR UNNATURAL PARITY TRANSITION

Unnatural parity transitions, since they involve spin flip in the
target, can only be produced by the spin-orbit part of the pion-nucleus
interaction. The interaction involved can be written [see Appendix E,
equation (E-13)] in the folding model as

v, = Z wi gLS(kn) 12'(LY) [-1P, (p)] -+ T , (©) (3-64)

n

which differs substantially from the T__ (p) * T. .(t) form that occurs

JoJ JoJ

in normal parity transitions. Actually, the target space part is easy,
and it has already been evaluated to give the result above in equa-
tion (3-57). What 1s new is the current operator

Py
P [‘1’ xp] S L1 (3-65)

where
J
Ly-1,0 " [YJ-l ® Q]

which changes the angular momentum algebra in the derivation of the

T-matrix in Section 3.3. Specifically, the evaluation of <9,' ” Y)\

)
in equation (3-38) must be replaced with the evaluation of

<9,'H LA ” . This matrix element is
¢leul =& =T
iy ol

Z z (Q,mJM Ijlm <LM lulJM

Mmmu

X (—)u<sz,'m'lY

" 2 2m> . (3-66)
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Since Z—ul“‘> = '\/z(l—+l)-§“- (—)Huﬁ-11 <5Lm—u z—m|1-u> ]zm-u>

this becomes

Z Lm JMJ'JL'm'> <LM lpIJMJ> <2,m—u l-mll—u>

M
i

o

(3-67)

<zM—u LMIR.'m'> Ve (a+1) % (- <2'H 14 "z>J }

-

The sum on four clebsches can be reduced to a Racah coéfficient where

Z <!Lm JMJlJL'm'> <LM lu!JMJ> (=)=

m
<2.m-u z'ml l—u> <5Lm-u LMIJZ,'m'>

A

1 L+1-J+2
== (=)
2

2T W(ela'L; 2J) (3-68)

which can be used to get the result

<2,”2LJ ||JL> - (%)-1/2 J izm (_)2'—2+1—J

]

= |

(3-69)

x W(212'L; &J) <20 LO‘Q'O> .

AA A

Since <2,'” YJ” SL> = (4m)~1/2 33/0 (-)e-2'H] <SLO Jo lJL'O> for non-spin

flip cases, we see that the spin-flip term requires an extra factor of

L V2D W(L1L'L; &A) (3-70)
where L = )-1, and we also have to change

(-)* <zo xolz'o> > (=) <zo LOlsZ,'O> , (3-71)
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which also changes the combinations of incoming and outgoing partial
waves that match up in the integrals that form the matrix element.

‘What remains is the evaluation of the form factor, which is

- 2 LS S
= k 3 -
B = )l ) oStk ) 3 Gk ) (3-72)
n —
where pi is given in equation (E-15), and - -
LS (hc)2 2 B
g (q) = —4r — (So ts, D) g (3-73)
2w

which is obtained from equation (E-11). This form factor in equa-
tion (3-72) is calculated by ALLWRLD [Car 8la] and supplied to MSUDWPI

for the scattering calculation.

3.6 SUMMARY

In this chapter we have outlined the basic equations of the DWBA
and their specific application to the problem of pion inelastic scat-
tering. 1In equations (3-29) and (3-32) the formula for the inelastic
cross section was presented in terms of a set of transition matrix
elements. In equation (3-43) these matrix elements were expressed in
terms of the overlap between the distorted waves and the pion-nucleus
form factor for normal parity transitions. The modifications required
for unnatural parity transitions were given in equations (3-70) and
(3-71). Finally, the models for including the nuclear structure and

the pion-nucleus interaction in the form factor were presented. The
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collective and microscopic transition densities were defined in equa-
tions (3-49) and (3-58), while the form of the interactions to be inves-
tigated were presented in equations (3-59), (3-61), (3-62) and (3-72).
The remainder of this thesis will be concerned with the applica-
tion of these formulaé and the testing of these models. At first the
pion-nucleus interaction will be tested against transition densities
determined by nucleon scattering. Later, the kn&&ledge of the inger-f/
action will allow the study of some new states and theirfnuége;r —

structure.
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CHAPTER 4

INELASTIC SCATTERING IN THE COLLECTIVE MODEL

. The remainder of this thesis will be devoted to the examination of
various test cases that illustrate the properties of the pion-nucleus
interaction and the application of these techniques to the study of the
nature of nuclear excited states. This chapter primarili/éddresses the

-

first of these concerns: the following sections will examine transitiods
to collective states in order to study the properties of/théinQn-;ucleus
effective interaction. |

The existing collection of inelastic data place narrow limits on
the choice of test cases. The nuclei for which data are available.at
a range of energies are 12C, the 4.44 Mev 2% state, and 40Ca, the
3.74 MeV 37 state. The former will be used in the detailed comparisons
of the next three sections, while the latter will be included at the end
for comparisons with microscopic models in the next chapter.

The first two sections will examine in detail the effects of in-
cluding various corrections to the plon-nucleus interaction at 50 MeV
(Section 4.1) and 162 MeV (Section 4.2). The elastic scattering optical
potential will be fixed at ome that fits the elastic scattering data,
normally Set D defined in Chapter 2. The effects of changes in the
distorted waves due to the use of other optical potentials will be dis-
cussed separately in Section 4.3, The remainder of the chapter will
present a survey of low (Section 4.4) and higher (Sectiom 4.5) energy
Scattering to states described by the collective model. This will
review most of the states for which data exist, as well as some for

which data is not yet available.
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Throughout this chapter the curves drawn on the figures will
follow a consistent pattern. A curve based on a theoretical force will
be dashed and a curve based on a fitted force will be a solid line. A
dash-dot curve will be used for a second fitted force. Exceptions to

this convention will be noted as needed.

4.1 EXAMPLE OF COLLECTIVE MODEL AT LOW ENERGY- -

s

The 4.44 MeV 2+ state in 12C has been chosen for ;hiy’eiamﬁle
because it is the best known angular distribution fogwlow éﬁérgy pion
scattering. The other transitions that have been observed at low energy
are fairly recently studied and often incompletely known. This state
offers the additional advantage of having been extensively studied with
other projectiles. The use of a form factor determined by an indepen-
dent experiment allows the separate investigation of the properties of
the pion interaction.

For these calculations we will use the collective model described
in Section 3.4, with By = 0.60 taken from proton scattering analyses
[Fri 65]. The elastic scattering optical potential will be the one
given by Set D in Table 2-4. The only remaining factor in the model is
then the pion-nucleon interaction, which will be examined by comparing
the predictions of the various interactions presented in Chapter 2. The
effects will be illustrated by plotting the pion-nucleus t-matrix, using
the local approximation described in Appendix B, alongside the angular
distribution [Dyt 79] for the inelastic‘scattering. The figures will
also show the elastic scattering data taken by the same experimental

group, for scale. The other elastic data are from [Pre 81].
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The first calculations use the four parameter potential developed
in Section 2.2 based on the Impulse Approximation (IA). The IA potential
using phase shift parameters (Set A) is shown as the dashed curve in
Figure 4-1. The minimum in the angular distribution occurs at 80°
rather than at 65° as required by the data. This is the same shift that
we saw for the elastic scattering earlier. The plot of the t-matrix on
the right shows quite clearly that this shift is due to a defect in éhe
force, specifically the relative strengths of the s- Eﬁé p-wave param—
eters. The solid curve is the result of the fit to all four parameters,
Set B. Notice that when the elastic is fit the interference minimum
falls in the correct location. The dash-dot curve uses Set B', which
only varies three parameters in the fit. This alternate fit is quite
similar in character to the other fit -- leading to the observation that
forces with quite different parameters can be essentially equivalent in
their description of the piom-nucleus interaction.

Figure 4-2 shows the same case, except that the full potential was
used. The dashed curve is the purely theoretical potential based on
phase shift values for the parameters, with absorption parameters as
calculated by Riska [Cha 79a]. Agreement with the data is quite good.
The graph of the t-matrix shows how the LLEE effect and second-order
s-wave parameters give the correct interference. The solid curve shows
the fitted Set (D), where the only major change is a further increase
in by, by 50%. This shifts the minimum a small amount and raises the
inelastic calculation to give slightly better agreement with the data.

It has been noted before [Str 79, Dyt 79] that potentials which

fit the elastic will also reproduce the inelastic data. Now we see a
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- much more interesting result: potentials that give similar fits to the
elastic data will also fit the inelastic data, even if the optical
potential that generates the distorted waves is held constant. The fact
that a four—parameter and nine-parameter potential give similar results
suggests that they are both modeling an effective interaction that

—

describes the pion in a nucleus. Thus we have the advantage of using

-«

the full potential when discussing the values of the parameters in thé
context of multiple scattering theory, and also‘using*a”COmg}etely
equivalent four-parameter pétential to discuss the qualitative behaviour
in a simple and straightforward fashion.

In summary, the 50 MeV inelastic data for 12C are well described
by any of the potentials (B, B', D) which were fit to the elastic scat;
tering. The theoretical Set (C) also does an adequate job. This can

be attributed to the similarity of the t-matrices for these potentials,

which reflect a common effective interaction.

4.2 EXAMPLE OF COLLECTIVE MODEL NEAR THE RESONANCE

The same state (4.44 MeV 2* in 12¢) and transition density (col-
lective model with By = 0.60) will be used in this example., The data
are at 162 MeV [Cha 79] for both 7* and m~. We will orly look at the
7+ here, but both will be shown later in Section 4.5. These data are
particularly interesting because they were taken all the way back to
180°, the only such case currently available. The elastic scattering
i1s calculated using Set D for every case.

The first set of calculations, shown in Figure 4-3, use the IA
form of the force given in equation (2-43). The dashed curve shows

Set A, which uses the phase shift parameters with no adjustments. It
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does a fair job of reproducing the experimental values at small angles,
but it has the wrong phase. This is the same problem we had with the
162 MeV elastic data. Notice that the angular distribution is now
diffractive, with the minimum in the force at 70° not evident in the
calculation which has a minimum at 65°. The solid curve uses Set B,

P
which was fit to the elastic, but there is little improvement. The

~«

dash-dot curve used Set B', where the v2 term was dropped,hfnd‘thg ré:
sult is an improvement in the first minimum at the exﬁéﬁée of the back
angle data. The t-matrix shows the shift of the minimum to larger q,
so the nucleus looks smaller and the minimum is shifted. Notice that
the second minimum is not affected, and thus the apparent improvement
is not really ver§ great.

Figure 4-4 shows the same series of calculations, but the full
interaction given in equation (2-55) has been used. The difference
between the theory (Set C, dashed) and fitted (Set D, solid) curves
is negligible. Except for the phase at the first minimum and the rise
at 180°, the data is well described by this calculation. As before,
dropping the y2 terms (Set D') improves the fit at the first minimum
but fails at larger angles.

The pion-nucleus effective interaction is fairly well described
by the full potential with either theoretical values (phase shifts and
Riska's absorption values) or adjusted p-wave strengths. The four-
parameter model does not seem to be completely equivalent. It is
siﬁilar at forward angles but lacks the density dependence that seems
important to the description of data between 90° and 180°. Although
Set D fails to reproduce some important details, there is a dramatic

improvement at backward angles.
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In summary, the calculations with the full potential describe
the data much better than the other alternatives, particularly at back
angles. If the phase problem near 70° can be understood, then large
angle data will become a crucial test of the form to be used for the

force and any possible coupled channels effects,

4.3  DISTORTED WAVE EFFECTS -

The calculations in the preceding sections used gﬂfixé&’obtiéal
parameter set in order to eliminate any variatioﬁ due to cha;éés in the
distorted waves. However, the choice of optical parameters is not well
determined and it is important to identify how these changes affect the
inelastic cross section. Figure 4~5 shows ISZIZ: where S, = exp (2162)'
and 51== phase shift for the pth partial wave. The magnitude of S, is
a measure of the transparency of the potential, since it is 1.0 when
the phase shifts are purely real and less than 1.0 as flux is removed
from that partial wave. As can be readily seen in the figure, there
are some significant differences in the makeup of distorted waves pro-
duced by different potentials.

The 50 MeV curves are for sets A (dashed), B (solid) and B' (dash-
dot). The different absorption required by the fitted sets is clearly
evident; what is surprising is the large differences between the two
fitted sets which reflects the different distribution of the absorption
between the s— and p-waves. The 163 MeV curves show little of this
sensitivity. Sets A, B and B' are all strongly absorbing and determine
the same radius, so different choices should not affect the inelastic
Scattering results as much as they do at 50 MeV. One can also see why

a diffraction model, which assumes a sharp cutoff at a characteristic
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Figure 4-5"

Plots of lsziz for elastic scattering of
50 and 162 MeV 7% with parameters from
sets A, B and B', shown with dashed,
solid and dash-dot curves, respectively.
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value of %, would give a good approximation to the resonance region
data.

The effects of distortion will be illustrated by the same calcu-
lations as we used in Sections 4.1 and 4.2 except that now the t-matrix
used in evaluating the form factor is held constant (at Set D) while

—_

the optical potential is varied. Thus the figures will now have_Pairs
of curves, the first showing the change in the ;iastic scagggring_crdgs
section and the second showing the induced effect on Ehé‘inelastic cal-
culation. The 50 MeV results will be presented first,rfollowed by the
163 MeV calculations.

