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ABSTRACT

THE 64Zn(t,3He) CHARGE-EXCHANGE REACTION AT 115 MeV PER NUCLEON
AND APPLICATION TO 64Zn STELLAR ELECTRON-CAPTURE

By

George Wesley Hitt

A secondary, 115 MeV per nucleon triton beam has been reinstituted at the Na-

tional Superconducting Cyclotron Laboratory for use in (t,3He) charge-exchange reac-

tion studies. This (n,p)-type charge-exchange reaction is useful for extracting the full

Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in

conventional decay studies. The GT+-strength in the pf -shell nucleus 64Cu has been de-

termined from the absolute cross section measurement of 64Zn(t,3He) near zero-degrees,

exploiting an empirical proportionality between the differential angular cross section and

the GT-strength. The detailed features of the GT+-strength distribution in a nucleus

has an important impact on electron-capture rates in Type Ia and core-collapse super-

novae. The measured GT+-strength in 64Cu is directly compared with the results of

modern pf -shell effective interactions GXPF1a and KB3G which can be used to calcu-

late the GT+ contribution to electron-capture on nuclei in supernova simulations. The

(t,3He) charge-exchange program at the National Superconducting Cyclotron Labora-

tory provides stringent tests and can aid the development of such nuclear shell-model

calculations.
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Chapter 1

Introduction

In a nuclear collision, charge-exchange reactions result from the projectile exchanging a

proton for a neutron, or vice-versa, with the target nucleus. The charge-exchange reac-

tion is a useful tool for investigating features of electron-capture in the stellar environ-

ment. Electron captures are expected to play an important role in thermonuclear and

core-collapse supernovae. In this work, the focus is on charge-exchange reactions at inter-

mediate beam energy (∼100 MeV/nucleon). The reaction is mediated by the isospin-flip

components of the nucleon-nucleus interaction which contains a variety of terms related

to meson-exchange [1]. Of particular importance for describing electron-capture rates are

Gamow-Teller transition strengths which are associated with spin and isospin transfer. In

the effective nucleon-nucleus interaction, such transitions are represented by components

with the range of the one-pion exchange potential (OPEP) [2]. This work focuses on

GT transitions from 64Zn to 64Cu, studied using the 64Zn(t,3He)64Cu charge-exchange

reaction. The 64Zn parent nucleus is presumably a pf -shell nucleus, and the knowledge

of electron-capture rates on pf -shell nuclei are crucial for both thermonuclear [3] and

core-collapse supernovae [4].

Gamow-Teller transitions induced by charge-exchange reactions are mediated via the

spin-isospin (στ) component Vστ of the strong nuclear interaction. Information about

the weak process can be obtained however, because of the similar action of the bare στ

operator in the β-decay process and connection of identical initial and final nuclear states
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by this operator in both charge-exchange and β-decay processes. In fact, as described in

Chapter 3, a simple proportionality exists between the charge-exchange differential cross

section in the limit of vanishing momentum transfer and the Gamow-Teller matrix ele-

ment of β-decay transitions. Provided the GT matrix elements can be reliably separated

from other effects of the strong nuclear interaction, the cross section for a charge-exchange

reaction will then be advantageously larger than its weak, electron-capture analog. An

important difference with β-decay is that charge-exchange is unhindered by Q-value

restrictions present in direct electron-capture studies. Many nuclei, that otherwise have

prohibitive electron-capture Q-values, efficiently capture the degenerate, high-energy elec-

trons in dense stellar cores. Charge-exchange reactions can probe the full Gamow-Teller

response of the nucleus. This includes the response as it is seen by electron-capture in the

stellar environment. This information then is a valuable addition to supernova modeling

efforts, offering stringent tests of B(GT) inputs determined from nuclear structure theory.

Outline

The following work is from a nuclear experimental perspective and examines the light-

ion charge-exchange reaction 64Zn(t,3He)64Cu. In the current Chapter, a brief historical

review of the connection between charge-exchange experiments and supernova theory is

given. Next, in Chapter 2, the salient features of stellar electron-capture are discussed,

emphasizing the rate-sensitivity to the detailed B(GT) distribution in the daughter nu-

cleus. It is the rate-sensitivity to the distribution of GT states that is an important

motivation for high-resolution charge-exchange measurements. In Chapter 3, the charge-

exchange reaction is described based on the distorted-wave Born approximation. The

necessary steps are taken there to account for the composite nature of the (t,3He) probe

and to develop theoretical tools needed to extract B(GT) from measured cross sections.

Chapter 4 provides an account of all experiments performed and equipment used to re-

alize the 64Zn(t,3He)64Cu measurement. This includes the development of a secondary

triton beam [5–7], the inaugural measurement with the 24Mg(t,3He) reaction [8], cali-
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bration measurements, and steps taken to maximize the experimental resolution of the

residue excitation energy. Chapter 5 gives an account of the data analysis procedure

for determining differential cross sections of the 64Zn(t,3He) reaction. Chapter 6 applies

the methods discussed in Chapter 3 to the measured cross sections and from them ex-

tracts the Gamow-Teller operator strength in 64Cu. Chapter 7 presents the 64Zn ground

state electron-capture rate calculation, performed for a variety of stellar density and

temperature conditions. Electron-capture rates for two large-scale shell-model B(GT)

distributions are also included. Two temperature and density profiles for the capture

rates (data and shell-model) are presented, but a grid of rates for 14 electron densities

(1 ≥ ρYe ≥ 1014 g/cm3) and 13 temperatures (0.010 ≥ T9 ≥ 100 ×109K) covering most

scenarios have been tabulated. Chapter 8 summarizes the main findings of the triton

beam development, the 64Zn measurement, and the shell-model performance for calcu-

lating B(GT) in the pf -shell. Recommendations are made for future improvements and

new measurement efforts.

Historical Link with Supernovae

The first charge-exchange reaction studies carried out were with the (p,n) reaction at

what was the University of California Radiation Laboratory in the late-1950’s [9]. Using

the neutron-time-of-flight facility there, low energy (p,n) reaction studies were carried out

on a wide variety of nuclei (e.g. [10, 11]). These data were soon supplemented by (p,n)

measurements made with protons from the AERE Harwell syncrocyclotron in Berkshire,

England (e.g. [12]). On the basis of these data, it was observed that, while there is a strong

resonance corresponding to the population of the target’s isobaric analog state (IAS) in

the residue, there was an apparent lack of spin-flip resonances (∆L = 0, ∆S = 1, ∆T = 1).

Ikeda et al. [13] in 1963 treated the (p,n) reaction as an analogy to β-decay, where pop-

ulation of the IAS was similar to the Fermi-type (F) decay (∆L = 0, ∆S = 0, ∆T = 1)

and the spin-flip transition to that of Gamow-Teller (GT) decay. They suggest this is

reasonable with the (p,n) reaction at forward angles (i.e. low-momentum transfer q),
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since β-decay involves very small q. By treating the (p,n) reaction in the first Born ap-

proximation, and comparing with β-decay ft and photo-effect data, they interpreted the

lack of spin-flip resonances at these low-excitation energies as evidence that a collective

GT-type resonance must exist at several MeV of excitation [13].

The GT giant resonance predicted by Ikeda et al. [13] was experimentally observed

in 1975, in a series of 0◦ (p,n) reaction measurements at Michigan State University’s

Cyclotron Laboratory, by Doering et al. [14] using a beam of 35 MeV protons. On targets

of 48Ca,90Zr,120Sn, and 208Pb, these authors located the GT giant resonance in each

case at several MeV in excitation above the IAS. The result was not without controversy.

However, the (p,n) charge-exchange program at the Indiana University Cyclotron Facility

(IUCF), beginning in February of 1979 [15], significantly advanced the state of the art.

Among many lines of investigation, one was a campaign to deepen the understanding

of collective spin-isospin modes in nuclei, particularly the GT giant resonance. Within a

few years, the facility yielded a large body of intermediate energy (Ep ∼130-160 MeV)

(p,n) reaction data over a wide range of target masses [15–21], confirming the existence

of the GT giant resonance.

Around the same time of these discoveries, Bethe et al. in 1979 [22] recognized two

important consequences of the existence of the giant Gamow-Teller state. First, though

somewhat less related to the present work, was that ground-state to ground-state and

low-excitation β-transitions of all types (decays or captures) are hindered through ad-

mixture with the giant GT state’s single-particle configurations. This essentially pushes

strength out of low-lying states and up to the giant GT state. The second, directly rel-

evant issue is that, in a core-collapse supernova explosion, the Fermi energy due to the

gravitational confinement of the degenerate electrons would allow them to access the

giant GT resonance (GTR) in the daughter directly in an electron-capture [22]. As a

qualifier, Bethe et al. pointed out that at the time of their writing, a single concentration

of B(GT+), that is Gamow-Teller strength seen in the isospin raising direction, had not

been observed like it had for B(GT−) from the isospin-lowering (p,n) measurements. The

hindrance of low-lying transitions, for both β-decays and electron-captures, will be the
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same whether or not a single giant GT resonance exists in a given nucleus. As is discussed

below however, there typically isn’t a single, strong giant GT+ state in electron-capture

daughters. This has important consequences for the stellar electron-capture rate and is

a key motivation for later uses of high-resolution charge-exchange measurements.

In the meantime, a fruitful feedback between nuclear shell-model and supernova the-

ory formed. Shortly after Bethe et al., authors Fuller, Fowler and Newman (FFN) worked

to treat all β-transitions in the supernova in a more realistic way. In a famous series of

papers starting in 1980 [23–27], they calculated electron-capture rates for sd and lower

pf -shell nuclei, parameterized as a function of stellar temperature and density. Primar-

ily, Fuller et al. made use of existing decay data, shell-model calculations and simple

independent-particle models to determine the location and strength of the low-lying

B(GT) and the GTR. These rates remained a standard input for supernova models for

more than 20 years. For electron-capture, a typical FFN input for a given nucleus con-

sisted of a few low-lying transition strengths inferred from β-decay measurements and

a location and width of the giant GT state. Again, unlike the GTR seen in the (p,n)

reaction, the GTR in the electron-capture direction is in reality a relatively looser group-

ing of B(GT+), spread over multiple discrete states. And again, this will have important

consequences for the stellar electron-capture rate.

Meanwhile, several systematic regularities were emerging from the growing body of

forward-angle (p,n) reaction data. This was aided by new (p,n) charge-exchange facilities,

coming online in the mid-1980’s at TRIUMF (e.g. Ref. [28]) and Los Alamos National

Laboratory (LANL) [29]. Between these two facilities and IUCF, (p,n) reactions could be

performed at bombarding energies from 50 to 800 MeV; IUCF providing proton beams

from 50 to 200 MeV, TRIUMF from 200 to 500 MeV and LANL at 318 and 800 MeV.

It appeared that there was a strong energy dependence in the ratio of cross sections for

Fermi and Gamow-Teller type excitations [28,30]. These effects were described nicely by

treating the (p,n) reaction in the distorted-wave Born approximation (DWBA) and the

N -nucleus interaction by using an effective NN -interaction derived from nucleon-nucleon

scattering data by authors Love and Franey [2, 31]. Also, it appeared that the β-decay
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strengths B(F) and B(GT) were related to the (p,n) cross sections at forward angles

for exciting the IAS and GT giant resonances, respectively [32]. Taddeucci et al. found

empirically that this relationship is linear with an energy-dependent coefficient [32]. This

opened the possibility that energetically inaccessible β-decay strength can be probed,

over a wide mass range, by exploiting its analogous relationship with the (p,n) reaction

at forward angles [32].

The experimental work of Taddeucci et al. [32] and the theoretical work of Love and

Franey [2, 31] established a firm basis for developing other charge-exchange probes to

extract B(GT). Among other points, their work cemented the importance of intermediate

beam energy (& 100 MeV/nucleon) for isolating the action of Vστ , responsible for the GT

transition, from other terms in the effective interaction. Of course, the (p,n) reaction only

excites ∆T = 1 modes, specifically by lowering the isospin projection ∆Tz = −1. This

is analogous to β-decay and samples the GT− strength in the daughter. To determine

B(GT+), the strength associated with raising the isospin projection ∆Tz = +1 and

electron-capture, the (n,p) reaction was first developed at Crocker National Laboratory

at UC Davis in 1982 [33]. The most extensive (n,p) program was later developed in the late

1980’s at TRIUMF [34]. At this time, the (p,n) and (n,p) reactions respectively allowed

determination of the B(GT−) and B(GT+) in nuclei, with corresponding resolutions of

∼300 keV and ∼1 MeV (FWHM). In the first case, the resolution is set by intrinsic

limitations on measuring neutron energies by the time-of-flight method. In the later case,

the resolution is dominated by the energy spread of the neutron beam. Consequently,

(n,p) studies have tended to be insensitive to the fragmentation of B(GT+) and features

of the detailed distribution remained unknown.

Composite charge-exchange probes were also becoming available as probes of B(GT),

around the same time as the discovery of the GTR with (p,n) reactions. In the isospin

raising direction, a low energy (Et = 25 MeV) (t,3He) probe was developed at Los

Alamos National Laboratory (LANL) in 1972 [35]. Initially, these measurements were not

aimed at investigating B(GT) and, as mentioned above, their ejectile spectra contained

strong contributions from terms other than the Vστ operator at this relatively low beam
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energy. In their case, the central-volume term V C
o , responsible for optical distortion and

mainly for multi-step processes, played a strong role and necessitated coupled-channel

calculations to separate terms in the analysis. Consequently, the remainder of this history

will be limited discussion of higher energy measurements. Nevertheless, it was clear from

these data published by Flynn et al. [35] that states populated by ∆Tz = +1 spin-

isospin excitation could be measured with greatly improved resolution over that of (n,p)

reactions. In their case, this was 55 keV FWHM, due largely to small energy spread of

the primary t-beam.

The reverse reaction with the (3He,t) probe was developed in 1983 at Laboratoire Na-

tional Saturne (Saclay) [36] at 200, 400 and 670 MeV/nucleon, although the excitation

energy resolution was 1.1 MeV (FWHM) or more. In 1993, (3He,t) at 70 MeV/nucleon

was added at IUCF [37], achieving ∼130 keV excitation energy resolutions. The (3He,t)

probe was further developed the following year at the Research Center for Nuclear Physics

(RCNP), Osaka [38] and at Kernfysisch Versneller Instituut (KVI) in 2000 [39] with 150

and 60 MeV/nucleon bombarding energies, respectively. At its inception, the RCNP pro-

gram featured this ∆Tz = −1 probe with 210 keV resolution (FWHM). Presently, (3He,t)

measurements at RCNP routinely achieve an impressive ∼30 keV resolution. In the re-

verse direction, ∆Tz = +1, the (d,2He) probe was developed in 1995 at the Institute of

Physical and Chemical Research (RIKEN), Japan [40], in 1996 at Texas A&M [41] and

at KVI in 2002 [42]. The KVI program was the most extensive, achieving resolutions

of ∼120 keV, although presently, there are no active (d,2He) charge-exchange programs.

Lastly, the (t,3He) probe at 127 MeV/nucleon was demonstrated at the National Super-

conducting Cyclotron Laboratory using a secondary triton beam [5,6] in 1997.

Of particular note among these programs, was the initial work of Jänecke et al. in 1993

at IUCF with the (3He,t) probe. There, the authors make use the technique’s ∼130 keV

energy resolution to successfully observe the fragmentation of the GTR anticipated by

Gaponov and Lyutostanskii in 1974 [43], and Brown et al. in 1988 [44]. This was confirmed

by subsequent measurements on many nuclei during the above mentioned programs at

IUCF and RCNP. The fragmentation of the GT strength is particularly important for
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calculating the associated stellar weak rates, as discussed in Chapter 2.

As mentioned above, during this period in the 80’s and 90’s, the weak rates determined

by FFN using early shell-model and independent particle model (IPM) determinations

of B(GT) were the standard in thermonuclear and core-collapse supernova modeling. It

was understood that the techniques used by FFN would not locate the GTR in the most

precise way since they neglected residual interactions among nucleons [43,44]. Limitations

on computing power at the time however, meant that the alternative, fully diagonalizing

the Hamiltonians in the sd- and pf -shell model spaces, was not possible. For the sd-shell,

this was no longer the case by the early 1990’s and shell-model B(GT) and weak rates

incorporating realistic residual interactions were made available by Kajino et al. [45].

Similarly, in 2000, Langanke and Mart́ınez-Pinedo (LMP) completed large-scale shell-

model determinations of B(GT) in the mass region A = 45−65 [46]. From these rate sets,

both groups make direct comparisons with FFN. Overall, the effect of adding realistic

residual interactions, as shown in earlier charge-exchange measurements, was that the

B(GT) was fragmented over many individual final states, and that the centroid tended

to move to higher excitation energy in the daughter nucleus.

Consequently, newer electron-capture rates tended to be lower than FFN rates, on

both sd-shell [45] and pf -shell [46] nuclei. Immediately after the LMP publication, su-

pernova modelers Brachwitz et al. [3] in 2000 and later Hix et al. in 2003 [4] explored the

implication of these revised rates for thermonuclear Type Ia and core-collapse supernova

trajectories, respectively. In both scenarios, these authors found that the lowered rates

imply significantly different electron fractions Ye in the pre-supernova star and changes

to the explosion dynamics. In the Type Ia case, the new rates significantly altered the

ignition conditions and the nucleosynthesis yields for iron-group elements [3]. Specifically,

in the Type Ia scenario, the lower rates imply, by way of constraint, lower electron frac-

tions and consequently imply higher central ignition densities. In the core-collapse case,

the new rates significantly altered the matter composition of the pre-collapse outer-core

and boosted the post-bounce neutrino luminosity and energy spectrum [4].

These results, since they lead to such large changes to supernova evolution, fueled
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interest in examining experimental determinations of B(GT) with charge-exchange re-

actions. Those measurements achieving resolutions of a few hundred keV or better are

particularly attractive, since they can resolve the detailed features of the B(GT) distri-

bution. Consequently, such measurements can make a stringent distinction between the

performance of FFN, LMP or other methods for determining the B(GT) distribution

and the associated electron-capture rates. For charge-exchange in the electron-capture

direction, there are currently no functioning (d,2He) programs which have reliably pro-

vided B(GT) distributions with high resolution. Also, the (t,3He) programs at LANL

and KVI, using a primary triton beams with 25 MeV and 120 MeV respectively, were

discontinued. Furthermore, the Coupled Cyclotron Facility (CCF) upgrade at NSCL [47]

removed that facilities capability to produce secondary tritons, which relied on a primary

α beam. Therefore, there is currently a strong motivation to reinstitute a high-resolution

charge-exchange probe for extraction of B(GT+) distributions.

The lightest beams now available at the NSCL CCF are 16,18O beams. Therefore,

the redevelopment of the (t,3He) probe at NSCL, using secondary tritons from frag-

mentation of 16,18O, has been studied [7]. Also, both supernova sensitivity studies [3, 4]

that motivate the present work demonstrated that upper pf -shell and heavier nuclei

are important electron-capture parents. Therefore, the 64Zn(t,3He) charge-exchange re-

action has been studied, for its relevance in thermonuclear and core-collapse supernovae.

Of course, one can only study the ground state capture rate, yet several nuclei, often

radioactive species, are important capture parents at any given point on the supernova

trajectory (e.g. Ref. [48,49]). And excited-state to excited-state transitions are experimen-

tally inaccessible and numerous. Therefore, the more important use of this and subsequent

(t,3He) measurements is as a test of B(GT+) distributions determined theoretically. This

work will examine the performance of the shell-model B(GT+) in 64Cu, using the codes

OXBASH [50] and NuShellX [51] and the pf -shell effective interactions KB3G [52] and

GXPF1A [53]. These or similar methods for calculating B(GT) distributions inevitably

will provide the majority of transitions as input for supernova simulations. Therefore,

it is important to use measurable cases like 64Zn(t,3He)64Cu to build confidence in the
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theoretical determination of B(GT) in general.
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Chapter 2

Astrophysics Motivation

This chapter motivates the determination of Gamow-Teller strength for its importance

in stellar electron-capture, specifically for supernovae. First, the observational history of

supernovae and the resulting taxonomy is reviewed, concluding with the current un-

derstanding of the various progenitor types. Next, the foundational works of Fuller,

Fowler and Newmann [23–27] are briefly reviewed, at first for their description of the

influence from the stellar environment on electron-capture rates. Next, for each progen-

itor/supernova type the role of electron-capture is discussed, as it influences explosion

models. Particular attention is given to sensitivity studies mentioned in Chapter 1 [3,4],

done with supernova models, using electron-capture rates based on B(GT+) distributions

determined by simplified treatments like that of Fuller et al. or modern shell-model cal-

culations. Significant differences in supernova evolution revealed by these studies result

from the electron-capture rate’s sensitivity to the detailed B(GT+) distribution. A dis-

cussion of these consequences conclude the chapter and provide motivation for measuring

the B(GT+) in electron-capture daughters.

2.1 An Introduction to Supernovae

Supernovae are extremely bright, short-lived, cataclysmic astronomical explosions that

release, in a matter of days, many times more energy than is radiated by an average star
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during its entire lifetime. For example, our Sun radiates ∼1033 ergs per second. Compare

this to the typical energy released in photons by supernovae of ∼1051 ergs [54]. This is

comparable to the integrated intensity of our Sun, radiating at its current output, for

more than 10 billion years (∼3.2×1017 seconds), the typical theoretical lifetime of such

a star. Supernova luminosities are typically such that, at their peak light output, they

often outshine their host galaxies.

The observational history of supernovae stretches back thousands of years, predating

virtually all observational technology, since supernovae occurring locally in our own Milky

Way galaxy have often outshined all other stars in the night sky. Some have had apparent

magnitudes bright enough to make them visible to the naked eye during daylight hours.

One candidate for the oldest observation comes from a stone tablet unearthed in the

Kashmir region of India, dated to perhaps 5500 to 5700 B.C, depicting a bright pair of

stars in the vicinity of the constellations Orion and Taurus [55]. More recently, medieval

observations ranging from ancient Japanese and Chinese texts to Native American cave

paintings in North America all point to very bright, anomalous star appearing mid-year

in 1054 A.D. These observations have been well-correlated to the famous Crab Nebula,

located in the constellation Taurus. More famously, a pair of local supernovae occurred in

1572 and 1604 A.D., being traditionally attributed to Tycho Brahe and Johannes Kepler,

respectively. Their remnants are located in the constellations Cassiopeia and Ophiuchus

respectively. The last supernova to take place in or near our galaxy was 1987A in 1987, in

the Large Magellanic Cloud, just outside the Milky Way proper some 169,000 light years

away. Supernova 1987A is most remarkable because it was detected perhaps several hours

after the explosion and neutrino events correlated with the explosion were observed. This

makes it one of the best known supernovae and one of the only ones where detailed data

is available on the progenitor star.

Modern observations made with ground and space-based telescopes have vastly in-

creased both the number of known supernovae and also knowledge of their particular

features. The first extra-galactic supernova observed, S Andromedae (also known as

SN1885A) was discovered in the Andromeda galaxy by C. E. A. Hartwig in 1885. Since
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then, the development of larger telescopes with deeper ranges has lead to nearly 5000

cataloged supernovae in the wider observable universe to date. The most distant obser-

vation to date is SN1997ff [56], seen possibly as far away as 10 billion light years. Many

supernova surveys are currently under way, such as the Supernova Legacy Survey (SNLS),

the Equation of State Supernova Cosmology Experiment (ESSENCE) and the Lick Ob-

servatory and Tengara Observatory Supernova Searches (LOTOSS) to name a few. The

number of observations is set to dramatically increase in the immediate future as well, as

the Sloan Supernova Survey, part of the Sloan Digital Sky Survey-II, advances analysis

of a comprehensive campaign of observations taken from 2005-2007 [57, 58]. In the first

two three-month observational seasons alone, nearly 400 supernovae were detected and

confirmed.

Along side technical advances that allowed such distant and numerous observations,

the capability to conduct detailed spectroscopic studies of the supernova light has also

developed. Issac Newton was among the first to record his observation that sunlight can

be decomposed into its component colors by refraction in a prism. However, it was J.

Fraunhofer that first made a detailed description of the solar absorption spectrum, a series

of narrow, dark lines seen in an otherwise uniform spectrum of visible colors in sunlight.

By the 1930’s, refined spectroscopic and photometric techniques were being applied to

telescopic supernova observations, making information on their isotopic composition and

time evolution available.

From the current wealth of data, some basic features of supernovae emerge. It is gen-

erally seen that galaxies, with chemical composition like our own Milky Way, experience

∼2±1 supernovae per century. The time evolution of their luminosities, or “light-curves”,

generally rise quickly and reach peak luminosity on the order of days. After reaching peak

light, their luminosities fade significantly over a period of several months. Supernovae can

be broadly classified as Type I or Type II supernovae, based on the absence or presence,

respectively, of hydrogen absorption lines in their early spectra [59]. Finer distinctions

arose as the quality of spectroscopic data increased. F. Bertola first discovered the absence

of silicon absorption lines [60] that later split Type I into categories with and without
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silicon II P Cygni absorption lines in their spectra. Respectively, these are the Type Ia

and Ib categories [61]. The Type Ib class was then further divided, those with and with-

out helium absorption, into Type Ib proper and the new Type Ic respectively [62]. Type

II supernovae have also been subdivided into several categories, though based mainly on

differences in light-curves, not atomic absorption spectra. The divisions are not as sharp

as those in the Type I family, as Type II events show much less regularity, and inter-

mediate cases exist between almost any possible divisions. Perhaps the most significant

division to date comes from R. Barbon et al. [63], between so called Type IIP and Type

IIL. Type IIP designating events where the luminosity plateaus (P) for several weeks

before significantly decaying. The luminosity of Type IIL events decrease linearly (L) as

a function of time. More sophisticated divisions than these have been made but they are

beyond the scope of this text. The more relevant distinctions come from investigations

into the progenitors and explosion mechanisms, as constrained by these observational

classes.

2.2 Type Ia Model

One of the most interesting features of Type Ia supernovae is the high degree of regularity

in their absorption spectra and light curves. This suggests that the physical mechanism

and conditions leading up to the explosion event are fundamentally the same in some way.

Indeed, before the clear distinction between Type I and Type II supernovae had even

been made, there were already suggestions by Zwicky in 1938 [64] that the regularity

of their luminosities would make supernovae excellent “standard candles” for measuring

intergalactic distances. The use of Type Ia supernovae as distance indicators was also

bolstered by early work on the theory of white dwarf stars. Chandrasekhar began this

effort around the time that Bethe had forwarded that hydrogen fusion into helium might

be the primary energy generation mechanism in the sun. Chandrasekhar determined that

the life of a Sun-like star would end as an inert core of helium ash, held up entirely by

electron degeneracy pressure. This offered a satisfactory explanation of Sirius A’s invisible
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companion which, being only 8 light years away and yet having a very hot thermal

emission spectrum, could be no larger than the Earth. It also laid the foundation for the

theory of carbon-oxygen white dwarfs, a more massive analog to the helium white dwarf,

which remains the frontrunner among Type Ia progenitor models.

