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ABSTRACT

To investigate the appearance of a new magic number at neutron number 16, resonance

states around the oxygen (Z = 8) drip line have been investigated. The neutron unbound

states were populated by a nucleon removal reaction from a radioactive 26F ion beam and the

invariant mass method was used to reconstruct the resonance decay spectrum. The secondary

radioactive 26F beam was created by the fragmentation of a 48Ca beam, produced by

the National Superconducting Cyclotron Laboratory’s Coupled Cyclotron Facility, and was

cleanly selected by the A1900 fragment mass analyzer. A complete kinematic measurement

was made of the decay neutron and fragment using the Modular Neutron Array (MoNA) to

detect neutrons, and the large gap dipole Sweeper magnet combined with charged particle

detectors to select and measure the charged fragments.

Resonance spectra were reconstructed for both 24O+n and 23O+n coincidence data to

investigate the resonance states in 25O and 24O, respectively. To extract resonance energies

and widths from the spectra, a Breit-Wigner line-shape function was input into a Monte

Carlo simulation that reflected the experimental response. A fit which minimized χ2 was

completed for each spectrum and for the 24O+n coincidence data a single resonance at a

decay energy of Edecay = 770+20
−30 keV and with a width of Γ = 172(30) keV was determined.

Two resonances of energies Edecay = 0.63(4) MeV and Edecay = 1.24(7) MeV were found in

the fit to the 23O+n coincidence data. The single state in the 24O+n coincidence data is the

first mass measurement of the ground state of the lightest neutron unbound oxygen isotope,

25O. The two states in the 23O+n data have been determined to be the first observation of

the 2+ and 1+ neutron unbound excited states in 24O.

The ground state mass of 25O was used to determine the location of the ν0d3/2 orbital

at the oxygen drip line, and hence, determine the size of the N = 16 shell gap to be

xvi



4.86(13) MeV at this location. Also, the ground state mass measurement provided the one-

and two-neutron separation energies for 25O. Each of these observable were compared to

shell model calculations using various interactions. Curiously, the interaction which best

reproduced the experimental data was the universal sd shell model which calculates a bound

26O ground state, contrary to experiment.

The two excited states observed in 24O were also compared to a number of theoretical

calculations. The best description of the data was found by a calculation which explicitly

included a continuum ν0d3/2 orbital into wave function. The N = 16 shell gap was also

determined from the two states to be 4.95(16) MeV, in excellent agreement with the 25O

result (4.86(13) MeV). Finally, the energy of the first excited 2+ state observed in 24O

was systematically compared with the same state in other nearby even-even nuclei. It was

determined that 24O is in fact a doubly magic nucleus having a magic number of protons

Z = 8 and neutrons N = 16, due to the relatively high energy of its 2+ excited state.
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CHAPTER 1

INTRODUCTION

Investigating the outermost reaches and beyond the limits of the explored has forever been

a key driving force in all scientific fields because it has so often led to fundamental new

science. The discovery of something original, something that has never been observed before,

not only quenches the thirst for curiosity but also adds new information to extend our

understanding of the world around us. Such thrusts in forefront research have led to our

current understanding of the four forces of nature - gravity, electromagnetic, strong, and

weak. By searching and probing nuclei at the extremes, nuclear science can do its part to

further advance the understanding of these forces and help provide a more complete picture

of the physical world.

A window to gain a view of the characteristics of the strong force is to try and answer

one of the most fundamental questions in nuclear physics: what combinations of protons

and neutrons can bind together to make nuclei?? Physically this question is asking at

which two points along an isotopic chain (constant Z) does the strong force saturate, and

therefore, can no longer bind another nucleon to the nucleus. For light neutron-rich nuclei

the determination between a particle-bound nucleus and a particle-unbound nucleus is easily

distinguished because of the drastically different lifetimes between them. Bound neutron-

rich nuclei will decay towards the valley of stability, or the line of stable nuclei, by β−

decay. This decay is mediated by the weak force and a typical lifetime for a β− decaying

state is on the order of milliseconds (1 millisecond = 10−3 seconds) up to hours or longer.

However, when the nuclear strong force reaches its maximum capacity and the outermost

neutron is unbound, the decay occurs on the time scale of zeptoseconds (1 zeptosecond =

10−21 seconds). The roughly 18 orders of magnitude difference between the decay times of

the strong and weak decays, makes determination of a neutron-rich unbound nucleus versus
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a bound one, relatively straight forward. The neutron drip line has only been mapped out

for the lightest isotopes up to oxygen (Z = 8), and theoretical predictions above this differ

substantially.

The one caveat to the determination of the neutron drip line, is that the nuclei in this

region must be produced. With the recent advancements in accelerator physics throughout

the world, more and more exotic nuclei are being produced. In particular, the advent of

radioactive beams, which are beams of unstable nuclei, has opened doors to study more

neutron-rich nuclei than ever before. The National Superconducting Cyclotron Laboratory

(NSCL) at Michigan State University, and the John D. Fox Superconducting Accelerator

Laboratory are two examples of such radioactive beam facilities. Furthermore, progress in

technology and ingenuity has allowed for the detection and study of these exotic nuclei.

One such device is the Modular Neutron Array (MoNA), used to detect neutrons with high

efficiency, and good timing and position resolutions.

The location of the neutron drip line may be strongly influenced by the location of

the magic nucleon numbers. The magic numbers in nuclei were first discovered by the

experimental study of a large number of nuclei near stability. From these studies, clear

experimental signatures arose for certain numbers of protons and neutrons. The signatures

included increased binding energies, larger numbers of stable isotopes, high-energy first

excited states, and decreased collectivity. The proton and neutron numbers that were deemed

magic near stability were N = Z = 2, 8, 20, 28, 50, 82 and 126. Theoretically, these magic

numbers came to be described by large energy gaps between single-particle energy orbitals in

the nuclear shell model. Recently, experimental evidence has shown that the magic numbers

for neutron-rich nuclei may change due to the evolution of the energies of the single-particle

orbitals. This results in the disappearance of certain traditional magic numbers, while new

magic numbers may appear. Whether a magic number exists or not near the neutron drip

line greatly affects where the last bound nucleus may lie.

The properties of nuclei near, at, or beyond the neutron drip line may best be studied

using neutron spectroscopy. The reason for this is simply that bound states, both ground

states and excited states, cease to exist near the neutron drip line. Therefore, typical

techniques used to study the structure of nuclei, such as γ ray detection or β detection, are

ineffective. Hence, neutron spectroscopy must by employed as it is the most viable option in

these cases. Because the neutron unbound states have extremely short lifetimes (on the order
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of 10−21 seconds), they typically have decay widths on the order of keV to MeV as determined

by the uncertainty principle. These states are therefore deemed resonance states, and their

energies and decay widths provide important nuclear structure information on nuclei around

the drip line in an experimentally unique way.

An interesting region of the nuclear landscape that is currently a mystery, and which may

be understood through the probe of neutron spectroscopy, is around the neutron-rich oxygen

drip line. Experimentally it has been observed that the oxygen (Z = 8) drip line abruptly

ends at N = 16 24O, in sharp contrast to the fluorine (Z = 9) drip line, which extends

to at least N = 22 31F. No theoretical explanation has been provided to fully explain the

allowance of the binding of at least an additional 6 neutrons by adding only a single proton.

A possible partial solution has been conjured, that for the oxygen isotopes, a new magic

number appears at N = 16. Some indirect evidence for this new magic number has been

found; however, a direct measure of the energy gap has not occurred. Whether a new magic

number exists, direct measurement of it would add a great deal of insight into this region.

Two of the neutron-rich oxygen isotopes, in particular, the last bound nucleus 24O, and

the first unbound nucleus 25O, are to be the focus of this thesis work. The outline for the

thesis is as follows: The background and motivation for the experimental work will be given

first, followed by an explanation of the experimental and theoretical techniques and tools

that were needed to complete the study. Then, the analysis procedure and the results of

the experimental work will be presented, followed by a discussion and interpretation of these

observed values and their impact on the nuclear structure of neutron-rich nuclei. Finally,

the entire work will be summarized.
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CHAPTER 2

MOTIVATION

2.1 The Neutron Drip Line

Recently two neutron-rich isotopes (42Al and 40Mg) have been discovered at the National

Superconducting Cyclotron Laboratory (NSCL) at Michigan State University [3]. The

observation of these bound ground states is a general indication that the nuclear force is

not well understood at the nuclear extremes and more investigation along the neutron drip

line is needed. In Fig. 2.1 a section of the Chart of the Nuclides; which plots the combinations

of protons (vertical axis) and neutrons (horizontal axis), shows the newly observed isotopes

as well as all other observed isotopes from carbon to chlorine (Z = 6− 17). Experimentally,

the drip line has only been established up to oxygen; however, it had been believed that the

drip line had been reached up to sodium until this recent observation of 40Mg.

In their work, a 48Ca beam at 141 MeV/u was fragmented on a natW target to produce the

exotic Mg and Al isotopes. The 40Mg and 42Al isotopes were separated and then identified

by their energy loss and time-of-flight (ToF) information. The observation of 40Mg alone

is interesting as it extends the Z = 12 drip line to N = 28 and opens the question as to

the location of the drip line below Mg, i.e. for fluorine, neon, and sodium. 40Mg is in fact

even-even, having Z = 12 and N = 28, so the extra binding energy from the nucleon pairing

does not make this discovery a huge surprise as the staggered drip line is continued from

fluorine to magnesium (see Fig. 2.1). 42Al having a bound ground state however, disrupts

the staggered pattern and since it has an odd number of both protons and neutrons, its

discovery is quite surprising. This now suggests that for Z = 13 and above, the drip line

may in fact shift toward more heavy isotopes than was previously thought.

To investigate this point, two of the best global mass models were chosen to compare

with the experimental data, the finite range droplet model (FRDM) [4] and the Hartee-
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Figure 2.1: A section of the Chart of the Nuclides taken from Ref. [3] showing the
experimentally observed neutron-rich nuclei from carbon (C Z = 6) to chlorine (Cl Z = 17).
Proton number increases upward in the vertical direction and neutron number increases to
the right in the horizontal direction. The drip line predictions of the finite range droplet
model (FRDM) [4] and the Hartree-Fock-Bogoliubov model (HFB-8) [5] are also shown by
the solid and dashed lines respectively.
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Fock-Bogoliubov model (HFB) [5]. The predictions of these two models are shown by the

solid (FRDM) and dashed (HFB-8) lines in Fig. 2.1, where clear discrepancies are seen

between their drip line predictions. The FRDM is macroscopic in nature with the addition

of microscopic corrections for the single-particle structure as well as the pairing effects.

The HFB-8 version of the HFB model was chosen as it best reproduces the experimentally

measured masses. It is quite on the opposite side of the FRDM as it is a fully microscopic

model and is a contemporary quantum mechanical calculation. As can be seen in Fig. 2.1

both models have difficultly describing the regions around Mg-S and O-Na, while neither

correctly predicted the bound ground state of 42Al.

Focusing around the oxygen and fluorine region in Fig. 2.1, it is interesting to see the

large difference in the observed drip lines for these two elements. Experimentally it has been

determined that the bound oxygen isotopes abruptly end at N = 16 24O while the fluorine

isotopes extend to at least N = 22 31F [6, 7, 35, 36, 37, 38, 39]. These measurables suggest

that the addition of a single proton from Z = 8 oxygen to Z = 9 fluorine allows for the

binding of, at minimum, 6 more neutrons. Searches for 26O and 28O were very prevalent,

as many predictions had 26O bound to two neutron decay; however, no bound events have

been observed for either isotope. Shown in Fig. 2.2 are the data from two such searches for

the neutron-rich oxygen isotopes as well as evidence for the binding of 31F. As can be clearly

seen there are empty holes were the expected ground states of the oxygen isotopes should

be if they are in fact bound to neutron emission.

An expanded view of this region is shown in Fig. 2.3 where the FRDM and HFB-8 model

predictions are shown by the solid red line and dashed green line respectively. Neither model

is able to describe the fact that the oxygen isotopes are only able to bind until N = 16 (24O)

while the fluorine isotopes can handle an additional 6 neutrons up to at least N = 22 (31F).

As can be seen, the FRDM correctly (as far as we know) reproduces the fluorine and neon

drip lines. However, it overshoots the oxygen drip line by predicting a bound 26O ground

state. The HFB-8 is the inverse of this as it predicts correctly the end of the oxygen drip line

while coming up extremely short for the fluorine (N = 18) and neon (N = 20) drip lines.

A similar situation exists when the predictions of the oxygen drip line are investigated by

a number of different shell model interactions (USD, USD05a,b and SDPF-M) [11, 13, 27].

The oldest of the interactions is the original universal sd (USD) shell model interaction [13].

This interaction is defined by the 63 two-body matrix elements (TBMEs) and 3 single-particle
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Figure 2.2: Two examples of particle identification plots from searches for bound ground
states of the fluorine and oxygen isotopes. They each show element number Z on their
vertical axis and mass over charge A/Z on their horizontal axis. The figure on the left comes
from the fragmentation of a 40Ar beam at 94.1 A MeV on a Ta target [6] and on the right is
the results from the fragmentation of a 36S at 78 A MeV on a Ta target [7]. Clearly noticed
are the events identified for 29,31F and the absence events for 26,28O.

Figure 2.3: A selected region of the chart of the nuclides is shown for the neutron-rich carbon
(C Z = 6) to neon (Ne Z = 10) isotopes. All nuclei that are shown have been observed
experimentally and therefore lie within the drip line except for 25O. The calculated drip line
locations from the FRDM (solid red line) and the HFB-8 (dashed green line) mass models
are also shown on the chart.
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energies (SPEs) of the sd shell, which encompasses A = 16 − 40. The TBMEs and SPEs

were first calculated from a real nucleon-nucleon (NN) potential to create a re-normalized

G-matrix, and then were adjusted so as to reproduce the experimental data in the sd shell

region. Recently, the USD interaction has been refitted to the plethora of new data available

since its inception in 1988. The resulting interactions (USD05a and USD05b) differ by the

fact that only a selection of the TBMEs were allowed to vary in the fit for the USD05a,

while a completely free fit was performed to create the USD05b [27]. A highlight of this new

fit was a much clearer delineation of the “island of inversion” by the large discrepancy in

the ground state binding energies for Z = 10− 12 [27]. Finally, three separate components

were combined to create an interaction that allowed for calculations spanning across both

the sd and pf shells. This interaction, referred to as the SDPF-M interaction, is made of

the original USD interaction in the sd shell, the Kuo-Brown interaction for the fp shell, and

a cross shell component based on the Millener-Kurath interaction. Slight modification were

made however, including an adjustment of the T = 1 monopole terms for 0d5/2 − 0d3/2 and

0d5/2−0f7/2 to force the interaction to calculate the oxygen drip line at 24O, i.e. an unbound

26O ground state. Furthermore, care was taken to remove some pairing strength in the USD

interaction as effects from the fp shell will be handled explicitly. More details of the shell

model interactions will be presented in chapter 3.

The older USD interaction incorrectly calculates that 26O is bound by two-neutron

emission by 1 MeV, while the more recent fits to the data (USD05a,b) both correctly calculate

an unbound ground state by ∼500 keV. The SDPF-M interaction also predicts an unbound

26O ground state (-80 keV) by design. The SDPF-M interaction can also predict the binding

energies for fluorine as it is not confined to the sd shell and in doing so it is seen that it

incorrectly calculates the fluorine drip line to lie at N = 20 (29F) instead of N = 22. It was

mentioned in Ref. [40] that if the neutron 1p3/2 single-particle level was lowered by 350 keV

then both 29F and 31F become bound.

2.2 New Magic Number N = 16

An interesting phenomenon that has recently been suggested in the neutron-rich oxygen

isotopes, and may have implications on the location of the oxygen drip line, is the appearance

of a new magic number in the neutron shells at N = 16 because of an increased energy gap

between the ν1s1/2 and ν0d3/2 orbitals. This may impact the location of the neutron drip
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line as it may suggest a ν0d3/2 orbital that is high in energy, and hence, unbound. The

first experimental evidence for this new shell gap came from the investigation of the neutron

separation energies (Sn), the amount of energy needed to remove the outer most neutron

from a nucleus, as a function of isospin Tz = N−Z
Z

[8]. The Sn systematics as a function of

neutron number for nuclei with low isospin (Tz < 3), and therefore near stability in the p−sd
and sd shell regions, show sudden drops in energy following a magic number, i.e. N = 8

and 20. This experimental observable is shown in Fig. 2.4 where in (a) all of the measured

Sn values for nuclei with odd N and even Z are plotted and in (b) where Sn is plotted

for nuclei with both N and Z odd. The upward arrows guide the eye for the “traditional”

magic numbers that are present near stability and can be seen in both (a) and (b) that for

low isospin (Tz) the breaks in energy are present. As the isospin is increased toward more

neutron-rich nuclei (Tz ≥ 3) the “traditional” magic numbers begin to fade away; however,

a new break appears at neutron number 16. The downward arrow in Fig. 2.4 guides the eye

for this new gap for high isospin.

Further indirect empirical evidence for a new shell closure at N = 16 comes from

the absence of an observed bound excited state in both 23O and 24O. These states were

studied using a Barium Fluoride (BaF2) detector array to collect the γ rays produced by

the fragmentation of a 36S beam on a Be target [9]. No evidence for any γ-decaying state

from either of the two neutron-rich oxygen isotopes was found. The spectrum showing the

lack of a bound excited state in 24O is presented in Fig. 2.5. In particular, the lack of a

bound excited state in 24O determined that the first excited state must lie above the neutron

threshold, which from a recent mass measurement puts that level above 4.09(10) MeV [24].

With this first excited state most likely being the 2+ state, a lower limit is established for

its excitation energy at 4.1 MeV. This energy is relatively high as compared to the 2+ state

in 22O (3.19 MeV) [41, 42], believed to have a sub-shell closure at N = 14.

2.3 Shifting Shells

To understand the appearance of a new shell gap at N = 16 the underlying single-particle

structure of the oxygen isotopes must be investigated. Oxygen with Z = 8 protons, fills the

first three lowest single-particle orbitals (0s1/20p3/20p1/2). The next single-particle (0d5/2)

level is much higher in energy and therefore creates a gap at Z = 8. The gap between shells
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Figure 2.4: Sn values as a function of neutron number for (a) nuclei with odd N and in (b)
where nuclei with both N and Z odd are both plotted. The symbols correlate to different
isospin (Tz) values from 1/2 to 9/2 in (a) and 0 to 5 in (b). The arrows are there to guide the
eye to the breaks in the Sn values for magic numbers. The tradition numbers for N = 8 and
20 are shown for low isospin with a new magic number at N = 16 appearing for TZ > 3. [8]

creates the appearance of the magic number Z = 8 for the protons. Since this proton shell

gap is relatively strong, it is possible to investigate the neutron shell structure independent

of the effects of the protons, across the oxygen isotopes.

The oxygen isotopes may be investigated by their predicted effective (spherical) single-

particle energies (ESPEs) which are shown for a number of different interactions in Fig. 2.6.

The ESPEs represent the overall mean effects from all other nucleons on a single nucleon in

a specific orbital. Therefore, the energies of these single-particle orbitals show the locations

of shell gaps and the magic numbers. Fig. 2.6 shows the evolution of the single-particle

energies (SPEs) for Z = 8 as a function of neutron number. The upper left corner shows the

predictions for the universal sd shell model interaction [13] that was described above. As
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Figure 2.5: The γ-ray spectrum for 24O from a BaF2 array following the fragmentation of a
36S beam on a Be target is shown in both a) and b) by the solid black line. As can be seen
no clear γ-ray lines stand out against the background. To support this claim a simulated
decay at an energy of 3.6 MeV is shown in b) by the dashed line [9].

can be seen, the orbitals move around in energy and therefore create relatively large gaps

between different orbitals for certain neutron numbers. In particular, when neutrons fill the

0d5/2 orbital (N = 14) a shell gap is created between 0d5/2 and 1s1/2 creating a semi-spherical

22O. This sub-shell closure has indeed been confirmed experimentally [41, 42]. Also noticed

is that a filling of the 1s1/2 orbital (N = 16 24O) creates a new shell gap as the 0d3/2 orbital

sits much higher in energy. Therefore, the appearance of a new magic number at N = 16

could be understood by the evolution of these single-particle levels.

The appearance of new shell gaps in the oxygen isotopes is also apparent when the SDPF-

M interaction is used to calculate the single-particle energies [11]. Fig 2.7 shows the oxygen

orbitals as a function of neutron number on the left, while the right side of the figure shows

the orbitals for neutron number 20 as a function of proton number. Again, clearly visible

is the sub-shell closure at N = 14 (22O) and the appearance of a large shell gap at N = 16

for Z = 8 (24O). Furthermore, the right side of Fig. 2.7 shows the strong proton dependence

that the single-particle energies (SPEs) have. As proton number is increased from Z = 8 to

Z = 20, the N = 16 shell gap dissolves and the traditional gap at N = 20 reappears between

the ν0d3/2 orbital and the fp shell orbitals. It should be noted that the appearance of the
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Figure 2.6: The single-particle energies (SPEs) for Z = 8 as a function of neutron number
from four different calculations. The phenomenological USD effective interaction, a standard
Woods-Saxon potential, Skyrme Hartree-Fock potential and the NL3 relativistic potential.
The orbitals go from bottom to top for all calculations as the ν0d5/2, ν1s1/2, and the
ν0d3/2 [10].

N = 16 shell closure is directly related to the reduction in the N = 20 shell gap for the lower

Z values, i.e. Z < 13.

A specific case that highlights the shell evolution and appearance of the N = 16 shell gap

is shown in the top of Fig. 2.8 where the ESPEs for 30Si and 24O are plotted. Each of these

nuclei has N = 16 but far different Z, 30Si has Z = 14 and 24O has Z = 8. The effects of the

added protons in the 0d5/2 for Z = 14 are obvious as the N = 16 shell gap is not apparent

for 30Si. Hence, the energy of the ν0d3/2 orbital can be greatly influenced by the number of

protons present.

The underlying nature of the N = 16 shell gap is the energy separation of the ν1s1/2

orbital and the ν0d3/2 orbital. These single particle levels must become separated through

some interaction to create a shell gap between them. One proposed mechanism for the

strong evolution of these SPEs is the nucleon-nucleon (NN) tensor force, in particular the

spin-isospin component of this force [43, 12]. The NN interaction shown in the middle of

12



Figure 2.7: Calculated effective single-particle energies (ESPEs) from the SDPF-M inter-
action [11] for constant Z = 8 in (a) and constant N = 20 in (b). Note the location of
the ν0d3/2 orbital for Z = 8, and the appearance of the new shell gaps for N = 14 and
N = 16 [12].

Fig. 2.8 is written as

Vτσ = τ · τσ · σfτσ(r) (2.1)

with “·” denoting the scalar product between the isospin (τ) and spin (σ) operators. fτσ(r)

is a general function of the interaction distance r. If we assume a relatively featureless

function of r then Vτσ produces a strong attraction between a spin- and isospin-flip pair

of orbitals (j> = l + 1/2 − j< = l − 1/2 and proton-neutron). The strong interaction is

described in figures in the bottom of Fig. 2.8 where the spin- and isospin-flips are favored at

the vertices [12].

This force creates a strongly attractive feature for protons and neutrons in the spin flipped

orbitals, i.e. j> = l + 1/2 and j< = l − 1/2. In this specific case, the angular momentum is

l = 2 for the d orbitals hence, the ν0d5/2 and ν0d3/2 orbitals. As protons are added to the

0d5/2 orbital they start to interact strongly with the neutrons that occupy the 0d3/2 orbital
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Figure 2.8: The top portion of the figure shows ESPEs for 30Si and 24O both having N = 16,
but only 24O having a large shell gap at N = 16. The middle section shows the attractive
nature of the tensor force between spin partners, i.e. the protons in the 0d5/2 orbital and
neutrons in the 0d3/2 orbital. The bottom portion shows the process for the spin-isospin flip
interaction.

pulling it down. However, for the oxygen isotopes there are no protons in the j> = 0d5/2

orbital, so the attraction is missing, allowing the 0d3/2 orbital to remain high in energy and

hence creating the new N = 16 shell gap for Z = 8.