The solid curves in Figure 4-6 use Set D for the elastic, and are
thus exactly the same calculations as were shown in Figure 4-2. The
dashed curves show the effect of using Set C, the theoretical values, in
the full optical potential. The curves are slightly higher, but clearly
the change in b, does not have a big effect here.

The curves in Figure 4-7 show a much greater sensitivity to the
potential. These use the four-parameter potential with sets B (solid),
B' (dash-dot) and A (dash), which were the ones used in Figure 4-5.
-Using Set A destroys the agreement in the inelastic calculation, as
might be expected. What is more interesting is that sets B and B' pro-
duce measurably different results (as Figure 4-5 would suggest) while
the elastic calculations differlmainly in the coulomb—nuclear inter—
ference region. It's clear that measurements in this region would help
pin down the optical potential at low energy, although data taking is
difficult at these angles.

These results are summarized in Figure 4~8, where both the optical

potential and the inelastic scattering t—-matrix are varied. The solid
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Figure 4-6

Elastic and inelastic scattering of 50 MeV 7t
from 12C and its 4.44 MeV (2%) state using Set D
to calculate the inelastic scattering t-matrix,
while the optical potential used parameters from
sets C (dashed curve) and D (solid curve).
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Figure 4-7

Same as Figure 4-6, except the optical potential
used parameters from sets A, B and B', shown with
dashed, solid and dash-dot curves, respectively.
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Figure 4-8

Same as Figure 4~6, except the same parameters

were used for both the optical potential and
the inelastic scattering t-matrix, either

Set B (dashed curve) or Set D (solid curve).
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curve uses Set D (fitted with Ffull potential), while the dashed curve
is Set B (fitted with four-parameter potential). We saw in Section 4.1
that these potentials produced equivalent inelastic cross sections,
while in this section we saw that the results were extremely sensitive
to some details of the optical potential. 1In this case, most of the

g

variation in the inelastic results is due to the change in the optical
potential. Thus at low energy we have a fairly well defined gffgcti&e
pion-nucleus interaction for inelastic scattering, bﬁtjérevguite sensi-
tive to the choice of the distorting potential.

We now turn our attention to the effects of distortion at 163 MeV.
The t-matrix for the inelastic transition is fixed using the parameters
of Set D. Then the solid curves in Figure 4~9, which use Set D for the
elastic, are the same as in Figure 4-4 for comparison. Clearly it makes
little difference whether we use Set D or sets C (dash) or D' (dash-dot)
for the distortion -- the inelastic results are nearly identical. The
same conclusion can be made from Figure 4-10, where sets B (solid) and
B' (dash-dot) also give nearly identical results. The only exception
is Set A (dashed), which is based on phase shifts only, where the in-
elastic calculation comes out lower than the others. This last case
corresponds to the dashed curve in Figure 4-5, which differs from the
others with respect to the slope in the surface region.

These results are summarized in Figure 4-11, where both the
optical potential and the t-matrix are varied. The solid curve is for
Set D (fitted with full poteﬁtial), while the dashed curve is for Set B'
(fitted with four-parameter potential with no v2 term). We saw in
Section 4.2 that these two sets produced very different inelastic cross

sections when the same optical potential was used, whereas we just
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Figure 4-9

Elastic and inelastic scattering of 162 MeV 7t
from 12C and its 4.44 Mev (2%) state using
Set D to calculate the inelastic scattering
t-matrix, while the optical potential used

parameters from sets C, D and D', shown with
dashed, solid and dash-dot curves, respectively.
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Figure 4-10

Same as Figure 4-9, except the optical potential
used parameters from sets A, B and B', shown with
dashed, solid and dash-dot curves, respectively.
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Figure 4-11

Same as Figure 4-9, except the same parameters

were used for both the optical potential and
the inelastic scattering t-matrix, either

Set B' (dashed curve) or Set D (solid curve).
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¥

learned that the optical potentials alone do not affect the inelastic
results in any significant way. The entire variation in the inelastic
calcﬁlations 1s due to the change in the t-matrix used to calculate the
form factor -- exactly the opposite of the situation at low energy. Thus
at high energy we have a reasonably well defined distort;pg potential
(despite some rather obvious defects) but greater sensitivity to the ?ﬁ‘
fective interaction. The full potential, with some ad justments, seems

—

to be preferred over the other models that have been examined.

A

4.4 OTHER LOW ENERGY CASES

We will now proceed to survey the existing experimental data to
see how their trends fit into the patterns that have been outlined for‘
the two specific cases above. This section will only review data below
100 MeV. This division is convenient and historical: the only apparatus
for such experiments is the Low Energy Pion (LEP) channel at Los Alamos,
and most data there were taken near 50 MeV. Now that LEP has been
pushed up to 80 MeV, this division is less sharply drawn. Indeed, one
goal of current research is to predict the complicated transition be-
tween the simple descriptions of 50 and 163 MeV scattering that have
been given here.

For simplicity, these discussions will be restricted to two param-
eter sets. One will be Set C, which uses phase shift values [Row 78]
for the single nucleon parameters and Riska's values [Cha 79a] for the
absorption. These are given in Table 4~1 for the energies we will study
in this section. The other will be Set D, which has Reb,, Rec,, and
the amount of absorption (with ImB,/ImC, fixed at the pionic atom value)

adjusted to'fit the elastic data. These are given in Table 4-2. The



Parameter Set C Theory Values
for Low Energy Scattering
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Table 4-1

36 MeV 50 MeV 67 MeV 80 MeV
-0.041 -0.045 -0.051 -0.055
+0.004 i +0.006 1 +0.009 i +0.011 i
-0.131 -0.131 -0.130 -0.129
-0.001 i -0.002 1 -0.002 i -0.002 1

0.71 0.75 0.79 0.82 7
+0.011 i +0.028 i +0.063 i +0.10 i

0.44 0.45 0.47 0.47
+0.005 1 +0.013 1 +0.031 i +0.05 1

1.6 1.6 1.6 1.6
-0.01 -0.02 -0.03 -0.04
+0.12 1 +0.14 i +0.16 i +0.18 i

0.33 0.36 0.41 0.48
+0.50 1 +0.59 i +0.74 i +0.92 i

Table 4~2
Parameter Set D Fitted Values
for Low Energy Scattering

36 MeV* 50 MeV 67 MeV 80 MeV
-0.056 -0.060 ~0.048 -0.026
+0.004 1 +0.006 1 +0.009 i +0.011 1
-0.131 -0.131 -0.130 -0.129
-0.001 1 -0.002 1 -0.002 i -0.002 i

0.74 0.75 0.64 0.54
+0.011 i +0.028 i +0.063 i +0.10 i

0.44 0.45 0.47 0.47
+0.005 1 +0.013 1 +0.031 i +0.05 1

1.6 1.6 1.6 1.6
-0.01 -0.02 -0.03 -0.04
+0.14 1 +0.12 i +0,13 i +0.28 i

0.33 0.36 0.41 0.48
+0.77 1 +0.66 1 +0.76 1 +1.54 1

*Linearly Interpolated.



data between zero and 50 MeV within systematic errors.

Some conventions have been chosen. Set D ig shown with a solid

-

curve. The elastic and inelastic calculations use the same force. Re-

e

sults for ¢~ scattering have been shown whether data exists yet or not,
since these are an important prediction of the modef}/‘Solid points are
used for ¢t data, while open ones indicate 7~ data. |

We begin with 36 MeV calculations for scattering from 12¢ (4.44 Mev ~
2* state) and 28si (1.73 MeV 2* state). The density parameters are
given in Appendix G. The collective model form factor for 12¢ yges
B2 = 0.60 [Fri 65] as before, The form factor for 285i uses By = 0.40
[Ful 68]. The results of these calculations are shown in Figure 4-12.
The data are all from [Ama 81].

The results for 7% elastic scattering are fair, as might be ex-
pected since Set D was not fit to the data. This set agrees much better
[Car 81] with the 40 MeV [Ble 79] and 30 MeV [Pre 81] elastic data
taken by a different experimental group on the same beam line. There
must be some systematic normalization differences. Notice that the
shape, particularly the absence of a clear dip in the coulomb-nuclear
interference region near 30°, is well reproduced. The inelastic calcu~
lations slightly overestimate the cross section for the 2% in 12¢, but
underestimate that for the 2% in 285i. The latter will turn out to be
a persistent problem, and will be discussed at length in Section 4.5.

The 7~ predictions are shown on the right. The characteristic

-

shape change from 7t to T, due to the change in sign of the coulomb
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Figure 4-12

Elastic and inelastic scattering of 36 MeV 7+
and 1~ from 12C (top row) and 28Si with
parameters from Set C (dashed curve) and

Set D (solid curve) as described in the text.
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term which eliminates the forward angle interference, is seen. This
change agrees with data [Joh 78] at 29 MeV [Str 80]. The inelastic
calculations do not substantially change shape.

We now turn our attention to the 50 MeV calculations. Here we
examine scattering from 12C (4.44 MeV 2+ and 9.63 MeV 3:/states), 28g;
(1.72 MeV 2% gtate), 40ca (3.74 Mev 3- state) and 208py (2.62 Mey
37 state). The collective model deformation parameters used were
B2 = 0.60 for 12¢ and B, = 0.40 for 28si as before, ;;d/33 = 0.44
[Fri 65] for 12¢, B3 = 0.39 for 40ca [Ful 68] and B3 = 0.12 for
208pb [Wag 75]. The results for the 7+ cross sections are given in
Figure 4-13. The data for 12¢ and 28Si are from [Dyt 79], while the
elastic data for #0ca, 208py (and some for 12¢) come from [Pre 81].
The w~ predictions are shown in Figure 4~14,

The 7+ elastic scattering is quite well reproduced. The only
way to improve on these results is to fit the potentials to each tar-
get separately. The inelastic data is also well described by these
calculations. The two low points for the 12C 3~ state are new [Ama 81]
and at very low cross section where it is difficult to extract a peak
area from the background. The 283i 2+ cross sections are below the
measured values as noted at 36 MeV. There is as yet no data for any
of the other cases. It should be possible to get data for 40Ca, since
the back angle inelastic cross section is comparable to the elastic
cross section. The 208Pb inelastic calculation is a factor of 10 below
the elastic cross section, so that higher resolution will be required
before it can be seen.

The m~ predictions are most interesting. The elastic cross sec—

tion for 12¢ is characterized by a change in the interference between
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Figure 4-13

Elastic and inelastic sca

ttering of 50 MeV o+
from 12¢, 28g;

40ca ang 208py, with parameters
from Set C (dashed curve) and Set D

(solid curve) as described in the text.
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Figure 4-14

Same as Figure 4-13, except
calculated for 50 MeV 7~ scattering.
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the pion-nucleus and coulomb interactions, but as A increases we see
aiffractive minima come in. The 208ph calculations almost look as if
théy were done 70 MeV higher in energy (c.f. Figure 4~19), since they
are characterized by a strong diffraction pattern. This was aned
several years ago [Str 79], and experiments to examine this prediction
have been performed at LAMPF although the results are not yet avail-/

able. The inelastic predictions follow a similar trend, with the

-

12¢ results resembling the corresponding 7+ curves, while'fhe 208pyp
calculations are very diffractive.

It should be emphasized that the input for the 7~ runs was exactly
the same as for 7%, except the pion charge of course. The optical
parameters were not changed. The effect that is seen at large A is due
to the explicit velocity dependence of the k-k' term in the optical
potential. Thus when the 7~ is attracted to 208py by its large Z,
the increased energy is translated into a stronger p-wave attraction/
absorption, which leads to a result that resembles scattering at much
higher energies. These statements are illustrated in Figure 4-~15,
which plots ISQIZ for 7% and 7~ scattering from 208ph for the cases
just described. It can be clearly seen that the 5~ is more strongly
absorbed, leading to the diffractive scattering. Note the similarity
of the 7~ graph here to the one for 162 MeV 7+ on 1l2¢, given in Fig-
ure 4-5, where the resonance dominates the reaction. These predictions
of low energy m~ cross sections provide a good test of the choice of
this velocity-dependent interaction.

The next case, 67 MeV scattering from 120, is shown in Figure 4-16.
The 7+ data are from LAMPF [Ama 81], while the T data are from the old

Nevis cyclotron [Ede 61]. The parameters of Set D were fit to the 7w+
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Figure 4~15

Comparison of lSZ|2 for elastic scattering
of 50 MeV 7% (top) and n~ from 208 pp.
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data only. The consistency of the results is quite impressive. The
elasgic cross sections for m~ are fit well by Set D. Both inelastic
Cross sections rise faster than the calculations until they are a factor
of 2 higher at back angles. This deviation at high momentum transfer

is not well understood. The authors of [Ama 81] have proposed that
coupled channels effects may be important since the inelastic cross
section actually dominates for 8 > 130°. It was also proposed that
phase~shift equivalent distorted waves that have very éiffe;ént in-
terior forms can produce this effect [Kei 81]. One can summarize the
ideas on this by saying that it could be due to the force, the reac-
tion mechanism, the form factor or the distorting potential choice.
Since this effect has appeared just as we enter a previously unstudied
region, it is difficult to disentangle these possibilities at this time.

