' ABSTRACT

JARUS: A REALTIME TIMESHARING COMPUTER SYSTEM
FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

= John Olggr Kc;pf

A conpnter program called JANES hal been developed for use on &

Seientific Data Sylten- Signa Seven, 'nputer. JANUS is a conputer op~

erating system, duigned to perli m differcnt users to share the

‘resources of the. conputer, .uch thia, achv user il apparenuy in sole
eontrol of the uchinc. !’hue iﬁqlude the tiu nnilable
for operation, the progra- a.nd datq,k zérage tvuilable. und co-mni-
ecation links with the vorld extami to. the co-put.er. cgnn

A conplrhon of the neanl an_n_nechunhu ot‘ reuonrce Munt
provided by various computer operating sy-ten. inclnding JANUS, 1. |
presented. Descriptions of inadequlcie-. both in hardware and in op~
erating systems, are given, with inggaltions on possible inﬁrovenentn
in future implementations. In those cases where it has »beez; pouibie
to measure various parsameters under JANUS operatic'm. the measurement
and a coxment on its significance is provided. Referenee manusls for
JANUS and various control monitor tasks are appended, as well as
thoughts on the possible implementation of other desiresble processes.

A novel method has been developed to handle realtime processes.
The computer may be used to simultaneously control devices, aequire
dat.a, and perform analysis and computation. Any process may de start-
ed or stopped at random, irrespective of the other usage of the machine.
The flexibiiity introduced into the use of the computer, compared with

convéhtional realtime systems, is impressive, since, if necessary, all

John Osear Kopf ~
of the resources of the computer may be directed toward any goal, using
a single operating system, without the overhead normally assoelated
with such systems.

This is secomplished by providing within the resident monitor
only those primitive functions dealing with resources common to all
usage. Higher level functions, such as Input/Output, are provided by
independent timeshared tasks. These tasks, with the features normally
assoclated with conventional monitors, provide those functions necesg-

sary and sufficient to the operation of a specifiec set of problexs.

JANUS: A BEALTIME TIMESHARING COMPUTER SYSTEM

FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

By

John Oscar Kopf

A THESIS

Submitted to
Miehigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

1968

Dedication:
For my wife Peggy

Who minded the kids.

11

ACENOWLEDGMENTS

I wish to acknowledge my indebtedness to all the people who
helped make JANUS, and this thesis, possible.

First and foremost, I am grateful to my advisor, Pgofe.lor
Aaron Galonsky, for his patience and encouragement, and for allowing
me a free hand in the design and implementation of JANUS,

Secondly, I acknowledge the great assistance of Mr. Phillip
FPlauger, whose familiarity with other computers And computer opera-
ting systems, and whose willingness to engage in many all-night bull
sessions, helped immeasurably in the design of JANUS, to say nothing
of the faet that the original idea to write the timesharing systex
whieh became JANUS was his.

Third, I wish to thank Richard Au, Douglas Bayer, Carolee and
William Merritt, Francis Schiffer, and Laurence Wilbur for their pro-
gramning assistance in coding tasks, libraries, symbionts, and other
pParts of JANUS, as well as their aid in finding and correcting errors
in JANUS. 1In leaving, I feel that JANUS is in good handa.‘lnd will
continue to grow in use.

Fourth, I acknowledge the assistance of Mr. Lester Hanson and
Mr. Donald Freedman, who, as on-site engineering representatives of
SDS, were instrumental in quickly verifying, redesigning, and changing
those design errors which are always present in a new computer. VWith-

out these shanges, the Sigma 7 would be incapable of running JANUS. I

i1

L 3

also wish to cite SD8, whieh delivered an operating system with the
computer, without whieh it would have been impossible to even begin
to start JANUS.

Fifth, I wish to thank Mr. Robert Belgard, who drafted most of
the figurel presented, and Mrs. Susan West, who typed the thesis.

I also wish to thank all of the other people at the M.S.U.
Cyclotron Laboratory, too numerous to name, who in one way or another
helped with JANUS. My thanks especially to those people whose con~
stant insistance that I justify JANUS, thereby forced me to re-evaluate
the design of JANUS at all stages, and caused me to formulate a flexible
and self-consistent system.

Tinally, I wish to acknowledge the financial assistance contri-
buted by the Mational Seience Foundation and by Michigan State

University.

iv

Chapter

1.
2.

3.

5.
6.
7.
8.
9.
1o0.
11.

12,

TABLE OF CONTENTS

Table of Contents.

List of Figures . o s . . .

Int roduction . o

The Use of Core Memory

Bulk Storage

Scheduling of Time

Design Goals of JANUS . . . e

Unique TFeatures of JANUS

The Target Computer .,

Strueture of JAKUS

Address Spaces

JANUS and BPM: A Comparison . . .

Measurements

Conelusions

Bidliography

Appendix A. Glossary of Terms . .

Appendix B. JAMUS Reference Manual .

1.
2.,
3.
L,
5.

Resident Tables and Lists .
Resldent Routines . e e
Dexand Paging . e s e
Progrem Optimigation . . .
3iguals pnd the Message Center

v

Page

vii

28

- 35

b2

72
76
80
82
86
86

105
115
117

6.
7.
8.
S.
10.
11.

12.

Appendix C.
Appendix D.

Appendix X,

Timekeeping . . .

Unique Resources . .

Preficea and the Console Teletype

Disk Files . . .

Symbionts . . .

Cantrol Commands and the Amperscaner Task

The Housekeeper Task .

Under JANUS

v

*

The JANUS Basic/File.Control Monitors

Notes on Cyclotron Control Implementation

Kotes on Conventional Terminal Implementation

119
122
127
131
134
136
138
LA
146

151

LIST OF FIGURES

Pigure

1. Memory allocation ynder a foreground-background seheme
of timesharing. The vertical column represents core
menory. The monitor is used to provide all eontrol
functions. The ares of core devoted to background
timesharing is successively occupied by & number of
processes, &ll limited to the size of the back-
ground area. The realtime foreground area may de
occupied bty any one of a set of processes, (or
divided 80 that it may be used by more than one pro-
eess), but any realtime process generally locks out
all other realtime processes.

2. Memory allocation under JANUS. As in Figure 1, the
eolumn represents core memory, with JANUS at the bot~-
ton. Two tasks are shown, with the independent task
address spaces twining through memory. Not all pages
of a task need be in core at one time. The darkened
pages of core are dedicated to realtime processes
specific to the task whieh has the page

3. Key to subsequent figures. (Note the use of the word
active, whieh in this context refers to & task executing
atimeslice.) « + + + ¢« . e

4, Memory allocation--projeet MAC. User execution alternates
with swapping (the process where the program is trans-
ferred to or fIom BeWOTY) . .« ¢« + o+ o o o

5. Memory alloscation--Dartmouth projeet. A new program is
swapped into eore memory while the eurrent program is
exesuting. However, an imbalance in the number of Jobs
assigned to high and low storage causes a delay at the
end of the third timeslice, as there is nothing to do
but wait between USER 3 and USER 1.

6. Memory allocation—-PDP-6 computer. Swapping occurs
soncurrently with exesution, but the efficieney is
higher than in Figure 5, as no limitation is im-
posed by the use of specific areas. Note that a sig-
nifieant part of memory is rarely or never used. . .

7. Memory alloeation--projeet GENIE. Problems are
initially drought into free core. When no more core

vii

9.

10.

1]1.

12,

13.

14,

15.

is free (TASK 4), those pages are chosen which are
not currently in use and are identieal to the copy
on the disk (unmodified), to be overwritten by hew
pages. The resultant fragmentation of jobs is off-
set by the use of & memory map. Not until the sixth
timeslice is it necessary to write a page out to the
disk (TASK 1, Page S). This scheme is also used in
JANUS. (The P numbers are pages within each user's
address space. M signifies that the page is modi~-
tied.)w indicates that it must be written onto the
disk. . . s

Gross mexory allocation under JANUS, showing real-
time processes. Using a large time scale, all short-
tera details of memory usage are omitted. Shown
instead are areas dedicated for realtime processes.
The blank area is available for swapping. The aec-
tivation of four: tasks is shown, each of which im-
mediately initiates a realtime data input process.
These tasks, in order of appearance, might dbe
MOIRAE, JBCM, DATA TAKER, and JFCM. Note the in-
terleaving of lineprinter output of tasks 1 and 2.
The variable size scope display is a measure of the
amount of realtime buffer area required as a display
is expanded to show relationships instead of detail.

Characteristics of various bulk storage media . .
Linear dulk storage strusture. (Used by CDC 6600
(extended core storage) to hold programs and non-
exeeutable I/0 duffers.)
Hierarchieal storage structure. Access time de-
creases with height. Eaeh storage medium has an
independent address space . . . e . . .
Hybrid storage strueture . . o e . . .

Priority secheduling. A task in a high priority ring

will be accessed more rapidly than one on a lower ring

*Timesharing” by interrupts. Exesution alternates
between the daekground (lower) and foreground (upper)
line, on the basis of interrupts. While a simple
ease 1s shown, interrupts need not all belong to the
same foreground proeess . . s e e . .

Typieal world line of JANUS operation. The path of
operation (heavy line) proeeeds through a task 1
from P, to !‘Jn. interrupted by the swapper. At eash
T', 1t passes to the jobehanger, whish’performs
operations (interruptable by the swapper, as between

Ty and 1‘5). and returns to the next task in the ring.’

Baeh interrupt by the Swapper is used to initiate a
viii

24

3

3l

31
33

16.

17.

18.