Furthermore, just how high in energy the 0d3/2 orbital sits is very important to

understanding the oxygen drip line. It can be noticed that the ESPE of the 0d3/2 orbital

in the predictions using the USD interaction is negative for N = 18 (Fig. 2.6). When two

neutrons are added to this orbital, as is the case for 26O (N = 18), the ground state is

understandably bound by ∼1 MeV [13]. This disagrees with the experimental result that

26O has an unbound ground state as mentioned above. However, for the calculations of

the SDPF-M interaction, as seen in Fig. 2.7 the 0d3/2 orbital is positive and therefore may
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result in an unbound 26O ground state. Indeed the SDPF-M interaction does predict an

unbound 26O ground state consistent with experimental measurements [11]. Also, the new

USD05 interactions both predict an unbound 26O ground state by nearly 500 keV [27]. This

result came out of the fit to the data for the USD05 interactions and the main reason was

that the ν0d3/2 orbital was found to be raised by 500 keV as compared to the original USD

interaction.

The energy of the ν0d3/2 orbital is very crucial to understanding the oxygen drip line and

its discrepancy with the fluorine drip line. By investigating the ground state of the N = 17

25O nucleus, the first determination of the location of the 0d3/2 neutron orbital can be made

beyond the oxygen drip line. Furthermore, the location of the first excited states in 24O also

gives an indication of the size of the energy gap between the 1s1/2 and 0d3/2 levels, hence,

providing further spectroscopic information at the oxygen drip line.

To have strong evidence of the new magic number of N = 16 a direct measurement of

the lowest excited states in 24O is needed. As was mentioned above, no bound excited states

have been previously observed and therefore an investigation of the neutron resonance states

is the only way to determine these levels. In particular, evidence of the lowest lying 2+ level,

which is predicted to be the first excited stated [13, 11, 27], may be observed. Then the level

can be compared to other even-even isotopes to give a clear indication of its magicity.
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CHAPTER 3

TECHNIQUES AND THEORY

The ground state of 25O and the excited states of 24O were populated by nucleon removal

(knock-out) reactions from a radioactive 26F beam. These states are unbound to neutron

emission, and therefore, decay via the strong force on a timescale of ∼10−21 seconds. To

reconstruct the energy of the decaying 25O or 24O state, the invariant mass method was

used. The experimental decay spectra were fit by various line-shapes to reproduce the

measured decay components. The line-shapes include; a single-level Breit-Wigner function

to describe resonances, and a Gaussian or Maxwellian distribution to reproduce the non-

resonance components. From this procedure, the characteristics of excited states in 24O

were measured along with a ground state mass measurement of 25O. Theoretical comparisons

of the observed resonance widths were made with single-particle estimates to confirm the

validity of the fits to the data. Also, interpretation of the physical results and theoretical

guidance came from a number of calculations. In particular, comparisons were made with the

predictions and calculations of the many-body shell model using the USD [13], USD05 [27]

and SDPF-M [11] interactions.

3.1 Reaction Mechanism: Nucleon Knock-Out

The use of nucleon knock-out reactions from fast radioactive beams has become an excellent

way to study the structure of neutron-rich exotic nuclei [44]. For the population of the states

in the neutron-rich oxygen isotopes of interest, a radioactive 26F beam was impinged on a

Be target. The 1+ ground state [45] configuration of 26F is believed to be dominated by a

single proton in the π0d5/2 orbital (Z = 9) and 17 neutrons filling up to a single neutron

in the ν0d3/2 orbital. This neutron configuration is the same that has been predicted to

dominate the ground state of 25O [13, 27, 11]. Therefore, the removal of the valence proton
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(π0d5/2 proton) from 26F should strongly populate the ground state of 25O. The calculated

spectroscopic factor between the ground states of 26F and 25O, using the USD interaction,

is in fact 0.91 [13, 1]. The spectroscopic factor supports the strong overlap between these

two states, since 1.0 would represent perfect overlap. More information on the calculation of

the spectroscopic factor, and its meaning, is given below in section 3.5. Shown in Fig. 3.1,

are the calculated cross sections from the removal of a proton from 26F from the USD shell

model interaction [13]. The removal of a π0d5/2 proton is shown to have a strong direct

population to the 25O ground state as mentioned above. The measured cross sections for

only the bound ground states of the oxygen isotopes are also shown in Fig. 3.1 [14]. The

cross section measurements came from the identifications of the ground states of the various

oxygen isotopes following proton knock-out from the fluorine beams. The identifications of

the oxygen isotopes are shown in Fig. 3.2.

Also shown in Fig. 3.1, is a relatively large cross section (σcalc = 25 mb) for the population

of high energy states (> 5 MeV) from the removal of a proton from the p–shell, i.e. π0p3/2

or π0p1/2 orbitals. The large cross section suggests that a large number of continuum states

may be populated from the same reaction. The high energy continuum states, inparticular

those of 25O, may cascade by neutron emission into the low lying excited states of 24O. Hence,

the low lying neutron unbound excited state in 24O could be measured in the same manner

as the ground state decay of 25O, i.e. ground state fragment plus coincidence neutron. This

type of selective population was previously identified in a 26Ne knock-out reaction on a Be

target. In their work, only a weak population of the low lying excited states in 24O were

observed, and instead, the first excited state in 23O was populated prominently [46].

Another possible avenue for the population of the excited states in 24O, would be from

a direct proton-neutron knock-out from the 26F beam. If each valence nucleon (proton from

the π0d5/2 orbital and a neutron from the ν0d3/2 orbital) were to be removed, the resulting

24O would sit in its bound ground state. Therefore, there would be no neutron decay, and it

would not be observed in the present experiment. In order to populate the excited states in

24O, the valence proton, plus a neutron below the occupied ν0d3/2 orbital, would both have

to be knocked-out. This process has a very small probability relative to a single nucleon

removal reaction.

Proof that the nucleon removal reaction from 26F populates at minimum the ground

states of the bound neutron-rich oxygen isotopes, is shown in the bottom Fig. 3.2. Here, the
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Figure 3.1: The calculated spectroscopic factors and cross sections from the USD [13] shell
model interaction, are shown on the left side of the figure for the proton removal reaction
of 26F on a Be target [14]. The observed cross sections to the bound ground states of the
oxygen isotopes for the same reaction are also shown by the arrows to their respective ground
states.

clear identification of the 24−21O ground states, and their measured cross sections, from the

proton knock-out of the fluorine beams, provides support for such a mechanism to populate

excited states in this region. Also apparent from the measured data of Fig. 3.2, is only a

very small amount of charge exchange cross section from the 24F beam to the ground state

of 24O (top of Fig. 3.1). The lack of population of 24O, provides support that the charge

exchange reaction from 26F to 26O→24O+n+n, should not be a strong contributor to the

total reaction cross section of 24O+n data.

3.2 Invariant Mass Method of Reconstruction

The invariant mass method is a well established technique used to reconstruct the rest mass of

a resonance decay that has multiple final state fragments. The neutron decays of the ground
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Figure 3.2: The distribution of the measured oxygen isotopes from the proton knock-out
reactions from 24F (top), 25F (middle), and 26F (bottom) are shown. From these values,
the observed cross sections of Fig. 3.1 were determined. Furthermore, the lack of a strong
population of 24O in the knock-out reaction from 24F, shows the weakness of the charge-
exchange reaction channel [14].

state of 25O and the excited states in 24O, are mediated through the strong force. A decay of

this nature is on the timescale of zeptoseconds (10−21 seconds). Therefore, these states may

be reconstructed using the invariant mass method. The formulation of the invariant mass is

given below for a two–body neutron decay. It should be noted that the speed of light has

been set to equal 1 (c = 1) unless otherwise specified.

The four-vector representations for the total energies and momenta of the original state,
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and each of its decay components, are given by

P µ
i = (Ei, ~Pi), (3.1)

P µ
f = (Ef , ~Pf ), (3.2)

P µ
n = (En, ~Pn). (3.3)

The initial state is represented by i, f represents the fragment, and n is the label for the

neutron. The decay process of the initial state into the two final products can then be written

as

P µ
i = P µ

f + P µ
n . (3.4)

The four-vectors are invariant to a Lorentz transformation. Taking the square of the left

side of equation 3.4 results in a constant value. The square of both sides of equation 3.4

reveals

s = (P µ
i )2 = (P µ

f + P µ
n )2 = M2

i = M2
f +M2

n + 2(EfEn − PfPncosθ), (3.5)

where s is the constant invariant value. The rest mass of the initial state Mi, is related to the

rest masses of the final products (Mf ,Mn), and the kinetic properties in the laboratory frame.

The E’s are their total energies, the P ’s are the momentum, and θ gives the angle between

the fragment and the neutron in the laboratory frame. The rest mass of the reconstructed

decay is simply the square–root of the invariant quantity, expressed as

Mi =
√
s =

√
M2

f +M2
n + 2(EfEn − PfPncosθ). (3.6)

Finally, the decay energy of the state may also be calculated by simply removing the rest

masses of the decay products,

E∗ =
√
s−Mf −Mn. (3.7)

What is made clear by this procedure is that in order to complete the reconstruction of

the initial state via the invariant mass, the complete four-vectors are needed for the decay

products. This means a full kinematic measurement of both the outgoing fragment and

neutron. Once these values have been determined, the decay energy may be easily found

using the expressions presented above.
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3.3 Decay Spectrum Line-Shapes

To extract information from the reconstructed invariant mass spectra for 23O and 24O

fragments that have been found to be in coincidence with a neutron, the specific features of

the spectra must be reproduced properly. There are two main components that contribute to

the resonance spectrum. The resonance features of the state may be described by the single-

level energy dependent Breit-Wigner line-shape. The non-resonance features contributing

to the decay spectrum may be represented by either a Maxwellian distribution of beam

velocity neutrons or a Gaussian distribution. The functional forms of these line-shapes are

given below.

3.3.1 Resonance: Single-Level Breit-Wigner Line-Shape

The resonances observed in this work follow the decay process A→ b+ c, where one of the

decay products is a neutron. A resonance of this nature may be thought of in terms of a

neutron with variable energy being scattered from the fragment nucleus. The cross section

that would be measured in such a thought experiment may be well described by the R-matrix

theory [47]. In particular, independent isolated resonance states in this cross section may

be described by a single-level Breit-Wigner cross section distribution [48]. Although, in the

present measurement, a cross section is not measured in absolute terms, the Breit-Wigner

line-shape shall describe the resonance features that appeared in the data. The full energy-

dependent Breit-Wigner line-shape that has been adopted to describe the resonance features

of the experimental data may be expressed as

σl(E) ∝ Γl(E)

(Edecay + ∆l(E)− E)2 + 1
4
Γl(E)2

. (3.8)

E is the relative energy between the fragment and the neutron, and Edecay is the resonance

energy of the isolated state (when ∆l(Edecay) = 0). It should be noted that the phase factor

is not needed here as only the decay channel has been observed in the reaction. The partial

width of the state is given by Γl(E). Since only the outgoing decay channel of the resonance

was observed, and there is only a single decay channel via a neutron, the partial width in

this work is also the total width (just deemed the width). The width Γl(E) has both energy

and orbital angular momentum dependence as

Γl(E) = 2Pl(E)γ2. (3.9)
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The γ2 is the reduced width squared and contains the wave function information of the

states. Pl(E) is the penetrability function, which is related to the spherical Bessel functions.

The shift factor (∆l(E)) also holds energy and orbital angular momentum dependence by

∆l(E) = −(Sl(E)−B)γ2. (3.10)

The Sl(E) is the shift function and is also related to the spherical Bessel functions and their

derivatives. B is a boundary condition that must be set. A further description of each of

these values and functions mentioned is presented below.

The single-level Breit-Wigner distribution may be derived from the R-Matrix theory, as

done by Lane and Thomas in Ref. [47]. Although a complete derivation of the R-matrix

analysis is beyond this work, the major points of the theory pertaining to the Breit-Wigner

expression are highlighted below.

R-matrix theory is developed out of the solution for the nuclear wave functions at a

boundary. The boundary condition represents the minimum distance that the two nuclei

may come together without feeling a nuclear force from the other. This boundary condition

is determined by the so called interaction or channel radius given as

a = r◦(A
1/3
1 + A

1/3
2 ), (3.11)

where typically r◦ = 1.4 − 1.5 fm. Therefore, this radius is slightly larger than the size of

the two nuclei, i.e. r◦ ≈ 1.2 fm.

The general Schrödinger equation for the radial wave functions, including the orbital

angular momentum l, and the Coulomb potential V for the external region, is given by[
d

dr2
− l(l + 1)

r2
− 2M

~2
(V − E)

]
ul(r) = 0. (3.12)

V = 0 in this instance as the Coulomb interaction is non-existent in the case of neutron

decay. The general solutions of this equation come in two forms; either as incoming and

outgoing waves (Il, Ol), or as the regular and irregular solutions (Fl, Gl). The two forms of

the solution are related by

Il = (Gl − iFl),

Ol = (Gl + iFl).
(3.13)

The incoming and outgoing waves are related to the Hankel functions according to

Il = −i(πρ/2)1/2H
(2)
l+1/2(ρ),

Ol = i(πρ/2)1/2H
(1)
l+1/2(ρ);

(3.14)
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and the F and G functions may be related to the J-type Bessel functions by

Fl = πρ/2)1/2Jl+1/2(ρ),

Gl = (−1)l(πρ/2)1/2J−(l+1/2)(ρ).
(3.15)

In each case ρ = ka, where a is the interaction radius (eq. 3.11). k2 = 2ME
~2 , with M being

the reduced mass of the system and E the relative energy between the particles.

In the external region the logarithmic derivative of the wave function is needed to

determine the cross section. Therefore, the expression for the wave function’s logarithmic

derivative is given by

Ll = (
ρO

′

l

Ol

)r=a = Sl + iPl. (3.16)

The Sl and Pl are the shift and penetrability functions mentioned above. These are explicitly

expressed in terms of the F and G functions by

S =
[
ρ(FlF

′

l +GlG
′

l)/(F
2
l +G2

l )
]
r=a

,

P =
[
ρ/(F 2

l +G2
l )
]
r=a

.
(3.17)

The physical R-matrix is determined from the manipulation of the Schrödinger equation

for the radial part of the wave function (eq. 3.12) for a particle at two energies. Using an

application of the Green’s theorem relation, the R-matrix, which relates the internal wave

function to its derivative on the surface may be given by

R =
~2

2Ma

∑
decay

|ul(a)|2

Edecay − E
=
∑ γ2

Edecay − E
. (3.18)

γ is the same reduced width as mentioned above, and here we see it represents the wave

function at the boundary condition r = a,

γ = (~2/2Ma)1/2ul(a). (3.19)

The relation of the R-matrix to the collision matrix U , needed to calculate the cross section,

may be found by equating the logarithmic derivatives from the two regions at the boundary

(r = a). The relation of U to the R-matrix and to L is

Ul =
Il
Ol

1− L∗lRl

1− LlRl

= e2iδl . (3.20)

U may be expressed in terms of the phase shift δ because the R-matrix has real values. It

should be noted that L∗l represents the complex conjugate of the function L.
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Each Edecay in equation 3.18 represents an eigenvalue identifier for a specific resonance

energy. If one assumes that only a single resonance dominates the spectrum, the summation

may be dropped. When this is carried out

R =
γ2

Edecay − E
; (3.21)

and the one-level approximation for the phase shift becomes

δl(E) = tan−1

( 1
2
Γl(E)

Edecay + ∆l(E)− E

)
− φl. (3.22)

φl is the hard sphere scatter phase shift. The width Γl(E) is the same as equation 3.9 and

∆l(E) is the shift factor of equation 3.10. The resonance contribution to the collision matrix

in the one-level approximation (eq. 3.21) is then

Ul =
iΓ

1/2
l1

(E)Γ
1/2
l2

(E)

Edecay + ∆l(E)− E − i
2
Γl(E)

, (3.23)

where the Γl1(E) and the Γl2(E) are the partial widths of the incoming and outgoing

resonances. Again, for this measurement, only the decay channel has been experimentally

observed and the incoming width will be removed from the final cross section expression.

Inserting equation 3.23 into the cross section equation related the U collision matrix,

σl =

∫
σ(θ)dΩ = πk−2

∑
l

(2l + 1)|1− Ul|2; (3.24)

results in the original Breit-Wigner single-level equation

σ =
π

k2
gj

Γl1(E)Γl2(E)

(Edecay + ∆l(E)− E)2 + 1
4
Γl(E)2

. (3.25)

The gj is statistical factor given by

gj =
2J + 1

(2Il1 + 1)(2Il2 + 1)
, (3.26)

with J being the total spin of the state, and I representing the momenta of the incoming

and outgoing channels.

This result for the single-level Breit-Wigner equation (eq. 3.25) describes the observable

cross-section when moving through a single resonance at energy Edecay and spin J . This

is the final equation used to describe the resonance features of this work with some small
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modifications. The first change is the removal of the incoming resonance width. The second

change is allowing for the amplitude of the line-shape to vary. Hence, the phase and statistical

factors out front of the cross section expression are absorbed into the amplitude parameter.

The final Breit-Wigner line-shape adopted was given above in equation 3.8. The parameters

of the Breit-Wigner fit must then include the resonance energy Edecay, the energy dependent

width Γl(E) via the reduced width γ2, the orbital angular momentum l, and the overall

amplitude.

The choice for the boundary conditions (the channel radius a, and inside the shift factor

B), were determined based on standard values. The expression for a (eq. 3.11) was used

to set the boundary point for the matching of the wave functions based on the fragments

involved. A1 was equal to either A = 23 or 24, depending if the state was from 24O or 25O.

A2 = 1 in both cases as it represented the neutron. The B value was set so that at the

resonance energy, ∆l(Edecay) = 0. Therefore, B was made to equal the shift function at the

resonance energy, Sl(Edecay). This was chosen so that the observed resonance energy would

not lie outside of the resonance width.

Finally, it should be made clear that the inclusion of both the energy dependence of

the width Γ, and the shift factor ∆, were both important to the final line-shape in the

decay distribution. Hence, this has important effects when comparing with the experimental

data. Shown in figure 3.3 are Breit-Wigner line-shapes that include all energy dependence

components (red line), a lack of a shift factor but energy dependent width (green line), lack

of energy dependence in the width and no shift factor (blue line), and a lack of an energy of

the width but inclusion of a shift factor (purple line). What is clearly noticed is the strong

variations between these lines-shapes for this l = 2 orbital angular momentum fit. Hence,

the importance of the proper line-shape is made clear. In particular, the need for the shift

factor when investigating nearly pure single-particle states.

3.3.2 Non-Resonance: Gaussian and Maxwellian Distributions

To simulate the non-resonant features of the decay spectrum a Maxwellian distribution of

beam velocity neutrons and a Gaussian distribution of neutrons were used as inputs into the

decay spectrum line-shape. A Maxwellian distribution of beam velocity neutrons was used
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Figure 3.3: The Breit-Wigner line-shape (eq. 3.8) is plotted with an orbital angular
momentum of l = 2, at a decay energy of Edecay = 0.7 MeV, and width of Γ = 0.2 MeV,
with various components. The two components are the energy dependence of the width Γ,
and the inclusion of the energy-dependent shift factor ∆. The full energy-dependent Breit-
Wigner function is given by the red line, the function lacking the shift factor but including
the energy dependence of the width is shown by the green line. The function with a full lack
of energy dependence is shown by the blue line, and the function with no energy dependence
in the width but an inclusion of the shift factor is shown by the purple line. All of the lines
have been normalized to each other.

of the form

fp =

(
1

2πmkT

)3/2

e−
~p2

2mkT , (3.27)

where the thermal temperature T of the distribution was a free parameter. This temperature

gives an indication of the kinetic energy, and its spread for the system. This expression given

in units of energy, which is needed to compare with the decay spectrum, is

fEdE = fp

(
dp

dE

)
dE = 2

√
E

π(kT )3
e−

E
kT dE. (3.28)
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Figure 3.4: The two non-resonance input distributions, Gaussian (red line) and Maxwellian
(green line), for the ST-mona [15] Monte Carlo simulation, are shown in the figure. The
free parameters of each distribution have come from a best fit to the experimental 23O+n
coincidence data. The Gaussian distribution has Ec = 10 MeV, and σ = 5 MeV. The
Maxwellian distribution has a thermal temperature of T = 1.75 MeV.

The Maxwellian line-shape that was input into the decay distribution of the ST-mona [15]

Monte Carlo simulation, is shown by the green line in Fig. 3.4. The result of this distribution

in the final decay spectrum is shown in Fig. 6.7 in Chapter 6 by the green line also.

The Gaussian non-resonance distribution is given by

fG ∝ e−
(E−Ec)2

2σ2 , (3.29)

where the centroid energy Ec, distribution width σ, and the amplitude of the distribution,

are all free parameters. The distribution that was used as input for the decay distribution

of the Monte Carlo simulation, and its result in the final decay distribution are shown by

the red lines in Figs. 3.4 and 6.7 (chapter 6), respectively.

It should be noted, that although the two non-resonance distributions vary in their

functional form, their final structures in the decay spectrum do not differ largely. Therefore,

the choice of the non-resonance distribution does not drastically alter the fit to the observed
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data. More discussion on this point will take place in chapter 6.

3.4 Single-Particle Width

To understand the observed width at the resonance energy (Γl(Edecay)) that has been

extracted from the Breit-Wigner line-shape fit, it may be compared to a width of a pure

single-particle state. The pure single-particle prediction, by definition, uses only a single

orbital angular momentum (l) state in the calculation. In the analysis of the resonance

states of 24O and 25O, two single-particle calculations were used to predict single-particle

widths. The first method used a simple square well potential to estimate the nuclear mean

field, and therefore, predict the width of a resonance state for a neutron with a certain orbital

angular momentum [49]. The second approach, used a Woods-Saxon potential as the mean

potential. The parameters of the Woods-Saxon were adjusted to reproduce the energies and

levels in 17O and 17F. The single-particle width was then calculated from the amplitude of

the wave function for a resonance with particular spin J , and orbital angular momentum l.

The simplest way to determine a single-particle width is to take a spin-less neutral particle

and scatter it off a spherically symmetric three-dimensional square well potential. This is an

ideal procedure for the present work since we are concerned with neutrons, although they

do have an intrinsic spin of 1/2. This procedure follows the same format as the previously

presented R-matrix theory. The added component is an approximation of γ2, the reduced

width. The approximate value is solved for and this value is used to retrieve the total single-

particle width Γsp. Starting by inputting the square well potential into the Schrödinger

equation, results in

(
d2

dr2
+ k2 − l(l + 1)

r2
)ul(r) = 0. (3.30)

And for a radius larger than the size of the potential (r > R) we have

k2 =
2ME

~2
(3.31)

and,

ul(r) = rRl(r). (3.32)

Here, Rl(r) is the radial component to the wave function. The solutions to this differential

equation are given in terms of the spherical Bessel and Neumann functions,

Fl(r) = krjl(kr) (3.33)
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and

Gl(r) = krnl(kr). (3.34)

The general solution is then of the form

ul(r) = cosδlFl(r) + sinδlGl(r) (3.35)

with δl representing the phase shifts for the various orbital angular momentum. The phase

shifts may be determined by the boundary conditions imposed on the wave function at the

boundary r = R. Here, the wave function and its derivative must both be continuous. This

boundary condition is expressed by the logarithmic derivative Ll,

Ll = R
1

ul(R)
(
dul
dr

)
r=R

. (3.36)

The value for Ll can be found when we evaluate the boundary condition for r < R. Setting

V0 as the constant of the potential, we have for the solution of the Schrödinger equation

(eq. 3.30) for r < R,

K2 =
2ME

~2
(E − V0) (3.37)

with

ul ∝ KRjl(KR) (3.38)

and,

Ll = 1 +KR
j
′

l(KR)

jl(KR)
, (3.39)

where the prime denotes a derivative with respect to the energy E.