Finally, we turn to the 80 MeV results. These are for 12¢
(4.44 Mev 2* state), 40ca (3.73 Mev 3~ state), 90zr (2.75 MeV 3~ state)
and 208ph (2,62 Mev 3~ state). The deformation parameters are the same
a8 quoted earlier, except we now add 83 = 0.14 [Hin 73] for 90zr. The
m* results are in Figure 4-17, while the 7~ results are shown in Fig-
ure 4-18. The data are all from [Ble 8l], and are preliminary at this
time. The calculations are very interesting, which means they do not
explain the data.

The n* elastic data show a curious trend from }2C, where Set D
Provides a good fit, to 208pp where Set C is better. Although Set D
was only fit to the first two lobes of the angular distribution, it is
surprising to see it do so poorly since this same method works well at
higher energy. Perhaps more surprising is that Set D reproduces the 7~

data quite well despite the fact it was fit to the 7% data alone.
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Figure 4-17

Elastic and inelastic scattering of 80 MeV 7t
from 12¢, 40ca, 90zr and 208pp using parameters
from Set C (dashed curve) and Set D
(solid curve) as described in the text,.
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Figure 4-18

Same as Figure 4~17, except
calculated for 80 MeV 7~ scattering
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The inelastic results have many problems. First, there is an
"anticoincidence" between fitting the elastic and fitting the inelastic.
An investigation of this showed that 75% of the difference was due to
the inelastic scattering t-matrix. These resemble higher energy data
in that the large change in distortion only had a small_iffect. This
may suggest that the inelastic data are a sensiEive measure of the
strength of the interaction. Second, the %40ca 3~ state is_very poorl;
described. This #0Ca case is rather unique in that &;”ao not reproduce
the shape at all. Since we normally get the oscillations right, this
may indicate that other parts of the force -- perhaps the normal parity
spin-orbit force that we neglected in equation (2-42) or perhaps coupled
channels effects -- are contributing here. Finally, these déta are pre-
liminary and it is possible that they may be in error.

In summary, the low energy data become increasingly complex as we
approach the transition to resonance region scattering. The data at 36
and 50 MeV indicate that the energy dependence of the effective inter-
action that was used previously [Car 81] does a good job of reproducing
the data. The main property of the interaction is the decrease of
absorption from the pionic atom value, increase in by and a relatively
constant value for co. The few inelastic cross sections seem consis-
tent with these calculations, but much more remains to be done. The
data at 67 and 80 MeV are difficult to interpret. The 67 MeV data are
fairly well described by the fitted set, but the back angle inelastic
cross section is quite wrong. The 80 MeV data are preliminary, but
suggest that the physics gets quite complicated as we approach a region
where diffraction (for heavy nuclei) and interferences in the force

(for light nuclei) coexist.
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4.5 OTHER HIGH ENERGY CASES

This section will review data above 100 MeV, Although elastic
scattéring has been studied up to very high energies, the existing
inelastic data will limit this discussion to 180 MeV at the maximum,
This discussion will also use sets C (dashed) and D (solid). The
parameters are given in Tables 4-3 and 4=4, respectively. It should

e

be noted that the energy dependence of XA (the LLEE parameter) has been#
crudely approximated by an abrupt change from 1.6 to l:QJ'ThIé made
sense when we considered the energy dependence from 50 to 163 MeV, but
it does make a comparison of the 80 and 116 MeV sets meaningless and
this must be kept in mind.

We begin with 116 MeV calculations for 49Ca (3.72 Mev 3~ state)
and 208py (2.62 MeV 3~ state). The densities and deformation parameters
are as we defined them above. The results are shown in Figure 4-19 with
the 40ca data from [Mor 80] and 208ph data from [Bos 77].

The agreement between theory and experiment is very good, with
the exception of some details of the 7~ elastic cross section for 208pyp,
It appears that Set C gives the best overall fit as it reproduces the
inelastic strengths. We are now in a region where diffraction dominates
so that moderate changes in distortion do not affect the inelastic, and
the inelastic scattering cross sections give a good indication of the
content of the t-matrix.

In contrast to the 80 MeV calculations, these correctly reproduce
the 40ca cross sections. However, these are typical diffractive angular
distributions where the first peak is higher than successive ones. This

should be contrasted with low energy cross sections which are backward



Parameter Set ¢ Theory Values
for Resonance Region Scattering
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Table 4-3

116 MeV 130 Mev
-0.068 -0.073
+0.019 i +0.023 1
-0.128 -0.127
+0.0 1 +0.0 1
0.83 0.76
+0.032 i +0.045 i
0.46 0.42
+0.16 1 +0.22 1
1.0 1.0
-0.08 ~-0.09
+0.22 1 +0.23 i
0.78 0.93
+1.64 1 +1.98 1
Table 4-4

-0.
+0.

-0.
01

0.
+0.

0.
+0.

1.

-0.
+0,

0.
+0.

+0

Parameter Set D Fitted Values
for Resonance Region Scattering

116 MeV

068
019 i

128

64
32 1

46
16 1

0

08
22 i

78
16 1

-0
+0

=0.
+0.

0.
451

0.
22 1

.0
.09

+0

+0
1
-0

+0.

0.
01

+0

130 MeV

.073
.023 1

127
01

59

42

23 1
93

162 MeV 180 MeV
-0.083 -0.089
+0.029 1 +0.034 i
-0.125 -0.125
+0.003 1 ~+0,005 i
0.37 0.09
+0.067 i +0.70 1
0.21 0.07
+0.33 1 +0.35 i
1.0 1.0
-0.15 -0.19
+0.28 1 +0.30 1
1.29 1.26
+2.95 1 +2.88 1
162 MeV 180 MeV
-0.083 -0.089
+0.029 1 +0.034 1
-0.125 -0.125
+0.003 1 +0.005 1
0.45 0.17
+0.67 1 . +0.70 1
0.21 0.07
+0.33 1 +0.35 i
1.0 1.0
-0.15 -0.19
+0.28 i +0.30 i
1.29 1.26
+2.0 1 +1.6 1
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Figure 4-19

Elastic and inelastic scattering of 116 MeV o+
and 7~ from 40Ca (top row) and 208pp using
parameters from Set C (dashed curve) and Set D

(solid curve) as described in the text.
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peaked due to the dominance of pP~wave scattering at 180°. The 80 MeV
data fall exactly between these two limits, suggesting that the problem
at 80 MeV may indeed be our failure to deal correctly with the coexis—

tence of these two phenomena.

The 130 MeV data for 28si (1.77 Mev 27 state) are shown in Fig—-

-

ure 4-20. The parameters have been given before, and tﬁ; data are from

[Pre 79]. These data were taken in a spectrometer that had 0.3 MeV -~
resolution, rather than the 1-2 MeV resolution typical on the LEP chan-
nel, so we see the inelastic transition quite clearly. The elastic
data are extremely well described, but the inelastic calculation is
about a factor of 2 low as we saw at low energies.

This difficulty appeared before in an analysis of 24Mg data
[Wei 78], but it was resolved [Car 80] with a careful comparison of .
BL's from DWBA and CCBA (coupled channels) fits, as well as attention
to the BR scaling of the deformation length which is the true measure
of the strength of the collective form factor. It was found that the
values of BL typically quoted were from coupled channels calculations.
If the corresponding direct reaction value of 8 1s used, the strength of
the calculations agreed very well. It appears that the same situation
may exist here. An early proton scattering analysis [Cra 67] found
B2 = 0.57, which would give twice the cross section here. They point
out that a coupled channels analysis would give the value of By = 0.40
that we used here. The analysis of [Pre 79] indicates the same effect:
they determine SR = 1.50-1.55 which corresponds to a value of 8 ~ 0.53,
producing cross sections that are 1.8 times those computed here. The
pion results are consistent with DWBA proton results, which would imply

that these pion data are sensitive to the same coupled channels effects,



130

*3IX93 9yl Ul POqTAOSIP Sk (BAAND PITOS) (1 13§ pur (SAIND paysep) D 3I9§ WoIJ
siajowexed 3ujysn TSgz WOoay _u pue L u AdW Q€T 3O Suiio33eds OTISEI9UT pue OfIserqy

0C-% 2an314



MSUX-8I-118

131

LLEAE DL LA L |LLLLE R LLARR LA I ILLLRN BN | LLRRE B B

= Q

“wn

- —

- _O

N

- -—

= S

o qm

- Jo

| w

@) -
&/
2\ 1
04 m
(IR bagadi o loaadi ¢ lutid g *L [TTTE R sty o

. [ . . N . — —

Q Q Q — - . o)

o Q — .
Q -

—

(

JS/qUJ] ap/pp

LLEAS B B ]

["lllll ¥ lll

L O
o
-

il

INTTAR AN lgile s o

LA UL I"lllll T l"IIlll ¥ llllllll T

150

120

IR

It ANy [TITE N
\%

S o o
S S —
O -y

—

M M Ls)

i —t .

(Js 7qu) 5P,/ 0Op

ec.m.( deg)

6;.m.(deg)

Figure 4-20



132

and it would be necessary to develop the appropriate codes in order to
perform the proper analysis of data like this.

We now return to the 162 MeV data that was examined previously.
The calculations and data [Cha 79] are shown in Figure 4-21. The n*

results have been discussed extensively above, so this will not be re-

—

peated here. The main observation is that the ™~ results look very
much like the n*; they suffer from the same pha;e problem relative t5/
the data. The overall agreement is good, with a sugéééiionﬁthat Set C
may be better at back angles. There is a possibility of learning more
about the density dependence of the interaction from large angle data
of this kind.

The final case is shown in Figure 4-22. These 180 MeV data are
for 285i (1.77 Mev 2+ state) [Pre 79] and 40Ca (3.74 Mev 3~ state)

[Mor 80]. The calculations are quite good, with the fitted set (Set D)
improving the results in the minima as a result of the decrease in the
absorption used. The inelastic data for 285i are a factor of 2 above
the calculations, as explained earlier. The results here look exactly
like those at 130 MeV, whichvshows that the theory has the energy depen-~
dence under control in this region. The same is true of the 40Ca data,
which is described as well here as it was at 116 MevV,

In summary, the results of these calculations are quite good given
that the theoretical underpinnings are poor at these energies. It is
particularly interesting that the trends of the data support the use of
Riska's absorption values, despite the sometimes unphysical assumptions
that enter the calculation. These numbers and the 92 paraﬁeterization

seem to provide a basic description of most of the data, elastic and
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Figure 4-22

Elastic apg inelastic scattering of 180 MeV 7+
and 7= frop 28g4 (top row) and #0Ca using
Set C (dashed curve) and Set D (solid
Curve) as described in the text.
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inelastic, in this region. There are two areas of difficulty. First,
the phase of the angular distributions at 162 MeV are incorrect, while
those for neighboring energies are fine. Second, the calculation for
the 28si 2+ is always low, but this is likely due to a problem in

getting the right value of 81 for use in a direct (rather than coupled

—

channels) calculation. Overall, it appears that the optical potentials

produce distortions appropriate for these energies, and the inelastic”

~—

t-matrix is suitable for the analysis of these T=0 tringifigps.

4.6  SUMMARY

This chapter used the collective model for low-lying T=0 states
to illustrate the properties of the pion-nucleus interaction and the
effects of the distorting potential on inelastic calculations. A survey
of the existing data was then used to gain a perspective on the quality
of the fits as a function of energy, and the changes in the importance
of various effects as the beam energy nears the A-resonance energy.

In Section 4.1 the distorting potential was held fixed so that the
properties of the low energy pion-nucleus interaction could be examined
without other complications. It was found that a large range of inter-
actions produced equivalent fits, so that it made sense to speak of an
effective interaction at these energies. The interactions from elastic
scattering fits and multiple scattering theory were similar because they
all had enhanced s-wave repulsion and reduced p-wave attraction, as
required by the data.

The interaction near resonance was examined in Section 4.2. It
was found that the form of the interaction became important, since the

full potential produced better results than a four-parameter model which
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also fit the elastic scattering. It appears that the density dependence

is a major contributor to large angle results.

. The effects of distortion were examined in Section 4.3, The in-

elastic calculations at low energy were found to be sensitive to the

choice of optical potential, so that more complete angular distributiong

-

would be needed to firmly establish the potential to be used for cal-

culating the distorted waves. Figure 4-5 showed how the loyjeqergy i

potentials had varying amounts of transparency so that™ the results

depended on what parts of the transition density were sémpled by the

Scattered pion. At high energy the potentials all produced a "black"

nucleus, and as a result the inelastic calculations were relatively

insensitive to the choice of distorting potential.

The remaining sections reviewed the existing experimental sitya-

tion. It was found that the low (ETr < 50 MeV) and high (E; 2 115 Mey)

energy data were well described by both the multiple scattering theory

potential (Set C) and the fitted potential (Set D). The exceptions
are the 28gj o+ state, where the difficulty is associated with the

choice of By, and 162 MeV Scattering, where the calculations are consis-

tently out of phase from the data. The data in the transition region

(50 Mev X E_ 2100 MeV) were not as well described by these calculations.
There was a problem at backward angles for the excitation of the 12¢
2+

state with 67 MeV plons, but this may be specific to this state,

The problems at 80 MeV were wmore general, since no interaction could

fit all of the data. At this point the situation is not very conducive

to extracting information about nuclear structure, but should be very

useful in understanding the interaction in this region.,



CHAPTER 5

MICROSCOPIC MODELS FOR INEIASTIC TRANSITIONS

The previous chapter was limited to the consideration of the collec-
tive model for the transition denmsity in order to focus attention on the
effects associated with various forms of the pion-nucleus interaction.