As Type Ia supernovae relate to distance measurements; the seminal work of E.

Hubble [65] has perhaps been the single strongest motivation behind ongoing efforts

to characterize Type Ia explosions. His observation that the spectral redshift of other

galaxies, due to their radial egression, is proportional to their distance from our own Milky

Way lead him to conclude that the universe is expanding. Though the accepted value for

Hubble’s constant H0, the proportionality constant in Hubble’s Law, has changed over

the intervening years, this basic fact remains one of the most often cited evidences for Big

Bang cosmology. Efforts to determine H0 independently (apart from Cephids and galactic

properties) using Type Ia supernovae began with C. T. Kowal [66], once the taxonomic

classes of supernovae settled and the regularity of the Type Ia class began to emerge. New

observations and finer taxonomic distinction steadily reduced the dispersion in Kowal’s

result and interest in determining the value of H0 greatly intensified after 1975 [67]. As a

result, by 1979 the Type Ia supernova were regarded as so regular that G. A. Tammann

proposed that they could be observed at large redshift (z >0.5) using the Hubble Space

Telescope for determination of Einstein’s cosmological constant Λ [68].

However, the intense efforts to exploit the regularity of Type Ia supernovae as distance

indicators also slowly revealed their intrinsic diversity, first noticed in 1987 [69]. There

is now a well-known “Phillip’s Relation” [70] which is a correlation between the decline

rate and the peak-luminosity of Type Ia supernovae. In simplistic terms, the light curves

of bright Type Ia supernovae decay slowly and dim events decay more quickly. Phillips et

al. showed [70] that this relationship is indeed intrinsic to the Type Ia event itself and not

due to reddening from dust in the host environment which can only attenuate the light

curve, not alter its shape. This immediately presented a strong motivation to determine

a calibration for Type Ia supernova luminosities so as to restore confidence in their use

as standard candles. Phillps et al. [70] does so in a empirical way and quotes a refinement

15



to H0. However, it would be very satisfying to place the result on a more fundamental

theoretical footing (e.g. Ref. [71]). Early theoretical work suggested the regularity of the

Type Ia explosion was due to the regularity of the progenitor star and the explosion

mechanism. Therefore, a major goal of ongoing theoretical efforts is to produce a Type

Ia explosion model that yields the observed diversity and can relate it to fundamental

micro-physics in the explosion mechanism.

Along a parallel front, Type Ia supernovae attracted attention as an important site

for the nucleosynthesis and distribution of heavy elements in the universe. Burbidge,

Burbidge, Fowler and Hoyle (B2FH), using data on solar system isotopic abundances,

laboratory spectroscopy of nuclei and stellar models from observational astronomy, first

proposed in 1957 a detailed and multifaceted scenario for how stars might synthesize all

heavy elements from primordial hydrogen [72]. Soon afterward, Hoyle and Fowler sug-

gested that supernovae were possible sites for iron-group nucleosynthesis [73]. In their

model, they linked supernovae to the aforementioned carbon-oxygen white dwarf, one

which was particularly near in mass to the Chandrasekhar limit. They showed that the

ignition of carbon-fusion in this electron-degenerate environment would not lead to a

pressure increase, the subsequent feedback necessary to establish stable burning condi-

tions, since the equation of state yields a pressure that is only density-dependent. Instead,

they showed that a runaway thermonuclear reaction should take place, burning the entire

white-dwarf into 56Ni. The appeal of this model was considerable. Since explosion sets in

when the white dwarf progenitor exceeds the Chandrasekhar mass, all explosions would

start with practically identical amounts of carbon-oxygen fuel, tightly confined in the

same configuration. Also, since the entire mass is converted to 56Ni, the explosions would

be monoenergetic and the radioactive decay of 56Ni would produce a homogeneous light

curve at late times.

Intermediate-mass spectroscopy of supernova light, which lead to the division of the

Type I class into Type Ia, Ib and Ic subgroups as mentioned above, complicated the situ-

ation for such simple models. The most significant break with Hoyle and Fowler’s simple

model was later observation that the mass of 56Ni produced in Type Ia explosions is vari-
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able. Much smaller amounts are sufficient to reproduce the observed spectroscopy [74].

Typically, 0.6 solar masses of 56Ni (or about half the white-dwarf mass) is observed [75,76]

and variations are seen, from as little as 0.07 solar masses like in SN1991bg [77] and as

much as 0.92 sloar masses like in SN1991T [78]. Realistic models are now required to

reproduce the observed isotopic abundance pattern of Type Ia ejecta. However, this re-

quirement also lead models to convergence with the requirements placed on them by

the aforementioned Phillips-relation. Motivation to understand the dispersion within the

Type Ia class and enhanced computing resources available by the early to mid 1990’s fu-

eled a burst in modeling efforts. Explosion models began to include sophisticated features

such as off-center ignition points, subsonic deflagration rather than supersonic burning,

pulse-delayed transitions to detonation and sub-Chandrasekhar mass progenitors (e.g.

Refs. [79–86]).

At this point, a contemporary summary of the observational constraints on the Type

Ia explosion model is instructive. Hillebrandt and Niemeyer in Ref. [87] have made a

thorough review of the observational features of Type Ia supernovae and summarized

the requirements that they place on explosion models. First, they note that the tail

of the Type Ia supernovae light curve is entirely explained by the gamma emissions of

radioactive 56Ni to 56Co daughters and 56Fe granddaughters. Also, as the ejecta expand

and become optically thin, spectroscopy reveals, as mentioned in the Type Ia taxonomy,

a near-total lack of hydrogen and helium but a wide variety of intermediate-mass nuclei.

Therefore, explosion models must be powerful enough to produce sufficient amounts of

56Ni and intermediate-mass isotopes from material heavier than helium. Additionally, the

ejecta must have velocities that agree with observed Doppler corrections from absorption

spectra, blue-shifted due to speeds on the order of 10,000 km/s. Furthermore, the isotopic

abundance of ejecta cannot show large deviations with solar abundances in the aggregate

and Fe-peak.

Second, it is seen that Type Ia supernovae have highly regular absorption spectra

and light curves. In other words, over a large sample of Type Ia observations, the tails

of light curves are consistently determined by 56Ni decay alone and the representation
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of intermediate-mass nuclei in late-time absorption spectra are recurrent. The authors of

Ref. [87] then conclude that a standard explosion mechanism should be robust enough

to produce highly regular explosions without fine-tuning model parameters and initial

conditions.

Third, it is well-established that all major deviations in the observables amongst Type

Ia supernovae are strongly correlated with the explosion strength [88]. In general, stronger

explosions have brighter peak-light, are brighter for longer times, have more blue-shifted

spectra, and have faster ejecta velocities. Therefore, the explosion model should have at

least a single tunable parameter that directly influences the explosion strength without

breaking any of the correlations seen with light curves and spectra [87].

Fourth and last, for very distant Type Ia supernovae (redshift of z>0.8), the brightness

seems dimmer and rise-times slower than expected. This suggests variations in explosion

strength as a function of host galaxy age, metalicity, or some other similar property.

Therefore, a final necessary constraint on an acceptable explosion model is its correlation

with progenitor system and its host environment [87].

Based on these constraints, the near-Chandrasekhar-mass, carbon-oxygen white dwarf

model remains the most widely accepted progenitor [87]. There are also several significant

theoretical challenges that remain to be overcome for explosion models based on this

progenitor. In broad terms, these are; 1) determination of the central ignition density,

2) the propagation of the flame-front, 3) transition from simmering and deflagration to

detonation phases, and 4) reproduction of observed spectra and light curves [89]. Of

course, the spectra and light curves are the only direct observables of the Type Ia event.

Also, determination of the central ignition density remains the most uncertain of these

four outstanding problems. Discussion of sensitivity studies which conclude this chapter,

show that electron-capture plays a significant role both of these two major challenges.
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2.3 Core-Collapse Model

Authors W. Baade and F. Zwicky were the first to posit the theory that supernovae

are caused by stars collapsing into neutron stars [90]. Ironically, all known supernovae

at that time, which they based their calculations on, were later determined to be Type

Ia events. Nevertheless, their considerations proved remarkably insightful, once applied

to the later distinct Type II class, and to this day it remains the essential basis of

core-collapse supernova theory. Unlike Type Ia events however, core-collapse explosions

exhibit significant irregularities. The core-collapse category has received defectors from

the Type I group, those of the above mentioned Type Ib and Type Ic class. These events

are the explosion of massive stars (>30Msolar) that have previously ejected their outer

hydrogen (Type Ib) or outer helium (Type Ic) envelopes. Those remaining in the Type

II class have been identified as having progenitor stars in the range of 8-30 Msolar.

This lower threshold of M > 8Msolar roughly corresponds to the ignition conditions for

carbon fusion, which is the key difference between core-collapse and Type Ia progenitors.

Stars that do not produce temperatures sufficient to ignite carbon fusion burning end

their lives as helium white dwarfs (in mass-tranferring binary systems) or as carbon-

oxygen white dwarfs. For larger, hotter stars however, nothing prevents fusion cycles

from advancing to that producing 56Ni ash, which then decays to 56Fe. This isotope

has a very high binding energy per nucleon such that any higher temperatures brought

on by contraction cannot ignite energetically favorable (or profitable) fusion reactions.

Consequently, as these stars near the end of their lives, a short, two-week fusion cycle

burns core silicon by successive alpha captures into an electron-degenerate iron core. In

the Type Ia case, which is modeled as an accreating white dwarf in a binary system,

accretion pushes the white dwarf to near the critical mass and ignites carbon fusion.

In the core-collapse scenario, accretion of iron ash in the core from silicon burning also

pushes the electron-degenerate iron core over its Chandrasekhar-limit, only now there

are no fusion reactions that can stop a runaway collapse.

Efforts to model the core-collapse explosion divided the problem at this point, due to
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the very different physics that takes place before and after this moment. Specifically, the

accepted convention is to divide a pre-collapse phase from a collapse phase as the times

before the in-fall velocity of the outer edge of the iron core is less than 1000 km/s [91].

This precise division allows modeling efforts on either side a fixed reference so that one

may use the results of the other as initial/final conditions. More importantly for this

text, the in-fall velocity that sets the boundary comes at a time when the typical core

density is just below 1010g/cm3 and the core temperature is nearly 1010K. Densities

and temperatures below these rough values occur during the pre-collapse phase and

necessitate detailed nuclear reaction networks in order to accurately account for the

composition and energy budget [92]. Also, below these densities, scattering with electrons

thermalizes the neutrino spectrum but, they otherwise escape easily so that neutrino

emission is the principle mechanism of energy and entropy loss [93]. Above these densities,

during the collapse phase, temperatures are such that matter enters nuclear statistical

equilibrium so that detailed reaction networks for strong and electromagnetic interactions

are no longer necessary [94]. Also, small neutrino-nucleus cross sections are overcome by

rising densities. Neutrinos then become trapped in the core and it becomes necessary to

track their detailed spectrum and momentum distribution [95].

It is difficult to summarize contemporary core-collapse modeling beyond these early

works with a short text. This is largely due to the fact that observationally, core-collapse

supernova exhibit diverse features, as mentioned above. The constraints therefore placed

on core-collapse explosions are not nearly as narrow as in the Type Ia case, so that

models address many different progenitors, progenitor masses and evolutionary lines.

Nevertheless, one feature nearly all models have in common is their failure to robustly

produce explosions. The particular cases of a 15Msolar and 25Msolar main-sequence pro-

genitors, developed to roughly match the spectroscopy of SN1987a, are often taken as

representative in the literature. For the simulations of the presupernova evolution from

main-sequence, the one dimensional model of Weaver et al. [96] has been the basis of

most works, yielding the familiar “onion-skin” structure of ashes from various fusion cy-

cles leading up to the collapse. Models such as these are used as the initial conditions
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for core-collapse simulations, though the subset of models developed to investigate nu-

cleosynthesis and ejecta spectroscopy resort to adding “pistons” or “bombs” to the core

to force explosion [91] (WW95). These methods are fine-tuned to reproduce observed

features, like those of SN1987a [91]. During the mid-1990’s, at the time of these works,

inadequate treatment of presupernova neutrino transport was believed to be the culprit

in the failed explosions. However, consistent treatments in one dimensional [97] and two

dimensional [98] models failed to produce explosions as well. In light of these and other

works, two outstanding candidates can possibly play the decisive role in the explosion;

unknown features of neutrinos and/or their spectra or bona-fide three dimensional phe-

nomena, such as angular momentum, magnetic fields, etc. Again, as in the case of Type

Ia supernovae, the chapter will conclude below with a discussion of sensitivity studies

that show electron-capture plays a significant role, particularly on the neutrino spectra.

2.4 Electron-Capture Rates in Stellar Interiors

At this point, it is necessary to discuss in detail the way in which electron capture is

treated in nearly all supernova models. The seminal works of authors Fuller, Fowler and

Newman [23–27], following the recognition of Bethe et al. [22] as to the importance of the

GT giant resonance, were the first to formally tackle the problem of determining weak

reaction rates in the electron-degenerate stellar interior. Fuller et al. addressed the two

main features of the problem; the determination of the phase space available in the stellar

environment for the weak reactions [23] and the determination of the associated nuclear

matrix elements [23–25]. As an aside, Ref. [26] is concerned with interpolating between

values in reaction rate tables provided in their earlier texts and Ref. [27] is an online

publication of the final manifestation of the rates. So then, the last two references in the

series are not primarily concerned with the physics of stellar weak rates. What follows in

this section is a recapitulation of the results laid out in Ref. [23] concerning the available

phase space. The intent here is to par down the notation, generality and rigor of their

derivation and simply show the reader the basic physical origin of continuum electron-
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capture’s rate sensitivity to the specific distribution of GT-strength in the daughter.

The total electron capture rate λ of a given nuclear species is the sum of rates from

each initial state in the parent to each final state in the daughter

λ =
∑

i

∑

j

λij . (2.1)

The individual decay rates, be they electron or positron emissions or captures, each have

two principle ingredients; the nuclear matrix element of the transition and phase-space

volume available. They are related to the individual decay rates λij of the ith parent

state and the jth daughter state as [23]

λij = ln2
fij(T, ρ, UF)

(ft)ij
, (2.2)

where the comparative half-life (ft)ij is a function of the reduced operator strengths

(reduced matrix elements),

ft =
K

g2
VB(F) + g2

AB(GT)
, (2.3)

and the phase-space integral fij(T, ρ, UF) is an implicit function of the stellar temperature

T , density ρ, and electron chemical potential UF. The constants gV and gA are the

vector and axial-vector coupling constants, respectively, of weak decay. The constant K =

2π3
~
7/m2

ec
4. The general form of fij(T, ρ, UF) is too cumbersome for the considerations

presented here. The following form for fij(T, ρ, UF) is for the particular case of continuum

electron-capture, where the possibility of a degenerate (anti-) neutrino gas forming and

of electrons forming ions/atoms are neglected [23],

fij(T, ρ, UF) =

∫ ∞

wl

w2(qij + w)2G(+Z,w)S−(T, UF(ρ))dw. (2.4)

Here w = Ee/mec
2 is the dimensionless total electron energy, qij = Qij/mec

2 = (Qg.s. +

Exi − Exf )/mec
2 is the dimensionless reaction Q-value for capture from a parent state

with excitation Exi to a daughter state with excitation Exf , and wl = |qij | is the capture
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threshold total energy, again in dimensionless form. The function G(+Z,w) is related to

the relativistic Coulomb barrier factor F (+Z,w) which appears in the usual formulation

of the β-decay phase-space integral (e.g. Ref. [99]). The specific relation is declared as

G(+Z,w) = (p/w)F (+Z,w) by Ref. [23], where p = pe/mec is the dimensionless electron

momentum, and is chosen to exploit the ease with which G(+Z,w) can be determined

numerically. Actually, G(+Z,w) does not differ from unity enough as to figure in this

discussion significantly, so it is hereafter disregarded. The function S−(T, UF(ρ)) is the

Fermi-Dirac distribution of electrons in the stellar plasma,

S−(T, UF(ρ)) =
1

e(U−UF(ρ))/kBT + 1
, (2.5)

where U = (w−1)mec
2 is the electron kinetic energy less it’s rest mass and UF the electron

chemical potential less it’s rest mass. The chemical potential UF here differs from the

usual notion, associated with the symbol µe. This is to denote the extreme difference

between the non-interacting Fermi gas, the degeneracy of which is parameterized by

µe/kBT for comparatively cold, rarefied environments. In the stellar interior however,

the electron Fermi-motion is relativistic and the electrons in the gas interact strongly via

pair-production. Fuller et al. [23] determines the appropriately corrected stellar chemical

potential as UF = mec
2
√

1.02 × 10−4(ρ/µe)2/3 + 1−mec
2. Note that in this expression

µe is molecular weight, not chemical potential.

Now that all the ingredients have been outlined, the sensitivity of the electron-capture

rate to the daughter B(GT+) distribution is discussed, with the caveat that only capture

on the parent ground state is considered explicitly. This is due mainly because what

will be stated below holds true for any parent state. This is also due to the fact that in

Chapter 7 the formalism described here is used to calculate the electron-capture rate on

64Zn from the B(GT+) measured in 64Cu which of course, can only represent captures

from the 64Zn ground state. Dropping the index i, setting G(+Z,w) ≈ 1 and denoting

W (qj , w) ≡ w2(qj + w)2, the total electron-capture rate on the parent ground state is,
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λg.s. =
g2
A/g2

V

K/g2
V

∑

j

Bj(GT+)

∫ ∞

wl

W (qj , w)S−(T, UF(ρ))dw. (2.6)

Clearly, the contribution of a given final state to the total rate is proportional to the

final state’s B(GT+) however, this is modulated by the size of the phase-space integral.

Investigating the integral, the integrand in Equation 2.6 has two terms:

1. A statistical factor W (qj , w) = w2(qj + w)2 which results from the density of

available electron states from which to capture; and

2. A quantum factor S−(T, UF(ρ)) describing the filling of available electron states.

The statistical factor W (qj , w) arises from evaluation of the density of states when de-

riving Equation 2.4 from Fermi’s Golden Rule in the allowed approximation. When inte-

grated, it is essentially responsible for the manifestation of the Sargent’s Rule in β-decay,

namely that phenomenologically the decay rates roughly go as λ ∝ Q5. Since increasing

excitation energy in the daughter nucleus corresponds to decreasing reaction Q-value

(Ex = Qg.s. − Qreact), this factor has its largest value for an electron-capture to the

daughter ground state. For daughter excited states, its value drops quickly with increas-

ing excitation energy in the daughter nucleus. This factor acts as a weighting function

in the integrand of Equation 2.6, lending stronger influence to lower-lying states in the

daughter on the overall capture rate.

The quantum factor S−(T, UF(ρ)), the Fermi-Dirac distribution of degenerate elec-

trons in the stellar interior, is the only term through which the stellar conditions influence

the capture rate for an individual initial state. The stellar temperature also affects the

population of parent excited states, but this is typically unimportant for temperature

below ∼1 MeV. In the zero-temperature limit, S− = 1 up to the electron kinetic ener-

gies equal to the chemical potential UF and S− = 0 for higher energies. Consequently,

S−(T, UF(ρ)) acts as a low-pass filter upon the daughter Bj(GT+) spectrum. Regardless

of how large the B(GT+) may be for the jth final state, if the state lies at an excitation

energy above UF+mec
2, it is energetically inaccessible and cannot contribute to the total
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capture rate.

The interplay of the two terms W (qj , w) and S−(T, UF(ρ)) under varying stellar

conditions accounts for the sensitivity of the electron-capture rate. At lower electron

densities, for instance at or below 107g/cm3, UF + mec
2 is a fraction of an MeV or less

and typical temperatures are such that kBT is also a fraction of an MeV. Therefore,

S−(T, UF(ρ)) tends to be a hard cut-off in the relevant B(GT+) spectrum and high

densities of GT states around and below an MeV of excitation in the daughter can lead

to large temperature sensitivity in the capture rate. The weighting affect of W (qj , w) in

the integrand of Equation 2.6 magnifies the affect of any discrepancies in the low-lying

GT-spectrum on the capture rate. At higher densities, near 1010g/cm3, the Q-window

created by UF + mec
2 is around 5 MeV and though kBT is often about an MeV, the

temperature sensitivity of the capture rate at these densities is significantly reduced.

This is largely due to the weighting effect of W (qj , w) which tends to make the rate

insensitive to GT-states above UF + mec
2, despite being energetically accessible due to

thermal smearing of the electron Fermi surface.

2.5 Electron-Capture Influences in Supernovae

The third factor in the electron capture rate of course is the daughter Bj(GT+) spec-

trum. Recall however, that the term S−(T, UF(ρ)) in Equation 2.6 creates a “Q-window”,

restricting the reaction to that possible by available electron energies. Under terrestrial

conditions, this term must be replaced to describe a very different, very rarefied electron

environment (probably with atomic electrons), which greatly restricts access to daugh-

ter states. Therefore, if one includes consideration of thermally populated parent states,

there are many transitions accessible in the stellar environment that are unmeasurable

terrestrially. Faced with this large number of unknown GT matrix elements, Fuller et

al. [23–25] used measured matrix elements and properties from mirror decays under

isospin symmetry where possible. Otherwise, matrix elements were either 1) taken from

large-scale shell-model calculations (e.g. [100]); 2) calculated on an independent particle
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(IPM) shell-model basis [23], or 3) assigned an average matrix element gleaned from nu-

clei with similar masses. This determination was made for sd-shell nuclei (17 ≤ A ≤ 40).

The same authors later applied the same considerations up to mass A = 60 [24,25]. The

resulting Bj(GT+) spectrum for an electron-capture daughter has two main parts: the

low-lying transitions which are mostly measured states, and the GT giant resonance lying

at several MeV excitation in most sd-shell nuclei.

It was understood by Fuller et al. and collaborators that neglecting the residual inter-

action between nuclei within a major shell was not necessarily a good approximation [44].

Indeed, the inclusion of the residual interaction in shell-model Monte-Carlo calculations,

starting with the work in Ref. [101], moves the centroid of the GT giant resonance,

usually to higher excitation, and fragments its strength over many individual, weaker

states. Furthermore, excitations from single-particle states outside a major shell lead to

a sizable, universal quenching of the B(GT) of (0.74)2 [102]. Currently, calculations of

the B(GT) using large-scale shell-model diagonalization and residual interactions, per-

formed specifically for supernovae studies, are available up to mass A = 63 [103] using

the KB3G pf -shell effective interaction [52]. In general, the effect of these new calcula-

tions of B(GT+) is reduce the electron-capture rate relative to the rates of FFN. This

is due to application of the universal quenching factor to low-lying states determined by

calculation and the shift of the GT giant resonance to higher excitation energy, further

from the stellar Q-window.

As mentioned above, the Type Ia explosion dynamics sensitively depend on, among

other things, the central ignition density, which in turn depends on the central electron

fraction Ye [89]. The central electron fraction is, in part, constrained by electron capture.

The primary site of electron capture in the Type Ia explosion is in the narrow (10−4cm)

flame front, where respective temperatures and densities of 1010K and 1010g/cm3 are

possible. This flame front leaves in its wake a body of nuclear ashes, the composition

of which is influenced by electron captures. This is significant since it is this material

which is ejected by the explosion and its composition determines the decay light curve

and spectral emissions of the Type Ia event.
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Figure 2.1: (Left) The isotopic abundance of ejecta from a model Type Ia explosion us-
ing electron-capture rates modified by shell-model calculations and normalized to that
produced with FFN rates [104]. (Right) Reproduced from Ref. [3], the central electron
fraction plotted as a function of central ignition density, resulting from using FFN rates
(circles) and rates modified by shell-model calculations (squares). The third curve (tri-
angles) are with bare shell-model Monte-Carlo rates (see discussion in Ref. [105]).

Brachwitz et al. [3] have carried out a sensitivity study investigating the effect of

replacing the electron-capture rates of Fuller et al. with shell-model modified rates [105].

Their main result is displayed in Figure 2.1, showing significant changes to Type Ia

nucleosynthesis (left) and the central ignition density for the white-dwarf progenitor

(right). In Figure 2.1 (left), the isotopic abundance of modeled Type Ia ejecta is plotted

as a function of mass number and normalized to that of FFN. The reduced electron-

capture rates, due to the shell-model B(GT+) distributions, lead to reduced synthesis

of iron-group elements. This is particularly so of those isotopes which are the electron-

capture daughters of odd−odd parent nuclei, cases which are particularly challenging for

shell-model theory. Examples are seen in Figure 2.1 (left), where large deviations from

FFN above A = 50 are, for example that of 50Ti, 54Cr, 58Fe, and 64Ni. In Figure 2.1

(right), the central electron fraction is plotted as a function of central ignition density.

The important comparison is between the effect of the standard FFN rates (circles) and

the shell-model modified rates (squares). For a given central electron fraction, projecting

these two curves onto the abscissa shows a ∼25% difference in the inferred central ignition

density.

Hix et al. [4] and Langanke et al. [106] have carried out a similar sensitivity study for
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scription for electron-capture [95], the darker that of LMP+hybrid rates (see discussion
in [4]).

28



protons
nuclei

r 
  
(s

  
)

e
c

-1

µ  (MeV)e

µ  (MeV)e

<
E

  
 >

(M
e
V

)
ν

e

5 10 15 20 25 30 35 40
0

40

30

20

10

0

Figure 2.3: Reproduced from Ref. [106], the electron capture rate on protons (light curve)
and on nuclei (dark curve) plotted as a function of electron chemical potential. In the
inset, the average neutrino energy plotted as a function of electron chemical potential,
again for captures on free protons and nuclei.

a 15Msolar core-collapse scenario under the approximation of spherical symmetry. Figure

2.2 shows the main results presented in Ref. [4]. Here, the Bruenn parameterization for

electron-capture rates [95] is compared to those resulting from large-scale shell model

calculations. The noteworthy features of the Bruenn parameterization are that it treats

electron-capture only on an average heavy nucleus < A >, determined from the equation

of state, and assigned a single B(GT+) value based on a generic 0f7/2 → 0f5/2 transi-

tion. Furthermore, for nuclei with neutron number above 40, it assigns no B(GT+) and

therefore no electron-capture rate. The result of replacing this method with shell-model

B(GT+)s for each isotope is an overall reduction in the total capture rate in lower density

regions and particularly during the in-fall phase, where captures on nuclei are mostly on

those with N < 40. This is similar to the reduction seen in Ref. [3] for the thermonuclear

Type Ia explosion, where the densities and temperatures are comparable. However, at

higher densities and closer to the core center, captures on nuclei occur on species with

masses up to and perhaps higher than A ∼ 120. The overall result, seen in Figure 2.2, is
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that the electron fraction below the shock is lower and more matter remains above the

shock front, making successful explosion less likely. Because the matter at higher alti-

tudes underwent less captures, it is less neutronized, lowering the entropy, density and

in-fall velocity of the material above the shock. The net effect is that a weaker shock wave

resulting from the shell-model rates, climbs as high into the outer core as the stronger

shock wave produced under the Bruenn prescription [4].

