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Abstract

The radioactive 26Al is an important probe for the interstellar medium of our

galaxy since it is observed through the emission of 1.8 MeV gamma rays from

the decay of 26gAl produced by the proton capture on 25Mg. But the production

of the galactic 26Al is now still not well determined partially due to the lack of

knowledge of the important states in 26Si which dominate the large uncertainty in

the 25Al(p,γ)26Si reaction rate at nova temperatures.

In nova explosions, the proton capture of 25Al competes with its β decay and

bypasses the production of 26gAl, since the capture product 26Si decays quickly to
26mAl instead of its ground state, without the emission of the 1.8 MeV gamma

ray. But at even higher temperatures, such as in supernova explosions, 26mAl can

be excited to the higher excited states by thermal excitation and then quickly de-

excite to the ground state, thereby enhancing the production of 26gAl. The energy

levels in 26Si in the Gamow window corresponding to these temperatures therefore

need to be well understood in order to determine the 25Al(p,γ)26Si reaction rate,

and thus the production rate of 26Al in these explosive environments.

Two experiments were performed to study the important states in 26Si : one

is the p(27Si,d)26Si∗ reaction at the NSCL, aiming to construct the level scheme of

low lying states around the proton threshold; the other experiment is a measure-

ment of the elastic scattering of 25Al+p with CRIB at RIKEN in order to obtain

information on states in a broad range above the proton threshold. Details of these

two experiments and their data analyses will be presented in this thesis.
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Chapter 1
Introduction and Motivation

In this chapter, an introduction to some relevant background knowledge on nuclear

astrophysics which is the research field of this thesis will be given briefly. Following

this is the explanation of the scientific motivation for the study of 26Si.

1.1 Stellar evolution, nucleosynthesis and abun-

dance

We know today that our universe started from the Big-Bang (BB) which makes the

first-ever nuclei to fill up the universe from hydrogen up to beryllium, with most of

them hydrogen and helium. As the universe cooled down after the BB explosion,

the hydrogen and helium gas contracted due to gravity to form the molecular

clouds from which the first stars were born due to the further contraction until the

final gravitational collapse. Upon its formation, the star steps into its long journey

of stellar evolution starting as a main sequence star1 for 90% of its lifetime. Here

we will only give a simple introduction to the stellar evolution associated with the

1Most of the stars spend most of their lifetimes in burning hydrogen and are thus categorized
as a group of stars named the main sequence stars when they are in the hydrogen burning stage.
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nucleosynthesis of elements in the nuclear burning processes during the various

stages of the stellar evolution. More general knowledge of nuclear astrophysics

and more profound details about the following content can be found in many

references, such as [1] and [2].

1.1.1 Quiescent burning processes

When a star forms as a main sequence star out of the contracting molecular cloud

in the interstellar medium (ISM), it will still undergo further contraction because

the inward gravitational force still overcomes the outward internal pressure in the

star. Therefore the core of the star gets heated by the thermal energy continuously

generated from the conversion of gravitational energy. The core temperature and

the matter density keep increasing until a critical condition (T ∼ 0.01 GK; ρ ∼
102 g/cm3) when hydrogen ions (protons) gain enough kinetic energy from the

heating to tunnel through the Coulomb barrier between two protons which makes

it possible for protons to fuse together and release tremendous nuclear energy.

This process of burning hydrogen goes smoothly and the continuously generated

outward nuclear radiation impedes further gravitational contraction. Finally, the

two competing forces come to an equilibrium, where the core stops contracting.

This hydrogen burning process will last for a very long time since at this temper-

ature the protons have energies far below the Coulomb barrier making the fusion

of protons very slow. This is why most of stars remain in main sequence burning

hydrogen for most of their lives. During this process another abundant element,

Helium, is produced via the pp-chain reaction at low temperatures and CNO cycle

reactions at higher temperatures [1].

When all the hydrogen in the core has been burned up with only Helium re-

maining (but still with hydrogen outside the core), the main sequence of stars

ends and no nuclear energy will be generated to prevent the core from contracting

because at this time the core temperature has not become high enough for the

Helium ions to fuse together. The core eventually gets heated up again by the

2
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thermal energy from the gravitational contraction, and the core temperature and

density keep increasing until the critical conditions for Helium burning are reached

(T ∼ 0.1–0.4 GK; ρ ∼ 102–105 g/cm3, [2]). The core comes to an equilibrium again

with Helium burning inside the core and Hydrogen burning still in the hydrogen

shell around the Helium core.

Such burning process will repeat in the subsequent Carbon burning, Neon burn-

ing, Oxygen burning and the final quiescent burning — Silicon burning, which will

result in, for a massive star, a very hot silicon burning core surrounded by layers

of burning shells of lighter elements from the Oxygen burning shell to the outer

hydrogen burning shell. Since the nuclear burning is ignited by the thermal energy

converted from the gravitational contraction of a star, how far a star can go in

the burning stages is then essentially determined by its mass. For low mass stars,

they spend their whole lives burning hydrogen, at most up to helium burning and

then die as white drawfs since their thermal energy is too small to ignite further

nuclear burning, while for massive stars, the gravitational contraction can provide

enough energy for them to go all the way to the last quiescent burning stage.

These quiescent burning processes can make contributions to the nucleosynthe-

sis and abundances of the elements up to iron since iron is the most stable element

and it is impossible for the any nucleus to overcome the large Coulomb barrier

to fuse with a iron nucleus under the quiescent stellar burning conditions. Other

mechanisms are therefore required to explain the nucleosynthesis of the elements

beyond iron — the explosive burning processes, to be described in the following

section.

1.1.2 Explosive burning processes

The explosive burning occurs in conditions of extremely high temperature and

density, which can never be achieved during the quiescent burning processes, and

is characterized by an abrupt increase in temperature and huge amount of nuclear

energy release in a extremely short time period (usually in about one second),

3
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compared with the relatively mild character and millions of years long journey of

the quiescent stellar burning. It happens when a massive star or a close binary

system comes to the end of its life. Recall that a massive star can keep burning

nuclei in its core until nothing can be burned leaving iron in the core. The star

then starts contracting again. The iron nuclei cannot be burned to counter the

further contraction. However the contraction confines the free electrons in the core

to become a degenerate electron gas, the internal pressure of which then stops the

contraction of the core. But as more and more mass in the shells around the core

becomes degenerate and is deposited to the core to make it reach a critical mass,

even the degenerate gas pressure can no longer support the core and the star then

ends its life by a core collapse and a subsequent explosion, ejecting their envelopes

rich in various materials into the interstellar medium where new stars will be born.

This scenario discussed above is just one of various explosive events in the

universe and is called Type II supernova explosion. Similar events to Type II

supernovae are the Type Ib and Ic supernovae with differences in that the massive

progenitor star of the Type Ib has its outer hydrogen layer blown off by stellar

winds or a companion star, and the progenitor star of the Type Ic has both the

hydrogen and helium layer stripped off. The progenitor stars of the Type Ib/Ic

are usually called the Wolf-Rayet stars.

Other explosive scenarios are the nova explosion and Type Ia supernova explo-

sion in a binary system including a carbon-rich (CO) white dwarf and a compan-

ion star — usually a main-sequence star or a red giant star. Due to the strong

gravity of the electron-degenerate matter in the white dwarf, the hydrogen-rich

material keeps being transferred from the companion star via the equipotential

surface (Roche lobes) of the two objects to the white dwarf, forming an accretion

disk around the white dwarf. When the material reaches the surface of the white

dwarf, it will quickly become degenerate due to the strong gravity of the white

dwarf, resulting in the increase of temperature. Depending on the accretion rate

and the mass of the white dwarf, the white dwarf can end up with a nova explosion

4
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or a more explosive Type Ia supernova explosion. If the companion star is a low

mass star, the accretion rate will be low which allows thermonuclear runaway to

take place due to the high temperature near the bottom of accreted layers around

the surface of the white dwarf, associated with large amount of energy release. This

is the scenario of the nova explosion. If the companion star is a massive star, the

material will be quickly accreted from the star to the white dwarf and accumulated

in the degenerate form on its surface. As a consequence, the mass of the white

dwarf will soon exceed the Chandrasekhar limit and an explosion occurs disrupting

the whole white dwarf. This is the scenario of Type Ia supernova explosion.

During the explosion, the light elements, hydrogen and helium, in the outer

shells are burned in a completely different manner from that in the quiescent

burning processes due to the extreme explosive conditions. Light elements can be

also synthesized in the explosive hydrogen and helium burning, i.e., via hot CNO

cycles or breakout sequences from the hot CNO cycles. The heavier elements will

only be synthesized via the neutron capture processes (s-process and r-process)

and proton capture processes (p-process)2 which can only occur under the extreme

conditions of explosive events. The neutrons in the s- process are produced in the

star before explosion, i.e., in carbon burning and oxygen burning stage, while the

neutrons in the r- process are due to the neutronization by the weak interaction

at the time of hydrodynamic contraction of later stage stars, i.e., presupernovae.

Nucleosynthesis in the s-process goes along a path close to the group of stable

nuclei and nucleosynthesis in the r-process goes along a path close to the neutron

drip-line. The p-process path in turn runs close to the group of stable neutron-

deficient nuclei. The s-process is responsible for nucleosynthesis of half of the

elements beyond iron while r-process makes the other half. It should be pointed

out that nova explosions and supernova Type Ia explosions contribute mainly to the

nucleosynthesis of light elements up to iron and have no important contributions

to nucleosynthesis of elements beyond iron.

2s- and r- represent slow neutron capture and rapid neutron capture, respectively and p-
represents proton capture.

5
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1.1.3 Thermonuclear reactions

Thermonuclear reactions occur throughout the whole course of stellar evolution,

from initial quiescent hydrogen burning to the explosive burning stages. It is the

dominant source of the energy generation in our universe and is the way by which

all elements including those in human beings are produced. At different stages of

the stellar evolution, different thermonuclear reactions take place due to the dif-

ferent conditions characterized by the temperature, responsible for the production

of specific groups of elements determined and limited by those conditions. The

abundances of different isotopes in the universe are calculated from the network

calculations using the thermonuclear reaction rates of various reactions occurring

in different stellar scenarios at different temperatures and matter densities.

Since in the stellar matter all elements exist in the form of a gas, the particles

should be treated collectively and their collective motions are therefore constrained

by the gas model, normally the Boltzmann-Maxwell (BM) velocity distribution. So

the calculation of the reaction rate will be weighted by the BM distribution of the

velocity. Besides, from the nuclear reaction point of view, the occurrence of re-

actions between individual charged particles are prevented by the resistance due

to the repulsive Coulomb force between them, that is, the Coulomb barrier. To

represent the possibility that a charged particle overcomes the barrier to react

with another charged particle, a penetrability factor is introduced into the cross

section for the nuclear reaction according to quantum mechanics. The higher the

energy of the reacting particles, the higher the penetrability and thus the easier

a reaction takes place. Combining these two effects together, the thermonuclear

reaction rate for a specific nuclear reaction will peak with the total energy (to-

tal kinetic energy in the center-of-mass frame) at an energy only determined by

the stellar temperature (besides the masses and charges of the reacting particles).

Therefore, a thermonuclear reaction can take place with highest probability within

a window around the peak energy, called the Gamow window. Since the energy

levels populated in the compound nucleus in a stellar capture reaction is directly

6
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related to the total energy, the most populated energy levels will be those corre-

sponding to the total reaction energies right within the Gamow window. In the

calculation of the reaction rate, those levels in the compound nucleus have the

dominant contributions while contributions from levels out of the Gamow window

can be negligible. So it is crucial for the network calculations of element abun-

dances to locate accurately the positions of energy levels of astrophysical interest

in compound nuclei in the important stellar thermonuclear reactions. More details

and the derivations of the thermonuclear reaction rates are given in Chapter 6.

1.2 Scientific motivation for the study of 26Si

1.2.1 26Al in the galaxy

The radioisotope 26Al (half-life t1/2 = 0.72× 106 years) is an important probe for

Inter-Stellar Medium (ISM) of a galaxy, which is the birthplace of newly formed

stars. The presence of 26Al in the ISM has been confirmed by searching for the

characteristic 1.809 MeV γ-rays from 26Al decay. It was discovered first by the

HEAO3 satellite through the detection of the 1.809 MeV γ-rays and was later

mapped out in an all-sky distribution over the Galaxy by the COMPTEL telescope

installed on the CGRO satellite. It is through the Doppler-shift measurements

of this 1.809 MeV line by the next-generation telescope INTEGRAL that the

galactic 26Al is confirmed to co-rotate with the Galaxy and therefore be distributed

throughout the whole Galaxy [3]. Figure 1.1 shows the all-sky maps of 26Al from

the COMPTEL results and the INTEGRAL as well.

Regarding the stellar sources of the the galactic 26Al, there is always a discrep-

ancy between the observed data from the satellites and the stellar models. The

all-sky map clearly shows that the 26Al is more densely distributed in the spiral

arm of the Galaxy, which consists of mainly massive stars and indicates that novae

and low-mass star cannot be the major sources. One thing we are sure about is

that in the Galaxy there is about 1-3 solar mass of 26Al. However, according to

7
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Figure 1.1: Map of the 26Al in the galaxy measured by the INTEGRAL telescope.
The background image of the milky way is overlaid with the COMPTEL map of
26Al emission. (Adapted from reference: MPE, 2005)

the classical nova models, classical novae should be among the major contributors

to the production of 26Al [4, 6, 7]. A recent study on the nucleosynthesis of mas-

sive stars suggests that the 26Al is mainly from the Type II supernova explosions

and the Wolf-Rayet stars [8] which fits very well to the observed data. In spite

of this, the current situation is still unclear and we still do not have a full un-

derstanding about the sources of the 26Al. Nevertheless, now we know that apart

from the major contributors, AGB stars can also be a site for 26Al production and

nova explosions are still significant contributors. Since there are large uncertainties

in the important reaction rates for the production of 26Al in explosive hydrogen

burning due to lack of the knowledge about the details of the explosive events [5]

and since they significantly affect the production of 26Al, it is necessary for us to

perform more accurate measurements to reduce these uncertainties so that we can

put firmer constraints on the stellar model calculations and therefore gain more

8
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knowledge about the Galaxy as well as the ISM.

1.2.2 The importance of the 25Al(p, γ)26Si reaction

The characteristic decay γ-rays from 26Al are produced in the following way: the

proton capture of 25Mg leads to 26Al in its ground state, then the ground state

26Al mostly decays to the first excited state of 26Mg by β+ and electron capture,

followed by the γ decay of 26Mg to its ground state with an emission of the 1.809

MeV γ-ray. This 1.809 MeV γ can be only produced from the the decay of the

ground state of 26Al (T1/2 = 7.17 × 105 years) and the 26Al in its isomeric state

(T1/2 = 6.36 s)will directly decay to the ground state of 26Mg without any γ

emission. Figure 1.2 shows how this characteristic 1.809 MeV γ transition occurs.

Figure 1.2: 1.8 MeV γ transition from the decay of the ground state of 26Al.

The reaction path toward the production of the ground state of 26Al, denoted

by 26gAl, is

25Al(β+ν)25Mg(p, γ)26gAl(β+ν)26Mg∗(γ)26gMg.

In nova explosions (typical temperature T9 = 0.1 − 0.4), the proton capture

9
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of 25Al competes with its β+ decay and bypasses the production of 26gAl since

the capture product 26Si decays quickly to the 0.228 MeV isomeric state in 26Al

(denoted by 26mAl) instead of its ground state, resulting in no emission of 1.809

MeV gamma rays. Since the transition between the ground state and the isomeric

state is almost impossible due to their large spin difference (ΔJ = 5), a thermal

equilibrium cannot be established between the two states and therefore the 26Al

nuclei in the two states should be considered as two different nuclei instead of

the same one, which therefore complicates the 26Al production and makes the

25Al(p, γ)26Si reaction very important. The reaction path toward the production

of the isomeric state of 26Al follows

25Al(p, γ)26Si(β+ν)26mAl(β+ν)26gMg.

Figure 1.3 shows in the chart of nuclei the different reaction paths toward the

production of the 26Al for different conditions.

Figure 1.3: reaction paths toward the production of the 26Al.

At even higher temperatures in supernova explosions (typical temperature

T9 > 1), 26mAl can be excited to the higher excited states, such as the 0.417

10
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MeV state (Jπ = 3+) and the 1.058 MeV state (Jπ = 1+), by thermal excitation,

and then quickly decay and produce 26gAl again [14]. It is in this way that the

ground state of 26Al communicates with its isomeric state and achieves an indi-

rect thermal equilibrium between them via the intermediate higher excited states.

Figure 1.4 demonstrates such communication. A study in Ref. [14] has shown

that at such high temperatures the 25Al(p, γ)26Si reaction dominates over that of

the 25Mg(p, γ)26Al reaction and as a result, instead of producing the 26mAl, the

25Al(p, γ)26Si reaction will produce most of the 26Al in its ground state.

Figure 1.4: Communication between the 26gAl and the 26mAl via the intermediate
excited states by thermal excitation at supernova temperatures.

1.2.3 Nuclear structure of 26Si

We have already mentioned that the thermonuclear reaction rates of stellar cap-

ture reactions are determined by the energy levels of the compound nuclei within

the Gamow windows corresponding to the stellar temperatures at which these re-

actions occur. Therefore states in 26Si within the corresponding windows at nova

temperatures and supernova temperatures need to be well understood in order

11
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to determine the 25Al(p,γ)26Si reaction rate and thus the production rate of 26Al

in these explosive environments. In the 25Al(p,γ)26Si reaction, only states above

proton threshold (Sp=5.518 MeV) in 26Si can be populated, as shown in figure 1.5.

Figure 1.5: In the 25Al(p,γ)26Si reaction, only states above proton threshold
(Sp=5.518 MeV) in 26Si can be populated. The Gamow windows at the typical
nova and supernova temperatures are indicated by arrows.

Figure 1.6 shows the level scheme of 26Si compared with that of its mirror

nucleus 26Mg.

The astrophysically important states in 26Si have been studied with different

reactions [9, 10, 11, 12, 13] due to their dominant contributions to the large un-

certainty in the 25Al(p,γ)26Si reaction rate at nova temperatures (red band region

in figure 1.6). But controversies exist on the spin-parity assignments for some

dominant states, such as the 5.912 MeV and 5.946 MeV states, and the level en-

12
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Figure 1.6: Level schemes of 26Al and its mirror nucleus 26Mg. The color bands
indicate the Gamow windows at different stellar temperatures; for example, the
red band is for the nova temperature range and the blue one is for supernova
temperatures.

ergies and spin-parities of the newly found states from those measurements also

need to be confirmed. Furthermore, comparison with the mirror nucleus points

to the possible existance of new states in 26Si, which may contribute strongly to

the 25Al(p,γ)26Si rate at supernova temperatures. To address these issues, we per-

formed two experiments: one is the p(27Si,d)26Si∗ reaction at the NSCL aiming

to construct the level scheme of low lying states around the proton threshold; the

other one is the elastic scattering of 25Al+p with CRIB [21] at RIKEN in order to

obtain information on states in a broad range (Ex=5.6 MeV - 8.6 MeV) above the

proton threshold [23].
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Chapter 2
Two experiments for the study of

26Si

This chapter covers all the descriptions of the two experiments performed at two

different laboratories — NSCL and CRIB — including facility introduction, exper-

imental techniques and set-up, radioactive beams in use, detector configurations

for each experiment, and so on. For the production of the radioactive beams, more

details can be found in Appendix A.

2.1 The p(27Si,d)26Si∗ experiment at the NSCL

facility

This experiment aimed to measure the γ-decays from the low-lying proton-unbound

excited states of the product nuclei 26Si. At higher excited states, the 26Si becomes

unstable and is destroyed by the more preferred particle decays. For this reason,

this γ spectroscopy measurement was only used to study levels of 26Si in the low

energy range for which the beam energy was chosen according to the kinematics.

In the following, I will begin with the kinematics of this reaction.
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2.1.1 Kinematics

Let us consider the general case of a incoming beam particle in collision with

a target particle (two-body kinematics, non-relativistic). Figure 2.1 shows the

schematic diagram of the collision. Let us make the following notation:

mb mass of the beam particle

mt mass of the target particle

mr mass of the recoiling heavy particle

mo mass of the detected light particle

Tb kinetic energy of the beam particle before collision

Qgs Q-value of the reaction with the residue in the ground state

Tr kinetic energy of the recoiling heavy particle after collision

To kinetic energy of the detected light particle after collision

Ex excitation energy of the recoiling heavy particle after collision

θ scattering angle of the light particle relative to the beamline direction

θr scattering angle of the heavy particle relative to the beamline direction

Using the conservation of the total energy and momentum before and after the

collision, we have the following equations

Tb +Q = To + Tr + Ex√
2mbTb =

√
2moTo cos θ +

√
2mrTr cos θr√

2moTo sin θ =
√

2mrTr sin θr

where
√
2mT is the momentum of a particle of mass m with kinetic energy of T .

We know Tb; To is measured by detectors and θ is calculated from the geometry of

the target and detector as well as the hit position on the positive sensitive detector.

The remaining quantities are unknown: Tr, θr and Ex, among which the Ex is of

15
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Figure 2.1: schematic diagram of a beam target in collision with a target particle.

interest. It is given by solving the above equations as a function of Tb, To and θ

Ex = Q+

(
1− mb

mr

)
Tb −

(
1 +

mo

mr

)
To +

2
√
mbmoTbTo

mr

cos θ

For our case, we have mb=m(27Si) ≈27 amu (atomic mass unit), mt=m(1H) ≈1

amu, mo=m(2H) ≈2 amu and mr=m(26Si) ≈26 amu. 1 Then the expression of Ex

can rewritten as

Ex =

(
1− m(27Si)

m(26Si)

)
Tb −

(
1 +

m(2H)

m(26Si)

)
To +

2
√
m(27Si)m(2H)TbTo

m(26Si)
cos θ

= − 1

26
Tb − 14

13
T0 +

√
54

13

√
TbTo cos θ +Q

Figure 2.2 shows plots of the correlations between Ex and the deuteron energy

To at various scattering angles that the scattered deuteron makes with the beam-

line, with the beam energy Eb=89 MeV/A. These plots can be used to determine

the scan range of excitation energies we can obtain for a given beam energy. As

1All the masses in this thesis are adopted from the Atomic Mass Evaluation.
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we can see from the plots, the range of our interest (Ex = 5 − 8 MeV ) can be

achieved by using the 89MeV/A beam energy .
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Figure 2.2: Correlations between the excitation energy of 26Si∗ and the energy of
the scattered deuteron at various scattering angles with the beam energy Eb=89
MeV/A.

2.1.2 The NSCL facility

The NSCL (National Superconducting Cyclotron Laboratory) is located on the

campus of Michigan State University and is a world leader in rare isotope research

and nuclear science education. It primarily consists of two superconducting cy-

clotrons — K500 and K1200, which are coupled together to make it possible to

produce many rare isotopes with the in-flight (fragmentation) method2.

Figure 2.3 shows the schematic diagram of the NSCL facility.

2See Appendix A for the methods of beam production
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Figure 2.3: schematic diagram of the NSCL facility with the two cyclotrons K500
and K1200, the A1900 fragment separator and the S800 spectrograph indicated.

The charged particles of the primary beam are produced from an electron

cyclotron resonance ion source (ECR) and then injected into the first K500 cy-

clotron to gain the first acceleration. Following that is the further acceleration of

the charged particles in the K1200 cyclotron where the beam particles get fully

stripped from the electrons and sent to the production target of the A1900 sep-

arator to produce the secondary (reaction) beam by fragmentation. Besides the

beam particle of interest, many other contaminant particles can be produced at

the same time as well. So right after the secondary beam production, the beam

separation is performed to separate out only the beam particles of interest which

then can be transmitted through the remaining part of the A1900 separator and

delivered to the different experimental lines, i.e. the S800 spectrograph.

2.1.2.1 S800 spectrograph

The S800 spectrograph is a magnetic device with large acceptance and high resolu-

tion for charged particle spectroscopy and is specially designed for nuclear reaction

experiments with radioactive beams [15]. The design is unique in that the spec-

trograph is installed vertically on a carriage instead of the traditional horizontal
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installation. This not only saves space but also makes it possible to rotate the

spectrograph from 0◦ to 60◦ for different experiment purposes. The S800 can be

operated in two different modes: a focus mode with the best momentum accep-

tance (±2%) but limited resolution (1 in 1000 in energy), and a dispersion matching

mode with the best resolution (1 in 5000 in energy for a 1 mm beam spot) but

limited momentum acceptance (±0.5%). More detailed descriptions of the two

modes can be found in Ref. [15]. Figure 2.4 shows the schematic diagram of the

S800 spectrograph. Table 2.1 lists some characteristic specifications of the S800.

Figure 2.4: schematic diagram of the S800 spectrograph and additional components
of the upstream beamline.

In figure 2.4 the target position in the S800 analysis line is also indicated.

Surrounding the target, a γ-ray detector array SeGA is installed, which will be

described in the following section. The SeGA array detects the γ-rays from the

decay of the heavy reaction recoils, in coincidence with the detection of these recoils

at the S800 focal plane. An ultra-fast and radiation-hard detectors made from a

single-crystal diamond is installed in the S800 before the target for timing.
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Table 2.1: Characteristic parameters of the S800 spectrograph, adapted from [16].