—_—

The collective model is also widely used in the literature because~the
most commonly observed states are easily described in this way. quevé;,
states which can be described by a simple shell-model &E&gyfunction are
best studied with microscopic densities. It is this widér class of
problems that motivates the examination of these densities.

The first half of this chapter will contimue the study of natural
parity transitions. Section 5.1 will demonstrate a reasonable ansatz
for including density dependent terms when using a microscopic density.
It will also examine the effect of changes in the form factor on the
calculations, which was omitted from Chapter 4. Section 5.2 will then
examine some additional cases of interest. The second half of this
chapter will examine unnatural parity transitions. Section 5.3 will
outline the way these calculations are done, using the 6~ T=1 state of

2831 as an example. Section 5.4 will examine two other cases of in-

terest at tests of the wmodel.

5.1 COMPARISON OF COLLECTIVE AND MICROSCOPIC MODELS

Before studying particular states, we will first check that we
understand how to use a microscopic model with the density dependent
interaction used here. The Kuo RPA vector [Kuo] for the 40Ca (3.74 MeV)
3~ state is used in this comparison because it is nearly identical to

the collective density we have been using for this state. We will also

139



For this

12¢ (4.44 Mev) 2+

half of Figure 5-1, F(r)

is shown on the left,

e

» the radial density defined in equation (3-50),

and the

as defined by equation (E-16) in
Appendix g,

It can be seen that the densities are very similar in the
surface reglon, and the corresponding charge form factors are nearly

identical over the range of momentum transfer that will be important.

The bottom half of Figure 5-1 shows the com

Parison of the predic-
tions of 50 MeV rt+

inelastic Scattering using these densities. In both

Cases the golig line shows the collective model ca

lculated using Set D.
The left side,

labeled (a), shows results that use the four-parameter

model with Parameter get A (dash) and B' (dash~dot) so that the micro-

Scopic density ig Included in a natural way. Set A demonstrates the

common deficiency of the IA at this energy (an oddl

¥y placed minimum)
while Set !

Produces results that are in good agreement with the

Standard calculation (Set D had a collective form factor) shown with

a solid lipe. That the gma11 differences are due to the use of a dif-

ferent Lateraction cag be seen in part (b). Here Set C (dash) and

Set D (dash-dot) are used with the microscopic density and the ansatz
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Table 5-1

Transition Density for 40ca and 12¢

40ca rpA Vector and Transition Density

Configuration X Y
1f7/2  1lds/p~1 -0.378  -0.201 ~
1f7/2 281571 -0.538  -0.236
1f7/2 1ld3/p7t -0.736  -0.222
2P3/p  1ds/p71 -0.126  -0.085 ~
2P3/p  1ldz/p7l -0.215  -0.130
1f5/2 1ds/p71 0.199 0.107
1f5/5 281,971 0.233 0.129
1fs/p  1d3/p71 -0.285  -0.163
2P1/7 1ldgyp71 0.146 0.087

(0.707) a3 [}1.128(ar)3 + O.909(ar)%] e~ 92,2

o = 0.498 fm-l

12¢ RPA Vector and Transition Density

Configuration X Y
1P1/2  1P3/p7L 0.91 0.05
1fs5/9 1P3/p71 ~0.08 0.06
1f7/2 1P3/p7L 0.30 0.02
2P1/9  1P3/p71 0.11 0.08
2P3/9  1P3/p71 -0.12 -0.09
ld3/p  1S1/57% -0.20 -0.14
lssyp 1AL 0.29 0.20

(0.707) o3 [l.76 (ar)? - 0.057(ar){] e™%2,2

a = 0.610 fm~1
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Figure 5-1

Radial transition density (top left) and longitudinal form
factor (top right) for collective (solid curve) and
microscopic (dashed curve) models of the 40ca (3.74 MeV)
3 state, the 50 MeV 7t inelastic scattering calculations
at the bottom are described in the text.
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of equation (3-61). The results of the calculations with the same force
(Set D) and different densities (collective is the solid curve, micro-
scopic is the dash-dot curve) are identical. The result that the effec-
tive interaction (B') and the full interaction (D) with this ansatz give
comparable results for a microscopic density should be expected, and
confirms that this method for including second-erder effects in micro-

scopic calculations is a reasonable one.

-

Additional examples are given in Figure 5-2. The céﬁ;ention at
these energies is to use the full potential with theoretical parameters
(Set C) for the collective (solid) and microscopic (dash-dot) models
to indicate the degree of agreement, and the IA (Set A) with the micro-
scopic density (dash) to show the result with the first-order potential.
The data at 116 MeV and 180 MeV [Mor 80] used in Figures 4-20 and 4-22
are used here. The feader may wish to refer back to these to see the
effect of using other forces with the collective model. It is observed
that the results of the two calculations differ on}y at large momentum
transfer where the two form factors are different. The IA calculation
illustrates the sensitivity to the force. Its predictions are reason-
able on resonance, as expected, but less adequate at lower energies
and/or large momentum transfer. Overall, we see that the microscopic
model gives consistent results if it has the same form as the collective
density and if we use the same force in the calculation.

The 12¢ case will show the effects that occur when the form factor
has a different shape. The top of Figure 5-3 shows the collective
(solid) and microscopic (dashed) form factors as described in Table 5-1.

The microscopic density peaks at a smaller radius, and as a consequence
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Figure 5-2

Inelastic scattering of 7t and 7~ from the 40ca
37 state at 116 MeV (top row) and 180 MeV,
using the microscopic density with sets A and C
(dashed and dash-dot curves, respectively) and
the collective model with Set C (solid curve).
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Figure 5-3

Radial transition density (top left) and longitudinal
form factor (top right) for collective (solid curve) and
microscopic (dashed curve) models of the 12C (4.44 MeV)
2% state, the 50 Mev 7t inelastic scattering calculations
at the bottom are described in the text.
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the fourier transform peaks at larger momentum transfer. Some of the
consequences of this can be seen at the bottom of Figure 5-3, which use
the‘same conventions as in Figure 5-1. Comparing the collective with
Set D [solid curve in both parts (a) and (b)] to the microscopic with
the effective interaction Set B' [dash-dot curve in part (a)] or the
full potential Set D [dash-dot curve in part (b)], we see that the

shift in the form factor produces an upward shift in the angular dis-

tributions. As before, sets B' and D are roughly equivalent.

Two other cases are shown in Figure 5-4. The 68 MeV calculations
use Set D for the collective (solid) and microscopic (dash-dot) runms,
with the IA (Set A, dashed) also shown for the microscopic form factor.
It is extremely interesting that use of this form factor improves the
agreement at large angles. The minimum is not well reproduéed, but it
would appear that these low energy data are sensitive to high momentum
components in the wave function. This is due to the p—wave dominance
that causes the scattering to be peaked toward 180°. The data at
162 MeV show that this is not the case at higher energies. Here the
strong absorption keeps the distorted waves from seeing most of the
transition density (which is deeper inside the nuclear surface than
for the collective case) and the cross sections are 30-50% lower for
the microscopic case. The calculations here used sets D (solid and
dash—dot) and A (dash) in the same conventions as before. Thus this
density is clearly not a correct description of this state, but it may
indicate that the real form factor has high momentum components that

are being seen at low energy.
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Figure 5-4

Inelastic scattering of 7t and n~ from the 12¢ 2% state
at 68 MeV (top row) and 162 MeV, using the microscopic
density with sets A and C (dashed and dash-dot
curves, respectively) and the collective model
with Set C (solid curve).
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In Summary, it ig seen that the ansatz we used for including
second order effectg in the collective model is also appropriate when
microscopic models are used,

When the densities are the same, the

electron Scattering and Pion scattering predictions are also the same.

-

Differences in the form factor are reflected in the scattering. The

~

low energy potential ig transparent, so the distorted waves/cgn probe
the higher momentunm components of the nuclear wave function. Combined
with the dominance of back angle scattering, this makes the Cross sec-—
tions quite sensitive to these changes. The distorting potential is

very absorptive at high energies, effectively cutting off any contri-

butions from the Parts of the wave function that are inside the strong

absorption radiug,

5.2 OTHER NATURAL PARITY CASES

There will only be a few cases examined here, but they will serve
to illustrate some of the interesting problems currently under study.
The first cases are states which should be relatively pure shell-model
configurations. The 28g3 (9.70 MeV) 5~ T=0 state is predominantly the
1£7/2 dg}z [Olm 79] particle-hole state in a "closed" 28Si core. The
208py, (6.10 MeV) 12+ neutron state is believed to be a pure excitation
of a neutron frop the li13/2 to the 1lijj/p shell-model state [Lic 80].
The final case will use the collective model again to examine the effect
of the neutron excess of 48¢a on calculations of scattering to the low-
lying collective State.

The results for the 2831 5= gtate are shown in Figure 5-5. At

the top is the electron Scattering data from [Yen] compared with the
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Figure 5-5

Longitudinal form factor (top) and 162 MeV % and 1~
inelastic scattering from the 28Si (9.70 MeV) 57 state
with the two form factors described in the text.
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longitudinal form factor calculated with a 0.7 (£7/2 dg}z) wave function
(dashed curve). The solid curve is the result for a 1.4 (f7/9 dg}z)
wave function. This latter case is not unreasonable because a small
admixture of the fs/2 dg}z configuration would produce the same en-
hancement. Such a mixture can result from a TDA calculaEipn where

the Hamiltonian resulting from the use of the KK [Kal 64] or Elliatt

[E11 68] force is diagonalized. The densities that result are given

—

in Table 5-2, for comparison with the ones used in these calculations.

The pion scattering results at 162 MeV are shown in the bottom
half of Figure 5-5 compared to the data of [Olm 79]. Both calculations
use Set D, the curves correspond to the two form factors shown above.
The agreement is quite good —— the strengths of the electron and pion
scattering seem to be described in a consistent fashion. The dearth
of negative pion data is due to the low beam flux and correspondingly
long runs necessary to accumulate good data.

The results for.the 208py 12% state are shown in Figure 5-6. The
electron scattering results indicate that this transition is a pure
neutron state [Lic 80] with about 40% of the strength seen. However,
since there are no pion data yet available, the form factors here assume
100% of the strength to facilitate scaling the results when the data are
analyzed. Since this is a pure neutron state the charge form factor
vanishes; the transverse electric form factor is plotted at the top in
the convention given in Appendix E. The pion scattering results use
Set D (solid) and Set A (dashed). The two results are quite different
because scattering from a neutron is governed by a combination of the

T=0 and T=1 interactions, and only the T=0 interaction includes the
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Figure 5-6

Transverse electric form factor (top) and
162 MeV 7% and 7~ inelastic scattering
from the 208pb (6.10 Mev) 12+ pure
neutron state using Set A (dashed)
and Set D (solid curve) parameters.,
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second order absorption corrections. The IA calculations give a ratio
of 9.2 to 1 (m~/nt) at the first peak, in accord with the expected ratio
of 9:1 that would result from the P33 channel alone. The results with
Set D only give 3.6 to 1, showing that the results are very sensitive to
the density dependent corrections to the isoscalar interaction. Study

—_

of reactions involving neutron or T=l states with normal parity will
contribute a great deal to knowledge of the isovector interaction.

A related problem is the description of the,systéﬁéﬁic changes
that result as neutrons are added to a T=0 nucleus like 40Ca. We have
already seen the prediction for 180 MeV scattering from 40Ca (37) in
Figure 4-22. The top half of Figure 5-7 shows the corresponding pre-
dictions for the 48ca (3.83) 2% state along with the elastic scattering
results. The curves use Set D (solid) and Set C (dashed) as in Fig-
ure 4-22. The agreement is remarkably good; the shift of the 48cCa 1~
data towards forward angles is correctly reproduced. The lack of a
minimum in the inelastic data is the ma jor defect. Reference to Fig-
ure 4-22 sh9ws that the 48Ca data is better explained than the #0ca
data, since there is too much of a shift of the ¢~ calculation, espe-
cially in the inelastic case. This difficulty is clear in the direct
comparison of nt (solid) and 7 (dashed) calculations in the bottom half
of Figure 5-7, where the excessive shift for 40ca is easily seen. This
problem may originate in the interplay between the coulomb potential and
the velocity dependent p-wave interaction (noted earlier for 50 MeV 7~

scattering), but it must be understood before conclusions can be reached

about the neutron components in these wave functions.
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Figure 5-7

The top row shows elastic and inelastic scattering
of 180 MeV 7t and 7~ from #8Ca and its 3.83 MeV
(2%) state with Set C (dashed) and Set D
(solid curve), the bottom row compares 180 MeV =t
(solid curve) and 7~ (dashed curve) scattering
from 40Ca (3=) and 48ca (2%) with Set D.
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In summary, a few applications of microscopic densities to natural
parity transitions have been shown. The 5~ case illustrates how this
method can be applied, while the 208pp 12+ shows how one may learn more
about the interaction from an investigation of transitions of this type.
Results comparing 40ca and %48ca states showed the difficulty in inter-

preting the origins of differences in the cross sections.