Another important result from the same study is reported in Ref. [106], one of the

results of which is displayed in Figure 2.3. Here, in the main panel, the individual capture

rates are multiplied by their respective parent abundances showing that, over all values of

the electron chemical potential that might be sampled by the core-collapse trajectory, the

capture rate is dominated by captures on nuclei. In the inset, the average neutrino energy

as emitted from captures on protons and nuclei is displayed. The contrast setup by these

two plots is that at any given time in the collapse, though the energy of neutrinos emitted

from captures onto protons is ∼20% greater, the production rate from captures onto nuclei

is nearly an order of magnitude higher. Therefore, the correct neutrino luminosity, energy

and angular momentum spectrum, for the collapse, bounce and post-bounce phases, will

require knowledge of the detailed B(GT+) in capture daughters [106].

In summary, the observational history of supernovae has been reviewed. The re-

sulting taxonomy corresponds with two different major classes of progenitor, the near

Chandrasekhar-mass white dwarf and a massive star with M > 8Msolar, each involv-

ing different physics and theoretical challenges. One common element between them

and an ingredient that plays an important role in each event’s nucleosynthesis yields

and explosion dynamics is nuclear electron capture. The formalism for calculating the

capture rate in the electron-degenerate environment has been reviewed, with particular

emphasis on the origin of the rate sensitivity. It is seen that the phase-space volume and

Q-window created by the electron chemical potential make the low density electron cap-

ture rate sensitive to the particular distribution of B(GT+) in the capture daughter. The

effect of different methods for determining B(GT+) in capture daughters on explosion

models [3, 4, 106] provides a strong motivation for measuring the B(GT+) directly with
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charge-exchange reactions. It can not be stressed enough though, that the vast majority

of GT transitions, particularly those stemming from parent excited states, will remain

unmeasurable and can only be provided by theory. However, experimentally accessible

B(GT+) distributions will aid the development of theoretical work by offering compar-

ative benchmarks at the measurable cases. Theoretical methods that reproduce these

B(GT+) distributions will enjoy increased confidence in their ability to reliably deter-

mine transitions that cannot be measured. To this end, the remainder of the text will

be concerned with the measurement of B(GT+) in the upper pf -shell nucleus 64Cu via

the 64Zn(t,3He) charge-exchange reaction. This nucleus is potentially relevant to Type

Ia and core-collapse scenarios however, it is more important as a stringent test of the

shell-model at the high-A end of the pf -shell.
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Chapter 3

Theoretical Techniques

Motivated by the astrophysical importance of determining B(GT+) in nuclei, this chap-

ter now bridges the gap between nucleus-nucleus scattering measurements and the GT

operator strength via direct reaction theory. The emphasis is on developing simple,

physically motivated, and case-specific theoretical tools to facilitate the analysis of the

64Zn(t,3He)64Cu charge-exchange reaction, in order to determine B(GT+) in 64Cu. The

main considerations of Taddeucci et al. [32] are reviewed, where they express an empirical

proportionality between the differential reaction cross section in the limit of vanishing

momentum transfer, and B(GT). Alongside the discussion below, the single transition to

the 12B g.s. via the 12C(t,3He) reaction is provided as an example. This is also useful in

later chapters concerning the data analysis, where data from the 12C(t,3He) reaction is

used for calibration purposes.

Two important caveats within the work of Ref. [32], apart from achieving the van-

ishing momentum transfer limit in the data analysis, provide the main burdens for this

chapter. First, their work is only concerned with the nucleon-nucleus (N -nucleus) in-

teraction for the (p,n) probe, but the present work uses the composite (t,3He) probe.

Many-body wavefunctions are needed for all particles involved, as well as single-particle

binding energies and one-body transition densities for target and probe systems. More

importantly, an effective nucleon-nucleon (NN) interaction must be supplied, as part of

a double-folding procedure over these transition densities, to account for the composite
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nature of the probe in the reaction. Secondly, the proportionality expressed in Ref. [32]

applies specifically to the partial differential cross section associated with a transfer of

total orbital angular momentum in the target system of ∆L = 0. However, neither the

(p,n) or (t,3He), nor any other hadronic probe, is intrinsically selective of this quantum

number change. Therefore, the result of the aforementioned double-folding procedure, a

many-body form factor, is treated in the distorted-wave Born approximation (DWBA)

in order to determine the kinematics and distortion, including Coulomb effects. Partial

differential cross sections for various ∆L values are calculated. These are then available

as fitting functions for a multipole decomposition analysis (MDA), whereby the ∆L = 0

contributions to excitations measured in the 64Zn(t,3He)64Cu reaction can be separated

from larger transfers. As an additional resource, the DWBA calculations are repeated

for every state predicted by large-scale shell-model calculations, using pf -shell effective

interactions KB3G [52] and GXPF1a [107], in order to study forces that break the pro-

portionality of Ref. [32] for the 64Zn(t,3He) case.

3.1 Born Series

First, consider a simple review of the Born-series expansion for scattering of plane waves,

which begins with the assumption that the solution to the time-independent Schrödinger

equation ψtotal should have the form:

ψtotal = ψincident + ψscattered. (3.1)

If there exists a region far from the beam source for the interaction site(s) and a separate

region r far from the interaction region R such that r ≫ R, then in the later region the

asymptotic condition may be imposed that total solution take the form

ψ(r → ∞) = eik·r + f(k,k′)
eikr

r
, (3.2)

where the incident beam is approximated as having exactly defined momentum p = ~k
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(plane wave) and the scattered waves with momenta ~k′ are spherical, though modulated

in intensity as a function of direction by the scattering amplitude f(k,k′). The differential

cross section is defined as it’s square-modulus, dσ/dΩ = |f |2. For scattering of this kind

from a potential V , the Hamiltonian H of the Schrödinger equation Hψ = Eψ can be

split so that

[H0 + V (r)]ψ(r) = Eψ(r), (3.3)

where H0 = −(~2/2µ)∇2 affects the free propagation for a system of reduced mass µ.

It is important to remember that ψ here doesn’t describe a bound state. The energy

here is a eigenvalue, forming a continuous spectrum, and is set by the incident beam

E = ~
2k2/2m. Using the given expressions for E and H0 and regrouping terms, one

obtains

[∇2 + k2]ψ(r) =
2µ

~2
V (r)ψ(r), (3.4)

which has the form of the Helmholtz equation in classical electrodynamics. Equation 3.4

is solved by the method of Green’s function, where for a linear operator D̂, acting such

that D̂ψ(r) = ρ(r), the Green’s function G(r, r′) is defined as

D̂G(r, r′) = δ(r − r′), (3.5)

and the solution ψ(r) is

ψ(r) = φ(r) +

∫
dr′G(r, r′)ρ(r′). (3.6)

The function φ(r) is the homogeneous solution, such that D̂φ(r) = 0. Taking D̂ = ∇2+k2

in Equation 3.5 and performing a Fourier transform gives two solutions for G(r, r′) (after

some integration),

G±(r, r′) = −e±ik|r−r′|

4π|r − r′| . (3.7)
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The full solution then is

ψ±(r) = φ±(r) − 1

4π

∫
dr′

e±ik|r−r′|

|r − r′| ρ(r′). (3.8)

Applying the asymptotic condition stated earlier, |r − r′| =
√

r2 − 2r · r′ + r′2 which is

approximately r
√

1 − 2r · r′/r2, is valid and the solution becomes

ψ±(r) → φ±(r) − 1

4π

∫
dr′

e±ikr

r
e∓ik′·r′ρ(r′) (3.9)

→ φ±(r) − 1

4π

e±ikr

r

∫
dr′e∓ik′·r′ρ(r′). (3.10)

Comparing to the expected asymptotic form in Equation 3.2, the plane wave form taken

as the incident part of the solution satisfies the homogeneous equation [∇2 +k2]eik·r = 0

and the other term has the spherical form e±ikr/r, where ρ(r′) = 2µ/~
2V (r′)ψ(r′).

Therefore, the scattering amplitude is

f(k,k′) = − µ

2π~2

∫
dr′e∓ik′·r′V (r′)ψ(r′), (3.11)

where ψ(r′) = eik·r′ + f(k′,k′′)eik′r′/r′. Its recurring substitution into Equation 3.11

generates the Born-series. The usual Born Approximation is to truncate the series to the

leading term produced by the first substitution, so that the scattering amplitude is

f(k,k′) ≈ − µ

2π~2

∫
dr′e∓iq·r′V (r′), (3.12)

where q = k′ − k is the momentum transfer. The above expression is something like a

transition matrix element Tfi of the interaction Vfi = V (r′) in the basis of plane wave

states (k,k′). For multiple scattering centers in the interaction region, located by the set

{ra}, this can be generalized with the substitution V (r′) ≡
〈
ΦF

∣∣ ∑
a Va(r′ − ra)

∣∣ΦI
〉
, so

that the full scattering amplitude is the sum of a terms called form-factors,
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f(k,k′) ≈ − µ

2π~2

∑

a

〈
ΦF

∣∣∣∣e
∓iq·ra

∫
dr′e∓iq·(r′−ra)Va(r′ − ra)

∣∣∣∣ΦI

〉
. (3.13)

The target-residue wavefunctions ΦI and ΦF are the solutions to their respective internal

Hamiltonians. The procedure for evaluating this scattering amplitude is often called a

single-folding procedure, accounting for the composite nature of the target by “folding”

or integrating over the contribution of all two-body interactions Va. For a composite

projectile, the incident and scattered plane waves are replaced by wave function solutions

of their own internal Hamiltonians. The sum is changed as a → a, b, a double-sum over

the target and projectile internal coordinates, and the set Va,b then represents all two-

body interactions between all the individual constituents. Determination of the scattering

amplitude in this case is likewise called a double-folding procedure.

These simple considerations provide a nice framework to discuss the more complex

case of nucleus-nucleus scattering. What follows is not an attempt to rigorously derive the

general form of the transition matrix Tfi for nuclear reactions. Instead, the aim is to show

in simple terms where the various nuclear structure and effective interaction ingredients

enter into the calculation of the differential cross section, first reviewing the more basic

work of Taddeucci et al. [32], then reviewing the inputs for calculations performed in the

present work.

3.2 A General Proportionality Between Cross Sec-

tion and B(GT)

In their construction of an effective interaction Veff , Love and Franey [2, 31] expanded a

general form of the bare NN -interaction Vij in coefficients of Yukawa functions. They

then fit the ranges R of the Yukawa functions to data on NN -scattering amplitudes

at various bombarding energies. This will be discussed in greater detail below. For the

present, their work provides a starting point for a discussion of the proportionality be-
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tween charge-exchange differential cross sections and Gamow-Teller strength laid out by

Taddeucci et al. [32]. The form of the free NN -interaction contains central (C), spin-orbit

(LS) and tensor (T ) terms,

Vij(rij) = V C(rij) + V LS(rij)L · S + V T (rij)Sij(rij), (3.14)

where L · S is the total spin-orbit operator of the nucleus. The tensor operator Sij is

Sij(rij) = 3
(σ̂i · rij)(σ̂j · rij)

r2
ij

− σ̂i · σ̂j , (3.15)

where subscripts i, j refer to the ith target nucleon and jth projectile nucleon, respectively.

Love and Franey’s expansion in Yukawa terms Y (rij/R) = e
−rij/R

/(rij/R) and r2
ij ×

Y (rij/R), retaining only those with explicit spin-isospin dependence (since GT is under

investigation) is

Veff =
∑

ij

(
V C

τ Y (rij/Rτ ) + V C
στY (rij/Rστ )(σ̂i · σ̂j) + V LS

τ Y (rij/RLSτ )L · S +

+V T
τ r2

ijY (rij/RTτ )Sij

)
(τ̂i · τ̂j). (3.16)

3.2.1 The (p,n) Reaction

In their exposition, Taddeucci et al. [32] rely on the similarities between operators in

the effective NN interaction and operators in the theory of β-decay. Specifically, for the

case of investigating B(GT) with the (p,n) probe, they reduce their consideration to the

relevant term in the central isovector part of the effective interaction,

∑

i

V C
στ (rip)(σ̂i · σ̂p)(τ̂i · τ̂p), (3.17)
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which is responsible for spin-flip transitions in the target-residual system. Here, Vστ

includes the radial dependence of the interaction in terms of the relative coordinates rip,

and σ and τ are the Pauli spin and isospin matrices respectively. The subscript p denotes

the incident proton and i enumerates target nucleons. This is similar to the operator of

Gamow-Teller transitions in β±-decays,

gA

∑

i

σit
±
i . (3.18)

For a target state ΦI and residual state ΦF , each with good total angular momentum

JI,F , calculating the corresponding reduced transition amplitude for this operator gives

the operator strength

g2
A

2π
(

1

2J + 1
)

∣∣∣∣∣
∑

i

〈
ΦF

∣∣∣∣σit
±
i

∣∣∣∣ΦI
〉
∣∣∣∣∣

2

= B(GT±), (3.19)

where Ĵ =
√

2J + 1. This is the strength for Gamow-Teller β-decay.

An operator sum-rule for the GT operator strength is also useful to define. Ikeda et

al. [13] first defined a GT sum-rule in 1963, in conjunction with their theoretical prediction

of the (p,n)-induced GTR. It is a non-energy weighted sum-rule and can be expressed as

follows, where the sums are taken over the final states F of the daughter nucleus. Also,

the sum-rule contributions from the isospin-lowering (GT−) and isopsin-raising (GT+)

parts of GT operator are explicitly separated in the sum.

∑

F

B(GT−) −
∑

F

B(GT+) = 3(N − Z). (3.20)

Taking their difference, as shown in Equation 3.20, gives the simple result 3(N − Z).

This result is understandable intuitively. When N > Z, the difference (N −Z) expresses

the number of occupied neutron configurations which have a corresponding, unoccupied

proton configuration so that the β decay is not Pauli-blocked. The converse is true for

inverse β decay when N < Z. The factor of 3 accounts for the spin degeneracy due

to the fact that the GT operator also has a spin-flip component. The most remarkable
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feature about this sum-rule is that it is essentially model-independent. Even though the

sum-rule can be understood with a simple, independent-particle model description, it

should remain strictly true, regardless of how or what kind of residual interactions are

incorporated in a nuclear model. Likewise, this sum-rule should remain valid regardless of

what kind of charge-exchange probe samples the GT-strength, provided internal structure

effects are accounted for in the case of composite probes. Attaining the correct value for

the sum-rule then is an important test of new charge-exchange probes and theoretical

structure calculations testing new effective interactions. These points will be discussed

in futher detail below.

Taddeucci et al. [32] take the limit of vanishing momentum transfer q and factor the

expression for B(GT) in Equation 3.19 out of the calculation of the differential cross

section, with the goal of expressing it in the linear form,

dσ

dΩ

∣∣∣∣∣
q→0

= σ̂GTB(GT). (3.21)

In direct reaction theory [108, 109], the differential cross section is proportional to the

transition matrix elements
∑ ∣∣T (MF ,MI ,mp,mn)

∣∣2. This is separate from exchange-

effects, where real nucleon transfers lead to the same final state, which Taddeucci et

al. treat in the impulse approximation as well with a Dirac-delta function potential.

Taddeucci et al. express the direct part of T in the distorted-wave impulse approximation

(DWIA), in accordance with Refs. [108,109] as the nuclear transition t-matrix,

T ≈
∫

drχ∗
−(r,k′)

〈
n, ΦF

∣∣
∑

i

V C
στ (rip)(1 − Pip)(σ̂iτ̂i) · (σ̂pτ̂p)

∣∣ΦI , p
〉
χ+(r,k), (3.22)

where the permutation operator Pip has been introduced into the operator of Equation

3.17 in such a way so as to allow στ terms of the proton p and each target nucleon i

to be grouped together. Note that this expression is only valid for the ∆L = 0 part

of the differential cross section. Also, the action of the central-volume part of the bare
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NN -interaction, mainly responsible for distortion, has been implicitly included in the

distorted waves χ±.

In its momentum representation, Taddeucci et al. take these terms in T to be sep-

arately integrable: the volume integral over V C
στ (rip), the target integral over

∑
i(σ̂iτ̂i),

the projectile integral over (σ̂pτ̂p), and the distortion integral over χ∗
−(r,k′)χ+(r,k).

They then make various simplifications, first by taking the limit of vanishing momentum

transfer (q → 0) on the first three terms. It’s unnecessary to reproduce them in full

here. Respectively, they lead the following expressions; for the volume integral |Jστ |2, for

target integral the B(GT) in the target system, and for the projectile integral the B(GT)

in the projectile system (which is just 3). The factoring of the differential cross section

then gives for the proportionality constant in Equation 3.21,

σ̂GT = KND|Jστ |2, (3.23)

where K is a kinematic factor in the reduced masses of the entrance and exit channels.

The term ND comes from the distortion integral, which Taddeucci et al. factor separately

by treating the distorted waves χ∗
−(r,k′), χ+(r,k) in the Eikonal approximation.

In the Eikonal approximation, the projectile and ejectile trajectories are straight

lines. Alternatively, this approximation is enforced by preserving the parallel part of

the momenta k and k′. This is achieved in practice by separating the nuclear potential

into optical (U) and structural (W ) terms V = U +W and solving for the distortion due

to U by only allowing incident plane waves to be distorted in the plane perpendicular

to the motion. Doing this allows Tadduecci et al. to arrive at an expression for ND that

commutes with the remaining integrals [32].

Tadduecci et al. were inspired by the empirical emergence of the proportionality

relation [18] and test the validity of their approach by comparing back to a large body

of (p,n) reaction data (see Ref. [32] and references therein). Figure 3.1, reproduced from

Ref. [32], shows this comparison for their DWIA calculations. The dotted curve is for the

unit cross section in a proportionality they express for the Fermi strength B(F) associated
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Figure 3.1: The (p,n) Fermi and Gamow-Teller unit cross sections, plotted as a function
of target mass A, reproduced from Ref. [32].

with the pure isospin part τiτp but, this is not relevant to this discussion. The dashed

curve is for the GT unit cross section. In both cases, the DWIA calculations have not

been normalized to the data. The scatter in the data, relative to the DWIA curve, for

the GT unit cross section is ∆σ̂GT/σ̂GT = 22%. This is important since the average

error in the overall normalization for the data points is only 8% and the scatter in their

own calculations is not sufficient to account for the difference. Therefore, they conclude

that among other possible affects, operators significantly different from the στ operator

of β-decay must be responsible for breaking the proportionality of Equation 3.21.

In the development of similar proportionality relations for other charge-exchange

probes, the above approximations and limitations to the proportionality of Equation

3.21 provide the basis. In summary, they are

1. This result is only valid for the partial cross section associated with ∆L = 0

transitions. Analysis of measurements made with any probe must be able to
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isolate this amplitude.

2. The reaction must take place under conditions such that it is well-described as a

single-step transition.

3. The limit of small momentum-transfer allows one to factor B(GT) out of the

radial terms in the cross section, valid for treating distortion in an Eikonal model.

Experimentally, this necessitates extrapolating measurements to 0◦ scattering

angle and reaction Q-value Qreact = 0.

4. Exchange effects, where real nucleon transfer leads to the same final state, are

significant. Taddeucci et al. finds that for (p,n) it doesn’t break their

proportionality, only reduces the cross sections uniformly. Nevertheless, to obtain

absolute B(GT), exchange cannot be neglected and must be quantified for any

new probe. It is certainly more complicated to treat in composite probes.

5. Love and Franey [2, 31] show, and Taddeucci et al. uses, that the στ operator is

best isolated from other terms in the effective interaction at intermediate beam

energies (&100 MeV/nucleon). This result doesn’t depend significantly on probe

structure, so στ will be best isolated under this condition in general. The physical

reason behind this is that the mass of the pion is roughly 140 MeV/c2. Therefore,

at the &100 MeV/nucleon beam energy, the likelihood of one-pion exchange is

maximized and likewise, the action of the στ operator is maximized.

3.2.2 The (3He,t) and (t,3He) Reactions

An investigation of a proportionality between differential cross section and B(GT) for

the composite (3He,t) charge-exchange probe at 140 MeV/nucleon [110] follows directly

from these simpler considerations for the (p,n) reaction and is relevant for the present

(t,3He) work as well. Figure 3.2 (top panel) shows the value of the GT unit cross section

as determined from forward-angle (3He,t) scattering data (black), normalized isotope-

by-isotope using B(GT−) from states measured with β-decay. Clearly, a mass-dependent
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Figure 3.2: The (3He,t) and (t,3He) Gamow-Teller unit cross sections, plotted as a func-
tion of target mass A, based on Ref. [111].

relation between unit cross section and target mass exists:

σ̂GT = 109 × A−0.65 (3.24)

One major deviation in this trend is seen for the case of 58Ni. In Figure 3.2 (bottom),

the scatter in the value of σ̂GT is plotted against the fitted trend. Deviations on the

∆σ̂GT/σ̂GT ∼20% level are seen, as is the case for (p,n) in Ref. [32]. Treating the reaction

in the DWBA and folding in the same effective NN interaction that Taddeucci et al.

used [31], done here in a double-folding format to account for the composite nature

of the probe, Cole et al. [112] show that contributions to the cross section from the

tensor-τ part of the NN -interaction (V T
τ ) produce interference between the ∆L = 0 GT

amplitude and ∆L = 2 amplitudes. The correction deduced from this study, shown in

Figure 3.2 (bottom) with the blue arrow, works in the right direction and has the right
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size to account for most of the deviation. Exchange effects for the (3He,t) reaction were

also studied [111, 112], to compare the effect of treating it exactly (e.g. [113]) or in the

short-range approximation prescribed in Ref. [2]. In both references, the authors find the

short-range approximation leads to an overall 40% reduction in the B(GT) but, it does

not break the proportionality with cross section [111,112]. With this kind of study, which

will be performed in Chapter 6 for the present 64Zn(t,3He) case, the effect of V T
τ can be

systematically isolated.

Additionally, measurements made using the (t,3He) probe, as described in Chapter

4, to determine B(GT+) in 12B [112], 13B, and 24Na [8] have revealed a consistent

trend for σ̂GT (Figure 3.2 red). Since it appears that the (3He,t) and (t,3He) unit cross

sections are consistent, the present work will rely on this for the analysis of 64Zn(t,3He)

cross section data. In the following sections, the tools used to treat this reaction in the

DWBA are discussed. This lays the groundwork for their use, in Chapter 6, in isolating

∆L = 0 partial cross sections (MDA), extrapolating them to zero momentum transfer

and estimating the size of tensor effects.

3.3 Radial Wavefunctions for (t,3He)

First, to calculate cross sections, a set of realistic of projectile/ejectile and target/residue

radial wavefunctions are calculated. This is done using the FORTRAN code WSAW, a

subroutine of the FOLD code [114]. The radial behavior of each |core > +|nucleon >

system is described by solving for the nucleon radial distribution in Coulomb + Woods-

Saxon, real and spin-orbit, potentials as follows

U(r) = VC(r) + Vo(r) + l · sVSO (3.25)

where the Coulomb potential is
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Part. Model Eb(MeV) Vo(MeV) VSO(MeV) ro,C(fm) ao(fm)

t d + n(0s1/2) 6.257 52.361 7.000 1.25 0.65
3He d + p(0s1/2) 5.490 52.259 7.000 1.25 0.65

12C 11B + p(0p3/2) 11.971 59.015 7.000 1.25 0.65

+p(0p1/2) 5.869 50.522 7.000 1.25 0.65
12B 11B + n(0p3/2) 11.660 53.715 7.000 1.25 0.65

+n(0p1/2) 6.160 45.794 7.000 1.25 0.65

64Zn 63Cu + p(0f7/2) 9.473 58.549 7.000 1.25 0.65

+p(0f5/2) 3.105 51.881 7.000 1.25 0.65

+p(1p3/2) 4.913 56.919 7.000 1.25 0.65

+p(1p1/2) 2.924 54.677 7.000 1.25 0.65
64Cu 63Cu + n(0f7/2) 15.479 53.644 7.000 1.25 0.65

n(0f5/2) 9.198 46.926 7.000 1.25 0.65

n(1p3/2) 10.801 51.332 7.000 1.25 0.65

n(1p1/2) 8.917 49.184 7.000 1.25 0.65

Table 3.1: Parameters used to calculate radial wavefunctions with the code WSAW [114],
modeled using volume + spin-orbit Woods-Saxon and Coulomb potentials.

VC(r) =
e2ZnucleonZcore

r
for r > rCA1/3

=
e2ZnucleonZcore(3 − r2/(r2

CA2/3))

2rCA1/3
for r < rCA1/3 (3.26)

and the Woods-Saxon volume and spin-orbit potentials are,

Vo,SO(r) =
Vo,SO

1 + e(r−ro)/ao
(3.27)

where rc is the Coulomb radius, ro and ao are the Woods-Saxon radius and diffusivenesses.

The single-particle binding energies Eb are calculated using the DENS subroutine of

OXBASH [50], employing the Sk20 Skyrme interaction [115]. This interaction is chosen

because it can be used over a large mass-range. With it, consistency is maintained for

calculations involving different targets. The volume WS depths Vo are allowed to vary

so that the numerical determination of the radial wavefunction converges with the given

binding energy. The calculations are summarized in Table 3.1.
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3.4 One-Body Transition Densities

Next, one-body transition densities (OBTD) for the overlap of the projectile-ejectile and

target-residue configurations are calculated. The OBTD is a quantity introduced to solve

the problem of calculating the expectation of a single-particle operator in a representation

with many-body wavefunctions. A simple example of this comes from the basic case above

in Equation 3.13. There, the initial and final nuclear target states would be analogous to

the ΦI and ΦF states respectively. However, the interactions Va are between individual

constituents. This is solved in nuclear shell-model calculations by expanding one-body

transition operators of the kind O(r) in terms of single-particle creation and annihilation

operators,

〈
ΦF

∣∣∣∣O(r)

∣∣∣∣ΦI

〉
=

〈
ΦF

∣∣∣∣
∑

i,f

〈
φf

∣∣∣∣Ô
∣∣∣∣φi

〉
â
†
i âf

∣∣∣∣ΦI

〉
(3.28)

=
∑

i,f

〈
φf

∣∣∣∣Ô
∣∣∣∣φi

〉〈
ΦF

∣∣∣∣â
†
i âf

∣∣∣∣ΦI

〉
, (3.29)

where the terms
〈
ΦF

∣∣∣â†i âf

∣∣∣ΦI

〉
= ρif , are the one-body transition densities. They are

Slater-determinants calculated in the occupation number representation of the shell-

model wavefunctions ΦI and ΦF. The one-body matrix elements
〈
φf

∣∣∣Ô
∣∣∣φi

〉
are calculated

in the single-particle wavefunctions φi,f which are the radial wavefunctions calculated in

the previous section.