Energy resolution 1 in 10000 FWHM
Dispersion 9.6 cm/% (ΔP/P )
Momentum Acceptance 5% (P )
Angular acceptance in dispersive 7◦

Angular acceptance in no-dispersive 10◦

Angular resolution 2 mrad
Position resolution 0.4

At the end of the S800 is the focal plane [15, 16]. The detector system at

the focal plane consists of a pair of cathode readout drift chambers (CRDC) for

beam tracking information, followed by a multi-segmented ion chamber for energy

loss measurement, and three large plastic scintillators for timing and total energy

measurements. Figure 2.5 shows the schematic diagram of the focal plane at the

end of the S800 spectrograph.

2.1.2.2 SeGA detector array

SeGA is a highly segmented germanium detector array. It consists of 24 sepa-

rate germanium detectors arranged in two rings at 37◦ and 90◦ with 12 detectors

for each ring. Each individual detector is divided into 32 segments providing ac-

curate 3-dimensional position for Doppler broadening correction of the measured

γ−ray energies. Further details on the SeGA array can be found in reference [17].

Figure 2.6 shows a photo of the SeGA detector array from the front view.

2.1.3 Experiment details

The radioactive 27Si (T1/2=4.16s) beam in the experiment at NSCL was produced

by fragmenting 150 MeV/nucleon 36Ar primary beam ions on a 940 mg/cm2 9Be

target, resulting in a beam energy of 89 MeV/nucleon, an intensity of about 1×107
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Figure 2.5: schematic diagram of the focal plane detector system at the end of the
S800 spectrograph.

pps and purity of about 36%. A 250 mg/cm2 polypropylene foil (CH2) was used

as the secondary target which is surrounded by the highly segmented germanium

detector array (SeGA) detecting the gamma rays from the decay of 26Si∗ recoils.

These gamma rays were detected in coincidence with the detection of the 26Si

recoils at the S800 focal plane. The 26Si recoils were identified by the time of flight

(TOF) between the diamond detector and the scintillator together with the energy

loss in the ion chamber.

2.2 The p(25Al,p)25Al experiment at the CRIB

facility

We performed an elastic scattering experiment by bombarding a thick proton target

(polyethylene, CH2) with a radioactive heavy-ion beam of 25Al. With the beam
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Figure 2.6: Photograph of the SeGA array from the front view.

losing energy and finally stopping in the thick target, a wide range of resonance

energies can be scanned in the inverse kinematics. Because only states above

the proton threshold (Sp=5.518 MeV)3 in the intermediate compound nucleus of

26Si can be populated in the scattering, this experiment aims to study only the

resonances above that, as complementary to the aforementioned NSCL experiment.

2.2.1 Kinematics and the thick target method

Usually in a nuclear experiment, a light stable beam is used to bombard a target

made of a relatively heavier long-lived particle and thus the normal kinematics ap-

plies. But in experiments involving radioactive beams, especially those for nuclear

astrophysics study, one uses heavy radioactive beam particles to bombard light

target nuclei and therefore the kinematics is reversed. To obtain the proper reac-

3the Q-value of the nuclear reaction in which a proton and a heavy nucleus form a compound
nucleus; only energy levels above this Q-value in the compound nucleus can be populated by the
mechanism of compound nuclear scatterings and reactions.
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tion information for compound nuclear reactions or scatterings, such as resonant

energies and the excitation function, the motion of the interacting particles should

be calculated in inverse kinematics, in which all quantities should be converted

from the laboratory frame to the center-of-mass (CM) frame.

Although we can deduce all the energies in the CM frame by the same normal

kinematics as used for deducing the excitation energy in the p(27Si,d)26Si∗ exper-

iment, there is simpler way to do that due to the symmetry and simplicity of the

elastic scattering in inverse kinematics. Figure 2.7 shows the schematic diagram

of the elastic scattering with both the quantities in the laboratory frame and their

corresponding quantities in the CM frame indicated explicitly.

Figure 2.7: schematic diagram of the elastic scattering in inverse kinematics.
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The notation in the figure is explained as follows:

m mass of the light target particle, i.e. proton

M mass of the heavy beam particle

vc velocity of the center of mass

vm lab velocity of m after collision

vcmm CM velocity of m after collision

vM lab velocity of M after collision

vcmM CM velocity of M after collision

Tb lab kinetic energy of M before collision

Tm lab kinetic energy of m after collision

T cm
m CM kinetic energy of m after collision

TM kinetic energy of M after collision

T cm
M CM kinetic energy of M after collision

θlab lab scattering angle of m relative to the beamline direction

θcm CM scattering angle of m relative the beamline direction

According to the simple trigonometry, we can easily find the following relations,

setting vcmm = vc for elastic scatterings:

vm = 2vcmm cos θlab

2θlab + θcm = 180◦

And then from conservation of momentum and kinetic energy, we finally obtain

the relation between the total kinetic energy in the CM frame Ecm and the detected

proton energy Tm, as well as the relation between Ecm and the beam energy Tb,

Ecm =
M +m

4M cos2 θlab
Tm

Ecm =
m

M +m
Tb
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In order to scan a wide range of resonance energies, the thick target method [18,

19] was used. In this method, the target, usually a polypropylene target (CH2), is

chosen to be thick enough to fully stop the radioactive beam but thin enough for

the recoiling light particles, usually protons, to exit the target. In the travel path

of the beam particle from its beginning in the target to its final stop, the beam

particle continuously loses energy mainly due to the collisions with the electrons in

the target [20], and collides with the light target particles to scatter them mostly

into the forward solid angles in the laboratory system. Therefore, a wide range of

energy levels can be scanned simultaneously with only one beam energy, with the

maximum of the range corresponding to the beam energy; and the scattered light

particles can be detected at forward angles in the laboratory system. According

to the above derivations, we can express Ecm in terms of the initial beam energy

To before entering the target, the stopping power [20] of the beam particles in the

target dE/dx and the differential target thickness the beam ion has traveled, as

follows,

Ecm =
m

M +m
Tb =

m

M +m

(
To −

∫ x

0

dE

dx
dx

)

where x is the length that the beam has traveled in the target when a scattering

occurs.

For our case of the 25Al+p elastic scattering, m ≈1 amu and M ≈25 amu.

Then we can rewrite all the relations as

Ecm =
26

100

1

cos2 θlab
Tm

Ecm =
1

26
Tb =

1

26

(
To −

∫ x

0

dE

dx
dx

)

2.2.2 The CRIB facility

CRIB is the CNS (Center for Nuclear Study) Radioactive Ion Beam separator

located at the RIKEN campus at Wako in Japan. Figure 2.8 shows the schematic
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diagram of the CRIB facility. The primary stable beam, typically a few 100 pnA

(particles per nano ampere4), is produced and accelerated at an AVF cyclotron, and

then can be delivered into different experimental halls including CRIB for different

purposes. CRIB then uses the primary beam to bombard a primary gas target at

the F0 chamber to produce different low energy (<10 MeV/u) radio-isotope (RI)

beams by the in-flight (fragmentation) method. The produced various RI beams

are then passed through two dipole magnets to separate them according to the

characteristic mass-to-charge ratios (A/q) of different nuclei or different charge

states (q) of the same nucleus. The rigidities5 (Bρ) of the magnets are set to select

the desired beam particles with proper A/q based on the following relation,

Bρ =
A

q
v (2.1)

where B is the magnetic field; ρ is bending radius of the dipole magnet; and A, q,

v are the particle’s atomic mass number, charge state and velocity, respectively.

After the first selection through the bending dipole magnets according to the

magnetic rigidity, a Wien filter, installed downstream of the two dipole magnets

as shown in the schematic diagram, provides further separation for beam particles

of the same magnetic rigidity but different masses (A) according to the velocity

of the beam particle. The Wien filter will be described in detail in the following

section.

With these techniques, the CRIB facility can produce intense and good-quality

RI beams with a typical intensity of 104 to 106 pps (particles per second6), which

are applicable for various studies of nuclear physics, especially for those related to

the nuclear astrophysics that needs high intensity and high purity RI beam [21].

41 pnA = 1 nano ampere/1 charge unit (e) � 6.3×109 particle per second
5This also refers to a particle’s momentum per unit charge in a magnetic field.
6For stable beams, we use the high intensity unit of pnA; for radioactive beams, we use the

unit of pps due to their low intensities relative to the stable beams.
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Figure 2.8: schematic diagram of the CRIB facility.

2.2.2.1 Beam selector — the Wien Filter

After the beam separation using magnetic dipole according to the different mag-

netic rigidities of different nuclei, the radioactive beam is still greatly contaminated

by radioisotopes with the same mass-to-charge ratios (A/q) but different masses.

Therefore, a secondary beam selector called a Wien Filter is used and it performs

the separation based on the different momenta. In this sense, the Wien Filter is

also called momentum separator. Figure 2.9 shows the schematic diagram of the

Wien Filter.

When it is working, there are two fields applied inside: a vertical electric field

and a horizontal magnetic field perpendicular to the beam line. The directions

are set in such that when a charge particle passes through, it will experience the

downward or upward electric force and the opposite magnetic force. Only when

the two forces balance each other can the charged particle go straight along the

beam line through the filter. Otherwise, the particles will deviate from the beam
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Figure 2.9: schematic diagram of the side view of the Wien Filter.

line and stop within the filter. When the two forces are equal, we can determine

the “passing-through” velocity in terms of the magnetic field B and the electric

field E as

v =
E

B
(2.2)

Since we can find the beam velocity from the energy and mass of the beam particle,

by applying the proper electric field and magnetic field, we can select only parti-

cles with the right velocity and therefore prevent the contaminants with different

velocities from passing through the filter and proceeding to the target.

2.2.2.2 Experimental chamber (F3)

After the beam particles pass through the Wien Filter, they enter the experimental

chamber in which they will be identified and tracked using two PPAC ( Parallel

Plate Avalanche Counter) [? ] detectors before they bombard the target. It is

because even the Wien Filter can not filter out the unwanted particles with the

same mass and the same charge as the desired beam particles and they will co-

exist with the beam particles and also react with the target. For example, for
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Figure 2.10: Set-up of the detectors in the experimental chamber.

our experiment, the final radioactive 25Al beam on target is still contaminated

greatly by its mirror nucleus 25Mg in the same charge state. Since in the inverse

kinematics the light target particles will be scattered primarily into the forward

scattering angles, the silicon detectors for detection of the scattered particles are

placed at such angles. Figure 2.10 shows the set-up of the detectors in the detector

chamber and figure 2.11 shows a photograph of the experimental chamber.

In case of inelastic scattering in which the heavy particle is scattered out in its

first excited state and immediately decays to its ground state with a γ-emission,

a NaI γ-ray detector array is installed right above the target for detection of

the γ-rays in coincidence of the detection of the light recoils (protons) in the

silicon detectors. By this coincidence measurement, we can not only identify the
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Figure 2.11: A photograph of the experimental chamber (F3).

resonances in the inelastic scattering events, but also remove protons from these

events due to the measured proton spectrum of the elastic scattering events.

2.2.3 Experiment details

The elastic scattering experiment was performed using a 7.5 MeV/A 24Mg8
+
pri-

mary beam. The reaction 2H(24Mg,n)25Al was used to produce the secondary 25Al

beam with energy of about 3.4 MeV/A, purity of about 50% and intensity of up

to 1.2×106 pps. The secondary beam was identified by two PPACs (Parallel Plate

Avalanche Counters) which were also used for beam tracking to determine the

beam position on target and the scattering angle when combined with the proton

position measured on a PSD (Position-sensitive Silicon Detector). The secondary

target was a 6.58 mg/cm2 CH2 target, which was thick enough to stop the 25Al

beam ions. The elastically scattered protons after the target were measured down-

stream by 3 sets of ΔE-E telescopes at 0◦, 17◦ and 27◦, respectively. Each telescope
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consists of one 75μm double-sided 16ch×16ch PSD and two 1500μm single channel

SSDs (Silicon Strip Detectors). Right above the target, 10 NaI detectors were used

to detect γ-rays from the decay of the first excited state of the 25Al produced in

the inelastic scattering.

Figure 2.12 shows a schematic diagram of the beam transport line along the

CRIB, and the beam tracking and proton detection systems in the F3 chamber.

Figure 2.12: schematic diagram of the beam transport line along the CRIB, and
the beam tracking and proton detection systems in the F3 chamber.

The Si detectors — PSDs and SSDs — were calibrated separately with three

alpha sources (237Np, Eα=4.788 MeV; 241Np, Eα=5.486 MeV; 244Np, Eα=5.805

MeV). A further calibration with proton beams of 5 MeV, 9MeV and 14 MeV was

used to correct for the pulse height defect of alphas in the Si detector. Since the

energy range of protons in the PSD used in this experiment is about 2 MeV, the

proton beams will punch through the PSDs, enabling the ΔE-E telescope to be

calibrated as a whole.

2.2.4 Electronics and Data Acquisition System (DAQ)

Each SSD has one channel and is only used for an energy measurement. Each PSD

has 16×16 channels and it also provides the energy measurement for reconstructing

the total proton energy and for ΔE-E particle identification. Besides, it can also
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provide 2-dimensional position information for calculating the scattering angles and

the timing information for particle identification using the TOF (Time Of Flight)

method only by which the low-energy scattered proton stopping in the PSDs can

be identified. The 2-dimensional position information in each PPAC, which is

used for beam identification and beam tracking (constructing the scattering angle

together with the positions from PSDs), is calculated from the four timing signals

it provides with two signals determining one dimension.

Figure 2.13 shows the diagram of the electronics for the detectors.

Figure 2.13: Diagram of the electronics for the detectors, adapted from [24].

There are three trigger modes: beam singles trigger (PPAC signals), beam
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coincidence trigger (beam and PSD signals) and pile-up trigger. The beam singles

mode is used when fine tuning the beam before directing the beam to the target

and it triggers events with no PSD signals. The pile-up trigger is used for flagging

the pile-up events which will be removed from the total events. The working

trigger is the coincidence trigger provided by the beam signals (PPAC signals)

combined with the PSD signal, and let through only events which have the beam

particles with the right energies and the protons with energies deposited in the

PSD. Figure 2.14 shows the electronic diagram of DAQ triggers.

The DAQ used at CRIB is the Barbel system and the online data analysis is

performed using the ANAPAW analysis package, both of which can are discussed

in more detail on the RIKEN DAQ website [25].
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Figure 2.14: Electronic diagram of the DAQ trigger, adapted from [24].
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Chapter 3
Some Basic Techniques in the Data

Analysis for Nuclear Experiments

In this chapter, before describing the detailed data analysis for our two exper-

iments, some basic analysis techniques and procedures used in our experiments

and also common in nuclear physics experiments will be introduced, such as the

particle identification techniques.

3.1 Particle identification (PID) techniques

Normally in nuclear beam experiments, especially for radioactive beam experi-

ments, the resulting beam can not be 100% pure and is inevitably contaminated

during the beam production. Also the reaction recoils are contaminated either by

the unreacted beam particles and the contaminants from the beam or by the other

reaction products. So we have to filter out the contaminants in order to get the

desired beam for the expected nuclear reactions. There is currently no electronics

or detectors which can recognize nuclear isotopes and automatically filter out un-

wanted information in nuclear experiments. The techniques normally used now are

the energy loss and the time-of-flight method which use combinations of detectors

to identify the measured particles based on their properties.
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3.1.1 PID using energy loss information in detectors — the

ΔE-E method

When a charged particle passes through the matter in a detector, it will interact

mainly with the electrons in the matter via the Coulomb interaction. The particle

will therefore lose its energy toward creating electron-ion pairs, which can then be

collected as an electric signal whose size is a measurement of the energy deposited

in the detector. Its energy loss per unit length in the matter is then related to its

charge (proton number Z) as well as its mass M 1, and is given by the Bethe-Bloch

formula (see Eq.5.3 in Chapter 5) from which we find that

E

Δx
∝ Z2

v2
(3.1)

where v is the velocity of the particle. If a detector is thin enough to let the particle

pass through, the total energy deposited in the detector can be approximated as

the ΔE in the above relationship with Δx as the thickness of the thin target. So

for different charged particles passing through the target, Δx is the same and we

can rewrite the proportionality as

ΔE ∝ Z2

v2
. (3.2)

Since we have the total energy of the particle E = 1
2
Mv2, we can find based on

the proportionality above that

ΔE × E ∝ M × Z2. (3.3)

In the plot of ΔE vs E, this corresponds to a hyperbolic curve for continuously

varying E or a point on such a curve for a single E 2, with the curvature uniquely

1Of course, the energy loss is also related to proton number and mass density of the matter
of the detector and since we always use the same detectors in an experiment can treat them as
constants.

2The light reaction products usually have continuously varying energies according to the
reaction kinematics and the beam particles or the heavy reaction products in inverse kinematics
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determined by the mass M and proton number Z of the detected particle. By

measuring the energy loss ΔE in a thin detector and total energy in a following

thick detector (thick enough to stop the particle) and plotting them in the ΔE

vs E histogram, different particles can be clearly identified. Figure 3.1 shows the

simulation of the ΔE-E curves of different nuclei.
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Figure 3.1: Simulation of particle identification using the ΔE vs E histogram.

Since in real experiments the particles (beam particles or scattered products)

do not necessarily go perpendicularly into the ΔE-E array instead at an angle θ

with the perpendicular direction, the proportionality for ΔE should be corrected

by a factor of 1/cos θ, as shown in figure 3.2. But the histogram in figure 3.1 still

applies except for that there is a minor extension of width for each curve upward to

account for particles scattered into the rest angles. Examples from our experiments

can be seen in the PID section in Chapter 5.

usually have fixed energies or energies varying in a very small range.
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Figure 3.2: schematic diagram of the ΔE-E PID method.

3.1.2 PID using time of flight between detectors — the

TOF-ΔE method

The effectiveness of the ΔE-E method is limited by the particle energy and its

intensity on the detectors, since particles of high energy and high intensity will

damage the expensive detectors, for example in our experiments, the silicon PSD

(Position Sensitive Detector) detectors. So it is usually used for the identification

of low-energy, low-intensity light charged particles, such as protons and alpha

particles, but it is not useful for particles with energies too low to pass through

the thin ΔE detector, e.g., the PSDs in our CRIB experiment. For example, to

straightly penetrate through a 75μm PSD, a proton needs a kinetic energy of at

least about 2 MeV and protons with energies under this 2 MeV threshold energy

will stop in the PSD and therefore will not be identified uniquely using the ΔE

vs E histogram. For these situations, another widely used PID method using the

time of flight (TOF) of the ions between detectors comes to play a role, since it is

just a time measurement between a “start” signal and a “stop” signal and thus not

limited by particle energies. Actually the TOF method is the most used method for
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neutron energy measurements. In the following section, we will discuss separately

the PID techniques using the TOF method for beam particles and scattered light

particles.

Let L be the distance between the two detectors providing the start and stop

signals and t the time difference between the two timing signals. Then the velocity

of the particle can be calculated as v = L/t and the kinetic energy E of the particle

can be written as

E =
1

2
Mv2 =

1

2
M

(
L

t

)2

(3.4)

First let us discuss the PID using the ΔE-TOF method for beam particles or

heavy reaction products which have many contaminants with energies that are

either fixed or varying in a small range. Usually their energies are high enough for

them to pass though the thin detectors for the energy loss measurement and thus

Eq. 3.2 can be used for ΔE. Then we find that

ΔE

t2
∝ Z2. (3.5)

In the ΔE vs time (of TOF) histogram, this corresponds to locus in parabolic

bands representing different isotopes with the same Z but different masses with

the masses increasing from left to right as the TOF increases. This is due to the

fact that usually these particles have similar energies, i.e., their E is almost the

same. Thus according to Eq.3.4, the smaller the mass M , the shorter the TOF

should be. Or according to the correlation between the magnetic rigidity, Bρ, and

the mass-to-charge ratio of the particle, A/q, that is Bρ = (A/q)v, we can find

the time-of-flight t = L/v = (A/q)L/Bρ. Since the Bρ value is the same for all

particles, for isotopes with the same Z (or q), the bigger the mass (A), the longer

the time-of-flight. Similarly according to ΔE ∝ Z2/v2 = 2MZ2/E, for the same

Z, the smaller the mass M , the smaller the ΔE. For the same M , the bigger the

Z, the bigger the ΔE. Figure 3.3 and figure 3.4 show an example of PID for beam
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Figure 3.3: An example of PID for beam particles using the ΔE vs TOF histogram,
adapted from [27].

particles using the ΔE vs TOF histogram.

The PID for light reaction products is slightly different since the energies vary

continuously according to the kinematics as discussed above. For particles passing

through the ΔE detectors, the PID is the same as that described above and each

particle species is represented by a parabolic band. But for particles stopping in

the thin detector, their energy losses cannot be approximated using Eq. 3.2 since

the energy deposited is just the total energy E = 1
2
Mv2. Using t = L/v, we find

that

ΔE × t2 ∝ M2. (3.6)

According to this, these light particles can be identified in the ΔE-TOF histogram
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Figure 3.4: Another example of PID for beam particles using the ΔE vs TOF
histogram, adapted from [27].

by their masses. Figure 3.5 shows a simulation of PID using this method for

particles whose energies span a wide range.

3.2 Data analysis procedure for nuclear experi-

ments

When we have an idea for an experiment on our research subject, we write a

proposal and apply for beamtime. After the proposal is approved, we begin to

think about the detailed run plan and prepare for the experiment set-up. We then

work on the beam development, detector set-up, target preparation, electronics,

and finally the data collection. At this stage, it may seem that the experiment has
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Figure 3.5: A simulation of PID using the ΔE-TOF histogram for continuous ΔE.

been successfully done. However, this is not completely true. The experiment is

just halfway being done since what we got during the experiment time is simply the

recording of the experiment — that is, the raw information about the experimental

runs — and we are still on the way to finding the results from the experiment. This

remaining job is the data analysis: it is part of the experiment and is as important

as the experimental runs themselves.

The raw data are obtained and converted from the electronic signals by the data

acquisition (DAQ) electronics, and then encoded into binary data for easy storage

and access. The raw data for our two experiments performed at two different

laboratories were encoded in different ways and their formats are given in the

Appendix C. The first step of the data analysis is then the decoding and sorting

of the raw binary data to the normal accessible data formats that depend on the

analysis program that will be used. Of course, we can directly analyze the raw
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binary file with the decoding and sorting included in the analysis program, but

it is always good and convenient for future further analysis to decode and sort

all raw data into new easily accessible data formats. And it is also good for the

standardization of the analysis programs since almost all the different laboratories

have different raw data formats and their own analysis programs and it is very

inconvenient and difficult for researchers at different laboratories to communicate

with each other, especially for researchers who are not based in a laboratory.

For example, the CRIB data is encoded into .rdf format and the NSCL data

is encoded into .evt format. To analyze these data directly, one needs to use

their own analysis program packages, which are the ANAPAW analysis tool [28]

for CRIB data and the SpecTcl analysis tool [29] for NSCL data. To reduce the

complexity of learning and using multiple programs for our data analysis, we can

use just their own decoding programs to sort our data (.rdf and .evt) into the

same data format (.root), respectively, so that we can use the same analysis tool

for both datasets. The most used general analysis tool is the C++ based ROOT

data analysis tool package [30]. In ROOT, we can decode the raw data of different

formats separately using the corresponding decoding method and sort them into

the same format — the .root format, which can be easily accessed and analyzed

by any user-customized ROOT program.

After the raw data is converted to .root format files, we can re-sort them by

placing constraints on the data and plot any data in the files for preliminary

analysis. At this stage, we can perform PID analysis by making the histograms as

discussed in the previous section. we can then write codes to make any necessary

corrections, i.e. for our experiments, energy loss correction for proton energies and

Doppler shift correction for γ-emissions, as well as the background subtraction

if there is any. After all of those analyses, we are finished with the raw data

and we can then proceed to the next advanced stage of data analysis. The fits

using theoretical functions can be made to the analyzed data from which the final

physical parameters will be extracted. These extracted results are then compared
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with the existing results from other experiments if these exist, or with theoretical

calculations. Only then can we really say that the whole experiment has been

completed.
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Chapter 4
Data Analysis for the p(27Si,d)26Si∗

Experiment at the NSCL Facility

4.1 Particle identification of beam recoils at the

S800 focal plane

Since the secondary beam on the CH2 target is contaminated by lots of unwanted

particles, there are also γ-ray emission from the reactions of the contaminants with

the target, which therefore contaminate the expected spectra from the decay of the

excited states of 26Si recoils. To eliminate the contaminant γ-ray, we select the

γ-ray emission events coincident with the 26Si recoils by gating on the 26Si recoils

at the S800 focal plane. The particle identification (PID) of 26Si was made using

the ΔE vs TOF technique. The information of time of flight (TOF) is from the

diamond detectors and the scintillators while the ΔE is the energy loss in the ion

chamber at the S800 focal plane. Figure 4.1 shows the 2-dimensional histogram

of ΔE vs TOF used for the PID. The area inside the red cut corresponds to the

26Si recoils. It is clearly seen that the 26Si recoils can be easily separated from the

other contaminants in this spectrum. To implement this PID in the code using

ROOT, we can use the TCutG class to define a cut around the 26Si region in this

PID histogram and then apply the cut during the scanning through the raw data
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to obtain the spectrum of only the γ-rays coincident with the 26Si recoils.
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Figure 4.1: A 2-dimensional histogram of ΔE vs TOF for the PID of 26Si. The
area within the red gate corresponds to the 26Si ions.