5.3 UNNATURAL PARITY TRANSITIONS ~

States which have a "stretched" configuration ha;;';ome‘under a
great deal of study lately. These are states for which the particle
and hole come from different ma jor shells but have j = & + 1/2, so when
coupled to the maximum total J they have J = L+l. These S=1 transi-
tions can only be produced by the spin-orbit part of the pion-nucleus
interaction, and thus test this part of the potenﬁial. The 6~ T=1
state in 28Si at 14.36 MeV excitation has been very heavily studied
with a number of different reactions and thus provides a good testing
ground where uncertainties in the wave function can be minimized.

First, however, we will give a short review of the method and
force used for this calculation. Appendix E outlines the folding model
for both central and spin-orbit forces. The essential results for the
spin—-orbit force are given in equations (3-64), (3-72) and (3-73). The
former leads to a recoupling in the distorted waves to reflect the
S=1 nature of the transition, while the latter two show how the force
parameters found in Chapter 2 are used in obtaining the form factor.
Table 5-3 summarizes representative values of the spin-orbit parameters,

which were previously plotted in Figure 2-1.
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Table 5-3

Spin-Orbit Parameters from
Rowe, Salomon and Landau

50 MeV 100 MeV 162 MeV 180 MeV
so  0.49 0.51 0.24 0.098

+0.044 1 +0.19 1 +0.48 1 40.47 1
s; 0.2 0.25 0.14 0.69

+0.22 1 +0.09% 1 +0.24 1 +0.23 1

—_—

The 6 T=1 state in 28Si was first observed with electron scat-
tering [Don 70]. Analysis of these data would indicate that 59% of the
£7/2 dg}z configuration was seen. Since this is the only particle-hole
combination that can produce J=6 unless one goes up to 3 ﬁu)excitations,
it was assumed to be a pure configuration. More recently, it has been
seen with inelas£ic proton scattering [Ada 77] with an angular distribu-
tion which supported this spin assignment. New electron scattering data,
taken with high resolution, indicate that only 33% of the particle~hole
strength is seen [Yen 80]. This will be the figure adopted for this
state. The proton scattering data, analyzed in a consistent fashion,
suggest only 29% [Pet 80], but there are uncertainties in the choice of
the nucleon-nucleon interaction force. Resonant proton scattering from
27a1 give a width for this state which is consistent with a number be-
tween these two [Hal 81].

The electron scattering data are shown at the top of Figure 5-8,
along with the transverse magnetic form factor calculated from the

V0.33 (f7/9 d;}z) wave function and o = 0.524. The agreement is
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Figure 5-8

Transverse magnetic form factor (top) and
162 MeV 7t and 7~ inelastic scattering from the
28g4 (14.36 MeV) 6~ state with the force and
microscopic form factor described in the text.
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quite good. The bottom half of this figure shows the 162 MeV pion scat-
tering data [0lm 79] compared to a calculation assuming the same wave
funcfibn and the force tabulated above. This calculation agrees well
with the #t data, but seems systematically higher than the sparse m™
data. The m* would also seem to prefer a form factor t§i§ peaked at
higher momentum transfer, but the overall agreement supports the use

of this parametrization of the force. —

—

In summary, the calculations of pion scattering to an umnatural
parity state using the IA value of the parameters, the lab to center-
of-mass transformation and the folding model are in agreement with
that data when the wave function determined by electron scattering is
used. A number of experiments suggest that the wave function is well
known, but the absolute uncertainty of 20% in the pion experiments
makes a firm conclusion about the spin-orbit interaction impossible.
Only the accumulation of more data, some of which is in the next sec—
tion, will allow a better understanding of what the effective strength

of this interaction must be.

5.4 OTHER UNNATURAL PARITY CASES

There are a large number of experiments currently being performed
to study other unnatural parity transitions, as well as to study the
ones described here at other energies. However, the available data is
still quite limited and so only two other cases will be examined here.
We will first look at the 12¢ 1% T=1 state (at 15.11 MeV), and then at
the isospin mixed 4~ states in 160,

The 12¢ 1+ T=1 state has been heavily studied because of its impor-

tance in predictions of pion condensates and pre—critical opalescence
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phenomena. Thus there is a large amount of new, accurate data from elec-
tron scattering. These data [Che 73, Fla 79, Neuh] are shown in the top
half of Figure 5-9. The curve drawn there is a calculation of the trans-
verse magnetic form factor calculated from the RPA form factor of Gillet
[Gil 64] scaled by S2 = 0.27. These parameters are given in Table 5-4.

—_—

The differences at large momentum transfer are common to all she{l model
descriptions, and are the focus of the discussi;ns concern§§g~piop cdﬁ—
densation [Tok 86, Del 81]. Since the pion sca;teridg”aétaﬁdo not yet
reach large momentum transfer, such results do not influence the results
we will examine.

The results of a calculation of the pion cross section is shown ;n
the bottom half of Figure 5-9. The density used was the same as for
the electron scattering calculation, and the pion interaction used was
the same as before except that this calculation was for 180 MeV. The

parameters were given in Table 5-3. Agreement is fair, but the data

[Mor 80] have large uncertainties. The calculation could be low by as

Table 5-4

Transition Density for 12¢ 1+ State

Configuration X Y

1P1/2 lP3/2'1 1.00 ~-0.06
1f5/, 1p3/p7L 0.02 0.01
2P1/2 11’3/2'l -0.06 -0.01
2P3/9  1P3/571  -0.06  -0.01
25172 183/ 0.01 0.01
ld3/p 181771 -0.02 -0.01

Scaled by S = 0.522 (S2 = 0.27)
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Figure 5-9

Transverse magnetic form factor (top) and
180 MeV 7t and 7~ inelastic scattering from the
12¢ (15.11 MeV) 1% state, as described in the text.
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much as 50%, but better understanding will have to await new data being
acquired at Los Alamos. It will be most important to examine these
results for systematic deviatioms which might reflect effects similar
to those being studied in proton and electron scattering [Tok 80]. The
strong absorption of pions near resonance makes study of high momentum

transfer difficult; it may be necessary to do these experiments at

— ~

lower energy.

The observation of isospin mixing in pion scatteriné'frgm 169
[Hol 80] was an indication of the value of the strong isospin depend-
ence of the 433 dominated interaction near resonance. The conclusions
of [Hol 80] were based on a simple model and did not predict the absolute
magnitude of the cross sections. Since then, electron scattering data
has been taken at MIT [Hyd 81] which allow the normalization of the am~
plitudes in [Hol 80] to the T=1 state (which had been a free parameter).
The results are given in Table 5-5, and are plotted on the left side of
Figure 5-10. The value of a was also chosen as 0.638 to fit this data
set. It should be noted that these are "stretched" states like those
studied in 28Si, so only one configuration is expected to produce a

significant contribution.

Table 5-5

Spectroscopic Z Coefficients
for the 160 4~ States

Energy T=0 T=1

17.79 0.3447 -0.08601
18.98 0.00089 -0.6826

19.80 0.3638 0.08465
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The predictions for the 162 MeV pion data are shown on the right
side. The results are consistently 30% low, but the ratios of #+/ 1~
are in good agreement with the data as shown in Table 5-6. Equally
interesting is the prediction of the T=OTr electron scattering strength,
which is quite accurate. The fact that the T=0 data from the pion ex—
periment tend to peak at higher momentum transfer may béthinted at in

~

the electron data as well. This may indicate differences in the radidl

—

distributions of the neutron and proton components of-these wave func—

tions (assumed the same here), which could also provide insight into
these states.

In summary, it is seen that the pion predictions based on existing
electron scattering data are in reasonable agreement with the data.
These cases suggest that the calculations are 30-50% low, in contrast
to the results with the 6~ state in Section 5.3, but the 20% systematic
errors quoted for all of these experiments make conclusions difficult.

The shape of the angular distributions are usually correctly reproduced.

Table 5-6

Cross—-Section Ratios
(«t/7") for 160 4~ States

+ +
I- (Expt) L~ (Theory)

Energy .
17.79 1.59 + 0.12 1.68
18.98 0.96 + 0.08 1.00

19.80 0.60 + 0.05 0.61
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5.5 SUMMARY

The means to use a microscopic description of the inelastic scat-
tering form factor was introduced. This description was seen to be
quite useful when the state being considered could be expressed as a
simple shell model state with a spectroscopic factor determined by

other probes. A convenient ansatz, which replaces the collective den—

~

sity with the microscopic one, allowed the use of the full igcgnd‘ordé}
interaction for natural parity transitions. The’resurté/wegg consistent
with those of the "equivalent" four-parameter potential, éuggesting that
this 1s a reasonable solution to the problem of including density
dependence in the inelastic scattering calculation. It was also found
that low energy pions are very sensitive to high-momentum components of
the density. Thus it may be important to use microscopic densities,
since this allows control of the geometry of the inelastic density
independent of the ground state density used for the elastic scattering.
Results for transitions with unnatural parity were also presented.
The simple IA force described does an adequate job of fitting the well
known 6~ T=1 state in 28si. However, it was low for calculations of
other states, both of which are also well known from electron scattering.
The large systematic errors of these experiments limit our conclusions,
since it is impossible to distinguish between these calculations and
those using the energy shift [Cot 80] which would be 15% higher. Pre-
dictions of cross section ratios, which are crucial to the extraction
of the isospin mixing coefficients, are not affected by this normaliza-
tion problem. These results are within experimental errors, but dif-

ferent from what was assumed in the calculation of the wave functions
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[Hol 80], where A33 dominance was assumed. The isospin mixing may need
to be reevaluated in this context as better data (especially for the T=0
electron scattering) is obtained. Most of the uncertainties described
here must await more data before they can be resolved.

A similar situation exists for the T=1 part of the interaction for

—

natural parity transitions. The calculation for the neutron state in
208ph showed great sensitivity to the correctio;; in the T=0 part of the
force. Similar corrections in the isovector part shoﬁl&'ﬁlgp be easily
identified by studying states of this type. The isovector interaction
also contributes to differences in scattering from 40Ca and 48Ca. This
is difficult to disentangle from the effect of the coulomb force via the
velocity dependence, so it's not as useful in determining the force.

Pure isovector transitions, and charge exchange, are the best means to

identify the properties of the effective isovector strength.



CHAPTER 6

CHARGE EXCHANGE SCATTERING

The charge exchange reaction provides information complimentary to
thatcdescribed so far. This reaction is only sensitive to the isovector
part of the force, which has not been studied very extensilvely. It also
provides a consistency check on optical model predictiong/of quasi-
elastic cross sections. The recent construction of a n° spectrometer
at LAMPF has made practical study of these reactions possible. -

This short chapter will set up the basic foundagié; for these
calculations, and then investigate the properties of the reaction for
a few cases. Section 6.1 will outline the additional theory necessary
for the discussion of single charge exchange (SCE) reactions. Sec—

tion 6.2 will then examine some representative calculations as a test

of the simple model.

6.1 MODEL FOR CHARGE EXCHANGE CALCULATIONS

This section outlines the basic formulae that are needed in addi-
tion to the standard ones in Chapter 3. We first work out the operators
involved to see how they change for SCE reactions. The form factors are
expressed both in terms of the Lane model and a microscopic density, to
allow some of the comparisons we made in Chapter 5.

Charge exchange is produced by the isovector part of the potential,

which is

cl'* -
ter plbl Sp(r) —-SI Ve Sp(r) V

(6-1)

-5 o P o |
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to first order, neglecting the spin-orbit contribution, as defined
in equation (2-43). The operator t*T is of interest because (in the
Lane [Lan 62] model) it produces the factors that are different between

elastic and SCE reactions. This is

t*T=¢tT +¢tT +¢t T (6-2)
~ o~ X X vy z z y

which can be rewritten more transparently using raising and lower{hg

i . -

operators to give
trtT=t T - t+r -t (6-3)

where

o+
+
[
+1

(b, +1 ty)/‘\/Z_

and similarly for t. These operators have the property that

Ly 1r+>= 0 T-|-|p>=0

DS SR DEID
t_ 1r+>=|1r°> r_[P>='\/_2|n>

since T, = 2 tg and T4 =7\/2 eN. From these definitious it is readily
seen that the form of equation (6-3) is consistent with conservation of
charge during the reactionm.