19,
20,

21.

new RAD operation, or finish an cld operation.
These RAD operations are used to ready the
next t‘.k'

JANUS form of eontrol structure. Operations are
divided into three parts; meapped slave, mapped

master, and unmapped realtime. Paths of communica~
tion between the three parts are shown by arrows . .

Tree structure of tasks. The first rank of tasks
below JANUS are the system tasks. One of these

(the Amperscaner), can start subtasks, which may
start subtasks of their own. These subtasks may be
identieal copies of tasks which may be started by

the Amperscaner, or they may be unique

Examples of address space usage, including files.
The vertical columns are independent task address
spaces, resting on the JANUS block common to all
tasks. Two tasks are shown, with TASK 2 being a
subtask of TASK 1. The two tasks have one page

in eommon (TCP 2) which appears in different parts
of the two task address spaces., The two tasks
share a driven stream file, which is 8lso refer-
enced from different parts of the two address
spaces. It differs from the TCP 2 usage, however,
in that file driver (TASK 1) may be several pages
ahead of the file receiver (TASK 2). The files
are a colleetion of diskpages, each of which may
be used as the same address space page. Only one
page of a file is actually within the task address
space at any given time, however. Files may be
linked internally, or mgy be linked through a table

residing within the task, as is shown in the keyed
file L) * L L] L] [] L] L] L]

The Job Changer - flow chart
The Swapper - flow chart

De.‘nd ngiu - flo' ch‘rt » L] (]

ix

53

56

57

62
92
98
107

1. INTRODUCTION

Physicists have used digital computers for as long as computers
have existed. Indeed, long before the first computer was built physi-
cists were suggélting that computing machines would be useful for gen~
erating aatrdno-ical and mathematical tables. More recently, with the
advent of quantum mechanics, pecple such as Hartree called for the de-
velopment of machines to perform computations for the calculation of
wavefunctions and energy levels of atomic structures.

As soon as electronic digital computers became available, they
were set the task of performing physical calculations. The usage of
co.pnfor‘ took great strides with the successive introduction of as-
semblers (which freed the programmer from the nuisance.of bookkeeping
relevant to the computer but not to the operation he wished to perform),
nnd'co-pileu (which permitted the programmer to forget all cl-ot::llo of a
specific computer, dut instead to write programs usable on all computers
which had a similar compiler available). The earliest languages (FOR-
TRAN, ALGOL) were developed as aids to computation. Their success lead
to the development of larger and faster computers. This in turn per-
nitted the development of more powerful programs, which led to concepts
of batch procouing; _

Batch processing was a logical development of the observation that,
over reasonably long periods of time, the computer averages as much time
ipont resding cards and printing as it does computing. Since the bdulk

of the operations involved were read, print and punch, the computer

2 -
could obviously do more computation if these operations could be done
faster. However, there are limitations 3;6 how fast & device may be oper—
ated. Turther, th@u operations could be performed by a timy computer.
Thus multiple computer systems were developed, where a unli computer
copied cafds onto magnetic tape which was later read by the large com-
puter at much higher gpeed. The large computer then would write the
output on other magnetic tapes to be printed later by the small computer.
This provided improved usage of the large computer, and the value of the
additional computation more than offset the cost of the additional small
computer. However, Alincc the computer now performed all opeutioni ﬁtr
matically, it was no longer possible for the programmer to know just when
hi: problen was being processed, and to interact with it. Tuarthermore,

s fairly long time delay was roqnired betnen submission of a problem

and the return of the results.

People soon discovered that the small computers were useful in
their own right, and that for many simple problems, results could be re-
turned faster than with the large batch processing systems, since almost .
no computation was required. Thus a continuing development of small
computers paralleled the development of the large computer systeams.
¥With the rise in computer techmology, it became possible to build spe-
cial purpose computers, usually consisting of a bard-wired program and a E
memory. In nuclear physics, these were best typified by MticMnel
and later multiparameter analyszers. While extremely useful, the allow-
od sequences 0of operations were built into the lichino and were rela-
tively inflexidle, being limited to specific configurations which could
be changed only with great difficulty if at all. It va:a usually neces-

sary to do complex cperations external to the analyser. Turther, it wvas

3 -
not possible to manipulate the data once taken, but only to dump it onto
& secondary storage medium, |

As computer technology improved, small computers became more power—
ful and less expenaive. By the early 1960's, it became both feasidle
and desirable to attempt to interface a small digital computer to a nu-~
clear physics experiment 1>. This was successful, and proved to be much
more flexible than a hard-wired ax;alyzer. Similar systems began to
spring up in many places. As programs were written and used, it became
apparent that the main value of a computer attached to an experiun§ lay
not in its flexidility as an analyser, but rather in its use in an inter-
active mode with the experimenter. For the first time it became possidle
for the experimenter to provide flexible and elaborate checks on the ex-
periment, such that the computer couid inform the experimenter of ques-
tionable operation or malfunction, or provide, on demand, a list of
parameters which would aid him in determining the status of the experi-
ment. JFurther, it became possible to analyse data as soon as it was col-
lected, and compare the experimental resulta with theory. Parameters
could bde _varied in both the theoretical calculafionu and the experimeat,
allowing more accurate measurements of the quantities of intereat. There
was & definite possibility that.an experiment would proceed faster, since
it might bde possible at an early state to determine that the effact of
varying one parameter was negligible. and could be ignored. Data analy-
sis could be completed with the experiment, and qﬁutiomblo data could
be retaken if necessary while the experimental configuration was still
operative.

There was, however, one gerious drawback to this system. The com-

puter was dedicated exclusively to the use of only one persoan at a time,

4
The period involved might cover days or weeks, during which time no
other person could use the computer. 3ince the experimentalists nor-
mally discovered a few days after their experiment that they would like
to vary ancother parameter with respect to the data they had collected,
since they already knew how to operate one computer, and since they
knew that they could analyze their data under an interactive aystem
much faster than by sending it to a computation center for batch pro-
cessing, computer usage became saturated. A struggle ilnvariably devel-
oped between the person who was using the computer and those who wished
to use it for data analysis, data reduction, simple computation, and
development of new progrm to make use of the computer. Zach time a
new prograk was developed and added to the lidbrary of useful programs,
saturation increased. TFurthermore, it was apparent that the computer
was not being used at full efficiency, since programs rarely used all
of the resources of the computer, and for long periods various resources
could be seen standing idle. Two or more people who required non-over-
lapping resource sudssts could easily share the computer, if a mechanism
suitable for sharing were provided. Then "A* could analize his data
using a graphic display and teletype, "B" could be reading cards and
printing out the results of a computation based thereupon, while *C¥
could copy a magnetic tape.

Such a mechanism exists, namely timesharing, based on the observa-
tionythat if in an interactive mode of operation, a computer is normally
idle while wuiting for a person to respond, then during this time it
could easily be responding to each of several users, without appreciable
degradation of response to any one. As a result, each user would feel

that the computer is devoted exclusively to his use. The computer could

still be providing a bdatch processing facility in the background of its

5
operation, or any other processing vhich\(as not time dependent. This
background usage would be degraded by they interactive usage, but would
still be keeping the computer busy and pr§ductive.

Timesharing schemes fall generally into three categories. These
oay be classified as follows:

1, Systems where all users are running independently, but where
each is performing identical operations of computation, control, and in-
put. Such a system would use the same program for all users, each dif-
fering only in the unigque storage area he was using. In this scheme, the
program is reentrant, such that it always assumes one or more pointers
to the current area of storage it is manipulating. Thia scheme is ef-
fective where each terminal that may interact with the computer is
identical in its éapabilitiu and operation. Added flexibility may be
provided by allowing the individual user to use his own programs, exe-
cuting them from his storage area, to manipulate his data. However,
any interaction between the user and his program must be handled by the
main resident program, or monitor. Further, all allowed functions must
be built into the monitor, and adding or changing a function is a non-
trivial progr’m;ng problem. A common example of such a timesharing
system is that used by airlines for ticket reservations. Such a scheme

is relatively easy to produce, since thers is a finite set of operations

. allowed and desired. Its greatest deficiency lies in its lack of flexi-

bility.

2. A second dcheje is that of foreground-background usage, shown
in Figure 1. Here an area of the memory is set aside for one or more
foreground programs, which interrupt the program operating in the dack-

ground as necessary to perform a specific set of functions and return

Figure 1. Memory allocation under a foreground-background scheme of
timesharing. The vertical column represents core memory. The monitor
is used to provide all control functions. The area of core devoted to
background timesharing is successively occupied bty a number of pro-
cesses, all limited to the size of the background area. The realtime
foreground area may be occupied by any one of a set of processes, :
(or divided so that it may be used by more then one process), but any
realtime process generally locks out all other realtime processes. .

Yigare 1,

CONVENTIONAL
TIMESHARING
WITH REALTIME

8
control to the vackground when done. Usually there 1s & method of check-
pointing the current background program, that is, saving it on an exter-
pal storage medium, replacing it with an extension of the foreground
progran capable of performing certain complex operations, and when there
ig no longer any need for this, restoring the background program and con-
tinuing 1its operaticn from the point it was checkpointed. However,
there is normally elaborate checking {pvolved to insure that the fore-
ground and background programs do not interact, as there would be great
diesatisfaction on the part of the users if it was necessary, for example,
to sort output because the foregroﬁnd and background punched alternate
cards or printed alternate lines. The big advantage of the foreground
acheme is that of fast response to events, thus permitting svaluation
of each event on its own merits.' The disadvantage lies in the difficul-
ty of changing the foreground. In & situation where the foreground is
used to monitor and control a proceis, guch as the operation of a manu~
facturing complex (eg. oil refinery) or complex machine (eg. accelerator),
where parameters zay be varied but where the foreground program is rarely
changed, this is no real disadvantage. Howaver, in a situation where
multiple foreground operations may be in operation simultaneously,
starting and stopping agynchronously with each other, severs problens
occur with respect to keeping track of free memory and making efficlent

use of the memory.