4.2 Doppler broadening corrections for γ-ray en-

ergies

Due to the high velocity of the beam particles, the Doppler broadening is prominent

for the gamma ray energy measurement. It is corrected for as follows:

Eγ,dop =
1− β cos θ√

1− β2
Eγ,measured

where Eγ,dop, Eγ,measured, β, and θ represent the corrected gamma ray energy, the

measured gamma ray energy, the ratio of the 27Si beam velocity to the speed of
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light (β = v/c) and the γ-ray emission angle, respectively.

Here we use the 27Si beam velocity for the recoil velocity, which is v=0.386c

for all γ emissions in this experiment. The reason is that the energy loss due

to the reaction with the target and the γ emission is negligible compared to the

high beam energy, also the recoil has a mass comparable with that of the beam

particle and thus the velocity of the recoils can be simply regarded the same as

the beam velocity. And it is also because that the recoil energies can not be easily

and accurately measured. Actually such measurements are unnecessary since the

above estimate is accurate enough when the beam energy is high and the energy

loss is low. When end detectors with high energy resolution are used to measure

the recoil energy, it is better we use the recoil velocity instead of the beam velocity

for this correction.

The γ-ray emission angle θ is calculated according to the geometry of the

SeGA detectors and target. The SeGA array has 22 individual detectors and each

detector has 32 segments. The detectors are arranged at fixed locations and each

segment is assigned a coordinate in 3 dimensions. Figure 4.2 shows the coordinate

system for our experiment, with the direction of z-axis points to the downstream

along the horizontal beamline. The target is assumed to be at the origin and center

on the beam axis..

In the γ-ray measurement, the γ-ray detected by the germanium detector

(SeGA) can be scattered within the crystal and deposit its energy in different

segments of the detector. The hit position of a γ-ray in a detector during each

single event is chosen to be the position of the segment which has the highest de-

posited energy. Let (x, y, z) be the coordinates of a SeGA segment and (xt, yt, zt)

the coordinate of the target, which ideally should be at (xt, yt, zt)=(0, 0, 0). Then

the emission angle can be calculated via,

cos θ =
z − zt√

(x− xt)2 + (y − yt)2 + (z − zt)2

Figurse 4.3 and 4.4 show the uncorrected and corrected gamma ray spectra in
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Figure 4.2: Coordinate system for segments of the SeGA array..

coincidence with the 26Si recoils for the whole runs.
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Figure 4.3: Gamma-ray spectrum before Doppler correction in coincidence with
the 26Si recoils for the whole runs.
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Figure 4.4: Doppler corrected gamma-ray spectrum in coincidence with the 26Si
recoils for the whole runs, including gamma-rays measured in all SeGA detectors.
The energies indicated are from skewed Gaussian fits for the peaks.

But in reality the target center does not sit exactly on the beam axis and it

can be shifted slightly from the origin up and down, or upstream and downstream.

If zero positions are still assumed in the calculation, this will result in, for a same

transition or Eγ,measured, different corrected energies in different detectors , which

will consequently broaden the γ energy peak, worsen the energy resolution, and

increase the uncertainty in the determination of the peak centroid. Therefore, it is

necessary first to determine the target position more accurately before proceeding

to the next step of the data analysis. The procedure for improving the determi-

nation of the target position for better Doppler correction will be discussed in the

following section.
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4.3 Attempts to make the Doppler correction

more accurate

Here I describe two attempts to make the Doppler correction more accurate: one

is the target position determination mentioned above, and the other is an offset

correction for the calibrated γ energy before the Doppler correction.

4.3.1 Target position determination for more accurate Doppler

correction

Ideally, a given γ peak should always have the same peak centroid in the different

spectra from different SeGA detectors, ignoring the statistics uncertainties in de-

termining the centroids. But we found that peak centroids measured by different

SeGA detectors for a same γ peak differ greatly. For example, table 4.1 lists the

peak centroids for the 1796 keV peak corresponding to the strongest E2 → 0 tran-

sition, extracted from spectra of different SeGA detectors with the target position

of (0, 0, 0) and Figure 4.5 shows how every peak centroid shifts relative to 1796

keV. Figure 4.6 shows the projections of all SeGA detectors on the target plane.

In this experiment, SeGA detector3, 7, 8, 11, 15, 16, 23, 24 were not used.

By changing the target position used in the Doppler correction, we can slightly

change the peak centroids in the corrected γ-ray spectra and thus minimize the

root-mean-square (RMS) deviations from the expected value. By trying different

target positions within a small and reasonable range around (0, 0, 0) and comparing

the RMS deviation, we can find the optimal target position which has the smallest

RMS.

To find the optimized target position, firstly we fixed the zt coordinate of the

target position to be zero and scanned the (xt, yt) space to find the (xt, yt) with the

smallest RMS deviation for the SeGA detectors in the 37◦ ring. The reason why

we fixed the zt is that, the change in zt has negligible effect on the final correction

for the detectors in the 37◦ ring considering their long distance to the target in
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Table 4.1: List of peak centroids measured by different SeGA detectors for the
1796 keV peak.

detector peak centroid
No. (keV)
1 1805
2 1827
4 1801
5 1800
6 1806
9 1796
10 1802
12 1787
13 1798
14 1769
17 1788
18 1789
19 1773
20 1780
21 1771
22 1781

the z-axis. Secondly we fixed the (xt, yt) to be the value found from the first step,

and iterated over zt to find the zt with the smallest RMS for the 90◦ ring. The

effect on the final correction for the detectors in the 90◦ ring due to the change in

(xt, yt) is minor compared to that due to the change in zt. This is why we fixed

(xt, yt) in the second step. Ideally, we should scan the whole (xt, yt), zt space in

one step, but it is heavily limited by the computer power due to the requirements

of large storage and computing speed. The (xt, yt) from the first step and the zt

from the second step together give the optimized the target position (xt, yt, zt).

The reason we iterated (xt, yt, zt) in two steps instead of just iterating it in one

step for detectors both in the 37◦ ring and the 90◦ ring, is that the latter would

occupy much more computer memory, making the procedure very slow due to the

large file size, sometimes becoming impossible. Also, the effect on the detectors in

the 90◦ ring due to the change of (xt, yt) of the target position is minor compared
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Figure 4.5: Deviations relative to 1796 keV of the 1796 keV peak centroids mea-
sured by different SeGA detectors with the target at (0, 0, 0). Blue and red stars
represent the SeGA detectors at the 37◦ and the 90◦, respectively.

with the effect on those in the 37◦ ring. The opposite is true when iterating the zt

of the target position in the second step.

Before the iteration, it is necessary to determine the step size and the range

of the iterations for (xt, yt, zt). To this end, I performed an analysis of the effect

of the step size on the RMS. Initially a step size of 0.05cm was used to iterate xt

and yt within the range of (-1cm, 1cm). (In the following content, if not specified,

the unit of the position is in cm.) We choose a segment at (x, y, z)=(10, 10, 20)

in a detector of the 37◦ ring, with zt=0 unchanged and θ as the angle the segment

makes with the down-stream direction of the beam axis (direction of z axis). By

applying a change Δxt on x, we get the following change in cos θ,

Δ(cos θ) = cos(θ −Δθ)− cos θ (4.1)

52



Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy

X position
-30 -20 -10 0 10 20 30

Y
 p

o
si

ti
o

n

-30

-20

-10

0

10

20

30

Figure 4.6: Projections of SeGA detectors on the target plane with the target at
(0, 0, 0). The projections in the inner and outer ring represent the SeGA detectors
in the 37◦ ring and the 90 ◦ ring, respectively.

where Δθ is the change of θ due to Δx, and cos θ and cos(θ −Δθ) are calculated

by

cos θ =
Z√

X2 + Y 2 + Z2
(4.2)

with

X = x− xt ≈ 10, Y = y − yt ≈ 10, X = z − zt = z = 20; (4.3)
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and

cos(θ −Δθ) =
z√

(X −Δxt)2 + Y 2 + Z2

=
Z√

X2 + Y 2 + Z2

1√
1− 2 Δxt·X

X2+Y 2+Z2 +
(Δxt)2

X2+Y 2+Z2

≈ cos θ
1√

1− 2 Δxt·X
X2+Y 2+Z2

≈ cos θ(1 +
Δxt ·X

X2 + Y 2 + Z2
)

(4.4)

where we use the first order Taylor expansion to arrive at the last step.

Combining Eq. 4.2 and Eq. 4.4, we find

Δ(cos θ) ≈ cos θ · Δxt ·X
X2 + Y 2 + Z2

Δ(cos θ)

cos θ
≈ Δxt ·X

X2 + Y 2 + Z2

≈ 0.08%

(4.5)

The change in Doppler corrected γ energy due to the change in the target position

is then,

ΔEdop = Emeasured
1− β cos θ√

1− β2
− Emeasured

1− β cos(θ −Δθ)√
1− β2

= Emeasured
βΔcos θ√
1− β2

(4.6)

Then, we find,

ΔEdop

Edop

=
βΔcos θ

1− β cos θ

≈ β cos θ × 0.08%

1− β cos θ

≈ 0.386× 0.8× 0.08%

1− 0.386× 0.8

≈ 0.04%
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where β=0.386 and cos θ=0.8 for detectors in the 37◦ ring.

Based on the above calculation, for the 1796 keV γ energy, for example, the

change resulting from the change in the target position (Δxt = 0.5mm)is,

1796× 0.04% ≈ 0.7 keV (4.7)

To find out the effect of ΔEdop=0.7 keV on the RMS deviation, we assume that

RMS=10 keV for the 16 detectors measuring the 1796 keV γ energy; that is,

RMS =

√∑16
i=1(E

i
dop − Emean)2

16
= 10 keV (4.8)

Then,

RMS +Δ(RMS) =

√∑16
i=1(E

i
dop − Emean +ΔEdop)

16

≈
√
102 + 0.72

≈ 10 + 0.03 keV

(4.9)

So each step of iteration of the target position will result in a change in RMS,

Δ(RMS) = 0.03 keV (4.10)

This assures us that the iteration step length Δx= 0.05 cm is small enough to find

the best range of target positions.

Using the step length Δx=0.05 cm, the best target position with the least RMS

was found to be (0, -0.25, 0).

In order to further verify this result, we iterated the target position for (xt, yt)

around the one above using a shorter step length of Δx=Δy=0.01 cm. The best

result stays the same.

With the best (xt, yt) found, we then iterated zt in the range of (-1,1) for the
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Table 4.2: List of the smallest RMS obtained under different conditions.

(x, y, z)
Smallest RMS

37 degree array 90 degree array total
(x, y) vary least RMS=2.1189

10.379 10.694
z=0,fixed at (x, y)=(0, -0.25)

(x, y)=(0. -0.25)
4.431

smallest RMS=2.0
8.724

fixed, z vary at z=0.25

γ energies measured by the detectors in the 90◦ array and the best result is at

zt=0.25. Table 4.2 shows the list of the smallest RMS deviations obtained in each

iteration, as well as the smallest RMS calculated for all SeGA detectors combined.

The optimized target position we found is (xt, yt, zt)=(0, -0.25,0.25). All γ-ray

energies were subsequently corrected using this position. Figure 4.7 shows how

every peak centroid shifts relative to the 1796 keV using the optimized target

position.

4.3.2 Offset correction to the calibrated γ energy for more

accurate Doppler correction

From figure 4.7 even with the optimized target position, we can see that the peak

centroids measured by different detectors for the 1796 keV γ-ray still have consid-

erable deviations from the expected value, with a mean deviation of the detectors

in the 37◦ ring of 9.286 keV and 7 keV for those in the 90◦ ring. What causes

this deviation even after we have done an accurate energy calibration for the de-

tectors and corrected the target position? The intrinsic energy resolution of the

SeGA detectors may contribute partially but is not be the major source, since the

SeGA detectors have high energy resolution of about 1-2 keV. The 1796 keV γ

peak is the strongest transition among all transitions and is now well determined

with an uncertainty of about 0.2-0.5 keV. All these considerations cannot explain

the considerable deviations. But we can think about that they might come from
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Figure 4.7: Deviations from the 1796 keV of the 1796 keV peak centroids measured
by different SeGA detectors with the target at the optimized position (0, -0.25,
0.25). Blue and red stars represent the SeGA detectors at the 37◦ and the 90 ◦,
respectively.

some factors we do not know, which altogether result in an offset to the energy

measurement for each single detector. Actually this is just like a second calibra-

tion using a well-determined peak from the measured spectrum. Here we use the

1796 keV peak as a calibration source to find the offset for each detector, since, as

mentioned, its energy is very well known.

Due to the motion of emission source, the measured γ-energies should be cor-

rected for Doppler Broadening in order to obtain the real transition energies of

the γ rays. But, because the measurements by the detectors are made for the γ

energies deposited in the detectors, the offsets we want to find should be applied to

the these energies rather than the γ energies after the Doppler correction. Then,

how can we find these offsets from the γ energy spectra? Let us start with the
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formula of Doppler correction but now with the offset added, that is,

Efinal
dop = (Emeasured + offset)

1− β cos θ√
1− β2

(4.11)

where Efinal
dop now is the final γ energy after Doppler correction and offset correction,

Emeasured is still the energy deposited in the detector and offset is the energy offset

due to the possible causes we already mentioned above. Since the energy in the

present Doppler-corrected γ spectrum was obtained by

Edop = Emeasured
1− β cos θ√

1− β2
(4.12)

then we can find that,

Efinal
dop = Edop + offset

1− β cos θ√
1− β2

(4.13)

It follows that

offset = (Efinal
dop − Edop)/

(
1− β cos θ√

1− β2

)
(4.14)

Apparently we cannot use this equation to find the offset because we don’t know

what Efinal
dop corresponds to a given combination of Edop and θ, which is exactly

what we want to find after finding the offset first. But we can assume that a same

group of events making a peak in a particular range of energies in the spectrum

of Edop should also make a peak in the spectrum of Efinal
dop at the expected energy

that the peak should have after we make the offset correction. For example, for

the 1796 keV peak, we may find a peak at 1800 keV in a γ spectrum measured by

one of the detectors and we expect that, after adding the offset, all energies in the

previous 1800 keV peak region will now peak at 1796 keV. With this assumption,

and with the fact that all energies measured by the same detector have the same

offset and the average of all the involved energies corresponds to the peak energy,

we should be able to calculate the offset by taking the average of the angles θ of
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all the γ events that make up a peak and using the peak centroids; that is

offset =
Efinal

peak − Epeak

1−β·cos θ√
1−β2

(4.15)

where Efinal
peak and Epeak represent the expected peak energy and the measured peak

energy in the Doppler corrected spectrum, respectively; cos θ is the average of cos θ

over all the involved γ-emissions making the peak.

Here are the details for finding the offsets. By using the 1796 keV peak as

a calibration peak, Efinal
peak =1796 keV for all detectors. Epeak is the peak value

corresponding to the 1796 keV peak in the γ spectrum measured by each detector.

we still need to know the cos θ, which will be calculated for each detector using

a 2-dimensional histogram of cos θ vs Emeasured for the γ events making up the

peak corresponding to the 1796 keV peak. Figure 4.8 shows an example of this

histogram.

Of course, the offset correction is just an approximation and not a perfect

approach, since only one known peak is used to calibrate and calculate the offsets

which are then applied to all the other peaks. Different offsets might be obtained

if we use different peak or multiple peaks for calibration. Strictly speaking, it

cannot be simply assumed that the same offset calculated using one peak is valid

for other peaks to correct their peak centroids. However, since the 1796 keV peak

we used for calibration is the dominant peak and is much stronger than the other

peaks, it alone will give the best correction results compared with those obtained

using other peaks with low statistics, or using the combination of the 1796 keV and

other peaks, both of which result in more uncertainty than the approach involving

only the strongest peak. We did find finally that with the offset correction, the

quality of the spectrum was improved. Further improvement might be achieved

by introducing a gain to each detector which can be calculated to compensate for

the offsets. It will then be similar to the linear calibration.

After all offsets for the 16 SeGA detectors in both 37◦ and 90◦ were obtained,
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Figure 4.8: An example of a 2-dimensional histogram of cos θ vs Emeasured for
calculating the average of cos θ of a detector over the detected γ emissions of the
1796 keV peak. This is for detector No.10 in the 37◦ ring with the Doppler-
corrected peak of 1796 keV at 1802 keV.

they were be applied to these detectors in the sorting program to resort the raw

experimental data.

4.4 Peak information from the corrected γ spec-

trum

Figure 4.9 is the final fully corrected γ spectrum, in which a new γ ray is found at

2260 keV; and figure 4.10 shows the same spectrum from 3700 keV to 4600 keV,

where another new peak around 4100 keV is found. In gamma spectroscopy, a

Gaussian shape function is used for fitting the γ peak to extract the peak infor-

mation, such as peak centroid energy, peak intensity and corresponding uncertain-
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Figure 4.9: The final corrected γ spectrum for the whole energy range of the
detected γ-rays.

ties [58, 59]. For the formula used for the fitting, there are various forms which are

slightly different from one another in format, but essentially the same [58, 60] in

that they generally consist of three components: a main pure Gaussian shape of

the peak, a skewed Gaussian shape on the low energy side of the peak caused by

the pile-up effect and incomplete charge collection of the detector; and a quadratic

background at the bottom of the Gaussian shape. Here we use the following for-

mula which is adapted from the formula in the gamma analysis package GF3 [60],

and has the pure Gaussian, skewed Gaussian and quadratic background terms

listed below in order.
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Figure 4.10: The final corrected γ spectrum — an enlargement from 3700 keV to
4600 keV where a new peak around 4100 keV is found.

Y = A · (1− R

100
) · exp[−(X −X0)

2/(2 · σ2)]

+ A · R

100
· exp[(X −X0)/σ] · erfc[(σ +X −X0)/(

√
2 · σ)]

+ a ·X2 + b ·X + c

(4.16)

where

Y — yield of γ rays;

A — a normalization factor;

R — contribution of the skewed Gaussian, out of 100;

X0 — peak centroid (keV);

σ — standard deviation of the peak centroid (keV);

From the fitting the peak shape, the peak centroid and peak resolution can
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be obtained directly. The peak intensity is represented by the total counts within

the peak range. In gamma spectroscopy, a relative intensity is usually used with

the strongest transition having an intensity of 100, and the rest having intensities

relative to 100, given by the ratio between their yield and that of the strongest

peak. The total yield in a peak in the spectrum is equal to the area under that

peak and is calculated using the area of the fit function excluding the background

term for that peak1. The area of the fit function is calculated as below:

Peak Area

=

∫ +∞

−∞
(Gaussian term + skewed Gaussian term)dX

=

∫ +∞

−∞
(A · (1− R

100
) · exp[−(X −X0)

2/(2 · σ2)])dX

+

∫ +∞

−∞
(A · R

100
· exp[(X −X0)/σ] · erfc[(σ +X −X0)/(

√
2 · σ)])dX

= A · (1− R

100
) ·

√
2πσ +

A ·R
100

· 2σ√
e

= Aσ(
√
2π +

2−√
2eπ

100
√
e

R)

(4.17)

and the uncertainty of the area is given by

δArea

Area
=

√(
δA

A

)2

+

(
δσ

σ

)2

+

(
δR

R

)2

(4.18)

When making the fitting, we can fit each peak individually or fit all peaks

together simultaneously. Here we choose to use the former option. The fitting

procedure is as follows: firstly, we roughly decide the peak energy range of the

peak to be fitted and make a fit; secondly, we fine tune both sides of the peak

range and repeat the fitting; finally, we compare all fitting results and choose the

fit with the smallest χ2 to extract the peak parameters and their uncertainties,

and to calculate the peak area and its uncertainty by error propagation using the

1only when the histogram has a binning of 1keV/bin; otherwise, the bin size has to be taken
into account when calculating the yield using the area.
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extracted peak information. Figure 4.11 shows an example of the skewed Gaussian

fit for the 1796 keV peak with each component in the fit function plotted in the

figure also. Figures 4.12 to 4.15 show the final fits for the other potential peaks in

the final γ spectrum and the fits for the newly found peaks around 4110 keV and

2260 keV are shown in figure 4.16. All these fits are obtained by varying the fit

range, and making the parameter R fixed or free to vary to find the smallest χ2.

Table 4.3 lists the extracted peak parameters and peak areas, and table 4.4 lists

the final energies for all γ peaks, their relative intensities with respect to that of

the strongest γ ray, and the uncertainties in the intensities and energies.
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Fit for range 1747 - 1845 keV

Figure 4.11: The skewed Gaussian fit example for the 1796 keV peak with the fit
curve in black solid line, the Gaussian component in red dotted line, the skewed
Gaussian component in blue dashed line, and the quadratic background in green
dotted-dashed line.
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Fit for range 1310 - 1360 keV

R is fixed to 0.01

Figure 4.12: The fits for the peaks at 843 keV, 989 keV and 1326 keV in the gamma
spectrum.
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Figure 4.13: The fits for the peaks at 1404 keV, 1533 keV and 1954 keV in the
gamma spectrum..

66



Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy

skewed_gaus_fit
 / ndf 2χ  94.37 / 54

a  1.018e-05± 2.023e-05 
b         0.0204± -0.2415 
c  40.9± 941.9 
A  25.6±   217 

0X  0.6±  2024 
σ  2.07± 17.34 

Energy (keV)
1990 2000 2010 2020 2030 2040 2050

E
ve

n
ts

/1
 k

eV

550

600

650

700

750

800

skewed_gaus_fit
 / ndf 2χ  94.37 / 54

a  1.018e-05± 2.023e-05 
b         0.0204± -0.2415 
c  40.9± 941.9 
A  25.6±   217 

0X  0.6±  2024 
σ  2.07± 17.34 

Fit for range 1990 - 2050 keV

R is fixed to 0.01

skewed_gaus_fit
 / ndf 2χ  171.2 / 134

a  2.120e-05± 8.777e-05 
b         0.0022± -0.3099 
c  117.8± 805.3 
A  13.2± 159.4 

0X  2.0±  2360 
σ  3.31± 33.68 

Energy (keV)
2300 2320 2340 2360 2380 2400 2420

E
ve

n
ts

/1
 k

eV

550

600

650

700

750

skewed_gaus_fit
 / ndf 2χ  171.2 / 134

a  2.120e-05± 8.777e-05 
b         0.0022± -0.3099 
c  117.8± 805.3 
A  13.2± 159.4 

0X  2.0±  2360 
σ  3.31± 33.68 

Fit for range 2290 - 2430 keV

R is fixed to 0.01

skewed_gaus_fit
 / ndf 2χ  159.6 / 143

a  2.919e-06± -5.113e-05 
b         0.0079± -0.4126 
c  20.8±  1675 
A         34.7±  1209 
R         3.31± 24.66 

0X  0.3±  2648 
σ  0.22± 23.94 

Energy (keV)
2580 2600 2620 2640 2660 2680 2700 2720

E
ve

n
ts

/1
 k

eV

200

400

600

800

1000

1200

skewed_gaus_fit
 / ndf 2χ  159.6 / 143

a  2.919e-06± -5.113e-05 
b         0.0079± -0.4126 
c  20.8±  1675 
A         34.7±  1209 
R         3.31± 24.66 

0X  0.3±  2648 
σ  0.22± 23.94 

Fit for range 2570 - 2720 keV

Figure 4.14: The fits for the peaks at 2024 keV, 2360 keV and 2648 keV in the
gamma spectrum.
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Figure 4.15: The fits for the peaks at 2785 keV and 3000 keV in the gamma
spectrum.