A convenient form for the expression of the phase shift may be given by

exp2iδl =
Ll −∆l + iPl
Ll −∆l − iPl

exp2iξl. (3.40)

∆l is given by

∆l =
GlG

′

l + FlF
′

l

G2
l + F 2

l

(3.41)

and Pl reflects the penetrability through the barrier and is expressed as

Pl =
GlG

′

l − FlF
′

l

G2
l + F 2

l

= kRvl(kR) (3.42)
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with vl(kR) representing the ratio of the transmission at r = R to r = ∞. Finally, the

expression for ξl relates the phase shift from the scatter off a solid sphere. It is related to

the Bessel and Neumann functions by

exp2iξl =
Gl − iFl
Gl + iFl

. (3.43)

Assuming a resonance feature, which may appear if the lifetime of the state is long

compared to the time it takes for the particle to traverse the size of the nucleus, we then

have sl � 1 and ξl � 1. The phase shift will be small everywhere except around the

resonance energy Edecay and so

Ll(Edecay)−∆l(Edecay) = 0. (3.44)

Expansion of this expression around the resonance energy leads, to first order, to

Ll(E)−∆l(E) = −1

γ
(E − Er), (3.45)

with the reduced width γ, equaling

γ−1 = −
(
∂Ll(E)

∂E

)
E=Edecay

+

(
∂∆l(E)

∂E

)
E=Edecay

. (3.46)

As was the case with the Breit-Wigner single-level equation (eq. 3.8), the observed width

Γl(E), is related to the reduced width by Γl(E) = 2Pl(E)γ2. Therefore, to calculate the

single-particle prediction for the observed width, the value of γ must be evaluated. From

the solutions of the Schrödinger equation we have(
∂Ll(E)

∂E

)
E=Edecay

≈ −MR2

~2
(3.47)

for kR < l1/2 and (
∂∆l(E)

∂E

)
E=Edecay

≈ MR2

~2

2

2l − 1
(3.48)

for l > 0 and kR < l1/2, while zero for l = 0. Inserting these into eq. 3.46, we get the

resulting single-particle predictions from a spherical square well potential

Γsp =


2~2

MR2kRvl(kR)2l−1
2l+1

l > 0, kR < l1/2

2~2

MR2kR l = 0

(3.49)
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The second method to calculate the single-particle width for a resonance state used a

Woods-Saxon potential to describe the mean effects of the nucleons on a single nucleon. The

Woods-Saxon potential is given by

V (r) =
V◦

1 + exp( r−R
a

)
. (3.50)

Also included into the potential was the strong-spin orbit contribution, related to the Woods-

Saxon potential V (r) by

Vso(r) ∝ −
1

r

dV (r)

dr
~l · ~s. (3.51)

V◦, Vso, R and a are the overall strength, spin-orbit strength, radius, and diffuseness param-

eters, respectively. These parameters were set by matching the single-particle energies and

widths of the ground and single-particle states of 17O. These states are the 5/2+, 1/2+ and

3/2+ states of 17O. To calculate these states the Schrödinger equation was solved for this

potential for a specific spin and orbital angular momentum. The wave function from this

state can then be calculated at a specific radius. The amplitude squared of the wave function

may also be calculated at this particular distance and for the same conditions but with a

different energy. From the amplitude squared of the wave function, a relative probability for

the particle at a certain energy (and constant distance) may be obtained. It is the centroid

of this distribution that gives the resonance energy of the state with chosen J and l values.

The FWHM width of the distribution leads to the single-particle resonance width. Since

these calculations are for a single-particle state, the spectroscopic factor of the state being

compared must be multiplied with the single-particle width to directly compare with the

experimental data. In the same sense, if a spectroscopic factor were unknown, comparison

with the single-particle width would indicate the spectroscopic factor for that state.

To confirm the validity of the parameters of the potential, the calculated single-particle

states in 17F were reproduced. Inputting the matched parameters into Woods-Saxon

potential allowed the calculation of the states in 24O and 25O. The potential radius was

increased as R = 1.2A1/3 fm and the reduced mass of the system was adjusted. Furthermore,

the overall depth of the potential was adjusted to match the observed decay energy for each

state. Therefore, a second independent prediction of the single-particle width was made

possible.
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3.5 Shell Model Calculations

To understand the significance of the physical results obtained for the neutron unbound states

of the oxygen isotopes, they are to be compared with theoretical calculations and predictions.

Furthermore, the theoretical calculations may also provide important information to guide

and support the interpretation of the experimental data. The main theoretical model that

has been utilized in this study is the large-scale Shell Model. A brief history of the origins

of the shell model will be given below. Following this, a description of the workings of the

modern shell model, and a description of the various shell model interactions that are to be

used, is to be presented.

The idea that nuclei may be described by an underlying shell structure came about from

a plethora of empirical evidence. The data showed that there were distinct experimental

signatures for certain numbers of protons (Z) and neutrons (N). These particular nucleon

numbers became known as magic numbers. Specific evidence for these magic numbers came

from data that showed increased binding energies, and large numbers of stable isotopes for

certain elements. Also, observed neutron and proton separation energies (the amount of

energy needed to remove the outer most nucleon), showed sharp drops in energy directly

after a magic number of nucleons. Neutron cross sections also revealed a lack of absorption

at particular nucleon numbers, and for these same magic numbers discrepancies with the

radius following the mass relation A1/3 were found. Furthermore, some of the strongest

evidence was found from the energies of the first excited states in nuclei. In particular, the

2+ level in even-even nuclei, was a key signifier of magic or doubly magic nuclei. The energy

of the first 2+ state, if relatively high, indicated that the nucleus was spherical. This means

that the energy gap to the next highest single-particle orbital must be large, and therefore,

a magic number has been identified. The B(E2) value for an excited state (2+ states in

particular), also indicates the collective nature of the nucleus. A relative decrease of this

value for certain nucleon numbers, shows magicity. Again, this provides more evidence for

the underlying shell structure in nuclei. The traditional magic numbers were experimentally

deduced to lie at N = Z = 2, 8, 20, 28, 50, 82 and 126.

An independent particle shell model was first developed to describe the experimental

data. The idea behind this model was that a single nucleon in the nucleus felt an overall

mean field from all other nucleons. The single nucleon may then orbit inside the mean
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field in a relatively un-hindered fashion. Therefore, the energies for these single-particle

orbitals of a single nucleon may be found by assuming a single central mean potential. The

central potential is spherically symmetric, and may be inserted into the time-independent

Schrödinger equation (eq. 3.30). The energies and ordering of the orbitals are then calculated.

The filling of the orbitals is done in a normal order, from lowest energy to highest energy,

making sure that the Pauli Principle is up-held. This means no two nucleons of the same type

may have the same quantum numbers. From this method, it is simple to determine where

the shell gaps appear, as large energy differences between orbitals appear after the filling of

a certain number of nucleons. The calculation of the orbitals from a central potential may

be repeated using various potentials until a suitable one has been found which reproduces

the experimental magic numbers. The nuclear potential must be predominantly strong and

on a short range (2 − 4 fm), as it saturates around A = 6 − 10. A few common potentials

that have been previously used, and are still widely used today, are the harmonic oscillator,

the square well, and the Woods-Saxon potentials.

It has been found, that none of the aforementioned potentials (i.e. harmonic oscillator,

square well, or Woods-Saxon), were able to describe the experimental magic numbers beyond

N = Z = 20. Therefore, a crucial component to the description of the nuclear force

was absent. A solution was found by introducing a strong spin–orbit force to the nuclear

potential. This was done by Maria Goeppert-Mayer [50] and Johannes Hans Daniel Jensen

and collaborators [51], both at the same time around 1950. The resulting spin–orbit force

that was added was expressed as

Vso(r) ∝ −
1

r

dV (r)

dr
~l · ~s. (3.52)

The V (r) is the mean potential (i.e. harmonic oscillator), so the spin-orbit potential is

proportional to the first derivative of the mean potential. The first derivative in the potential

represents that this effect is strongest on the surface of the nucleus, away from where the

mean potential is saturated. The addition spin–orbit force splits the previously degenerate

levels having the same orbital angular momentum but different total spin J . This is due to

the two different projections of the intrinsic spin value s for a single nucleon on the total

spin, J = l± s. The energy splitting between levels with the same l but different J is given

as

∆εnlj =
D

2

[
j(j + 1)− l(l + 1)− 3

4

]
. (3.53)
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D is simply the strength of the splitting that depends on the choice of the potential. The

projections of s for a given l are then

∆εnlj=l+1/2 = −D
2
· l

∆εnlj=l−1/2 =
D

2
(l + 1).

(3.54)

Therefore, the −1/2 projection, raises the single-particle orbital and the +1/2 projection

lowers it, both, relative to the degenerate energy. The splitting of the single-particle orbitals

causes a re-shuffling of the order of some of the levels. This is shown in Fig. 3.5, where

the single-particle energy levels for 208Pb are shown as calculated from a harmonic oscillator

(left), a Woods-Saxon potential (middle), and a Wood-Saxon potential with the spin-orbit

contribution (right). Clearly noticed is the lack of reproduction of the magic number above

N = Z = 20 for the two potentials with out the spin-orbit part. The Woods-Saxon breaks

the orbital angular momentum degeneracy of the harmonic oscillator, but is still inadequate.

However, the addition of the spin-orbit potential, breaks the J degeneracy, and allows for

the reproduction of all of the tradition magic numbers (N = Z = 2, 8, 20, 28, 50, 82 and

126). The inclusion of the strong spin-orbit splitting was vital to understanding the nuclear

single-particle shell structure.

Although the independent particle model may describe certain spectroscopic information

such as the magic numbers, it did a poor job of describing nuclei away from closed shells.

An improvement to the independent particle model came from the inclusion of effective or

correlation forces between nucleons. A Hamiltonian of this nature, for a nucleus with A

nucleons may be expressed as

H = H0 +Hres. (3.55)

H0 includes both the central potential U and the kinetic energy T . H0 describes the nucleons

independent of each other, and Hres is given by

Hres =

(
1

2

A∑
i,j=1

Vi,j −
A∑
i=1

U(ri)

)
. (3.56)

Where here, Vi,j are the residual interactions between two nucleons for two-body interactions

only, in the central potential U . Taking two nucleons outside of a central core of nucleons

described by H0, along with the residual interaction, results in an energy shift of the bare
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Figure 3.5: The single-particle energies are shown for 208Pb using three different nuclear
potentials in the Schrödinger equation, the harmonic oscillator potential (left), the Woods-
Saxon potential (middle), and the Woods-Saxon potential with the spin-orbit potential
included (right). The traditional magic numbers of N = Z = 2, 8, 20, 28, 50, 82 and 126,
can only be reproduced when a strong spin-orbit force is included.
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single-particle energies of

∆E(j1j2; J) = 〈j1j2; JM |V12|j1j2; JM〉 (3.57)

for a given total spin J and total spin projection M . Although, we see here how to calculate

spectroscopic information for two nucleons outside a closed shell, in general we would like

to do calculations for n nucleons outside a closed shell. Also, the inclusion of the largest

number of orbitals (i.e. model space) would also be desirable. Therefore, one must move

to large-scale shell model calculations which can be completed for large numbers of valence

nucleons on the largest possible valence spaces. A general outline for the calculation of the

energies and wave functions for a typical large-scale shell model calculation is given below.

Further details may be found in Refs. [52, 53].

The first step in completing a large-scale shell model calculation is to define a valence

space. The valence space is determined by which orbitals are included in the calculation.

The size of the space should be small enough so that the calculation can be completed in

a reasonable time, while large enough so as not to have drastic effects on the spectroscopic

information being determined. For instance, in the case of the neutron rich oxygen isotopes,

the sd shell space (0d5/2, 1s1/2 and 0d3/2 orbitals), is most often used. The choice of the sd

model space for the oxygen isotopes is prime because the protons have a very good shell

closure at Z = 8, and they have less than 20 neutrons. Once a model space has been

determined, the number of nucleons A and the isospin T of the system must be decided.

These two quantities simply define the nucleus of interest, as the isospin is related to the

difference between the number of neutrons and protons in a nucleus.

Next, a complete set of basis states must be determined from the number of valence

nucleons (n) and the model space. The number of valence nucleons may be found by

subtraction the number of nucleons making up the closed core from the total number of

nucleons. In the case of 25O with A = 25, inside the sd shell model space, the number of

valence nucleons (all neutrons in this case) is n = A − 16 = 25 − 16 = 9. There are two

different methods for determining the basis states, either the m-scheme or the j-scheme. The

m-scheme determines the basis states in terms of a definite magnetic quantum number M .

The j-scheme is similar, only the basis states are represented in terms of definite total spin

J . The m-scheme basis states do not have good J projections in general. However, since the

Hamiltonian is spherically symmetric, and there is a complete set of basis states, the good
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J value may be found from the total spin operator Ĵ as

〈Ψk|J2|Ψk〉. (3.58)

Here, Ψk is the total wave function in terms of the magnetic substates m. The shell model

calculations in this work use both the m-scheme [2, 1] and j-scheme [54] types of shell model

calculations.

The total wave function (Ψk) for a single state with quantum numbers k = |nlj〉 may be

described as a linear combination of its basis states by

|Ψk〉 =
n∑

α=1

akα|ψα〉, (3.59)

where α defines a single-particle basis for the n number of basis state configurations, and

ψα are the basis configurations. In the sd shell basis configurations are any combination of

particles (or holes) in the 0d5/2, 1s1/2 and 0d3/2 orbitals. Or, 0dn1
5/21sn2

1/20dn3
3/2, where n1, n2 and

n3 may range from 0 to the total number of valence nucleons, as long as n1+n2+n3 = n. The

akα are the weight coefficients that must be determined for each wave function. Inserting the

total wave function into the Hamiltonian (eq. 3.55), which includes two-body interactions,

we have

H|Ψk〉 = Ek|Ψ〉,

(H0 +Hres)
n∑

α=1

aαk|ψα〉 = Ek

n∑
α=1

aαk|ψα〉,

n∑
β=1

〈ψβ|H0 +Hres|ψα〉aαk = Ekaβk.

(3.60)

Writing the above expression in matrix form we have,

n∑
α=1

Hβαaαk = Ekaβk, (3.61)

with

Hβα = E0
αδβα + 〈ψβ|Hres|ψβ〉. (3.62)

Or in terms of an eigenvalue problem for each eigenvalue Ek;

n∑
α=1

Hβαaαk − Ekaβk = 0, (3.63)
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and then ∣∣∣∣∣∣∣∣∣
H11 − Ek H12 ...H1n

H21 H22 − Ek ...H2n
...

. . .
...

Hn1 ... Hnn − Ek

∣∣∣∣∣∣∣∣∣ (3.64)

E0 represents the unperturbed energies of H0 with the single particle basis functions (|ψα〉).
This expression simply gives the single particle energies of the orbitals by E0 and the

TBMEs by the 〈ψβ|V12|ψβ〉, where V12 = Hres and is the effective two-body interaction.

The diagonalization of this Hamiltonian matrix in eq. 3.64 produces the n number of energy

eigenvalues. Hence, the energies of the states inside the chosen model space, with selected

A and T , are all determined.

Once the energy eigenvalues have been found, they may be substituted back into eq. 3.61

to calculate the coefficients a. The known coefficients may be placed into eq. 3.59 to

determine the wave function for that particular state. This wave function may now be

used to solve for other spectroscopic information related to the state.

The matrix elements of Hβα are a combination of the single-particle energies and the

two-body matrix elements (TBMEs). The second part of equation 3.62 may be expressed in

a more familiar form in terms of the total angular momentum J with the inclusion of isospin

T as

〈j1j2; JM, T |V12|j3j4; JM, T 〉, (3.65)

for T = 0 or 1. These energies may be either calculated or determined by comparisons with

experimental data. A description of three sets of effective interactions are given below. All

that remains to complete the calculation is a determination of these TBMEs.

The choice of a two-nucleon interaction is difficult as the two nucleons feel the mean effects

of all other nucleons in the nucleus. However, one way to determine the general two-body

matrix elements (TBMEs) is from the free nucleon-nucleon interaction. This description

will be hindered by the effects of all other nucleons in the nucleus, as mentioned above.

Another possible way to find the TBMEs is to complete an empirical fit. Here, certain

TBMEs are allowed to vary in a fitting procedure to the known experimental levels. This

second procedure has been implemented to determine the shell model interactions used in

the present work.

There are three main interactions that provide the two-body matrix elements (TBMEs)

needed for the large scale shell model calculation that will be used to calculate spectroscopic
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information in this work. They include the universal sd (USD) interaction [13] and the newer

versions of this interaction (USD05a and USD05b) [27]. Also, the SDPF-M interaction,

which uses a combination of interactions (SD-CB-KU) to span the sd and fp shells [11].

The USD and USD05 interactions were used with the nuclear shell model code CoSMo [2, 1]

to calculate energies, spectroscopic factors and occupation numbers. The SDPF-M results

were calculated using the OXBASH code [54].

The USD [13] interaction consists of three (3) single-particle energies (SPE) and sixty-

three (63) two-body matrix elements (TBME). The starting point for this interaction

comes from the re-normalized G matrix, which is based upon real nucleon-nucleon (NN)

interactions. Taking a closed 16O core and 40Ca core (roughly A = 17− 39), a set of TBME

are found from the G matrix theory. This matrix can then be re-normalized to account

for the effects of the reduced model space. Then, combined with experimental SPEs, these

TBME can be used to describe nuclei near the closed shells. However, as one moves towards

the center of a shell, this description deteriorates rapidly. To allow for a more complete

description of an entire region of the nuclear chart, in this case the sd shell (0d5/2, 1s1/2

and 0d3/2 orbitals), the TBME may be adjusted to match known experimental data. This

empirical renormalization inside the sd shell was used to create the USD interaction [13].

The TBME of the G matrix that were determined to be of the largest importance, by the

eigenvalues of the least-squares-fit matrix to the experimental data, were replaced by their

empirical counter parts. The remaining TBME were left as the G matrix values. One set of

TBMEs that held a large importance were those of the monopole interaction. This was due

to the fact that they have a large effect on the SPEs mass dependence. These TBME are fit

to the experimental SPEs and are given by

V T
j,j′

=

∑
J(2J + 1)〈j1, j2, J, T |V |j1, j2, J, T 〉∑

J(2J + 1)
(3.66)

with j1 and j2 representing the spins of the two nucleons. The USD interaction was found

from a fit to 380 energies in the A = 18− 39 region and the root-mean-square of the fitting

was of about 185 keV. The resulting USD interaction has an overall mass dependence for

the TBME of TBMEA=TBMEA=18(A/18)−0.3. This interaction, has throughout the years,

proved to be very valuable and a standard of comparison for all other models. The TBME

and SPE for the USD interaction are given in Table I of Ref. [13].

The USD05 interactions [27] are simply more recent versions of the USD interaction [13].
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Since a plethora of data has been acquired in the sd shell region since the first empirical

renormalization of the G matrix occurred, a new fit to the data was competed. The fit

included 608 states in 77 nuclei dispersed across the entire sd shell [27]. In this fit, great

care was taken to not include states of known intruder configurations, such as, the group

of fp intruder states apparent in the “island of inversion” region around N = 20 and

Z = 10 − 12 [55]. The USD05a interaction was created by only allowing 30 of the TBME

to vary from the starting point of the USD interaction. The USD05b interaction however,

allowed for 56 of the TBME to vary to get the best over fit to the data. These interactions

result in rms deviations of 171 keV and 126 keV when fit to the experimental data that was

used in the first fitting of the USD interaction. Tables for each of these interactions (USD05a

and USD05b) are shown in Ref. [27].

The SDPF-M interaction is comprised of three components, and allows for calculations

across the sd − pf N = 20 shell closure. The interaction for the sd component was the

USD interaction [13], with some simple modifications. Since the USD interaction incorrectly

calculates a bound 26O ground state [13], the T = 1 matrix elements for the ν0d3/2 and 0f7/2

orbitals were adjusted to be more repulsive. The reason that these two orbitals are important

is because the neutrons occupy these orbitals for 26O and above. The, T = 0 components

were then made more attractive to compensate. However, only the T = 1 energies matter

for oxygen, as only the neutrons are active in the sd shell. The matrix elements and their

adjustments are given by

δV T=1,0
0d5/2,0d3/2

= +0.30,−0.70MeV

δV T=1,0
0d5/2,0f7/2

= +0.16,−0.50MeV
(3.67)

These modifications ensure an unbound 26O ground state, while having little effect on the

17−24O ground states. Also, the pairing interaction in the sd shell had to be modified.

Implicit effects of the upper pf shell had to be removed by shifting the pairing matrix

elements by δG = −0.1 MeV. This change did not affect the 2+ energies of the sd states

outside of the range of the original USD interaction. The pf shell component of the SDPF-

M interaction comes from the Kuo-Brown (KB) interaction [56]. This interaction was also

found from the re-normalized G matrix. The cross-shell contribution between the sd and

pf shells, is the third part of the interaction [57]. This was based on the Milleneer-Kurath

(MK) interaction [58]. All interactions scale with mass as A−0.3, as was the case with the
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USD, and USD05 interactions. The SDPF-M interaction has played an important role in

describing the ground and excited states, as well as other spectroscopic factors such as logft

values, in the “island of inversion” region around N = 20 [11, 40, 55, 59].

A main quantity that is important in the present work is the spectroscopic factor Sl,j

between two states for various values of orbital angular momentum. The spectroscopic factor

is related to the expansion of the wave function of an initial nucleus (ΨA
i ) with mass A in

terms of the summation over a complete set basis states in the A− 1 nucleus (ΨA−1
f ). This

is given by

ΨA
i =

∑
f,l,j

Θi,f,l,j(~r)Ψ
A−1
f . (3.68)

Therefore, the overlap function is expressed as∑
l,j

Θi,f,l,j(~r) = 〈ΨA
i |ΨA−1

f 〉. (3.69)

The spectroscopic amplitude Al,j may be related to the normalized overlap function by

Ai,f,l,j =

∫
Θi,f,l,j(~r)dτ, (3.70)

and the spectroscopic factor is simply the absolute square of the amplitude

Si,f,l,j = |Ai,f,l,j|2. (3.71)

Furthermore, the overlap function may be expanded in terms of a complete set of single-

particle wave functions (φk(~r)) as

Θi,f,l,j(~r) =
∑

Bi,f,kφk(~r), (3.72)

where the coefficients are given by Bi,f,k. The spectroscopic factor may now be give by

Si,f,l,j = |Bi,f,k|2. (3.73)

As can be seen from the derivation above, the spectroscopic factor indicates the overlap

between two states for various values of orbital angular momentum l. What this value can

further show is if the decaying state has a similar wave function to the states that it decayed

too. Therefore, the spectroscopic factor highlights the favorable decay paths for a decaying

state.
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CHAPTER 4

EXPERIMENT

4.1 Ion Beam Characteristics

4.1.1 Primary Beam

The radioactive secondary 26F beam was produced by the Coupled Cyclotron Facility (CCF)

at the National Superconducting Cyclotron Laboratory (NSCL) on the campus of Michigan

State University. The primary 48Ca beam began with an injection from the ion source into the

K500 superconducting cyclotron with a charge state of +8, i.e. lacking 8 electrons. Exiting

the K500 cyclotron at an energy of 12.3 MeV/u the 48Ca+8 was stripped of all its remaining

electrons to a charge state of 20+ and then injected into the larger of the two cyclotrons,

the K1200. Extraction of the 48Ca20+ from the K1200 occurred at a primary beam energy

of 140 MeV/u and was transported to the object position of the A1900 mass separator [16]

at a beam intensity of ∼15 particle nano-Amperes (pnA). At the object position was a

987 mg/cm2 thick natural Beryllium (Be, Z = 4) production target to fragment the incoming

48Ca20+ primary beam. A schematic of the CCF and the A190 mass separator is shown in

Fig. 4.1.