For the purposes of illustration, this operation will be evaluated
for the case of n*t scattering from a target with total isospin T and

projection Tz = (Z-N)/2. Recalling that the total isospin operator is
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. N
just T = Z; E; summed over the nucleons in the target, the formula

reduces to

ET=2t T —\/7(t+’r_ +te T . (6-5)
For the case mentioned we get
t:"t|1r+> ITT>=2t|ﬁ+ 'I.'ITT - )
~ ~ i 4 o o] Z
+ —
2t+l'n' >T_ ITTZ> , -
+
\/Et_ln >T+ITTZ> (6~6)
+
zln >TZ|TTZ> -0

-\/—le+>-\/'l‘(1‘+l) - T,(T,+1) ITTZ+1>

which becomes

(Z—N)|v+> lTTZ> —\/5 N-Z 1r°> 'TTZ+1> (6-7)

for the case where T = -TZ, as will be the situation for the targets

studied here. The first term is the contribution to elastic scattering,

which enters as

€ SZiﬁl o(r) | (6-8)

in equation (2-44). The factor of A is required to comvert p(r) to a
single nucleon density. The second term is the contribution to SCE,

and can be parametrized in two ways.
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The Lane model [Lan 62] is a straightforward extension of equa~

tion (6-7) to give

2\/N-Z

i p(r) (6-9)

for the transition density in SCE. By using p(r)/A, this essentially

assumes that all the nucleons participate equally, ignoring any speci-
ne

fics of nuclear structure. This is the same assumption made in writing

equation (6-8), but it is far more important in equation (6-9) than ’
in a small correction term like equation (6~8). The edai;;leat micro-
scopic density is found by replacing equation (6-9) by tﬁe overlap of

a specific final state with“JE T- operating on the ground state. For

an analog transition like 13¢ - 13N, this becomes just
6-10
V2 Prag(E) Yoo(r) (6-10)

where pypg is the density of the specific orbital involved (the P1/2
in the case cited). As a practical note, the algebra in DWPI assumes
that a Ypy explicitly multiplies the form factor so that a correct
normalization of equatlon (6-9) requires the addition ofvrz; Y00»

while this operator automatically appears from the formulae used to

obtain equation (6-~10),

6.2  SAMPLE CALCULATIONS

The calculations shown here will all employ the IA form of the
potential in equation (6-1), primarily because the information about
the isovector part of the interaction is limited. In this way the
results will be amenable to scaling and the determination of the ef-
fective strength of the isovector potential. The parameters used will

be those already defined for Set A in other parts of this thesis.
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The first case to be studied is the reaction 13¢ (rt,me) 13y,

This has a long history, with total cross sections first measured using

nuclear chemistry [Chi 69, Zai 73, Sha 76]. These data have proven

very difficult to explain, typical results can be found in [Gib 78,

Spa 79]. More recent results with the 7° spectrometer at LAMPF have
provided angular distributions and a confirmation of the older total
cross section measurements [Dor 79]. The results of the Lane mod;l
calculations are shown with a dashed line in Figures §-1 aﬁ£/6;2.y The
162 MeV calculation is similar in shape but muchrlower‘than—;he 150 MeV
(solid points) and 180 MeV (open points) data, as seen on the right
side of Figure 6-1. Figure 6-2 shows that these calculations have the
same steep falloff in the resonance region as is seen in other calcu-
lations. The data shown are [Zai 73] and [Sha 76].

The solid line in these figures shows the result with the micro-
scopic description in terms of a pure p1/2 particle involved in the
analog transition. The results are quite different, particularly the
low energy angular distribution, and the cause is not immediately evi-
dent. What is interesting is that the cross sections do not fall off
rapidly with the increase in bombarding energy. Some of this (about
20% at high energy) is attributable to the inclusion of spin~flip in
these calculations, but most of the difference must be due to the onset
of strong absorption near 100 MeV. We have already seen that the dis-
tortion in this region keeps the pion from seeing the interior wave
function. The Lane density is mostly inside the strong absorption

radius, so these cross sections are reduced by a large factor.
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Of similar interest is the mass dependence of the cross sections
at a fixed energy. These were all calculated in the Lane model to test
the consistency of this with another simple model of SCE reactions
[Joh 79]. The results dare shown in Figure 6-3, scaled to the 208pp
point. These values were all given in relative cross section, the
calculated values for the 13C and 208pph cross sections at 5° were
0.22 mb and 0.18 mb, respectively. At this energy the angular di%trij
butions of different models are similar, so this shoulg/beki,réasdnable
prediction apart from the overall scale. These'agree fairl;xwell with
the data, and are quite similar to the calculations of Mikkel Johnson's
[Joh 79] semi-classical model.

Finally, the Lane (dashed) and microscopic (solid) results are
plotted for the 15y (v*,m°) 150 case at 50 MeV as shown in Figure 6;4.
The predicted angular distributions here are very different. The Lane
results are consistent with those for 13C, but the other calculation
has dropped significantly. The situation here is confusing, and may
reflect some of the sensitivity to the distorted waves and choice of

transition density that we saw in other low energy data.

6.3  SUMMARY

The method for doing a simple calculation of pion single charge
exchange was outlined. The results are in rough agreement with low
energy cross sections, but are systematically low at higher energies.
Whether this is due to the need to use a stronger interaction or a
more realistic form factor needs to be studied in parallel with other

isovector transitions.
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Figure 6-4

Single charge exchange with 50 MeV 7t on 15N, calculated with
the Lane (dashed) and single particle (solid curve) model.
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CHAPTER 7

CONCLUSIONS

In the first half of this work we saw that the impulse approxima-
tion and multiple scattering theory could be used to construct a pion-
nucleus interaction that, with some minor ad justments in a few param-
eters, accurately describes elastic scattering from very low energies
up to 200 MeV. This complicated density dependént interaction was
found to be roughly equivalent to a simple four parameter ;Efécti§e
interaction, which simplified the discussion of'the essenti;i‘physics
introduced by the corrections to the impulse approximation. The theo-
retical pion-nucleus isoscalar central interaction, calibrated by the
large amount of elastic scattering data, was then tested against iso-
scalar natural parity inelastic transitions.

The low energy elastic scattering data clearly prefer an effec-
tive interaction with increased s~wave repulsion and weakened p~wave
attraction. When this interaction is used for inelastic scatteriﬁg
calculations, the collective states are correctly described. The
inelastic scattering results are found to be very sensltive to the
choice of optical potential, primarily because the potential is rela-
tively transparent at these energies. The absorption required at
50 MeV is less than the value determined by pionic atoms, requiring
some further theoretical study.

The resonance region data are reasonably described by the theore-
tical parameters. The elastic cross sections are not affected much by
changes 1in the interaction; except at back angles where there is little

data. Again it is found that the isoscalar interaction preferred by
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the elastic data is also preferred by the inelastic scattering data.
Here, however, the inelastic calculations are quite insensitive to the
choice of distorting potential (mainly because the potential is strongly
absorbing in each case), so it 1s more productive to investigate prop-
erties of the force by looking at inelastic scattering reactions.

Reactions that investigate the transition region (Eb—loo MeV)

~

seem complicated and are difficult to interpret. Part of this is due’
to the fact that diffraction effects coexist with effects assoclated
with properties of the interaction, making it hard to disentangle the
cause responsible for the observed angular distributions. There are
some interesting cases that seem to suggest that the pion may be a good
probe of the high momentum components of the wave function at these
beam energies.

In summary, we saw in Chapter 4 that the isoscalar central inter—
ation, obtained from theory and calibrated with elastic Sscattering data,
gave a good description of collective inelastic transitions. Further
study of the optical potential and inelastic scattering to various
natural parity states should help clarify the details that are still
missing. Clearly the ultimate test of the theory is to produce a de-
scription of the data at 80 MeV that is consistent with the high and
low energy results.

There 1s not very much information with which to test the iso-
vector central interaction. The evidence from neutron states is that

the isovector part of the force is reasonable, although it is difficult

to separate it from the effects of the coulomb force on the velocity
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dependent p-wave interaction. Charge exchange reactions provide com-
plimentary information on the isovector interaction, but seem to imply
that the defect is mainly in our understanding of the reaction rather
than in any particular part of the force. Further work is needed,
particularly in obtaining a better understanding of the medium correc—
tions to the isoscalar central interaction.

Information about the spin-orbit interactign can be obtained only
from inelastic transitions to unnatural parity states. The evidence g
from such spin-flip tranmsitions is that the spinvorbif\i;teraction is
reasonably described by the impulse approximation, but may need to be
increased by 15-20% at 165 MeV. No information exists for these reac-
tions at other energies. The simple structure of the stretched states
has made them ideal places to test the interaction, and a systematic
collection of data should contribute a great deal to our understanding
of this part of the pion-nucleon interaction.

In summary, much is understood but much more remains to be studied.
In particular, the steady improvements in beam quality and detector
resolution will increase the amount of data in areas that have currently
only been lightly surveyed due to limitations of the experimental equip-
ment. One purpose of this work has been to identify consistencies, as
in the isoscalar interactionm, and point towards areas of interest, such
as the spin—flip transitions and studies of the proton and neutron
components of a wave function, in order to contribute to this process
of choosing good places to test the theory and study nuclear physics.
Identification of the properties of the effective interaction and its
application to the consistent interpretation of a large set of data is

one means to this end.
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APPENDIX A

PION SCATTERING AMPLITUDE

This appendix gives the formal conventions used in the definition
of the pion scattering parameters in terms of the pion-nucleon phase
shifts. The derivation essentially follows that of [Str 79a, Eis 80].

The scattering amplitude is expanded in terms of ﬁfbjection
operators for the total isospin T, and the angular momentum L an& total

—

angular momentum J = L * 1/2. The result is

L
= -1
f E PT PLJ aZT,ZJ (2L+1) PL (cos 8) (A-1)

T
L,J

L
2i8
L - 2T,2J_ .
where aZT,ZJ .(; é%/élk

is defined by the phase shifts and the projection operators are

l = —J; [ ]
Pija =3 - ED Py T3 2 FED
(A-2)
> > > >
pLJ< = (L - 0+2)/(2L+1) PU> = (L+1 + o-2)/(2L+1) .

We are limiting the discussion to s~ and p~wave cases, so the sum on

L,J gives
0 1 e 1 e
= + 1~-02) +a (2 + 0°%)| cos 9
£ Z PT{ E‘zr,lJ [“21',1( )+ o g
T

-
since LP,(cos 6) vanishes., We can rewrite this as

0 1 1
= + cos 6
£= Z Prg [“21:,1] * ["‘zr,l 2“2T,3]
T

1 1 - E 9
+ —QZT,l + aZT,3 a cos

(4-3)

(A-4)
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and then do the sum on T. This glves

0 0
l - t. + .
0,0 L= tD)/3 0.1 2+t 1)/3
(A-5)
=1 0 0 _.0 0
3[( al,l+2a3,l + al,l+a3,l tet
for the s-wave part, and similar results for the others. —£ombined,
these give - ~
11140 0 0 0 -
== + - ‘e v
£ 3[(“1,1 2 1) * [t “,1) & S
1 1 1
+ 2[(al,l+ 2a3’l+ 2al,3+4a3’3)
3k
+{ - + al - 2a + 2o tet k2 cos 8 (A-6)
1,1 3,1 1,3 3,3 -~
1 1 1 1 1
—_ [= - o
3 [( “1,1 7 %%3,1 7 %5 T 2%,
3k
1 _ 1 _ 1 1 . 223 8
+ (al,l a3’l al,3 + a3,3I t Ej,k o*% cos .
> >
Since k2 cos 6 = kek', and
-> -> ~ 5
g cos §=-1irx|6 35 cos 6
(A-7)
-> ->'
= i —kz.—x_.l_(__. sj'_n 8
k™ sin @

gives k2 5.t cos 6§ = i; J (I‘c> x ﬁ'), equation (A-6) defines b,, by, ¢4,
€1, Sg» S1 in equation (2-26).

Finally, we note that the values of the a are obtained from

L
2T,2J

the phase shifts 612"1‘ ,j 28 parametrized by Rowe, Salomon and Landau
]

[Row 78].



APPENDIX B

EQUIVALENT FORMS OF PION OPTICAL POTENTIAL

There are two points to be made here. One is to convert the
standard Kisslinger potential into a local (Laplacian) form that is
suitable for plotting in momentum space. The other is to sketch the
conversion of the potential into coordinate space.

The local form is obtained by using that .

2 > > > >
q = (k-k') * (k-k')

=k+ k' - 2k-k’ - (B-1)
2 > -
=2k - 2k°k' ,
s0 we use the conversion
> >
ok = -2 g (B-2)-

to eliminate ;°E' from the expressions for the potential. In order to
plot the full potential in equation (2-55) it is necessary to evaluate
the additional density~dependent parts of the interaction. This is
done following the idea in Section 2.6, where a constant value of

P =0.12 fm™3 is used. Writing this as Pags W then have

2

gt
G o {(bl bo * Py Bo peff)

-1 -1
P, ¢, *tp, C o0
. 1 S " P2 % Pett (kz 1 qz)

W -1 -1 ]
L+3=4 [pl € TPy Gy Papr] Pegs

) [(1 R %) ¢ °eff] %‘2' f

for the t-matrix plotted in Chapter 4.

(3-3)
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. -
The coordinate space versions of k*k' and q2 come from their

fourier transforms. The first is

1 [ —ikreEr > > tker 3 3
——= e k'k' p(qQ) e F ¢’k d'k’
(2m)
(B-4)
1 fkrert > > ket 3 -
=—=¢ Ty 0(Q) T ¢ g3k
(2m) - )
which simplifies if it is rewritten in terms of I
ktk'
q = k-k' ’ = '2_ ’
X =r-r', X = oHe
to give
l - -> - .
V'Y o0(q) JlaX 1Qx d3q d3Q
(2m)
(B-5)

= 7' [6(x) o(X) 7]

>
where we have been careful to keep the vV operators acting on the wave

functions as defined in equation (B-4). Using the delta function

-
reduces this to a function of r, and the vV can be reversed to give

7 [o(r) gl (B-6)

which 1s the form used here.
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The q2 term is done in a similar fashion, where it is convenient

to start with the variables of equation (B-5) giving
1 2 iq*X 1Q°x 3 3
6fq o(q) e eQxdqu

(2m)
- ('Vi)./p(q) 117X 10 3 43y B (B-7)

2m®

= -V o(X) §(x) -
which can be reduced to

-7 o(x) (B-8)

by using the delta function.