68



Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy

skewed_gaus_fit
 / ndf 2χ  86.54 / 74

a  0.0000066± 0.0001741 
b         0.0150± -0.2899 
c  33.7± 315.3 
A         18.7±  95.2 

0X  1.3±  2260 
σ  4.25± 21.11 

Energy (keV)
2220 2230 2240 2250 2260 2270 2280 2290 2300

E
ve

n
ts

/1
 k

eV

520

540

560

580

600

620

640

660

680

700

skewed_gaus_fit
 / ndf 2χ  86.54 / 74

a  0.0000066± 0.0001741 
b         0.0150± -0.2899 
c  33.7± 315.3 
A         18.7±  95.2 

0X  1.3±  2260 
σ  4.25± 21.11 

Fit for range 2220 - 2300 keV

R is fixed to 0.01

skewed_gaus_fit
 / ndf 2χ  2.207 / 5

a  0.0000057± 0.0001188 
b         0.0239± -0.6315 
c  97.3±  1207 
A         24.86± 68.96 

0X  4.0±  4113 
σ  5.02± 10.37 

Energy (keV)
4040 4060 4080 4100 4120 4140 4160 4180 4200

E
ve

n
ts

/1
0 

ke
V

580

600

620

640

660

680

skewed_gaus_fit
 / ndf 2χ  2.207 / 5

a  0.0000057± 0.0001188 
b         0.0239± -0.6315 
c  97.3±  1207 
A         24.86± 68.96 

0X  4.0±  4113 
σ  5.02± 10.37 

Fit for range 4060 - 4170 keV

R is fixed to 0.01

Figure 4.16: The skewed Gaussian fits for the newly found peaks at around 2260
keV and 4100 keV.
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Table 4.3: List of the peak parameters of all the peaks extracted from the best
fits and the calculated peak areas, along with the uncertainties. The uncertainties
in the parentheses for the energies is just the statistical uncertainty taken directly
from the fit results for the peak energies.

peak centroid σ peak area χ2

(keV) (keV) (counts)

843.6(3) 8.0(5) 6300(682, 7.8%) 1.08

989.4(1) 9.4(3) 41134(1439, 3.5%) 1.70

1326.0(12) 14.4(28) 5448(1357, 25%) 1.50

1404.0(4) 15.8(7) 16725(876, 5.2%) 1.52

1533.0(5) 16.6(8) 14768(881, 6.0%) 1.66

1796.0(1) 16.3(1) 211961(31214, 14.5%) 1.79

1954.0(7) 17.9(22) 8976(1375, 16.6%) 1.47

2024.0(6) 17.3(21) 9435(1583, 16.8%) 1.75

2260.0(13) 21.1(43) 5038(1416, 28%) 1.17

2360.0(20) 33.7(33) 13456(1726,12.8%) 1.28

2648.0(3) 23.9(3) 63296(8717,13.8%) 1.12

2785.0(4) 25.3(12) 13061(760, 5.8%) 1.14

3000.0(12) 30.0(43) 4513(882, 19.6%) 1.12

4113(4) 10(5) <200 0.44
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Table 4.4: The final results for all γ peaks: their energies, relative intensities with
respect to that of the strongest γ ray, and the corresponding uncertainties in in-
tensity. The results from the present work are compared with previous results [13].

present work other work

Eγ (keV) Iγ Eγ (keV) Iγ

843.6(3) 3.0(3) 842.1(3) 3.6(4)

989.4(1) 19.4(7) 988.8(1) 26.4(7)

1326.0(12) 2.6(7) 1329.4(3) 3.9(4)

1404.0(4) 7.9(4) 1400.7(2) 10.1(6)

1533.0(5) 7.0(4) 1531.1(5) 4.8(5)

1796.0(1) 100(15) 1797.2(1) 100.0(5)

1954.0(7) 4.3(7) 1960.4(2) 10.6(6)

2024.0(6) 4.5(8) 2024.2(5) 4.3(5)

2260.0(13) 2.4(7) —- —-

2360.0(20) 6.4(8) 2360.2(8) 3.6(5)

2648.0(3) 30(4) 2648.8(3) 17.3(8)

2785.0(4) 6.2(4) 2785.5(3) 12.9(7)

3000.0(12) 2.2(4) 3001.0(4) 12.4(8)

4113(4) <0.1 — —
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4.5 Coincidence analysis of γ-rays

Since a cascade of gamma rays can be emitted simultaneously from an excited

state in a single reaction, the γ-ray coincidence analysis technique is usually used

to construct the level scheme. This analysis is made by gating on any gamma peak

energy of interest to get all gamma rays coincident with the gated one. Various

methods have been developed for pre-sorting of the data for this purpose [43, 42].

In this section, three methods for γ-γ coincidence analysis which differ according to

how the coincidence spectrum is obtained are described here : by γ-γ matrix, event-

by-event and by γ-γ-γ cube. The one generally used is the γ-γ matrix technique

which was also used for this project. More details will be given in this section.

4.5.1 The γ-γ matrix technique

The procedure of this method follows three steps: (1) making a γ-γ matrix from

the sorted data after decoding the raw experimental data; (2) finding the expected

coincidence spectra from the matrix by applying corresponding gates on it; (3)

finding the coincidence spectra of the corresponding background and subtracting

it from the spectra obtained in step (2). The background subtraction is also a big

concern for this analysis and it will be explained in more detail in the following

text.

4.5.1.1 Constructing the γ-γ matrix

We can start with a simple example assuming that during a single reaction event,

there are 4 γ emissions with energies of 1, 2, 3, and 4 keV, after excluding all

contaminant energies by applying proper conditions. Since they are emitted in the

same event, they are in coincidence with one another and thus they are in a cascade

of emissions from an excited state to lower states. Finding all combinations of γ-

rays emitted in all events, we will be able to find out which γ peaks in the final γ

spectrum in figure 4.9 are in coincidence, which then provides us with information
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for constructing the level scheme. Among the four coincident energies we can

immediately find that there are 6 different 2 dimensional combinations: (1, 2), (1,

3), (1, 4), (2, 3), (2, 4), (3, 4), each of which represents a detection coincidence

of two γ rays with the indicated energies and a position in the 2 dimensional

histogram with the X axis and Y axis in γ energy. We can fill the histogram with

all the combinations. For simplicity and convenience, we use the bigger energy

value as the X energy and the smaller one as Y energy for each combination when

we fill the histogram, since the order of the two energies in the combination does

not matter. Then we can see that we always fill one half of the matrix below the

diagonal, as demonstrated in figure 4.17. By filling the matrix with coincidence

combinations from all events, all γ-γ coincidence information including that of

background is then stored in the matrix. All of the following coincidence analysis

will be made directly on the γ-γ matrix.

4.5.1.2 Finding the coincidence spectra from the γ-γ matrix

Figure 4.18 shows a 2D histogram of the γ-γ matrix constructed from the exper-

imental data. By placing a peak gate on the X axis and projecting the gated

region onto the Y axis, we select all the coincidence events with the larger one of

the two γ energies within the applied energy gate. Similarly, by placing the same

gate on the Y axis and projecting the gated region onto X axis, we select all the

coincidence events with the smaller one of the two γ energies within the applied

energy gate. Adding the two projections together gives the spectrum of all γ rays

in coincidence with the γ energies in the applied energy gate, i.e., the coincidence

spectrum of the γ peak in the gate.

The bigger the size of the energy gate we choose, the more coincidence events

we can select and also the more contaminant coincidence γ rays and background

there will be. But if the gate size is too small, the statistics in the coincidence

spectrum will be very low and give less coincidence information. Therefore, we

have to compromise between the statistics and accuracy and try carefully to find
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Figure 4.17: An example of filling the γ-γ matrix—the 2-dimensional coincidence
histogram. The demonstration is for a single beam event only and each point
represents a coincidence.

the optimal coincidence gate. Figure 4.19 to figure 4.21 show the gating process

and the resulting coincidence spectra for the peak at 1796 keV.
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Figure 4.18: A 2D histogram of the γ-γ matrix constructed from the experimental
data using the technique described in the previous subsection.
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Figure 4.19: Top: gating on the X axis for 1796 keV and projecting the gated
region onto the Y axis to find all the coincidence events with the 1796 keV γ-ray
as the larger of the two energies in coincidence. Bottom: the coincidence spectrum
obtained from the projection.
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Figure 4.20: Top: gating on the Y axis for 1796 keV and projecting the gated
region onto X axis to find all the coincidence events with the 1796 keV γ-ray as
the smaller of the two energies in coincidence. Bottom: the coincidence spectrum
obtained from the projection.
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Figure 4.21: The coincidence spectrum obtained by combining the projections on
the X axis and the Y axis shown in figure 4.19 and 4.20.

4.5.1.3 Subtracting background coincidence events from the coinci-

dence γ spectrum

When we gate on an energy range to get the coincidence spectrum for a peak

in this range, what we actually obtain is a mixture of the coincidence spectrum

of the peak γ rays and that of the background γ-rays in the same peak range.

This brings considerable contaminant γ rays disguised as real coincident γ-rays

into the coincidence spectrum making it impossible to decide whether a peak in

the coincidence spectrum is a real coincident peak or only a contaminant one

from the background coincidence. Therefore it is necessary to find the background

coincidence spectrum and subtract it from the peak coincidence spectrum.

There are different methods commonly used now for background subtraction

78



Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy

of the γ coincidence spectrum [44, 45, 46, 47, 48, 49], but the basic ideas are the

same: to simulate or estimate the background in the coincidence spectrum and then

subtract it from the spectrum. What I want to clarify here is that the background

to be subtracted is from estimation or simulation rather than the real background,

since it is impossible to separate the background γ-rays from the actual transition

γ-rays in the energy range of the gated peak. Because of this, there is not a very

precise way to do the background subtraction. The method used in this analysis,

which is the usual way for background subtraction in γ-γ analysis, is to place two

energy gates on the tails on the both sides of the gated peak, with the sum of the

two gate width equal to the gate width on the peak, to estimate the coincidence

γ-ray background inside the gate on the peak. For peaks with other peaks sitting

closely on their tails, gating on tails will bring plenty of contaminant coincident

γ-rays of the neighbour peaks. For these cases, gates are be chosen on the nearby

smooth regions as close to the gated peak region as possible, and the widths of the

background gates are not necessarily made equal. Figure 4.22 demonstrates how

the gates are chosen for the two situations.

Figure 4.23 (black histogram) shows an example of a coincidence spectrum of

the γ peak at 1404 keV from the transition between the excited state of 26Si at

4184 keV to the excited state at 2783 keV [50]. The energy of the 4184 keV state

can then be confirmed within the uncertainty range by the existence of a cascade of

γ-rays of 1404 keV, 989 keV and 1796 keV. Also shown in red is its corresponding

background spectrum, which is estimated by placing gates on the tails around the

gated peak, since it is not practical to separate the background γ rays from the

actual transition γ rays inside the gated peak energy range.

Figure 4.24 to figure 4.29 show the coincidence spectra for other peaks.
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Figure 4.22: Top: choosing the background gates on the tails of the gated peak if
they are flat enough, gates for 1796 keV peak with the red one indicating the peak
gate and blue ones the background gates. Bottom: choosing the background gates
on the smooth regions close to the gated peak if other peaks sit on its tails, with
the main gate on the 2647 keV peak.
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Figure 4.23: An example of a coincidence γ-ray spectrum for the 1404 keV γ-ray
in black with its background shown in red.
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Figure 4.24: Coincidence γ-ray spectra for 843 keV and 989 keV γ-rays in black
with the background shown in red.
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Figure 4.25: Coincidence γ-ray spectra for 1326 keV and 1533 keV γ-rays in black
with the background shown in red.
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Figure 4.26: Coincidence γ-ray spectra for 1796 keV and 1954 keV γ-rays in black
with the background shown in red.
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Figure 4.27: Coincidence γ-ray spectra for 2024 keV and 2260 keV γ-rays in black
with the background shown in red.
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Figure 4.28: Coincidence γ-ray spectra for 2360 keV and 2648 keV γ-rays in black
with the background shown in red.
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Figure 4.29: Coincidence γ-ray spectra for 2785 keV and 3000 keV γ-rays in black
with the background shown in red.
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Table 4.5: The energy levels and associated γ transitions extracted from the anal-
ysis.

Jπ Ex (keV) γ cascade (keV)

2+1 1796.0(1) 1796.0

2+2 2785.0(4) 989.4a+1796.0

2785.0

0+2 3329.0(6) 1533.0b+1796.0

3+1 3750.0(7) 1954.0+1796.0

3+2 4189.4(5) 1404.0+989.4+1796.0

2+3 /4
+
1 4444.0(4) 2648.0+1796.0

4+2 4796.0(12) 3000.0+1796.0

(0+3 ) 4809.4(6) 2024.0c+989.4+1796.0

2024.0+2785.0

2+4 5145.4(21) 2360.0+989.4+1796.0

4+3 5287.6(5) 843.6+2648.0+1796.0

2+4 5515.4(14) 1326.0+1404.0+989.4+1796.0

(4+4 ) 6449.4(14)d 2260.0e+1404.0+989.4+1796.0

(2+5 /3
+
3 ) 5909(4)f 4113+1796.0

apotential doublet,with the transition from Ex=3750 keV to Ex=2785 keV.
bpotential doublet,with the transition from Ex=5291 keV to Ex=3756 keV.
cpotential doublet,with the transition from Ex=4831 keV to Ex=2785 keV.
dno match from database [79].
eno match from database [79].
fcould be the known 5912 keV state in the literature or the new state 5886 keV found in the

24Mg(3He, nγ)26Si experiment at the University of Tsukuba [39].
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After all cascades are extracted from the γ-γ coincidence, they are be compared

to the equivalent ones from the well known states in 26Mg [80], the mirror nucleus of

26Al, to determine their spin-parity assignments. Table 4.5 lists all levels associated

with possible transitions extracted from the analysis, based on which the level

scheme of 26Si is constructed, as shown in figure 4.30.
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Figure 4.30: Level scheme of 26Si based on the results from this analysis.

4.5.2 The event-by-event technique

The event-by-event analysis is the most straightforward way to make the γ-γ co-

incidence spectrum in that we just need to put constraints on energies to select

only the events with γ-ray energies in the constrained peak ranges. This allows us

to get more precise coincidence spectra without worrying about the overlap in the

89



Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy

gate area in the total coincidence spectrum caused by the adding-up of the two

projected coincidence spectra from the γ-γ matrix, as described in the previous

section. But the big disadvantage of this method is that it is very slow, hardly

interactive and very inconvenient. It is because of that we need to read through all

the data every time we make the coincidence spectra and that we need to specify

the peak gates and background gates beforehand which we will use to make the

coincidence spectra for. As a result, this method was not used in our data analysis.

4.5.3 The γ-γ-γ cube technique

By using the γ-γ matrix, we can find any two γ-rays that are in coincidence with

each other. But in a γ transition cascade, there are usually more than two γ-rays if

the transition cascade starts from a high energy level. The ideal situation is that we

can find all the γ-rays that are in coincidence in one event, so that the construction

of the cascade becomes much easy and straightforward. But this is neither practical

nor necessary, as will be explained in the following context. For example, if using

the event-by-event method for this purpose, we need to put even more constraints

on the γ energies in order to find all coincident γ-rays in a single event at one time,

which means more running time and more complexity. Besides, we cannot decide

which γ-rays should be in coincidence before the analysis in order to determine the

constraints, which is exactly what we want to find out from and after the analysis.

We can also consider using a higher dimensional matrix for the purpose of finding

all coincident γ-rays at one time, but the problem is that we cannot know how

many γ-rays are in one cascade in order to determine the dimension of the matrix,

and that the number is not the same for all events. Having said that, although we

might not be able to find all the coincident γ-rays from one event, the higher the

dimension of the coincidence matrix, the more γ-rays we can find in coincidence.

However, another challenge immediately arises in that constructing the matrix is

seriously limited by computational power, because additional dimension requires,

depending on the size of the data, thousands of times the storage space of what
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the lower dimensional matrix has already occupied, and an even faster computer

speed. In this sense, a much higher dimensional matrix is not practical. However,

the 3-dimensional γ-γ-γ cube is still practical and could be the upper limit. But the

new difficulty now is the challenge of the background subtraction in the projection

from the triple γ cube to γ-γ matrix when we gate on a γ energy on one dimension

of the cube to find the corresponding γ-γ coincidence matrix for this energy. This

makes the analysis very complicated and a method using this triple γ cube can be

found in Ref. [60].
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Figure 4.31: Distribution of multiplicities of all the data showing that most of the
events have only one or two γ-rays in coincidence. This indicates that the γ-γ
matrix technique is adequate enough for the data analysis.

Actually, we can check the distribution of multiplicities of all the data to de-

termine whether to use a higher dimensional matrix. Figure 4.31 shows the mul-

tiplicities of all our data and we can see that most events have only one or two

γ-rays in coincidence probably because other γ-rays in the same events are either
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too weak to be detected or miss hitting onto the detectors. Some other reasons

such as electronics may also exist. It therefore turns out that for our data, the

γ-γ coincidence analysis is efficient enough and it is not necessary to use the γ-γ-γ

cube.

4.6 Results and discussions

The results extracted from the data analysis of this experiment are listed in ta-

ble 4.5. The spin-parities are quoted from the literature or assigned by comparison

with the possible corresponding levels in the mirror nucleus. Since the experiment

aimed to confirm the known levels or to find new levels in 26Si by measuring only the

γ-decays from the excited 26Si nucleus, no information is obtained at the S800 focal

plane for the other reaction product — the deuteron. If such information could be

obtained, the reaction kinematics geometry, such as the exit angle, and reaction

position on the target could be reconstructed using a transfer matrix calculated in

a program called COSY INFINITY [31], developed by researchers at NSCL. Thus,

the DWBA (Distorted Wave Born Approximation) [32, 33] analysis of the differ-

ential cross-section could be used for making the spin-parity assignments with the

analysis code DWUCK [34]. The spin-parity assignments can also be made by the

angular correlation measurements (or DCO — directional angular correlation of

coincident γ-rays from oriented states of nuclei) of the γ emissions [35, 36, 37, 38],

which were not determined in this experiment. The idea is that, by measuring the

ratio of the intensity of the γ-ray from the state of unknown spin-parity 1 to the

intensity of a coincident γ-ray in the same cascade with known multipolarity, and

by comparing the ratio with the theoretical value, we can then find the multipo-

larity of the former γ-ray and therefore deduce the spin-parity of the state from

where this γ-ray comes.

The newly found γ-ray with energy E=4113 keV could be from the decay

of the 3+ 5914 keV state found in the 28Si(p, t)26Si measurement [9, 12] (with

1That is, the multipolarity of the γ-ray is unknown.
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the spin-parities assigned using a DWBA calculation) and the 24Mg(3He,n)26Si

measurement [11] (with the spin-parities assigned using the Hauser-Feshbach (HF)

calculation of differential cross section [40, 41]), to the first excited state of 2+,

1796 keV. However, it could also be the 4089 keV γ-ray from the decay to the first

excited state from the 0+, 5886 keV state found in a recent 24Mg(3He,n)26Si re-

measurement at Tsukuba University [39], with the spin-parity assigned using the

DCO method. According to the 4113 keV centroid determination of the γ peak

in our analysis, and the transition probabilities to the 2+ state from the 3+, 5912

keV state and from the 0+, 5886 keV state, the former possibility is more likely

based on our results.

For the γ-ray with energy around 2260 keV, no match can be found in the

literature. But from the coincidence spectra, we can clearly see that this γ-ray is

in coincidence with the γ-ray of 1404 keV in the M1/E2 transition from the 4183

keV 3+ level to the 2784 keV 2+ level, as well as with the γ-ray of 843 keV in

the E2 transition from the 5291 keV 4+ level to the 4446 keV 2+ level. If this

is true, the level from which the 2260 keV can be emitted have Ex>7551 keV.

So far however, such γ transitions have not been experimentally observed [80].

After considering this, we exclude this possibility that such higher energy levels

are the candidates for the 2260 keV γ emission. We also found that there is a

probable M3 transition with an 851 keV γ-ray from the 4183 keV level to the 3332

keV 0+, which is however not seen in the total γ spectrum probably because it is

too weak compared with the strong 843 keV E2 transition. If the observed γ-ray

around the 843 keV, that is coincident with the 2260 keV γ-ray, is really from this

transition, then the state responsible for the 2260 keV γ emission could be a level

around 6443 keV or above. In this energy region, there is an 0+ level at 6471 keV

with a possible weak M3 transition to the 4183 keV, which however, has not been

experimentally observed before. In the mirror nucleus 26Mg, we find that there is

an M1/E2 transition with a 2272 keV γ-ray from the 6623 keV, 4+ level to the

4350 keV, 3+ level, where the latter is the mirror level to the 4183 keV, 3+ level
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in 26Si. It is more probable then that the 2260 keV γ-ray seen in our experiment

is from the transition between the 4+ mirror level of the 6623 keV, 4+ level in

nucleus 26Mg to the 4183 keV level. Based on these considerations, we therefore

tentatively claim a new level in 26Si at 6446 keV with spin-parity 4+, taking the

level energy of 4183 keV as the average value (4186 keV) of the literature value

(4183 keV) [79] and our result (4189 keV).

94



Chapter 5
Data Analysis for the p(25Al,p)25Al

Experiment at the CRIB Facility

5.1 Particle identification (PID)

As mentioned in Chapter 2, the radioactive 25Al beam is still heavily contaminated

by the 24Mg particles from the primary beam, and these can scatter the protons

out of the target as well. Also, the light reaction products include other unwanted

particles besides the proton, mostly alpha particles. Therefore, PID for both the

beam particles and the reaction products is needed.

5.1.1 PID for the 25Al beam

The radioactive 25Al beam is contaminated with other isotopes from the beam

production, among which the primary beam particles 24Mg is the dominant one.

Based on their different properties, such as mass and charge, we can easily separate

the 25Al beams from those contaminants by using the combination of Bρ settings,

time-of-flight (TOF) method and energy-loss measurement at F2 chamber. The

RF (Radio Frequency) time 1 was used to separate the 25Al beam particles from

1The RF time refers to the time of flight between the RF signals from the AVF cyclotron
and the timing signal from the PPAC in the F3 chamber [62]. The AVF cyclotron has two RF
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the 24Mg particles since the 25Al particles have smaller energies and larger mass

than the 24Mg particles and thus are transported slower. Figure 5.1 shows the RF

spectrum in which the 25Al and 24Mg can be clearly identified by placing a gate

of RF time on each of them . The histogram of X and Y positions of the beam

on PPACs can be also used for PID, as shown in figure 5.2. Figure 5.3 shows the

positions of 25Al beam particles on the PPAC after applying the RF cuts for the

selection of the 25Al.
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Figure 5.1: Particle identification of 25Al and 24Mg using RF time. Left columns
correspond to the 24Mg while right columns correspond to the 25Al. The Y axis
label represents the number of the RF resonators.

5.1.2 PID for the proton recoils

The scattered protons that punch through the PSD were identified by using the

ΔE versus E spectrum, while the spectrum of PSD energy versus TOF (between

resonator systems which provides two kinds of RF signals [63].
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Figure 5.2: Particle identification of 25Al and 24Mg using X&Y positions of beam
particles on PPACs. 25Al particles accumulate at the center of the PPAC and the
24Mg accumulate to the right of the center.

the PSD and the second PPAC) was used to identify protons punching through the

PSD and the ones stopping in the PSD. Figure 5.4 and figure 5.5 show the particle

identification of protons. When sorting the data, we can apply a gate around

the proton region to choose only scattering events in coincidence with protons in

the chosen region. The virtual gate is actually a combination of conditions for the

associated variables in an event, such as PSD energy and TOF, to confine the event

inside the gated region. It has to be pointed out that before this PID all silicon

detectors (PSDs and SSDs) must be calibrated first since the different detector

channels have different responses to the same energy signals. The calibration of

the silicon detectors is explained in the next section.
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Figure 5.3: 25Al beam particles on PPACs after applying the RF cuts for 25Al on
the histogram of RF time.

5.2 Energy calibration of the silicon detectors

A 3-α source was used to calibrate the silicon detectors, including the PSD and

SSD. Due to the pulse height defect (see page 275 in Ref. [2]), a secondary proton

calibration based on the α calibration was made using proton beams of various

energies.

5.2.1 Primary calibration using 3-α source

Recall from Chapter-2 that there are in total 96 PSD channels with 32 channels for

each PSD and 6 SSD channels for 6 SSDs. Different detector channels have different

responses to one energy signal and therefore each channel must be calibrated. For

example, figure 5.6 shows the histogram of all PSD channels before calibration for

the data runs using a 3-α source. Table 5.1 is a list of energies of the 3-α source
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Figure 5.4: Particle identification of protons using a 2-D histogram of E versus
ΔE for the silicon telescope at zero degrees only for identifying scattered protons
punching through the PSD.

used for the energy calibration. For the α energy spectrum obtained for each

detector, the three peaks are fitted with a Gaussian function and then the peak

centroids from the fits are be used as the data points for a linear fit(or for a more

accurate calibration, a quadratic fit) to find the final calibration parameters, such

as the gain and offset for each detector channel. The equation for the calibration

is as follows:

Energyα = gainα × (energy channel - offsetα) (5.1)

where gainα and offsetα are from the α calibrations.

Figure 5.7 shows an example of the α spectrum for one PSD, channel and the

linear calibration of channel to energy is also shown in the same picture with the
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Figure 5.5: Particle identification of protons using a 2-D histogram of ΔE versus
time-of-flight (TOF) for identifying scattered protons both punching through the
PSD and stopping in the PSD.

Table 5.1: List of energies of the 3-α source for the energy calibration of the silicon
detectors.

α source α energy
237Np 4.788 MeV
241Am 5.486 MeV
244Cm 5.805 MeV

axis of energy at right in green.

5.2.2 Pulse height defect effect

The silicon detector has different responses to particles with different charges when

measuring the energies of the particles. This means that the electron collection
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Figure 5.6: Histogram of all PSD channels before calibration for the data runs
using a 3-α source.

efficiency of the detector will be different when particles with different charges

deposit energy in the detector, resulting in different measured pulse heights for the

same energy that different particles have and makes energy calibration correct just

for the measurement of the same particle as used for the calibration. This is so the

called “pulse height defect” effect. In our case, we measure the proton energy in

the experiment but use the α source for energy calibration. Therefore, the pulse

height effect must be taken into account. This effect is reduced or eliminated

by performing a secondary energy calibration using proton beams — the same

particles that we measure in the elastic scattering.
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Figure 5.7: An example of α calibration for a PSD channel. Shown in green is the
linear fit of channel vs energy.