4.1.2 Secondary Beam

The A1900 mass spectrometer works as a mass analyzer by selecting charged ions with specific

momentum and mass over charge (m/q) ratios. The selection is accomplished by setting the

magnetic rigidity of the four superconducting dipole magnets to proper magnetic rigidities.

The final dipole magnet had a rigidity of Bρ = 3.9301 Tm. Also, for the optimum cleanliness

of the secondary 26F beam, an Aluminum (Al, Z = 13) wedge of thickness 1050 mg/cm2

was inserted at the intermediate focal plane to selectively disperse the contaminant products
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Figure 4.1: The Coupled Cyclotron Facility at the National Superconducting Cyclotron
Laboratory at Michigan State University is shown by the schematic above. Also shown is
the A1900 mass spectrometer [16]. The cyclotrons and mass separator were used to create
a high intensity secondary beam of the radioactive ion 26F.

from the desired 26F beam. Slits were also imposed at the intermediate focal plane to

further remove contaminant fragments while not reducing the rate of the 26F too drastically.

Exiting the A1900 mass separator was an 85 MeV/u 26F beam with a beam purity of 50%.

The energy of the final beam is lower than the primary 48Ca beam due to the energy loss of

the fragmentation and the energy losses of the ions as they carry through the primary Be

target and the Al wedge. The major contamination was from the isotope of 29Na. A final

rate of ∼ 1 particle per-second per-particle nano-Ampere (pps/pnA) was transported to the

experimental.

4.2 Experimental Setup

The experimental setup used in the measurements of the neutron unbound states of the

oxygen isotopes at the NSCL is shown in Fig. 4.2. The secondary 26F beam that has been

selected by the A1900 spectrometer interacts with a thin 5 mm plastic timing scintillator

upon its exit. Then the 26F beam enters the experimental area (Yellow line coming

from the left in Fig. 4.2) and its spatial characteristics are determined by two position

sensitive parallel-plate avalanche chambers (PPACs) that were placed 3.97 m upstream of the
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Figure 4.2: The Sweeper-MoNA experimental setup at the NSCL is shown above. The flight
path of the beam is shown in yellow. The decay fragments and neutrons flight paths after
the target are shown by the red and green lines respectively. The dipole Sweeper magnet [17]
is shown in blue.

secondary target. The secondary beam is focused onto the target by a triplet of quadrupole

magnets. Another thin 0.254 mm plastic scintillator is located just before the target giving

timing information of the beam and for the neutrons’ times-of-flight (ToF). The 26F beam

interacts with a secondary Be target that was located at the object position of a 4 Tesla (T)

large-gap dipole (Sweeper) magnet [17].

Fragments produced in the secondary reaction (26F impinging on 9Be) are bent 43◦ by the

Sweeper magnet and their position and angle information were determined by two cathode-

readout drift chambers (CRDCs). Following the CRDCs was a multi-sectioned ion-chamber

and two segmented plastic scintillators. The first plastic scintillator is a thin ∆E 0.5 cm

thick detector which provided the master timing trigger for the experiment. The second

plastic scintillator was thick 15 cm and stopped the charged fragments while measuring their

remaining energy. The ion chamber was used with the plastic scintillators to give fragment

energy loss and total kinetic energy information.

Neutrons that originated from the secondary reaction target were forward focused due

to the high beam velocity (∼ 0.3c) and were detected by the Modular Neutron Array
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Figure 4.3: The design and mechanism of a Parallel-Plate Avalanche Counter (PPAC).

(MoNA) [60]. MoNA was centered around 0◦ and located 8.2 m from the target so as

to give the time-of-flight (ToF) information of the neutrons. Due to its segmented design,

position and angle information of the neutrons was also measured.

4.2.1 Beam Line Detectors

The secondary 26F beam is tracked to the target by two position sensitive Parallel-Plate

Avalanche Counters (PPACs). The purpose of these detectors is to provide input information

to a forward mapping matrix which maps the secondary beam particles to their locations

and angles at the reaction target. Fig. 4.3 shows a schematic view of the inner workings and

design of the PPACs that were used. A PPAC could detect the position of a particle as it

passed through the detector. The PPACs functioned as follows. The central plate (anode)

was set to a central voltage of 590 V. The anode plate and the cathode strips which were
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located at each end, were all enclosed inside 5 Torr of iso-butane gas. There are 40 cathode

strips at each end with one set being arranged in the vertical direction and the other in

the horizontal direction. A charged fragment propagating through the detector ionizes the

iso-butane gas creating a positive ions and electrons. The electrons are drawn toward the

cathode grid and are detected by a number of the strips. The measured charge distribution

on the strips is used to determined the position of the passing ion. A final position resolution

of ∼ 1 mm FWHM was found for each detector. Using the two PPACs simultaneously spaced

2.719 m apart, an angle resolution of ∼ 2 mrad FWHM was found. These values translate

into a final target position and angle resolutions (FWHM) of ∼ 2 mm and 2.5 mrad after

using the forward tracking prescription described in chapter 5. The total efficiency for the

PPACs during the experiment was ∼ 50% due to the tripping of high voltage of the anode

due to the large charge deposition of a high rate secondary beam.

4.2.2 Target Chamber

The target chamber housed the 987 mg/cm2 secondary Be target and the target timing

scintillator. The target was located at the object position of the dipole Sweeper magnet

and the scintillator was located 0.34 mm in front of the secondary target. The plastic

timing scintillator was made of BC-404 fast counting plastic material and had a thickness

of 0.254 mm. As fragments passes through the detector they created electron-hole pairs

which recombined to form visible light. The visible light was collected by a single photo-

multiplier tube (PMT) that was intimately connected to the scintillator to capture as much

light as possible. The PMT converted the light into an electronic signal representing the

time the fragment passed through the material. The final timing resolution of this detector

was < 1 ns and its signal is important for secondary beam fragment identification and for

the determination of the neutron times-of-flight (ToF).

4.2.3 Sweeper magnet

A large-gap superconducting dipole Sweeper magnet was commissioned and built by the

Florida State University National High Magnetic Field Laboratory [17]. The Sweeper magnet

is capable of deflecting charge fragments with magnetic rigidities up to 4 Tm by 43◦. The

vertical gap of the magnet is large (14 cm) to allow neutrons to go through relatively un-

abated. The problem that the large-gap creates is that the magnetic field is slightly less
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uniform over the region of the fragment’s flight path. Therefore, great care was taken to

map out the magnetic field and reconstruct it properly [20]. Niobium-Titanium (Nb-Ti) coils

create the maximum 4 T field and resistive coils on the outside of the magnet can cancel the

field outside the yoke to allow for sensitive instrumentation to be placed nearby. For this

experiment the central track rigidity of the magnet was set to Bρ = 3.7755 Tm, the rigidity

of the 24O fragments after the target, to allow for the greatest acceptance of these ions.

4.2.4 Fragment Detectors

Placed directly after the dipole Sweeper magnet are two position sensitive Cathode-Readout

Drift Chambers (CRDCs) separated by 1.88 m. These two detectors are 30 × 30 cm2 and

measure positions and determine angles of recoil fragments with resolutions (FWHM) of

∼2 mm and ∼ 2 mrad. The detector design is shown in Fig. 4.4. They functioned by having

the 50 Torr 20% iso-butane and 80% CF4 gas mixture create charged ion-electron pairs as a

fragment propagated through the detector. The free electrons moved along an electric field

created by a −700 V potential at the top of the detector which was connected to a set of

128 Aluminum pads through a resistor chain. The electrons passed through a Frisch grid

held at around -10 V and after were collected by an anode wire at +900 V. The induced

electrons that were created around the anode wire caused an avalanche to occur. These

avalanche electrons were collected by the 128 Aluminum pads. The cathode pads had a

fixed spacing (pitch of 2.54 mm) and hence determination of the horizontal position of the

charged fragment was made possible by knowing which pads collected the charge. The time

it took for the electrons to drift to the anode wire held determined the vertical position of

the charged fragment. Following the second CRDC was an energy-loss ion-chamber detector

of length 0.706 m. The detector was filled with 150 Torr of 90% argon and 10% methane

gas. 16 collection plates held at +200 V measured the electrons created by the interaction

of the recoil fragments as they passed through the gas mixture. A potential of −800 V was

applied to the opposite side of the plates to force the drift of the electrons. By using a

number of collection plates the noise of the system could be reduced as well as letting higher

particle rates to be handled. The combination of the total charge collection by all 16 plates

allowed for an accurate energy loss measurement which would be used for proper elemental

identification.

Two scintillators made of BC-404 plastic with thicknesses of 0.5 cm (thin ∆E) and 15 cm
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Figure 4.4: The design and mechanism of a Cathode-Readout Drift Chamber (CRDC).

(thick TKE) were located immediately following the ion-chamber and CRDCs. Each plastic

scintillator was 30 × 30 cm2 and used four separate photo-multiplier tubes (PMTs) for the

collection of light. The thin ∆E (0.5 cm) detector was placed before the thick TKE (15 cm)

detector. The thin ∆E detector acted as the main trigger in the experiment, while the thick

TKE detector stopped the recoil fragments and determined their total kinetic energy (TKE).

The thin ∆E detector also measured the light output to determine the energy loss through

its material. These energy measurements also helped in the elemental identification. The

thin ∆E detector also gave the timing information needed to distinguish isotopes.

4.2.5 Modular Neutron Array (MoNA)

The Modular Neutron Array (MoNA) lies at 8.20(5) m from the target and around 0◦

relative to the beam direction. MoNA is comprised of 144 10 × 10 × 200 cm3 BC-408

plastic scintillator bars arranged in a 16 X 9 configuration. The size of the detector allowed
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Figure 4.5: A single MoNA bar (10 × 10 × 200cm3) is shown above schematically. The
photo-multiplier tubes (PMTs) located at each end of the bar collect the light produced by
a neutron interacting with the BC-408 plastic, a hydrogen-carbon compound. Also shown
schematically is a neutron interacting with the plastic lattice producing visible light that is
guided to the PMTs where it is collected. The time difference between the collection of the
light for the two PMTs gives the horizontal location of the interacting neutron.

for ±7.0◦ of horizontal and ±5.6◦ of vertical frontal coverage for the detection of neutrons

from the target. Each plastic bar has a photo-multiplier tube (PMT) attached to each end

accompanied by a connecting light guide. As neutrons interact with the charged particles of

the plastic (protons or carbon nuclei), they become excited and relax by the release of photons

of light which are gathered by the PMTs at the bars ends. A schematic view of a single

neutron bar is shown in Fig. 4.5 The PMTs outputs give the time and total charge collection

information. The time difference between the PMTs at different ends gives the location of

the horizontal position of the interaction. The average time of the two PMT signals gives a

time stamp that can be used with the coincidence time of the target scintillator to determine

the time-of-flight (ToF) of a neutron to MoNA. The ToF can be used to calculate the kinetic

energy of the decay neutron if its flight path is known. The vertical and longitudinal positions

of a detected neutron were determined by which bar of the array was struck. Therefore, these

two position measurements each have an uncertainty of ±5 cm.

4.2.6 Electronics and Data Acquisition

The neutron detector (MoNA) and the fragment detectors (Sweeper), may both be run

independently. They each have sophisticated electronics and data acquisition (DAQ) setups

that have been well described in Ref. [18] for MoNA and Ref. [20] for the Sweeper. In this

thesis, only the electronics and DAQ that highlight the interplay between the two setups
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Figure 4.6: A schematic diagram of the coupling of the timing electronics of the MoNA
experimental device and the Sweeper detector electronics. There are five cables can
intimately connect the two and they are cables A,B,C,D, and E. Cables A and E transport
the master trigger and common timing stop signals from the Sweeper electronics to MoNA.
Cable B sends out a latched “veto” signal, cable C sends a “fast clear” signal and cable D
sends out a computer ’GO’ signal. The Level 1 and Level 2 boxes represent the logic modules
used to determine a valid coincidence event. The amount of time for the particle and signal
propagations are also included on the diagram in ns. [18]

will be described as this is how the experiment was carried out. The electronics and DAQ

for running the MoNA setup and the Sweeper setup in tandem are shown schematically in

Fig. 4.6. As can been seen there are five cables that interconnect the MoNA setup with the

Sweeper setup, they are label A,B,C,D, and E. The master trigger for the entire setup is

a signal from the thin ∆E plastic scintillator located in the dipole Sweeper magnets focal

plane. The ’OR’ of the four PMTs connected to this scintillator produces a time signal

that is sent to a logic module at MoNA (Level 2) through cable A. At the same moment,

cable E sends a common stop signal from the thin plastic scintillator located at the target

position. This is a common stop signal for all of the MoNA PMTs. When the time signal
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arrives through cable A a latched “veto” is sent out through cable B back to the Sweeper

electronics. This signal halts all other electronic processes until the Level 2 logic decides

if their is a good coincidence or not. In the Level 2 logic module, a good coincidence is

determined if the MoNA Level 1 logic model signal sent a signal showing two simultaneous

PMT signals for a single bar of MoNA, i.e. a neutron event, and this Level 1 signal overlaps

with the thin ∆E time signal. If this overlap does not happen then a “fast clear” signal is

sent to the MoNA modules and the Sweeper electronics through cable C. The “fast clear”

resets all the modules as quickly as possible (∼700 ns) so that they can begin collection

again. This signal also closes the latched “veto” so that the electronics are free to collect the

next event. However, if a good neutron event (Level 1 signal) does indeed overlap with the

thin ∆E time signal then a computer ’GO’ signal is sent out to the MoNA electronic and

the Sweeper electronics via cable D. This signal allows for the DAQ to read all modules and

collect all the data that is in coincidence. This refers to the digitizing of the electronic data

which is on the order of microseconds. After the computer has finished its data collection,

the latch “veto” is closed and the electronics are reset to allow collection of the next event.

The entire process takes less than ∼800 ns to determine if there is a valid event.
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CHAPTER 5

ANALYSIS PROCEDURE

5.1 Overview

The ultimate goal of the data analysis is to extract the resonance parameters for the decay

energy and width from the invariant mass spectra of 23−24O+n coincidence data. After

calibration of the experimental devices, the fragment-neutron coincidence events must be

identified. The full kinematics for these pairs are then calculated and, using equations 3.5

and 3.6, the decay spectra are obtained. The experimental analysis uses the software package

SpecTcl [61]. The entire experimental response is simulated using the Monte Carlo simulation

software ST-mona [15]. Inserting a Breit-Wigner line-shape function (eq. 3.8) into the

simulation allowed for the extraction of the physical energy and width for the observed

resonances. Described below is the optimized analysis procedure to investigate the observed

states in 24O and 25O.

5.2 Calibrations

5.2.1 MoNA

The Modular Neutron Array (MoNA) uses 144 plastic scintillator bars of dimensions

10 × 10 × 200 cm2 which have photo-multiplier tubes (PMTs) on each end [60]. It is the

collection of light by these PMTs that give the stopping time for neutrons emanating from

the target, as well as the horizontal position of the interaction inside a single bar. The total

charge of the interaction is also collected by the PMTs and therefore, a careful calibration

of these PMTs is needed.

A number of the calibrations for MoNA are done by using data collected from cosmic

ray muons. These muons are created when a cosmic ray (typically a fast moving proton)
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Figure 5.1: Shown schematically is the process of a cosmic ray, composed of mainly high
energy protons, interacting with the earths upper atmosphere. This process creates a large
number of pions which then decay into high velocity (0.998c) muons. The muon flux that
reaches sea level is on the order of 1 per cm2 per minute.

strikes the earths upper atmosphere creating a shower of pions. The pions then decay into

fast moving muons (v = 0.998c) which make it to the earth’s surface with a flux of about 1

per cm2 per minute. A schematic of this process is shown in Fig. 5.1. Fast moving muons

scatter off of the plastic inside the MoNA bars in the same way as a neutron, depositing on

average the electron equivalent of 22 MeV of energy in each bar as they pass through the

entire array at once. Since muons travel at nearly the speed of light and deposit a standard,

known amount of energy, they are excellent for detector calibrations.

A slight variation in PMT voltage may result in largely different light collection efficien-

cies. To ensure that each bar, and each PMT at the end of a single bar, are consistent, the

PMTs are gain matched. To due this a long run is completed to allow for all of the bars to

have ample cosmic ray data, in particular, PMT data for the raw charge-to-digital (QDC)

spectra. The QDC converts the measured light output to a digital signal and provides an
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excellent measure of the relative energy. Each of the individual PMT spectra are fitted using

a simple routine to check that the low channel cutoff and the center of the muon peak are

at certain channel numbers previously chosen [18]. If a PMT is not, then the high voltage is

adjusted until all PMTs have nearly identical muon spectra. These QDC muon spectra are

calibrated by setting the low channel cutoff to zero energy and the centroid of the peak to

the energy deposited by the muon (the electron equivalent of 22 MeV).

The anode outputs from the PMTs are sent to the time-to-digital (TDC) converter

modules which accurately measure the time difference between the PMT and another input

signal, i.e. the master trigger time. The way a TDC works is to begin charging a capacitor

when the start signal is acquired. Then when the stop signal arrives the capacitor stops

being charged and is allowed to discharge with a constant current source. The amount of

time it takes for the discharge to occur gives a relative timing signal. Since each TDC does

not have the exact charge and discharge rates, they must be calibrated to each other. This is

accomplished using a pulser device which can supply all of the TDCs with a series of pulses

of known interval simultaneously. Then these spectra can be fit and slopes and offsets are

determined to make spectra match.

The kinetic energy of a neutron coming from a decay inside the reaction target may be

found using the time-of-flight (ToF) of the neutron from the target to MoNA. This time

can be found by using the average time from the calibrated TDC spectra for two PMTs

from a single MoNA bar and its difference from the time of the plastic scintillator located

just before the target. This overall spectrum must be calibrated very precisely to ensure

proper calculation of the neutron ToF and hence, velocity and kinetic energy. To calibrate

this spectrum the γ-ray flash from the reaction target is looked at for a single bar in MoNA

of known distance. γ rays from the target come from the excited states of nuclei produced

by a number of reactions involving the secondary beam on the secondary target. Since γ

rays have zero mass, they travel at the speed of light and their ToF can be determined very

precisely when the flight distance is known. Therefore, a single bar in MoNA is chosen. In

this particular case it was the middle bar of the first column, at a distance of 8.2 m so the

γ-ray peak was adjusted to come at 27.3 ns. After a single bar has been calibrated, all of

the remaining bars of MoNA can be calibrated relative to it by using the cosmic ray data.

With a velocity of nearly the speed of light, the average flight time for a muon to travel

from bar to bar is 0.33 ns for the 10 cm flight path. Therefore, the data can be searched for
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muons that travel through adjacent bars and their relative times are then adjusted to the

one calibrated bar. This results in all of the bars of MoNA being calibrated relative to the

target position, i.e. the position of the neutron decays.

The position calibrations for neutrons interacting with MoNA are simple for the longi-

tudinal and vertical as these are simply determined by which bar was struck, i.e. two good

PMT signals. The horizontal position is determined by the time difference between the two

PMTs at the ends of a single bar, given by

∆t =
1

2
(tl − tr) (5.1)

with the times (t) in ns. To convert the value into cm a calibration is needed. Again,

using the cosmic ray data which illuminates the entire array, a fitting procure is done which

searches for the edge of the time spectra by find the point at with 1/3 of the maximum

is reached. It has been determined through simulation that this point well represents the

real horizontal ends of the bars. Once these horizontal left and right positions have been

determined from the cosmic data, the slope and offsets are found by

M =
200

xl − xr
(5.2)

B = −Mxl + xr
2

(5.3)

where M is the slope, B is the offset, and xl, xr are the horizontal left and right positions.

The final horizontal position is then

x = M ·∆t+B (5.4)

5.2.2 Position Detectors

The position sensitive detectors before the target to track the beam (parallel-plate avalanche

counters PPACs) and after the Dipole magnet to track the fragments (cathode-readout drift

chambers CRDCs) both needed to be calibrated. The CRDCs have 128 pads in the horizontal

direction, and the PPACs had 40 pads in each direction, which had to first be gained matched

by looking a the total charge deposited in each and adjusting the pedestals. The position

of a particle was determined by making a Gaussian fit to the charge distribution across a
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Figure 5.2: A calibrated mask run is shown for the two cathode-readout drift chambers
(CRDCs) located after the dipole Sweeper magnet. The mask was placed in front of the
detectors and the positions of the holes were used to calibrate calculate the offsets and the
vertical slope. The same procedure was used for the beam-line tracking detectors (PPACs).

certain number of the pads. The σ value for this Gaussian fit was determined by looking at

the pad multiplicity for typical data. The values of σ = 5 and σ = 3 were determined for

the CRDCs and PPACs respectively. The centroid of the Gaussian determines the position

which then had to be calibrated in real space. The slope can easily be determined by using

the pitch of the pads for the horizontal direction of the CRDCs (pitch = 2.54 mm) and

the both directions for the PPACs (pitch = 1.27 mm). The offsets for these positions were

found by placing a mask in front of each detector, in which holes in the mask as well the

placement in space were previously known. Hence, an offset could be included to match the

already known mask hole positions. Fig 5.2 shows a single mask run for the two CRDCs, the

hole positions were known physically in space so as to set the offsets and the vertical slope.

Furthermore, the vertical direction for the CRDCs was calibrated by taking a number of holes

in this direction and fitting them linearly to acquire an offset and slope. Hence, all vertical

and horizontal positions were calibrated for the CRDCs and PPACs. Final resolutions for

the angles and positions of the the PPACs were 1.3 mrad and 1.3 mm FWHM. The same

values for the CRDCs were 1.3 mrad and 1.3 mm FWHM.
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5.2.3 Energy Detectors

The ion-chamber and two plastic scintillators located after the CRDCs and after the Sweeper

Dipole Magnet had to be calibrated to identify the different elements that made their way

into the focal plane. The ion-chamber energy is comprised of the sum of all 16 plates, all

being gained matched, and the energy from the ∆E (0.5 cm) and TKE (15 cm) scintillators

is simply the energy sum of their four photo-multipliers for each. Using the positions and

angles from the CRDCs, each detector included a correction for the flight path of an ion

through its material. This was done using a simple linear relation between distance and

energy, whereby the linear coefficient was adjusted until the two-dimensional plot of energy

loss versus distance showed straight parallel lines. The energy loss and total energy spectra

were then calibrated absolutely by using the secondary beam comprised of 26F and 29Na at

known energies, with no target in place. Also, as a check of the calculation, the energy losses

for the un-reacted 26F and 29Na ions that made it through the detectors were calculated.

Hence, there are two calibrated energy loss measurements (∆E) and a total kinetic energy

measurement (TKE).