3. In the third scheme each user is performing operations coz-

pletely independent of all other usage of the machine. This schenme,
while being capable of the greatest degree of flexibility; is normally
found to be so difficult to implement that restrictions are placed upon

all usage. Jor example, no user is permitted to change the state of the

9

machine himgelf, and must request all state chang;n from the resident
monitor. lThia monitor must on each request, determine if the request
is valid, if the operation is permitted to the user, and perform other
bookkeeping functions before actually going ahead and performing the
operation. A typical operating system could easily require 20,000~
40,000 words of memory at all times just for the resident programs.
In addition, response time may be increased drastically such that,
while still adequate for reaponse to people, the response time is orders
of mqgnitude slower than would be possible in a foreground aystem. This
would seriously limit the usefulness of the aystem in ;n environment
where events could occur thousands of times per second, such as in a
nuclear physics laboratory. |

This thesis describes a new scheme of realtime timesharing, which,
while permitting the flexibility of scheme 3 above, also permits the
response time associated with foreground programs, without many of the
disadvantages of either scheme. It has the further advantage that the
requirements of a resident monitor are kept to a minimum, since the task
associated with each user performs all of his monitor functionms, in-
cluding all communication with the external world (INPUT/OUTPUT or I1/0).
This is shown in Figure 2. This is of great advantage in nuclear bhytict
experiments, where an I/o operation might require a buffer of thousands
of words, wasteful to make resident unless used frequently enough to
Justify it. (The acquiring of a multichannel or multiparameter spec-
trum can be thought of as such an I/O operation, where the storage al-
located to the spectrum is in effect a single buffer.)

The operating system described is called JANUS, for the Roman god
"...of all going out and coming in,...also the god of entrance into a new

division of time" 2). thus the god of timesharing.

10

Figure 2. Memory allocation under JANUS. As in Figure 1, the column
represents core memory, with JANUS at the bottom. Two tasks are shown,
with the independent task address sraces twining through memory. Not
all pages of a task need be in core at one time. The darkened pages

of core are dedicated to realtime processes specific to the task which
has the page.

2. THE USE OF CORE MEMORY

In order to provide a perspective for the discussion of JANUS, I
will firat describe how various other timesharing systems operate. Con-
sider first the problem of sharing the core memory of the computer. How
can more than one user make use of the core memory without the possibllity
that an error can interfere with another user? (Subsequent figures are
keyed to Figure 3.)

The simplest scheme is to have only one user in core at a time, and
all available core is his to use. This scheme is that used in Project
MAC of the Ma.lachﬁnettn Ingtitute of Technology on an IBM 7090 computer
(Figure 4). It is also used in the Sigma 7 timesharing system developed
by the Bubble Chamber Group at Brookhaven National Laboratory 3). 'The
users program is brought into core from an external storage medium
(swapped), and started. If the program did not inform the resident exe-
cutive program that it wished to exit early, then at the end of a fixed
time increment execution is stopped, the current status is saved, and
the program is swapped out to the external storage medium, freeing the
core for the next user. This process continues for each user, until
eventually the first user is swapped back into core, and his exscution
is continued. While this scheme has the advantage of niiplicity. the
amount of time spent on nonproductive bookkeeping (overnead) is high, as
the computer is idle while awapping occurs. To provide a reasonable

response time to each user, the interval specified (timeslice or time

12

13

(*eoy1seMT) ® Fujinoexe Asey} ¥ 03

S10 a1 3xX03U0D SIY3J UL YOTYA °‘SATIOW PIOM Y3 jO eSn Y3 2j0R) ‘sean?yy jusnbesqns o4 fey °f exndiy

>

R

3394
IAILOV t 433N
3AILOWNI ¢ y3sN
SSAYO0Ud NI dVMS —— 2y3sn
3AILNO3X3 T v w3sn

S34N9I4 0L ASA

14

Figure 4, Memory allocation--project MAC. User execution slternates
with swapping (the process whers the progrem is transferred to or
from memory).

15

EXEQUTIVE

TIME ——=

0

Figure 4.

16
quantum) must be short--normally fractions of a second to each user. An
example of the problems involved for such a scheme is demonstrated in
the Brookhaven aystem, where the average time required to replace one
block of 8192 words with another is 56 milliseconds. With the 1 second
timeslice used, this provides 5.6% overhead, but with 6 active terminals
as much as 5 seconds may pass before the computer can respond to the user.
Three second response time is normally considered a reasonable upper
limit. To provide this response time, a time slice of .5 seconds would
have to be used, and overhead would increase to 78 milliseconds. Most
terminal usage consists of the computer reading in a typed record, ex-
amining it, possibly commenting upon an error, and requesting new input,
a process which normally takes much less than 1 second. In this case,
the overhead would increase to a large value, Inter-user protection
need not b; considered, however, since they cannot get at each other.

By constraining each user to t~|epara£e part of the core available,
such that more than one ugser may fit into the core memory, aivantage may
be taken of the fact that most computers suitable for timesharing are
capable of asynchronous I/0 operations, such that I/0 may coexist with
prograr execution. Tﬁu’ one user may be executing while another is
swapping in or>out. The swapping I/O overhead is negligible as long as
the tinoslic; is greater than or oqnél to the swapping time. However,

a new problem arine-;-that of relocation. To make efficient use of the
memoTy, a program should be capable of eiecuting correctly wherever it
nqy‘be located. Unfortunately, programs tend to reference absolute
addresses.

The linpliit method of treating relocation is to ignore the probd-

lem. This approach was taksn by Daftnouth College with a GE 265 k) (and

17

more recently a GE 415) computer (Figure 5). Available core is divided .
into two areas, "high" and "low" core. Execution is alternated between
high and low core..as low core is executing, high core is undergoing a
swap. However, a program loaded into high core will not run in low
core, and vice versa. A bad Joﬁ mix can cause an excess of programs in
one area or the other, with the result that either the low density area
_users get more computer time, or Ql-e the computer becomes inefficient,
as time must be spent waiting for swap in the high density area. Ad-
ditionally, any system library program which is available to all users
nust bq kept in both a high and low version. Protection is provided by
a bound register, which specifies the highest andvlowent legal core
references permitted.

In ord;r to treat relocation adequately, so that a program may
run in different areas of core without revision, special hardware must .
be used; if the relocation operations were performed by software the
overhead would be tremendous.

There are three methods of automatic relocation used, Two of
these are almost identical, with only a slight difference in emphasis,

The first of these methods uses a location register and relative
sddressing. ZEach address is relative to the referencing instruction.
The actual reference is made by adding the location register to the ad-
dress npocified. The block of code wili now operate anywhere in core
sutomatically. This scheme has been most auccon:fully‘applied to the
SDS Sigma 2, which is not however used for timesharing.

A second scheme uses s base register. Addresses specified are
relative to the beginning of the program, rather than to the address of

the instruction; otherwise operation is identical to that outlined above.

18

Figure 5. Memory allocation--Dertmouth rroject. A new progrem is
swapped into core memory while the current oprogram is executing.
However, an imbalance in the number of jobs assigned to high and low

storage causes a delay at the end of the third timeslice, as there is
nothing to do btut wait between USER 3 and USER 1.

19

dv

2 ¥3sn

Ni

dVMS

€ dWMS

NI

110

°¢ eaniyy

-—3NIL 0

3A1LNO3X3

dUMS

1N0

-— 340D

el

2¢é

S =ICERIE

45

20
This ;chela is used on the IBM 360 computers (s, 6). and in the PDP-6 7)
(and now in the PDP-10) computers (Figure 6). There are two advantages
of this scheme over the Dartmouth scheme. First, successive users are
placed where there is room in core, without the problems associated with
high and low core areas., Secondly, programs mey be of variable length,
up to half the available space in extent. Short programs can coexist
with longer programs. This scheme further introduces the concept of
Pages--a basic unit of core sige. In the PDP-10 each program consists
of an integral multiple of 1024 word pages. Protection is again pro-
vided by a bound register, the lower limit of which is also the base
register.

The third scheme of auto-relocation involves a memory map. First
developed by Project GENIE at the University of California, Berkeley,
ueing an SDS 940 computer, it is also used by the IBM 360-67 (8: 9) ana
JANUS in an SDS 3igma 7. PFigure 7 shows the use in an SDS 940 computer,
which uses 2048 word pages. Note that pages which are modified (M)
while a program is active are flagged to be written back (W). Since for
unmodified pages there is a true copy on the external storage medium,
these pages are preferentially chosen to be overwritten thereby cutting
down the number of swap operations necessary. The penalty for reducing
the nuomber of swap operations is the necessity of searching through a
table of content-associated core pages, to determine if a page of a pro-
gram is currently in core. Programs execute in & virtual address space,
connected to thnkréal address space of the core noiory through the map.
Thus contiguous virtual pages need not be in contiguous feal pages of
core, but may instead by located wherever most desirable. Inter-user

protection is aff&rded by a multilevel page protection system, used to

21

Figure 6. Memory allocation--PDP-6 computer. Swapping occurs con-
currently with execution, but the efficiency is higher than in Figure
5, a8 no limitation is lmposed by the use of specific areas. Note
that a significant part of memory is rarely or never used.