The OBTDs for the 12C-12B overlaps are calculated in the p-shell space with the CKII

[116] effective interaction using the OXBASH code [50]. Those for the 64Zn-64Cu systems

are calculated in the pf -shell space using both GXPF1a [53] and KB3G [52] effective

interactions using the NuShellX code [51]. In both codes, the OBTDs are calculated

by coupling to good total angular momentum and good isospin. Dependence on spatial

orientation is removed by calculating the matrix elements in the reduced form via the

Wigner-Eckhart theorem. They then have the form
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OBTD =

〈
ΦF

∣∣∣∣

∣∣∣∣[â
†
i ⊗ âf ]∆J,∆T

∣∣∣∣

∣∣∣∣ΦI

〉

√
2∆J + 1

√
2∆T + 1

, (3.30)

where [â
†
i ⊗ âf ]∆J,∆T is an expansion in Clebsch-Gordan coefficients coupling all single-

particle creation and annihilation operators to good angular momentum and good isospin.

Experimentally, it is known that only 50% to 60% of the Gamow-Teller (non-energy

weighted) sum-rule (see Equation 3.20 and subsequent discussion) is exhausted below

20 MeV of excitation in the daughter nucleus [21]. This is an important point to make

now, as shell-model calculations are discussed, because the quenching is likely due to

admixture of configurations outside model spaces used here [44]. Recall from Chapter

1 that missing spin-flip strength at a low excitation lead to the first proposal of the

giant GT states’ existence [13]. Similarly, missing strength in the region of the giant GT

state(s) has been attributed to various admixtures that further move strength to higher

excitation. One possible mechanism is due to interference with 1p-1h configurations from

2p-2h admixtures (e.g. Ref. [117]). This has been experimentally verified in a few cases

(see Ref. [111] and references therein). Another possibility is excitation of ∆(1232)-isobar

nucleon-hole states [118].

Experimentally, it has also been seen that the quenching is universal, meaning the

reduction factor is independent of excitation energy. Consequently, structure calculations

confined to a smaller model space i.e., ones not including unusual configurations like the

ones mentioned above, can still be compared to data by simply applying the phenomeno-

logical quenching factor to their calculated GT strengths. The normal practice in this

text will be to account for the quenching post-calculation by scaling B(GT) with the

universal (averaged value over all target masses) quenching factor ∼ (0.74)2 [102,112].

As an example, the OBTDs for the ground-state to ground-state transition of the

12C(t,3He)12B reaction are shown in Table 3.2. For convenience in using them as in-

puts for the later steps in the calculation, they are expressed using the “Z-coefficient”

convention of Raynal/ALLWORLD et al. [119,120]:
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φf φi Z
∆J,∆T
j,j′

π(0s1/2) ν(0s1/2) 0.707

ν(0p1/2) π(0p1/2) 0.07326

ν(0p1/2) π(0p3/2) 0.69147

ν(0p3/2) π(0p1/2) 0.32622

ν(0p3/2) π(0p3/2) 0.08220

Table 3.2: One-body transitions densities for 12C to 12B, ground state-to-ground state
transition.

Z
∆J,∆T
j,j′ =

C(Ti, Tim, ∆T, ∆Tm|Tf , Tfm)
√

2∆T + 1
√

2Ji + 1
√

2Tf + 1
× OBTD (3.31)

for Clebsch-Gordon coefficients C. The OBTDs for both the target-residue overlaps and

the projectile-ejectile overlaps must be calculated. However, in the projectile-ejectile sys-

tem of (t,3He), the OBTD is unity since the single-particle radial wavefunctions φi,f (r)

are essentially identical. It’s entry in Table 3.2 then is just the leading coefficient in

Equation 3.31.

3.5 Form Factors

The next step in calculating (t,3He) differential cross sections is to calculate the relevant

form factors. This is done using the code FOLD [114] which performs the double-folding

procedure mentioned previously. In this procedure, the product of the OBTDs of the

target-residue system and of the projectile-ejectile system is folded (integrated) over an

effective nucleon-nucleon interaction Veff . For both 12C(t,3He) and 64Zn(t,3He) reactions,

the Love and Franey effective interaction [2,31], fitted using data on NN -scattering am-

plitudes at 140 MeV/nucleon, is used in the folding procedure. The free NN -interaction

contains central (C), spin-orbit (LS) and tensor (T ) terms as stated earlier in Equa-

tion 3.14. Recall there the discussion, that in constructing an effective interaction, au-

thors Love and Franey [2, 31] expand each term, using Yukawa functions Y (rij/R) and

r2
ij × Y (rij/R) as the expansion coefficients. The effective interaction is then fit to NN -
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scattering data so as to reproduce the long-range behavior of the one-pion exchange

potential (OPEP). For the (t,3He) charge-exchange reaction that populates a Gamow-

Teller state, only a specific term with explicit isospin dependence need be retained, such

that the more general Equation 3.16 reduces to

Veff =
∑

ij

V C
στY (rij/Rστ )(σ̂i · σ̂j)(τ̂i · τ̂j), (3.32)

where subscripts i, j refer to the ith target nucleon and jth projectile nucleon, respectively.

The ranges RX are the various fitted ranges, reported in tabular form by Love and

Franey [2, 31], for each bombarding energy they investigated. In addition to the above

form, an approximate treatment exchange interaction is also added. This is modeled in the

zero-range approximation by taking exchange terms to be of the kind Vexch = Voδ(rij)

which may not be the most realistic option [113]. However, this choice greatly eases

the computational difficulty, as it has an analytic Fourier transform and makes a very

simple contribution to the form factors. Also, as mentioned above, the effect of this

approximation is only to reduce the overall B(GT) by a common factor of about 40%

[111,112].

In summary, form factors for each relative angular momentum transfer ∆JR capable

of coupling the initial and final Jπ of projectile and target states must be calculated.

In both cases with the 12C and 64Zn targets, only transitions from their ground states

are calculated. Both are even-even nuclei so their ground states are Jπ = 0+. Charge-

exchange excitation of Gamow-Teller states in their residues will then be Jπ = 1+ so in

the target system, ∆Jtar = 1. Assuming no excited states for the triton or 3He particles,

in the projectile system the angular momentum transfer is ∆Jproj = 1. Adding these

by the usual triangle inequality, the possible relative angular momentum transfers are

∆Jrel = 0, 1, 2. However, ∆Jrel = 1 violates conservation of parity, so the two form

factors, associated with ∆Jrel = 0, 2, are the only ones calculated.
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3.6 Distorted Waves

The last remaining step in calculating the (t,3He) differential cross section is to account

for distortion to incident and outgoing projectile-ejectile waves. The Coulomb interaction

has an infinite range so that assuming the interaction site is far from the beam source

and φ(r) is a plane wave is not sufficiently accurate. Realistic incoming waves χ±are first

distorted by the Coulomb and nuclear fields before interacting with the target nucleus.

The method of Green’s functions specified in Equations 3.5 and 3.6 is generalizable

to arbitrary incident and scattered waves, taking the form of the Lipmann-Schwinger

equation [121]. In the DWBA, the Coulomb and average nuclear (optical) part U of the

potential is separated such that V = U + iW , leaving the residual part W to be solved

separately and assuming that the effect of U on the bare incident wave φ(r) doesn’t

alter the projectile’s internal structure. The residual part is that part already solved by

previous calculations discussed in this chapter. Comparison to Equation 3.6 shows the

solution for the distorted waves χ± is

χ±(r) = φ±(r) +

∫
dr′G±(r, r′)ρ±(r′), (3.33)

where now φ(r) is an arbitrary incident wave and ρ(r′) = 2µ/~
2U(r′)φ(r′). The potential

U(r′) has Coulomb and average nuclear parts, the average part being treated in the

optical model by Woods-Saxon potentials as

U(r′) = VC(r′) − VR(r′) − iVI(r
′), (3.34)

where the Coulomb term VC(r′) has the same form as in Equation 3.26 and both real

and imaginary Woods-Saxon potentials VR(r′) and VI(r
′) have the same form as that

in Equation 3.27. The optical model parameters for this potential, for both exit and

entrance channel, are summarized in Table 3.3. The parameters for the entrance and

exit channel of the 12C(t,3He)12B reaction are taken from Ref. [122]. No elastic scatter-

ing data specifically on the 64Zn target is available near incident beam energies of 115
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Coulomb and Optical Model Parameters

Channel rC VR rR aR VI rI aR χ2

t+12C 1.25 16.60 1.590 0.705 32.10 0.989 0.868 -
3He+12B 1.25 19.40 1.590 0.705 37.80 0.989 0.868 -

t+64Zn 1.25 29.89 1.320 0.840 37.77 1.021 1.018 -
3He+64Cu 1.25 35.16 1.320 0.840 44.43 1.021 1.018 2.48

Table 3.3: Coulomb and Woods-Saxon optical model parameters, provided to the DWBA

code DWHI, for calculating distortion and kinematics in 12C and 64Zn(t,3He) reactions.

MeV/nucleon with tritons or 3He particles. Therefore, as an approximation, the optical

potential parameters from 3He - 58Ni elastic scattering data at 147 MeV/nucleon inci-

dent 3He energy is used for the exit channel [122]. For the entrance channel, the t - 64Zn

parameters are estimated from the 3He - 58Ni values by scaling the real and imaginary

Woods-Saxon well-depths by 85% [123].

The DWBA code DWHI is used to solve for the distorted waves, account for kine-

matics and reaction Q-value, and evaluate the differential cross section. This is done

with complete scattering amplitude, finally determined by summing the folded form fac-

tors F (∆Jrel) from the previous section and calculating their expectation values in the

distorted waves χ±,

f(k,k′) =
µ

2π~2

∑

∆Jrel

〈
χ+

∣∣∣∣F (∆Jrel)

∣∣∣∣χ−
〉

. (3.35)

The differential cross section then is

dσ

dΩ
=

(
µ

2π~2

)2∣∣∣∣
∑

∆Jrel

〈
χ+

∣∣∣∣F (∆Jrel)

∣∣∣∣χ−
〉∣∣∣∣

2

. (3.36)

Figure 3.3 (left) shows the completed example calculation for the ground-state to ground-

state transition in the 12C(t,3He)12B reaction. The ground state of 12B is a Jπ = 1+

and a strong Gamow-Teller state. However, there is a smaller excitation of the amplitude

leading to Jπ = 2+, which the tensor-τ interaction will permit interference with. This will

be discussed more below in regards to the proportionality breaking. The normalization
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Figure 3.3: (Left) An example of the measured 12B ground state differential cross section,
compared to the cross section calculated as specified here. The total cross section is
decomposed into the respective contributions from form factors leading to Jπ = 1+ and
2+ states. (Right) The library of 64Zn(t,3He)64Cu differential cross sections, calculated
for use in a multipole decomposition analysis of the 64Cu spectrum.

of both partial cross sections have been scaled to fit the data. Otherwise, the calculation

described in this chapter consistently over-predicts absolute cross sections (60%), due to

the previously mentioned exchange effects [111]. The shape is all this work is concerned

with however, as is explained next concerning the method of multipole decomposition

analysis.

3.7 Multipole Decomposition Analysis

The result developed so far has specifically focused on the amplitudes contributing to the

cross section of Gamow-Teller excitations. In the experimental measurement however, it is

not possible to do so selectively, particularly for the main case of interest, the 64Zn(t,3He)

reaction. Therefore, the above procedure to calculate form factors is repeated for this

reaction, adding form factors for larger angular momentum transfers. The results are

shown in Figure 3.3 (right), where differential cross sections associated with Gamow-

Teller (Jπ = 1+), dipole (Jπ = 1−), and quadrupole (Jπ = 2+) transitions are shown.
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The flat distribution is included in this set for representing higher angular momentum

transfers and transitions to the continuum. Later, in Chapter 6, these distributions will

be used to fit measured angular distributions and isolate the Gamow-Teller partial cross

section. This is the cross section used in Equation 3.21, divided by the unit cross section

in Equation 3.23, that determines the measured B(GT).

3.8 Proportionality Breaking

Since the proportionality used to determine the measured B(GT) is not exact, it is

valuable to study sources that break it. As mentioned earlier, in the discussion of empirical

evidence of the (3He,t) and (t,3He) unit cross sections, the authors of Refs. [111,112] have

done such investigations for 58Ni and 26Mg cases, respectively. The same methods are

applied in this work, to determine the source and quantify the size of any proportionality

breaking. In both previous works [111, 112], the tensor-τ part V T
τ of the effective NN -

interaction was determined to be the main source of the proportionality breaking. This

determination is made possible by the convenient feature of the FOLD code [114] wherein

the V T
τ part of the interaction can be manually set to zero. Formally, this should be

done on the level of the interaction used to determine the OBTDs, removing terms that

could contribute to ∆L = 2, ∆S = 1 amplitudes. It is found however, that the former

step produces the same result. Therefore, the differential cross sections calculated using

the procedure described above can be quickly repeated with and without the tensor

interactions included, making for easy comparison. The result of this portion of the

study is likewise withheld until Chapter 6 so it can be discussed immediately following

the 64Zn(t,3He) data analysis.
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Chapter 4

Experiments

Several experiments spread over a period of a few years have contributed to this work

in important ways, with the results of each building on past experience and motivating

future measurements. Three smaller experiments were done in order to develop the tri-

ton beam that is then used to perform the fourth experiment, measuring the differential

cross section of states in 64Cu via the 64Zn(t,3He) reaction. This chapter provides an

account of all experimental equipment, configurations and measurement techniques used

in the four experiments. Additionally, the analysis and conclusions reached for the first

three measurements are included here, since these are foundational for the 64Zn(t,3He)

measurement. The first measures triton production via fast-fragmentation of 18O ions.

The second measures triton production via fast-fragmentation of 16O ions. The third

examines techniques to pilot the triton beam in a dispersion-matched mode to the tar-

get of the S800 spectrometer for use in (t,3He) reaction spectroscopy. The 64Zn(t,3He)

measurement itself is described here, but the detailed analysis and results are treated

separately in following chapters.

4.1 Equipment Overview

All measurements are taken at National Superconducting Cyclotron Laboratory, Michi-

gan State University, using the Coupled Cyclotron Facility [47], A1900 Fragment Separa-
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Figure 4.1: Floor plan overview of NSCL experimental facilities as of the beginning of
calendar year 2006.

tor [124] and S800 spectrograph [125]. The project to couple the cyclotrons was completed

during calendar year 2001. The A1900 Fragment Separator and S800 spectrograph were

commissioned soon after. Figure 4.1 provides a overhead layout of NSCL experimental

facilities, as of the beginning of calendar year 2006. This schematic is representative of

the general configuration of all equipment used, the first of the three triton beam de-

velopment experiments having taken place mid-2003 and the final measurement of the

64Zn(t,3He) reaction taking place at year’s end 2005.

4.1.1 K500⊕K1200 Coupled Cyclotrons

The Coupled Cyclotron Facility (CCF) at NSCL consists to two superconducting cy-

clotrons, the K500 and K1200 cyclotrons seen upper-left in Figure 4.1, which are coupled

to increase the maximum energy of accelerated primary beams. Ions in an intermediate

charge state are supplied first from an Electron Cyclotron Resonance (ECR) source and

axially injected into the smaller K500 cyclotron. These ions are accelerated to an interme-

diate velocity by the K500, then extracted along the plane of acceleration into a beamline
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Figure 4.2: Schematic overview of the A1900 Fragment Separator

coupling to the K1200 cyclotron. Ions are then injected into the K1200 cyclotron in the

plane of acceleration and stripped to their final charge state. This then makes it possible

to use the greater bending power of the larger K1200 cyclotron to accelerate ions to

final velocities in excess of half the speed of light. Ions forming the primary beam are

finally extracted from the K1200 accelerating plane into a beamline for transport to a

fragmentation target station, for production and separation of secondary beams in the

A1900 Fragment Separator, seen upper-center in Figure 4.1.

4.1.2 A1900 Fragment Separator

The A1900 Fragment Separator is a two-stage projectile fragmentation spectrometer,

designed to produce radioactive secondary beams by magnetic separation of collision

products from a fast primary beam. The A1900 is composed of four 45◦ dipole bending

magnets and 40 higher-order multipole magnets for physical correction of optical aber-

rations. See the upper-center region of Figure 4.2 for reference. The maximum magnetic

rigidity (Bρ) of the A1900 is 6 T·m and it’s large-bore (10 cm and larger) quadrupole

magnets and large vertical gap (9 cm) dipoles allow an dΩ = 8 msr solid-angle accep-

tance, though differing depending on the specific reaction. The maximum momentum

acceptance is dp/p = 5.5%, allowing for up to 90% of projectile fragments produced,

depending on specific fragment, to be transmitted to the A1900 focal plane for identi-
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fication and or transmission to experimental end-stations. The intermediate dispersive

image (A1900 I2) at the center of the A1900 features remote retractable collimators and

can be instrumented with position and timing-sensitive detectors for event-by-event par-

ticle tracking. The A1900 focal plane (A1900 FP) is located following the last multipole

magnet of the Separator and is positioned as an experimental end-station for A1900-only

measurements. A vacuum chamber located at the focal plane is equipped with remote

retractable drives which can be instrumented with position and timing-sensitive detectors

and detectors for measuring particle energy-losses and total kinetic energies. Following

the focal plane station, the A1900 is also equipped with an Extended focal plane (A1900

XFP) detector suite, a limited version of the focal plane station, but optimally located

to identify particles delivered to other experimental end-stations.

Reference List of A1900 Detectors with Main Features

Below is a list of only those A1900 detectors used during some or all of the four experi-

ments. It is provided as a reference when reading following sections about the measure-

ments and analysis. It is not meant to provide an exhaustive list of all detectors available

in the Fragment Separator.

1. Faraday Cups (FC)

- circular copper mesh, 25 mm diameter

- located on remote retractable drives at fragmentation target

- output signal is the current induced by unreacted primary beam

- sensitive from 10 epA to 100 eµA, under 5 W power deposition

- intercepting method to monitor primary beam intensity

2. Faraday Bars (FB)

- machined copper bar
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- located on the inside walls of the A1900’s first dipole

- output signal is the current induced by unreacted primary beam

- sensitive from 1 enA to 100 eµA, under 4 kW power deposition

- non-intercepting method to monitor primary beam intensity

3. Viewers

- 1/8”-thick natAl plate stock coated with ZnO phosphor

- located on remote retractable drives at image planes

- output signal is visible light emission, monitored by camera

- sensitivity qualitative, depends on camera type and gain, ion rate and

charge, ∼1-2 mm position resolution

- characterize beam spot size, real-time tuning diagnostic

4. Thin Plastic Scintillators (tSCI)

- 25.8 or 198.5 mg/cm2 thick BicronTM BC-400 plastic (12C9H10)

- located on remote retractable drives at I2, FP, and XFP

- output signal is timing and voltage pulse from two gain-matched

photo-multiplier tubes

- timing relative to acquisition start, voltage amplitude proportional to energy

deposition, position inferred from phototubes’ relative signals with 30 mm

resolution

- measure timing, rate, position for momentum correction

5. Thick Plastic Scintillator (SCI)

- 19.8 g/cm2 thick BicronTM BC-400 plastic (12C9H10)

- located on remote retractable drive at FP

58



- output signal is timing and voltage pulse from two gain-matched

photo-multiplier tubes

- timing relative to acquisition start, voltage amplitude proportional to energy

deposition

- measure timing and particle total energy

6. Silicon PIN Detectors (PIN)

- 116.1 g/cm2 thick, doped-silicon npn-type wafer diode

- located on remote retractable drive at FP and XFP

- output signal is timing and voltage pulse from collision-induced promotion of

conduction electrons across band-gap

- timing relative to acquisition start, voltage amplitude proportional to energy

deposition

- measure timing and particle energy loss

7. Parallel Plate Avalanche Counters (PPAC)

- 100 mm × 100 mm or 400 mm × 100 mm, HV gas-filled capacitor with

segmented anodes

- located in pairs on remote retractable drives at I2, FP

- output signal is anode current created by secondary electron showers in the

fill gas

- single-event sensitivity below 30 kHz count rate

- measure event-by-event x/y positions

4.1.3 S800 Spectrograph

The S800 spectrograph is located in the S3 end-station at NSCL, seen at a side-view in

Figure 4.3. The setup has two important parts; the Analysis Line and the spectrograph
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Figure 4.3: Schematic overview of the S800 spectrograph

itself. The Analysis Line is a two-stage, vertical spectrometer preceding the spectro-

graph. It is designed specifically to tune large-emmitance secondary beams in a focused

or dispersion-matched mode and has a maximum magnetic rigidity of 4.8 T·m. The spec-

trograph is a vertical recoil spectrometer mounted on a platform allowing it to be rotated

up to 60◦ off the beam axis. It is composed of a large-bore doublet of two focusing quadru-

pole magnets following the target position and two large-gap dipole magnets which make

up the sector field. The angular acceptance is dΩ = 20 msr and the momentum accep-

tance is dp/p = 5%. The object position has highly variable geometry to accommodate

coincidence detection systems. Small target stations and external detector systems can be

deployed or the Large Scattering Chamber, a 6”×6”×6” vacuum chamber with mounts

for retractable drives and benches for large, in-vacuum detectors. The S800 focal plane

(S800 FP) is instrumented with position and timing-sensitive detectors and detectors for

measuring particle energy-losses and total energy. The spectrograph energy resolution

can be up to 1 part in 10,000 depending on optical settings. This is achieved in the

absence of higher-order multipole magnets by ray-tracing particle trajectories through

the spectrograph using magnetic field maps and calibration measurements made with a

series of sieve-slit plates in the focal plane.
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Reference List of S800 Detectors with Main Features

Below is a list of only those S800 detectors used during some or all of the four experiments,

provided as a reference when reading following sections about the measurements and

analysis.

1. In-Beam Scintillators (IBM)

- 103.2 mg/cm2 thick BicronTM BC-400 plastic (12C9H10)

- on remote retractable drives at Analysis Line Object and S800 Target

- output signal is timing and voltage pulse from one photo-multiplier tube
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- measure rate

2. Cathode Readout Drift Chambers (CRDC)

- gas-filled, HV single-wire drift detector with segmented cathode readout, 30

cm × 59 cm active area

- two CRDCs separated by 1073 mm located in S800 focal plane

- output signals are drift time of secondary electrons to the anode wire and

current-integrated total charge on cathode pads induced by the anode current

- drift time to anode relative to acquisition start gives y-position,

center-of-charge on cathode pads calculated in software gives x-position

- measure event-by-event x/y positions

3. Focal Plane Scintillators (E1, E2, and E3)

- 30 cm × 59 cm BicronTM BC-400 plastic (12C9H10), 5 cm (E1), 10 cm (E2),

and 20 cm (E3) thick

- located in S800 focal plane

- output signals are timing and voltage from two phototubes on each detector,

voltage amplitude proportional to energy deposition

- measure timing, particle energy loss (E1,E2) and total energy (E3)

Figure 4.4 shows a schematic view of the CRDC detectors, adapted from figures in

Ref. [126]. Each CRDC provides a 2-dimensional measurement of the event trajectory

in the plane perpendicular to the direction of propagation. In the non-dispersive (Y )

direction, this is done by applying an anode voltage and measuring the time difference

between the DAQ trigger and the arrival of secondary electrons drifting in through the

fill gas to be collected on the anode wire. The dispersive direction is measured indirectly

by measuring the image charges formed on the segmented cathode lead. In the lower-

left hand insert in Figure 4.4 provides a basic example. Image charge is integrated from
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each cathode pad for a set time interval following the DAQ trigger. The distribution of

integrated image charge over the cathode pads contains information about the location

of the event, as seen in the insert. This dispersive location is determined by fitting the

distribution with a Gaussian function and taking the peak location as the position. The

advantage of this technique includes the possibility of determining the dispersive location

to an accuracy that is finer than the pad segmentation size [126]. From the pair of position

measurements in the CRDC planes, the associated dispersive and non-dispersive angle

of each event trajectory is calculated.

4.2 Development of a Secondary Triton Beam

Motivation

The (t,3He) reaction was recently studied on 12C, 26Mg and 58Ni targets [111, 112] and

was established as a valuable addition to (n,p) [28, 34] and (d,2He) [42, 127] reactions

for extracting Gamow-Teller strength distributions. These (t,3He) experiments were per-
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formed at the NSCL using a secondary 115-MeV/nucleon triton beam however, it was

produced from a 140-MeV/nucleon primary 4He-beam [5,6,128,129] from the lone K1200

Cyclotron, prior to the CCF upgrade. Using the A1200 Fragment Separator and S800

spectrograph, energy resolutions for the (t,3He) reaction varied from 200 keV to 300

keV (FWHM) and triton-beam intensities achieved were . 1 × 106 pps. Coupling the

K500 Cyclotron to the K1200 as a pre-accelerator required changes to the injection and

stripping scheme of the K1200 such that 4He is not available as primary beam from the

K500⊕K1200 system [47]. Therefore, to continue investigations with the (t,3He) probe at

NSCL, it became necessary to find an alternative method to produce a secondary triton

beam and desirable to improve the efficiency of (t,3He) experiments by developing higher

intensity beams.

An alternative way to produce a secondary triton beam and to improve the triton-

beam intensity is investigated using fragmentation of primary beams of 16O (150 MeV/nucleon)

and 18O (120 MeV/nucleon). These are the lightest available beams that can be acceler-

ated with the CCF [47]. Since 18O is more neutron-rich than 16O, a higher triton yield was

expected, but since the goal is to reach triton energies in excess of 100 MeV/nucleon, the

higher 16O beam energy could be advantageous. Fragmentation methods for producing

secondary beams of unstable particles have been widely employed [130], but parameteri-

zations used to predict yields of light fragments from heavy-ion beams [131] in simulation

codes of fragment separators such as LISE [132] are not necessarily reliable, since many

intermediate channels can contribute. In fact, such calculations performed for the current

work based on the EPAX2.15 parameterization [131], underestimated the measured rates

by a factor of about 30.