5.2.4 Timing Detectors

The timing relations for particles, including beam, fragments and neutrons, are all very

important to the data analysis. Because of this, special care had to be taken for the

timing detectors that were used. These include the A1900 focal plane scintillator, a plastic

scintillator before the target and the ∆E and TKE plastic scintillators. The ∆E scintillator

was the overall timing start for the experiment. Therefore, the measured times from each

of its four photo-multiplier tubes were corrected for the flight path of the light through the

detector. This was done by extrapolating the impact position from the CRDC measurements

and then calculating the linear distance from the impact point on the plastic to the center

of each PMT. The velocity of light in BC-404, the plastic of the scintillator is given by

v =
d

t
=

c

1.58
(5.5)

where the distance d is the distance from the interaction point to the center of the PMT

and the time t is the amount subtracted from the raw measured value for each PMT. This

produces a much sharper average start time for all events [20].
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An absolute time calibration for the flight time between the A1900 focal plane detector

and the target is useful for identifying secondary beam fragments. This time as calculated

by the rough energy and distance for one of the identified fragments. The 29Na was a strong

secondary beam product and using its calculated energy and a distance of 35.68 m from

the A1900 to the target, these time spectra were calibrated. In the same manner the time

difference between the target detector and the thin ∆E detector was estimated by using

the secondary beam products, again with no target in place. Using the magnetic rigidity of

the Sweeper magnet, the flight path for each fragment can be estimated and combined with

their known energies to calculate an approximate ToF. This is only approximate because

the particles may take slightly different trajectories through the magnet resulting in various

different flight paths. The calibration for the time between the target detector and MoNA

was described above.

5.3 Oxygen Fragment Identification

5.3.1 26F Secondary Beam Selection

The 26F secondary beam that was selected by the A1900 mass spectrometer [16] and made

it to the secondary target, was contaminated by 50%. Most of the contamination came from

the 29Na isotope, while a few light particles appeared, as well. The magnetic rigidity of this

secondary beam is the same constant value for all beam particles, and is determined by the

last dipole magnet of the A1900 spectrometer, Bρ = 3.9301 Tm. The magnetic rigidity is

derived by the force of a particle with charge q moving through a magnetic field of strength

B, and with a velocity of v,

~F =
d~p

dt
= q~v × ~B (5.6)

Now integrating with respect to time on both sides taking p(t◦) = 0 and v(t◦) = 0, also

assuming a constant magnetic field,

p = mv = qBρ, (5.7)

with ρ being the radius of the circle that the ion is traveling, and m the mass of the particle.

Finally, through simple manipulation

Bρ =
mv

q
, (5.8)
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Figure 5.3: The calibrated time-of-flight spectra measured from the extended focal plane
of the A1900 spectrometer to the secondary target positions (35.68 m). The radioactive
26F beam is cleanly identified from the other contaminants, mainly 29Na, by the difference
in their mass over charge ratio m/q which leads to different times-of-flight for a constant
magnetic rigidity (Bρ).

where Bρ is the magnetic rigidity, mv is the momentum which is the product of the mass

m and velocity v, over q, the charge of the ion. Noting that the m/q ratio differs for 26F

and 29Na, 26
9

= 2.89 and 29
11

= 2.64 respectively, we see that their velocities are then also

different, 26F=12.024 cm/ns and 29Na=12.975 cm/ns. Using this information we can cleanly

identify the 26F beam from contaminants based on its velocity.

Since the velocity of an ion is given classically as v = Distance
T ime−of−Flight , then over a fixed

distance the time-of-flight (ToF) reflects the different velocities. Hence, using the timing

scintillator that was placed at the focal plane of the A1900 mass separator and the timing

scintillator that was located at the secondary target position, we can calculated a ToF for

beam particles over a distance of 35.68 m. This long distance and the timing resolution of

the scintillators (< 1 ns) give more than enough resolution to cleanly separate the 26F beam
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as the calculated ToFs for the 26F and 29Na ions are 296.7 ns and 275.0 ns respectively.

Shown in Fig. 5.3 is the times-of-flight for the secondary beam from the A1900 focal plane to

the secondary target with the 26F and 29Na beams cleanly identified. A gate was set in this

spectrum to be sure that only the incoming radioactive 26F beam and its reaction products

be considered as real decay events.

5.3.2 Element Selection

After the decay process, the charged recoil fragments having desired magnetic rigidities (Bρ)

made it through the Sweeper magnet and into the detectors which were positioned around

the central track of the magnet. Since a number of different mass over charge products were

accepted, these fragments must be identified if they are to be used to reconstruct a decay

energy.

Energy loss information collected by the ion-chamber, thin ∆E (0.5 cm) plastic scin-

tillator, and thick TKE (15 cm) plastic scintillator, may be used to distinguish different

elements, i.e. proton number Z. The energy loss per thickness ( dE
dX

) of a charged particle as

it propagates through a material is proportional to Z by the relation

dE

dX
∝ mZ2

E
, (5.9)

where m and E are the ion’s mass and energy. The Z2 component provides favorable

separation for Z = 7− 9, and therefore, the oxygen isotopes from fluorine or nitrogen.

The energy measurements that were used to differentiate between various elements were

the ion-chamber energy loss, the thin ∆E 0.5 cm plastic scintillator energy loss, and the thick

TKE plastic scintillator which measured the remaining kinetic energies. All three energies

were calibrated and corrected for the flight paths of the ions as described above. Two sets

of identification plots were made and they are shown in Fig. 5.4. The plot on the left shows

the ion-chamber energy loss versus the ∆E scintillator energy loss. The plot on the right

of Fig. 5.4 shows the energy loss sum of the ion-chamber and thin scintillator against the

total energy measurement. The total energy was determined from a sum of all three energy

measurements including the TKE scintillator energy. There are no neutron requirements in

these plots and therefore, the un-reacted 26F beam shows up as the strongest distribution.

This clearly identifies the Z = 9 fluorine elements and ensures a proper energy calibration.

The resolution of the energy detectors is good enough to separate the Z = 8 oxygen isotopes
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Figure 5.4: Element identification of fragments detected in the focal plane of the Sweeper
dipole magnet by their energy loss and total kinetic energy. The plot on the left shows
the energy loss through the thin ∆E plastic scintillator versus the energy loss through the
ion-chamber. The plot on the right shows the sum of the two energy loss measurements
(ion chamber and thin plastic scintillator) plotted against the total kinetic energy (sum of
ion-chamber and both the thin and thick plastic scintillators). The largest number of counts
shows the location of the un-reacted 26F beam (Z = 9) with the oxygen isotopes located
below (Z = 8).

below Z = 9 as can be seen in Fig. 5.4. Gates were applied to each spectrum to select only

the oxygen Z = 8 isotopes.

In principle, isotopic separation should be possible from these energy loss spectra since

the energy loss is proportional to mass m, as is shown in equation 5.9. Furthermore, the

total kinetic energy should provide mass separation as it is proportional to 1
m

. Because of

the limited acceptance of the Sweeper magnet, the Bρ for all of the fragments that make it

to the focal plane can be considered constant Bρ = C. Using equation 5.8, the relation for

the velocity becomes

v =
Cq

m
(5.10)

with C as a constant. Inserting this equation into the classical expression for the total kinetic
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energy we arrive at

E =
1

2
mv2 =

1

2
m
C2q2

m2
∝ 1

m
(5.11)

showing the 1
m

dependence for the energy.

However, the resolution of the energy measurements, even with corrections for the flight

paths of the ions through the detectors, is not adequate to identify mass 24 from 23, i.e. 24O

from 23O. The lack of isotopic identification is apparent in Fig. 5.4 as separate distributions

do not show up inside the black Z = 8 gates. Therefore, a separate procedure involving the

fragment’s times-of-flight had to be implemented.

5.3.3 Isotopic Separation

A clean isotopic selection of the Z = 8 oxygen isotopes is crucial to the decay reconstruction.

Since the energy loss information did not provide enough resolution for isotopic selection, a

time-of-flight (ToF) method was implemented. The foundations of the method are the same

as those described above for the secondary beam identification. The Sweeper magnet selects

only fragments of nearly constant rigidity and therefore the various m
q

ratios have different

velocities. This is pointed out by equation 5.8. The velocity of the fragments is determined

through their times-of-flight as they move from the timing scintillator at the secondary target

position to the thin ∆E plastic timing scintillator located after the Sweeper dipole magnet.

The straight line trajectory for this flight is 4.33 m, resulting in a ToF for the central track

24O fragments (Bρ ≈ 3.8 Tm and v=11.36 ns) of ∼38 ns.

Looking at the raw ToF spectrum for the oxygen elements in bottom portion Fig. 5.5,

we see no clear isotopic separation at all. Furthermore, in the 2-D spectra, plotting the

dispersive angle of the fragments as the leave the Sweeper magnet and the total kinetic

energy each against the raw ToFs, again the different isotopes of oxygen are not defined.

The lack of separation is due to the various flight paths that recoil fragments may

take when traversing the Sweeper magnet and the overall distance to the thin ∆E timing

scintillator. The recoil fragments exit the secondary target at various angles due to their

angle straggling in the target as well as small momentum kicks from the knock-out reaction

and neutron decay. Therefore they are injected into the dipole magnet at various angles,

causing many fluctuations in their flight-paths. The calculation of the times-of-flight for these

fragments then is not enough to properly determine their velocity. However, measured angle

62



Raw time-of-flight (arb. units)
35 36 37 38 39 40 41

F
P

 D
is

p
er

si
ve

 a
n

g
le

 (
m

ra
d

) 

-60

-40

-20

0

20

40

60

0

1

2

3

4

5

6

7

8

9

10

Raw time-of-flight (arb. units)
35 36 37 38 39 40 41

T
o

ta
l K

in
et

ic
 E

n
er

g
y 

(M
eV

)

1200

1400

1600

1800

2000

2200

2400

0

2

4

6

8

10

12

Raw time-of-flight (arb.units)
35 36 37 38 39 40 41

C
o

u
n

ts

0

20

40

60

80

100

120

140

160

Figure 5.5: The raw time-of-flight (ToFraw) for only oxygen Z = 8 recoil fragments from the
target scintillator to the thin ∆E scintillator is shown in the bottom figure. ToFraw is also
plotted against the measured dispersive angle in the focal plane (top) and the total kinetic
energy (middle). These show the lack of separation for the oxygen isotopes because of the
variations in the fragments flight paths between the timing detectors.
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Table 5.1: A table listing the parameters of the adjusted time-of-flight.

Parameter Coefficient Description
Afp 60 Dispersive angle in the focal plane
Afp2 -0.25 2nd order dispersive angle in the focal plane
Xfp -3.5 Dispersive position in the focal plane
Xfp2 -0.6 2nd order dispersive position in the focal plane
Xta 40 Dispersive position at the target
Yta 20 Non-dispersive position at the target

Dflight 0.25 Flight path in the focal plane

and position information gathered by the two cathode-readout drift chambers and the beam

tracking PPAC detectors can be used to adjust the measured time-of-flight to compensate

for the flight path differences. Most crucial to the ToF adjustments are the dispersive angles

(Afp) and positions (Xfp) of the observed fragments as they leave the Sweeper magnet.

These two values were included to second order in the adjustment. The other components

were included only to first order and they include, the total flight distance of the fragment

after the Sweeper magnet and the dispersive target position of the 26F beam. All of these

components had a weight parameter that was adjusted to optimize the separation of the

oxygen isotopes. The adjusted time-of-flight equation with the final parameter values was

ToFadj = ToFraw + 60 · Afp− 0.25 · Afp2 − 3.5 ·Xfp

−0.6 ·Xfp2 + 40 ·Xta+ 20 · Y ta+ 0.25 ·Dflight,
(5.12)

where the descriptions of the parameters are given in Table 5.1.

To correctly determine the parameters for each measurable, the adjusted ToF was plotted

against each parameter individually in a 2-D spectrum. All the parameters used for the Z = 8

oxygen isotopic separation are given in Table 5.1. The clean identification of the 24O and

23O isotopes is shown in the 2-D plots of Fig. 5.6. The 1-D adjusted time-of-flight (TOFadj)

spectra, reflecting equation 5.12, is shown in the bottom left portion of Fig. 5.6. The adjusted

ToF is shown plotted against the total kinetic energy (TKE) (top left), the dispersive angle

at the target (top right), and the dispersive angle in the focal plane (bottom right), in the

2-D spectra of Fig. 5.6. Clearly observed is the separation between the A = 23 and 24

masses, identified by the labels in the 1-D adjusted ToF spectrum shown in the bottom left
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Figure 5.6: The isotopic identification of the oxygen Z = 8 isotopes. The fragments adjusted
times-of-flight (TOFadj) are plotted against the total kinetic energy (top left), dispersive
angle at the target (top right), and dispersive angle in the focal plane (bottom right). The
projection of all the 2-D spectra results in the 1-D adjusted TOFadj spectra, shown in the
bottom left figure. The 24O and 23O fragments are cleanly identified in the 1-D and 2-
D spectra. The black circle shows a typical gate that would be placed to select the 24O
fragments for a coincidence measurement.

picture of Fig. 5.6. The black circles in each 2-D spectrum of Fig. 5.6 also identify the 24O

fragments for each case.

Now that the isotopes are clearly separated, they must be identified by their masses m.

The identification of 24O over 23O can be made by looking at the total energy (TKE) versus

the adjusted ToF 2-D spectrum. Shown by equation 5.11 the TKE is proportional to 1
m

so

the lowest distribution on the plot represents the heaviest mass. With 24O being the heaviest

bound oxygen isotope [6, 7, 14, 36, 37, 39] their is no concern for a mis-identification as no
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other oxygen isotopes survive the flight to the thin ∆E detector. This results in the isotopic

identification of 24O,23O and 22O fragments in the focal plane. As an independent check

of these identifications, the 22O+n coincidences were analyzed and the previously observed

∼45 keV resonance in 23O [46] was indeed reproduced.

5.3.4 Fragment Momentum Four-Vector

The decay fragment four-vector must also be reconstructed to determine the decay energy

of the initial state. Therefore, the fragments’ positions and angles at the target must be

reconstructed, and two tracking techniques are needed to accomplish this. They are a forward

tracking of the secondary beam particles onto the reaction target and the inverse tracking of

the fragments back through the Sweeper dipole magnet to the secondary target. The need

for the forward tracking is described below.

The Dipole Sweeper magnet was constructed to have a large-gap (> 10 cm) to allow

for the relatively free passage of decay neutrons [17]. This large gap creates a problem for

the reconstruction of the magnetic field of the magnet due to inhomogeneous fields and

significant gradients. Because of this, special care was taken in mapping out its field and

the program COSY infinity [62, 63] was used to create ion-optical matrices to represent

these fields to 3rd order. Furthermore, the dipole Sweeper magnet had no other focusing

magnets and therefore the beam was run in focused mode. However, radioactive secondary

beams have large position spreads, as was the case with 26F, σx,y ∼ 2 cm as is shown in the

bottom left of Fig. 5.7. The target dispersive (x) position then can not be simply neglected

when creating an inverse ion-optical matrix as is done by COSY infinity. A novel partial

inverse matrix technique was developed to reconstruct the fragment trajectories using the

measured dispersive position of the 26F beam at the target [19]. The result is a FWHM

of ∼ 1.5% for the reconstructed distributions over the ∼ 4% value found from the COSY

infinity reconstruction.

Secondary Beam Tracking

A key component to the partial inverse matrix technique is the input of the target position

of the fragment. This position can be estimated by using the forward tracked position of

the 26F secondary beam. This was done by tracking the 26F from the two parallel-plate

avalanche chambers (PPACs) though the quadrupole triplet magnets located before the
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Figure 5.7: The forward tracking of the 26F beam is plotted against the inverse tracking
of the 26F beam for the dispersive angle (top left) as well as the non-dispersive position
(bottom left) and angle (top right). There is no target in place for this data so the beam is
un-disturbed as it travels from the beam pipe to the focal plane. The reconstruction should
be exactly 1:1, however resolutions and non-perfect tracking causes the spread around the 1:1
lines. Also shown in the bottom right plot is the 26F beam profile that has been tracked to the
target position. The dispersive position was used as an input for the inverse tracking [19, 20].

target position. An ion-optical matrix that describes the path of the beam ions through the

triplet was developed and it relates the measured positions and angles from the PPACs to

the target by 
x
θx
y
θy
δ


Target

= Mforward


x
θx
y
θy

∆L


PPAC

(5.13)
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where the x and y represent the horizontal and vertical positions, and θx and θy are the

horizontal and vertical angles. ∆L is the path length of the ion through the magnetic field

and δ is given by

δ =
E − E◦
E◦

(5.14)

with E being the energy of the fragment and E◦ being the central track energy of the magnet.

Using the measured angles and positions of the secondary 26F beam found from the two

PPACs as inputs, the properties at the target were determined with a FWHM≈ 1 mm. The

forward tracked x and y positions for the beam are shown in the bottom right plot Fig. 5.7.

Inverse Fragment Tracking

The reconstruction of the fragments’ four-vectors is made complicated by the large-gap

acceptance and hence, irregular magnetic field of the dipole (Sweeper) magnet. To create

a matrix that is possible to transform the measured properties of the fragments after the

Sweeper magnet back to the target, the magnetic field was carefully probed along the central

track. Then taking a Fourier transformation of the central track the three-dimensional

magnetic field outside of the mid plane is calculated. The only problem is that the mapped

mid plane field has to be extrapolated to places that could not be measured. The program

COSY infinity [62, 63] was also used for this.

The ion-optical matrices that COSY creates from the determined magnetic field for the

dipole Sweeper magnet relate a particle of particular energy, charge and mass to properties

either before the magnet to after it or vice-versa. There is a forward map created which

has the same relations as given for the forward tracking of the secondary beam (eq. 5.13.

However, also created by COSY is an inverse ion-optical matrix which related the properties

of the fragments in the focal, i.e. CRDC measurements, back to the target position. This

would be fine except that the inverse matrix of COSY assumes a focused beam and takes

the dispersive position at the target to equal zero. This is not the best assumption for a

radioactive beam having a σx,y ∼ 2 cm as mentioned above. This led to the creation of a new

partial inverse map which used the 26F beam position, determined by the forward tracking

as described above, as input to the matrix. The details of the creation procedure of the new

inverse matrix from the forward matrix of COSY are described in detail in Refs. [19, 20].
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The final relation between the focal plane observables and the target parameters is given by
θx
y
θy
δ

∆L


Target

= MInverse


x
θx
y
θy

xTarget


CRDC

, (5.15)

where CRDC represents the measurable parameters in the focal plane (i.e. the inputs) and

Target shows the parameters to be calculated.

The δ parameter represents an accurate measurement of the fragment energy to be used

as input into equations 3.5 and 3.6 to determine the decay energy. Also, the positions and

angles of the fragments at the target are used with the same values from coincident neutrons

to determine the opening angle for the decay, also needed in equations 3.5 and 3.6 to calculate

the decay. The reconstructed resolution varies for different fragments because of their

different rigidities and, hence, their population of different phase spaces. The FWHM energy

resolution for the 24O fragments was 0.9 MeV/u and for the 23O fragments was 1.07 MeV/u.

The FWHM angle resolutions for 24O and 23O were 6.6 mrad and 9.2 mrad, respectively.

The reconstructed fragment kinetic energies for 24O fragments and 23O fragments that had

a coincidence with a neutron are shown in Fig. 5.8. To ensure that the forward and inverse

tracking techniques were correct in their calculations, the full technique was performed for

the secondary beam with no target in place. In this scenario a 1:1 relation should be present

for the incoming and out going parameters if the reconstruction were perfect. However, with

the resolutions of the detectors and the no-perfect reconstruction, the 2-D plots should be

spread around the 1:1 line. Indeed this is apparent in the 2-D plots of Fig. 5.7. Here the

angles and vertical position for the forward tracking to the target are plotted versus the

same parameters but inversely tracked to the target.

5.3.5 Neutron Momentum Four-Vector

The full neutron four-vector must be reconstructed in order to calculate the invariant mass

of the original state. To accomplish this, the energy and momentum of neutrons emanating

from the target were measured using the Modular Neutron Array (MoNA) [60] as a time-

of-flight (ToF) position sensitive neutron detector. By determining the flight path of the

neutron from the target as well as the amount of time it took to traverse that distance, the

energy and momentum may be determined.
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Figure 5.8: The calculated fragment kinetic energies, using the novel partial inverse tracking
technique [19, 20], are shown for both 24O+n data (left) and 23O+n data right by the black
data points with their statistical uncertainties. The lines are the same kinetic energies but
determined from the Monte Carlo Simulation ST-mona.

The horizontal (X), vertical (Y), and longitudinal (Z) positions all need to be determined

for a single neutron. The horizontal position was obtained by taking the calibrated time

difference between the photo-multiplier tube (PMT) signals from each end of a single MoNA

bar (10 × 10 × 200 cm3). Using this method a FWHM resolution of 7.5 cm was achieved.

The vertical and longitudinal directions were both determined by the physical location of

the MoNA bar that was hit. The bars were arranged in a 16x9 rectangle with adjacent bars

touching, therefore, when a single bar had adequate signals in both PMTs its location could

be calculated. The plastic bars of MoNA are 10× 10 cm2 in the Y and Z directions causing

an uncertainty of ±5 cm for each position measurement. Neutron positions measured by

MoNA are shown in Fig. 5.9 for 24O+n coincidence data.

The kinetic energy of the neutrons can be determined using the distance of the neutron

from the target and by the time-of-flight (ToF) between the target timing scintillator and

the time of the first interaction of the neutron at MoNA. The start time of the ToF comes

from the 0.253 cm plastic scintillator located ∼6 cm before the secondary Be target. The

stop time is the average time of the first two simultaneous PMTs from a single neutron bar.

This ToF has been calibrated using the known velocity and flight distance of γ-rays from

the reaction target as was described above. The calculation of the neutron kinetic energy
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Figure 5.9: The positions of neutrons that were detected by the Modular Neutron Array
(MoNA) for 24O+n coincidence data. The data shows the X-Y (top left), X-Z (top right),
and Y-Z (bottom left) 2-D spectra. The neutron time-of-flight spectra for 24O+n coincidence
data is shown in the bottom right for the first neutron interaction inside MoNA.

from the observed ToF and flight path is done using relativistic equations. The velocity of

the neutron is

v =
D

ToF
(5.16)

where D is the distance from the target to the interaction inside MoNA. The energy

calculation from the velocity follows the expressions:

β =
v

c
(5.17)

γ =

√
1

1− β2
(5.18)
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Figure 5.10: The calculated neutron kinetic energies, using the prescription described above,
are shown for both 24O+n data (left) and 23O+n data (right) by the black data points with
their statistical uncertainty. The lines show the results of the calculated kinetic energies
from the Monte Carlo Simulation ST-mona.

The neutron kinetic energy KE is now determined with the neutron rest mass Mn

KE = Mn(γ − 1) (5.19)

The angle, kinetic energy, and rest mass information for the neutron are now all available,

completing the four-vector reconstructed. The reconstructed neutron kinetic energies that

have a coincidence with either an 24O fragment or an 23O fragment are shown in Fig. 5.10.

The four-vector components of a coincident fragment must now be determined to combine

with the neutron’s and be inserted into equations 3.5 and 3.6 to calculate the invariant mass

and decay energy.

5.3.6 Total Reconstruction

The full reconstruction of both the neutrons and the fragments provides all of the components

necessary to reconstruct the invariant mass of neutron unbound states using equations 3.5

and 3.6. The neutron and fragment kinetic energies used to reconstruct the decay energy

have been shown in Figs. 5.10 and 5.8. The relative angle between the coincident neutron and

fragment in the laboratory frame, may be found on an event-by-event basis. This relative

angle, needed for the reconstruction of the decay energy, is shown in Fig. 5.11. The relative
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Figure 5.11: The relative decay angle in the laboratory frame for 24O+n (left) and 23O+n
(right) coincidence data is shown by the data points with their statistical error bars. The
lines shown the calculated values for the angle from the Monte Carlo Simulation ST-mona.

decay energy is reconstructed for neutrons in coincidence with either an 24O fragment or and

23O fragment. The experimentally observed relative decay spectrum for the 25O decay and

for the 24O, are shown in top and bottom of Fig. 5.12, respectively.