5.2.3 Secondary calibration using proton beams

Various energies were set for the proton beams used for the calibration: 1.9 MeV,

6.4 MeV, 9 MeV and 14 MeV. While for the α calibration the PSD and SSD were

calibrated separately, for the proton calibration , the PSD and SSD are calibrated

together as a ΔE-E telescope. According to a SRIM energy-loss calculation [64],

the 1.9 MeV proton cannot punch through the PSD to reach the SSD behind the

PSD. However, since we calibrate the PSD and SSD as a whole, it can still be used

as a calibration energy together with the proton energies of 6.4 MeV, 9 MeV and

14 MeV. Similar to the α calibration procedure, the peak centroids from the fits

to the proton energy peaks in the proton spectrum are used as the data points to
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Figure 5.8: Histogram of α energies for all PSD channels after applying the cali-
bration parameters for each detector channel.

perform a linear calibration fit (or quadratic fit) as follows 2:

Energy = gainp × ( Energyα - offsetp) (5.2)

where gainp and offsetp are from this proton calibration, Energyα is the energy

after α calibration and Energy is the final energy after both calibrations.

Figure 5.9 shows an example of the proton calibration for one PSD-SSD tele-

scope. It should be pointed out that now the PSD is treated as a whole unit like

the SSD instead of being calibrated by channel in the α calibration because all

PSD channels have already been normalized after the α calibration and they share

2Actually, only peaks with good statistics are used for calibration. For example, only the 1.9
MeV, 9 MeV and 14 MeV proton peaks are used because the 6.4 MeV proton peak has very
poor statistics compared to the three others, and including it in the calibration results in a large
uncertainty in the linear fit.
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Figure 5.9: An example of the proton calibration for a PSD-SSD telescope.

the same calibration parameters in the proton calibration.

After applying all the calibrations and PID gates for selecting the 25Al beam

ions and proton recoils, the final spectra of the proton energies measured by the

three ΔE-E (PSD-SSD) telescopes arranged at 0◦, 17◦ and 27◦ can be obtained,

as shown in figures 5.10 through 5.11.
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Figure 5.10: Top: the energy spectrum of protons measured by the telescope at
0◦. Bottom: the energy spectrum of protons measured by the telescope at 17◦
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Figure 5.11: The energy spectrum of protons measured by the telescope at 27◦.

The uncertainties in proton energy can come from the intrinsic resolution of

the silicon detectors (PSD and SSD), the straggling of the beam particles and

protons in the thick target, the beam energy spread before entering the target,

and the finite solid angle of the detector strips of PSD. The former two sources are

the major contributions at the most forward angle, which result in a resolution in

center-of-mass energy (Ecm) of 4070 keV in full width at half maximum (FWHM).

At large scattering angles, the contribution due to the finite solid angle of the

detector strip becomes important and results in an total energy resolution in Ecm

of 70300 keV at θlab = 25◦ [65].
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5.3 Energy loss correction for scattered protons

In nuclear experiments involving thin targets, the energy loss of reaction products

before leaving the target is small(usually from a few keV to tens of keV), and can

be safely neglected compared to the exit energies of these products . But when

using the thick target approach, the energy loss of the scattered proton traveling

through the remaining part of the target can be considerable 3 and must be taken

into account. In the following section, two methods for the energy loss correction

are described.

5.3.1 The stopping power of charged particles in target

materials

Before continuing to the next section, I will briefly explain the frequently mentioned

concept of “stopping power” and how I find the stopping powers for the beam

particle in the CH2 and pure carbon targets.

Charged particles moving through matter interact with the electrons of atoms in

the material. The interaction excites or ionizes the atoms. This leads to an energy

loss of the traveling particle. The Bethe formula which was derived by Hans Bethe

in 1930, describes the energy loss per distance traveled, also known as the stopping

power of the material traversed. The relativistic stopping power is calculated by

the following formula — the Bethe-Bloch formula [20], which describes the energy

loss by ionization of fast charged particles (protons, alpha particles, atomic ions,

but not electrons) traversing matter.

3If the beam particles have traveled close to the end of the target, the remaining path for
the scattered protons is short and therefore their energy losses can be neglected. But for our
experiment, the 25Al beam particles stop slightly beyond the middle of the target, according to a
SRIM energy-loss calculation, and therefore the energy losses still need to be taken into account
for all scattered protons. In fact, when the 25Al beam particles is close to stop, the protons they
scatter will not have enough energy to escape from the target.
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−dE

dx
=

4π

mec2
· nz

2

β2
·
(

e2

4πε0

)2

·
[
ln

(
2mec

2β2

I · (1− β2)

)
− β2

]
(5.3)

where,

β = v/c

v velocity of the particle

E energy of the particle

x distance traveled by the particle

c speed of light

z particle charge

e electron charge

me rest mass of the electron

n electron number density of the target

I mean excitation potential of the target

The n is calculated by NAρZ/A, where the NA, ρ, A are Avogadro’s constant,

the mass density of the material, and the mass number of the material, respectively.

The mean excitation potential I can be approximated by I = (10eV )Z. This

Bethe-Bloch formula is the one used in the SRIM program [64], which is used here

to simulate shooting the beam particle onto the CH2 and C targets, to calculate

the stopping powers (S1 and S2) in the two target materials for the different beam

energies at different depth inside the target. The calculated stopping powers are

tabulated for looking-up, or plotted in a graph and fitted to find the fitting function,

which will be used later in this Chapter for the energy loss correction and the

normalization of beam yields in these two targets. Figure 5.12 shows the calculated

stopping power vs 25Al beam energy in the CH2 target (in red) and C target (in

black).

108



Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy

� �� �� �� �� ���

�

����

����

����

����

�
�
��
�
��
�
�
	
�

�
�

��
������	
�����

�������

�����

Figure 5.12: Stopping power vs beam energy in CH2 (red) and pure carbon target
(black), calculated with SRIM.

We then made fits to the calculated stopping power to extract the correlations

between the stopping power and beam energy. For simplicity, we divided the energy

region into two parts (E(25Al)<15 MeV and E(25Al)>15 MeV) according to the

curve shape of the stopping power vs energy plot and fit each part separately with

different simple functions instead of the Bethe-Bloch function. Figure 5.13 shows

the fits for the two parts for 25Al passing through the CH2 target.

The extracted fitting functions are:

1) For the CH2 target,

Slow = a× {1 + (d− 1)exp[−k(E − Ec)]} 1
1−d [keV/μm] (5.4)
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Figure 5.13: Fits to the stopping power data calculated by SRIM. Two simple
functions are used for fitting the lower and higher energy parts separately.
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with a = 2487.8, Ec = 1.54; d = 0.866; k = 0.335.

Shigh = A0 + A1E + A2E
2 + A3E

3 + · · ·+ A7E
7 [keV/μm] (5.5)

with A0 = 2242.7; A1 = 35.11; A2 = −0.971; A3 = −0.0594; A4 = −0.00277;

A5 = −4.55× 10−5; A6 = 3.38× 10−7; A7 = −9.56× 10−10.

2) For the C target, the same fit functions are used and the values of fit pa-

rameters are,

for Slow, a = 4085.4, Ec = 0.653; d = 0.684; k = 0.341.

for Shigh, A0 = 3393.2; A1 = 123.9; A2 = −7.947; A3 = −0.2143; A4 = −0.00325;

A5 = −2.84× 10−5; A6 = −1.33× 10−7; A7 = 2.61× 10−10.

5.3.2 Simple energy correction using the SRIM calculation

In the SRIM calculation, we simulated shooting the 25Al beam into the target

using the actual target thicknesses. SRIM then returns the residual energies of

the beam at different spots along the beam axis as well as the scattering and final

energies of the associated scattered protons. By plotting the scattering energies of

the protons at the scattering spots and the final energies upon leaving the target,

we can determine the energy loss or scattering energy from the plot for a proton

with any final energy leaving the target. Alternatively, we can make a fit to the plot

to find a function for correcting energy loss. Figure 5.14 shows the examples of the

plots of the Ecm vs the proton energy after the target from the SRIM calculation

for the telescope at 0◦, for runs with the CH2 target and for runs with the pure

carbon target, with the fits to the data also shown.
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Figure 5.14: Energy loss correction from the SRIM calculation for the CH2 (top)
and the C target (bottom). The fits to the plots are also shown, as well as the
plots for the ideal situations with no energy loss.
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This correction can be used only for protons with small scattering angle where

the change of the proton’s path in the target due to the scattering angle from the

path along the beam axis can be neglected. For scattering at large angles, the

path changes greatly as the angle changes, and consideration has to be made for

different SRIM calculations for different paths, so that this method of correction

is no longer simple and an other method should be applied.

The fit functions for the two plots are:

1) for CH2 target,

Ecm = 0.00131115× E2
p + 0.23648× Ep + 0.169081 [MeV ] (5.6)

where Ecm is the center-of-mass energy converted from the proton energy after the

energy loss correction and Ep (MeV) represents the proton energy after the target

that is not corrected for energy loss.

2) for pure carbon target,

Ecm = 0.0027504× E2
p + 0.205565× Ep + 0.384573 [MeV ] (5.7)

5.3.3 Event-by-event correction

Ideally, the proton energies measured with the silicon detectors should be corrected

for energy loss on an event-by-event basis. The idea is the following. The range of

the 25Al beam in the CH2 target is determined and then divided into 5000 equal

parts. Then from the front end of the target, the residual energy of the 25Al beam

is calculated in each part by Ziegler’s energy-loss routines [51], along with the

scattered proton energy at the scattering spot. Knowing the length of the path

the proton travels through the target, its energy after the target is obtained and

compared with the measured proton energy in a single event. The on-spot proton

energy of this event, that is, the energy of the proton with energy loss corrected,

is then directly deduced from the final match of the comparison.

To determine the range of the 25Al beam in the target, we need to find first the
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angle at which the beam particle goes in the target with respect to the horizontal

beam line. This together with the position of the beam on the target, can be

calculated using the two positions of the beam particle measured by two PPACs

(Parallel Plate Avalanche Counter), located upstream of the target. The calculated

target position together with the position of the proton recoil on the PSD will then

give us the angle (with respect to the horizontal beam line) at which the proton

leaves the target. Let α and β represent these two angles. They are the angles that

the particle tracks make with the horizontal beam line. The scattering angle, say

θ, is then the angle that is made by the two tracks — the beam particle track and

the recoil proton track. Shown in figure 5.15 is the layout of the detector system

viewed from the side, along with the particle tracks.

Figure 5.15: Layout of the beam tracking in the detector system obtained using
the two PPACs before the target and the PSD after the target.

Let A, B, C and D be the track points of the beam particle in PPAC1, PPAC2,
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target and PSD, respectively, with,

A = A(x1, y1, z1)

B = B(x2, y2, z2)

C = C(xt, yt, zt)

D = D(xp, yp, zp)

in the coordinate system as shown in figure 5.16, with the z-axis along the hor-

izontal beam line from upstream to downstream and origin on the target plane.

Figure 5.16: Coordinate system for particle tracking in the detector chamber.

The positions A, B and D are known from the measurements; the position C

is calculated from positions A and B. Let d12, d2t and dtp be the distance between

the two PPACs, the distance between the PPAC2 and the target, and the distance

between the target and the PSD. Then we find
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xt = x1 +
x2 − x1

z2 − z1
(zt − z1) = x1 +

d12 + d2t
d12

(x2 − x1)

= x1 + (1 +
d2t
d12

)(x2 − x1)

yt = y1 +
y2 − y1
z2 − z1

(zt − z1) = y1 +
d12 + d2t

d12
(y2 − y1)

= y1 + (1 +
d2t
d12

)(y2 − y1)

zt = 0

(5.8)

and

α = arccos
d12 + d2t

AC

β = arccos
dtp
CD

θ = arccos
AC2 + CD2 − AD2

2AC · CD

(5.9)

where

d12 = z2 − z1 (5.10)

d2t = zt − z2 (5.11)

dtp = zp − zt (5.12)

AC =
√
(xt − x1)2 + (yt − y1)2 + (zt − z1)2 (5.13)

CD =
√

(xp − xt)2 + (yp − yt)2 + (zp − zt)2 (5.14)

AD =
√
(xp − x1)2 + (yp − y1)2 + (zp − z1)2 (5.15)

Suppose that a beam particle of energy E enters the target at an angle α and

that lb is the range of the beam particle inside the target calculated using the

energy-loss routines [51]. The lb is then divided into N=5000 equal parts 4 and an

iteration procedure is made for each measured proton to find which one of the 5000

4The more parts the lb is divided into, the more accurate the energy loss correction will be;
here N=5000 is enough for an accurate correction.
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parts it corresponds to (where in the target the proton was scattered), according

to the scattering angle and associated energy loss.

Figure 5.17: Illustration of the paths of a scattering in the target (not to scale).

Let t be the target thickness and lp the path length of the scattered proton

inside the target, as shown in figure 5.17. Then according to the geometry, we can

find,

lp =
(t− lb · cosα)

cos β
(5.16)

By calculating the energy loss of the proton for lp, its energy after the target,

say Ecal, is obtained and compared with the measured energy Emea. This process

is iterated with an optimization algorithm until the calculated energy matches the

measured one. In my calculation, the “match” is achieved whenever |Ecal−Emea| <
5 keV , considering the experimental uncertainty of the energy measurement.

The advantage of the event-by-event analysis is that the energy loss correction

for each event is separate, so that each event uses its own beam energy for the

correction. This allows more accurate correction than the simple one described
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in last subsection, where one single beam energy was used for all events. But,

in reality, the beam energy fluctuates from event to event and follows a Gaussian

distribution instead of just one single energy.

Figure 5.18 shows a proton spectrum after correcting for the energy loss in the

target using the event-by-event method. The X axis represents the center-of-mass

energy (Ecm) transformed from the proton energy according to the kinematics

described in Chapter 2. In all the following content of this thesis, Ecm will be used

in the proton spectrum instead of the proton energy.
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Figure 5.18: An example of the proton spectrum with the energy loss correction,
with the X axis representing the center-of-mass energy (Ecm) transformed from
the proton energy.

There is another method which can be used to directly extract the actual

proton energy without adding the energy loss in the target. This involves using

an isobaric stable beam and a well-known resonance energy to perform an energy

calibration [61].
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5.4 Deadlayer effect

Figure 5.19: The layout of the Silicon detector telescope (PSD-SSDs) with the
deadlayers sketched in.

Each of the silicon detectors used in the experiment including the PSD and

SSDs has a deadlayer of 2 μm aluminum layer plated on top of the silicon content.

Since the deadlayer does not contribute to the charge collection of the detector,

there will be an energy loss in the layer which can not be counted as the deposited

energy in the detector. This aluminum layer is therefore “dead” to the energy

measurement compared to the active layer of silicon content, from which the total

deposited energy of particles is recognized by the electronics as the measured energy

in the detector. For those protons punching through one detector and its deadlayer

and finally stopping in the next detector, their energy loss can be easily corrected

in the routine based on their deposited energy in each detector. However, there

exist protons that do not punch through to the next detector, and their deposited

energy could be interpreted as either due to the relatively lower energy protons
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Figure 5.20: Energy loss in the PSD active layer only and energy loss in the PSD
and Al deadlayer together as functions of the proton energy when leaving the target
(from SRIM simulation). The energies for just punching through the active layer,
and through the whole PSD, are indicated.

stopping in the active layer, or due to the higher energy protons punching through

the active layer and stopping in the deadlayer. Even if we can distinguish the

proton stopping in the deadlayer from that sharing the same energy and stopping

in the active layer, we can still not tell where inside the deadlayer it stops, so

that it becomes impossible for the energy loss in the deadlayer to be calculated

correctly. As a consequence of this deadlayer effect, a gap within which no events

are counted will show up in the energy spectrum of the protons for the energy

range corresponding to the protons that stop in the deadlayer.

Figure 5.19 shows the layout of the Silicon detector system with the deadlayer
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Figure 5.21: Energy loss in just the Al deadlayer only vs the proton energy after
leaving the target (from SRIM simulation).

also sketched out. Figure 5.20 shows the calculated energy loss in the active layer

of the first PSD and in the whole PSD, including the active layer and the Al

deadlayer, vs. the proton energy after leaving the target. The energies for punching

through the active layer only and through the whole PSD are indicated. Ep within

the yellow shaded area corresponds to the ambiguous proton detection discussed

above. The proton with energy lower than the left end (Ep<2490 keV) of this

area can be clearly identified as a proton stopping in the active layer of the PSD,

while the proton with energy beyond the right end (Ep>2715 keV) will penetrate

the deadlayer and reach the second detector, in which case the energy loss in the

deadlayer can be corrected. In the ambiguous proton energy range (Ep = 2490 keV–
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2715 keV), the region at the left side of the dashed line (2650 keV) corresponds to

the protons stopping in the rest of the active layer and the maximum deposited

energy is reached where the dashed vertical line is located. In this region, the

measured energy by the deposit in the active layer gives the actual proton energy.

As Ep keeps increasing toward the right end of the yellow region in figure 5.20,

the proton will punch through the active layer and stop in the deadlayer. The

energy deposited in the active layer can be measured, but that in the deadlayer

cannot be measured. Since the energy loss in the active layer decreases, which

is the measured proton energy but no longer the actual proton energy, this kind

of proton will be confused with the protons stopping only in the active layer but

with the same energy loss in this layer. So the energy range between the Ep for

penetrating the PSD only and Ep for penetrating the PSD and Al deadlayer is

the deadlayer gap mentioned above. The difference in Eloss between the two plots

(red and green) at each Ep gives the energy loss in the Al deadlayer at this Ep.

Figure 5.21 shows the energy loss in just the Al deadlayer vs. the proton energy

after leaving the target. As we can see, at high energies (Ep>5 MeV) the energy

loss in the deadlayer is small and negligible and it can also be easily corrected,

but for some energy (Ep ∼ 2680 keV, corresponding to Ecm ∼ 720 keV), the Eloss

increases abruptly up to its maximum, leaving us the with uncorrectable energy

gap.

5.5 Background subtraction

Since we use the polyethylene (CH2) target, most of the background is from reac-

tions with the carbon in the target. Figure 5.22 is an example of the background

proton spectrum at 0◦ with energy loss correction from runs with the pure carbon

target, compared with the corrected proton spectrum from runs with the CH2 tar-

get in figure 5.23, where the same background is also shown in red. To subtract

this background from the proton spectrum, we made measurements under the same

conditions with the pure carbon target as for the elastic scattering. Then the yield
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from the pure carbon target is normalized to the yield from the carbon in the CH2

target based on the total accumulated number of beam events, the number density

of CH2 and C, and the energy-dependent stopping power of the 25Al beam in CH2

and C. The normalization factor of the yield from pure carbon to the yield from

carbon in CH2 is calculated as follows.
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Figure 5.22: Background proton spectrum from runs with the pure carbon target.

5.5.1 Normalization of yields from CH2 and C targets

Suppose that the step size of the beam energy that is equivalent to the bin size

(ΔE) of the proton spectrum is ΔEb in the reaction of the beam with the carbon

nucleus. The proportionality of ΔEb to ΔE is determined by the kinematics of

the reaction of the beam particle with the carbon nucleus. Then we can find the

corresponding traversed target thickness at any energy bin in the proton spectrum
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Figure 5.23: Proton spectrum from runs with the CH2 target and the background
from figure 5.22 (without normalization) is also shown in red.

as

Δx =
ΔEb

S
(5.17)

where S = dE
dx

is the energy dependent stopping power of beam in target material.

This gives us the yield in the thick target method at any energy bin as

Y = IσnΔx = Iσn
ΔEb

S
(5.18)

where I is the total accumulated number of beam events, σ the cross section of the

reaction of the beam with carbon, and n the number density of carbon.

Finally, the normalization factor N can be obtained by

N =
Y1

Y2

=
I1
I2

· n1

n2

/
S1

S2

(5.19)
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where I1, I2 are the total accumulated number of beam particles bombarding the

CH2 and C targets respectively, and considered to be constant over the whole

path that the beam particles have traveled; n1 is the equivalent number density of

carbon in the CH2, n2 the number density of pure carbon; and S1 and S2 are the

stopping powers of 25Al beam in CH2 and C, respectively.

We apply the normalization factor for the yield of each bin in the proton spec-

trum from the runs with the pure carbon target, and then subtract it from the

proton spectrum from the runs with the CH2 target. Figure 5.24 is the proton

spectrum after background subtraction with the conversion of the proton energy

in lab to the energy of center-of-mass (Ecm). One issue that one should be careful

about is that, subtraction of one spectrum from another can be made only when

the two spectra have the same bin size, that is, energy per bin.
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Figure 5.24: Proton spectrum after background subtraction.
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5.6 Cross section from the yield spectrum of pro-

tons

In the proton spectrum (see figure 5.18), each data point represents a total yield

of protons at the corresponding center-of-mass energy (Ecm). The “total” means

that the yield is the sum of all the protons with the same Ecm within the solid

angle covered by the detector in use. Recall the experimental yield function in the

thick target method, described in section 5.5.1

Y = IσnΔx = Iσn
ΔEb

S
(5.20)

where I is the total accumulated number of beam events, σ the scattering cross

section into the solid angle covered by the detector in use, n the number density

of the protons in the CH2 target, and S is the energy-dependent stopping power

of the 25Al beam in the CH2 target.

Recall that from inverse kinematics the correlation between the beam energy

Eb and the center-of-mass energy Ecm, that is,

Ecm =
m

M +m
Ebeam (5.21)

where M and m are the masses of the beam particle and proton respectively.

Using this equation, we can find the beam’s energy range ΔEb corresponding

to the bin size ΔE in the proton spectrum as

ΔEb = (1 +
M

m
)ΔE (5.22)

With this, the cross section can be obtained from the yield function as,

σ =
Y · S
InΔEb

=
Y · S
InΔE

· m

M +m
(5.23)

With the solid angle in the laboratory ΔΩlab calculated according to the ge-
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ometry of the target-detector system, the experimental differential cross section in

the laboratory will simply be [19],

dσ

dΩlab

=
σ

ΔΩlab

=
Y · S

InΔEΔΩ
· m

M +m
(5.24)

Based on the fact that the integrals of the differential cross sections over the

same solid angle in the laboratory frame and the center-of-mass frame are equal,

that is,
dσ

dΩlab

· dΩlab =
dσ

dΩcm

· dΩcm (5.25)

and,

dΩlab = sin θlabdθlabdφ (5.26)

dΩcm = sin θcmdθcmdφ (5.27)

2θlab + θcm = 180◦ (5.28)

where θlab and θcm are the scattering angles in the laboratory frame and the center-

of-mass frame, we find the differential cross sections in the center-of-mass frame

as given by,
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Figure 5.25: Excitation function at 0◦ in the center of mass frame after energy loss
correction and background subtraction. The bottom one is the enlargement of this
spectrum in the range of 1200 keV to 3400 keV.
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dσ

dΩcm

=
dΩlab

dΩcm

dσ

dΩlab

=
1

4 cos θlab

dσ

dΩlab

=
1

4 cos θlab

Y · S
InΔEΔΩ

· m

M +m
(5.29)

It should be pointed out that, since the beam intensity was attenuated in the

experiment, the actual total intensity I should be the total intensity extracted

from the PPAC1-XY histogram times an attenuation factor, which in our case is

3000. Figures 5.25 to 5.27 are the final excitation functions at the three angles in

the center of mass frame.
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Figure 5.26: Excitation function at 17◦ in the center of mass frame after energy
loss correction and background subtraction.
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Figure 5.27: Excitation function at 27◦ in the center of mass frame after energy
loss correction and background subtraction.

5.7 Breit-Wigner analysis

In this analysis, the Breit-Wigner formula will be used to fit for the proton reso-

nances in the elastic scattering, using the χ-estimation fitting procedure. We start

with this simpler approach with the aim to extracting only the resonance energy

ER as preliminary results, which can then be used as input and confirmed in the

R-Matrix analysis, no spin-parity assignments will be made, as these can also be

done in the R-Matrix analysis. For the following fits, a s-wave (l = 0) scattering

is assumed, since it is the dominant contribution5 to the cross section at the low

center-of-mass energy in our experiment.

5The angular momentum satisfies: l = pR/� =
√
2μER/�, where R is the range of interaction.

Let b the impact parameter, then R<b and we find l<
√
2μEb/�. The lower the energy, the lower

the l of the partial waves that can contribute to the cross-section.
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5.7.1 Breit-Wigner formula for resonant elastic scattering

In the Breit-Wigner mechanism, the differential cross section for the elastic scat-

tering in the center-of-mass frame is approximated by [66]

dσ

dΩcm

= |fc|2 + ω |fr|2 + 2ω
(f ∗
c fr) (5.30)

where fc and fr refer to the Coulomb scattering and the single-channel nuclear

resonant scattering of an s-wave (quantum number of the orbital angular mo-

mentum l=0), respectively; the third term refers to the interference between

the Coulomb scattering and the resonant scattering; ω is the statistical factor

= (2J +1)/[(2J1+1)(2J2+1)] with J , J1 and J2 as the spins of the resonance, the

beam nucleus and the target nucleus, respectively. The three terms are given by

|fc|2 = 1

4k2
η2 csc4

(
θcm
2

)

|fr|2 = 1

4k2

Γ(E)2

(E − ER)2 +
[
1
2
Γ(E)

]2
2ω
(f ∗

c fr) =
1

4k2
· 2η csc2

(
θcm
2

)
Γ(E)

(E − ER)2 +
[
1
2
Γ(E)

]2
×
[
(E − ER) cos β +

1

2
Γ(E) sin β

]
(5.31)

where k is the wave number, η the Sommerfeld parameter, θcm the scattering

angle in the center-of-mass frame, Γ(E) the energy-dependent Breit-Wigner total

width at the center-of-mass energy Ecm = E, ER the resonance energy and β the

Coulomb phase. The parameters k, η, and β are given by

k =

√
2μE

�

η =
ZMZme

2

�v
= CZMZm

√
μ

E

β = η ln sin2

(
θcm
2

) (5.32)
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where μ is the reduced mass = mM/(m+M), v the relative velocity, ZM and Zm

the charges of the two interacting particles, and 2πC = 31.29 when E is in keV

and μ is in amu .