The energy of the secondary triton beam is also constrained, being limited by the

capability to transport the tritons from the production point to the the S800 spectro-

graph [125]. Depending on the ion-optical tune, the Bρ value achievable in the S800

Analysis Line ranges from 4.8 to 5.0 T·m, corresponding to triton energies of 115 to

125 MeV/nucleon. In order to obtain high-resolution (t,3He) data, the Analysis Line

and spectrograph must be operated in dispersion-matching mode. This limits the opti-
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cal properties (phase-space correlations) and momentum spread of the triton beam to

dp/p0 = 5×10−3 [125], where p0 is the central beam momentum and dp the full momen-

tum spread. After optimization based on all the above considerations, the 24Mg(t,3He)

reaction was used as a test case to determine the excitation-energy resolution achievable.

4.2.1 Triton Production via Fragmentation of 18O

A 120 MeV/nucleon 18O8+ beam produced in the NSCL CCF bombarded a Be produc-

tion target placed at the entrance of the A1900 fragment separator [124]. Three produc-

tion targets with thicknesses of 1170 mg/cm2, 2609 mg/cm2 and 2938 mg/cm2 were used.

Triton yields at magnetic rigidities of 4 T·m and 5 T·m (corresponding to triton energies

of 82 MeV/nucleon and 125 MeV/nucleon, respectively) were measured, so that a rough

dependence of yield on triton energy could be investigated. The momentum acceptance

was limited to dp/p0 = 5×10−3 by placing a slit at the intermediate image of the A1900.

The secondary particles were detected in the A1900 focal plane and identified by mea-
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suring the time-of-flight (TOF), relative to the radio-frequency signal (RF) of the K1200

cyclotron, and the energy losses in a detector stack consisting of a 100-mm thick plas-

tic scintillator and a 0.5-mm thick silicon PIN detector. Tritons were cleanly separated

from other particles produced in the production target, as shown in Fig 4.5. The rela-

tive contribution from contaminants increased at lower magnetic rigidities. For Et ≥ 110

MeV/nucleon, it was found that tritons dominate the production yield (≥ 85%). Although

further suppression of background was possible by inserting a wedge in the intermediate

image of the A1900 and making use of the difference in energy loss for the various sec-

ondary products, it also slightly reduced the triton rate.

Results

In Figure 4.6, the results for the triton production rates with the 18O beam are presented.

A maximum intensity of 7.9 × 104/pnAs (i.e. per particle nano-Ampère of the primary

beam, per second) was achieved using the 2938-mg/cm2 thick natBe production target

and selecting tritons with an energy of 82 MeV/nucleon. The highest rate achieved at

the triton energy of 125 MeV/nucleon is 5.0 × 104/pnAs. The reduction in triton rate

at the higher triton energy is due to the fact that the energy per nucleon of the triton

beam is slightly larger than that of the 18O primary beam, and the high-energy tail of

the energy distribution has been selected.

4.2.2 Triton Production via Fragmentation of 16O

Triton-production rates using a 150 MeV/nucleon primary 16O beam were measured in

a similar manner, but with smaller steps in magnetic rigidity (i.e. triton energy). At this

beam energy, a greater optimum thickness of ∼4000 mg/cm2 for the production target

was predicted by calculations with EPAX2.15 [131] in code LISE [132]. Therefore, rates

were measured using a wider variety of Be-target thicknesses than in the 18O measure-

ment, ranging from 1480 to 5524 mg/cm2. Target thicknesses in steps of approximately
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Figure 4.7: Triton production rate from fragmentation of a 16O primary beam; (Left)
versus primary target thickness, with triton energies indicated in each panel, and (Right)
versus triton energy, with the thickness of each of natBe production target used indicated
in each panel.
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500 mg/cm2 could conveniently be achieved by using combinations of targets placed in

the two ladders of the A1900 target box.

In Figure 4.7 (left) the triton production rate as a function of target thickness is

shown for different triton energies. In Figure 4.7 (right), the rates are plotted as a func-

tion of triton energy for the different target thicknesses used. Systematic errors were due

to uncertainties in primary beam intensities. These were estimated on a run-by-run basis

from a measurement of the current in a Faraday cup inserted in front of the target before

and after each run. Another component to the error is due to the slight difference in

transmission through the A1900 for tritons generated in the primary production targets

located in different ladders. See below for more details.

Analysis of Systematic Error in Triton Production Rates

During preparation for the full test experiment for the (t,3He) probe, the triton rates

shown in Figure 4.7 were investigated to determine if observed structure in the produc-

tion rates could be attributed to systematic errors. To accomplish this, the properties

of the triton beam were studied by simulating the acceptance and transmission of the

A1900 Fragment Separator with the ion-optics code MOCADI [133]. The MOCADI input

consists of transfer matrix representations of each of the 40 multipole magnets, calcu-

lated to third-order in optical aberrations, and measured values for the inter-magnet drift

distances and bore-diameters.

Recall that for the 16O fragmentation experiment, two separate target ladders were

used, with an array of production targets on each, that allowed for total thicknesses

between 1480 mg/cm2 and 5524 mg/cm2 in 500 mg/cm2 increments. The two ladders

holding the production targets are separated by 12.6 cm which means the phase-space

volume of the triton beam has two components, each with different optical properties.

The magnetic field of the first A1900 triplet, which determines the A1900 object location,

is manually tuned to maximize the total transmission of tritons. In Figure 4.8, the disper-

sive angle (momentum) of tritons is plotted versus their corresponding dispersive position
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using data taken with a pair of PPACs at the A1900 focal plane. The two-component

nature of the beam’s phase-space is seen in Figure 4.8 a) and d), for data and simulation

with dual targets respectively. The two contributions are isolated by individual measure-

ment in Figure 4.8 b) and d) and decomposed in simulation in Figure 4.8 e) and f). In

general, a source of rays located at the object of a thin-lens-like system leads to a phase-

space profile for rays at the focal point that is vertical (focus condition). By matching the

observed correlations with simulation, it is determined that the manual triplet tune that

maximizes the triton intensity at the A1900 focal plane places the A1900 object location

between the two target ladders: 2.0 cm downstream of ladder 1 or 10.6 cm upstream of

ladder 2.

Results

The mixed phase-space created by producing the tritons with two separate targets may

pose only minor difficulty operating the S800 spectrograph in focus-mode optics. How-
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ever, this state spoils the conditions necessary to operate the beamlines in a dispersion-

matching mode which is necessary for high resolution with the (t,3He) reaction. A good

dispersion-matched beam would be characterized by a strong correlation between disper-

sive position and angle at the S800 target. If a dual target scheme is used, it would only

be possible to produce such a correlation for one of the beam’s phase-space components.

That would leave the other component as a sizeable portion of the beam that is poorly

dispersion-matched. At dp/p0 = 5 × 10−3 momentum acceptance, the spread in triton

energies at the S800 target is ∼3.5 MeV, which for the poorly matched component would

also be the resolution. Therefore, it is important to locate all of the production target

material on a single ladder at the A1900 object.

In summary, maximum rates (8 − 10 × 104/pnAs) were achieved for triton energies

between 116-125 MeV/nucleon (∼80% of the energy per nucleon of the primary beam)

using Be target thicknesses between 3 − 4 × 103 mg/cm2. At the lowest triton energies,

the highest rates are achieved with the thickest Be targets. The optimum target thickness

slowly becomes smaller with increasing triton energy. Acceptance effects stemming from

the dual target configuration are estimated to be about 5% and are responsible for the

deviations seen from smooth trends in Figure 4.7 (left).

In comparison to the experiment using 18O at 120 MeV/nucleon as the primary

beam, the maximum triton production rate is very similar, but is achieved at a much

higher triton energy. For the production of tritons of an energy of 125 MeV/nucleon, the

maximum rate achieved with the primary 16O beam at 150 MeV/nucleon is about twice

that obtained with the primary 18O beam at 120 MeV/nucleon. For the production of

tritons of 82 MeV/nucleon, the results are more or less reversed.

4.2.3 First Experiment with the Secondary Triton Beam

The secondary triton beam produced from a primary 16O beam was subsequently used to

study the (t,3He) reaction, focusing on the transport of the beam from the A1900 to the

target located at the entrance of the S800 spectrometer [125] and the excitation energy
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resolution obtained in the reaction. A 9.86-mg/cm2 thick, 99.92% isotopically-enriched

24Mg target was used.

Since the triton beam produced at the A1900 fills a relatively large phase space,

the transmission to the S800 target location was limited by the inner dimensions of the

beam-line magnets and transmission lines. To study the transmission of the secondary

triton beam, two retractable 1-mm thick in-beam scintillators (IBSs) were installed, one

at the object of the S800 analysis line, the other at the target position of the S800. This

transmission study was performed at relatively low triton-beam intensity (∼ 105 pps) to

ensure that efficiencies for detection of the tritons in the IBSs exceeded 95%. The optimal

transmissions from the A1900 focal plane to the object in the analysis line and from the

object to the S800 target position were ∼ 60% and ∼ 85%, respectively, resulting in a

total transmission of ∼ 51%. This transmission was achieved at a triton-beam energy of

115 MeV/nucleon (Bρ = 4.8 Tm). At higher energies the current in some of the beam-line

magnets could not be increased sufficiently to obtain optimal conditions for dispersion

matching and led to a lower transmission. Final experiments were performed using a

3526-mg/cm2 thick production target to produce a 115 MeV/nucleon triton beam with

an intensity of 4.8×104/pnAs at the S800 target (including transmission efficiency). The

primary 16O beam intensity available was 100 pnA or higher, resulting in triton beam

intensities of & 5 × 106 pps.

The 3He particles produced in the 24Mg(t,3He) reaction were detected in the focal-

plane detector system of the S800 [126]. It consisted of two scintillators preceeded by

two two-dimensional cathode-readout drift chambers (CRDCs), used to determine the

positions and angles in the dispersive and non-dispersive directions. The first scintillator

served as the event trigger and the start of the TOF measurement. The TOF stop signal

was given by the cyclotron RF. 3He particles were identified by combining the TOF mea-

surement and the ∆E −E response in the two scintillators. The ion-optical code COSY

Infinity [134] was used to calculate the ion-optical transfer matrix of the S800 spectrom-

eter [135] from the measured magnetic field maps. Matrix elements up to fifth order were

used in the reconstruction of δ = (E − E0)/E0; E0 is the kinetic energy of the particle
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following the central-ray trajectory through the spectrometer and E the energy of the

measured particle. The track angles were also obtained in the ray-tracing procedure and

used to calculate the 3He scattering angle (Θ3He
). From these reconstructed parameters,

the excitation energy in 24Na was obtained from a missing-mass calculation.

Results

In Figure 4.9a,b the reconstructed 24Na excitation-energy spectra are shown for 0◦ <

Θ3He
< 4◦ and 0◦ < Θ3He

< 1◦, respectively. The Gamow-Teller transition to the

1+ state at Ex(24Na)=1.35 MeV was used to determine the energy resolution. Minor

contributions from transitions to Jπ = 2+ and 3(+) states, both located at 1.34 MeV

[136], do not affect the width of the peak significantly.

The excitation-energy resolution at forward scattering angles was determined to be

190±15 keV (FWHM) (Figure 4.9b). Due to the kinematic correlation between 3He angle

and energy associated with the recoil of the 24Na residual, and the finite resolution of the

3He angle measurement, the resolution slightly worsens with increasing scattering angle.

When integrating over 3He scattering angles between 0◦ and 4◦ the energy resolution was

220 ± 10 keV (Figure 4.9a). The angular resolution was 0.5◦ (FWHM), measured using

the H(t,3He)n reaction (with a CH2 target) for which the kinematic correlation between

3He angle and energy is strong.

Part of the energy spread is due to the difference in energy loss of the triton and 3He

in the target (50 and 210 keV loss over the full thickness of the 24Mg target, respectively).

The energy straggling in the target contributes ∼ 25−50 keV, depending on the location

where the (t,3He) reaction takes place in target . Using a simple folding procedure, it

was determined that the intrinsic energy resolution (i.e. not related to energy-loss and

straggling effects) was 170 ± 15 keV. Under ‘optimal’ circumstances (object size of 0.5

mm), the energy resolution of the S800 is 1 part in 10000 [125], corresponding to ∼ 35

keV for (t,3He) experiments at 115 MeV/nucleon. From the ratio of optimal and deduced

experimental resolutions and the known energy dispersion of the S800 spectrometer [5
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Figure 4.9: 24Mg(t,3He) excitation-energy spectra for 3He angular ranges of a) 0◦-4◦ and
b) 0◦-1◦ using a secondary triton beam of 115 MeV/nucleon produced with a primary
16O beam of 150 MeV/nucleon.

cm/%(δE
E0

)], it is concluded that the incoherent object size of the secondary triton beam

was about 2.5 mm during the experiment. This size is consistent with the size of the

beam spot observed using a viewer at the object.

There were several difficulties which should be mentioned, which made this measur-

ments challenging. First, the neutron radiation levels due to primary beam losses in the

cyclotrons damaged computer control hardware inside the K1200 shielding vault. This

created several interuptions during the experiment and sensitive equipment has since

been moved outside to improve operations. Related to this, the heat desposition due

to these losses ultimately ended the experiment, melting a segment of the K1200 main

deflector and obtructing the beam extraction. Currently, intensity gains for the triton

beam are loss-limited by the extraction efficiency of the 16O primary beam from the

K1200 cyclotron. Also, one of the two CRDC detectors had some construction defects

and had a sizable dead-region. This limited the range of excitation energies that could

be observed in 24Na.
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a) b) c)

Figure 4.10: Screen shots of a 16O pilot beam a) with and b) without lighting at the
target position and c) of the triton beam, momentum-dispersed over the Zn target.

4.3 Measurment of the 64Zn(t,3He)64Cu Reaction

Many of the settings for the CCF, A1900 and S800 devices used in the 24Mg test

experiment are used for the 64Zn case. The triton beam was produced from the 150

MeV/nucleon 16O8+ primary beam on a single, thick (3500 mg/cm3) natBe production

target, in accordance with previous findings for the optimal production settings [7]. The

A1900 Fragment Separator [124] is set to magnetic rigidity Bρ = 4.8 T·m and momentum

acceptance dp/p = 0.42% to select 115 MeV/nucleon tritons with an 0.84% (∼3.5 MeV)

energy spread. The isotopic purity of the triton beam was 85% and the average intensity

at the reaction target was ≈3×106s−1. The Analysis Line of the S800 spectrograph was

operated in the dispersion-matching mode [137] to maximize the resolution. The S800

acceptance transfered events within ±40 mrad for both dispersive and non-dispersive

event angles, as reconstructed at the target. Figure 4.10 a) and b) shows camera screen-

captures of the unreacted 16O pilot beam spot in focus mode and attenuated to a factor

×106 below maximum. The 16O pilot beam is used first to provide a rough check of

the beamline optics, since its higher charge makes its image on the viewer easier to see.

Panels a) and b) respectively are pictures taken with and without lighting in the target

chamber to show the viewer profile. Figure 4.10 c) shows the triton beam spot in the

dispersion-matched mode, attenuated 33% below maximum intensity. The beam spot

height is ∼5 cm, which is consistent with dispersion in the triton beam and the energy

resolution achieved in the S800 focal plane, due to the dispersion-matched tune of the
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Analysis Line.

The target used is self-supported a 9.84 mg/cm2, 99.6% pure 64Zn foil. Unreacted

tritons cannot be bent into the S800 acceptance so as to directly normalize measured

cross sections by counting particles of unreacted beam. Therefore, the triton intensity

was indirectly monitored by calibrating an IBS placed at the S800 target position with

the Faraday Bar current in the D1 dipole of the A1900. The 12C(t,3He) reaction was also

measured, using a 12CD2 plastic target, for a known reference cross section. The strong

GT transition of known cross section, from the 12C 0+ ground state to the 12B 1+ ground

state, provides a consistency check on the indirect normalization for the measured 64Cu

spectrum.

Reaction products are momentum analyzed by the S800 and their full momentum

is determined in the S800 focal plane [126] using two CRDCs as tracking detectors and

two plastic scintillators (E1 and E2) to measure energy losses and event time-of-flight

(TOF). The E1 signal is the data acquisition and TOF start. The CCF RF signal is the

TOF stop. Ion energy loss in E1 and event TOF allow for unambiguous identification of

3He events in the S800 focal plane. The full data analysis and results are the subject of

following chapters.

Conclusion

In conclusion, a high-quality secondary triton beam has been produced from fragmen-

tation of a 150 MeV/nucleon 16O primary beam. The dispersion-matching tune and

transmission of the triton beam was studied and the 24Mg(t,3He) reaction was measured

as a successful test case. For easy comparison with results from the test experiment, some

basic findings from the 64Zn analysis are included here. The excitation energy resolution

obtained in the 64Cu spectrum is 280 keV (FWHM) and the scattering angle resolution

is ∼10 mrad (FWHM). From these, absolute differential cross sections for states in 64Cu

are determined. The method of indirect normalization attempted using the A1900 Fara-

day Bar was unsuccessful so the spectrum is normalized by comparison with the 12C
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reference measurement. See Chapter 5 for complete details of the analysis procedure and

Chapter 6 for the extraction of Gamow-Teller strength in 64Cu.
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Chapter 5

Data Analysis

This chapter provides an account of the data analysis procedure. The objective will be

to overview the transformation of raw data in the event file into a measured absolute

cross section for the 64Zn(t,3He)64Cu reaction. There will be short discussions about

additional reactions, taking place with 64Zn, 12CD2, and mask target settings, which aid

the 64Zn analysis.

For the reader’s reference, the analysis procedure is carried out using the Physics

Analysis Workshop (PAW) software, version 2.14/04, which is part of the CERN Program

Library. PAW executes elementary operations on data in event files from the S800 DAQ

based on a user-defined subroutine. However, there are no special functions defined in

PAW that affect the analysis. Any analysis package and programming language capable

of basic operations should be able to reproduce this result. Therefore, it is the author’s

intent to make the account presented here transparent to the use of this software, as

much as it is possible.

Discussion begins by providing an abbreviated scheme for the many event parameters

in the data stream, restricting discussion only to those needed to determine the cross

section in 64Cu. The main calibration task in the analysis is to convert center-of-charge

(dispersive position) and electron drift time (non-dispersive direction) for event trajecto-

ries in the CRDCs into physical lengths using the masked settings for the detectors. Next,

the 3He events stemming from reactions on 64Zn will be separated from other reactions
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Figure 5.1: Schematic cut-away view of the S800 focal plane detector suite, reproduced
from Ref. [126]

in the data stream, with detailed consideration of background sources and background

subtractions. Reconstruction of the reaction kinematics at the S800 target position is

discussed briefly and interested readers should refer to Refs. [134, 138] for more details.

Finally, the 12CD2(t,
3He) reaction to the 12B ground state is examined, for its use as a

reference cross section in the absolute cross section normalization.

5.1 Declaration of Parameters

Discussion of the data analysis procedure is aided by defining relevant parameters and

signals associated with the S800 focal plane detector suite. Figure 5.1, reproduced from

Ref. [126], shows a cut-away view of the S800 focal plane chamber. Fast, beam-like reac-

tion products leave the magnetic sector fields of the S800 spectrograph through the beam

pipe at the lower, right hand side of the diagram. The beam direction is indicated near

the center of the drawing, showing that particles travel from lower right to the upper left

hand sides. Particles entering the focal plane encounter detectors in the following order:
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Cathode-Readout Drift Chamber 1 (CRDC1), CRDC2, a Frisch-grid Ion Chamber (IC),

and three plastic scintillator paddles (E1, E2, and E3). The specific function of each de-

tector was described in Chapter 4. The concern here is to define each detector’s output

as it is used for the analysis. The CRDCs measure horizontal (Y1,2) and vertical (X1,2)

positions of impinging particles. Note the reversal of the typical usage of “X” and “Y ”

as Cartesian coordinates. The dispersive direction (of magnetic deflection) in the coordi-

nate system of a spectrometer is here labeled “X” according to a standard convention.

However, the S800 is a vertical spectrometer, so further discussion will use the terms

“dispersive” and “non-dispersive” direction to avoid confusion. The ion-chamber does

not produce a usable signal in the case of the (t,3He) reaction, since the typical beam-

like products are isotopes of hydrogen or helium, which suffer very small energy losses

in the fill gas. Each scintillator is read out by two photo-multiplier tubes, one at each

end along the vertical length of the scintillator bar. Each phototube provides an energy

loss (∆E1up,down, ∆E2up,down, and ∆E3up,down), and timing signal. In this analysis,

only the the E2 energy loss signal from the phototube in the down position is used and

is hereafter referred to simply as ∆E2. The timing signal of the E1 scintillator serves

as the master trigger for the data acquisition electronics. The time difference between

the E1 timing signal and the radio frequency (RF) timing signal of the K1200 cyclotron

are taken to assign a relative time-of-flight (TOFRF ) to each event. The following then

summarizes the list of all the event parameters used in the analysis; (X1, Y1, X2, Y2,

∆E2, TOFRF ). This set of parameters is sufficient to determine the full momentum of

each particle registered in the S800 focal plane and by reconstruction determine the cross

section in the target-like residue.

5.2 Mask Calibrations

The first step of the analysis is to calibrate the position measurements taken with the two

CRDCs. The angles (momentum) of particle trajectories are determined from knowledge

of the two positions measurements in terms of physical units. The analysis of spectrograph
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data uses software-based, ion-optical reconstruction, rather than physical incorporation of

high-order multipole magnets to correct optical aberrations in ion trajectories. Therefore,

accurate knowledge of x/y positions and associated angles for each event in the focal plane

is crucial for reconstructing events at the reaction target. The calibration is accomplished

by periodically taking data with an aluminum sieve-slit (or “mask”) plate inserted before

one of the CRDCs. Their are two such plates in the focal plane, one for each CRDC, and

are used to individually calibrate each CRDC in turn. The plates are both 62.50 cm tall

by 35.15 cm wide by 6.35 mm thick and are mounted 70 mm upstream of their respective

CRDCs on remote, retractable drives. There is one minor caveat to this calibration

procedure which is otherwise a standard procedure for the analysis of all S800 data

sets. In the case of the (t, 3He) reaction at 115 MeV/nucleon and forward angles, the

ejectile 3He ion also has an energy of approximately 115 MeV/nucleon. Consequently,

it’s range in aluminum is roughly 36 mm [132], so it will pass through the mask plate

whether or not it is incident on a hole/slit in the plate.

Figure 5.2 shows an example mask spectrum, taken during the experiment to calibrate

CRDC1. A 1 mm thick, in-beam plastic scintillator (IBS) is used as the reaction target.

This greatly increases the 3He intensity in the focal plane and reduces the time needed

to measure the mask spectrum since the IBS is is primarily composed of 12CH2, which

has a large reaction cross section, and is much thicker than the 64Zn or 12CD2 foils. The

reactions on the scintillator are dominantly on hydrogen in the plastic which produces a

characteristic crescent-shape, due to the residual neutron’s large recoil energy, centered

at X1 ≈ pad 50 and Y1 ≈ 650 ns. Another notable feature in the spectrum is the nearby

vertical band at X1 ≈ pad 35 which corresponds to the location of one of the slits

on the mask plate. Resolving this feature alone is not enough information to calibrate

the CRDC. Instead, events which pass through an aperture are distinguished from those

which punch through the mask plate by their different energy losses in the E2 scintillator.

Figure 5.3 again shows the dispersive position in CRDC1, as in Figure 5.2 however,

on the y-axis the energy loss in E2 is plotted instead. The cause for the slope in the

distribution is the location of the phototube converting the scintillation light which is
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Figure 5.2: The drift time of electrons (Y1 (ns)) plotted versus pad position (X1 (pads))
in CRDC1 with a 6.35 mm thick aluminum sieve-slit plate mounted 70 mm upstream
over the active area of the detector.
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Figure 5.3: Relative energy loss (∆E2 (channels)) plotted versus dispersive position (X1
(pads)) in CRDC1 with the 6.35 mm thick aluminum mask installed.

located on the end of the E2 scintillator, corresponding to CRDC positions at the left side

of Figure 5.3. The reduction in measured energy loss across the position spectrum then is

due to light attenuation in the scintillator bar. There are also two prominent horizontal

bands which correspond to different particle charges (Z), the lower band being hydrogen

(Z=1, probably deuterons) and the upper band being helium isotopes (Z=2, mostly

3He).

Give particular attention to the narrow, weaker vertical distributions, above the Z=2

horizontal band. They are located approximately above channel ∆E2=650 on the left, to

above channel ∆E2=250 on the right and at pads X1 ≈5, 35, 100, 160, and 215. These

roughly correspond to the location of slits in the mask that are spaced across the plate in

the dispersive direction. Particles passing through a slit do not suffer an energy loss and

therefore will have more energy to deposit when they encounter the scintillator. Applying
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Figure 5.4: The uncalibrated horizontal position (Y1 (channels)) plotted versus the un-
calibrated vertical position (X1 (pads)).

a gate on this region and setting this as as a filling condition for the spectrum (Figure

5.2) distinguishes particles passing through apertures in the mask from events punching

through the mask plate.

Figure 5.4 displays the mask spectrum resulting from applying this energy loss gate.

The five slits spaced along the dispersive direction are now clearly visible. Also, the im-

age of several of the rows of holes in the mask are clearly seen, spaced horizontally at

approximately Y1=450, 800, and 1150 ns. The “L”-shaped configuration of holes in the

spectrum, just right of center at (X1 (pad), Y1 (ns))=(130, 750), is visible but rather

faint, partially due to low statistics. Comparison of this spectrum to the design specifi-

cations of the mask plate provides a rough calibration of CRDC1 position spectrum. An

identical procedure is followed to determine a rough calibration of CRDC2 positions as

well, converting from units of (pad, ns) to (mm, mm) linearly:
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Run No. Dispersive Non-Dispersive
of 187 m1(mm/pad) b1(mm) n1(mm/ns) c1(ns)

30 2.54 -281.33 -0.164 132.43
77 2.54 -282.18 -0.166 130.03
109 2.54 -281.70 -0.161 128.10
141 2.54 -281.43 -0.160 126.93
171 2.54 -282.11 -0.163 127.40

Average 2.54 -281.75 -0.163 128.72

Table 5.1: Results of the five CRDC1 calibrations.