22

IVE

XECU

TITY Nl € dUMS
N
o
7
b
o} 1NO
1111
i
g ¥
g &
z 3
NI
<
& &
x [7)]
w 1IN0 € dWS >
i F L
NI & dWS
wl
o LNO 2 JdVMS
R KR
b INA.&.J.!V.
I
_M. (o}
| o«
" 3
| € JWAS !
3
=
b
Z
Ni 2 dUMS
. (@] ®)
< o Q Q
[2°]) 0 <

TIME ——=

0

Pigure 6.

23

Figure 7. Memory allocation--project GENIE. Problems are iritially
brought into free core. When no more core is free (TASK 4), those
pPages are chosen which are not currently in use and are identical to
the copy on the disk (unmodified), to be overwritten by new pages.
The resultant fragmentation of Jjobs 1s offset by the use of a memory
map. Not until the sixth timeslice is it necessary to write a page
out to the disk (TASK 1, Page 5). This scheme is also used in
JANUS. (The P numbers are pages within each user's address space.

M signifies that the page is modified, W indicates that it must he
written back onto the disk.)

2l

P

IR

LLA

P8——-M3}

W

W

', | mamv——

P.7

—=W:

P2

(¥}
¥

DR
P

EP4

2=t

THYT
MW
i

P8

-l
£a

3L

1

4

P4

P4===M

P.2

\AJ
W,
LA
W
1A

N

IR — 3 3t
ol
ninmn i
ESESE
EoENFEOFEOETENENE=
FaFaPFoTaFoa ra

64

60

50

40

30

0

EXECUTI

~— 3402

TIME

Tigure 7.

25
protect and monitor the usage of pages.

Under a mapped paging scheme, the usage of each page may be closely
monitored--closely enough, in fact, to permit demand paging. If the exe-
cutive system can be informed whenever a page is referenced, and if the
user can be chked out of some of his own pages, there is no longer ah&
need of the whole program being in core. Those pages currently being
used can be brought in, and if a valid reference is made to a page which
is not present (demanded), the current timeslice can be stopped, and
conditions set up such that the demanded page will be available during
the next timeslice for the program. Further, if a page is not referenced
for some pveriod of time, it may be safe to assume that it will not de
referenced again for a while, and eased out of core memory in order to
make room for pages in use,

JANUS uses a mapped memory usage scheme, but with an important ad-
vnntngé over that specified above. Much of the executive is unigue to
the task, rather than resident and common to all tasks. As a result, it
is entirely up to each task if demand paging is tc be used. Jurthermore,
any task's monitor may dedicate one or more pages, making that area
resident until undedicated (Figure 8). These portions mey be connected
to interrupts, permitting realtime operations asynchromous to timesharing.
These pages form resident islands, and timeshared usage maps around then.
All the advantages of foreground usage result, without the rigidity in-
herent in conventional foreground-background systems. The added ability
to solve problems which are actually larger than physical core, without
requiring special techniques of the programmer, such as overlays, is a

boon.

26

Figure €, Gross memory allocation under JANUS, showing realtime pro-
cesses. Using a large time scale, all short-term detsils of memory
usage are omitted. Shown insteed sre areas dedicatad for realtime
processes. The blank area is availsble for swapping. The activation
of four tasks 1s shown, each of which immediately initistes 2 real-
time data input process. These tasks, in order of appesrance, might
be OIRAE, JBCM, DATA TAKER, and JFCM. Note the interleaving of
lineprinter output of tasks 1 and 2. The variatle size scope dis-
rlay is a measure of the amount of realtime duffer area required as

e display is expanded to show relationships instead of detail.

N

CORE (PAGES)——=

27

60
50+ e
DATA ACQUISITION
40
30F
20r
START OF
START OF | START OF
T OF TAsk 2 TASK 3 | Task 4
MK |
, PLOY]
IOTP' .
= 0 == W ftr:l Ce3
e I = ——| :
PERMANENT RESIDENT
0

TME—
Pigure 8.

RN

Almost all tiuf; }ﬁgﬂjgﬁemec reiuire. in addition to the core
namory, additional buififggrﬁgé‘to keep programs, libraries, and data.
In general, this storage is addressable, in that a specific block of
storage may be located without searching all the storage medium. With
certain exceptions, magnetic tape does not fall into this category.
In-tead,gnagnetic tape is a serial or "stream" storage medium, where
records relative to the current record may be referenced. As such, it
is useful primarily as an archival storage medium, where data stored
thereon is not capable of change without either destroying all succeed-
ing records or requiring a copy operation to move the data from a source
tape to a destination tape, making changes as neéesaary in the new copy.
This use is adequate for storing data, and for some functions such as
holding lineprinter output. It is inadequate for working bulk storage
in a timesharing environment where response time is critical.

In this environment, addressable storage is required. Commonly
used storage takes many forms, some of which are indicated in Pigure 9,
Shown also is the typical access time and range of storage capability
for that form of storage, as well as cost. Cost and storage are in
terms of bytes, a byte containing 8 bits of data. It is readily appar—
ent that as access time decreages the cost inc%@gées., This factor of
cost/byte is vhat;noryally sets ;é_“PEQt;liPit'tO th;‘gfgftical storage
capability for a perticular form of szbfggg. o

‘§ 8 T

-

LB

NI

29

*9jpew 3FeI038 Y[NQ SNOJIWA JO $JTIR[IIOWIVY)

(s314g) IWNTTOA

hO_ mwO_ O | 0!

Ol

l I | |

300V SWO0S-0
3714 MSId

SS300VsW OG-0l
MSId L/7H

SS30JVSW Ol -|
WNya

$S300VSTOl-!
AHOWIW 340D MOTS

$S300VS™ -1
AHOWIW 3HO0D LSV

SS300V ST -0

JWNTOA S3Q 006G - |

l { { 3Aq/0G6 8-G18 -Sd014dINd w

Lo

—{or

‘6 ean?ig

(S4v110Q) 344a/1S02

30

Timesharing eystems require an immense amount of bulk storage,
normsally approaching infinify as closely as possible. In additon, it
ig normally desired that access time be as low 28 possible. To be prac-
tical in terms of coat, it becomes necessary to build a bulk storage
structure, using & set of astorage forms of differing characteristics.
Thus, one uses a fast, low volume medium as well as a slow, large vol-
ume medlium.

This storage structure may take three possible forms, of which the
linear form is rarely used in comparison with hierarchical and hybrid
structures, at least for timesharing usage.

The most easily understood structure, howgver. ig the linear
etructure, shown in Figure 10. Here the storage is an extension of the
core memory, but suffers from the difficulty and inconvenience of exe-
cuting programs directly from the astorage. Its advantage lies in the
fact that there is a unique address associated with every piece of stor-
age, both core and bulk. Operation consists of copying blocks of data
into core memory, manipulating them, and then replacing them.

The opposite extreme is the hierarchical or pyramid structure (Fig-
ure 11). In this scheme, unused sets of data are kept at the lowest
(large capacity, slow accessibility) level of storage. If referenced,
the set of data is brought into core, and, if necessary, later written
back. The system executive does :utoma‘ic accounting of usage--if a
data set is used frequently enough, such that time spent accessing a
level of storage becomes significant because of frequent references, that
data set is copied through core to the next higher level of storage.
Depending on the algorithm used, the original block of storage may or

may not be freed (depending on whether or not the storage is referenced

3

*soude esexppw juspusdsput uUe SOy

*3qF1eY Y3I[M SOSWSIOED SWI3 SSEIDY °INIONILS 3FWI0}S [EITUIIBIGTH °I1 eindyy

——30WdS SS34Aav 37114

znipew aFwIO0l® yowg

d3H10
3114 MSId

ASIA L/H
WN4d

AHOW3N 3400 4~

(*#30330q OfI eTqwANOETS-TOU DUV
*sInjonIjs sPRIO)s NINQ IVGUTT °0T exnPig

AHOW3IN 3400, |
3OVYHOLS MINE 3718VLNO3X3-NON

sweaFold proy 03 (ePdexo3s 8100 pepueixs) 0099 IO Lq pespy)

32

by & unique name, or by its areal name on the loweat level). As the use
of this procedure unaided would tend to fill higher levels of storage,
a mechanism must be provided to purge a levél of aome data sets, whoase
usage frequency does not warrant such a high level of gtorage, to a
lower level. This may be done periodically, as well as upom demand.
Efficient use is made of bulk astorage, but there are two disadvantages
to such a acheme. PFor eaase of deacription. I will assume a data set
consists of a group of pages, and consider the use of a single page.

First, and most important, a page must be referenced by a unique
name. This name will have asaociated with it indicators telling the
current level and location within that level of the specific page, as
well as some sort of usage indicator. A table is regquired to permit the
association to be made. In addition, aome 1gd1cation must be provided
for free pages on each level, as well ag for free names. In order to
provide speed of reference, at least part of this table must be resident.
Since a minimum of one word/page is indicated, and since storage of
100,000,000 btytes (50,000 pages) may be available, it is readily appar-
ent that an excessive amount of core storage is required for the tablﬁ.
There are alternatives, requiring only a list of the contents of the
highest level of storage, but these are expensive also, as each refqrcnco
requires searching the table to see if the refereace is there--a time
consuming operation.

Secondly, the overhead introduced im purging levels is nén—trivial.