The top plot shows the ∼400 24O+n coincidence events, the middle plot shows the

∼300 23O+n coincidence events and the bottom plot shows the ∼1000 22O coincidence.

These experimental plots have not been corrected in any way. They are all affected by the

experimental resolutions and acceptance cuts. The three plots do show some resonance type

structures that must be investigated. To accomplish this, the experimental response must

be understood so as to extract only the true physical properties of any resonant states.

5.4 Monte Carlo Simulation

The observed decay spectra are hampered by experimental resolutions and acceptances. To

extract useful physics information from these spectra, a simulation package was developed

to reflect the experimental response and analysis techniques. This software package, ST-

mona [15], uses Monte Carlo methods to simulate decay events. These events are then

analyzed in the same manner as the experimental data so that the two may be directly

compared. Details of the simulation, components and usage are given below, as well as

in [15, 18, 20].
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Figure 5.12: The reconstructed relative decay energy spectra for coincidence 24O+n (top) and
23O+n (bottom) events are shown by the black data points with their statistical uncertainties.
The spectra were calculated using the invariant mass equations of 3.5 and 3.6.

The simulation included all of the geometrical acceptances of the experimental setup.

Most crucial to the resolution were the neutron acceptances at MoNA. Also very important

are the recoil fragment acceptances through the Sweeper magnet and the acceptances of

the detectors in the focal plane. A Gaussian smearing was included for resolutions of the

beam-line PPACs and the CRDCs. Also, Gaussian distributions for the timing resolution

for each scintillator were also included. The FWHM resolutions for all of the detectors

are shown in Table 5.2. Furthermore, a Glauber reaction model was used to describe the

knock-out reactions by the target. This provided random momentum kicks to the fragments.

The angular straggling of the recoil fragments as they moved through the remainder of the
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Table 5.2: A table listing the resolution parameters and inputs into the ST-mona Monte
Carlo simulation.

Parameter σ (Units)
Beam Energy Spread -0.025 (MeV/u)

Target Resolution 0.0007 (cm)
Time Resolution 0.3 (ns)

CRDC Position Resolution 0.001 (mm)
CRDC Angle Resolution 0.0013 (mrad)

MoNA X Position Resolution 0.08 (m)
MoNA Y and Z Position Resolution 0.05 (m)

Input Dispersive Position 0.005 (m)
Input Dispersive Angle 0.009 (m)

Input Non-Dispersive Position 0.004 (m)
Input Non-Dispersive Angle 0.0035 (m)

target was also incorporated into the simulation. Finally, any effects that the scattering of

a neutron inside MoNA may have on the position resolution of the neutrons was simulated

by GEANT3 [64] and also included in the calculations.

The final resolution of the entire experimental response was determined by fitting the

FWHM of a delta function decay at various decay energies. In Fig. 5.13 the FWHM functions

for the experimental response for the 25O decay (inset left) and the 24O∗ decay (inset right)

are both shown. These functions are proportional to the square-root of the decay energy

(
√
Edecay), where the decay energy is in keV. For the decay of 25O (24O+n events) the

resolution as a function of decay energy was FWHM= 17
√
Edecay and FWHM= 40

√
Edecay

below and above ∼1 MeV respectively. The cause for the abrupt increase in resolution

is because at ≈ 1 MeV perpendicularly decaying neutrons are beginning to be missed by

MoNA. The resolution for the 24O decay was FWHM= 41
√
Edecay. Also shown in Fig. 5.13

are the delta function decays at three different relative decay energies for each (0.1 MeV,

0.75 MeV and 1.5 MeV). The delta function was used as the input distribution into the

ST-mona simulation. Therefore, the widths of these states is purely from the experimental

resolution. These were calculated at a number of different decay energies and those widths

were used to determine the FWHM resolution function. Because the experimental setup was

optimized for an 25O decay, the 24O resolution and acceptance are slightly worse. This is
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Figure 5.13: The FWHM resolution functions are given for the decay of 25O (inset left) and
the decay of 24O∗ (inset right). They are FWHM= 17

√
Edecay and FWHM= 40

√
Edecay

below and above ∼1 MeV respectively for the 25O decay and FWHM= 41
√
Edecay for

the 24O decay. Also shown are three different relative energy decays (0.1 MeV, 0.75 MeV
and 1.5 MeV) which have widths comprised of solely the experimental resolution as delta
functions were the input decay distributions.

mainly due to the fragment acceptance through the Sweeper magnet and the fact that the

decay fragments (23O) were off of the central track Bρ of the magnet.

5.4.1 ST-mona Simulation Procedure

The simulation used the experimental distributions of the secondary beam at the target as

input. These distributions were then used to calculate the positions and angles of the nucleon

removal reaction inside the target. For the 26F removal reactions, a sudden approximation

is implemented in the simulation to account for the knock-out of a single proton in the

25O case, or possibly multiple nucleons in the 24O case. The decay of the parent nucleus

into a fragment plus a neutron is nearly instantaneous; therefore still occurring within the

target. The distribution of the decay is determined by the user. Three different distributions

were included for this analysis. The Breit-Wigner single level distribution (see eq. 3.8 in

chapter 3) was included to describe resonances. Maxwellian and Gaussian distributions

(eqs. 3.28 and 3.29, also described in chapter 3) were included to simulate the non-resonance

contributions to the decay spectrum.
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Figure 5.14: The measured dispersive angles (top left) and positions (top right) and non-
dispersive angles (bottom left) and positions (bottom right) of 24O fragments that have a
coincidence with a neutron are shown by the data points with their statistical error bars. The
solid black line is the total sum of the simulated data from the Monte Carlo simulation ST-
mona [15]. As can be seen, all of the observables are very well reproduced by the simulated
data.

The fragments are forward tracked through the dipole Sweeper magnet using the forward

ion-optical matrix created by COSY. This produces simulated data in the focal plane in

the same way as the experimental data that was observed. The forward map used is the

same as described above which was inverted to allow for inverse tracking of the particles.

To check the correctness of the forward map and the acceptance and resolution inputs of

the simulation, the dispersive and non-dispersive angles and positions for the simulation are

overlaid with the experimental data in Fig. 5.14 and in Fig. 5.15.

The neutrons that are simulated in the decay events are transformed to the position of

MoNA. These simulated events are compared to the experimental measurable neutron data
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Figure 5.15: The data and the simulation are the same as in Fig. 5.14 except that it is for
23O fragments in the focal plane that have a neutron in coincidence.

as well. Fig. 5.16 shows the dispersive positions of measured neutrons at MoNA and the

simulated events for the same observables. With all of these first order observables, the four-

vectors for the neutrons and fragments are then calculated from the simulated data. The

analysis pipeline for all of the simulated data is identical to that of the experimental data, so

a direct comparison is warranted. Using the simulated data, the second order parameters are

calculated and the simulated results are overlaid with the measured data as is for the kinetic

energies in Fig. 5.8 and the laboratory angle in Fig. 5.11. The relative velocity spectra,

which are calculated by the difference between the scalar velocities of a fragment-neutron

pair, are also very well reproduced, as is shown in Fig. 5.17.

These excellent representations of the experimental data reflect the understanding of the

experimental response as the simulated data reproduces all of the measured data. With

this very good handle on the experimental response, the invariant mass and decay spectra
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Figure 5.16: The observed horizontal positions of neutrons detected by MoNA that are in
coincidence with an 24O (left) or 23O (right) fragment, are shown by the black data points.
The Monte Carlo ST-mona simulated data is also shown on the same figures, for the same
parameters, by the solid black lines.

 0

 10

 20

 30

 40

 50

 60

 70

-4 -3 -2 -1  0  1  2  3  4

C
ou

nt
s

Relative Velocity (cm/ns)

resonant
non-resonant

sum
25O data

 0

 10

 20

 30

 40

 50

 60

-4 -3 -2 -1  0  1  2  3  4

C
ou

nt
s

Velocity Difference (cm/ns)

First Resonance
Second Resonance

Non-Resonance
Sum of Components

24O data

Figure 5.17: The experimental relative velocities, determined by the velocity difference
between coincidence fragments and neutrons, are shown for 24O+n (left) and 23O+n (right)
coincidences by the black data points with their statistical uncertainties. The simulated
data is shown by the solid black line, which reproduces the observed data very well. The
components of the simulated data from ST-mona will be discussed in chapter 6.
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for the measured resonances may be simulated and compared directly with the data. The

final simulated decay spectra, which include Breit-Wigner resonance line-shapes and non-

resonance line-shapes as described in chapter 3, are fit to the experimental decay spectra

to extract properties such as decay energy and resonance width. This was carried out by

allowing all of the parameters of the Breit-Wigner and the non-resonance line-shape to very

and adopting a goodness-of-fit minimum chi-squared (χ2) procedure.
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CHAPTER 6

RESULTS

6.1 Ground State Mass of 25O

The simulated data produced by ST-mona [15] was shown in chapter 5 to reproduce the

experimental measurements for all of the components needed to reconstruct the 25O decay

spectrum (see Figs. 5.8, 5.10, 5.11, 5.14, 5.16,and 5.17). This confidence in understanding

the experimental response allows for the invariant mass decay spectrum for the 24O+n

coincidence data to be fit by simulated line-shapes. The decay spectrum for the 25O ground

state, shown in Fig. 5.12, appears to have a single resonance structure. Therefore, a single-

level Breit-Wigner line-shape will be used to describe the resonance contribution to the data.

The derivation of the Breit-Wigner line-shape was given in chapter 3 and the final form of

the function (eq. 3.8) is given again here;

σl(E) ∝ Γl(E)

(Edecay + ∆l(E)− E)2 + 1
4
Γl(E)2

. (6.1)

The width Γl(E) depends on the decay energy and the orbital angular momentum by

Γl(E) = 2Pl(E)γ2. Pl(E) is the penetrability function and is comprised of the Bessel

functions for a neutron decay. The shift function also depends on the Bessel functions and

the orbital angular momentum as ∆l(E) = −(Sl(E)−B(E)). B(E) is value of the boundary

condition, set so that ∆l(E) = 0 when E = Edecay, the resonance energy. Also, the interaction

(channel) radius was found from eq. 3.11, with A1 = 24 and A2 = 1, so a ∼ 5 fm. Variations

on either of the boundary conditions were found to have effects less than the resolution of the

experimental system. See chapter 3 for further details and derivations of the aforementioned

values and expressions. The resonance energy Edecay, width Γl(Edecay), and amplitude of the

Breit-Wigner function are all free parameters. The orbital angular momentum (l), is also a

parameter of the Breit-Wigner equation. All of the parameters (Edecay,Γ and the amplitude)
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may be determined by a minimum chi-squared (χ2) fitting procedure. However, for the decay

of 25O→24O+n, the orbital angular momentum l may be determined by investigating the

single-particle structure of 25O and 24O, along with a few simple theoretical arguments.

6.1.1 Theoretical Background

The lowest single-particle proton structure of 25O consists of Z = 8 protons filling the lowest

three s − p orbitals ((0s1/2)2(0p3/2)4(0p1/2)2). Z = 8 is a traditional magic number as the

next orbital (0d5/2) is high in energy. The single-particle neutron structure has 17 neutrons

filling all orbitals up to the 0d3/2 level, plus a single neutron sitting above the predicted

N = 16 shell gap ((0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6(1s1/2)2(0d3/2)1). The sd orbitals that are

filled by the neutrons for the ground states of 25O and 24O, are shown in Fig. 6.1. To

predict the ground state total angular momentum (spin) and parity of 25O, the unpaired

protons and neutrons are investigated. Since the protons are an even number (Z = 8), they

couple to the lowest energy possible, a spin-parity of Jπ = 0+. The same happens for the

lowest N = 16 neutrons. Therefore, the unpaired neutron in the ν0d3/2 orbital provides the

ground state spin of the nucleus in the independent single-particle model. The total angular

momentum of the state is J = 3/2. The parity of the state is related to the orbital angular

momentum by π = (−1)l. With the final unpaired neutron in a d–wave state of l = 2, the

parity is positive. The result is a ground state spin-parity of Jπ = 3/2+ for 25O. The simple

single-particle prediction is confirmed by more sophisticated shell model calculations using

the USD [13], USD05a [27] and SDPF-M [11] interactions. Each of these predict a 3/2+

ground state spin-parity, and no nearby states that compete in energy.

With the 25O ground state spin-parity inferred, the orbital angular momentum l, needed

for the Breit-Wigner function for the decay neutron, may be suggested. The 25O(3/2+)

ground state decays to the 24O (0+) ground state by the emission of a single neutron. A

schematic of the single-particle structure for this decay is shown in Fig. 6.1. The single

neutron decay path is the only decay path that is observed in this experiment as there are

no bound excited states in 24O [9].

The neutron decay process must conserve total angular momentum (spin) J , where

J = l± s. s is the intrinsic momentum of the neutron and l, the orbital angular momentum

of the neutron. The intrinsic spin value for a neutron is 1/2. The conservation of momentum
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Neutron single-particle configurations

Figure 6.1: The neutron single-particle structure for the ground states of 25O and 24O, are
shown for the sd orbitals. The l = 2 neutron decay of 25O (3/2+) to 24O (0+) is depicted by
the arrow. The orbital angular momentum assumed for this decay is the only value allowed
inside the sd shell.

looks like

Jf − Ji = ∆J =
3

2
= l ± 1

2
(6.2)

for the 25O ground state decay to the 24O ground state decay. Therefore, l may only have

values of either 1 or 2. Since we have already determined above that the neutron is in the

d–wave state with l = 2, and there is no change in parity between the two states in the decay

(3/2+ → 0+), then the neutron must have orbital angular momentum l = 2. This parameter

may now be set for the Breit-Wigner line-shape 6.1 used in the χ2 fitting procedure of the

invariant mass spectrum.

The use of a single-level Breit-Wigner distribution of l = 2, which infers an isolated single

resonance with little interference from nearby states, for the description of the ground state
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Table 6.1: A table listing the occupation numbers for neutrons in particular sd shell orbitals
for the ground states of 25O and 24O [1, 2].

25O (3/2+) 24O (0+)
Interaction 0d5/2 1s1/2 0d3/2 Interaction 0d5/2 1s1/2 0d3/2

USD 5.889 1.957 1.154 USD 5.786 1.909 0.305
USD05a 5.917 1.977 1.107 USD05a 5.836 1.953 0.211
USD05b 5.931 1.976 1.093 USD05b 5.865 1.950 0.185

resonance of 25O, is supported by the calculated particle configurations of the initial and

final ground states. The 25O ground state is calculated to have a wave function dominated

by a configuration of a closed proton Z = 8 shell (0s1/2)2(0p3/2)4(0p1/2)2 and one neutron

above the new shell gap at N = 16 (0d3/2)1 [11]. The occupations for the sd shell orbitals

for the ground states of 25O and 24O are shown for the USD [13] and USD05 [27] shell model

interactions in Table 6.1.

For 25O, the occupations of the three orbitals are consistent with the single-particle model

occupations of the 0d5/2 = 6, 1s1/2 = 2, and the 0d3/2 = 1 orbitals. Hence, the calculated

occupation numbers support the use of the single-particle model. The 24O ground state wave

function is also dominated by a single configuration having the same closed Z = 8 proton

shell as 25O, but with a closed N = 16 shell for the neutrons. The occupation number for the

ν0d3/2 orbital in 24O, as calculated by using the USD interactions, are all around 0.2. This

indicates that the more dominant configuration prefers an un-occupied ν0d3/2 orbital [1, 2].

There is no surprise from these occupations numbers, that the spectroscopic factor is nearly

1 for an l = 2 neutron decay from the ν0d3/2 of 25O to the ground state of 24O. In fact

it is greater than 0.9 for all three sd-shell interactions (USD,USD05a and b) [1, 2] as is

shown in Table 6.2. It should be noted, that for a purely single particle 25O ground state

the spectroscopic factor for the ν0d3/2 orbital would be unity because only a single neutron

occupies that orbital. These arguments support the validity of a single Breit-Wigner line-

shape with an l = 2 orbital angular momentum as a good representation of the 25O→24O+n

decay.

The non-resonance contributions to the decay spectrum were simulated by an input distri-

bution of Maxwellian shape into the decay energy distribution for ST-mona. The description
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Table 6.2: A table of the spectroscopic factor S, between the initial ground state Jπ = 3/2+

in 25O and the 0+ ground state in 24O.

Initial Jπ Orbital nlj S Interaction
3/2+ 0d3/2 0.904 USD
3/2+ 0d3/2 0.942 USD05a
3/2+ 0d3/2 0.945 USD05b

of this distribution was given in chapter 3, and its final form given by equation 3.28. The

Maxwellian distribution of beam velocity neutrons had two variables; temperature T and

amplitude. They were both free parameters of the fit to the experimental data. The choice of

the Maxwellian distribution to reproduce the non-resonance data was two-fold. First, it was

found to reproduce the decay distributions for mixed and random events. Second, the shape

of the relative velocity curve, which was very sensitive to the input decay distribution, was

well reproduces by the Maxwellian distribution of beam velocity neutrons. This excellent

reproduction of the relative velocity data is shown on the left side of Fig. 5.17.

6.1.2 Single-level Breit-Wigner Fit

The fit of the simulated data, comprised of both the resonance Breit-Wigner distribution and

non-resonance Maxwellian distribution, to the observed 24O+n decay spectrum, was carried

out. A χ2 value was computed for each variation of the free parameters. There were 19

degrees-of-freedom in the fit, 25 data points and 6 free fit parameters. A minimum χ2 value

of 15.1 was found for resonance parameters of Edecay = 770+20
−30 keV and Γ = 172(30) keV. The

optimum temperature for the Maxwellian distribution was T = 1.75 MeV. The minimum

reduced chi-squared value was χ2
red = 0.8. The best fit to the measured data points is

shown by the solid black line in Fig. 6.2. The total sum for the simulation is comprised of a

resonance (red, dotted line) Breit-Wigner component and a non-resonance (blue, dashed

line) Maxwellian distribution component. The ratio of the resonance to non-resonance

contribution to the spectrum is 3.25:1 as determined by the ratio of their amplitude

coefficients. Fig. 6.3 shows the 1 and 2 σ limits for the χ2 values with a dependence on

the decay energy Edecay and the width Γ. The Maxwellian temperature T was minimized

at each point along the contour. The uncertainties in the energy and width measurements
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Figure 6.2: The reconstructed relative decay energy for 25O is shown by the black data
points with their statistical uncertainty. The solid black line shows the simulated line-shape
composed of both a resonant (red, dotted) (Edecay = 770+20

−30 keV and Γ = 172(30) keV, l = 2)
and non-resonant (blue, dashed) contribution (ratio 3.25:1).

reflect only the statistical 1 σ limits from the χ2 fit. There may be systematic uncertainties

arising from the simulated data or other areas. The systematic uncertainties have not

been included. Table 6.3 shows the optimum values for all of the fit parameters with their

statistical uncertainties.

As was shown extensively in chapter 5 the simulated data reproduced the observed data

on all levels. The simulated data that was shown in Figs. 5.8, 5.10, 5.11, 5.14, 5.16,and 5.17,

all have the same components as the decay spectrum (Fig. 6.2). They all have the same ratio

of resonance to non-resonance contribution as well, again, solidifying that the simulation

reproduces all experimental data well and brings confidence to the parameters extracted

from the fit of the invariant mass decay spectrum.
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Figure 6.3: The minimum chi-squared χ2 contour plot for the fit of the simulated data of
ST-mona to the experimental data for the invariant mass decay spectra as a function of
decay energy Edecay and width Γl(Edecay). The dot represents the minimum χ2 value (16.1)
and the red and blue contours show the 1 and 2 σ limits.

Table 6.3: A table listing the optimum parameters from the fit of the simulated data to the
observed decay spectrum for the 25O→24O+n decay.

Parameter Optimum Value (Statistical Uncertainty) Units
Decay Energy (Edecay) 770+20

−30 keV
Width (Γ(Edecay)) 172(30) keV

Orbital Angular Momentum (l) 2
Temperature (T ) 1.75 MeV

Amplitude of Resonance 3.25
Amplitude of Non-resonance 1
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6.1.3 Ground State Mass of 24O

The ground state mass (binding energy) of 25O can be found from the measured decay energy,

the ground state binding energy of 24O, and the rest mass of a neutron. The equation may

be found from the expression for the decay energy (eq. 3.6)

E∗ =
√
s−Mf −Mn = M25O −M24O −Mn. (6.3)

M25O, M24O, and Mn are the rest masses of the ground states of 25,24O and a neutron. With

some manipulation of the above equation we have,

M25O = Edecay +M24O +Mn. (6.4)

The decay energy measured in the present work gives a value of Edecay = 0.77+0.02
−0.03 MeV, and

the rest mass of a neutron is known to be Mn = 939.565346 MeV [65]. All that remains

to include in expression 6.4 is the rest mass of the ground state of 24O. Since most mass

measurements work in terms of the mass excess, it is useful to give that expression here in

units of MeV,

MEX(MeV) = M(MeV)− A(u) · amu(MeV/u). (6.5)

M is the total binding energy of the nucleus, A is the number of nucleons in the nucleus,

and amu is the atomic mass unit (amu = 931.494028 MeV/u [65]).

Recently an experiment was carried out which measured and re-measured a number of

nuclei in the mass 20–40 region [24]. The experimental technique used was a time-of-flight

measurement, combined with a high-resolution energy-loss spectrometer. From this work, a

mass excess of 18.50(11) MeV was measured and a mass excess of 18.6(1) MeV was adopted

for 24O. The adopted value was calculated by the weighted average of the measurement

and the previously adopted value of the 2003 Atomic Mass Evaluation (AME) [25]. The

2003 AME value was determined from three independent measurements [21, 22, 23], each

made using a direct time-of-flight technique. The measured values for each 24O ground state

binding, and the adopted values, are shown in Fig. 6.4. The solid line in the figure represents

the most recently adopted value of Ref. [24].

The newly accepted value of Ref. [24] is 470 keV lower than the previously accepted value

of the 2003 AME (19.70(24) MeV) [25]. Investigating all of these mass measurements for

the ground state binding energy of 24O revealed that there was a single anomalous observa-

tion [23] that skewed the 2003 AME value. Since the recent measurement agrees with the
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Figure 6.4: The experimental mass excess (eq. 6.5) measurements are shown for the ground
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value of Ref. [24] (the adopted value for this work), are shown on the right side of the figure.
The solid line also shows the recently accepted value of Ref. [24].

majority of the previous measurements, and has less uncertainty than all others, it suggests

that this is the most reasonable value. The adopted value of Ref. [24] (18.6(1) MeV)has also

been accepted in this work for the calculations and comparisons of all of the experimental

data. It should be noted that the presently accepted value does include the anomalous

value [23] in the calculation of the 24O mass excess through the average with the 2003 AME

value.

The 24O ground state mass excess can now be used to calculate the total ground state
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binding energy of 25O. Using equation 6.4, the total binding energy of the 25O ground

state was calculated to be M25O = 23314.79 MeV. This correlates to a mass excess of

MEX = 27.44(11) MeV using equation 6.5.

6.1.4 Size of the N = 16 Shell Gap

An estimation of the experimental shell gap between the ν0d3/2 and ν1d1/2 orbitals (N = 16)

may be determined using the measured 25O ground state binding energy. First, one must

assume a closed (0p − 0h) ground state configuration for 24O with the neutrons filling the

1s1/2 orbital. Then the single-particle energy for the ν0d3/2 orbital may be determined by

the energy difference between the closed 24O core and the one neutron state [53]. The one

neutron state in this case is the N = 17 ground state of 25O, the current measurement.