Run No. Dispersive Non-Dispersive
of 187 m2(mm/pad) b2(mm) n2(mm/ns) c2(ns)

31 2.54 -281.73 0.162 -141.06
78 2.54 -281.66 0.167 -141.46
110 2.54 -282.53 0.168 -142.15
142 2.54 -282.12 0.168 -142.52
172 2.54 -282.34 0.165 -139.00

Average 2.54 -282.07 0.167 -141.45

Table 5.2: Results of the five CRDC2 calibrations.

X1,2(mm) = m1,2(mm/pad) × X1,2(pad) + b1,2(mm) (5.1)

Y1,2(mm) = n1,2(mm/ns) ×
(

Y1,2(ns) − c1,2(ns)

)
(5.2)

Based on this rough calibration, tentative Cartesian angles at the focal plane (AFP,BFP)

are assigned to each trajectory. Using these angles, trajectories are then traced onto the

mask plane, 70mm upstream for each CRDC. The resulting position spectrum at the

mask plane is again compared to the mask design. Corrections to the calibration param-

eters m1,2, n1,2, b1,2, and c1,2 are determined iteratively by repeating this process. Tables

5.1 and 5.2 summarize the result of five separate calibrations of the each CRDC. The

regularity of the calibration for the dispersive direction in each detector is expected since

the physical size of a pad is 2.54 mm and 224 pads are evenly spaced across the dispersive

axis of the detector. However, the calibration of the non-dispersive direction is set by the

drift time of secondary electrons in the fill gas, which is changed by pressure instabilities
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Figure 5.5: The horizontal position (Y1 (mm)) plotted versus the calibrated vertical
position (X1 (mm)).

in the gas handling system, so it is important to regularly calibrate the non-dispersive

direction. Nevertheless, the electron drift time in the fill gas of both CRDCs was re-

markably regular over the course of this experiment. Charge-states in the data, which

are discussed later, are used to monitor changes to the drift time on a run-by-run basis

and verify the stability observed in the mask data. Therefore, the average calibration is

applied to all other data taken.

Figure 5.5 shows the result of the full calibration for one of the CRDC1 mask runs.

The calibration procedure was repeated to ten iterations, though for most mask runs

the values for the calibration parameters are sufficiently converged after 3-4 iterations.

Comparing this mask spectrum to the single-iteration spectrum displayed in Figure 5.2

shows qualitatively the result of multiple iterations in the calibrations procedure. Both

the slit and holes features in the spectrum are narrower and the horizontal leg of the “L”
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Figure 5.6: The particle identification (PID) spectrum measured in the focal plane of the
A1900 Fragment Separator during the triton production experiments: the energy loss in
the PIN detector is plotted versus TOF.

configuration of holes, just right of the origin, is now clearly seen. The results for other

mask runs, for both CRDCs, are similar.

5.3 Particle Identification

The dispersive position measured in the focal plane dominantly determines the energy of

an event in the spectrograph. Corrections to this due to optical aberrations in particle

trajectories through the spectrograph are calculated from their angles and non-dispersive

positions using a transfer matrix representation of the spectrograph. However, events

must first be identified and separated based on which reaction channel they belong to

before the data set is useful for spectroscopy.

Recall that the incident triton beam is 85% pure, as seen in the PID spectrum from

the A1900 Fragment Separator focal plane in Figure 5.6. The five isotope species seen

there; 2H, 3H (t), 6He, and 8,9Li, can make reactions at the S800 target position. Also,

the 64Zn and 12CD2 foils are are fixed with plastic (12CH2) in a thick aluminum frame

around their perimeters. During this experiment, the momentum-dispersed beam spot is
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Figure 5.7: Relative energy loss signal (∆E2 (channels)) plotted versus the raw, relative
time-of-flight signal (TOFRF (channels) for particles detected in the S800 focal plane.

approximately 5 cm tall by 1 cm wide, so reactions between the particles in the tail of

the beam’s spatial distribution and the mounting frame occurred. Therefore, these five

isotopes in the incident beam and the materials at the target position (64Zn + 27Al +

12CH2) or (12CD2 + 27Al + 12CH2) form possible combinations of reaction channels and

background sources.

Many of the possible reactions are eliminated from consideration by momentum selec-

tion with the spectrograph’s magnetic field. For astrophysical purposes, the Gamow-Teller

strength determined from Charge-Exchange at low-lying excitation energies is most rele-

vant. For this purpose, the spectrograph’s magnetic field is set so that 3He particles with

approximately the same energy per nucleon as the beam are included in the momentum

acceptance. The triton beam energy was determined to be 114.8 MeV/nucleon based

on the magnetic rigidity of the A1900 Fragment Separator. The ground state reaction
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Figure 5.8: Relative time-of-flight (TOFRF (channels) plotted versus the vertical angle
(AFP (rad)) for particles detected in the S800 focal plane.

Q-value for 64Zn(t,3He)64Cu is -0.560 MeV, so one anticipates 3He particles from this

reaction to have energies at and below 114.6 MeV/nucleon. The energy acceptance of the

spectrograph is 10.0% and its magnetic rigidity was set to Bρ=2.325 Tm. This corre-

sponds to a 3He energy of 108.95 MeV/nucleon along the central ray, with 3He energies

ranging from 92.6 to 125.2 MeV/nucleon across the full acceptance. This choice shifts

3He events associated with the 64Cu ground state in the -X1-direction by approximately

9 cm and spreads events from 64Cu excited states over the remaining ∼50 cm of active

detector area in the +X1-direction. Excitations in 64Cu up to ∼20 MeV may then be

detected within the full acceptance.

These 3He events are distinguished from the few remaining reaction products reaching

the focal plane. Figure 5.7 shows the E2 energy loss plotted versus the time-of-flight

for all events which are accepted into the focal plane. Energy loss by fast ions with
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Figure 5.9: Energy loss (∆E2 (channels)) plotted versus the time-of-flight (TOFRF (chan-
nels), compensated for the correlation between time-of-flight and vertical angle.

charge Z in matter is proportional to Z2 as per the Bethe-Bloch equation [99]. Therefore,

increasing energy loss should roughly correspond to increasing charge for peaks in the

∆E2 spectrum. The vertical width of an individual peak is related to the distribution of

energies for events of the same species. Multiple RF cycles are included in the spectrum.

The two tall vertical peaks correspond to 3He events. However, it is clear from Figure

5.7 that individual peaks are not cleanly separated and there is no indication that weak

contaminants are not being obscured. Corrections are calculated for this spectrum that

sharpen the peaks by compensating for contributions to the energy and timing width

that are not related to the reaction mechanism.

Figure 5.8 again shows the time-of-flight for the same data displayed in Figure 5.7,

now plotted against the corresponding dispersive angle in the focal plane. The total width

of the TOF distribution contains a contribution which is intrinsic and one which is due to
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Figure 5.10: The time-of-flight (TOFRF (channels), compensated for the correlation be-
tween time-of-flight and vertical angle, plotted versus the vertical position (AFP (rad)).

its correlation with AFP. The overall correlation is negative but different for each band

seen, indicating it is different for each particle. This correlation is expected since particles

with larger angles relative to the central ray through the spectrograph have followed more

eccentric trajectories and therefore have taken a longer time to traverse the distance to

the focal plane. Since this contribution to the timing width is optical, the distribution is

transformed to remove the correlation such that the width of peaks projected onto the

time-of-flight axis is minimized. Not all of the bands can be simultaneously corrected,

so at first, the band belonging to 3He is an educated guess. Back-gating on 3He in the

corrected PID (shown later) provides verification.

Figure 5.9 again displays the PID spectrum for the events displayed in Figure 5.7, but

now uses the event’s time-of-flight corrected for the correlation with dispersive angle. As

suspected, weaker peaks which were obscured by the width of larger peaks in Figure 5.7
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Figure 5.11: Energy losses (∆E2 (channels)) of particles stopping or passing through
the E2 scintillator. a). E2 energy loss plotted as a function the corresponding particle’s
dispersive position (X1 (mm)) in CRDC1. b). E2 energy loss plotted as a function of the
corresponding particle’s dispersive position (XE2 (mm)) at the E2 scintillator plane.

begin to emerge. Additional corrections are applied to further clarify the PID spectrum.

Figure 5.10 shows the TOF, corrected for its correlation with the dispersive angle, plotted

versus the events’ corresponding dispersive position. Again, the total width of the TOF

distribution has an intrinsic and an optical part. The correlation seen is expected since

particles with larger energies will take less time to traverse the distance to the focal plane.

Again, the optical contribution to the timing resolution is removed by transforming the

distribution so as to minimize the width of the projection onto the TOF axis.

The energy loss signal is similarly corrected for contributions to its width that are

unrelated to the reaction mechanism. Figure 5.11 shows the E2 energy loss plotted versus

the particles’ corresponding dispersive position. In both insets a) and b), there is a gener-

ally positive correlation though there are two distinctly different functional relationships.

As an aside, it is important to note that ∆E2 is the same phototube signal used in the

mask analysis and displayed in Figure 5.3. However, the CRDC1 calibration changes the
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sign convention for the dispersive position axis. Again, the correlation between ∆E2 and

X1,E2 is largely due to signal attenuation, as light is gathered by the phototube mounted

at the +X end of the scintillator. At a given position though, it is clear there are separate

possible energy loss signals. These can only come from differences in the charge of species

incident on the scintillator.

The energy loss signal is implictly corrected for correlations with event angles in

the focal plane by projecting the event position onto the E2 scintillator plane. The two

bands are sharpened because particle tracks that have large angles in the focal plane will

traverse more scintillator material, suffering larger energy loss, at E2 than events that are

incident normal to the E2 surface. Careful comparison of Figure 5.11(a) and (b) confirms

this interpretation. One sees that the high-energy tail of the energy loss distribution at

a given position comes down as a result of tracing positions from CRDC1 to E2. The

low-energy side of the energy loss distribution remains fixed because these particles are

incident normal to the E2 surface.

The greater separation between bands in Figure 5.11(b)allows more precise correction

of the correlation due to signal attenuation. Each band is separately fitted to determine

its ∆E2 centroid as a function of XE2. These functions are then used to remove the

correlation due to attenuation and minimize the projection of each band on the ∆E2 axis.

Figure 5.12 shows the final PID spectrum for the 64Zn data set, including all corrections.

Two multiples of the RF in the time-of-flight signal have been collapsed to place all

(t,3He) events (identified later) at the TOF origin. Comparing with the raw PID spectrum

in Figure 5.7 shows two distinct bands of relative energy loss; one at approximately

∆E2=200 channels and ∆E2=500 channels, corresponding to ion charges Z=1 and Z=2.

One would expect their signal ratio to be 1:4 however, the spectrograph places an energy

bias on the PID. Ions represented in the lower band then are likely deuterons. All of these

events are clearly separated from 3He candidates in the upper band and are discarded as

background to further analysis. The particles in the upper band may possibly be 3He or

alphas.

There are five distinct peaks in the Z=2 band of the PID spectrum in Figure 5.12.
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Figure 5.12: The E2 energy loss (∆E2 (channels)), compensated for different particle
charges and pathlengths through the scintillator, plotted versus the relative time-of-flight
(TOFRF (channels)), compensated for the correlation with dispersive angle and position.
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Particles in the three peaks at TOF<-150 channels are the same as those in the identical

three-peak structure at TOF>100 channels. They are simply artifact events remaining

from collapsing the multiple RF structures. Of the five peaks at TOF>-100 channels,

notice that three peaks have energy loss centroids at ∆E2∼500 (channel) and the re-

maining two at ∆E2∼550 (channel). This difference is due to the mass-dependence of ion

energy losses, indicating that the lower three peaks are due to 3He particles, the lightest

possible helium ions. The two peaks at slightly higher energy loss are alpha particles and

are hereafter discarded from further analysis. Events associated with the (t,3He) reaction

belong to one of the remaining three peaks.

These events are distinguished using their dispersive position spectrum, filed by gat-

ing on their peak in the PID spectrum. One is lead to look at this spectrum since the

spread in energy loss for two of the peaks is quite similar while the strongest peak at

TOF=0 (channel) is quite broad vertically. Figure 5.13 displays the result of placing a

gating condition on one of the narrow, upper band peaks in Figure 5.12 and filling focal

plane position and angle spectra. Figure 5.13(left) and (center) show the 2D position

spectra of these events, in CRDC1 and CRDC2 respectively. Figure 5.13 (right) shows

the non-dispersive versus dispersive angle. In all three spectra, the distributions of these

events are very narrow, particularly their dispersive positions X1,2. The narrow distri-

bution in Figure 5.13 (left) and (center) indicate that these events are monoenergetic

and that there was no nuclear scattering with the reaction target. This indicates that

these events are 3He charge-states, resulting from capture of atomic electrons in the tar-

get. The remaining peak structure in the upper band of the PID spectrum in Figure

5.12, located at TOFRF=0 and with broad spread in energy loss, are unambiguously 3He

events stemming from nuclear interactions with the target. The charge-state events are

useful for calibration purposes but, it is these events that be the subject of the complete

analysis.
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Figure 5.13: Location and emittance of the 3He++ charge-state. (Left). The 2D position

spectrum of 3He++ charge-state events in CRDC1. (Center). The 2D position spectrum
of 3He++ charge-state events in CRDC2. (Left). The non-dispersive (BFP (rad)) versus
dispersive angle (AFP (rad)) of 3He++ charge-state events in the focal plane.

5.4 Raytracing through the S800 Spectrograph

The 3He charge-state events, identified in the PID spectrum in the previous section,

are useful for calibrating the ray-tracing procedure through the spectrograph. These

events are likely due to the production of singly ionized 3He+ particles in the A1900

Fragment Separator since their different TOF means that they cannot be produced in

A1900 production target. They are included by the Separator’s momentum acceptance

since, when singly ionized, they have the same charge-to-mass ratio as the triton but,

are then stripped of the remaining electron in the S800 reaction target. These events

are useful in several ways. First, since they are nearly monoenergetic and have small

scattering angles, they define the beam axis through the spectrograph to high accuracy.

Secondly, since they have undergone no nuclear reactions with the target, they are used

to set the Qreact = 0 MeV point. Furthermore, the intensity of this charge-state is

directly proportional to the incident triton intensity. This is a consequence of the triton

production target and the reaction target both being above the electron-stripping/capture

equilibrium thickness [139]. Therefore, the charge-state events can be used as a surrogate

for direct measurement and normalization of the triton beam (which is too rigid to be

accepted in the spectrograph). Discussion will return to this point later in the text.

The ray-tracing procedure is enabled by use of a transfer matrix representation of the
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S800 spectrograph which is calculated with the ion-optical code COSYInfinity [134]. The

technique for kinematic reconstruction and correction of optical aberrations outlined

in Ref. [134] is an alternative to physical addition of high-order multipole magnets in

the spectrograph. The user specifies the magnetic elements, currents, drift distance and

aperture sizes of the S800 spectrograph in the COSYInfinity input file. The code then,

by tracing events between the reaction target and the focal plane, calculates fifth-order

polynomial expansions of a particle’s phase space distributions at the target, in terms

of its phase space distributions at the focal plane. For example, the dispersive angle

at the target for a particle trajectory is expanded as a fifth-order polynomial in the

angles and positions of this trajectory at the focal plane: ATAR=f(X1, AFP, Y1, BFP).

One exception is the dispersive position at the target because the dispersive position

information from the focal plane is used to reconstruct the percent energy deviation

(DTAR) from the energy of the central ray through the spectrograph. The COSYInfinity

output used to effect the ray-tracing procedure with the data is a matrix of coefficients

for these polynomial expansions.

The ray-trace procedure implicitly assumes that there are no offsets in the focal

plane coordinate system (X1, AFP, Y1, BFP). This is true for the idealized spectrograph

represented in the COSYIfinity code. However, a real spectrometer contains small shifts in

the alignment of magnetic elements. The charge-state’s trajectory is ideal for quantifying

these effects and correcting the ray-trace procedure for them. In Figure 5.13, comparing

dispersive position distributions X1 and X2, an average shift between them of 0.7 mm

is seen. The X2 distribution is corrected by shifting the centroid to match that of the

X1 distribution since CRDC1 is located at the focus. This shift is small, considering

the CRDC’s position resolution is 2.54 mm (FWHM) in the dispersive direction. In

Figure 5.13 (left) and (center), the centroid of the non-dispersive position distributions

for both CRDC1 and CRDC2 are shifted, by average values of 13.7 mm and 17.6 mm

respectively. These differences are somewhat more significant since the non-dispersive

position resolution is 19 mm (FWHM). Correcting these two shifts also corrects the non-

dispersive angle BFP. These corrections define the endpoint of the central ray through
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Figure 5.14: Phase space selections, with horizontal angle (BFP (mrad)) plotted ver-

sus horizontal position (YFP (cm)), comparing measured 64Zn(t,3He) events to events
simulated in the ion-optical code MOCADI [133]. (Left). The distribution of a subset
of measured 64Zn(t,3He) events. (Center). The distribution of events simulated with
MOCADI, locating the reaction target along the beam axis as per design specification.
(Right). The distribution of events simulated with MOCADI, locating the reaction target
7.0 cm upstream along the beam axis, as compared to design specification.

the spectrograph as the centroid of the charge-state distribution and are applied to all

other events.

The endpoint of the central ray must also be clearly defined in order to optimize

the ray-tracing procedure. The main ambiguity in the location of the end point at the

reaction target is the path length from the focal plane. As the magnetic field of the S800

spectrograph is increased, the size of the fringe fields increase so that the field of the first

quadrupole magnet of the S800 encroaches on the target position. Different conventions

used by COSY Infinity to account for the fringe field length in the ray-trace matrix differ

by as much as several centimeters. Also, there was some ambiguity in the location and

alignment of the large scattering chamber at the reaction target. The overall correlation

however, between non-dispersive parameters Y1 and BFP, is dominantly due to the optics

and should be sensitive to differences in path length.

Figure 5.14 shows the correlation between Y1 and BFP for 3He events (not the charge-

state but the reaction candidates) in the focal plane. The left panel shows the measured

correlation. The center and right panels show the same correlation for 3He events simu-

lated with the ion-optical code MOCADI [133]. Similar to light optics with a simple lens,
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adjusting the drift length between the target and the fringe field of the first quadrupole

in the MOCADI simulation adjusts the correlation between Y1 and BFP. In Figure 5.14

(left), the correlation in the data is 3.67 mrad/cm. In the center panel, the correlation

seen in simulation is 2.24 mrad/cm when the input is based on the S800 design specifi-

cation (the same used to build the COSYInfinity input). Increasing the trace length to

the target by 7 cm conforms the simulation to data, shown in the right panel.

The ray-trace procedure is carried out with the corrected central ray location and

path length. From the focal plane parameters (X1, AFP, Y1, BFP the target parameters

(DTAR, ATAR, YTAR, BTAR are calculated for each event. The scattering angle in the

laboratory frame (Θlab) of an event is calculated from its dispersive and non-dispersive

(Cartesian) angles as follows

Θlab = tan−1

(√
tan2(ATAR) + tan2(BTAR)

)
. (5.3)

Finally, the excitation energy (EX) in the target-like residue is determined by a missing

mass calculation. As a convention, let X indicate the target-like residue species, a the

beam-like ejectile, Y the target-like reactant, and b the beam species, so that a reaction

in general is represented as

b + Y → X + a. (5.4)

The missing mass mmiss is then related to the excitation energy by

EX = mmiss − mY , (5.5)

where the missing mass has contribution from missing energy and missing momentum

mmiss =
√

E2
miss − ~pmiss • ~pmiss. (5.6)

The missing energy is that energy missing from the beam and participant masses in the

reaction
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Emiss = Eb + mb + mY − Ea − ma, (5.7)

where the ejectile energy Ea in terms of the central energy of the spectrograph (ES800)

is

Ea = (1 + DTAR) × ES800, (5.8)

and the associated missing momentum in Cartesian components is

~pmiss = ~pb − ~pa =





−
√

(Ea + ma)2 − m2
a sin ATAR

−
√

(Ea + ma)2 − m2
a sin BTAR√

(Eb + mb)
2 − m2

b −
√

(Ea + ma)2 − m2
a cos Θ




, (5.9)

The masses used are taken from the recent atomic mass evaluation of Audi, Wapstra

and Thibault [140,141]. The magnetic rigidity of the A1900 Fragment Separator gives a

beam energy of Eb=345 MeV. The energy of the central ray in the spectrograph is also

determined from the magnetic rigidity to be ES800=326.848 MeV (Bρ = 2.325 T·m).

In both cases however, the magnetic field can be measured accurately but there is some

ambiguity in the bending radii. Therefore, by taking the charge-state’s location in the

focal plane to be the Qreact=0 point, the beam energy is adjusted to Eb=337.0 MeV to

match with what is seen in the spectrograph. The choice is arbitrary and adjusting the

S800 central ray to match the A1900 would produce the same result.

The excitation energy and scattering angle is used to isolate events resulting from

reactions with the 64Zn target foil. Recall that the foil is mounted in an aluminum

frame with plastic. Also, the foil will almost certainly contain hydrogen absorbed from

exposure to the atmosphere. Figure 5.15 (top-left) shows the 3He scattering angle plotted

against the excitation energy in 64Cu. Two features immediately suggest background

contamination of the 64Cu spectrum. The first and most significant is the curved band

of events, starting near the origin (Θlab=0◦, EX=0 MeV) and creating an arc that goes

99



0

1

2

3

4

5

-10 -5 0 10 15 20 25 30
1

2

3

4
5

10

20

EX(64Cu) (MeV)

Θ
la

b (
d

e
g

re
e

s
)

5
-3

-2

-1

0

1

2

3

-10 -5 0 10 15 20 25 30
1

10

EX(64Cu) (MeV)
Y

T
A

R 
(c

m
)

5

0

1

2

3

4

5

-10 -5 0 10 15 20 25 30
1

2

3

4
5

10

20

EX(1H) (MeV)

Θ
la

b (
d

e
g

re
e
s
)

5
-3

-2

-1

0

1

2

3

-10 -5 0 10 15 20 25 30
1

10

EX(1H) (MeV)

Y
T

A
R 
(c

m
)

5

Figure 5.15: (Top-left) The 3He scattering angle plotted as a function of 64Cu excita-

tion energy. (Top-right) YTAR distribution of 3He events plotted as a function of 64Cu
excitation energy. (Bottom-left) The 3He scattering angle plotted as a function of 1H
excitation energy. (Bottom-right) YTAR distribution of 3He events plotted as a function
of 1H excitation energy.
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to positive excitation as one looks at larger scattering angles. This arc is characteristic

of reaction on hydrogen in/near the target. When the masses for the 64Zn(t,3He)64Cu

reaction are taken in the missing mass calculation of Equation 5.6, states in 64Cu will

appear as vertical bands because the recoil energy is correctly compensated for as a

function of scattering angle. Reactions on the much lighter protons leave neutrons that

have large recoil energies and thus the pronounced arc.

In Figure 5.15 (top-right), the non-dispersive distribution of 3He positions at the

target is plotted as a function of excitation energy in 64Cu. The intensity distribution of

the incident triton beam intuitively should have a step-function profile, falling off quickly

past Y ∼ ±1 cm, though with some weak tail in the distribution due to beam halos. The

intensity in these tails is small, but when incident on plastic (hydrogen) at the edges

of the target frame, the large cross section for H(t,3He) reactions compensates for small

triton rate. At two positions in Figure 5.15 (top-right), at approximately YTAR=1.5

cm and -1.0 cm, one sees events at the same excitation energy that the curved band

in Figure 5.15 (top-left) occupies. Recalculating the excitation energy for reactions on

hydrogen correctly compensates for the neutron recoil. The result is displayed in Figure

5.15 (bottom-left) shows this correlation is straighted (and events from the target foil

are now curved), confirming that these events are from hydrogen. Re-plotting the YTAR-

distribution against the excitation energy in Figure 5.15 (bottom-right), reveals sharp

peaks at the positions previously mentioned. Since this hydrogen background is spatially

localized, gating on small values for YTAR (-0.60 cm < YTAR < 0.85 cm) remove these

events. Figure 5.16 shows the result of applying this gate. The excitation energy, plotted

against the scattering angle as in Figure 5.15 (top-left) is now clean of the majority of

events from hydrogen.

5.5 Background Subtraction

There are two additional sources of background, suggested by events below EX = 0 in

Figure 5.16 which have unphysical energies for the 64Zn(t,3He)64Cu reaction. One part
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Figure 5.16: The 3He scattering angle plotted as a function of 64Cu excitation energy,
gated on events with -0.60 cm < YTAR < 0.85 cm.
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Figure 5.17: The PID spectrum with charge-state events seen in Figure 5.16 overlaid as
black points.

of the background is evenly spread over all scattering angles and the other is seen just

below EX = 0, at very forward angles. Calculating the cross section for the broad group

of events reveals that their angular distribution is flat. Later studies have revealed that

this background is caused by 6He contaminants in the triton beam which undergo 3-

neutron removal to make 3He. Since this reaction has a many-body exit channel, the

3He energy distribution is wide and events are evenly spread over the full area of the

CRDCs. Introduction of a wedge degrader in the A1900 Fragment Separator has, since

the time of this measurement, shown that these contaminants are removed completely.

For this analysis, a simulated background with flat cross section at all excitation energies

is normalized to those events below EX = 0 then subtracted from the total spectrum.

The second source of background, the narrow peak below EX = 0, is a second, weaker

3He charge-state. Like the first charge-state identified, it is nearly monoenergetic and very
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Figure 5.18: The 3He scattering angle plotted as a function of 12C excitation energy, for

(t,3He) reactions on the 12CD2 target.

forward peaked in scattering angle. Back-gating the PID spectrum in Figure 5.12 on this

charge-state however, shows they have a different TOF from the first 3He charge-state.

This is displayed in Figure 5.17 which has black points overlaid on the PID spectrum

for these charge-states events. They have the exact same TOF as the 3He events from

reactions on the 64Zn target which is partially why they weren’t discovered earlier in the

analysis. Also, identical TOF means this charge-state is created in the reaction target and

is a by-product of the original fragmentation reaction, not an interaction somewhere else

in the A1900 or Transfer Hall beamlines. It is subtracted by using the first charge-state

as a model.
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5.6 Normalization to Absolute Cross Section

The last step to determine the absolute reaction cross section in 64Cu is the normalization.