A typical hierarchically organized system is the IBM 360 Time
Sharing System (TSS) (8, 9), Using a complex slgorithm to improve ef-
ficiency, measured overhead is still 80-90% 7,

The third form of storage structure (Figure 12) is the hybrid

3

seqnjoniis sFezogs priqly

~——3WIL SSIDOV ONISVIYO3A
-——30VdS SS3¥AAV ONISVIHONI

*21 san¥yy

J14MS1d

MSId 1/H

NNYA

AHOW3IWN 3400 -

gL

structure. Imnthis scheme, all names are absolute rather than relocat-
able, and no resident table is required, except for a list of unused
pages for each storage medium, and an associative table of the pages
contained in core memory. Pages are allocated according to expected
use and duration of existence--program libraries in slow storage, ac-
tive programs in fast storage. If a storage medium is full, space is
allocated from a slower mediug. A program is copied to faat working
storage and renamed whea it is brought active, and that area is freed
when it exits. As a result, little overhead is required compared with
the‘hierarchicnl structure, and the benefits of the linear structure
.apply, without the problems associated with nonexecutable storage.

| JANUS uses a hybrid stérage structure. As the MSU Sigma 7 con-
figuration includes only a single bulk storage medium (a 1.5 megabyte
H/T disk), it is a simple structure. However, only a relatively minor
change in JANUS is required to implement one or more additional stor-

age media.

i

s S g

4, SCHEDULING OF TIME

In any timesharing scheme, the timesharing is effected by dividing
the time available into qunta. or 'timulicn, which are mllocated to
successive users. Scheduling involves two p‘armters--tiunlico dura-
tion, and ordering of users. _

'fineslice duration may be fixed or variable, and a mechanism is
usually provided to terminate a timeslice early. A fixed timeslice has
obvious meaning; each user gets the same quantuﬁ of time for his prob-
len.

A varia;ble tiunliée is normally used in a timesharing aystes
where the ltafu. of the machine, the system, and the previous history of
a particular task's usage is available. On the basis of these pare-
neters (and possibly others, which may be defined by the user), an
“optimum" timeslice is calculated for each user each time. Thus, if’
the machine and system are lightly loaded, a longer duration is provided
than if a heavy lead exists such that many users must be s.c-rvicod with-
in a givei period of time. Again, in a priority oriented ayste=m (ué
below), the duration is related (perhaps proportional) to the amoumt of
time a user's problcn has already taken. The rationale for this ;cho-o
ie that, if a problem has already taken a certain period of time, a
loager timeslice alloted to it will cut down on‘tim speat for oistu
overhead, and more productive work will be accomplished. TFor example,

a problem which has already required N timeslices of duration T may be

35

36
given a durationbof 2T for the next N timeslices. If still not done,
the duration might rise to 4T for the next 2N timeslices. Since an
extremely long calculation, such as freduently ariases in scientific
work, might require hours of computer time, a néchaninm must bo‘pro~
vida; $0 permit the abortion of a lomg timeslice, in prder to allow
access to the machine by other users.

A further perturbing tactor may be the admission of a user to
specify his own timesharing; as in tasking under PL/1 10). In this
case, & user may start subtasks to operate concurrently with the con—
trolling tesk, and epecify what portion of the time the couputér is
to spend on each., Then the duration aylotted‘to the uger must be di-
videa into appropriate gsub-gquanta to pérmit each of his tasks its pro-
per allowance of time,

The secona phase of scheduling involves ordering the access oI a
user to the macnine. The gimplest ordering is to place all users into
a “ring*., In a simple ring, all ugsers, both ac£ive anc inactive, are
in & circular structure. Control passes from user to user sequentially,
skipping those who are inective. Users may pass from active to iﬁ—
active states and vice versa. The access time for a user then depends
on his position in the ring relative to the currently active uger. (A
user is active if his program can proceed with computation, rather than
walt, as for example for input.) |

A more sophisticated approach is to have a ring of active users,
and a list of inactive users. When a user is activated (goes from the
inactive state to the active state), his task is inserted into the ring
as the next task to run. This has the advantage that an activated user

task has a short access time, and therefore fast response time. It

37

the task stays active for longer than & timeslice, he enters the normal
ring sequence.

An extension of this scheme is the assignment of priorities to the
tasks (th; above is a two-level p}iority scheme). A multilevel priority
-qystem is generally an aristocratic system: all tssks at a given level
are exhausted before proceeding to a lower level. If a level il beiﬁg
executed, and a task appears on & higher level, the lower level pro-
cessing is discontinued. 'A-talk activated is normally entered into a
high level. |

Under priority scheduling, there may be a pyramid of ring' (Frig-
ure 13). These rings leak—-if a task stays acti&iffbr long ondugﬁ. it
drops to a lower priority level. If}it goes inactiéé;.it‘dropn’tq the
lowest (inactive) level. As do.cribed above, lower ériority.tapkl nay
be given & longer time quantum, to offset the f;;fhtﬁﬁt they may ﬁo en-
tered less often. |

In general, the parameters used to define priorities and time~
slice duration are produced by an empirical fitting process, -based upon
some specific mix of poesible jobs. In a terminnl—ofiontcd timesharing
system, a .1 lécond quantum may be used for the highest priority, to
provido fast terminal response time, and may expand to several seconds
at a lower level, where long computations are performed.

JANUS uses a scheduling algorithm with a two-valued timeslice and
a four-valued priority scheme. A task is nllocatcdba .1 second time-
slice, unless it is the only active tg;k in the machine, in which case
it is alloted .4 seconds. If a realtime process requires rapid response
‘from its associated task, it can bring the task active, and even effect

Jobchange for the currently active task.

, sJugz 1emol ® WO
suo uwyj Arprdex siom DIsseIW 3q TTIA Fuix L3paofad ydyy ¢ uy sy VY sFuypinpeyas Lijroyxd °€1 san¥id

WNLNVNO

NOI1ND3X3
| Q3SVIHONI
ONIY ALIMOINd 1SIMOT .@’ |
ONI¥ ALI¥OINd H3IMOT OL m)
LONINY3IT, MSVL @
| '
PR IWIL SSIDJIV
ONI¥ ALIHOINd LS3HOIH @ a3svayoaa

39

The possible priorities are imactive, mormal, hurry, amd rush, ia
order of increasing level. The structure is that of a simple rimg--an
activated task remains in its mormal sequence. However, a task iqy be
placed in a higher priority level thaa mormal. The use of a higher .
priority overrides the normal sequemce of operatiom, amd the first high
priority tesk sncoumtered is used.

The differemce between hurry and rush priority is ome of efficiency,
Under rush priority, a task is made ready and started, even if amother
task ;s ready to proceed. Umder hurry prierity, if another task is
ready to proceed, it does 3o, rather than have the conphtor wait while
the high priority task is readied. A task fouad ia either high prior-
ity state is reduced to mormal priority om entry; thus high priority
appliss onrly to the first access. On retura from a high priority task,
exscution will proceed with the rext task in mormal sequeace from it,
unless another high priority situation exists.

Simce JANUS is a system geared to realtime operations, there is a
second form of timeshariag available.‘ This is by means of iaterrupts
(Figure 14). A realtime event may be defimed as the occurrence of an
event asyachromously with the operatiom of the computer. If the event
is attached to a hardware interrupt, it is possible to rapidly switch
the complete state of the computer, imterrupting the current process,
and tranlforring control to amr interrupt routine. This routime may take
the necessary action based upom the eveat, and then retura coatrol to
the imterrupted process. Whiie the interrupt is active, it cam have
performed various operatioms, including the activatiomn of the associated
task. In gemeral, all I/O op;rationl are associated with imterrupts,

including data acquisition. Imndeed, the basic JANUS fumctionms ef

. *seed0ad punoxFexol ewws e} 03 uac,aoa TTe jou
peau sjdnixsjup ‘umoys sy eswd syduwys ¢ eTyYN ‘sidnizejuy jo SyEEQ ey3 uo ‘sury (xeddn) pumosFeioy
PUS (I2MOT) PUNOXFNOVq OYT UIGAINQ $3WUISIT® UOTINOEXT ‘njdnzzesuy Aq ,Furreysewil, 41 ox1ndig

-— 3INIL
GNNOHOMOVS
$S3004d
L] ANNOX93YO4
. b }

1dNYYILNI LdNEYILNI 1dNYYILNI

b1

swapping and jobchanging are assosiated Qith interrupts, although ef
~lower priority tham those used for data acquisition.

Realtime processes operate im the foregrowad of the computer—-
timeshared operatioas in th§ background. As a result, it is possible
"to perform a nuclear physics experiment af several levels simultameously,
such as r;nltino data ;cquisition, realtime I1/0 (e.g., plotting), real-
time timeshared dntlAanalysip. and timeshared theoretical cemputation.
Each of these can be treated as an imdependent process, and thus the
‘procénﬁes necessary to a particular experiment may be selected and
started. If it is discovered that an additiomal process is required
during the course of an experinegt. it iay bq'splpcted and added to the
set of active processes. Similarly, a process no longer required may

be dropped.

5. DESIGN GOALS OF JANUS

JANUS was first desigmed to optimize realtime processes, specifi-
cnllj data collection, control, and intar;ctive procesaes relating to
‘experimental muclear physics. Only after it Qa- decided that'theso were
the most important functioh; of the conputgr for our application, was an
attempt made to determine how to proceed 11). An analysis of projected
usage imdicated that any realtime process had asgociated with it a large
body of associated data and ﬁrogran which was notvused contimuously,
and which was of low priority. Also indicated was the fact that, while
& realtime procc;l Qas active, large portidna of the computer resources
would be standing idle. Furthermo;;, the capability of operatimg mul-
tiple independent realtime processes -inultanoqunly was desired.

It rapidly became sppareat that a timesharing system was desired,
with a capacility of runnimg realtime processes in tho‘foreground. while
the associated programs (and imdependent ones also) would run im the
background. Efficient use of core memory indicated the meed for a small
resident monitor.‘ns well as memory mapping. Tasks were defimed, amd |
their requirements and capabilities were delineated.