Therefore, the energy difference between the 24O and 25O ground state binding energies,

ε0d3/2 = 770+20
−30 keV, is in fact the single-particle energy for the ν0d3/2 orbital. It should

be noted, that in this notation, an unbound orbital will have positive energy and a bound

orbital will have a negative energy. In the same manner, a single neutron hole state (N = 15)

for the closed 24O core can estimate the single-particle energy of the ν1s1/2 orbital [53].

The energy of the neutron hole state comes from the ground state binding energy of 23O.

The difference between the energies of the 24O ground state and the 23O ground state,

gives the ν1s1/2 orbital energy. This energy is ε1s1/2 = −4.09(13) MeV. The size of

the N = 16 shell gap is the difference in energy between the two single-particle orbitals,

gapN=16 = ε0d3/2 − ε1s1/2 = 4.86(13) MeV. The single-particle energies and the estimation

of the N = 16 shell gap at the oxygen drip line are shown by the black data points in Fig. 7.1

with their uncertainties.

6.1.5 25O Neutron Separation Energies (Sn and S2n)

To understand the location of the oxygen drip-line, the energy of the ν0d3/2 orbital will

become of extreme importance. Observables that reflect this energy very well are the neutron

separation energies. These measurable values provide the amount of energy needed to remove

a one (Sn) or two (S2n) neutrons from a nucleus. The equations for the neutron separation

energies of 25O are given by

Sn = M25O −M24O −Mn, (6.6)
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S2n = M25O −M23O − 2Mn. (6.7)

M represents the ground state binding energies and the rest mass of a neutron (Mn =

939.565346 MeV [65]). The ground state binding energies of 23O and 24O are known (see

discussion above for the ground state binding energy of 24O) [25, 24]. The binding energy of

25O has been determined in this work (M25O = 23314.79 MeV). Since the ground state of 25O

is unbound to both one– and two–neutron decay, the separation energies will be positive.

Looking at equation 6.6, we see that this value is in fact the experimental decay energy as

expressed in equations 3.6 and 6.4. Therefore, the 25O one–neutron separation energy is

Sn=770+20
−30 keV. The two–neutron separation is calculated from the ground state binding of

23O, S2n = 3.33(13) MeV.

6.2 Excited States of 24O

Similar to the 24O+n coincidence data in the decay of the 25O ground state, all of the 23O+n

measurable parameters needed for the 24O∗ decay were well reproduced by the simulated

ST-mona data (see Figs. 5.8, 5.10, 5.11, 5.15, 5.16,and 5.17). Therefore, the 24O∗ invariant

mass spectrum may be fit with confidence. The resonance features of this fit will be described

by a Breit-Wigner line-shape. This line-shape has the same free parameters of decay energy

Edecay, width Γ, amplitude, and orbital angular momentum l, as in the 25O resonance fit.

Also, as was the case with the 25O decay, the values for the orbital angular momentum l may

be constrained if a theoretical investigation of the 24O∗ decay to the ground state of 23O, is

undertaken.

6.2.1 Theoretical Background

24O has 8 protons and 16 neutrons and with a normal filling of the nuclear shells, this leads

to a closed Z = 8 π0p1/2 shell and a closed N = 16 ν1s1/2 orbital. Assuming that this single

particle configuration dominates the ground state of 24O, a possible lowest excited single-

particle configuration may result from the promotion of a neutron from the 1s1/2 orbital

across the N = 16 shell gap into the ν0d3/2 orbital. This leaves a neutron hole in the

ν1s1/2 orbital and an unpaired neutron in the ν0d3/2 orbital. The single-particle structure

for this configuration is shown, along with the decay of the unbound neutron, in Fig. 6.5.

The coupling of the unpaired neutron to the neutron hole gives possible spin-parity values
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l = 2,0
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Neutron single-particle configurations (24O* Decay)

Figure 6.5: The single-particle neutron configuration for the lowest excited states in 24O is
shown on the left side of the figure. This configuration has a single, excited neutron (red
circle), from the ν1s1/2 orbital raised into the ν0d3/2 orbital, leaving a hole (black circle) in
the ν1s1/2 orbital. The coupling of these two states results in spin-parities of Jπ = 2+, 1+.
The unbound neutron is allowed to decay to the ground state of 23O (1/2+ [26]), with either
orbital angular momentum l = 2 or 0.

of (1s1/2)1 ⊗ (0d3/2)1 → Jπ = 1+, 2+ as |Jmax − Jmin| ≤ J ≤ |Jmax + Jmin|. Another possible

configuration for the lowest excited states may come from a neutron in the ν1p3/2 or ν0f7/2

orbitals, giving rise to spins states of Jπ = 1−, 2−, 3− or 4−. However, these do not seem as

likely as the neutron must be promoted above the N = 20 (although possible reduced) shell

gap. Therefore, this work has assumed the 2+ and 1+ states to lie lowest in energy.

These first two excited states in 24O must be unbound to neutron decay because no

evidence was found for a γ decaying state (i.e. bound state) by a recent experiment [9].

The excited states of 24O must decay by a neutron to states in 23O. 23O was also found to

lack a bound excited state, as none were found during the same search for states in 24O [9].

Therefore, by detecting a neutron in coincidence with an 23O fragment, it is known for

certain that the excited state must have decayed to the known 1/2+ ground state in 23O [26].
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Applying the same arguments that were used in the 25O decay, mainly conservation of total

angular momentum J , we see that confined to the sd single-particle shell space, the 2+ state

must decay via a neutron with an l = 2 orbital angular momentum. The 1+ state may

decay by neutrons of either s-wave (l = 0) or d-wave (l = 2) nature (Fig. 6.5). This simple

picture, already limits the values of the orbital angular momentum. These orbital angular

momentum assumptions can be supported and further constrained by modern theoretical

calculations, including many-body shell model calculations.

There are a number of predictions available for the first excited state(s) in 24O [13, 27,

11, 2, 29]. These calculations include both standard shell model Hamiltonians [13, 27, 11], as

well as calculations which recognize the continuum explicitly [2, 29]. Each of them calculates

a low lying doublet of states of spin-parity Jπ = 2+, 1+. Also, they all predict that the 2+

state will lie lower in energy than the 1+ state. Therefore, if a single excited state were to

be observed in the invariant mass spectrum for the 24O∗ decay, it will most likely be the 2+

level. The orbital angular momentum of the neutron decaying from this state would have

to have angular momentum l = 2 (inside the sd shell). The energy of the first predicted

negative parity states by the WBP interaction using a 1p− 1h calculation into the fp shells,

was the 1− state more than 1.5 MeV higher in energy than the 2+ and 1+ states.

The spectroscopic factors between the 2+ and 1+ states in 24O, with the ground state of

23O (1/2+), can give an indication of the single-particle nature of the decaying state. The

spectroscopic factors are strong indicators for the likelihood that the parent states would

decay to the daughter state, as it is a measure of the overlap of the wave functions of the two

states. Therefore, a spectroscopic factor near unity in this case, suggests a strong overlap of

the excited state in 24O with the 1/2+ ground state of 23O. Furthermore, it suggests that the

state in 24O is dominated by a single-particle configuration. The spectroscopic factors for the

2+ and 1+ states decaying to the 1/2+ ground state of 23O, have been calculated using the

USD [13] and USD05 [27] shell model interactions [1, 2]. These values are given in Table 6.4.

The 2+ state is nearly one for the 0d3/2 orbital as was expected from the simple-single particle

model in the sd shell space. The 1+ state is also near unity for the 0d3/2 orbital and virtually

zero for the 1s1/2 orbital. This suggests that the 1+ state does not decay with any reasonable

amount via an s-wave l = 0 neutron, and indeed has a single-particle configuration similar

to that of the 2+ state. If the 1+ state were also present in the invariant mass spectrum,

then the theoretical arguments would suggest that it too decays via a neutron with angular
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Table 6.4: A table of the spectroscopic factor S, between the initial states Jπ in 24O and the
1/2+ ground state in 23O.

Initial Jπ Orbital nlj S Interaction
2+ 0d3/2 0.906 USD

0d5/2 0.014
1+ 0d3/2 0.887

1s1/2 0.001
2+ 0d3/2 0.951 USD05a

0d5/2 0.013
1+ 0d3/2 0.921

1s1/2 2× 10−5

2+ 0d3/2 0.945 USD05b
0d5/2 0.011

1+ 0d3/2 0.928
1s1/2 6× 10−5

momentum l = 2.

6.2.2 Non-resonant line-shape

The above theoretical arguments support the use of only an l = 2 orbital angular momentum

for the Breit-Wigner functions used to describe the resonance features of the invariant

mass spectrum. Also apparent in the decay spectrum are contributions from non-resonant

components. These non-resonance contributions showup as well in the relative velocity

spectrum for the 23O+n coincidence data. The experimental relative velocity differences

between 23O fragments and their coincident neutrons are shown by the data points in Fig. 6.6.

The same simulated relative velocity spectra are also shown in Fig. 6.6, where two different

non-resonance input distributions (Gaussian and Maxwellian) were used with ST-mona. In

the left figure the Gaussian distribution was used in the simulation and on the right side of

Fig. 6.6, the Maxwellian input distribution was used. The black solid line in each is the sum

of the resonance (not shown) and these non-resonance contributions (green, dash-dotted).

What can be clearly noticed is that at large relative velocity differences (less than -

1.5 cm/ns and greater than 1.5 cm/ns), the total line-shape is dominated by the non-

resonance contribution. Allowing the Maxwellian distribution to vary for all thermal energies
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Figure 6.6: The relative velocity difference between coincident 23O fragments and neutrons
are shown by the black data points with their statistical uncertainties (same data as on the
right side of Fig. 5.17). The lines in each figure are the simulated line-shapes from ST-mona.
The solid black line is the sum of the resonance (not shown) and non-resonance (green,
dot-dashed) contributions. The non-resonance contribution described by the Gaussian
distribution having a central decay energy of E = 10 MeV and σ = 5 MeV, is shown in
the left figure. The non-resonance contribution described by Maxwellian distribution of
thermal energy T = 1.75 MeV, is shown on the right. Note the better reproduction of the
data at large relative velocities (less than -1.5 cm/ns and greater than 1.5 cm/ns) by the
Gaussian input distribution.

T , could not reproduce this large relative velocity region. However, the Gaussian distribution,

with a central energy around E = 10 MeV and σ = 5 MeV, described the velocity difference

spectrum very well. The Gaussian distribution overall was much better at reproducing

the experimental data. Therefore, a Gaussian distribution was used to describe the non-

resonance data for all of the 23O+n observed spectra. It should be noted, and is shown by

Fig. 6.7 that the shape of the decay distribution is not drastically affected by the choice of

non-resonance distribution. Also, the variation of the central energy (8 − 12 MeV) and σ

(4− 6 MeV) of the Gaussian distribution, was found to have little effect on the shape of the
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Figure 6.7: The final 24O decay spectrum line-shapes for two non-resonance distributions,
Gaussian (E=10 MeV, σ=5 MeV) and Maxwellian (T=1.75 MeV), are shown by the solid
red and green lines respectively. These line-shapes result from the two non-resonance input
distributions that are compared in Fig. 6.6, the relative velocity spectra. It should be noted
that the two distributions do not have drastically difference overall line-shapes in this decay
spectrum.

non-resonance contribution in decay spectrum.

The physical explanation of the large relative velocity features may come from the way

that the excited states in 24O are populated. Instead of the direct population of the states by

a nucleon knock-out, as is the most likely case for the ground state of 25O, the excited states

in 24O are most likely fed through the high-lying states in 25O. A proton knock-out from the

inner p shell of the secondary 26F beam would populate continuum states in 25O which are

likely to decay to the excited states in 24O. The large differences in relative velocities are

likely remnants of these high energy statistical decays. Another, possibility is that there are

high energy excited states being populated. However, due to the limited resolution of our
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Table 6.5: A table listing the optimum parameters from the fit of the simulated data to the
observed decay spectrum for the 24O∗ →23O+n decay for a single resonance of l = 2 orbital
angular momentum.

Parameter Optimum Value (Statistical Uncertainty) Units
Decay Energy (Edecay) 0.73(4) MeV

Width (Γ(Edecay)) 1.8+>2.2
−1.1 MeV

Orbital Angular Momentum (l) 2
Gaussian Central Energy 10.0 MeV

Gaussian σ 5.0 MeV
Amplitude of Resonance 3.25

Amplitude of Non-resonance 1

experimental setup these states can not be individually resolved and identified.

6.2.3 Single energy-dependent Breit-Wigner Line-Shape fit

The experimental decay spectrum for coincidence 23O+n events was fit with a single

energy-dependent Breit-Wigner line-shape of angular momentum l = 2. The decay energy

(Edecay), width (Γ(E)) and amplitude, were all allowed to vary freely. A non-resonance

Gaussian distribution was also included in the fit with the parameters described above

(E = 10 MeV and σ = 5 MeV). The minimized χ2 value was found for a resonance energy

of Edecay = 0.73(4) MeV and a width of Γ = 1.8+>2.2
−1.1 MeV. The upper limit on the decay

width reflects the lack of sensitivity the Breit-Wigner line-shape has for large decay widths.

Since Γ is not equal to the FWHM, and the amplitude of the Breit-Wigner function is a free

parameter, the function saturates at large width. In this case, the change in the FWHM

for widths of Γ ≈ 4 MeV, was minute. Add to this the large experimental resolution at the

decay energy (∼ 600 keV), and the change in χ2 for different widths was minimal. Therefore,

the 1 σ limit was not reached for the upper limit on Γ. The lower limit does come from the 1

σ limit from the χ2 fit. The best fit to the data (Edecay = 0.74 MeV, Γ = 1.8 MeV) is shown

in Fig. 6.8 and the optimized parameters of the minimum χ2 fit are given in Table 6.5.

To interpret the single Breit-Wigner fit, the single-particle width for an l = 2 neutron

at a decay energy of 0.73 MeV was calculated using equation 3.49, derived in chapter 3.

Using this expression a single-particle width of Γsp = 0.06 MeV was calculated for an l = 2
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Figure 6.8: The invariant mass decay spectrum for 23O+n coincidences is shown by the
black data points with their statistical uncertainties. The best fit to the data for a single
simulated l = 2 Breit-Wigner resonance (red, dotted line) and a non-resonance Gaussian
distribution (blue, dashed). The minimized reduced chi-squared value was χ2

red = 1.8 for
Edecay = 0.73(4) MeV and width Γ = 1.8+>2.2

−1.1 MeV.

decay at 0.73 MeV. The observed width at its lower 1 σ value (Γ = 0.7 MeV) is more than

an order of magnitude larger than the calculated single-particle width. One can infer a

spectroscopic factor from this lower limit by taking a ratio of the observed width Γ to the

single-particle width. Hence, if the state were of completely l = 2 single-particle nature,

the spectroscopic factor would be unity, as the 0d3/2 orbital should be occupied by a single

neutron. The spectroscopic factors for this transition have been calculated using the USD

interactions [13, 27] and are in Table 6.4. They are all around 0.9, just slightly less than 1.

This ratio for the observed width, at its 1 σ lower limit, over the single-particle width ( Γ
Γsp

),

and hence, the experimentally observed spectroscopic factor for a single l = 2 state, is greater

than 10. This order of magnitude difference between the observed and expected values is
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Table 6.6: A table listing the occupation numbers for neutrons in particular sd shell orbitals
for the first two excited states in 24O, the 2+ and 1+ states [1, 2].

2+ 1+

Interaction 0d5/2 1s1/2 0d3/2 Interaction 0d5/2 1s1/2 0d3/2

USD 5.7956 0.9899 1.2145 USD 5.832 1.0270 1.1410
USD05a 5.8326 1.0130 1.1540 USD05a 5.8738 1.0120 1.1142
USD05b 5.8444 1.0173 1.1383 USD05b 5.8833 1.0142 1.1025

very un-physical. This indicates an inconsistent fit of the line-shapes with the experimental

data.

The conclusion of this comparison leads to three possible outcomes: 1) The single-particle

model used is inaccurate and parameters such as the nuclear potential radius are incorrect

2) The orbital angular momentum of the Breit-Wigner fit is incorrect 3) There is more than

one resonance state present in the 24O∗ decay spectrum. The first option may be eliminated

by applying a larger radius to the single-particle equation (eq. 3.49). In order to reproduce

the observed width, a radius (R) of more than 7 fm would be needed. This is nearly a

factor of 2 larger than has been determined from a measurement of the 24O interaction

cross-section (R = 3.98 fm) [66]. Although this large width could be the manifestation of an

extended matter distribution in the ground state of 24O, such an increase is beyond a realistic

likelihood. The second point is also very unlikely. As mentioned previously, all theoretical

predictions are consistent with a large spectroscopic factor for the l = 2 neutron decay (see

Table 6.4). Furthermore, calculations of all kinds predict the 2+ level to lie lowest in energy.

Therefore, the most likely cause of the inconsistent comparison between the single-particle

prediction and the observed width, is due to the presence of another resonance state or states

in the 24O∗ decay spectrum.

The theoretical calculations presented above also provide further support for the multiple

resonance hypothesis. In particular, two resonances in the excited state spectrum result from

the coupling of the ν0d3/2 ⊗ ν1s1/2 orbitals to produce a doublet of states with spin-parity

Jπ = 2+ and 1+ in the single-particle picture. Also, all theoretical calculations predict

these two nearby low lying states [13, 27, 11, 2, 29]. The shell model calculations of the

single-particle configurations for these two states [13, 11, 27] also show that they have nearly
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identical configurations, as is shown by the occupations of the neutrons in their sd shell

orbitals given in Table 6.6. Also, since their spectroscopic factors were nearly identical

(Table 6.4), if one of these states were to be populated with some strength, then it is hard

to understand why the other state should not be populated within the same order.

6.2.4 Two resonance line-shapes fit

The observed large decay width of the energy spectrum assuming a single resonance of orbital

angular momentum l = 2, and the theoretical arguments presented above, have led to the

proposal of a fitting of the 24O∗ decay spectrum by two independent resonances. Therefore,

two single-level Breit-Wigner line-shapes and a non-resonant Gaussian line-shape were fit to

the experimental data. The decay energies, widths and amplitudes, were allowed to vary

for resonance contributions and the non-resonance component was the same as in the single

resonance fitting (Gaussian distribution with E = 10 MeV and σ = 5 MeV). An orbital

angular momentum of l = 2 was used for both resonances due the calculated spectroscopic

factor of zero from the USD interactions for the l = 0 (1s1/2 orbital) decay to the ground

state of 23O (see Table 6.4). However, it should be noted that the use of l = 1, 3 or 4 for the

second resonance state did not effect the fit results. This is due to the increased experimental

with at high decay energy, which lead to intensity in the measured width Γ.

A minimum reduced chi-squared value of χ2 = 1.4 resulted from the two Breit-Wigner

fit. The resonant decay energies at the minimum χ2 value were Edecay = 0.63(4) MeV

and Edecay = 1.24(7) MeV for the lower and higher Breit-Wigner line-shapes respectively.

The decay widths corresponding to these two decay energies were Γ = 0.05+0.21
−0.05 MeV and

Γ = 0.03+0.12
−0.03 MeV. This best fit to the experimental data is shown in Fig. 6.9 and has a low

energy resonance (dashed, blue), a high energy resonance (dotted, red), and a non-resonant

(dash-dotted, green), contribution. The limits on the decay widths reflect the 1 σ range of

the chi-squared fit for their upper values. The lower limits reflect the fact that they are each

consistent with Γ = 0 within the 1 σ range. Because of the experimental resolution, and the

increased number of fitting parameters, these decay widths were relatively insensitive at low

energy. A list of the optimized parameters for the two Breit-Wigner fit is given in Table 6.7.

As was mentioned above, the inclusion of a high energy resonance with l = 1, 3 or 4, resulted

in nearly identical minimum values for the two energies and widths.

The single-particle calculations for the widths of the two resonance states at Edecay =
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Figure 6.9: The data points represent the measured decay energies for 23O-n coincidences
(same as in Fig. 6.8). However, the solid black line in this figure (which provides a better
fit to the data) is composed of two independent Breit-Wigner line shapes (dashed, blue and
dotted, red) on top of the non-resonance Gaussian distribution (dash-dotted, green). The
lower resonance (dashed, blue) has Edecay = 0.63(4) MeV and Γ = 0.05+0.21

−0.05 MeV with the
upper (dotted, red) having Edecay = 1.24(7) MeV and Γ = 0.03+0.12

−0.03 MeV.

0.63(4) MeV and Edecay = 1.24(7) MeV are Γsp = 0.05 MeV and Γsp = 0.22 MeV,

respectively [49]. The predicted single-particle width of the lower energy resonance is in

excellent agreement with the observed value Γ = 0.05+0.21
−0.05 MeV while the higher energy

resonance has a calculated single-particle width that is outside of the 1 σ upper limit,

Γ = 0.03+0.12
−0.03 MeV. It should be noted that the single-particle widths suggest a spectroscopic

factor of 1, so a measured value below this value is completely reasonable. Also, although

the observed widths are each consistent with Γ = 0 MeV inside of 1 σ, which may indicate an

inadequacy for the presence of two excited states, the energies of the observed widths at which

χ2 is a minimum are indeed above 0 MeV (Γ = 0.05 MeV and Γ = 0.03 MeV). Therefore,

the experimental data is consistent with the presence of two independent resonances in the
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Table 6.7: A table listing the optimum parameters from the fit of the simulated data to the
observed decay spectrum for the 24O∗ →23O+n decay assuming two resonances, each with
l = 2 orbital angular momentum.

Parameter Optimum Value (Statistical Uncertainty) Units
First State

Decay Energy (Edecay) 0.63(4) MeV
Width (Γ(Edecay)) 0.05+0.21

−0.05 MeV
Orbital Angular Momentum (l) 2

Amplitude of Resonance 1.4
Second State

Decay Energy (Edecay) 1.24(7) MeV
Width (Γ(Edecay)) 0.03+0.12

−0.03 MeV
Orbital Angular Momentum (l) 2

Amplitude of Resonance 1
General

Gaussian Central Energy 10.0 MeV
Gaussian σ 5.0 MeV

Amplitude of Non-resonance 5

decay spectrum.

Overall, the presence two nearby resonances in the observed decay spectrum gives a

slightly better reproduction of the data over the single resonance fit. Coupled with the fact

that a doublet of states (2+, 1+) with nearly identical configurations are predicted by each

theoretical model [13, 27, 11, 2, 29], the results of the two Breit-Wigner line-shape fit are

adopted as the description of the observed data in this work. Hence, it is believed that there

is a presence of two low-lying unbound excited states in the 24O decay spectrum.

6.2.5 Inferred Spin-Parity Values

The decay scheme for these two excited states in 24O, which decay to the 1/2+ ground state

in 23O, is shown in Fig. 6.10. The spin-parity values of the observed excited states may be

inferred if we revisit the theoretical arguments presented above. As previously stated, the

lowest excited single-particle configuration in 24O (1p−1h) results in either a 2+ or 1+ level.

All theoretical calculations that can calculate the doublet of states, predict the 2+ state as the

lower energy of the two [13, 27, 11, 2, 29]. The observed resonance at Edecay = 0.63(4) MeV
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Figure 6.10: The decay paths of the inferred 2+ (blue) and 1+ (red) excited states in 24O to
the 1/2+ ground state of 23O are shown.

can therefore be assumed as the 2+ state in 24O. The Edecay = 1.24(7) MeV state is then

inferred to be the 1+ excited state. It should be noted that the Edecay = 1.24(7) MeV state

is also consistent with l = 1, 3 and 4, hence, with other spin-parity values of 1−, 2−, 3− or

4−. However, in this work we have deemed that the most likely case is for the 2+ and 1+

states to lie lowest in energy. This assumption is therefore carried throughout the rest of

this work.