The total width ΓR of a resonance is related to the energy-dependent total

width Γ(E) by

Γ(E) = ΓR exp(−2πΔη) (5.33)

where exp(−2πΔη) is referred to as the energy-dependent penetration factor, Δη =

η − ηR where ηR is the value of η evaluated at the resonant energy E = ER.

Figure 5.28 shows an example of the proton spectrum calculated using the

Breit-Wigner formula with realistic values for the parameters.

5.7.2 Breit-Wigner fit for the experimental cross section

To fit the experimental cross section in the figure 5.25 (in the center-of-mass frame),

firstly we need to rewrite the Breit-Wigner formula as follows [66],

dσ

dΩcm

=
1

4k2

[
A1 η2

+A2
exp(−4πΔη)

(E − A4)2 + A2
5 exp(−4πΔη)

+A3 η exp(−2πΔη)
(E − A4) cos β + A5 exp(−2πΔη) sin β

(E − A4)2 + A2
5 exp(−4πΔη)

] (5.34)
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Figure 5.28: Calculated proton spectrum using the Breit-Wigner formula with
realistic values of the parameters in the formula. The solid line is the total spectrum
and it is divided into three components: a pure Coulomb scattering (dashed line), a
pure resonant scattering (dotted line), and an interference between the former two
scattering processes (dot-dashed line). This figure is adapted from reference [66].
Unless mentioned, all the subsequent proton spectra titled with the Breit-Wigner
formula will have the same format. The E+ and E− mark the two characteristic
energies where the two extrema are located; Ec is the critical energy where there
is only the Coulomb contribution, with the resonant and the interference parts
canceling out; ER marks where the pure resonance component peaks.
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where the five parameters A1 to A5 have the following expressions (the corre-

lation 2θcm + θlab = π is used; N is a normalization factor):

A1 =
N

cos4 θlab

A2 = NωΓ2
R

A3 =
2NωΓR

cos2 θlab

A4 = ER

A5 =
ΓR

2

(5.35)

The five parameters are left free in the fitting procedure and the values of A4

and A5 deduced from the fitting will directly determine the resonant energy ER and

width ΓR. Each single resonance in the spectrum of the differential cross section

is fitted separately. In the fitting procedure, we have considered uncertainties

due to the beam spread and the straggling inside the target which have been

convoluted into the fit function when the fitting is in progress. Figures 5.29 and

figure 5.30 show the fits for three different resonances with each component of the

Breit-Wigner cross section shown as well. The fitting results are listed in table 5.2.

Not all peaks in the excitation function can be successfully fitted by the Breit-

Wigner function due to the quality of the data, such as the statistics and the energy

uncertainty. The fits shown here are for the two most prominent resonances in the

spectrum at ER=1634 keV and ER=2170 keV as well as for a possible resonance

around 3100 keV. We expect that more resonances will be able to extracted from

the R-Matrix fit to the data, to be discussed in Section 5.8.
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Figure 5.29: Breit-Wigner fits for the resonances at ER=1.634 MeV (top) and at
ER=2.170 MeV (bottom).
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Figure 5.30: A Breit-Wigner fit for the resonance at ER=3.100 MeV.

Table 5.2: List of Breit-Wigner parameters of three resonances for the Breit-Wigner
fits of the experimental differential cross sections. ER and ΓR are in units of keV.
The χ2/d.o.f represents the chi-square per degree of freedom (d.o.f) for each fit.
The quoted uncertainties are directly from the fits.

ER(A4) ΓR(2A5) χ2/d.o.f

1634 ± 9 65 ± 26 2.19

2171 ± 6 115 ± 15 3.01

3100 64 ± 8 45.9
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5.8 R-Matrix analysis

In this section, an advanced data fitting using the R-matrix formalism will be

described and used to extract physical parameters such as energy levels and proton

widths. R-matrix theory [52] is now the standard and the best framework for

describing resonant processes leading to compound nuclei in low-energy nuclear

physics, because the nuclear parameters it yields, such as level energies and widths,

are strongly tied to the physics of nuclear spectroscopy. It is the foundation of

the Breit-Wigner formula described previously, which is an approximation of the

resonant cross section only valid for a single-level and narrow resonance.

5.8.1 R-matrix formula for the cross section of compound

nuclear scatterings and reactions

The general multi-channel multi-level formula for the differential cross section of

any resonant process from an entrance channel α to an exit channel α
′
is given as

follows [52]

dσαα
′

dΩα
′
= [(2I1 + 1)(2I2 + 1)]−1

∑
ss′

(2s+ 1)
dσαs,α

′
s
′

dΩα
′ (5.36)

where I1 and I2 are the spins of the nuclei in the entrance channel — beam particle

and target particle; α and α
′
symbolize the entrance and exit channels; s and s

′
are

the channel spins of the entrance and the exit channels; the summation is over all

of the partial differential cross sections of different combinations of channel spins

s and s
′
; and the partial differential cross section can be written as

dσαs,α
′
s
′

dΩα
′

=
π

(2s+ 1)k2
α

(CT +RT + IT ) (5.37)

where CT , RT , and IT represent the three components of the resonant differ-

ential cross section — the Coulomb term, resonant term and interference term,
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respectively. They are given by

CT = (2s+ 1)

∣∣∣∣ 1√
4π

ηα sin
−2

(
θ

2

)
exp

[
−2iηαln sin

(
θ

2

)]∣∣∣∣
2

δαs,α′s′

RT =
1

π

∑
L

BLPL(cos θ)

IT =
1√
4π

∑
Jl

(2J + 1)2
[i(T J
αsl,α

′
s
′
l
′ )∗CαPl(cos θ)]δαs,α′s′

(5.38)

where θ is the scattering angle; ηα is the Sommerfeld parameter; the summation

integer L is over |li − l
′
i|, where l is the quantum number of the orbital angular

momentum of the scattering system.

The BL coefficients are given by

BL =
1

4
(−1)s−s

′ ∑
Jl

Z(l
′
1J1l

′
2J2, s

′
L)Z(l1J1l2J2, sL)T

J
α′s′ l′1,αsl1

(T J
α′s′ l′2,αsl2

)∗ (5.39)

The Z coefficients are related to the Racah coefficients, W , by

Z(l1J1l2J2, sL) = (2l1 + 1)
1
2 (2l2 + 1)

1
2 (2J1 + 1)

1
2 (2J2 + 1)

1
2

× (l1l200|L0)W (l1J1l2J2, sL)
(5.40)

where (l1l200|L0) are the Clebsch-Gordan coefficients. There terms are also related

to the Z coefficients of Blatt and Biedenharn [52] by

Z(l1J1l2J2, sL) = il1−l2−LZ(l1J1l2J2, sL) (5.41)

The transition matrix element T J
α′s′ l′1,αsl1

is given by

T J
α
′
s
′
l
′
1,αsl1

= δα′s′ l′1,αsl1
exp(2iωα

′
l
′ )− UJ

α
′
s
′
l
′
1,αsl1

(5.42)
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where UJ
α
′
s
′
l
′
1,αsl1

is the collision matrix element given by

UJ
α′s′ l′1,αsl1

= exp2i(ωαl + δJαsl) (5.43)

The δJαsl here is the phase shift and it should be distinguished from the Kronecker

delta symbol δαs,α′
s
′ used elsewhere.

The CT and IT terms, as we can see, will vanish if the entrance channel α is dif-

ferent from the exit channel α
′
; that is for nuclear reactions or inelastic scattering.

They are non-zero only when the entrance channel and exit channel are identical;

elastic scattering is the only such case. For our experiment, it is safe to assume

only one open channel (elastic scattering). Since s-wave is dominant in our case of

low-energy scattering, l = 0 is assumed also. Then the multi-channel multi-level

R-matrix formula is reduced to the single-channel R-matrix formula and the three

terms can be simplified as follows [67],

CT = (2s+ 1)
1

4π
η2α sin

−4

(
θ

2

)

RT =
1

4π

∑
Jl

(2J + 1)
{
[cos 2ωl − cos 2(ωl + δJl )]

2

+ [sin 2ωl − sin 2(ωl + δJl )]
2
}
Pl(cos θ)

IT =
1

2π

∑
Jl

(2J + 1)ηα sin
−2

(
θ

2

)

×
{
sin

(
η2αln sin

(
θ

2

))[
cos 2ωl − cos 2(ωl + δJl )

]
+ cos

(
η2αln sin

(
θ

2

))[
sin 2ωl − sin 2(ωl + δJl )

]}
Pl(cos θ)

(5.44)
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where the Coulomb phase shift ωl and the total phase shift δJl are given by

ωl =
l∑

n=1

tan−1
(ηα
n

)

δJl = tan−1

(
RlPl

1 +Rl(Bl − Sl)

)
− φl

(5.45)

where Pl is the penetrating function, Sl the shift function, and φl the hard-sphere

phase shift. They are given by

Pl =
krc

F 2
l +G2

l

Sl =
FlF

′
l +GlG

′
l

F 2
l +G2

l

φl = tan−1 Fl

Gl

(5.46)

where rc is the channel radius; and Fl and Gl are the regular and irregular solutions

of the radial wave equation and evaluated at rc.

The Bl in the phase shift is the boundary condition number and Rl is the energy

dependent R-matrix element, which is given for our simplified case by

R =
∑
λ

γ2

Eλ − E
(5.47)

where γ and Eλ are the reduced width and pole energy for a resonance, respectively.

These are the two resonance parameters to be extracted from the fitting.

More details about the R-matrix theory and its derivations can be found in the

R-Matrix theory section in Appendix B.

5.8.2 Boundary transformation from R-matrix parameters

to physical parameters

The boundary condition parameter Bl [54, 55, 57, 56] is a constant specified to de-

termine the boundary conditions satisfied by the eigenfunctions of resonant states
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in R-matrix theory. This parameter can be arbitrarily chosen when making a fit

to experimental data since the R-matrix differential cross section is independent

of it. However, the R-matrix parameters of fitting results, such as level energies

and level widths, do depend on the boundary condition parameters, which causes

different sets of level energies and widths to be deduced for the same resonance

from R-matrix fits with different choices of the boundary parameter Bl. Fortu-

nately, these “formal” resonance parameters directly deduced from R-matrix fits

and varying with the boundary parameter Bl are not the actual resonance energy

and resonant width. They are called the pole energy and pole width of a resonance,

defined and used only in the R-matrix differential cross section and also referred

to as the formal resonance energy and width. When some specific boundary condi-

tion is satisfied for a specific value of Bl, the deduced formal parameters will match

the actual resonance parameters. The latter are also referred to as the observed

parameters (resonance energy and width) or the physical parameters. A number

of methods have been developed to convert the formal R-matrix parameters to the

actual physical parameters of a resonance by the so-called boundary transforma-

tion, based on the fact that different formal parameters of the same resonance are

related by their boundary conditions.

Consider a transformation Bc → B
′
c, Eλ → E

′
λ and γλc → γ

′
λc. Here we use the

notation of Bc for the boundary condition parameter of channel c; Eλ for the pole

resonance energy of level λ; γλc for the reduced pole resonant width of channel c

and level λ. The transformation is made by constructing the following real and

symmetric matrix first

Cλμ = Eλδλμ −
∑
c

(B
′
c −Bc)γλcγμc (5.48)

Since C is real and symmetric, it can be diagonalized by an orthogonal matrix

K such that

KCKT = D (5.49)
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where D is a diagonal matrix. Its diagonal elements are the eigenvalues of the

matrix C, i.e.,

Dλμ = Dλδλμ (5.50)

Then we can get

E
′
λ = Dλ

γ
′
c = Kγc

(5.51)

where γc is a vector of reduced widths of all levels at channel c.

For the special case of a single channel and single level, the transformation is

reduced to,

E
′
λ = Eλ − γ2

λ(B
′ − B)

γ
′
= γλ

(5.52)

where the notion of channel is ignored.

In the actual transformation process, the boundary condition parameter is al-

ways set equal to the energy dependent shift function Sc(Eλ), evaluated at the

initial input of the pole energy Eλ for each resonance, and then applied to the fit

function to deduce the new Eλ from the best fit. This fit is compared with the

old one to check if they match within the uncertainty range. We can also do it

in a simple way as described above by using the boundary transformation matrix

to calculate the new Eλ from the original Eλ without repeating the fit. If they

do not match, the process is repeated (either by iterating the R-Matrix fit or by

iterating the calculation with the boundary transformation matrix) with the newly

obtained Eλ as the input for the pole energy and the boundary condition parame-

ter evaluated at this input energy. This iteration of the boundary transformation

ends when the pole energy converges, and the final pole energy and reduced width

have been transformed to correspond to the physical parameters of the resonance
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in use. The physical resonance width can then be calculated from the observed or

physical reduced width γλc with the relation

Γo
λc =

Γλc(Eλ)

1 +
∑

c γ
2
λc

(
dSc

dE

)
Eλ

=
2Pc(Eλ)γ

2
λc

1 +
∑

c γ
2
λc

(
dSc

dE

)
Eλ

(5.53)

where Γλc(Eλ) = 2Pc(Eλ)γ
2
λc is called the formal resonance width.

5.8.3 R-matrix fit for the experimental cross section

The R-matrix fit was performed using a code based on R. E. Azuma’s R-matrix

subroutine [68, 69]. Besides the data file, an input parameter file is required when

performing the fit, which includes reaction information such as the reaction channel

radius (rc = 1.2(A1+A2)
1/3), the possible combinations of quantum numbers, spin-

parities assigned to the resonances to be fitted, and so on. An example of this input

file can be found in the Appendix C. The final spin-parities for the resonances are

determined when the best fit with these combinations of spin-parities in the input

file has the smallest χ2 of all the best fits with different nuclear inputs; while

the resonance energies and widths are directly extracted from the fitting and the

boundary transformation procedure.
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Table 5.3: List of all possible combinations of channel spin S, relative orbital
angular momentum l, and spin-parity Jπ of the compound nucleus.

l S Jπ

0 2 2+

3 3+

1 2 1−

2−

3−

3 2−

3−

4−

2 2 0+

1+

2+

3+

4+

3 1+

2+

3+

4+

5+
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The possible combinations of the nuclear quantum numbers are determined

according to the conservation of total angular momentum before and after the

scattering. The ground state of the 25Al nucleus has a spin-parity of 5
2

+
and the

proton has 1
2

+
, which couple together to give the channel spin S = 5

2
⊕ 1

2
= 2 or

3. The spin-parity Jπ of the compound nucleus is determined by J = l ⊕ S and

πf = πiπp(−1)l, where l is the relative orbital quantum number of the proton with

respect to the heavy reacting nucleus, and πi, πf and πp represent the parities

of the initial heavy reacting nucleus, the final compound nucleus and the proton,

respectively. Table 5.3 lists all the possible combinations of S, l and Jπ with l up

to 2 (d-wave).

According to scattering theory, the s-wave (l=0) scattering is dominant and the

higher partial waves make less or negligible contributions to the scattering. Since

at low energies (ER<1.2 MeV) the Coulomb scattering is dominant, no apprarent

resonance signature was observed in the excitation function. At the high energy

region (ER>2.5 MeV) in the excitation function, there are several resonance-alike

signatures and they are very difficult to be identified and fitted due to the poor

statistics. Therefore, we only fit the three prominent resonances in the range from

the 1424 keV to 2484 keV by s-wave scattering, as shown in figure 5.31. This

corresponds to the level range of 6.942 MeV to 8.002 MeV, which is within the

Gamow window at the temperatures of astrophysical interest (supernovae temper-

atures T9, see figure 1.6 in Chapter. 1). The uncertainty (∼15% , systematic and

statistical) for the data is adopted from reference [77] considering the similar ex-

perimental set-up. In all previous histograms, the uncertainties are the statistical

ones calculated by default in the ROOT program using the standard deviation of

a Poisson distribution 6, σN =
√
N , where N is the total yield at each energy (or

energy bin in the histogram).

Table 5.4 lists the resonance parameters for the three resonances extracted from

6The counts N at any energy fluctuates around its mean value λ, following a Poisson probabil-
ity distribution with its mean 〈N〉 = λ and its standard deviation σN =

√
λ. In the experimental

histogram, the measured value for N at any energy is taken as its expected value at that energy,
that is λ = N and σN =

√
N .
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Figure 5.31: An R-Matrix fit for the three resonances at ER ∼ 1.62 MeV, 1.97
MeV and 2.13 MeV, with s-wave (l=0) scattering for all and Jπ=2+, 2+ and 3+,
respectively.

the R-Matrix fit to the data.

We also tried fitting the data using other spin-parity assignments for the three

resonances and found that with Jπ=2+ for both of the first two resonances, the data

is fitted the best, with the smallest χ2 compared with fits with other spin-parity

assignments. Therefore, Jπ=2+ is assigned to the first two resonances. These two

resonances correspond to the energy levels of Ex=7.156 MeV and 7.498 MeV in

26Si in previous study with (3He,n) [11] and (p,t) [9, 12] reactions and our spin-

parity assignments agree with their studies using a DWBA analysis. But there is a

controversy between our assignment for the third resonance (Ex=7.647 MeV) and

their assignments for the excited state at Ex=7.687 MeV, if they correspond to the

same energy level in 26Si. Our best fit to the data as shown in figure 5.31 indicates

that the third resonance can be best described by s-wave scattering with Jπ=3+,
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Table 5.4: List of parameters of resonances from a R-Matrix fit to the three reso-
nances in the experimental differential cross section in the energy range 1424 keV
— 2484 keV. The pole energy Eλ, the resonance energy ER and the level energy Ex

are in units of MeV and the resonance width ΓR is in units of keV. The proton sep-
aration energy (or proton threshold energy) is Sp=5.518 MeV. The uncertainties
quoted are directly from the fits.

Jπ Eλ ER Ex ΓR

2+ 1.882(45) 1.617(76) 7.135(76) 43(10)

2+ 2.018(11) 1.977(15) 7.495(15) 10(3)

3+ 2.251(19) 2.129(28) 7.647(28) 89(15)

while from their DWBA analysis this state has Jπ=3−, which would correspond to

a p-wave scattering in our experiment. By assigning Jπ=3− to the third resonance,

we got a best R-Matrix fit as shown in figure 5.32, not as good as the one with the

Jπ=3+ assignment.
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Figure 5.32: A R-Matrix fit for the three resonances at ER ∼ 1.62 MeV, 1.97 MeV
and 2.13 MeV, with s-wave (l=0) scattering for the first two and p-wave scattering
(l=1) for the third resonance (Jπ=2+, 2+ and 3−, respectively).
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Chapter 6
Thermonuclear Reaction Rate of

25Al(p, γ)26Si in Explosive Stellar

Environments

In this chapter, I will first give the general derivation and theoretical background

of the thermonuclear reaction rate. Following that, our new reaction rate of

25Al(p, γ)26Si will be presented, calculated based on our new results on the struc-

ture of 26Si, already described in Chapter 4 and Chapter 5.

6.1 General derivation of the thermonuclear re-

action rate

Based on the qualitative description of thermonuclear reactions in Chapter 1, we

can derive the rate of the thermonuclear reaction1. Consider thermonuclear reac-

tions in a stellar gas between particles of type A with number density nA and mass

mA, and particles of type B with number density nB and mass mB (both number

densities in units of particles per cubic centimeter). Assume that the cross section

1Here we only discuss the general 2-body charged-particle-induced nuclear reactions. For
neutron-induced reactions and more details about the derivation, refer to references [1, 2]
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of this reaction is σ(v), which depends only on the relative velocity between two

reacting particles because according to the theory of nuclear reactions [71], the en-

ergy dependence of the cross section for a nuclear reaction only involves the total

kinetic energy (Ecm) of the two interacting particles in the center-of-mass system

with

Ecm =
1

2
μv2 (6.1)

where μ = mAmB/(mA + mB) is the reduced mass of the two reacting particles

and v is their relative velocity.

Since in the center-of-mass frame it does not matter which reacting particle

should be treated as the projectile or ejectile, we let particle A be the projectile

and v its velocity relative to particle B. The nuclear cross section is defined as

the probability2 that a reaction occurs when a reacting particle bombards a target

containing only one target particle per unit area in the plane perpendicular to the

incident direction of the projectile. In a volume Vgas of gas mentioned above, the

total number of particles A is nAVgas and they will encounter, in a time interval

Δt, a number nBvδt of particles B per unit area along the trajectory of particle

A. Then we can simply write the reaction rate (number of reactions per second

per unit volume) as

r =
nAVgas × nBvΔt× σ(v)

VgasΔt
= nAnBvσ(v) (6.2)

In the stellar gas, the relative velocity v varies over a wide range and its prob-

ability follows the Maxwell-Boltzmann (MB) distribution, given by

φ(v) = 4πv2
( μ

2πkT

)3/2
exp

(
− μv2

2kT

)
(6.3)

2This can be regarded as the total number of reactions even though it is a fraction for this
definition; as a matter of fact, in a nuclear reaction, there are a large number of projectiles and a
large number of target particles per unit area in the target surface, which will result in an integer
number of reactions.
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with

∫ ∞

0

φ(v)dv = 1 (6.4)

So the actual reaction rate r should be an average weighted by the MB proba-

bility function above3

r = nAnB〈σv〉 (6.5)

where 〈σv〉 is the weighted average and represents the reaction rate per particle

pair, given by

〈σv〉 =
∫ ∞

0

φ(v)σ(v)dv

= 4π
( μ

2πkT

)3/2 ∫ ∞

0

v3σ(v)exp

(
− μv2

2kT

)
dv

=

(
8

πμ

)1/2
1

(kT )3/2

∫ ∞

0

E σ(E) exp

(
− E

kT

)
dE

(6.6)

where E = Ecm = 1
2
μv2 is the total kinetic energy in the center-of-mass frame

and the transformation from v to E has been used; k=8.6173× 10−5 ev/K is the

Boltzmann constant; T is the temperature. One thing that should be pointed

out is that, besides the relative velocity, the center-of-mass velocity V of the two

reacting particles also follows a BW distribution and its integral should also be

included in the calculation of 〈σv〉; however, since the motion of the center-of-

mass is independent of the relative motion and the nuclear cross section depends

only on the relative velocity, the integral over V is integrated out to be unity.

Until now we have not elaborated on the physics of the nuclear reaction, specif-

ically, the energy dependence of the cross section σ(E). First, let us introduce in

the cross section the astrophysical S-factor S(E), which contains all the nuclear

3This is for nonidentical reacting particles ; for identical particles, a factor of 1
2 should be

introduced. So the general form is r = nAnB〈σv〉
1+δAB

, where δAB is the Kronecker symbol evaluated
as 1 when A = B, and 0 when otherwise.
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physics effects, and varies relatively flatly with energy, leaving most of the energy

dependence of r outside the S-factor, i.e.,

σ(E) =
1

E
exp(−2πη)S(E) (6.7)

where P = exp(−2πη) is so called Gamow factor which represents the energy

dependent penetrability of the charged particle through the Coulomb barrier. The

Gamow factor is an approximation for low energies far below the height of Coulomb

barrier which is precisely the region where the energies in stellar thermonuclear

reactions mostly occur. The S-factor is very useful in that due to its smooth

variation with energies, it can be used for extrapolating the cross section data

of stellar nuclear reactions to very low stellar energies that we can not reach in

laboratories.

The quantity η is the Sommerfeld parameter, defined as

2πη = 2π
ZAZBe

2

�v
= 2π

ZAZB e2

�

√
μ

2E
= 31.29ZAZB

√
μ

E
(6.8)

where ZA, ZB are the charges of the two reacting particles, respectively; the nu-

merical form is obtained when E is in units of keV and μ in amu (atomic mass

unit).

Inserting the above expressions into the form of 〈σv〉, we find

〈σv〉 =
(

8

πμ

)1/2
1

(kT )3/2

∫ ∞

0

S(E) exp

(
− E

kT

)
exp

(
−2πZAZB e2

�

√
μ

E

)
dE

=

(
8

πμ

)1/2
1

(kT )3/2

∫ ∞

0

S(E) exp

(
− E

kT
−
√

EG

E

)
dE

(6.9)

where

EG =

(
−2πZAZB e2

�

)2
μ

2
(6.10)

is called the Gamow energy.
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Figure 6.1: The probability distribution of a thermonuclear reaction with respect to
the stellar energy E in the stellar environment at a given temperature T . It results
from the combined effect of the Maxwell-Boltzmann distribution for the stellar
gas and the energy dependent penetrability function arising from the Coulomb
barrier in the cross section of the thermonuclear reaction. Instead of peaking at
the maximum of the MB distribution, the combined distribution has its so-called
Gamow peak at an energy E0, representing the most probable energy for which
the thermonuclear reaction will happen.