The result was the JANUS philosophy:

1. The highest priority use of the computer is t§ service im-
terrupts, and exteraal data collection associated imterrupts lhould be
of highest priority. There should be no critical timing requiroientl oR

any sequence of code, requirimg the ighivitiag of iltcrrupfi.

L2

43

2. Axy hardware im a given installatior should be available to a
user if he needs it;

3. The only festriction on any user should be that -llethor users
are protected from him, as he is from thenm.

i, No user should be aware of any other use of the machime, except
when a delay is required because of a request for a curreatly unavailable
resource.

5. It is the responsibility of the task associated with a user to
insure proper operatiom, as JANUS is to impose no arbitrary restrictions
'by checking on the task. JANUS should be invoked oaly for control
functions.

6. What a user does not know about the s&sten should not hurt
him, as lomg as he follows reasonable comventions as to usage.

7. A user n€ed not have any knowledge of anythiag he doean't use,
to the extent that it does not exist im the machinme he is using.

These goals have been met in JANUS.

&. UNIQUE FEATURES OF JANUS

The system is based on the observation that = p}ece of a program
need only be accessible while it 1s being referenced. In a timesharing
system, Programs succeed sach other at smmll intervals of time. The
only piece of any such program which need be in core at all times is
that piece which may be called upon asynchronously to the normal sequeace
of timesharing. It is resdily seen that this description is exactly
that of realtime operations, vhiey,can be extended to ipcluds all forms
of 1/0. If a pechani-m is provided for‘a task to make & part of itself
resident for the duraticn of a realtime requirement, then it becomes
feasible to timeshare monitor systems, since, in general, momitors
provide primarily for realtime I/0 functions and any operations or usage
which it is not desirable to allow to the user directly.

Further, if a mechanism exists to determine the usage ;f a block
of storage including its accessibility, then the only blocks which must
be available each time the task 1is active, are those blocks to which the
mechanism does not apply. Other blocks meed not b; accessible, or evea
in core, if a mechanism is provided for fetchiig them as necessary.

Again, if & mechanism exists for automatic rolocution. such that a
given pieco of program can be operated luccO||fully from difforont parts
of the real computer memory, then these mechanisms can be used as a mem-
ory expander, such that programs car operate anywhers in the address

space (chapter 9)'of the computer whether or not that address space

Igds

45
corresponds in full to existing memory.

Furthermore, each task may cperate in a completely independent ad-
dress space, or several tasks may intersect in one or more blocks, which
need not, however, correspond to the same plece of address space in each
of the intersecting tasks. |

In order to describe how these mechanisms are implemented in JANUS,
it will first be necessary to describe umique features pf\thc target
machine, a SDS Sigma 7 computer. Cartgin features of JANUS have been
influenced greatly by the operations allowed by the hardware. Some of
the operations necessary to JANUS are p;ovidod quickly and easily by the
hardware, showing the power an@ utility of such hardware, while others
equally important must be implemented i; a less than straight-forward
manner, and would benefit greatly from the existance of hardware suited

to the applicationm.

7. THE TARGET COMPUTER

The SDS Sigma 7 computer 12) is a relatively new third generation
computer of which MSU acquired the first sold. A first generation com-
puter is generally typified as consisting of some form of memory and a
processor, which can acquire specific data words (instructions) from the
memory and based upom these instructions manipulate other data words.
This generation usually used vacuum tubes. Second generation computers
are typified by the use of transistors, and inciude such features as
index registers, I/Oichannela (a device which shares the memory of the
computer, and which, on command, can perform asynchronous operations for
the computer, such as transmitting a whole string of data elononﬁs,
rather than Juit one), and interrupts, allowing multiple use of the com-
puter. The third generation computer is distinguished by the use of in-
tegrated circuits, and features such as privileged in-tructiona. paged
memory, ninory mapping, flexible memory protection, "scratch pad® re- -
Zisters, and I/O processors. These are discussed in turn below.
e Privileged imstructions: the computer may be operated im either
slave (computational) or master (coatrol) modes. In slave mode, all iz-
structions relating to the intermal use of the computer are permitted,
but certain control imstructions are illegal, and memory ussge is con-
trolled. Conversely, . in master mode, both ianternal and privileged con-
trol imstructions are permitted, including those which change the status

of the machine, but the core monitoring capability is lost.

46

7

A paged memory means that a natural unit of memory exlists, such
that specific conditions may be applied to ome page and not another. In
the Sigma 7, the size of a page is 512 words. These pages are indistin-
guishable in their usage except for the real memory sequence they are in,
with special usage for the first page in this nequence‘(page zero).

Memory mappimg is special purpose hardware to prpvide sutomatic re-
location by pages. Associated with this is a table, the map, which
specifies the usage to provide. Under this scheme, each page of memory
is automatically, and with imsignificant cost in time, mapped into a
specific real page of memOTy .« There is mo requirement of identity, and
thus the address space the computer is operating under meed have mo cor-
respondance with space in the real memory, except in special c;tec. As
a result, & task may be loaﬂed by pages in such llway that the most ef-
ficiont use is made of the existing memory, imdependent of the address
space requirements of the task. There msy be a one-to-one correspond-
ance i; regions of the map, %a an altermate device to the pointers
degcribed in timegharing scheme 1l.in the introduction.

Memory protection is that ability to apecify the usage of certain
pages of nnmory under specific conditions. Tor example, in the Sigma 7
opsrating in shpped slave modo, four modts of usage may be specified for
.auch page, corresponding to the degree of access allowed, These access
'protocts‘arcz 0. Complete access allowed, 1. Write prohibited,
2. ‘Write and execution prohibited, 3. All reference prohidbited.
While intemded primarily as an aid in debugging and to provide security,
the access protect nay_iloo be used to mdnitor the usage of memory.

M.nory is divided into fast and slow portions. The fast portion,

although strictly a storage medium, may be treated as & large set of

48

registers with identical capabilities. These "scratchpad" registers
are normally trsated as specific locations in memory, and thus all
register-register operations are a natural extonsion'of normal memory.
Indeed, execution of the program may proceed from the registers. The
net effect is that of a two adaress computer, where one address space
is a small subset of the other.

There is usually one or more 1/0 processors (;OP). These are es-
sentially the small computer, described in the introduction as thg batch
processing system, built directly imto the large conputer, an IOP is more
powerful than a channel, in that it can provide simple operations, such
as collecting data sequentially from l?veral places in memory and com~
bining them into a single record, or transaitting multiple records be-
tween the memory and a device.

Thess features describe the Sigma 7, but thers sre others which
are extremely powerful, although not unique to third generation computers.
The most important such feature is the inclusion of hard-wired subroutines.
(It is not generally realized that all floaﬁing point operatioms fall
into this category.) Since the operation is bhard-wired, it may proceed
.rolativcly fast. Hard-wired subroutines are usually expensive, and are
normally recognized by being an optional feature on the computer. The
simpler cmes may, however, be standard. The map and protection des-
cribed above fall into the catcgory of a hard-wired subroutine.

Stacks: 1t it frequently desirable in a program to be able to
save ilfornntiég temporarily ‘im a push-down list or atack, whereia the
la.t‘itcl‘cnt;rod is the first item removed. The major ﬁne of such a
feature is to provide dynamic nildcation of storage. If all temporary

‘modifiable storage is used in a stack, less storage is required than if

49
all storage were entirely static, its use is optimized, and recursive
routines (those which may call themselves) become essy to write.

Conversion: the Sigma 7 has instructions for conversion between
any two number systems, provided that the two are related by a weighted-
nunmber system.

Byte string: four standard and one optional instructions permit
the manipulation of strings of bytes (character), with operations such
as move, compare, translats, and search. These permit powsrful text
editing facilities,

Floating point: optional, including single and double precision,
this is useful whenever accuracy is unimvortant, or the range or numbers
involved is unknown. Used in scientific calculation, where complex op-
erations sre performed.

Lecimal: ocptional. All operations are guaranteed good to 31
decimal digits. Numbers are carried around as binary coded decimal
quantities. Used primarily for business applications, where the oper-
ations are simple and quantity of operations is the criterion. (It must
be remembered that all operations on a single number must include the
time spent to translate the number to and from a character atring, and
this may be apyreciable.)

There is also an instruction (interpret) which is relatively power-
full in juggling tables of non-numeric dats, provided that they are of a
specific format. .

In addition, the Sigma 7 provides variable date bases, such as
byte (8-bit), halfword (2-byte), word (4-byte), and doubleword (8—byta'),
and independent instructions to manipulate these d;ta bases. In con-

junction with these, a base addressing scheme is provided, such that any

50
indexing operatioa is automatically at the reselution of the data base.

There is alsa a set of instructibns. cal&eé immediate instructions,
which referemce the registers only, usimg the 20 bit address field of the
in-tructibn as & signed operand.

In general, the Sigma 7 is a well designed computer, with a power-
ful instruction set, desigmed for the convenience of the programmer,
rather than the engineer. However, it lacks a few features which would -
be very useful.

Specifically, I>fee1 that there are two sets of instructions mis-
sing. These.may be classified as "logiéal imnediate” and "queuing".
Logical immediaté instructions would be an addition to the immediate im-~
struction group deleribed above, to include AND immediate, OR immediate,
‘and, EXCLUSIVE-OR immediate. The addition would be of Zreat vaiue for
non-numeric operations, as currently it is ﬁeceu:ary to provide a mask
in corﬁ} even if meeded omly once. The queuing group would be harder
to inplolcﬁt, since it would'heed to be & hard~wired subroutine. A -
complenent to‘stuck:. queues are cyclic stacks, of first-in-first-out
nature, rather tham first-in-last-out. VHovever. it would seem no more
diffiéﬁlt-to {nplouolt queues than stackn;

A@dition&i instructions which might be of use are 1list processing
in-tiuetion-, where a list and coumt are provided, amd the list is scam-
zed until some comdition is satisfied.