Experimental support for these spin assignments comes from the consistency of the single-

particle widths with Breit-Wigner line-shapes of l = 2 orbital angular momentum. Also, the

appearance of two states and their inferred spin assignments are supported by the ratio of

the intensities of the lower-energy decay branch (Edecay = 0.63(4) MeV) to the higher-energy

decay branch (Edecay = 1.24(7) MeV). This ratio is observed to be 1.4(2), determined by

the ratio of the resonance amplitude parameters, obtained from the χ2 fit. This value is

consistent with the expected statistical population of a J = 2 state to a J = 1 state, i.e. the

ratio of their magnetic sub-states. This value is (2J2 + 1)/(2J1 + 1) ≈ 1.67.
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6.2.6 Determination of the Excited States in 24O

In order to calculate the excitation energy of our assumed 2+ and 1+ states, the ground state

binding energy difference between 23O and 24O has to been known. The expression for the

excitation energy is given as

Eex = Sn + Edecay, (6.8)

where Sn is the neutron separation energy between 23O and 24O, and Edecay is the observed

decay energy. As was mentioned above in the 25O ground state mass section, the binding

energy of 24O has been recently remeasured [24]. From this work, and the observations made

above, a newly adopted mass excess of 18.6(1) MeV has been accepted over the previous

value of the 2003 Atomic Mass Evaluation (AME) [25]. The Sn value for 24O from the newly

accepted value is then 4.09(10) MeV, as opposed to 3.62(15) MeV from the 2003 AME value.

Again, this value is supported by the previous mass measurements shown in Fig. 6.4. Using

the accepted Sn and calculating the excitation energies, we find E2+ = 4.72(11) MeV and

E1+ = 5.33 MeV for the two excited states above the 24O ground state. The energies of these

two states are plotted in Fig. 6.11 by the blue (2+ level) and red (1+ level) boxes, where the

box size represents the uncertainty in the measurement.

6.2.7 Determination of the N = 16 Shell Gap

The N = 16 shell gap, the energy difference between the ν1s1/2 and ν0d3/2 orbitals, may

be determined from the energy of the two excited states in 24O if one believes that indeed

the 2+ and 1+ states have been identified. Assuming the single-particle picture, with a

closed proton Z = 8 shell, the two excited states are composed of the same 1p− 1h neutron

excitation above the N = 16 shell. This is the coupling of the ν1s1/2 and ν0d3/2 orbitals.

These two states would lie degenerate if not for the residual interaction between them. This

residual interaction between the 1+ and 2+ states, causes them to split in energy relative

to the energy of the ν1s1/2 − ν0d3/2 single-particle gap. The 2+ energy is lowered in energy

relative to this gap energy, while the 1+ energy is raised relative to the gap energy. By

using a 2J + 1 weighting for each state the approximate size of the relative energy difference

between the ν1s1/2 and ν0d3/2 orbitals, and hence, the energy of the N = 16 shell gap, is

found. This energy is observed to be 4.95(16) MeV from the two excited states in 24O. This

value for the N = 16 shell gap agrees very well with the energy that was determined above
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Figure 6.11: The experimental energies of the lowest lying 2+ (E2+ = 4.72(11) MeV) and 1+

(E1+ = 5.33 MeV) levels in 24O, are shown by the blue and red boxes respectively. The size
of the box corresponds to the uncertainty in the energy. Also shown by the dotted green line
is the 2J + 1 weighted average of the two states. This indicates the the size of the N = 16
shell at for 24O (4.95(16) MeV), from the observed excited states.

by the ground state mass measurement of 25O (4.86(13) MeV).
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CHAPTER 7

DISCUSSION

7.1 N = 16 Shell Gap

The size of the N = 16 shell gap, defined as the energy difference between the ν1s1/2 and

ν0d3/2 orbitals, has been determined by two separate measurements. First, it was found from

the ground state mass measurement of 25O. The energies of the ν1s1/2 and ν0d3/2 orbitals

could then both be calculated from the ground state binding energies of 25O, 24O and 23O.

The N = 16 shell gap was then determined to be 4.86(13) MeV from the energy difference

of the two orbitals. Second, the N = 16 shell gap was determined by the weighted average

of the observed 2+ and 1+ excited states in 24O. These two states have an energy gap of

4.95(16) MeV, in very good agreement with the other observation.

The single-particle energies for the ν1s1/2 and ν0d3/2 orbitals were determined in chapter 6

to be ε0d3/2 = 770+20
−30 keV and ε1s1/2 = −4.09(13) MeV. These energies reflect the one-

particle and one-hole energies from a closed (0p-0h) 24O ground state. The black data points

on the left side of Fig. 7.1 show the single-particle energies for the two orbitals. The difference

between the two orbitals, the N = 16 shell gap energy, for N = 15 and N = 16 (present

result), are plotted on the right side of Fig. 7.1. The size of the N = 16 shell gap for 23O

(N = 15) was found from an 22O particle transfer experiment [67]. In this work, the 3/2+

excited state energy in 23O was observed to be 4 MeV above the 1/2+ ground state. The

3/2+ state was also noted to be of single-particle nature as it was strongly populated in the

particle transfer reaction. Therefore, the excitation energy is a good indication of the energy

difference between the ν1s1/2 and ν0d3/2 orbitals for N = 15 (4 MeV). Experimentally, what

can be clearly noticed is an increase of the N = 16 shell gap size when moving from N = 15

(N = 16 shell gap of 4 MeV) to N = 16 (gap of ∼5 MeV).

Also shown with the data points in Fig. 7.1 are the calculated single-particle levels,
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Figure 7.1: The experimental single-particle energies as determined assuming a closed 0p−0h
24O are shown on the left by the data points with their error bars if larger than the symbol.
The size of the N − 16 shell gap for N = 15 and 16 are also plotted by the black data
points with their errors on the right side of the figure. The calculated single-particle energies
N = 16 shell gap sizes are also shown for the USD [13] (black solid line), USD05a [27] (red,
dotted line), and the SDPF-M [11] (green, dot-dashed) interactions. [28]

and their corresponding N = 16 shell gaps, for three different shell model interactions, the

USD [13], USD05a [27] and the SDPF-M [11] interactions. They are represented by the solid

black (USD), dotted red (USD05a) and dash-dotted green (SDPF-M) lines. The dashed line

in the figure represents zero energy. As was mentioned in chapter 2 the USD interaction

results from an empirically adjusted re-normalized G-matrix, while the USD05a interaction

is the same however, fit to more recent data. In the oxygen drip line region, these two

interactions have drastically different results as the USD interaction incorrectly calculates a

bound 26O ground state by 1 MeV but the USD05a interaction calculates an unbound ground

state in agreement with observations. The underlying cause for this change between the two
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is an increase in the energy of the ν0d3/2 orbital for the USD05a interaction. This energy

change is apparent in Fig. 7.1, as the energies for the ν1s1/2 orbital are consistent for all

calculations. However, the energies for the ν0d3/2 orbital all vary by the ∼ 500 keV. Also, the

SDPF-M interaction is a combination of three separate interactions (USD-WB-MK) to allow

calculations across the sd−fp shell gap. It was adjusted to ensure the unbound nature of the

26O ground state. Again, the way that the 26O bound state was made to become unbound to

two neutron decay was to adjust the two-body matrix elements (TBME) of the ν0d3/2 orbital

causing its energy to rise. As is seen in Fig. 7.1 its location is high into the continuum, i.e.

large positive energy.

Comparing the calculated N = 16 shell gap sizes for N = 15 and 16 in Fig. 7.1 to the

experimental results we see a good agreement between the USD05a prediction for the 23O

case. The other two calculations are each off by nearly 500 keV with the SDPF-M interaction

over, and the USD interaction under-predicting the energy. This agreement suggests that

the USD05a interaction is indeed a good description of the data as the gap is reproduced

and the interaction predicts an unbound 26O ground state. However, moving to N = 16, the

present value for the measurement of the difference between the ν1s1/2 and ν0d3/2 orbitals

is most consistent with the older USD interaction. Furthermore, when the energies of the

two orbitals are separated, as on the left side of Fig 7.1, the discrepancy between the data

and the calculations is linked solely to the location of the ν0d3/2 orbital. All calculations are

consistent for the ν1s1.2 orbital energy; however, the USD interaction is the only calculation

that reproduces the energy of the ν0d3/2 level. The problem this creates is that the USD

interaction is the only interaction that incorrectly predicts a bound 26O ground state to two

neutron decay.

7.2 Neutron Separation Energies

The oxygen neutron drip line has been experimentally determined to lie at N = 16

24O [35, 36, 37, 7, 6, 38, 39]. This implies that all neutron orbitals above the filled ν1s1/2

orbital (N = 16) must lie in the continuum, i.e. unbound. The first orbital that lies in this

continuum is the ν0d3/2. The energy of the ν0d3/2 orbital competes with the correlation

energy between nucleons to determine whether a nucleus is bound to neutron emission.

Therefore, the ν0d3/2 orbital is vital to the binding energy in all of the oxygen isotopes
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above N = 16, i.e. 25−28O. At N = 17 neutrons begin to fill this orbital; hence, its location,

whether unbound (positive energy) or bound (negative energy), is vital to the overall binding

energy of these nuclei. Since 25O is known to be unbound to neutron decay by one neutron,

then the ν0d3/2 orbital must have a positive energy. Also, since the ground state of 26O is

unbound to two neutron decay then the positive energy of the ν0d3/2 orbital must be larger

than the pairing energy, as well as other correlations, that lead to negative binding energy

effects. The precise energy of the ν0d3/2 orbital becomes very import to the binding of 26O

and the oxygen drip line. Mainly, since a change of a few hundred keV of this orbital’s

energy, as was the case with the USD [13] interaction versus the USD05a [27] interaction,

leads to a different drip line for the oxygen isotopes.
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Figure 7.2: The experimental one- and two-neutron separation energies are shown by the
black data points with their uncertainties [24, 25] for the neutron-rich oxygen isotopes from
23−26O. Also, represented by the lines, are the theoretical calculations for these values from
the USD [13] (black, solid), USD05a [27] (red, dotted), and SDPF-M [11] (green, dot-dashed)
shell model interactions.
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To understand the effects of the location of the ν0d3/2 orbital on the oxygen drip line in a

different manner, the one- and two-neutron separation energies (Sn and S2n) are investigated

for Z = 8 from N = 15 − 18. The neutron separation energies were calculated using

equations 6.6 and 6.7, where the ground state masses used were from Refs. [25] and [24], in

the case of 24O. The current measurement determined the neutron separation energies for

25O (Sn=770+20
−30 keV and S2n = 3.33(13) MeV).

The Sn and S2n calculated for 23−26O are plotted in Fig. 7.2 by the black data points. The

energy point zero is represented by the blue dashed line and values less than this (< 0) are

unbound to neutron decay. The neutron separation energies represent the amount of energy

needed to remove the outer most neutron or neutrons. A positive value indicates that the

neutron or neutrons are bound to the nucleus by the strong force. A negative energy shows

the amount of energy gained by the loss of the neutron or neutrons. This energy translates

into the decay energy of the unbound system. A nucleus that lies beyond the drip line is

unbound to one–, two–, and all other orders of neutron emission. In the case of 26O, the

ground state is believed to be bound by a single-neutron having a binding energy lower the

that of the ground state of 25O. However, the ground state is not believed to be lower in

energy than the ground state of 24O, and hence, it is unbound by two-neutrons. In any case,

if the ground state energy is above either 24O or 25O, then it is beyond the oxygen drip line.

Plotted with the experimental data in Fig. 7.2 are the neutron separation energies

calculated from the USD [13], USD05a [27] and SDPF-M [11] interactions. The main

difference to notice between these calculations is their location for 26O. They show the

unbound predictions of the USD05a and SDPF-M interactions by the fact each predicts a

negative energy of -510 keV [27] and -77 keV [11] respectively, with the USD interactions

having a positive result of 1 MeV [13]. Calculated values for all three interactions reproduce

well the separation energies up to 25O, the present result. Here the calculations diverge, and

again the USD interaction is the most consistent with the data. This is important because

of the difference in calculations for 26O as was previously mentioned. The main point is

that once more it is shown that the USD interaction describes the 25O neutron separation

energies for N = 17 but incorrectly predicts the binding energy of 26O, where as the other

interactions are worse in their reproduction of the data at N = 17, making their predictions

for 26O uncertain.
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7.3 Excited States in 24O

The excited states in nuclei give an excellent testing ground for different theoretical

predictions. In the case of 24O, a large number of theoretical endeavors have taken place

to predict the lowest excited states. A number of these theoretical predictions [13, 27, 11,

2, 29, 30, 31] for the excitation energies of the 2+ and 1+ states in 24O are shown by the

lines in Fig. 7.3. The USD [13], USD05 [27] and SDPF-M [11] interactions are standard shell

model calculations that have been described in chapter 3. The work of Refs. [2] and [29] are

each also shell model calculations using the HBUSD and SDPF-M interactions, respectively.

However, each of these also have an explicit inclusion of the continuum in their calculations.

The work of Refs. [30] and [31], both calculate the first excited 2+ by mean field Hartree-

Fock-Bogoluibov Methods.

These theoretical predictions are compared with the measured excited levels, assumed to

be the 2+ and 1+ states, and shown by the black squares in Fig. 7.3. The new universal sd

interactions (USD05a, and b), and the SDPF-M interaction, all overestimate the absolute

energies of the states. The USD05a interaction does correctly predict the residual splitting

between the two states (∼600 keV). The USD interaction is far below for the first excited

2+ state but is in agreement with the 1+ state. The two Mean Field calculations are both

drastically low in energy for the prediction of the 2+ state. This indicates that they both

infer a slightly more deformed 24O nucleus, where as the SDPF-M and USD05 interactions

suggest a more spherical 24O than has been observed.

Due to the fact that the states being investigated are resonance states, it is important to

isolate calculations that handle the continuum more explicitly than the standard shell model

calculations. The continuum calculation using the HBUSD [2] interaction and the predictions

of the USD interaction each reproduce only one of the two excited states, as each calculation

has an overly large residual energy (∼1.1 MeV). The decay energy predictions of Ref. [29] are

the most consistent with the observed results as their calculated values of E2+ = 0.61 MeV

and E1+ = 1.35 MeV, lie within ∼100 keV of the observed energies (E2+ = 0.63(4) MeV

and E1+ = 1.24(7) MeV). These calculations include the unbound ν0d3/2 orbital in the wave

function, supporting the direct handling of the continuum when describing resonance states

near the neutron drip line.
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Figure 7.3: The measured energies for the assumed 2+
1 and 1+

1 excited states in 24O are
shown by the black squares, with the size of the symbol representing the uncertainty. The
predicted energies from a number of theoretical calculations [13, 27, 11, 2, 29, 30, 31] are also
shown by the different lines. The experimental excitation energies were determined using
Eex(24O) = Sn(24O) + Edecay, where the more recently measured Sn value (4.09(10) MeV)
for 24O has been used [24].

7.4 2+
1 Energy Systematics of the Even-Even Isotopes

The oxygen isotopes have a closed Z = 8 proton shell, and therefore systematic investigations

of the 2+
1 energies in the even-even isotopes show great sensitivity to the neutron shell

structure. To illustrate this, the energies for the first excited 2+
1 states in all of the known

oxygen isotopes (Z = 8, N = 6−16) [32], including the present result at N = 16, are plotted

in Fig. 7.4 by the filled black squares. At N = 6 and 8, 14O and 16O have very high 2+
1 states

(6.5 MeV and 6.7 MeV) consistent with their filled ν0p3/2 and ν0p1/2 orbitals, respectively.

As neutrons fill the ν0d5/2 orbital (18O and 20O), the 2+
1 energy shows a drop of a factor
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of ∼3 due to the deformation caused by the partially filled neutron orbital. A full ν0d5/2

orbital again leads to the (sub-)shell closure at N = 14 (22O) and is apparent by the increase

in the 2+
1 energy. Finally, a full ν1s1/2 orbital at N = 16 (24O) leads to a dramatic increase

in the energy of the 2+
1 level relative to the N = 10, 12 levels and even the N = 14 22O level.

Therefore, 24O has a clear signature of an even-even doubly magic nucleus (Z = 8, N = 16),

namely a relatively high energy 2+
1 excited state.
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Figure 7.4: The experimental 2+
1 energies for the even-even isotopes of oxygen Z = 8,

including the present result at N = 16, are shown by the black squares with the errors. Also
shown are the experimental 2+

1 energies for carbon (Z = 6) (upside-down triangle, blue)
neon (Z = 10) (diamond, red) and magnesium (Z = 12) (circle, green) [32, 33, 34]. Clearly
noticed is the increase in the 2+

1 energy for the 24O relative to the nearby even-even nuclei;
indicating a large N = 16 shell gap for Z = 8.

Also shown in Fig. 7.4 are the 2+ energies for the even-even carbon (Z = 6), neon

(Z = 10) and magnesium (Z = 12) isotopes having neutron numbers between N = 6 and

18 [32, 33, 34]. The energies of the 2+
1 levels for the N = 10 and 12 isotopes are very
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similar (∼500 keV) for all of the elements. At N = 14 (filled ν0d5/2 orbital) and N = 16

(filled ν1s1/2 orbital), the 2+
1 energies of the carbon (N = 14 only), neon and magnesium

isotopes remain relatively constant as compared to the oxygen isotopes which rise sharply.

This reflects the increase in the N = 14 and 16 shell gaps for Z = 8 relative to Z = 6, 10

and 12, again supporting a doubly magic 24O.

7.5 Overview

The measurement of the ν0d3/2 orbital energy and the size of the N = 16 shell gap,

sheds light on the structure of the oxygen isotopes at the drip line. In particular, these

measurements showed that the older USD shell model interaction [13], is most consistent

with the ν0d3/2 orbital location at the oxygen drip line. This is quite significant being that

the USD interaction incorrectly predicts a bound 26O ground state. However, the calculations

of the SDPF-M [11] and the USD05a [27] interactions do predict an unbound 26O ground

state to two neutrons decay. The difference between the USD interaction and the other two,

is a lower energy ν0d3/2 orbital. Therefore, although the weakening of the spin-orbit force

is apparent by the relatively large N = 16 shell gap observed for the neutron-rich oxygen

isotope, its result of raising the ν0d3/2 orbital to produce an unbound 26O must not be the

complete story. Another, possible large effect near the drip line, may be the presence of

the nearby continuum. First evidence for these effects are shown by the reproduction of

the excited states in 24O by the continuum calculations of Ref. [29]. It has yet to be shown

what these effects may have on both the oxygen and fluorine drip line in a single calculation.

Hence, a combination of all these pieces may lead to a full description of bound and unbound

states around the neutron drip line.
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CHAPTER 8

CONCLUSIONS

In conclusion, neutron unbound states of the neutron-rich oxygen isotopes of 25O and 24O,

have been investigated for the first time. The unbound ground state of 25O, and the unbound

excited states in 24O, were reconstructed by the invariant mass method. This method used

a full kinematic measurement of all decay products. The unbound states were populated by

a nucleon removal reaction from a secondary radioactive beam of 26F on a 9Be target. The

experiment was conducted at the National Superconducting Cyclotron Laboratory (NSCL)

at Michigan State University and the beam was produced by the Coupled Cyclotron Facility

(CCF), with isotopic separation completed by the A1900 mass spectrometer [16]. Important

components of the experimental setup included beam-line position-sensitive parallel-plate

avalanche chambers, a large-gap dipole Sweeper magnet to deflect charged particles after

the target, the Modular Neutron Array to detect beam velocity neutrons, and a number

of position, time or energy sensitive charge particle detectors to detect fragments after the

Sweeper magnet.

The resulting invariant mass resonance spectra were analyzed and fitted using one or two

single-level energy dependent Breit-Wigner line-shapes (eq. 3.8) which were derived from the

R-matrix theory [47]. A non-resonance contribution to the fit of the decay spectrum was

also included by either a Maxwellian distribution (eq. 3.28) for the 25O ground state, or a

Gaussian distribution (eq. 3.29) for the 24O excited states. By comparison of the extracted

widths of the resonance states (Γl(E)) to single particle predictions, along with the guidance

of theoretical shell model calculations [13, 11, 2, 27, 1], the ground state mass properties of

25O and the first two excited states in 24O, were determined.

The ground state mass excess of 25O was observed to have an energy of MEX =

27.44(11) MeV. The energies of the first two excited states in 24O, believed to be the
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lowest lying 2+ and 1+ states, were found to be at E2+ = 4.72(11) MeV and E1+ =

5.33 MeV. The ground state mass measurement of 25O gives the location of the ν0d3/2

orbital, ε0d3/2 = 770+20
−30 keV. The energy difference between the ν0d3/2 orbital and the

ν1s1/2 orbital gives the size of the N = 16 shell gap for the oxygen isotopes, which

was determined to be gapN=16 = ε0d3/2 − ε1s1/2 = 4.86(13) MeV at the oxygen drip

line. The N = 16 shell gap was also determined from the center of gravity of the two

excited states in 24O giving, gapN=16 = 4.95(16) MeV. These two measurements were

consistent, and they were compared to nuclear shell model calculations using the universal

sd (USD) [13] interaction, the USD05 [27] interactions, and the SDPF-M [11] interaction.

Furthermore, the neutron separation energies (Sn and S2n) for 25O, provided from the

25O ground state mass measurement, were also compared to the theoretical predictions.

The final conclusions showed that the location of the ν0d3/2 orbital, and the size of the

N = 16 shell gap, agreed with the predictions of the USD interaction. This was surprising

because the USD interaction incorrectly calculates a bound 26O ground state, contrary to

experiment [35, 36, 37, 7, 6, 38, 39].

The energies of the excited states observed in 24O, taken to be the lowest 2+ and 1+

states, were also compared to a number of theoretical calculations [13, 27, 11, 2, 29, 30, 31].

The best reproduction of both states came from a state-of-the-art continuum shell model

calculation [29], where the ν0d3/2 orbital was included explicitly in the continuum. The

measured 2+ energy was also investigated in a systematic manner by comparison with other

even-even nuclei in the region. Relative to the other oxygen isotopes, 24O was seen to

nearly restore the doubly magic nature that was apparent for the N = 6 and 8 14O and 16O

isotopes [32, 33, 34]. In particular, the relatively high energy of the 2+ state showed the

spherical nature and lack of collectivity for 24O. Also, compared to other elements (Z) with

neutron numbers around N = 16, it was apparent that the increase in 2+ energy for 24O

was far more dramatic than in any other case, i.e. Z = 10(Ne) or 12(Mg). Therefore, the

variable size of the N = 16 shell gap, with respect to proton number, was observed.

The conclusions from the neutron spectroscopy of the neutron-rich 25O and 24O nuclei,

show that 24O is a doubly magic nucleus having a new neutron shell gap identified at N = 16.

Although this new shell gap may contribute to the cause for the abrupt end to the oxygen

drip line at N = 16, it can not be the complete story. The location of the ν0d3/2 orbital at

the drip line supports the N = 16 shell gap. However, its energy is not nearly as high-up in
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the continuum (at least 500 keV lower), than the predictions of the USD05a, and SDPF-M

interaction, which both correctly predict an unbound 26O ground state. Therefore, this work

has been a gateway into the need for further experimental and theoretical exploration along

the oxygen drip line.

In a general perspective these measurements impact such things as the basis for nuclear

shell structure, the understanding of the existence of nuclei, and the origin of our elements.

Magic numbers and shell gaps played crucial roles in the understanding of atomic and nuclear

shell structures. Therefore, the identification of one of these pillars of understanding at a

different location, can add a strong presence to our expanded understanding. Furthermore,

by being able to describe the limit around where nuclei may or may not exist helps to

understand the origin of our elements. Stellar explosions may occur at the nuclear extremes

and through the study of these nuclei, we may understand both the ingredients and products

needed to create all elements around us.
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