The equation below summarizes the ingredients in a measured cross section:

dσ

dΩlab
=

Nevents

NbeamNtarget
× 1

dΩlab
(5.10)

The number of events Nevents is integrated from the background subtracted spectrum

for a given scattering angle interval. The corresponding opening angle dΩlab subtended

by the scattering angle is determined from a simple geometric integration. The number

of target particles Ntarget is known from the target thickness. The number of incident

tritons Nbeam has been the most difficult to determine. Efforts were made during the

experiment to correlate current on the A1900 D1 Faraday bar, used as a beam dump for

some of the unreacted 16O primary beam, with rate on the in-beam scintillator at the

S800 target position. In much the same way that data were periodically taken to cali-

brate the CRDCs with mask plates, the rate at the beam dump and the S800 target were

periodically calibrated against one another. Since the rate at the beam dump current can

be measured during regular measurements, it was thought that knowing its correspon-

dence with the rate at the S800 target would allow the triton intensity to be indirectly

monitored. The charge-state events are an additional relative measure of the beam in-

tensity. Analysis of this calibration data for the direct triton intensity however, shows

the absolute scale was not reliable. Most likely, the S800 target scintillator’s bias voltage

was not properly optimized, causing the scintillator to count noise and thus overestimate

the triton rate at the target. This is solved in a later experiment, through comparison of

the 12C(t,3He) reactions rates, which provides a correction by way of scaling factor. This

relative measurement is reliable since comparison with the relative charge-state yields

render the same scaling factor.

Data taken on a 12CD2 target is used a reference measurement to normalize the 64Cu

cross sections instead, comparing it to the later measurement with a 12CH2 target. Figure

5.18 shows the scattering angle versus excitation energy in 12C for the 12CD2(t,
3He)
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Figure 5.19: Differential cross section of the transition from 12C 0+ ground state to 12B

1+ ground state via the (t,3He) reaction. (Left) This cross section as measured during
the 64Zn(t,3He) experiment. (Right) The same cross section measured during a later
experiment with the correct normalization.

reaction measured alongside 64Zn. All corrections taken here are the same as discussed

for 64Zn target data. The transition to the 12B ground state is a strong, known Gamow-

Teller state, seen clearly at Ex = 0. The two excited states in 12B, the 2− state at 4.4 MeV

and the 1− at 7.7 MeV, are also clearly seen. Events below Ex = 0 come from (t,3He)

reactions on deuterons (strong arc) and protons (weaker arc). The arc from deuterons is

broader since the residue di-neutron is particle unbound. The ground state differential

cross section is determined using the indirect normalization method described above,

then compared to the later measurement of the same state which is properly normalized.

Figure 5.19 compares the 12B ground state differential cross section from this measure-

ment (left) with the properly normalized reference measurement (right). The shapes are

consistent however, the normalization for the present data is smaller by a factor 2.1±0.13.

This error is determined from comparing their fit to a ∆L = 0 distribution, calculated

in the DWBA code FOLD [114] for the corresponding 0+ →1+ transition. Therefore,

since the all other spectrograph settings are identical for 12CD2 and 64Zn target settings,

the 64Cu differential cross sections are scaled by this same factor. Lastly, there is strong
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evidence that the later measurement is a reliable reference. In the following chapter, the

Gamow-Teller strength is extracted by taking advantage of a mass-dependent propor-

tionality between cross section and B(GT), determined from the large body of (3He,t)

charge-exchange data. The larger of the two 12B ground state cross sections (Figure 5.19

(right)) is consistent with the (3He,t) systematics over a large mass range. This is strong

evidence that indeed, Figure 5.19 (left) is an outlier and Figure 5.19 (right) is a reliable

reference cross section.

This concludes discussion of the analysis from the measurement of excitations in 64Cu

via the 64Zn(t,3He) charge-exchange reaction. Figure 5.20 shows the excitation energy

spectrum, with doubly differential cross sections for states in 64Cu plotted as a function

of excitation 64Cu. The energy resolution achieved is 280 keV and the scattering angle

resolution is ∼10 mrad (FWHM). There are three to four distinct excitations seen at and

below 5 MeV and two near 10 MeV which are likely dipole resonances. The resolution

is not high enough to resolve individual states however, so analysis of cross sections and

extraction of Gamow-Teller strength in 64Cu, discussed in the following chapter, will be

carried out in a bin-by-bin rather than state-by-state fashion.
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Chapter 6

Results

In this chapter, attention will turn from the determination of the differential cross section,

to the extraction of the Gamow-Teller operator strength in 64Cu. This determination

is facilitated by an empirical proportionality, first suggested by Alford et al. [28] and

later formalized by Taddeucci et al. [32], between the differential cross section and the

Gamow-Teller strength in the limit of vanishing momentum transfer. Stated succinctly,

the proportionality is:

dσ

dΩ

∣∣∣∣∣
q→0

= σ̂GTB(GT) (6.1)

where the constant σ̂GT is called the Gamow-Teller “unit cross section”. It is expressed

by Taddeucci et al. as σ̂GT = KND|Jστ |2, where K is a kinematic factor in the reduced

masses of the entrance and exit channels, ND is a distortion factor describing the dis-

tortion of incoming and outgoing waves in the Coulomb field of the target, and |Jστ |2

is the volume integration of the radial dependence of the Vστ (r) term in the effective

nucleon-nucleon interaction.

Using Equation 6.1 requires determination of the unit cross section which can be

done using one of three methods. The first method is to explicitly calculate σ̂GT in a

DWBA calculation. However, the result is usually of insufficient accuracy and depends

on the description of the reaction mechanism. The second method requires a strong,
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well-separated GT-state where the corresponding B(GT) is known from β-decay. The

normalization determined by comparing the β-decay B(GT) to the measured cross section

is then taken as σ̂GT overall. This is the method most often used in the literature but,

as discussed at the end of this chapter, one that has an important drawback concerning

the systematic error analysis. The third method uses the mass-dependent trend for the

unit cross section from the (3He,t) reaction [110] and is applied here. The last two are

ideally model-independent methods, since both are normalized to β-decay strength. The

chapter concludes by examining sources of systematic error in Equation 6.1 for the 64Cu

case.

6.1 Multipole Decomposition Analysis

Figure 6.1 shows a basic scheme for the application of the multipole decomposition anal-

ysis (MDA) technique. Gamow-Teller states are distinguished from other transitions by

their ∆L = 0 angular distributions which peak at 0◦ scattering angle. Gating on small

scattering angles, Figure 6.1 (b) shows a potential GT state peaking just above 3.1 MeV.

Conversely, gating on scattering angles around 2.8◦, as in Figure 6.1 (c), shows a potential

dipole state (∆L = 1) near 10 MeV. The MDA distinguishes transitions based on shape

in this way, yet other candidate GT states are difficult to distinguish, as the energy res-

olution is generally not sufficient to separate individual states. Therefore, determination

of the GT cross section and associated B(GT) is performed on a bin-by-bin basis.

Figure 6.2 shows a selection of angular distributions associated with transitions to Jπ

states in 64Cu due to the 64Zn(t,3He) reaction. The cross sections have been calculated

in the DWBA using the code FOLD [114]. It is important to note that the absolute cross

section determined by FOLD is not used in the MDA, which allows the normalization

to vary as a free fit parameter (see previous discussions on exchange in Chapter 3).

Therefore, the curves are displayed with arbitrary normalizations. The 64Zn ground state

has Jπ=0+ so Gamow-Teller transitions are to Jπ=1+ states in 64Cu. This is reflected

in the forward-peaking, ∆L = 0 shape seen in the Jπ=1+ curve in Figure 6.2. The flat
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distribution is included to approximate larger angular momentum transfers, which are

difficult to differentiate due to low statistics, and the quasi-free continuum, onset at the

64Cu proton separation energy Sp ≈7.201 MeV. Formally, the angular distributions here

certainly do not form a complete set. Under the conditions present in the experiment

however, it is nearly complete. This is because semi-classically, the angular momentum

of the ejectile 3He particle should scale with the momentum transfer q as L = q × b.

At intermediate beam energies (&100 MeV/nucleon) and forward angles, q is small.

Therefore, one expects the angular momentum transfer to also be small and that larger

transfers diminish in importance at this beam energy [111].

The data is analyzed by examining the angular distribution of events in each 250

keV excitation energy bin of the spectrum in Figure 6.1 (a). Pairs of the distributions

in Figure 6.2 are used to fit the angular distribution and determine the Gamow-Teller

content, if any, based on the normalization of the Jπ=1+ curve resulting from the fit. The

pair of curves minimizing the χ2/N of the fit is generally taken as the best description
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(Top-right) a Gamow-Teller plus a quadrupole distribution, (Bottom-left) a Gamow-
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The corresponding χ2/N for each fit is displayed.

of the angular distributions.

Returning to consideration of the 3.1 MeV state, Figure 6.3 shows the angular dist-

ribution of events in the 250 keV-wide energy bin centered at 3.125 MeV. This state

is forward-peaked in Figure 6.1 (b), making it a candidate GT state. However, it is not

separated from neighboring states and does not have a pure Gamow-Teller angular distri-

bution. Figure 6.3 displays the result of fitting the angular distribution with four pair-wise

combinations of curves displayed in Figure 6.2. This fitting procedure is repeated for the

angular distribution of each energy bin. The χ2/N of the fit is displayed in each insert

in Figure 6.3 and shows that GT + flat or GT + quadrupole shapes both describe the

3.1 MeV angular distribution data well.

Figure 6.4 shows again the result of fitting the 3.1 MeV state with a GT + quadrupole
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combination of angular distributions, only here the component distributions are shown

explicitly. The 3.1 MeV state is well-described as having relatively strong ∆L = 0 and

weak ∆L = 2 components, corresponding to to transitions to states in 64Cu with Jπ=1+

and Jπ=2+ respectively. The ∆L = 0 component of the fit is taken as the Gamow-Teller

angular cross section for this energy bin. The Gamow-Teller cross section for each bin

is determined in this way if the best description of the data from the fitting procedure

includes a Gamow-Teller component. No Gamow-Teller cross section is assigned to a bin

in the case where dipole + flat or other pairs of distributions offer a better description.
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6.2 Extrapolation to Zero Momentum Transfer

The condition placed on the differential cross section in Equation 6.1, extrapolation

to zero momentum transfer (q → 0), is practically achieved in the data analysis by

extrapolating measured GT cross sections to 0◦ scattering angle (Θc.m.(
3He) = 0◦) and

zero reaction Q-value (Qreact=0 MeV). The first is accomplished using the GT partial

cross sections determined for each bin from the MDA. For example, for the 3.1 MeV state

decomposed in Figure 6.4, the result is dσ/dΩ(Θ = 0◦) = 2.3 ± 0.3 (mb/sr). Figure 6.5

shows the result of the extrapolation to Θ = 0◦ for GT cross sections determined in each

energy bin up to 6 MeV of excitation. The error displayed is that resulting from the fit.

Each set of 0◦ GT cross sections shown in Figure 6.5 is the result of pairing the GT

component with another plausible angular distribution, as discussed previously. How-

ever, to within the error in the fit, all three models displayed show good agreement with

one another. This is a result of statistical error, which is generally not sufficient to dif-

ferentiate larger angular momentum transfers. Their close agreement does shows that

determination of the 0◦ GT cross section is quite robust, though χ2/N ultimately settles

which description is used. The MDA then is a reliable method to distinguish ∆L = 0

from ∆L > 0 distributions.

The extrapolation to zero momentum transfer is completed by extrapolating 0◦ GT

cross sections to zero reaction Q-value,

dσ

dΩ

∣∣∣∣∣
q→0

=

[ dσ
dΩ(Q = 0, 0◦)

dσ
dΩ(Q, 0◦)

]

DWBA
×

[
dσ

dΩ
(Q, 0◦)

]

exp
. (6.2)

The 0◦ GT cross section determined from the data are scaled by a ratio, between 0◦ cross

sections at a given reaction Q-value and Q=0. The ratio is calculated in the DWBA with

the code FOLD [114], where tensor interactions are switched off to isolate the effect of

larger momentum transfer. Figure 6.6 shows the value of this ratio for 100 theoretical

states, predicted by the GXPF1a shell model effective interaction [107]. Note that choice

of effective interaction does not change this ratio. GXPF1a is chosen only for the large

number of states available from the calculation.
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Figure 6.6: The ratio of the 0◦ cross section calculated with and without accounting for
the reaction Q-value, using the DWBA code FOLD [114].

Figure 6.7 shows the 0◦ GT cross sections, taken from the value with the lowest χ2/N

for each energy bin in Figure 6.5, before (red) and after (blue) the extrapolation to zero

momentum transfer. This is an important step toward the extraction of Gamow-Teller

strength. It is true that for the most part, extrapolation to zero reaction value constitutes

a small correction to the overall extrapolation to zero momentum transfer which is largely

accomplished once the 0◦ GT cross section is determined. However, Figure 6.6 shows that

the size of the ratio (deviation from unity) grows with increasing excitation energy. Also,

since the correction comes as a scaling factor, the effect of extrapolating to zero reaction

Q-value is larger for stronger states. For example, the correction to GT states at 3.1 and

6 MeV in Figure 6.7 are both ∼10%.

6.3 Application of the Unit Cross Section

The final step to determine the Gamow-Teller operator strength using Equation 6.1 is

multiplication of the extrapolated cross sections by the unit cross section σ̂GT. Figure 6.8

shows the value of the unit cross section, plotted versus the target mass A, determined
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from (3He,t) cross section measurements on a wide range of target masses [110]. Zegers

et al. find a simple relationship between target mass and the unit cross section,

σ̂GT = 109 × A−0.65. (6.3)

In addition to this relationship, the authors of [110] (including this author) have recently

found that for the cases so far analyzed, the GT unit cross section for (t,3He) is consis-

tently the same. Therefore, the high statistics and strong systematics present in the data

for the (3He,t) unit cross section benefit the determination of B(GT+) from (t,3He), par-

ticularly in cases where the typical normalization of relative B(GT) with states of known

strength from β-decay is not possible. The B(GT+) in 64Cu is just such a case, where only

the weak ground state strength is known from β-decay (log(ft) = 5.301 ± 0.006 [142],

implying B(GT+)=0.058±0.001) and the proportionality breaking in Equation 6.1 is

potentially large. Also, the ground state is not individually resolved.
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Ex (MeV) B(GT+)
0.000 0.059±0.02
0.125 0.08±0.02
0.375 0.11±0.03
0.625 0.03±0.03
0.875 0.11±0.03
1.125 0.14±0.02
1.375 0.07±0.04
2.625 0.14±0.05
2.875 0.12±0.03
3.125 0.35±0.04
3.375 0.14±0.03
3.875 0.15±0.03
4.125 0.10±0.03
4.625 0.06±0.05
4.875 0.13±0.03
5.875 0.17±0.04∑
B(GT+) 1.95±0.13

Table 6.1: Tabulated results for the extraction of B(GT+) in 64Cu, as a function of
excitation energy Ex (MeV).

Figure 6.9 shows the extracted B(GT+) in 64Cu, determined by multiplying the ex-

trapolated cross sections of Figure 6.7 by the unit cross section for A = 64 in Equation

6.3. These values are also tabulated in Table 6.1. The ground state is not individually re-

solved in this measurement, partly due to its weak B(GT) and partly due to the presence

of other known 1+ states nearby at 0.344, 0.66, and 0.927 MeV. Therefore, the B(GT)

of the ground state bin is modified manually to agree with the β-decay result [142].

Originally, the ground state strength was spread over two bins, centered at -0.125 MeV

and 0.125 MeV respectively, mixed with strength from the first 1+ excited state at 0.344

MeV. These two strengths are 0.074± 0.023 and 0.067± 0.024 respectively. The strength

of the first bin is reduced to 0.058 to correspond to β-decay and the excess strength of

0.016 is added to the next higher bin. Also, the center of the first bin is shifted to Ex = 0,

since strength below this is unphysical and only due to the 280 keV experimental resolu-

tion. Both modifications are smaller than quoted errors and are done to aid calculation

of electron-capture rates later in the text.
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6.4 Analysis of Systematic Errors

The tensor contribution to the interaction between the target and probe systems is known

[32,111] to be the main source of proportionality breaking between B(GT) and differential

cross section at vanishing momentum transfer (Equation 6.1). The tensor interaction

couples ∆L = 0 with ∆L = 2 modes and though the ∆L = 2 amplitude by itself is usually

very small by comparison, the amplitudes interfere. Therefore, the effect on the total GT

cross section can be large. The interference effect can be constructive or destructive and

has been shown to generally be stronger for states with smaller B(GT) [111]. However,

large effects have also been observed in stronger states, in a few cases, depending on

particular features of the initial and final state wave functions, like that of 58Cu seen

in the 58Ni(3He,t) reaction [112]. In their analysis, Cole et al. show that inconsistencies

between B(GT) extracted from 58Ni(3He,t) and 58Ni(p,n) arise from strong tensor effects,

and break the proportionality with cross section in the two lowest lying GT states by

∼20%.

The proportionality breaking due to these tensor forces can be studied theoretically

as the tensor component of the effective interaction VTτ can be turned off in the FOLD

code. Alternatively, one can remove the tensor contribution to the ∆L = 2 mode manually

by removing ∆L = 2 contributions to the one-body transition densities. However, the

latter method yields the same result as the first and is more time-consuming. The present

procedure for investigating the systematic error in the B(GT) extraction due to the tensor

uses the first method, following the procedure shown in Ref. [111]. There, the relative

systematic error is defined as

Rel.sys.err. =
B(GT)DWBA − B(GT)SM

B(GT)SM

, (6.4)

where B(GT)DWBA is determined by first calculating the differential cross section in

DWBA with the full effective interaction, including the tensor forces. Thereafter, the

DWBA cross section is treated like data, extrapolating to q → 0 and dividing by

σ̂GT to determine B(GT). The shell model strength B(GT)SM is calculated using the
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Figure 6.10: The relative systematic error in the extraction of B(GT), plotted as a function
of the shell model strength.

GXPF1a effective interaction [53]. The one-body transition densities of this SM calcula-

tion also served as the input for the DWBA calculation used to estimate B(GT)DWBA.

The B(GT)SM should match B(GT)DWBA if there were no systematic errors present. Rel-

ative systematic error is calculated on a state-by-state basis using Equation 6.4. The

results are shown in Figure 6.10 for 100 states calculated using the GXPF1a effective

interaction. The results using other interactions, such as KB3G [52], are qualitatively

similar. Again, the GXPF1a interaction is used since more states over a larger excitation

energy range are available from the calculation.

The magnitude of the proportionality breaking is clearly seen in Figure 6.10, reflected

in the vertical width of the envelope formed by the points and becoming larger for weaker

B(GT). Figure 6.11 shows three vertical sections of Figure 6.10, allowing a quantitative

gauge of the error. An approximate relationship between B(GT) and relative systematic

error can be determined with the standard deviation of these projections,

σrel.sys.err. ≈ 0.03 − 0.033 × ln(B(GT+)). (6.5)
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in the values for the relative systematic error of the B(GT) extraction.

This relationship is consistent with that seen in the case of 26Mg [111].

Figures 6.12 and 6.13 show the results of the same procedure to determine the relative

systematic, now carried out with the tensor interaction turned off for calculating the

DWBA strengths. The envelope seen in Figure 6.10, much wider at low strength, is

largely collapsed, showing that the tensor force is the dominant contribution to the

proportionality breaking. The remaining widths seen in Figure 6.13 show there are still

other contributions to the systematic error in the B(GT) extraction. These are mostly

caused by exchange contributions to the cross section (see Chapter 3)

This error analysis also highlights the utility of using the GT unit cross section de-

termined from (3He,t) measurements [110]. Recall that the 64Cu ground state strength

is the only one known from β-decay, with a B(GT+) of 0.058±0.001 [142]. For this state,

Equation 6.5 anticipates a ∼12% likely systematic error in the B(GT) determined from

its measured cross section. However, Figure 6.10 shows that states with strengths in this

vicinity can still exhibit strong tensor effects, like the outlier at approximately B(GT) =

0.03 with a relative systematic error of 50%. If the ground state cross section in 64Cu were

to exhibit similar, unusually strong tensor effects like this outlier, then normalization to
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Figure 6.12: The relative systematic error in the extraction of B(GT), plotted as a function
of strength, neglecting the tensor interaction between the target-probe systems.
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the known B(GT) from β-decay for the ground state would introduce a 50% systematic

error for all states in the spectrum. This outlier is not the ground state, which has a

6.7% uncertainty, in this particular case. Rather, it is the first excited state, predicted

by the shell model to be at 0.284 MeV. This scenario however, does take place in the

58Ni(p,n)58Cu case, as revealed in the analysis of discrepancies between 58Ni(3He,t) and

58Ni(p,n) reactions [112]. Therefore, there is strong incentive to rely on the unit cross

section determined from (3He,t) to scale B(GT) from (t,3He) cross section data when

normalization using β-decay would otherwise force reliance on weak states.
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Chapter 7

Discussion

This chapter’s purpose is three-fold. First, the recent determination of Gamow-Teller-

plus strength in 64Cu using the 64Zn(d,2He) reaction [143] is compared with the present

result. Second, theoretical B(GT+) distributions in 64Cu, as determined using shell model

effective interactions GXPF1a [107] and KB3G [52], are compared to the present result.

Third, the stellar electron-capture rates, corresponding to strength determinations from

(t,3He) reaction data, are compared to rates determined using GXPF1a and KB3G shell

model interactions.

7.1 Comparison with the (d,2He) Reaction

The GT+ strength has been extracted previously from differential cross sections measured

in 64Cu with the (d,2He) reaction at 91.5 MeV/nucleon [143]. The 64Zn nucleus is a

candidate for neutrino-less double β-decay which, if such a process exists, would establish

it as a Majorana particle and place constraints on the mass hierarchy among neutrino

leptonic flavors [144]. Grewe et al. [143] examine both the B(GT−) and B(GT+) in

64Cu using the 64Zn(d,2He) and 64Ni(3He,t) [145] reactions, respectively, in order to

constrain the neutrino-less double β-decay matrix elements. Though their motivation for

measurement differs, the experimental result of Grewe et al. is directly comparable to

the result in this thesis.
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Figure 7.1 shows the distribution of B(GT+) in 64Cu as determined using (t,3He)

(black) and (d,2He) (red) reactions [143]. Grewe et al. achieved an excitation energy

resolution of 115 keV (FWHM) for doubly differential cross sections measured in 64Cu.

Therefore, they were able to individually resolve several low-lying Jπ = 1+ states and

where possible, performed the B(GT+) extraction on a state-by-state, rather than a

bin-by-bin basis. Despite this difference, Figure 7.1 still shows qualitatively, a good over-

all correspondence between features of the B(GT+) spectra. Grewe et al. resolve the

weak ground state transition which, recalling from Chapter 6, is of known strength from

β-decay. Therefore, they use this strength to determine the overall unit cross section

and subsequently the B(GT) for the rest of the spectrum. Consequently, the agreement

between the B(GT+) for the lowest bin from the (t,3He) data and the B(GT+) for the

ground state from the (d,2He) data is exact, since the (t,3He) for the lowest bin was man-

ually pegged to the β-decay value. The reason this is done is so that the electron-capture

calculation, presented below, will be as realistic as possible. The manual adjustment

is also justified since the β-decay strength for the ground state and that which comes

directly from the MDA agree within statistical errors. There is only one other minor

discrepancy, due only to the use of sources for the ground state strength; Grewe et al.

takes for the ground state a value from 1996: logft = 5.294 ± 0.005 [146], while for the

present work, a value from 2007 is taken: logft = 5.301 ± 0.006 [142].

Grewe et al. encounters similar difficulty resolving states in the excitation interval

from 200 to 600 keV. They assign B(GT+)=0.182 ± 0.034 for this interval, resulting

from an MDA method similar to the one presented in Chapter 6. The differences arise

from DWBA calculations involving the (d,2He) probe which is more difficult to treat

theoretically since the 2He system is unbound. The location of strength in the first 1

MeV of excitation therefore is not identical with the (t,3He) result. Following a bin-by-bin

approach, the (t,3He) result for the total strength in this interval is similar, but it is found

spread over several energy bins. This is reasonable since the energy resolution is 280 keV

(FWHM) and the bins are 250 keV wide. Nevertheless, Figure 7.2 shows that the total

strength is consistent. There, the running sum of B(GT+) is plotted against excitation
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Figure 7.1: Comparison of B(GT+) distributions in 64Cu as determined from (t,3He)

(black) and (d,2He) (red) reactions [143].
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in 64Cu, with the vertical width of bands representing the cumulative error in the sum.

Examining the running sum, the correspondence between the these two data is clearer.

The relative lack of B(GT+) seen from ≈1500 to 2500 keV of excitation is consistent. Also,

both measurements agree on the location and strength of the two strongest Gamow-Teller

states in the spectrum, those at ≈2.6 and ≈3.2 MeV, to within experimental resolutions

and errors in the strength. This is not as clear in a direct comparison of the spectra in

Figure 7.1, e.g., the strength of the state at ≈3.2 MeV, as the resolution for the (t,3He)

result spreads the strength of this state in adjacent energy bins.

The most significant point to make, when comparing the (t,3He) and (d,2He) results,

is that the overall normalization of the strength has been accomplished in different ways.

For the (d,2He) measurement, as mentioned above, the weak ground state transition

is resolved and is of known strength, so Grewe et al. use this to normalize their 64Cu

B(GT) spectrum. In the present case with the (t,3He) measurement, the consistency of

the (t,3He) and (3He,t) unit cross sections has been used. The agreement seen in Figure

7.2 between the (t,3He) and (d,2He) results is further evidence that using the (3He,t) unit

cross section for normalizing (t,3He) cross section to B(GT) is a reasonable procedure.

The total strengths are in reasonable agreement, up to 5 MeV excitation, the energy up

to which Grewe et al. extract B(GT). From the (t,3He) result,
∑

B(GT+) = 1.78± 0.13

and from (d,2He), the result for the total strength is
∑

B(GT+) = 1.61 ± 0.05. As

stated earlier in Chapter 6, the consistency of the (t,3He) and (3He,t) unit cross sections

adds an advantage to using the (t,3He) reaction because it reduces the likelihood that a

state where proportionality breaking effects are strong is used to determine the overall

normalization. As discussed in Chapter 6 this is a risk in the 64Cu case, where the

only state of known strength is weak (B(GT+)≈0.03) and the corresponding breaking is

potentially on the level of 50%.
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7.2 Comparsion to Shell-Model Calculation

A crucial comparison to make is between data and theoretical estimates, since one major

motivation for this work is the parameterization of stellar electron capture. As discussed

in Chapter 2, rates must ultimately rely on theory to provide the majority of Gamow-

Teller transitions, since most are unmeasurable. If a theoretical approach can however,

robustly reproduce measurable transitions from parent ground states over a wide mass

range, there is increased confidence that the same approach will work for transitions in

general. Figure 7.3 compares the presently measured B(GT+) spectrum in 64Cu to that

calculated with the shell-model code NuShellX [51] using effective pf -shell interactions

GXPF1a [107] and KB3G [52]. The calculation using the KB3G interaction is carried out

for the first 50 states predicted in the pf -shell model space. The GXPF1a calculation

is carried out for 100 states. The KB3G interaction is chosen since it is the interaction

used to calculate the LMP rates [46], used in many stellar evolution codes. The GXPF1a

interaction is chosen since it has been fitted to the largest number of data sets over the

entire pf -shell [107]. To compare with measured spectra, the universal quenching factor

discussed in Chapter 3 of (0.74)2 is applied to KB3G and GXPF1a GT strengths.