By plotting the MB probability function giving the term exp(−E/kT ), the

penetrability factor giving the term exp(−√EG/E) and their product on the same

graph (figure 6.1), we find that, even though the MB distribution indicates that

at a temperature T the most probable energy a particle in a stellar gas can have

is E = kT , the energy at which a reaction will most probably take place at T

is shifted up to a new peak energy E0, due to the rapid increase of the Coulomb
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penetrability with energy. The new energy E0 is called the Gamow peak energy

and is derived by setting the first derivative of the product of the exponential terms

in Eq. 6.9 with respect to E to zero. We obtain

E0 =

(
kT

√
EG

2

)2/3

= 1.22(Z2
AZ

2
B

mAmB

mA +mB

T 2
6 )

1/3 (6.11)

where the numerical form has the unit of keV, and T6 is in units of 106 Kelvin.

From here we can also rewrite EG as EG =
(
2E0

kT

)2
E0.

In figure 6.1, the width of the Gamow peak is the energy window where a

thermonuclear reaction predominantly takes place at a given temperature T . We

call this energy window the Gamow window for this reaction at the temperature

T . To find the Gamow window analytically, we approximate the product of the

exponential terms in the integrand of 〈σv〉 by a Gaussian function with the same

peak energy and peak height as the Gamow peak, and the same curvature at

E = E0 (that is the second derivative at E0). The width of the Gamow peak Δ is

approximated as the width of the Gaussian peak at its 1/e peak height. Then we

can write the product of the exponential terms in Eq. 6.9 as,

exp

(
− E

kT
−
√

EG

E

)
≈ exp

(
−3E0

kT

)
exp

[
−
(
E − E0

Δ/2

)2
]

(6.12)

By matching the second derivatives at both sides of Eq. 6.12 at E0, we find the

effective width Δ of the Gamow peak in units of keV as

Δ =
4√
3

√
E0kT = 0.749

(
Z2

AZ
2
B

mAmB

mA +MB

)1/6

(6.13)

So the corresponding Gamow window should be the energy window from E0−Δ/2

to E0 +Δ/2.

After discussing the concepts above, now we can continue with the derivation

of the thermonuclear reaction rate. The form of 〈σv〉 we have derived so far is for

the general case of charged-particle-induced reactions. Actually all these reactions
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can be categorized into two cases: non-resonant direct nuclear reactions and res-

onant nuclear reactions. All nuclear reactions not forming a resonant compound

nucleus can be regarded as non-resonant direct nuclear reactions, such as direct

capture reactions, stripping reactions, pickup reactions and Coulomb excitation.

In the calculation of the stellar nuclear reaction rate, the non-resonant reactions

is specified as the direct capture reaction, i.e., proton capture reactions and neu-

tron capture reactions. The previous statement that the S-factor varies smoothly

with energy applies to the non-resonant nuclear reactions but not to the resonant

reactions. A resonant nuclear reaction arises from the formation of the compound

nucleus of the two reacting nuclei and the rearrangement in the compound nucleus

of the contributing nucleons. When the reaction energy E (the sum of the total

energy in the CM frame and the reaction Q-value) matches a level energy in the

compound nucleus, this level will be strongly populated and a peak at this energy

in the plot of the S-factor or cross section versus energy will show up instead of the

smooth variation for non-resonant reactions. The total reaction rate includes the

contributions from both the non-resonant and resonant reactions, and their rates

can be derived separately and simplified differently according to their different

natures.

6.1.1 Non-resonant reaction rate formalism

As discussed in the previous subsection, the S-factor for non-resonant reactions

varies smoothly with energy and thus it can be regarded to first order as a constant,

i.e., S(E) = S(E0) = constant. Then we can take the S(E) out of the integrand in

Eq. 6.9 and replace the Gamow peak function with the Gaussian function of the
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previous subsection. We find

〈σv〉dc =
(

8

πμ

)1/2
1

(kT )3/2
S(E0)

∫ ∞

0

exp

(
− E

kT
−
√

EG

E

)
dE

≈
(

8

πμ

)1/2
1

(kT )3/2
S(E0)

∫ ∞

0

exp

(
−3E0

kT

)
exp

[
−
(
E − E0

Δ/2

)2
]
dE

=

(
8

πμ

)1/2
1

(kT )3/2
S(E0) exp

(
−3E0

kT

) √
πΔ

2

=

(
2

μ

)1/2
Δ

(kT )3/2
S(E0) exp

(
−3E0

kT

)
(6.14)

In this approximation, we use a symmetric Gaussian function to replace the

asymmetric Gamow peak function. Therefore, to find a more accurate reaction

rate, we need to make corrections to the rate derived above for the replacement

of the peak function and the assumption of constant S-factor, since for many non-

resonant reactions the S-factor is not constant but varies with energy E. Due to

its slow variation with energy, the energy-dependent non-resonant S-factor can be

expanded in a Taylor series, with respect to E = 0 for ease of computation,

S(E) = S(0) + S ′(0)E +
1

2
S ′′(0)E2 + · · · (6.15)

where the prime represents the derivative with respect to E. We insert this expres-

sion for S(E) into the general formula (Eq. 6.9) for the non-resonant reaction rate

and we get a sum of integrals, with each corresponding to one term in the expan-

sion of S(E). With this, we have made some corrections to the energy dependence

of the S-factor. We then find that we can replace the Gamow peak function by

a Gaussian function in each integral, as described previously, since the quantity

related to the S-factor is a constant and can be taken out of each integrand. Fi-

nally we arrive at the formula for the non-resonant nuclear reaction rate, with an
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effective constant S-factor Seff (E0) [1] in place of the S(E0) in Eq.(6.14),

Seff (E0) = S(0)

[
1 +

5

12τ
+

S ′(0)
S(0)

(
E0 +

35

36
kT

)

+
1

2

S ′′(0)
S0

(
E2

0 +
89

36
E0kT

)] (6.16)

where τ ≡ 3E0/kT ; the first two terms in the square bracket arise from the cor-

rection for the asymmetry of the Gamow peak, while the remaining terms account

for the variation of the S-factor with energy; the coefficients of S(0), S ′(0), S ′′(0)

are in units of MeV·b, b, and b/MeV, respectively, and their values can be either

obtained from fits to the experimental cross-section data; or deduced from its def-

inition in Eq. 6.7 using the cross section from shell model calculations, with the

S(0) regarded as the averaged value of the calculated S(E) over the energy range

of interest [72, 74, 75].

The formula of the reaction rate (per reacting particle pair) can be numerically

written as [1]

〈σv〉dc = 1.30× 10−14

(
ZAZB

mA +mB

mAmB

)1/3

T
−2/3
9 Seff

× exp

[
−4.2487

(
Z2

AZ
2
B

T9

mA +mB

mAmB

)1/3
]

[cm3s−1]

(6.17)

Sample calculations can be found in Ref. [76, 77]. At low stellar temperatures,

non-resonant thermonuclear reactions are the dominant contributors to the reac-

tion rate but as the temperature increases, the resonant reactions compete with

the non-resonant ones and finally become the dominant contributors.

6.1.2 Resonant reaction rate formalism

In non-resonant nuclear reactions (direct capture), the light energetic projectile,

e.g., the proton, interacts only with the surface of the heavy target nucleus and goes

directly to form the final nucleus with the simultaneously emission of γ-rays. The
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configuration of the nucleons inside the target nucleus remains unchanged. This

is a single-step and direct process in which no intermediate state is formed, and it

can occur at all center-of-mass energies. In contrast to this single-step and direct

process, the resonant reaction is a two-step process in which the projectile travels

into the target nucleus and shares its kinetic energy among all the nucleons in the

target nucleus, rearranging their configuration according to the level structure of

the final nucleus. As a result, an intermediate state of the compound nucleus of two

reacting particles is formed when the total kinetic energy Ecm of the two reacting

particles plus the Q-value or threshold energy, which the compound nucleus can

absorb completely to rearrange and excite the internal nucleons, matches the level

energy Ex of an excited state in the compound nucleus. The excited compound

nucleus will then subsequently de-excite to low-lying states by γ-decays or break up

into other nuclei by particle decays. The Ecm for which this happens is therefore

called the resonant energy ER. The relation between the energy of the excited

state Ex in the compound nucleus and the resonant energy ER is given by

Ex = ER +Q (6.18)

Since ER > 0, we can see that Ex > Q and the resonant reaction can thus only

populate excited states in the compound nucleus with energies above the particle

threshold.

The energies (Ecm) of astrophysical interest are in the low energy range: for

example, the Gamow peak energy of the 25Al+ p capture reaction is E0 ≈ 1 MeV

at temperatures characteristic of supernova explosions of about T9 = 1 (T9 is the

astrophysical notation of temperatures, equivalent to GK.). The level density in

this low energy range is relatively small which means that the resonant states

do not overlap significantly and can be regarded as isolated and narrow resonant

states (by “narrow” we mean the total width of the resonant state Γ  ER). With

this assumption, the cross-section for populating a resonant state can be described
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by the single-level Breit-Wigner cross section, which is given by

σBW =
λ2

4π

2J + 1

(2JA + 1)(2JB + 1)
(1 + δAB)

Γ1Γ2

(E − ER)2 + Γ2/4
(6.19)

where λ is the de Broglie wavelength, given by λ = 2π/k = 2π�/
√
2μE with

k= p/� =
√
2μE/� as the wave number; JA, JB, and J are the spins of the

two particles in the entrance channel4 and the compound nucleus, respectively.

They are related through angular momentum conservation by S
⊕

l = J with the

channel spin S = JA
⊕

JB and with l representing the relative orbital angular

momentum of the two reacting particles; the factor (1+ δAB) accounts for the fact

that the two reacting particles are identical. E is the total energy in the center-of-

mass frame, and Γ1, Γ2 are the partial widths of a resonant state for the entrance

channel and exit channel and Γ = Γ1 + Γ2 is the total resonance width. The ratio

of the partial resonance width to the total width is the probability of the formation

of the compound nucleus by the corresponding channel. The total width of a state

is a quantity related to its mean life time τ by the uncertainty principle Γt ≈ �,

through which the total width can be also obtained using a half-life measurement.

After replacing the cross section reaction rate formula (Eq. 6.6) with the σBW

and realizing that the Maxwell-Boltzmann distribution function, E exp(−E/kT )

is almost constant over the total width of a narrow and isolated resonance, as

shown in figure 6.2 and therefore can be evaluated at E = ER and taken out of the

integral, we can arrive at a simplified formula for the reaction rate for a narrow

4“Channel” refers to the way the compound nucleus is formed or decays, with the entrance
channel for formation and the exit channel for decay.
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Figure 6.2: The Maxwell-Boltzmann distribution and a narrow resonance.

resonance

〈σv〉 =
(

8

πμ

)1/2
1

(kT )3/2

∫ ∞

0

EσBW (E)exp

(
− E

kT

)
dE

=

√
2π�2

(μkT )

3/2

ω

∫ ∞

0

Γ1Γ2

(E − ER)2 + Γ2/4
exp

(
− E

kT

)
dE

=

√
2π�2

(μkT )

3/2

exp

(
−ER

kT

)
ωΓ1Γ2

×
∫ ∞

0

1

(E − ER)2 + Γ2/4
exp

(
− E

kT

)
dE

=

(
2π

(μkT )

)3/2

�
2exp

(
−ER

kT

)
ω
Γ1Γ2

Γ

=

(
2π

(μkT )

)3/2

�
2exp

(
−ER

kT

)
ωγ

(6.20)

where ω is the statistical factor, given by

ω =
2J + 1

(2JA + 1)(2JB + 1)
(1 + δAB) (6.21)
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and the γ = Γ1Γ2/Γ. The product of ω and γ is called the strength of a resonance,

ωγ =
2J + 1

(2JA + 1)(2JB + 1)
(1 + δAB)

Γ1Γ2

Γ1 + Γ2
(6.22)

For the capture reactions ((p, γ) or (α, γ))in the stellar environment, the en-

trance channel is the proton capture by the heavy nucleus and the exit channel is

the γ-decay of the intermediate compound nucleus. The entrance and exit widths

will be denoted by Γp and Γγ. If the compound state is in a higher resonant state,

it is more probable for a proton inside the compound nucleus to penetrate the

Coulomb barrier (proton decay) than for the nucleus to decay by γ-transitions

(γ-decay). For this case, Γp � Γγ and Γ ≈ Γp and the resonance strength is thus

reduced to ωγ ≈ ωΓγ, depending only on the γ width. For low-lying resonant

states just above proton threshold, the compound nucleus is relatively stable for

proton decay compared with γ-decay. This implies that Γp  Γγ and Γ ≈ Γγ and

the resonance strength is thus reduced to ωγ ≈ ωΓp, depending only on the pro-

ton width. It is recalled from the non-resonant reaction rate formalism that only

reactions with the total energy E in the center-of-mass frame within the Gamow

window contributes greatly to the reaction rate. This also applies to the reso-

nant reaction rate in that only the resonant states within the Gamow window at

a stellar temperature contributes greatly to the reaction rate. Contributions from

resonances beyond the Gamow window can be neglected.

If there are many resonances within the Gamow window, the total reaction rate

is just the sum of the rate for each individual resonance, and it is written as

〈σv〉res =
(

2π

μkT

)3/2

�
2
∑
i

(ωγ)iexp

(
−ERi

kT

)

= 2.557× 10−19

(
mAmB

mA +mB

T9

)−3/2∑
i

(ωγ)iexp

(
−11.605ERi

T9

)
[cm3s−1]

(6.23)

where the masses are in units of amu, the resonance strength ωγ in eV and the

resonant energy ER in MeV.
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6.2 Stellar reaction rate of the 25Al(p,γ)26Si re-

action

We calculated the new reaction rate of the 25Al(p,γ)26Si reaction using our results

of energy levels or resonances in 26Si from the two experiments. The contribution

from the direct capture reaction will not be recalculated in this thesis and is taken

directly from Ref. [75]. The resonant contribution from each resonance is calculated

using Eq. 6.23 given in the last section. Since only energy levels above the proton

threshold energy can be populated in this reaction, only these levels contribute to

the reaction rate. From the NSCL experiment, two levels at Ex=5.909 MeV (3+)

and 6.446 keV (3+) are adopted for the rate calculation, while from the elastic

scattering experiment at CRIB, three resonances at Ex=7.135 MeV (2+), 7.495

MeV (2+) and 7.647 MeV (3+) are used as inputs for the calculation. We will also

include the levels from previous work [10, 11, 12] in our calculations.

For the level at Ex=5.909 MeV (ER=Ex-5.518=391 keV, 3+), the value of the

γ width (Γγ=0.033 eV) is taken from Ref. [75] while the proton width Γp is taken

as the average of the value (Γp=2.3 keV) in Ref. [12] and that (Γp=2.68 keV) in

Ref. [11]. Therefore, the resonance strength is calculated to be ωγ=1.9×10−2 eV.

In the rate calculation, the ER will be taken as the average value (394 keV) of that

(396 keV) from Ref. [12] and our result (391 keV), as well as for the level energy

(averaged Ex=5.912 MeV).

For the level at Ex=6.446 MeV (ER=928 keV, 4+), there are no experimental

information on Γγ and Γp. Instead, Γγ for this state can be calculated or esti-

mated using the experimental transition information of the mirror state in 26Mg

at Ex=6.622 MeV. The γ width of a state associated with a M1 or E2 transition

is calculated by

Γγ(M1) = B(M1)
BW (M1)

ΓW
γ (M1) [eV ] (6.24)

Γγ(E2) = B(E2)
BW (E2)

ΓW
γ (E2) [eV ] (6.25)
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where B(M1) and B(E2) are transition probabilities from measurements or calcu-

lations in Weisskopf-units; BW (M1) and BW (E2) are the corresponding Weisskopf

units; ΓW
γ (M1) and ΓW

γ (E2) are the Weisskopf-unit γ widths for M1 and E2 tran-

sitions (in eV), respectively. They are given by [78],

ΓW
γ (M1) = 2.1× 10−2E3

γ [eV ] (6.26)

ΓW
γ (E2) = 4.9× 10−8A4/3E5

γ [eV ] (6.27)

where Eγ is in units of MeV. Using the B(M1) and B(E2) of transitions from

the Ex=6.622 MeV state in 26Mg [80], we calculated Γγ=1.7×10−2 eV. The proton

width Γp can be either taken from its mirror state in 26Mg or calculated based on

the fact that it is proportional to the penetrability through the Coulomb barrier [1].

Therefore we can find Γp by scaling the proton width of a known resonance by the

ratio of the penetrability (if the reduced widths are the same), that is

Γp(ER1) =
P (ER1)

P (ER2)
Γp(ER2). (6.28)

The penetrability is given by

P (E) = exp(−2πη) = exp

(
−31.29× ZAZB

√
1

E

mAmB

(mA +mB)

)
(6.29)

where m is the mass of the reacting nucleus and Z is the proton number; A and

B refer to the 25Al and proton respectively.

From Ref. [79], the Ex=6.622 MeV state in 26Mg has a half life of T1/2=19 fs.

According to uncertainty principle, the total width of this level can be calculated

to be Γ=0.693h/T1/2= =0.15 eV. Assuming the total width Γ = Γp+Γγ, the proton
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width is then calculated to be Γp=0.13 eV and the resonance strength

ωγ =
2J + 1

(2JA + 1)(2JB + 1)
× ΓγΓp

(Γγ + Γp)

=
(2× 4 + 1)

(2× 5
2
+ 1)(2× 1

2
+ 1)

× 0.017× 0.13

(0.017 + 0.13)

= 1.13× 10−2 eV.

We take this as the resonance strength for the Ex=6.446 MeV level in the reaction

rate calculation.

For the three levels at Ex=7.135 MeV (ER=1617 keV, 2+) , at Ex=7.495 MeV

(ER=1977 keV, 2+) and at Ex=7.647 MeV (ER=2129 keV, 3+), no transition

information is available from their mirror states in 26Mg. But we can still obtain

an upper limit of the γ width Γγ for each level by calculating the Weisskopf-unit

γ widths of single-particle transitions. They are calculated as E2, E2 and M3

transitions5, respectively and we get,

Γγ(E2;Eγ = 7.135MeV ) = 4.9× 10−8A4/3 × 7.1355 = 6.98× 10−2 [eV ]

Γγ(E2;Eγ = 7.495MeV ) = 4.9× 10−8A4/3 × 7.4955 = 8.93× 10−2 [eV ]

Γγ(M3;Eγ = 7.647MeV ) = 6.8× 10−15A4/3 × 7.6477 = 8.01× 10−7 [eV ]

Combining these γ widths with their proton widths extracted from the R-Matrix

fit for the three resonances, Γp=42 keV, 10 keV and 89 keV, respectively, we find

that Γγ  Γp at these high energy levels. Therefore, we can simplify the resonance

strength as ωγ = ω × ΓγΓp/(Γγ + Γp) � ωΓγ, as discussed earlier. The resonance

strength of these levels are calculated to be ωγ = 2.91× 10−2 eV, 3.72× 10−2 eV

and 4.67× 10−7 eV.

Table 6.1 lists all the input parameter values to be used in the calculation of

the 25Al(p, γ)26Si reaction rate.

The calculated reaction rates within the temperature range of astrophysical

5For an M3 transition, the Weisskopf-unit γ width is calculated by ΓW
γ (M3) = 6.8 ×

10−15A4/3E7
γ [eV ]
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Table 6.1: List of parameters to be used in the calculations of the 25Al(p, γ)26Si
stellar reaction rate. The parameters of the last two resonances are adopted from
Ref [12].

Jπ Ex(MeV) ER(keV) Γp (eV) Γγ(eV) ωγ(eV)

3+ 5.912 394 2.49 3.30×10−2 1.90×10−2

4+ 6.446 928 0.13 1.70×10−2 1.13×10−2

2+ 7.135 1617 4.3×104 6.98×10−2 2.91×10−2

2+ 7.495 1977 1.0×104 8.93×10−2 3.72×10−2

3+ 7.647 2129 8.9×104 8.01×10−7 4.67×10−7

1+ 5.673 155 1.3×10−9 1.10×10−1 3.25×10−10

0+ 5.946 428 1.9×10−2 8.80×10−3 5.01×10−4

interest (see Chaper 1), are listed in Table 6.3, where ER1, ER2, ER3, ER4, and

ER5 refer to the first five resonances in Table 6.1 in that order, and ER6 and ER7

are the resonances found in other studies [10, 11]. The rates from the resonances

ER6=155 keV (Jπ = 1+) and ER7=428 keV (Jπ = 0+) are directly adopted from

Ref [12]. The plots of these rates are shown in figure 6.3 and 6.4. From the plots,

we can see that the high energy resonances (ER3, ER4, ER5) only make significant

contributions to the rate at high temperature (T9>1) and their contributions at

low temperatures are negligible compared with non-resonant contribution (DC),

due to their much weak resonance strengths and high resonance energies (far away

from Gamow windows at low temperatures). The ER1 starts to make significant

contribution at T9>0.1 and then becomes dominant. The rate from ER2 can be ne-

glected at T9 <0.7 but is comparable with the DC rate at higher temperatures. The

DC contribution is dominant over the resonances at low temperatures (T9<0.1).

As the temperature increases, its percentage in the total reaction rate keeps drop-

ping until a minimum is reached at T9 ∼ 0.5, although its absolute contribution

keeps increasing. After that, its percentage in the total rate increases slowly as

the temperature increases but it will no longer dominate.
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A comparison of the total rates from our calculations to the rates in Ref. [12] and

in Ref. [11] is shown in figure 6.5. Agreement can be seen between our calculations

and rates from Bardayan et al. [12] except that there is a slight difference within the

temperature range 0.15 — 0.3 GK, arising mainly from the difference of the energies

of the resonance at ER=394 keV used in the calculations. The discrepency between

our calculations and the rate from Parpottas et al. [11] at lower temperatures

(T <0.2 GK) is thought to be possibly due to their calculation mistake of the

resonance strength for the resonance at ER=428 keV, which is calculated to be

ωγ=5.01×10−4 eV in this study.

Temperature [GK]-110 1

]
-1

m
ol

-1 s3
v>
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cm

σ
<

A
N

-2110

-1810

-1510

-1210

-910

-610

-310

1

210

 DC

 394 keV

 928 keV

1617 keV

1977 keV

2129 keV

Figure 6.3: The 25Al(p,γ)26Si reaction rates from direct capture reaction and indi-
vidual resonances from our study.
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Figure 6.4: The 25Al(p,γ)26Si reaction rates from direct capture reaction and from
the major contributing resonances. The sum of all contributions is also shown as
the solid line.
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Figure 6.5: The ratios of the total reaction rates from our calculations to the rates
from Bardayan et al. [12] and Parpottas et al. [11]

170



Chapter 7
Summary and outlook

As an important probe of the inter-stellar medium (ISM), the amount of galactic

26Al needs to be calculated more accurately in order to understand stellar evolution

better by its constraints on the stellar models. The 25Al(p,γ)26Si reaction plays

an important role in producing the 26Al at the explosive burning temperatures

(nova and supernova explosions), and determining the accuracy of the final total

26Al yield predictions. Large uncertainties however (in resonance energies and

spin-parity assignments) exist for the states of astrophysical interest (right above

the proton threshold energy Sp=5.518 MeV) in 26Si in the Gamow window at

these temperatures. More input data are clearly needed in the calculation of the

25Al(p,γ)26Si reaction rate at the temperatures of astrophysical interest.

A few recent experiments have been done to study the astrophysically im-

portant states in 26Si. Caggiano et al found two new states above the proton

threshold at Ex=5.678(8) MeV (ER=160 keV)1 and Ex=5.945(8) MeV (ER=527

keV) using the 29Si(3He,6He)26Si reaction, and assigned Jπ=1+ and 3+ to these

two states [10]. In the experiment, they detected the 6He to find the excited states

in 26Si. Bardayan et al. performed a 28Si(p,t)26Si experiment in which tritons

were measured at different angles to deduce the excited states in 26Si and the

angular distributions of the differential cross-section. They found a new state at

1The number in the square following the energy value represents the associated uncertainty
for the last digit. For example, in “5.678(8) MeV”, the uncertainty is 0.008 MeV.
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Ex=5.914(2) MeV (ER=396 keV) which was assigned Jπ=0+ in their first DWBA

calculations [9] and later assigned Jπ=3+ in their re-evaluation with the FRESCO

code [12]. They however did not observe the two states found by Caggiano et al.

Parpottas et al. used the (3He,n) reaction to study the 26Si structure by measuring

the neutron at different angles. They confirmed the three states found in the two

experiments above with Ex=5.670(4) MeV (ER=152 keV), 5.912(4) MeV (ER=394

keV) and 5.946(4) MeV (ER=428 keV) and Jπ=1+, 3+ and 0+, respectively, made

by the Hauser-Feshbach (HF) calculations of differential cross-section [11].

A more recent experiment (by Komatsubara et al. with McMaster participa-

tion) has been performed using the (3He,nγ) reaction in which instead of detect-

ing the neutrons they measured the γ-rays from the decays of the excited 26Si

states [39]. By constructing cascades of γ emissions with the γ-γ coincidence tech-

nique, they confirmed the state at Ex=5.674 MeV (ER=156 keV) and also found

a new state at Ex=5.886 MeV (ER=368 keV) which decays to the first excited

state of 1.796 MeV with a 4.089 MeV γ-ray emission. In their preliminary analysis

for the spin-parity assignments by the directional angular correlation (DCO) tech-

nique for coincident γ-rays, they tentatively assigned Jπ=0+ to this newly found

level.