As far as the Signg 7 hardware is comcermed, there is one major
failigg. This can be traéod to the expectation that the co-pufer’would
bq‘u-ed with a cextralized momitor. As a result, there are a number of
items of -:chinc‘utatua which éannot be read directly, but must be

reﬁrencnted by an image in gofe memory. These imclude the map, access

51

pretect, and imterrupt status. In & decentralized system, &s under
JANUS, it is not comvenient to keep a centralized record of lll'interrupt
status., As a result, while optionai power failure imterrupts are avail-
able fér the Sigma 7, allowimg the status of the machine to be saved if
power is lost, it is impossible to save the status of the interrupts.

A special instruction is provided to loadﬂthe map and protection.
How mu;h more uuefui it would be if the map and protect registers were
inside the address space of the computer, subject to normal protection.
Then normal addressing imstructions could be-used to modify these

registers, they could still be protected against a malevelent user, dut

they would be readable.

8. STRUCTURE OF JANUS

JANUS 1is the name of both the system as a whole, and the resident
part specifically. As a whole, JANUS consists of a base (resident) and
a ring of tasks which fluctuate in size. ' JANUS operates on several
levels concurrently (Figure 15). At the lowest level is the set of
tasks, one of which is always current (active) or next. if active, the
task is executing. performing its sgt of operations for a given period
of time (time slice). While it is sctive, it mﬁy call upon JANUS re~.
sident to pr;;ide or save information or perforn a specific operation.
either explicitly or implieitly. At the end of the task's tinellice,
the task is placed on a higher (interrupt) level, that of Jjobechanging.
After perférning any operations unique to the task at slice end, the

task returns to the :esident’Jobchanger. The Jobchanger performs stand-

ard slice end operations, and then determinos.if a new task is ready to

proceed. If so, the eomputer is get up to execute the pew'tnlk. and then

control is transferred baeck to the lower task level. Hoéever, Juatvbe-
fore.this eontrol tranfer, tﬁe Jobehanger deterningt_what.taak }- to be
next efter thevcurrent task. It may decidé to start the Swapper, & ‘rou
tine on a higher level than either the Jobchanggr or task. The Swapper
will l.ynchronously 1nterrupt the Jobchanger and active tank as’ ‘necessary
in order to bring 1nto memo Yy part. of the next task. Thus there is 2
good chance that a new taak will be ready to proceed when the eurrent
task's time is up. In sddition, the resident port;on of JANUS 1s

-

52

53

‘xs9y] XU ey) Apwel 03 pesn saw suojjreredo qvyg eseyl . *‘uworjexedo

PTO UW YSIuiJy 10 ‘uogjwiedo nmm MeU w 93@T3IUT 03 pesn sy eddemag ey3 ALg jdnaxejuy yoey Fuix eyj uy
qs®y 3xAW eyj 03 euanjex puw ‘(>p pue .:B ulamjeq 99 ‘eddemg eyj Aq erqeidnisegu) suojjeredo smiogred
Yo tym ‘dadusyoqop aYg yInoxyy sessud 37 ¢, yows 3y cisddemg eyjz Lq pesdnrrejuy °*Wbp o3 [moxz T yswy w

ydnoliyy spsddoxd (suyy Laeay) uwoyjeredo jo yjed eyg

‘wopywiedo SANV(FO SUTT PIIOA [w0jdAp °ST ein?ig

I #Svi

TIAIT ALINOINd

YIONYHOEOM

{(43ddWHS) O/1

Sk
asynchronously handling a number of specialized interrupts, which may
be fanned out to apecific routines. During the timeslice of a task,
the task may requeat in a specific manner that a portion of itself be
dedicated and be attached to a realtime process (Figure 16). This re-
aidqnt routine may then elso operate asynchronously to the timesharing,
and at a higher level. The dedicated portion may at any time signal the
task that a specific condition has occurred. Even if the task has put
itgelf on wait (inactive) status, this signal is sufficient to cause
the task to reenter the ring as an active task and take the proper ac-
tion with respect to the condition.

A task may, at any time, provide JANUS with the name of a gubtask
to start (Figure 17) or delete from the ring of tasks. Any task may
8ignal a subtask, or a parent task, and is responsible for destroying
all subtasks before exiting itself.

Thus, at the task level, JANUS does nothing for the task, in the
senge of performing a high level operation. Instead, it performs a
bookkeeping operating to keep track of various system regources, and
allocates these to tesks on request if they are available. These book-
keeping operations may make higher functions poassible, such as by con-
necting an interrupt routine to the I/0 interrupt, but JANUS will neither
do the 1/0 operation itself, nor check the legality of the request. The
assumption is always made that aﬁytask which is performing such an op-
eration is doing its own internal bookkeeping, and has had the specific
device assigned to it before it'proceeds to attach itself to that device
through the interrupt.

At a higher level, JANUS performs those functions common to all.

For example, if an I/0 interrupt occurs, JANUS will asknowledge the

55

Figure 16, JANUS form of control structure, Operations are divided

into three parts; mapped slave, mspped master, and unmapped realtime,
Paths of communication between the thras parts are shown by arrows.

56

‘91 eandry

39vYHO1S 3INDINN

a3 LVIDOSSY
. ANV S3NILNOY
SNOILONYISNI @393 WAINd (NOILV.LNdWO D)
g ~ 300W3AVTIS
INILNOY ANV JOVHOLS NOWWOD
-}
I9VH01LS 3INOINN Sdvdl v
. a3.1ViD0oSSY
STYNOIS ~ _| aNV S3NILNOY
___|(7104iN0J) 30OWH3LSYIN
(NOILO3SHILNI) SNOILONNS
OYINOD ANV 3IWIL-Tv3Y H108 OL NOWNOO 39VHOLS
< JOHINOD LdNEYILNI
3J9VH0LS 3NDINN SINVE H3ANA
Q31VI00SSY |
ANV 3NI1NOoY NOILVOINNNNOD TTYNH3LNI
(INIL-TTV3Y) LdNY YT LNI . . ANV 3MNLONYLS

*ondiun eq Aem Ley3 I0 ‘ieuwosiedumy ey} Aq pojLess aq Aem yopym Exwey jo seydod [wITIuUSP] 8Qq

fsw sjsYqns aseyy ‘uUMO ITEYJ JO SisEVIQNE jIwis Lem YoOjym

57

JO suQ *sxsw] mIISAe Y] OIV SNV, MOTOQ SXS®] JO URI IBITI Syl
_[LO7daN J _ IVHION _ — 3VHION _ . _ 107dON _ — 107daN _
$
_ JNNGAN u _ Waar _ rouqm_o: _ dWNaaN _ _ Woar _

»zo.m.:m 6,& Tzo.m‘:m xozi F zSo.on mwz«umxun!«

‘syseiqns Jaejs uwd ‘(Jeuvosiedmy eyj) ewoy3
*g3)se] JO 8INONILS a8l */.T1 exndig

Tuauux um:oz_

»zo.m;m E.i

_»zo_m.;m c«i

SNNVP

58

interrupt in order to discover which'device caused it, and will search
a table of act}vé devices for this dﬁvice. When the device is found,
associated with it will be an address of a routine in dedicated memory,
to which control is transferred in order that that routine can service
the interrupt. Thiq dberation is decessary since severa¥ tasks may be
. doing independent I/0 oper;tiona. and the computer has only one I/0 in-
terrupt, to which all such processes are connscted.

One of the resources which JANUS keep; track of is space on th;
Rapid Access Disk (RAD)., The disk is divided into a collection of disk-
pages, each of which 1s the same di;e as a page of memory. The hardware
of the Sigma 7 treats the slower core memory as an extension of the fast
scratchpad me@oty:v‘JANUS treats the disk as a slow extension of core
memcry. Indeed, & task is an ordered set of diskpages (diskfile). Just
as a set of oper;;;s from core memory may be in the registers during a
computgtion, 80 also a set of diufphges may be in core memory during the
- execuftion of a task. A simp}e task, which'ia limiteé to only a few
pages, may be entirely in core memory each time it is active,.while &
large task, one using the full address space of the machine, would do
its own démand paging, such that a page was not in core until referenced
and when no longar-used would rapidly retreat back to the disk.
| JANUS treats resources in two categories, common and unique. A
unique resource is one which is asked for by name rather than by gen-
'eric type. An 1/6 device is & unique resocurce, while a dilkpage is com
moﬁ. since all diskpages are interchangeable.

Memory pages are also interchangeable, with one important exception,
that of pages which may be dedicated. ?fcause JANUS uses the map to re-

locate around dedicated “ialanda“ in core, the map is a resource shared

59
by all tasks at the task level, and all interrupt routines must run out-
side the map. All unmapped code and storage must be loaded into a
specific page of real memory, since there is no automatic relocation.
Hence, certain pages of a task must be flagged as absolute pages, in
that they contain unmapped storage. In this cagse only does memory be-
come unique, although any page may have a unique set of attributes.

While all unigue resoufces must be kept track of in resident
tables, this is not true of meny common resources. The best example
of this is, again, diskpages. While the disk consistas of hundreds of
diskpages, the load of usage is not normally critical. A list of
twenty diskpages is nominally sufficient to support at least one cycle
around the ring, especiallyrsince diskpages are allocated and freed
with equal fregquency. JANUS keéps a regident atack, of twice the nom-
inal size, half full, permitting transfers in eithef direction.