APPENDIX C

DENSITY PARAMETERS

The radial densities used for the nuclear ground states in the

optical potential are in one of two forms. One is the gaussian form

2 2 »
%) J o (x/W) -

p(r) = p [} + a
o
with - €C-1)

It
poaz[(2+3a)(J?W)] o, =

~

while the other is the three-parameter Fermi (or Woods-Saxon) form

r 2
-
C

0 r—=c
1+ exp ('7;-)

p(r) = o

with (c=2)

-1
2 2 4

o =2 1+(E) +F-(3+1o[“—t] +7[E]) .

) 3 c 5 c c

where we use a = (4 1n3)t as our input. The parameters are taken from

electron scattering results [DeJ 74] with the finite size of the proton

removed using
% = R% + 0.64
c P
to convert the charge radii to nuclear radii. The values used are tabu-
lated in Table C-1. For convenience, this table also lists the energy

and collective model deformation parameter BL [as defined in equa-

tion (3-44)] of the collective states studied here.
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Nucleus

12¢

16¢

Nucleus

2854
40c,
48¢4
907,

208py,
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TABLE C-1

Density Parameters

Gaussian Density -
[Equation (C-1)] Excited States -
m
Wc W o J E >‘§J~
1.66 1.57 1.33 2¥  4.44 0 0.60

3@ 9.63 0.44

1.83 1.75 1.54

Three=Parameter Fermi

[Equation (C-2)] Excited States
C. C a W J7 E B,
2.93  2.82 2.50 0 ¥ 1.77  0.40
3.67 3.58 2.56 -0.10 3= 3.74  0.39
3.76  3.65 2.30 -0.03 2t 3.83 0.17
4.83  4.76 2.18 0 3= 2.75  0.l4
6.46 6.41 2.38 0 3= 2.62 0.12



APPENDIX D

EVALUATE v°y IN FORM FACTOR

In equation (3-36) it was assumed that the angular integral could

->
be done separately. Since the kek' part of the interaction looks like

(D-1)

-

ve [F(r) v v,

N -
there is an explicit angular dependence in the V operators that could
change the coupling to the angular parts of the wave fumctions. This

is not the case, as was shown by [Edw 71], but the result is important

enough to include here.

The integral we need to evaluate looks like

*

3 uz -> -> ulv
—— . — D-2
fdr = Yzm v [FL(r) YLM] VY (D-2)
which we write schematically as
3 > ->
j:ir A ve [BVC] (D-3)

for convenience. The gradient can be reversed by integrating by parts,

giving
- f a2 (74) B (7C) (D-4)
which can be written as
2 -
%fd% [(VZA)BC - A(72B)C + AB(VZC)] . (D-5)
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The proof of the identity used to construct equation (D-5)

follows. It is based on combining

§~ [u 3 V] = U(VZV) + (—V*U) . (-V*V) (D-6)

and

fw Ve [U7 V] = -/ (W) o) » (D-7)

to get -

-f('v’w) u(vv) -f(vzv) WU =[(§U) WYY . - - (D-8)

Reversing the role of U and V gives

-fV(;W) (&7U) "fW(VZU) =f(§u) wc?v) (D-9)

which, when combined with equation (D-8) gives

f&u) WEY) = - 3 [ ﬁ%) W + f UCTONCE)

+f(vzu) Wy +fuw<v2w] i

If this is written out for each of the three possible combinations

(D-10)

of A, B, C, then two can be substituted into the equation for the
i
other giving

f(x?A) B(VC) = - —;- [%I(VZA)BC -—fA(VzB)C
+ %IAB(VZC) -f(?A)B (ve)

-%[A(;B) @) -% (vA) (;B)c] i (D-11)
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If we now use the original equation (D-10) written as

- %I(GA) (33)0 - %—[A(;B) (gc)
(D-12)
=f(VA) B(_V>C) + %f(VZ.A)BC + -;'—[AB(VZC)

we can reduce equation (D-11) to

-

- ->
[(VA) B(VC) = -%[A(VZB)C = %[(VZA)BC- %’-[AB(Vzc) - (D—;3)

~—

which proves the result in equation (D-5). =

The final step 1s to separate variables, using

aln
2]

2
2 1 d 2 L
v 7 e (r ) 7 (D-14)
r r
to evaluate the integrals in equation (D-5). As a specific example,

examine just one of the terms

2
2 1d (2 dA> 2 _ LA 3 _
f(v A)BC frz = (r 3 BC rdr da 2 BC df (D-15)

where the second term gives 2(2+l) and the first can be integrated by

parts to give

- :‘A(Q E) 3 ABC 3 -
= \dr C+3B ar df - ¢ (2+1) rz dfr ., (D-16)

If this and the other two corresponding equations are used in equa-

tion (D-5), a large amount of cancellation occurs so that we get

ABC
ATv- (BYC) db = %[-L(L+l) - 2'(a'+L) - 2(£+1)J [—2 a

r
(D-17)

SEREE
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If we now return to the original definition of the terms, we see that

we have

+1) = 2'('+1) - o(2+ —= 5 X
[L(L 1) (L'+1) - 2(2 1):{/‘ FL rfY, ¥ Yoy 49

(D-18)

*
) duz -.E& . duz, ) U arly d§/
dr r L\ dr r em LM g 'm'

so that the angular matrix element comes through as assume&/iﬁ eqﬁa—
tion (3-36). The object called F here 1is the part of At Q/F associ~
ated with the V v term. This would be the A F(r) in equation (3-59)
or the corresponding terms in equation (3-61). The radial part of
equation (D-18) is the factor evaluated by DWPI when coastructing the

transition matrix element.



APPENDIX E

FOLDING MODEL FORMULAE

This appendix will outline the derivation of the folding model
formulae that were given in Chapter 3. In addition, it will define
the conventions for electron scattering form factors.

The discussion here is for pions only, so the interaction is

limited to the spin-orbit and central terms only. It is written“as

Vo = 8(0) + g5 13T . - (E-1)

The central part contains the kinematic factors [see equation (2-43)]
for the transformation to the pion-nucleus center of mass and will
eventually be expressed as a function of q in the local Laplacian model
as described in Appendix B. This Laplacian form of the central inter-
action is never used for calculations here, but is included to indicate
the way the folding formula works. The spin—orbit part is also affected
by the kinematical transform but, as shown in equation (2-42) the factor
of le cancels the factor of Py from Y [equation (2-33)]. Thus, the
spln-orbit comes in without any extra factors. The second term in equa-
tion (2-43), which contributes to elastic scattering, would come in with
an extra factor of €. Although a number of terms from the spin-orbit
interaction can contribute to various ractions, the discussion here will
be limited to those that contribute to abnormal parity transitions.

One result will be used repeatedly in these calculations. It
relates the expansion of a tensor product, which usually looks like

YL . TL. The expansion of the YL gives
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L -L -L
~ —1/2 t ~ -~ a_l
Y . (r) = (4 i P L
LM( ) = (4m) § i Lp . L
Lth

(E-2)

L
x {10 L,0[10) [YLP ® YLt]

M -

and the rearrangement of the tensor product gives

E L -L -L -7
"1/2 Z . t ~ ~ I\-l e
. 'r = 4 p
YL L (47) i Lp Lt L

Lth J

L+
X <Lp0 LtOILO> (-) WL L, Kk

J J
X [YL ® k]] . [YL ® sz (E-3)
p t

where k] and kj stand for the arguments out of which the temsor T, is

LJ)

composed.

The central tem 1s straightforward, since

gg(r) = f4m gS() YOO(f-)

L -L
= oC . p tr o1
g () E E i Lp Lt
Lth J

b
x <Lp0 Lto[oo> (=) P (L L, 005 03)

J J
x [YL ® 1] . [YL ®1] . (E-4)
P t
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Evaluating this, the clebsch gives Lp = Ly and the Racah gives

Lp = Lt = J and this all reduces to

gC(r>Z [r,@1] (4®

J

J
1 (E-5)

The fourier transform of this gives -

E 2 c § o . S
v, 8 (k) J105$P) * T ) (E-6)
n J ,

where
2
v o= 2k% dk/m ,
c ;
g (k) = sz 3, (kr) ¢Sy 2 ar
(o]
and
Tiog = 3;0kr) YJ<E) .

When the expectation value over the target and projectile wave func-—

tions is taken,

J
<.730J<t)> —= 3;(kr) 07 (k)
and (E-7)

<jJOJ(p)> —= T505(P)

where pJ(k) is the fourier transform of the form factor Pj(r) defined
in Chapter 3, and TJOJ is the operator used in the angular momentum

algebra of Chapter 3.
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The spin-orbit temm requires rewriting

- > > > > > > 87
Lro=(rxp)- U =r(pxo)= '3— ry (r) T (p, c) (E-8)

using results from Brink and Satcher [Bri 71]. When combined with the

original formula in equation (E-1), this gives

rg o (r), [ 31 LH TG D - :
_L "1 Y S N . _

L+l
x <Lp0 Lto[10> (=) W(L L, 11, 17)

A S
[0 [0

The fourier transform of this gives

2 1S ZZ;J-L-l***l
ang (k) /%4 JL1
n L J

(E-10)
<§o o]10) ()™ w1 11, w) x. 74P I8
where
g5(k) = 4 3, (ke) kr g2(r) £ dr (E-11)
and
:ﬂ = '—1- 72 > J
1w "x U =xel
(E-12)
- - P >.J
N1 = IU/L X g
‘and 191 = jL(kr) YL(r) .
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The other ternms, Principally the one involving 17, have been omitted

since they do not contribute to an abnormal parity transition. If we

now evaluate the expression, we get

Z w2 g0 Z%Jm .
n J
(E~-13)

J+l . 7 - ’
201 J-1,13 J 2791 T,0| - -

When the expectation value is taken this becomes

2 Ls S .
Z Wn g8 (k) Z <PJ> . DJ(k) JJ(kr) (E-14)
n J _

\

where jJ is the spherical Bessel function,

s _ [J%L , . S
= —— ) - f——— v E—lS
I X <=/ 1,1 T/ <«/J+1,1J> (E-13)
TN =[ i Cke) /T N\ 2 ar
<- LlJ> L < LlJ>

and where <PJJ> is worked out in Chapter 3. The form factor is the

and

"spin density" for thig transition, described in Chapter 3. Because
of the form of this result, it is only necessary to calculate one term
in DWPI when including the spin-orbit calculation.

Finally, it is necessary to summarize the definitions used for

the electron scattering results. The charge form factor is

|p (k)| 2 (E-16)
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where P is the expectation value QE<5604> as defined above. The

transverse electric form factor is

2 2I'+l 2 [ eh 2
T O2I+1 2me

g 2

s S L
—_— +
7 Piptlg e

J

F

TE (E-17)

where 8g and g, are the gyromagnetic ratios for spin and orbital cur-

rents; the current densities are defined in [Pet-81]. The magnetic form

factor is -

2 _2I'+1 2

P = 2

M

eh 2
2mc

g 2
s L
2S Py T %%, DJJ (E-18)

where p§ is the spin density that enters plon scattering, and the
orbital current is defined in [Pet 81].
The finite size of the proton is included by multiplying these

each by

5|4
(1 + 0.0533 q ) . (E-19)

but the center of mass correction, normally given by

2. 2
La7/a 0% (E~20)

1s not since the same correction is not made in the pion calculations.



BIBLIOGRAPHY



[Ada
[Ama

[Aus

[Bak

[Bak

[Bat
[Bay
[Bin
[Ble
[Ble

[Bos

[Bri
[Bro

[Byf

77}
81]

70]

58]

58a]

78]
75]
70]
79]
81]

77]

75]

79]

52]

[Carr]

[Car

[Car

[Cha

[Cha

81]

81a]

791

79a]

REFERENCES

G. S. Adams et al., Phys. Rev. Lett. 38, 1387 (1977).
J. F. Amann{gglgl., Phys. Rev. €23, 1635 (1981).

N. Austern, Direct Nuclear Reaction Theories, John Wiley
(New York), 1970.

W. F. Baker and J. Rainwater, Phys. Rev. 112, 1763 (1958).

W. F. Baker, H. Byfield and J. Rainwater, Phys. Rev. 112,
1773 (1958). -

G- J. Batty et al., Phys. Rev. Lett. 40, 931 (1378).

G. Baym and G. E. Brown, Nucl. Phys. A247, 395 {1975).

F. Binon et al., Nucl. Phys. Bl7, 168 (1970).

M. Blecher et al., Phys. Rev. C20, 1884 (1979).

M. Blecher, private communication, 1981.

E. Boschitz, "Proceedings of the Zurich Conference on
Intermediate Energy Nuclear Physics," (unpublished) 1977;

and private communication.