We successfully performed two different experiments via the p(27Si,26Si∗)d re-

action (referred to as (p,d) in the following) and the p(25Al,25Al)p (referred to

as (p,p) in the following) elastic scattering with radioactive beams to study the

structure of 26Si for the first time with these reactions.

In the (p,d) experiment, we also measured the γ-emissions from the excited 26Si

and constructed the γ-cascades with the γ-γ coincidence technique to determine

the level energies. We found one state within the range of 5.6 MeV to 6 MeV with

Ex=5.909 MeV (ER=391 keV) which decays to the 1.796 MeV state with a 4.113

MeV γ-ray emission. According to our analysis, this state is the same state as that

3+ state around 5.912 MeV found by Bardayan et al. and Parpottas et al. and we

adopted the spin-parity assignment of Jπ=3+ from them. We also believe that the
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4.113 MeV γ-ray corresponds to the 4.089 MeV γ-ray observed in the experiment

by Komatsubara et al. and therefore we cannot confirm that the state found by

them (Ex=5.886 MeV) is a new state. Above Ex=6 MeV in 26Si, we found a new

state at Ex=6.443 MeV (ER=925 keV) which decays to the Ex=4.183 MeV state

with a 2.260 MeV γ-ray emission. We suggest a spin-parity of Jπ=4+ for this

state by matching this cascade with those from the corresponding level ranges in

its mirror nucleus 26Mg. We did not find the Ex=5.674 MeV and 5.946 MeV levels

from our analysis.

In the (p,p) experiment, we measured the scattered protons to deduce the

experimental differential cross-section. An energy range of 0–3 MeV (Ecm; cor-

responding to Ex=5.518 MeV – 8.518 MeV) above the proton threshold in 26Si

was scanned using a thick target. Actually, we did not see peak signatures in the

excitation function in the region of Ecm � 1.2 MeV because the Coulomb scat-

tering cross-section is dominant in this low energy region. In the region above

that, we can see many peak-like signatures but we can definitively identify three

peaks as true resonances. Furthermore, only for these three peaks could good fits

be made with the R-Matrix calculations of the differential cross-section. From

the fit, we extracted the three resonances at ER=1.882 MeV (Ex=7.135 MeV)

with Jπ=2+, ER=2.018 MeV (Ex=7.495 MeV) with Jπ=2+ and ER=2.251 MeV

(Ex=7.647 MeV) with Jπ=3+. The first two resonances likely correspond to the

levels at Ex=7.150 MeV and 7.493 MeV found by both Bardayan et al. and Par-

pottas et al. The third resonance matches the level at Ex=7.694 MeV found by

both Bardayan et al. and Parpottas et al. within a reasonable error range. As for

the spin-parity assignments for the three states, our R-Matrix fit results agree with

those from Bardayan et al. and Parpottas et al. but there is a discrepancy for the

third one for which our R-Matrix fit indicates Jπ=3+, whereas both Bardayan et

al. and Parpottas et al. assigned Jπ=3−.

Based on our results from both experiments, a new reaction rate for 25Al(p,γ)26Si

was calculated. The contributions from the three high-energy resonances with
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Ex>7 MeV are negligible at low temperatures (nova temperatures∼T8, Gamow

window range Ex=5.621-6.461 MeV) but will come to play a role at high tem-

peratures (supernova temperatures∼T9, Gamow window range Ex=5.907-10.493

MeV). The newly found 6.443 MeV (ER=925 keV) state contributes to the reaction

rates at high temperatures (T9 >1), comparable with the non-resonant contribu-

tion. Therefore, the most significant contributions at nova temperatures are from

resonances with ER<1 MeV.

Although much progress has been made from all of these experiments performed

for the study of the astrophysical important states in 26Si at nova and supernova

temperatures, we note that further study to resolve uncertain states and find more

new states will require the measurement of the angular distribution of the transfer

reactions and the γ-emission cascades with higher-precision and more efficient de-

tectors, and with beams of higher intensity. As the development of the radioactive

beam (RIB) technique proceeds further, direct measurements of the 25Al(p,γ)26Si

reaction with low-energy and high-intensity RIBs will be the best choice for further

study in the future.
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Appendix A
Production of RIBs in laboratory

The methods for producing the short-lived radioactive beams (RIBs) in the lab-

oratory can be categorized into two types: the ISOL method and the In-flight

method, which can produce RIBs in different energy regimes and thus are comple-

mentary. Figure A.1 shows a schematic diagram of the beam production by these

two methods in comparison.

A.1 ISOL – Isotope Separator On-Line

In the ISOL method, radioactive ions are first produced by a primary accelera-

tor or by the neutrons from a nuclear reactor and then stopped by a production

target after which the radioactivity is transported into an ion-source. The radioac-

tive nuclei from the ion source are extracted in the form of ions with the desired

charge-states and then go through the selection of mass separators to remove the

unwanted particles from the beam. After this mass separation, the beam will

get re-accelerated by a second accelerator to the desired energy for the nuclear

experiments.

With the ISOL technique, beams of high quality can be produced, which is

comparable to that of stable beams because the process is similar to that for the

stable beam production. Strong ISOL beams can be produced but the intensity
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Figure A.1: The schematic diagram of the RIB productions by the ISOL method
and the in-flight method.

varies with the chemical species used for the ion-source and their radioactivities.

This technique also depends on the diffusion and effusion of the radioactive atoms

in the production target. To facilitate the production process, the production

target is always maintained at high temperatures (about 2500◦C). Since the time
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of the diffusion processes vary, this method is not suitable for short-lived nuclear

species with half-lives of milliseconds or less because the radioactive nuclei could

decay before they get re-accelerated to the secondary target.

A.2 In-flight method

In the in-flight method, the radioactive beam is produced by the fragmentation of

heavy primary beam on a light target. Interactions with the light target nuclei can

result in fragmentation and the produced nuclei can leave the target with velocities

close to those of the beam projectiles. Due to the nature of fragmentation, many

different species will be produced. Since the produced beam particles already have

high velocities, they do not need further acceleration as in the ISOL method to

transport them to the secondary target and therefore it is suitable for production

of short-lived radioactive beams. Before the beam particles reach the secondary

target beam, a beam separation is necessary, by which the beam particles can

be identified and separated by mass, charge and momentum in a spectrometer

(fragment separator). But even after this separation, the beam can be still con-

taminated by other particles with characteristics close to the desired beam particle.

Further identification for the beam particles are needed on an event-by-event basis.

Using in-flight, we can produce all chemical species with half-lives greater than

about 150 ns which is the time of transit through the fragment separator. The

main disadvantage of this method due to the nature of fragmentation is that it is

difficult to produce RIBs with high intensities and high purities and the produced

beams have poorer quality in terms of energy and focusing.

Both of our experiments at the NSCL facility and the CRIB facility use the

in-flight method to produce the RIBs.

The best method for the RIB production in the future is the one that combines

the ISOL and in-flight methods by stopping fragmentation products in a gas cell.
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Appendix B
R-Matrix theory

The R-Matrix theory is a theory of the cross-section of compound nuclear reaction.

A compound nucleus is formed via the strong short-range nuclear force which exists

only inside the nucleus. Outside the nucleus the Coulomb force plays the dominant

role. Therefore the wave functions inside and outside the nucleus in the formation

of compound nuclei behave differently, and a nuclear surface is then defined as

existing at a radius ac representing the boundary between the internal and external

region. Outside the surface, due to the weak electromagnetic interaction, the wave

function is simply described as a linear combination of the incoming and outgoing

waves. But in the internal region, the wave function is confined in the nuclear

volume enclosed by the nuclear surface and thus can be expressed as a standing

wave, the eigenvalue of which gives the resonant energy of a resonant state in the

compound nucleus. But since the compound nucleus cannot last forever, and it can

break out or decay in many exit reaction channels, the wave function is actually

not an exact standing wave but a complete orthonormal set of such standing wave

functions associated with all resonant states.

In the following, the derivation of the R-Matrix formalism for a simple particle

scattering from a central potential is described. In the internal region, the total
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radial wave function Ψ satisfies the radial Schrödinger equation,

− �
2

2m

d2Ψ

dr2
+ V (r)Ψ = EΨ (B.1)

where the mass m is actually the reduced mass the scattering system.

As mentioned above, the internal wave function is described by a complete set

of wave functions of resonant states, as follows

Ψ =
∑
λ

CλXλ (B.2)

where Xλ represent the standing wave functions of the resonances labeled λ. All

these resonances satisfy the Schrödinger equation,

HXλ = EλXλ (B.3)

where Eλ are the energy eigenvalues of the resonant states. The energy-dependent

coefficients Cλ are given by

Cλ =

∫ ac

0

X∗
λΨdV (B.4)

where the V represents the nuclear volume enclosed by the surface at r = ac.

Since the Xλ are stationary, they must satisfy the boundary condition on the

nuclear surface r = ac, given by

[
r
dXλ

dr
− bXλ

]
r=ac

= 0 (B.5)

where b is the boundary condition number and can be arbitrarily chosen.

By multiplying Eq. B.1 by X∗
λ and the conjugate of Eq. B.3 by Ψ, subtracting,

and integrating over the nuclear volume V , we obtain

− �
2

2m

(
Ψ
dX∗

λ

dr
−X∗

λ

dΨ

dr

)
r=ac

= (E − Eλ)

∫ ac

0

X∗
λΨdr (B.6)
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Using Eq. B.4 and Eq. B.5, we obtain

Cλ =
�
2

2mac

Xλ(ac)

E − Eλ

(
r
dΨ

dr
− bΨ

)
r=ac

(B.7)

Substituting this expression of Cλ to Eq. B.2, we get

Ψ(r) = G(r, ac)

(
r
dΨ

dr
− bΨ

)
r=ac

(B.8)

where the Green’s function G(r, ac) is given by

G(r, ac) =
�
2

2mac

∑
λ

Xλ(r)Xλ(ac)

Eλ − E
(B.9)

which relates the value of the wave function in the internal region to its derivative

on the surface and defines the R function as its value at r = ac

R ≡ G(ac, ac) =
∑
λ

γ2
λ

Eλ − E
(B.10)

where

γλ =

(
�
2

2mac

)1/2

Xλ(ac) (B.11)

is referred to as the reduced the reduced width of the resonant state.

The R-function then relates the internal stationary parameters such as the wave

functions and eigenenergies to the total wave function Ψ at the nuclear surface

r = ac.

From Eq. B.8, we get

Ψ(ac) = G(ac, ac)(acΨ
′(ac)− bΨ(ac)) (B.12)

then we can find that
Ψ′(ac)
Ψ(ac)

=
1 + bR

acR
(B.13)

This implies that if we know the logarithmic derivative of the wave function at
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r = ac for all energies, we will know the cross-section for all energies as well.

In the external region, the total wave function can be written as a linear com-

bination of the linearly independent incident and outgoing radial waves, Il and Ol,

in the form

Φl = Il − UlOl (B.14)

where the coefficient Ul is so-called collision function which is the amplitude of the

unit-flux outgoing wave Ol associated with a unit-flux incoming wave Il. The index

l here denotes the incident relative orbital angular momentum of the scattering

system.

The radial incoming and outgoing wave functions at large distance can be

written as

Il = −exp[i(kr − πl/2− ηln(kr))]

Ol = exp[i(kr − πl/2− ηln(kr))]
(B.15)

where k is the wave number and η is the Coulomb parameter– the Sommerfeld

parameter, depending on the charge Z1 and Z2 of the scattering pair and their

relative velocity v, and they are given by

k =

√
2mE

�

η =
Z1Z2e

2

�v

(B.16)

If we let ρ = kr, Il and Ol will be functions of ρ.

Alternatively, the incoming and outgoing radial wave functions can be written

in terms of the regular and irregular Coulomb functions Fl and Gl as

Il = (Gl(kr)− iFl(kr))exp(iωl)

Ol = (Gl(kr) + iFl(kr))exp(−iωl)
(B.17)
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where ωl is the Coulomb phase shift, and is given by

ωl =
l∑

n=1

tan−1(ηl/n). (B.18)

If there is no Coulomb field in the external region (neutron scattering) or at large

distances (r � ac), we will have η ∼ 0, that is, zero Coulomb phase shift ω = 0.

The regular and irregular Coulomb function Fl and Gl are given by (Pg. 269

in [52])

Fl(kr) =

√
πkr

2
Jl+ 1

2
(kr) = krjl(kr)

Gl(kr) = (−1)l
√

πkr

2
J−(l+ 1

2
)(kr) = −krnl(kr)

(B.19)

where Jl+ 1
2
(kr) andJ−(l+ 1

2
)(kr) is half-integer Bessel functions, jlkr is the spherical

Bessel functions and and nlkr is the spherical Neumann function.

By evaluating the logarithmic derivative of the external wave function at the

nuclear surface r = ac and matching it with that of the external wavefunction in

Eq. B.13, we obtain
1 + bR

Rac
=

(
I ′l − UlO

′
l

Il − UlOl

)
r=ac

, (B.20)

where the prime means d
dr

and it follows that

Ul =
Il + bRIl −RI ′l
Ol + bROl −RO′

l

∣∣∣∣
r=ac

=
1− L∗

lR

1− LlR

Il
Ol

∣∣∣∣
ac

(B.21)

where we use the fact that Il = O∗
l and Ll is the logarithmic derivative quantity

at r = ac, given by

Ll ≡ ac

(
O′

l

Ol

)
r=ac

− b ≡ Sl + iPl (B.22)

Here Sl is defined as the shift function leading to level shifts and Pl is the penetra-

bility leading to level widths. Both of them are evaluated at r = ac. Then using
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Eq. B.17 in above equation, we can find the expressions of the shift function and

penetrability function in terms of the Coulomb functions as follows

Sl = ac
Fl(kr)F

′
l (kr) +Gl(kr)G

′
l(kr)

F 2
l (kr) +G2

l (kr)

∣∣∣∣
r=ac

Pl =
kac

F 2
l (kr) +G2

l (kr)

∣∣∣∣
r=ac

(B.23)

Then we can rewrite the collision function Ul in Eq. B.21 in terms of Sl, Pl and

the R function using Eq. B.17, Eq. B.21 and Eq. B.22, as

Ul =
(1− SlR) + iPlR

(1− (SlR)− iPlR

Gl(kr)− iF (kr)

Gl(kr) + iFl(kr)
exp(2iωl) (B.24)

It follows that

Ul = exp(2iδRl )exp(−2iφl)exp(2iωl) = exp[2i(δRl − φl + ωl)] = exp(2iδl), atr = aac

(B.25)

As we can see the collision function can finally expressed as a simple form as

Ul = exp(2iδl) with the δl is called the total phase shift,

δl = δRl − φl + ωl (B.26)

with

δRl = tan−1 PlR

1− SlR

φl = tan−1 Fl(kac)

Gl(kac)

(B.27)

and ωl from Eq. B.18, the Coulomb scattering phase shift. δRl is the resonance

contribution to the phase shift and φl is the hard sphere scattering phase shift.

Now in order to find the relation between the collision function Ul and the dif-

ferential cross-section, we start with the total wave functions. The total incoming
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and outgoing wave functions, Il and Ol, are given by (Pg. 270 in [52])

Il = ilYl0
Il

v1/2r
ψ

Ol = ilYl0
Ol

v1/2r
ψ

(B.28)

where ψ is the wave function associated with other quantum numbers and the

spherical harmonics function Yl0 is just

Yl0(θ) =

√
2l + 1

4π
Pl(cosθ) (B.29)

Therefore the total wave function ΨT can be written as the linear combinations

of the total incoming and outgoing wave functions, as follows

ΨT =
∑
l

Al(Il − UlOl) (B.30)

It follows that

ΨT =
∑
l

Al(i
lYl0

Il
v1/2r

ψ − Uli
lYl0

Ol

v1/2r
ψ)

=
∑
l

Ali
lYl0ψ

v1/2r
(I − UO)

=
∑
l

Ali
lYl0ψ

v1/2r
(I −O) +

∑
l

Ali
lYl0ψ

v1/2r
(1− U)O

(B.31)

Substituting the expression of Yl0 and Eq. B.17 (the Coulomb shift is taken as zero

at large distances) into the above equation and using Eq. B.19, we obtain

ΨT =
∑
l

Ali
lYl0ψ

v1/2r
(−2iFl) +

∑
l

Ali
lYl0ψ

v1/2r
(1− U)(Gl + iFl)

=
∑
l

√
2l + 1

π

Alkψ

v1/2
(−il+1)Pl(cosθ)jl(kr)

+
∑
l

√
2l + 1

4π

Alkψ

v1/2
il(1− Ul)Pl(cosθ)(jl(kr) + inl(kr))

(B.32)
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Recall that a plane wave exp(ikz) can be expanded as follows

exp(ikz) = exp(ikrcosθ) =
∑
l

il(2l + 1)jl(kr)Pl(cosθ) (B.33)

and hl(kr) = jl(kr) + inl(kr) is the spherical Hankel function of the first kind and

is approximated as hl(kr) ∼ −iexp(ikr)/(kr) at large distances. Then the above

expression of ΨT can be written as

ΨT =
∑
l

Al
(−ik)√

v1/2π(2l + 1)
× il(2l + 1)jl(kr)Pl(cosθ)

+
∑
l

√
2l + 1

4π

Al

v1/2
(−il+1)(1− Ul)Pl(cosθ)

exp(ikr)

r

(B.34)

Now we define a value of Al so that the first term in the expression ΨT is just a

plane wave exp(ikz), that is,

Al =
i
√

π(2l + 1)v1/2

k
(B.35)

Using this value of Al in the expression of ΨT , we obtain

ΨT = exp(ikz) + f(θ)
exp(ikr)

r
(B.36)

with

f(θ) =
1

2k

∑
l

il(2l + 1)(1− U)Pl(cosθ) (B.37)

Thus we find that the total wave function is just a superposition of an incoming

plane wave and an outgoing scattering radial wave. The f(θ) is thus the nuclear

scattering amplitude and the differential cross-section is then given by

dσ(θ)

dΩ
= |f(θ)|2 = 1

4k2

∣∣∣∣∣
∑
l

(2l + 1)(1− Ul)Pl(cosθ)

∣∣∣∣∣
2

(B.38)

Finally we find that the differential cross-section depends on the collision func-
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tion Ul which in turn depends on the phase shifts associated with Coulomb scatter-

ing (ωl), hard-sphere scattering (φl), and resonant scattering (δRl ), with the third

one determined by the R function. It is the R function within which all the in-

formation about the stationary states, such as resonance energies and widths is

contained Therefore, if we know the resonance energies and widths of resonances,

we can calculate the R function and then the collision function from which the

differential cross-section can be calculated. Likewise, if we have data of resonant

scatterings or reactions from experiments and use the formula of differential cross-

section with R function to fit the data, we can extract the resonance energies and

widths for unknown resonances, the spin-parity Jπ as well.

The above derivations are for the simple case of the single channel resonant

scatterings or reactions. If there are more scattering or reaction channels involved

to populate different resonance states, the multi-channel representation is needed.

For this case, the R-function will become an R-matrix with each element repre-

senting the correlation between two channels. In turn, the collision function in

Eq. B.21 is then a collision matrix and it should be re-written as [page 732 in

Ref. [53]]

U = (kr)1/2O−1(1− LR)−1(1− L∗R)I(kr)−1 (B.39)

where (kr)1/2 and (kr)−1/2 are the diagonal matrices with diagonal elements (kr)1/2

and (kr)−1/2, respectively; O ,I and L are also diagonal matrices with component

Oc ,Ic and Lc(c the channel label); the simple inverse calculation of a real value in

Eq. B.21 now becomes the complicated inverse calculation of the matrix, that is

(1− LR)−1.

Actually, the resonance energies and widths extracted from the fit are not the

physical ones and they are called formal resonance energies and widths. Different

energies and widths can be obtained if different boundary constants are used. They

depend on the choice of the boundary condition and they are related to the real

physical resonance energies and width by this boundary condition. There is always

a boundary constant at which the formal resonance energy matches the physical
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one for each resonance. The process of finding the physical resonance parame-

ters from the formal ones is called boundary transformation, which is explained

in Chapter 5. The differential cross-section does not depend on the boundary

constant, which means all combinations of boundary constants and the resonance

parameters calculated at the corresponding boundary constant will give the same

value of the differential cross-section for the same resonant scattering or reaction.
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Appendix C
More analysis details

C.1 File formats of the experimental data at CRIB

and NSCL

The raw experimental data collected during the experiment were binary data. It

usually include two parts: the first part is the header including the run information

about the data file, such as file name, run time, file size, and so on; the second

part is the binary data. The data formats used in different laboratories might

be different in the details of the header and data body due to the different data

acquisition systems (DAQs) and different encoding method used to making the raw

binary data. Here the two data formats used in this thesis project are described:

the data format of the rdf data file at CRIB with extension .rdf and that of the

evt data file at NSCL with extension .evt. Figure C.1 shows the format of each

event stored in the .evt file at NSCL. Figure C.2 shows the format of .rdf file at

CRIB.
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Figure C.1: Event format of data file at NSCL.
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Figure C.2: Data format of the .rdf file at CRIB.
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C.2 Input file for the R-Matrix fitting program

Displayed below is the content of the input file “param.par” used for the R-Matrix

fit to our resonance data. For example, 1’e(3,1) represents the reduced width

of the first resonance, with the first number in the square equal to Jπ + 1 and

the second number indicating the number of the resonance; the two values after

1’e(3,1) are the values of this reduced width and its uncertainties, respectively.

5’g(31321) represents the formal energy of the first resonance indicated by the

last number in the square; the first number in the square again is equal to Jπ + 1

with Jπ the spin of the resoance; the second one means the number of reaction

channel, 1 for elastic scattering and 2 for inelastic scattering; the third number in

the square is equal to S + 1 with S the channel spin of this reaction channel; the

fourth number is equal to l + 1 with l the quantum number of the orbital angular

momentum.

SET TITLE

Elastic scattering R-matrix fit to CRIB data

PARAMETERS

1’e(3,1) ’ 0.17100E+01 0.61545E-02

2’e(3,2) ’ 0.20540E+01 0.75266E+01

3’e(4,3) ’ 0.22340E+01 0.75266E+01

4’e(3,4) ’ 0.10840E+02 0.75266E+01

5’g(31321) ’ 0.42415E+00 0.12376E-01

6’g(31312) ’ 0.24185E+00 0.23795E+00

7’g(41413) ’ 0.42415E+00 0.12376E-01

8’g(31314) ’ 0.29485E+01 0.23795E+00

23’signorm ’ 0.21941E+00 0.27899E-02

minimize 1000

save

return
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C.3 Creating .spe file used in gf3 program

gf3 is a useful program for gamma spectrum analysis in the RadWare package [81].

This program takes an input spectrum file of its own format with the extension

.spe, plot it, and analyzes it. The .spe file is a binary file only for 1 dimensional

spectra and it contains two parts of information for a spectrum. The first part is

the information about the name and size of the spectrum, while the second part is

the spectrum data. Each data point in the file is just the count of the spectrum at

the channel corresponding to the index of its placement in the file. For example,

if the 14th data point in the file is 100, that means that at channel 14 on the

spectrum, there are 100 counts.

To use the gf3 program, we need to create a .spe file from our data if one

does not already exist. We can simply create it from a .txt file, which consists

of only two columns of data with the first column the channel number and the

second the count at that channel number for each row in the file. Then we can

write a short code reading the channel and count from the .txt file, creating a

.spe file and writing into the .spe file the count by order of its channel number

using a subroutine named ”wspec” in the gf3 code package. The following is for

those who are reading this section and are not familiar with linking to a library.

When compiling and building this short code, we need to link it to the library

which contains the subroutine we used for creating .spe file. For example, if the

short code is “CreateSpe.c” and the library is a archive “util.a” in the directory of

“/usr/local/gf3/src/libs/util”, we just do,

gcc -o CreateSpe -c CreateSpe.c /usr/local/gf3/src/libs/util/util.a -lm

Regarding how to use gf3, refer to the manual on its website [81].
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C.4 Geometry of the detector system in the F3

chamber at CRIB

Figure C.3 shows the geometry of the detector system in the F3 chamber from the

top view. All of the measured distances are listed in Table C.1. d0, d1 and d2 are

the distances from the target center to the centers of PSD0 (0◦), PSD1 (17◦) and

PSD2 (27◦), respectively. In the calculation of the scattering angles, we use d0= d1

=d2=204 mm. The horizontal center of the PSD0 is not on the beam axis; instead

it is off axis to the right by 16 mm as viewed from upstream to downstream. The

active area of each PSD is 50mm×50mm in X & Y dimensions. Each dimension

has 16 divisions with each having a size of 3.1 mm.

Figure C.3: Geometry of detectors in the F3 chamber at CRIB, from top view.
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Table C.1: List of measured distances (mm) in the detector system in F3 chamber
at CRIB for our experimental set-up (refer to figure C.3).

A1A2 52 B1B2 51 A2B2 56.8 B1C 248

B2C 197 B1F 453 B1D1 435 B1D2 441

B1E1 445 B1E2 429 CD1 193 CD2 189

CF 208 CE1 205 CE2 207
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