The most prominent feature of the comparison is the lack of strength predicted by

KB3G which was constructed specifically to calculate B(GT) values in pf -shell nuclei.

This discrepancy is expected however, since the KB3G interaction is determined using

only spectroscopic data from the lower pf -shell, up to A = 52 [52]. Comparatively im-

proved performance by GXPF1a in the upper pf -shell is anticipated, as the interaction is

determined by fitting ∼700 energy data across 47 ≤ A ≤ 66 [53,107,147]. In the particu-

lar case of GXPF1a then, comparison to B(GT) values is informative, as the interaction

there is most finely-tuned for calculation of low-lying rotational level systematics and

corresponding B(Eλ) values. Comparison to B(GT) then offers an independent check on

the GXPF1a description of the pf -shell.

The running sum for these three B(GT+) spectra are presented in Figure 7.4. Up

to 6 MeV, for the (t,3He) result this is
∑

B(GT+) = 1.95 ± 0.13, for GXPF1a it is
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∑
B(GT+) = 2.81 and for KB3G up to 5 MeV the sum is

∑
B(GT+) = 0.21. The

KB3G calculation was not carried up to 6 MeV excitation because the result up to 5

MeV is identical with a 6 MeV calculation already performed by Grewe et al. [143].

They find one additional GT state above 5 MeV that brings their KB3G calculation

of the total strength to
∑

B(GT+) = 0.69. Again, half or more of the strength below 3

MeV is not reproduced by shell-model calculations. From a viewpoint of nuclear structure

studies, however, the GXPF1a performance is quite reasonable. Overall, it approximately

reproduces the location, strength and scatter of the Gamow-Teller giant states and, with

the m-scheme based method used in NuShellX [51], reproduces the fragmentation of the

GT strength over many final states. However, the corresponding electron capture rates

show a particular sensitivity to the low-lying distribution of B(GT+).

Figure 7.5 shows the side-by-side comparison of B(GT+) spectra (left) presented in

Figure 7.4 and their corresponding electron capture rates (right) at an electron-density

of ρYe = 107 g/cm3. This density corresponds to times early in the pre-core-collapse

phase of a 14 Msolar star. The electron capture rate is calculated from the B(GT+) using

the method of Fuller, Fowler, and Newman [26] described in Chapter 2. In the relevant

temperature region, marked by the yellow band, the measured B(GT+) results in an

electron capture rate of log(ECrate(s
−1)) = −3.06 (or 8.71 × 10−4 captures/second). At

the same temperature, the GXPF1a rate predicted is a factor 3.5 smaller and KB3G a

factor 5.0 smaller.

It is not immediately obvious from their B(GT+) spectra and running sums, seen

in Figures 7.3 and 7.4 why it is that the electron capture rates determined from data,

GXPF1a, and KB3G differ as they do. For instance, why do the spectra and summed

strength for GXPF1a and KB3G interactions differ so much and yet, their electron cap-

ture rates seems so similar? Their total strengths up to 5 MeV excitation differ by nearly

a factor of 10 but their electron capture rate by only 44%. Or, since the GXPF1a sum

of the GT-strength overtakes that of the data (at ∼5 MeV), why is it that the GXPF1a

electron capture rate doesn’t overtake that of the data?

The answer to these questions has three ingredients. The electron capture rate is
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Figure 7.5: Side-by-side comparison of (t,3He) and shell model results for B(GT+) in 64Cu

with their corresponding stellar electron-capture rates, calculated at ρYe = 107g/cm3.

roughly proportional to the B(GT) and the energy-integrated product of a phase space

term and the occupation function of available electrons (see details in Chapter 2). The

contribution from a given GT-state to the overall electron capture rate is roughly parame-

terized by the product B(GT+)×
∫

(Phase Space×Electron Occupation). The well-known

“Sargent’s Rule”, that β-decay rates are proportional to reaction Q-value taken to the

power 5, is due to the phase space term. Therefore, this term is large at the daughter

ground state and falls toward zero rapidly for increasing excitation energy. The occu-

pation function for electrons is understood in the usual way, being unity (degeneracy)

below the Fermi energy ǫF and zero above, though the Fermi surface is smeared at finite

temperature.

With these three ingredients in mind, consider again the capture rates presented in

Figure 7.5. The electron confinement at this density (ρYe = 107 g/cm3) raises the elec-

tron Fermi energy to ǫF ≈ 0.7 MeV. Above this energy, neglecting finite temperature,

the capture reaction is not energetically possible since there are no electrons with kinetic

energy sufficient reach the reaction Q-value. Consequently, the electron occupation term

acts as a low-pass filter on the B(GT+) spectrum. The capture rate is determined by the

B(GT) in states below ǫF and is unaffected by the strength of states above ǫF. The simi-

137



0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

Ex (64Cu)(MeV)

B
(G

T +
)

(t,3He) data

GXPF1a

KB3G

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2 3 4 5 6 7 8 9 10

Stellar Temperature (10 9K)

lo
g

(E
C

 r
a

te
)(

s
-1

)

(t,3He)
GXPF1a
KB3G
(d,2He)

Relevant T9

ρYe =109 g/cm3

Figure 7.6: Side-by-side comparison of (t,3He) and shell model results for B(GT+) in 64Cu

with their corresponding stellar electron-capture rates, calculated at ρYe = 109g/cm3.

larity of both shell-model rates at this density then becomes clear when one reexamines

the sum of B(GT+) at ≈0.7 MeV in Figure 7.4. There, the total strength predicted by

GXPF1a and KB3G are nearly identical and less than half that seen in the (t,3He) data.

The capture rate determined from data then is larger and differences in the B(GT+)

above ≈0.7 MeV have little impact on the overall rate.

Figure 7.6 shows the electron capture rate along with the B(GT+) spectra from

data and shell-model calculations, as in Figure 7.5, only now the stellar density is ρYe =

109g/cm3. This corresponds to moments (outer-core in-fall velocity < 1000km/s [91]) just

before the onset of collapse, again with the relevant temperature highlighted in yellow,

in a 14 Msolar star. At this density, the Fermi surface is pushed up to ǫF ≈ 4.7 MeV.

Looking at the total GT-strengths in Figure 7.4 again, one sees that at this energy, KB3G

has added little additional strength. However, the total strength predicted by GXPF1a

has risen sharply and now agrees with the total strength from data. Yet, the respective

electron capture rates remain similar, relative to one another. All rates are larger, but

the data still predicts a capture rate about a factor of 3.5 larger than GXPF1a and a

factor of 5 larger than KB3G. This is due to the rapid decline in the size of the phase

space term as a function of excitation energy, mentioned above. Since it is integrated
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with the electron occupation, it acts as a weighting function, reducing the importance of

high-lying GT-states made accessible by raising the Fermi surface. The electron capture

rate determined from the data remains larger because the low-lying B(GT), which is

heavily weighted by the phase space term, is also larger.

Finite temperature has little effect in the particular case of 64Cu since the strengths

are small. As the temperature increases, the Fermi surface is smeared so that electrons

can typically have energies ∼ kBT above ǫF. At this temperature, T = 10 × 109 K,

kBT = 900 keV so that states at and below ≈1600 keV are accessible for captures. In

Figure 7.4, this is just above where GXPF1a and KB3G make gains in the total predicted

strength, though it is insufficient to produce much change in the capture rate. In the

case of 58Co however, a relatively strong GT-state below 2 MeV makes this effect more

pronounced [112]. In such a case, the weak smearing of the Fermi surface is overcome by a

strong state at low-lying excitation, where the phase space term is large. The conclusion

in both cases however is the same: the specific B(GT) distribution at low excitation in the

electron capture daughter dominates the electron capture rate. Nevertheless, relatively

small mistakes made in determining the low-lying strength can produce large systematic

errors in capture rates that persist over a wide range of temperatures and densities.

To conclude, it is observed that the B(GT+) in 64Cu, as determined with the (t,3He)

and (d,2He) [143] charge-exchange reactions, are consistent. Furthermore, the different

procedures in the two measurements for the overall normalization of the strength is fur-

ther evidence that B(GT) can be extracted from charge-exchange in a probe-independent

way. Specifically, for the (t,3He) case, the comparison with (d,2He) also reveals the utility

of using the consistent (3He,t) unit cross section for the (t,3He) normalization. This has

the advantage of avoiding normalization with individual states on a case-by-case basis,

which can potentially introduce systematic errors as large as 50%. The comparison of the

B(GT+) in 64Cu measured with (t,3He) is also compared to shell-model determinations

using NuShellX and the pf -shell effective interactions KB3G and GXPF1a, revealing the

excitation energies where improvements in performance are desirable. A potential source

for the differences between the measured and calculated strength distributions may be
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the interaction of the g9/2 single-particle level with the pf -shell states. This is a reason-

able possibility however, the model space associated with cross-shell excitations between

pf - and sdg-shells is quite large, making corresponding shell-model calculations of that

kind very difficult. In the remaining chapter, the overall conclusions of this work will be

summarized and recommendations made for technical improvements, new (t,3He) and

other charge-exchange measurements to be made, which will advance the state of this

important sector in supernova physics.
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Chapter 8

Conclusion and Outlook

The production and transmission of a secondary triton beam by fast-fragmentation of

16O and 18O beams has been studied. The triton beam produced at the NSCL-CCF

with the 16O primary beam is found to be superior to that of 18O. This is primarily

the result of the higher extraction energy possible for the 16O primary beam. With the

150 MeV/nucleon 16O primary beam and a 3 − 4 × 103 mg/cm2 natBe target, triton

rates in excess of 8 − 10 × 104/pnAs of primary beam are achieved. Using this triton

beam, a (t,3He) charge-exchange reaction program has been re-instituted at NSCL-CCF,

successfully extracting B(GT+) in 24Na via the 24Mg(t,3He) reaction [7].

The B(GT+) distribution in 64Cu has been measured, up to 6 MeV in excitation

energy. The 64Cu system is in the pf -shell region of the nuclear landscape. Shell-model

calculations of the 64Cu B(GT+) have been made with the NuShellX code [51], using

KB3G [52] and GXPF1a [107] pf -shell effective interactions. The sum of the measured

strength below 6 MeV excitation is
∑

B(GT+) = 1.95 ± 0.13. For the same excitation

energy range, the calculation with GXPF1a gives
∑

B(GT+) = 2.81. The calculation

using KB3G was done only up to 5 MeV, finding a total strength of
∑

B(GT+) = 0.21.

This calculation was stopped at 5 MeV since, up to this energy, it is identical to the

same calculation done by Grewe et al. [143]. Their calculation is carried out to 6 MeV

excitation however, finding only one additional significant state and raising the sum to
∑

B(GT+) = 0.69. In the case of the
∑

B(GT+) calculated with GXPF1a, the NuShellX
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code determines from the non-energy weighted GT sum
∑

B(GT−) − ∑
B(GT+) =

3(N − Z), that at and below 6 MeV excitation, the calculated
∑

B(GT+) is exhausted

to the 93% level. This agrees with data taken at higher excitation energies which indicates

there are no strong GT states in the excitation energy interval 6 < Ex(64Cu) . 25 MeV.

Discrepancies between measured and calculated values for the total strength are likely

due to admixtures of configurations outside of the pf -shell. Since A = 64 is high in the

pf -shell, a likely culprit is the intrusion of the g9/2 single-particle orbit from the sdg-shell

above. This is a reasonable possibility because the, for region around N = 34, the Nilsson

model picture of the single-particle energies shows the g9/2 level coming down quickly

for positive deformation β [146]. The measured ground state deformation for 64Zn is

β = 0.24 [148], so the intrusion of the g9/2 level must be considered.

The 64Cu system is in the pf -shell, the isotopes of which are important electron-

capture participants in Type Ia and core-collapse supernovae. The electron-capture rate

for 64Cu has been calculated from both the measured B(GT+) distribution and that of

the two shell-model calculations, using KB3G and GXPF1A effective interactions. The

difference between rates determined from the data and these shell-model calculations are

of the same size as differences between the FFN and LMP rates for nuclei at masses A ≤

60. This is significant since recent supernova sensitivity studies show that the upper pf -

shell makes important contributions to the overall capture rate and the KB3G interaction

is the most advanced form the the interaction used to determine the LMP capture rates.

These are the most widely used rates after those of FFN.

Additionally, while the gross features of the measured B(GT+) distribution are better

reproduced by the GXPF1A interaction, the capture rates for KB3G and GXPF1A are

not significantly different under conditions relevant to a 15Msolar core-collapse scenario.

This is due to the capture rate’s particular sensitivity to B(GT+) located in the first

couple MeV of excitation in the daughter. Since the supernova evolution is significantly

changed by choosing either FFN or LMP rates, it should not be surprising if similar

size changes still occur, as shell-model calculations are refined to converge on measured

B(GT) distributions. Increasing the body of measured B(GT+) distributions is crucial
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for this development process. Pursuant to this, the (t,3He) charge-exchange reaction will

remain an important spectroscopic tool for extracting Gamow-Teller strength.

8.1 Detailed Conclusions

It is important to qualify the statements above and note that decades of modeling work

have shown that for both Type Ia and core-collapse explosions, there is likely no single

contribution to the microscopic physics that alone will determine how well the explosion

is modeled. In both types, the interplay between gravitational, three-dimensional, hy-

drodynamical, radiation and neutrino transport and nuclear effects is complex and often

chaotic. The intrinsic diversity seen even within the relatively uniform Type Ia category

suggests that several different factors contribute to the overall success of an explosion.

This is even more the case for core-collapse explosions. The accurate determination of

Gamow-Teller strength and the accurate treatment of electron-capture will add necessary

information for producing successful explosions in the core-collapse case and reproducing

Type Ia spectra and iron-group nucleosynthesis yields.

Nevertheless, accurate determination of the electron-capture rates alone will not be

sufficient for reaching these goals. In the situation the nuclear-astrophysics community

finds itself in, particularly in the case of core-collapse theory, the uncertainties of all

major contributions must be reduced or there will always be doubt as to whether or not

explosions succeed for the wrong reasons. For example, there have been recent reports

of robustly successful core-collapse explosions with the VULCAN/2D code, produced

by the excitation of an acoustic, dipolar mode of the core material [149]. This however

has lead to some controversy, suggesting that the new explosion mechanism may be the

result of accumulated machine round-off errors [150]. For the purposes of this text its

not important whether this is the case or not. This merely serves as an example of how

fickle the core-collapse explosion mechanism appears to be. Therefore, it is important

that relevant sub-fields within nuclear-astrophysics work together to identify and reduce

their respective contribution to the overall uncertainties. This includes shell-model de-
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terminations of electron-capture which have served as an excellent example of the kind

of cooperation that is needed. Supernova modelers have determined the mass ranges of

nuclei that are important, shell-model theory has risen to the challenge of calculating

B(GT) in medium-heavy nuclei, and this feedback should continue. And again, charge-

exchange reactions are the principle nuclear spectroscopy technique needed to guide the

shell-model refinements and maximize the quality of B(GT) calculations. These in turn

have a direct impact on the quality of electron-capture rate calculations, as has been

shown.

One objective of this work has been to demonstrate the reinstitution of the (t,3He)

charge-exchange probe at the NSCL CCF to serve this purpose. Prior to the CCF up-

grade, the triton beam was produced as a secondary beam by fragmentation of a primary

α-particle beam. The secondary triton beam has been recovered by exploring its produc-

tion from fragmentation of 16,18O beams, the lightest beams now available at NSCL. In

addition, the production of tritons for (t,3He) reaction studies has been optimized by

studying the effect of target configurations and secondary tuning characteristics. It was

found that, due to the need to operate the S800 spectrograph in a dispersion-matched

mode, the quality of the triton beam for this purpose is optically sensitive. Consequently,

care needs to be taken to establish the location of the optical object location for both

A1900 and S800 magnetic devices to centimeter accuracy. Several parameter searches have

found the optimal settings for the triton beam production and (t,3He) charge-exchange

reaction and are well-documented. Experiments with the secondary triton beam are chal-

lenging compared to stable beam experiments, yet are now well under control.

Another major objective of this work was to measure B(GT+) in the pf -shell nucleus

64Cu. This was accomplished up to 6 MeV in excitation energy. Comparison is made to

the same measurement made with the (d,2He) reaction. The consistency of the (t,3He)

measurement was demonstrated by making this comparison, where a different normal-

ization technique has been used to arrive at a consistent B(GT+). This is greatly aided

by the consistency of the (3He,t) and (t,3He) unit cross sections, which is one of several

advantages the (t,3He) probe has over (d,2He) for measuring B(GT) in the isospin-raising
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direction. Specifically, the advantage is that using the (3He,t) unit cross section, which is

established on a large body of high-quality (3He,t) data, reduces the risk that the B(GT)

extracted from (t,3He) is normalized to a weak state. For states with weak B(GT), ten-

sor effects break the proportionality with cross section strongly. This is a significant risk

in the present case of 64Cu because the only state with known B(GT) from β-decay

is the weak ground state transition. And as is was shown here, where the tensor force

effects have been studied in the DWBA, for transitions of comparable strength this can

introduce a systematic error as large as 50% or more.

The final major objective here has been to determine electron-capture rates for 64Cu,

using both measured and shell-model B(GT+) distributions. Again, the (t,3He) result

was compared to that of the (d,2He) probe. The difference in the electron-capture rate

between these two experimental results is probably a reasonable estimate of the error in

the “measured” capture rate. The capture rate has been calculated in order to show what

features of the B(GT+) distribution are the most important for the rate calculation and

subsequently, the shell-model performance. In this case, the performance of the NuShellX

code using KB3G and GXPF1A effective interactions for determining the capture rate has

been investigate. It is of course already known that the B(GT+) lying in the first few MeV

of excitation is the most important in terms of calculating the rate accurately. This is due

to the strong temperature dependence created by the interplay between the sharp cut-off

from the electron Fermi surface and the large phase-space enhancement of transitions to

low-lying daughter states. Here, it has been shown that, despite significant differences

between the 64Cu B(GT+) distribution yielded by KB3G and GXPF1A, neither perform

well enough at low-lying excitation to reproduce the capture rate suggested by the data.

8.2 Outlook

There are several projects which could potentially improve the secondary triton beam

at NSCL. The easiest project is largely already completed and that is addressing the

low-intensity, angularly flat-background seen in the analysis of the 64Cu spectrum. Since
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the experiments reported on here were performed, the source of that background has

been identified and removed. The background was a 3He contaminant created by 3-

neutron removal from 6He, the most intense contaminant in the triton beam. The cross

section for this reaction is comparable to the charge-exchange cross section. It has been

removed from current experiments by introducing a wedge-degrader at the intermediate

image plane of the A1900, at nearly no expense to the triton intensity or beam quality.

Including this in the configuration of the A1900 will be crucial for future charge-exchange

measurements, particularly at higher masses where the charge-exchange cross sections

tend to decrease due to the behavior of the unit cross section. This is mainly due, recalling

the discussion from Chapter 3, to increased distortion at higher mass which in turn,

reduces the distortion term ND in the unit cross section.

Another possible improvement of the triton beam would be enhanced extraction of

the 16O beam from the K1200 cyclotron and the transmission of the triton beam to the

reaction target. Several improvements to NSCL CCF operations have already resulted

from previous (t,3He) measurements. During the 24Mg measurement, 16O intensities

in the K1200 cyclotron created high neutron radiation levels, sufficient to shutdown

computerized remote control hardware located inside the vault. This equipment has since

been relocated outside the K1200 vault. Also, additional water shielding is now added to

the K1200 vault roof to minimize activity outside. This has facilitated safe and reliable

increases to the 16O intensity, allowing for greater triton beam intensity. The present

limit is now imposed by losses of the 16O beam in the K1200 itself. At the time of

the 64Zn measurement, triton beam transmission efficiency, from the A1900 XFP to the

reaction target, was typically 35%. This has been improved as part of a recent beam line

realignment campaign to about 80%. Further increases in the triton beam intensity will

be difficult to achieve without improved K1200 extraction efficiency, which minimizes the

amount of 16O particles lost in the K1200 and instead puts it on the production target.

Another difficulty faced in the 64Zn measurement, the unreliable normalization of the

incident triton beam, has since been remedied as well. The bias of the in-beam scintillator

at the target, used to measure the triton rate, has been fine-tuned so as to avoid saturation
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effects. In addition, due to the beamline realignment campaign, acceptances of the S800

spectrograph can now be modeled correctly over a large scattering angle range, up to

nearly ≈5
◦

in the lab frame. In any event, the calibration of relative cross sections using

the 12C measurements as a reference cross section has proven fairly reliable. Additionally,

the charge-exchange cross section is relatively high on this target and within an hour at

typical triton intensities, the structure of 12B can been seen directly in the CRDC position

spectrum, making the 12C target a valuable diagnostic tool.

The best method for increasing the triton beam intensity, from the point of view

of higher beam intensity and quality, would be to temporarily decouple the K1200 and

K500 cyclotrons, and develop a primary triton beam. This would require considerable

overhead due to the decoupling, mounting of a source for the K1200 and developing

a tritium source tune. The benefits would also be considerable however. The intensity

gains would be 1-2 orders of magnitude and would allow many more targets to be mea-

sured with comparable beam time. Additionally, the energy spread of a primary triton

beam would much smaller, possibly by a factor of 100. This would directly translate into

a similarly sized improvement of the experimental energy resolution, to about 30 keV

(FWHM), and open many possibilities for fine-structure studies similar to those made

using (3He,t) probe at RCNP. However, a major concern and a limit to the possible

intensities are radiation safety concerns associated with tritium. Tritium source material

and triton implantation-activation in the K1200 and beamlines are significant potential

safety hazards that must be managed.

An additional, longer-range plan for upgrades might include a small scattering cham-

ber, constructed for use as an alternative to the large scattering chamber currently in

use with S800 spectrograph. The experimental setup in the reaction target area for the

(t,3He) charge-exchange studies requires two remote drives, one for targets and the other

an in-beam scintillator, and thus is fairly simple. However, this is in spite of the con-

straints placed on the setup by the large scattering chamber. The large distances from

mounting points inside the chamber make it difficult to accurately place targets and scin-

tillators relative to the beam axis. As a consequence, there are more checks of the optics
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required during the data analysis because of equipment alignment. Also, switching target

ladders mid-experiment can potentially require that the alignment procedure of the setup

to be repeated, costing valuable beam time. A smaller, modular scattering chamber, like

the one used at the object location of the Analysis Line, would give greater control over

the positioning of targets and scintillators and likely reduce the total overhead time to

several hours. This would more efficiently use available beam time and better enable

several targets to be measured in a single experiment.

Regarding the charge-exchange measurments themselves, the result for the 64Zn mea-

surement shows that variations in electron-capture rates, of the size seen between FFN

and LMP below mass 60, persist at higher mass due to differences between shell-model

and measured B(GT). This means that there is no reason to believe that similar dis-

parities don’t exist for an arbitrary, unmeasured B(GT). More B(GT+) distributions on

pf - and sdg-shell nuclei are needed to vet shell-model work in these regions of the nu-

clear landscape. The (d,2He) reaction has a long history and has yielded a large body

of B(GT+) data in the pf -shell. It is unfortunate that there is no longer a function-

ing (d,2He) program at intermediate beam energies. However, the data that exists is

not being used to its full potential, to carefully study the performance of shell-model

B(GT+) calculations and their associated electron-capture rates. Aside from a revived

(d,2He) program, the (t,3He) reaction is currently the only light charge-exchange probe

for determining B(GT+) with sub-MeV excitation energy resolution. Future (t,3He) mea-

surements should be proposed in order to investigate the upper pf - and sdg-shell region,

paying particular attention to studying the effect a g9/2 intruder state has on the B(GT+)

distribution. Measured B(GT+) distributions in this mass region will build confidence

that shell-model capture rates for nuclei that are unmeasurable are more likely to be

realistic. Also, as B(GT) data and refined electron-capture rates have been made avail-

able for higher masses, the feedback they have with the supernova dynamics has tended

to move the region of relevant masses for knowing the capture rates. For example, at

the time of FFN’s work, there were several capture parents in the sd-shell that were

considered dominant over almost all other cases. The introduction of the LMP rate set
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moved this region up solidly into the pf -shell. Currently, there is interest beyond this

mass region, as reported by Hix et al. [4], that captures on nuclei with masses as high

as A = 120 or more can play a role in the core-collapse explosion. A major goal of the

(t,3He) charge-exchange program should be to improve intensities and energy resolution

so as to provide high resolution B(GT+) data sets in these higher mass regions.

The shell-model calculations of B(GT+) distributions must also improve for this ef-

fort to benefit supernova modeling. There is evidence that shell-model calculations in

the upper pf -shell still do not adequately converge (M. Horoi, private communication).

However, the NuShellX code is now performing calculations for some of the largest model-

spaces ever. Efforts are already underway to perform a campaign of shell-model B(GT)

calculations, to identify benchmark cases for further measurement and to serve as the

basis of a new EC capture database using the GXPF1A effective interaction and it re-

finements. This author endorses and encourages this effort. This calculation survey is

important because of the relatively large number of cases that can be measured. The

number of cases is small, as stated previously, in terms of the number of transitions that

will play a role at some point along a supernova trajectory. However, the number of mea-

surable cases is still large enough that careful guidance is needed to make an experimental

(t,3He) campaign efficient with beam time is receives. Toward this end, it is important to

determine the measurable cases that also provide the most insight into the shell-model

interactions. Charge-exchange reactions performed in inverse kinematics with radiative

beams promise to provide valuable information in this regard. The first charge-exchange

reaction in inverse kinematics, using the (7Li,7Be) probe, was recently completed with a

28S secondary beam and analysis is ongoing. Also, a new plastic scintillator array LENDA

(Low-Energy Neutron Detector Array), for detecting low energy neutrons is under con-

struction [151]. This array will enable (p,n) charge-exchange reaction studies in inverse

kinematics with radioactive beams, providing B(GT−) distributions in radioactive nuclei.
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[19] D. J. Hören, C. D. Goodman, C. C. Foster, C. A. Goulding, M. B. Greenfield,
J. Rapaport, D. E. Bainum, E. Sugarbaker, T. G. Masterson, F. Petrovich, and
W. G. Love. Phys. Lett. B, 95:27, 1980.
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