D. M. Brink and G. R. Satcher, Angular Momentum, Clarendon
Press (Oxford), 1975.

G. E. Brown, B. K. Jennings and V. I. Rostokin, Phys. Rep.
50C, 227 (1979).

H. Byfield, J. Kessler and L. M. Lederman, Phys. Rev. 86,
17 (1952).

J. A. Carr, MSUDWPI, modification of program DWPL [Eis 76]
at Michigan State University (unpublished).

J. A. Carr, H. McManus and K. Stricker, preprint, 1981.

J. A. Carr and F. Petrovich, program ALLWRLD (unpublished),
1981.

B. R. Chabloz.gglgi., Phys. Lett. 81B, 143 (1979); see
also [Pif 77].

J. Chai and D. 0. Riska, Nucl. Phys. A329, 429 (1979);
and references therein.

210



211

[Che 73] - T. Chertok, C. Sheffield, J. W. Lightbody, S. Penner and

- Blum, Phys. Rev. (8, 23 (1973).

O o

[Chi 69] D. T. Chivers et al., Nucl. Phys. Al26, 129 (1969).

[Cot 80] w. B. Cottingame and D. B. Holtkamp, Phys. Rev. Lett. 45,
1828 (1980). "'

[Cra 67] . M. Crawley and G. T. Garvey, Phys. Rev. 160, 981 (1967).

[Cue 79] F. Cuerna, "LAMPF Workshop on Pion Single Charge Exchange,"
LA-7892-C, 177 (1979).

~

[(DeJ 74] DeJager, DeVries and DeVries, At. Data and Nucl. Data Tablés,
14, 479 (1974). o

—

[Del 80] J. Delorme, A. Figureau and P, Guichon, Phys. Lézt. 998,
187 (1981).

[Don 70] T. W. Donnelly, Jr., J. D. Walecka, G. E. Walker and I. Sick,
Phys. Lett. 32B, 545 (1970).

[Dor 79] A. Doron et al., "LAMPF Workshop on Pion Single Charge
Exchange," LA-7892-C, 167 (1979).

[Dyt 77] s. A. Dytman et al., Phys. Rev. Lett. 38, 1059 (1977).

[Dyt 79] S. A. Dytman et al., Phys., Rev. Cl9, 971 (1979); see also
[Dyt 77].

[Ede 61] R. M. Edelstein, W. F. Baker and J. Rainwater, Phys. Rev. 122,
252 (1961),

[(Edw 71] G. W. Edwards and E. Rost, Phys. Rev. Lett. 26, 785 (1971).

[Eis 73] J. M. Eisenberg, J. Hufner and E. J. Moniz, Phys. Lett. 47B,
381 (1973).

[Eis 74] R. A. Eisenstein and G. A. Miller, Comput. Phys. Commun. 8,
130 (1974).

[Eis 76] R. A, Eisenstein and G. A. Miller, Comput. Phys. Commun. 11,
95 (1976).

[Eis 80] J. M. Eisenberg and D. S. Koltun, Theory of Meson Interactions

with Nuclei, John Wiley (New York) 1980.

[E1l 68] J. P. Elliott, A. D. Jackson, M. A. Mavromatis,
E. A, Sanderson and B. Singh, Nucl. Phys. Al21, 241 (1968).

[Eri 66] M. Ericson and T. E. O. ericson, Ann. Phys. 36, 323 (1966).

(Ern 80] D. J. Ernst and G. A. Miller, Phys. Rev. C21, 1472 (1980).



[Fla
[Fra
[Fri
[Ful
[Gel

[Gib

[Gil
[Gla
[Gol

[Gol

[Hal

[Hin

[Hir

79]
53]
65]
68]
53]

76]

64]
55]
48]

64]

81]

73]

79]

[Holt]

[Hol
[Huf

[Hyd

[Ing

[Jac

[Joh

[Joh

[Joh

[Kal

80]
751]

81]

781

751]

78]

78al

79]

64]

212

J. B. Flanz et al., Phys. Rev. Lett. 43, 1922 (1979).

N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).

M. P. Fricke and G. R. Satchler, Phys. Rev. 139, B567 (1965).
S. A. Fulling and G. R. Satchler, Nucl. Phys. Alll, 81 (1968).
M. Gell-Mann and M. L. Goldberger, Phys, Rev. 91, 398 (1953).

—_

W. R. Gibbs, B, F. Gibson, A, T. Hess, G. J. Stephenson, Jr.
and W. B. Kaufman, Phys. Rev. Lett. 36, 85 (1976). -

V. Gillet and N. Vinh Mau, Nucl. Phys. 54, 321 (1964).
R. J. Glauber, Phys. Rev. 100, 242 (1955).
M. L. Goldberger, Phys. Rev. 74, 1270 (1948).

M. L. Goldberger and K. M. Watson, Collision Theory, John
Wiley (New York), 1964,

D. Halderson et al., to be published in Phys. Rev. €24, 1981.

R. A. Hinrichs, D. Larson, B. M. Preedom, W. G. Love and
F. Petrovich, Phys. Rev. C7, 1981 (1973).

M. Hirata, J. H. Koch, F. Lenz and E. J. Moniz, Ann. Phys.
(NY) 120, 205 (1979).

D. Holtkamp, private communication.
D. B. Holtkamp et al., Phys. Rev. Lett. 45, 420 (1980).
J. Hufner, Phys. Rep. 21C, 1 (1975).

C. Hyde et al., abstract DEl5, Bull. Amer. Phys. Soc. 26,
27 (1981).

Q. Ingram et al., Phys. Lett. 76B, 173 (1978).

D. F. Jackson, Nuclear Reactionms, Chapman and Hall
(London), 1975.

M. B. Johnson and H. A. Bethe, Comments Nucl. Part. Phys.
8, 75 (1978).

M. B. Johnson and H. A. Bethe, Phys. Lett. 78B, 560 (1978).

M. Johnson, "LAMPF Workshop on Pion Single Charge Exchange,"
LA-7892-C, 343 (1979).

A. Kallio and K. Kolltveit, Nucl. Phys. 53, 87 (1964).



[Kei

[Rei
[Rer

[KRis

[Kis

[Kov

[Ruo]

[Lan

[Lan

[Lan
(Lan
[Lee
[Lee
[Lee

[Lic

[Lip
[Liu
[Lov

[Lov

[Mac
[Mal
[McM

(Mil

78]

81]

59]

55]

76]

56]

62]

73]

73a]
781
71]
74]
771

80]

50]
771
721]

81]

73]
78]
81]

74]

213

B. K. Keister, Phys. Rev. €18, 1934 (1978).

B. K. Keister, communication quoted in [Ama 81]; see also
[Kei 78].

A. K. Kerman, H. McManus and R. M. Thayler, Ann. Phys. 8,
551 (1959). B

L. S. Kisslinger, Phys. Rev. 98, 761 (1955),

L. S. Kisslinger and W. L. Wang, Ann. Phys. €NY) 99,
374 (1976). ‘“

J. §. Kovacs, Phys. Rev. 101, 397 (1956).
T. T. S. Kuo, unpublished results, quoted Iﬁ/[Pe& 707].
A. M. Lane, Phys. Rev. Lett. 8, 171 (1962).

R. H. Landau, S. C. Phatak and F. Tabakin, Ann. Phys. 78,
299 (1973).

R. H. Landau and M. McMillan, Phys. Rev. C8, 2094 (1973).
R. H. Landau and A, W. Thomas, Nucl. Phys. A302, 461 (1978).
H. K. Lee and H. McManus, Nucl. Phys. Al67, 257 (1971).
T.-S. H. Lee and F. Tabakin, Nucl. Phys. A226, 253 (1974).
T.-S. H. Lee and S. Chakravarti, Phys. Rev. Clée, 273 (1977).
J. Lichtenstadt, C. N. Papanicolas, C. P. Sargent,

H. Heisenberg and J. S. McCarthy, Phys. Rev. Lett. 44,

858 (1980).

B. A. Lippmann and J. Schwinger, Phys, Rev. 79, 469 (1950).
L. C. Liu and C. M. Shakin, Phys. Rev. Cl6, 333 (1977).

W. G. Love, Nucl. Phys. Al92, 49 (1972).

W. G. Love, J. A. Carr, D. Halderson, F. Petrovich and
H. McManus, preprint, submitted to Phys. Rev. C, 1981.

R. Mach, Nucl. Phys. A205, 56 (1973).
D. J. Malbrough et al., Phys. Rev. Cl7, 1395 (1978).
H. McManus and D. O. Riska, preprint, 1981.

G. A. Miller, Phys. Rev. Cl0, 1242 (1974).



[Mil
[Moi

[Mor

[Nak

76]
78]

80]

80]

[Neuh]

[Olm
[Olm
[Ose

[0se

[Ose

[Pet

[Pet

[Pet

[Pet
[Pif
[Pre

[Pre

[Ris

[Row

[Sap

[Sat

[Sch

79]
80]
79]

79a]

79b]

70]

75]

80]

81]
771
79]

81]

80]

78]

56]

64]

68]

214

G. A. Miller and J. E. Spencer, Ann. Phys. 100, 562 (1976).

M. A. Moinester et al., Phys. Rev. C18, 2678 (1978).

C. L. Morris, "Workshop on Nuclear Structure with
Intermediate-Energy Problems," Los Alamos Report LA-8303-C,

57 (1980) unpublished; and private communication,

K. Nakai et al., Phys. Rev. Lett. 44, 1446 (1980).

R. Neuhausen, unpublished data, quoted in [Del-81].

C. Olmer et al., Phys. Rev. Lett. 43,-612 (1979). )

C. Olmer et al., Phys. Rev. C21, 254 (19802}'§eeuéléo [zei 78].
E. Oset and W. Weise, Nucl. Phys. éélg, 477\(19753.

E. Oset, W. Weise and R. Brockmann, Nucl. Phys. 82B, 34 (1979);
and references therein.

E. Oset and W. Weise, Nucl. Phys. A329, 365 (1979).

F. Petrovich, Ph.D. Dissertation, Michigan State University,
1970. :

F. Petrovich, Nucl Phys. A251, 143 (1975).

F. Petrovich, W. G. Love, A. Picklesimer, G. E. Walker and
E. R. Siciliano, Phys. Lett. 95B, 166 (1980).

F. Petrovich and W. G. Love, Nucl. Phys. A354, 499c (1981).
J. Piffaretti et al., Phys. Lett. 71B, 324 (1977).
B. M. Preedom et al., Nucl. Phys. A326, 385 (1979).

B. M. Preedom et al., Phys. Rev. C23, 1134 (1981); see also
[Mal 78] and [Moi 79].

D. 0. Riska and M. Sarafian, Phys. Lett. 95B, 185 (1980).

G. Rowe, M. Solomon and R. H. Landau, Phys. Rev. Cl8,
584 (1978).

G. Saphir, Phys. Rev. 104, 535 (1956); see [Tra 53] for the
beautiful pictures from this apparatus.

G. R. Satchler, Nucl. Phys. 55, 1 (1964).

L. I. Schiff, Quantum Mechanics, McGraw-Hill (New York), 1968.




[Sek

80]

[Seki]

[Sha

[Spa

[Str

[Str

[str

[Tau
[Thi
[Thi
[Tho

[Tok

[Tra

[Wag

[Wat

[Wei

[Yen]

[Yen

[Yoo

[Yuk

[Zai

[Zei

76]

791]

79]

79a]

80]

74]
76]
76a]
80]

80]

53]

751]

53]

78]

80]

81]

35]

73]

78]

215

R. Seki, K. Masutani, M. Oka and K. Yazaki, Phys, Lett. 978,
200 (1980).

R. Seki, private communication.
Y. Shamai et al., Phys. Rev. Lett. 36, 82 (1976).

D. A. Sparrow, "LAMPF Workshop on Pion Single Charge Exchange,"
LA-7892-C, 53 (1979).

K. E. Stricker, H. McManus and J. A. Carr, Phys. Rev. Cl9,
929 (1979).

~

-
P

K. E. Stricker, Ph.D. Dissertation, Michigan State University
(unpublished) 1979.

— e

K. Stricker, J. A. Carr and H. McManus Phys. Rev. €22,
2043 (1980).

L. Tauscher and W. Schneider, F. Physik 271, 409 (1974).
M. Thies, Phys. Lett. 63B, 39 (1976).

M. Thies, Phys. Lett. 63B, 43 (1976).

A. W. Thomas and R. H. Landau, Phys. Rep. 38C, 121 (1980).

H. Toki and W. Weise, Phys., Lett. 92B, 265 (1980); see also
references therein.

J. F. Tracy, Phys. Rev. 91, 960 (1953).

W. T. Wagner, G. M. Crawley, G. R. Hammerstein and H. McManus,
Phys. Rev. C12, 757 (1975).

K. M. Watson, Phys. Rev. 89, 575 (1953).

C. A. Weidner et al., Phys. Lett. 78B, 26 (1978).
S. Yen, private communication.

S. Yen et al., Phys. Lett. 93B, 250 (1980).

K. B. Yoo and R. H. Landau, Oregon State University
(preprint) 1981.

H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
M. Zaider et al., "Proceedings of 5th Internatiomal

Conference on High Energy Physics and Nuclear Structure'
(Uppsala), 219 (1973).

B. Zeidman et al., Phys. Rev. Lett. 40, 1539 (1978).