All other free diskpages are kept in a 1list in a system task, the
Housekeeper. The Housekseper's fungtion‘is Just as its name implies,
to tidy up the resident. Any time the resident portion needs a specific
function which it is not profitable to keep resident, it calls upon the
Housekeeper task, using the standard JANUS mechani?m of timesharing,
such as signals. Without ﬁhis‘feature JANUS would have a resident por-
tion twice as large as it does. The Housekeeper and other aystem tasks
will be described at lengfh in Appendix B, as well as the specific

JANUS mechanisms.

9. ADDRESS SPACES

Vital to an understanding of JANUS is a knowledge of the addreaa-
ing scheme used (Figure 18). Each location in the computer is unique
in that it has a fixed address associeted with it. The contents of the
location are referenced by a reference to the address. In any normal
form of program generation, either via assembler or compiler, it is
possible to assign a name to a location. This symbolic name has a value
associated with it, which nominally is identical to the address of the
location. However, in JANUS, or indeed any mapped system, there is no
longer any correlation between the address and a memory location, except
within page boundaries. Since there,is noilonger any requirement on
identity between address and location, eicepf when a reference may be
made, many restrictions are lifted.

The most important of these is uniqueness. It is no ionger
necegsary that different programs use different parts of the available
add?eas space. Instead, each uses a unique version of the same address
space. Each task normally will execute in an address space orthogonal
to all other tasks (exceptions will be noted be}ow). Thus tasks A, B,
and C may reference symbolic names X, Y, and Z, respectively, each of
which has an address of 10,000, but each of which is a unique location,
containing a unique guantity.

Let us consider what information may be required to assemble a

task to use under JANUS. In normal generation of code, the contents of

60

S

61

Figure 18, Examples of address space usage, including files. The ver-
tical columns are independent tesk address spaces, resting on the JANUS
block common to all tasks., Two tasks are shown, with TASK 2 being a
subtask of TASK 1. The two tasks have one page in coummon (TCP2) which
appears in different parts of the twc task address spaces. The two
tasks share a driven stream file, which is also referenced from dif-
ferent parts of the two address spaces. It differs from the TCP2
usage, however, in that the file driver (TASK 1) may be several peges
ahead of the file receiver (TASK 2). The files ar~ a collection of
diskpages, each of which may be ussd as the same address space page.
Only one page of a file is actually within the tssk sddress space at
sny given time, however. Filee may be linked internally, or may be
linked through a table residing within the tesk, as is shown in the
keyed file.

62

TASK |
/_\KEYED FILE
P— REVERSABLE SCRATCH FILE
STREAM OUTPUT FILE
—_—
TASK 2
FLE
REAM
ORVEN St
/
SuB
TCP
2
STREAM INPUT
FILE
i
TCP TCcpP
! 2
(
JANUS ¢
O

Figure 18.

63
successive locations are generated, and addresses are incremented. It
is therefore necessary to have a location counter (IC). (This is the
basis of all assemblers.) It is conceivable that, under certain cir-
cumstances, it is desirable to generate code to be loaded in one place,
but capable of being moved to a specified place fgr execution. This
Awould, for example, be of use in overlsy programming. We may thus
readily convince ourselves of the utility of both a load location
couﬁter (LLC) and an execution location counter (ELC). Many assemblers
have only a LC, some have both LLC and ELC.

Under JANUS, each task is normally in the same address apace as
all other tasks, implying an overlay structure. This is, however, no
problem, since each task is usually the result of a separate.load. A
problem does exist, however, with respect to the unmapped address space
used by interrupt routines. All unmapped storage is in the same addreas
space, independent of the spaces of the controlling tasks. In addition,
in a task it is necessary to ﬁave intersections between the mapped and
unmapped areas.

It may be seen that it would be desirable to have mapped and un-

“mapped location counters (MLLC, MELC, ULLC, and UELC). Furthermore, it
would be desirable in a decentralized system, such as JANUS, for the

system loader to be capable of relocating unmapped code completely in-

<L

dependénily'pf_the mapped stq;age, qp§imizing the usage of regl core
for dedicéble pages.
As yet JANUS is not capable of théle operations due to the lack of

such a flexible assembler-loader. It is necessary to write tasks using

the SYMBOL assembler provided by SDS. Since this has only an ELC ($)

and LLC ($8), it is necessary to perform certain coding tricks to generate

6k

mixed mapped and unmapped code. The most distasteful of these, fo;
aesthetic reasons, is the necessity of allocating unmapped pages for
interrupt routines before assembly, rather than at load time, making
JANUS much less flexible than it would be, gziven a good assembler-
loader. However, JANUS is sti}l sufficiently useful to be adequate
for many opersations. In order to include both mapped and unmapped
storage, as well as intersections, it becomes necessary to use one
counter for a mapped location counter (MIC), the other for unmapped
(ULC). Since a task has a unique address space, it is necessarily
loaded as one block, without overlays. This suggests that the SDS
SYMBOL's LLC be used as MLC; thus ELC becomes ULC. However, one must
take care that, in setting ULC so that it will track the unmapped
addresses correctly, the relocation of the task as a whole is included.’
The alternative is to define each unmapped symbol as the mapped location
plus a suitable bias.

While all tasks are hormally independent, there are exceptions.
The JANUS concept permitas tasks to communicate. This may be through the
reslident, common to alltasks, or it may be at a higher level of ab-
straction.

Higher level communication between tasks will generally mean
that at least some address space is common to both tasks. Further, any
task may start subtasks. In these cases, it will generally be true
that the master and subtasks will be generated as one load. This load
will then be studded with tagks, which need overlay each other at least
in part (see description of task control page below). In this case,
using SYMBOL, LIC muat be the LC for the wholé task, while the ELC is

used for each task. As a result, unmapped storage has to be referenced

65
without modifying ELC or LLC, forcing one to use references of the'
form of LC+bias.

Since in this acheme the tasks may be almost completely inde~
pendent, it may be geen that the concept described above, with reapect
to ELC and LIC, can be extended in an open-ended process to include a
unique ELC and LLC fér each address space which might be used by a task.
The case of unmapped and mapped counters cﬁn then readily be extended to
include UNMAPPED, MAPPED,, MAPPEDp,..., MAPFEDy, as well as multiple
computers using the same memory, even when they have different word sigze.
As far as this is concerned, JANUS is in effect a two-computer asystem,
where the unmapped computer is independent of the maﬁped computer, with
different usage. It is possible to have not only an open-ended set of
mapped LC's, but also an open-ended set of processor LC's. Theae would
include the IOP. For flexibility, it should be left for the programmer

to define the symbol he wishes to use for each LC.

10, JANUS AND BFM: A COMPARISON

Perhaps one of the best ways to evalumste a gpecific computer
operating system is to compsre it with snother operating system. Let
ug therefore compare JANUS with one of the operating systems provided
vy SDS, the Batch Frocessing Monitor (BPM) 13). This must be e quali-
fied comparison: whereas JANUS is a realtime oriented system, with
background capabilities, BFM is, as its neme implies, primarily a back-
ground oriented system with some realtimé capability. The SDS BFM has
been selected because it is the most advanced system yet released by
the manufacturer. It is as valid a comparison to meke as any other,
since there is no other computer system like JANUS.

Consider first that there are three basic means of acquiring an
operating system. The easiest and fastest method is to use the manu-
facturer-supplied operating system with no changes not auppérted by the
manufacturer. For most cases, this is the best approach, as the manu-
facturer will continue to improve the system for the customer. The
limitation is that the user must live with the system surplied, and with
any inefficiencies in its operation.

A second alternative ig to modify an operating system supplied, to
int roduce nonstandard functions, or to counteract some inefficiencies in
operation. This is the most attractive approach when nonsteandard func-
tions are desired, because one is building upon a working aystem, and

the implemontatidn is speeded. This approach turns into a degd-end

66

67
easlly, because of a hidden fault. By introducing a nonstendard func-
tion into & system, the system itself becomes nonstandard, end will no
longer be supported by the menufactursr. The customer is forced into
one of two paths—-either he is confined to an operating system which be-
comes more and more obsolete with tiue, as the manufacturer upgrades
and laproves the system or even replaces it with more powerful systems,
or he must bde hrepared to repeat his work each time a newer version of
the gystem appears. In either case, the consequence of the initial
expediency becomes an unending source of annoyance at beat. The golu~
tion is thua satiasfactory only in a stabls cnvirénmont.

The third alternative is to build a completely independent system
as in JANﬁS. In doing 8o, one cuts oneself off ffom all support by
the mapufacturer and sets himsclf an extended programming effort, but
in return ends up with & system optimized for the intended usage.

As a manufacturer-gupplisd system, BPM must of necessity be.ox-
tremely general in applicability, so that the firat situation described
will apply to most customers. As a result, there is a tendency toward
a comprehensive inclusion of all possibly desired function. Two con~
ditions result: the monitor is large, requiring extensive core and disk
storage, and slow, requiring a large partion of time in determining
which function is desired, and in doing that function.

In addition, SDS manufactures a second computer (the Sigma 5)
which is ldentical to the Sigma 7, except that it lacks the map, access
protection, and certain instructions (notably the byte immediate and con-
vert instructions). As a result, all Sigma 7 software is downward com-
patible, able to run in the Sigma 5 also. No adventage is teken of the

added power of the Sigma 7.

68

Becauge of these differences, it is difficult to compare specific
features of JANUS and BPM. Hdwever, general comparisons in various
classes of usage afc possible,

Perhaps the most striking diffarence.between JANUS and BPM 11?:
in the contents of resident storage. JANUS conteins 2 minimum of resi-
dent storsge, devoted to the minimum number of primitive routines neces~
sary to resource management. Conversély, BPM contains mény high levsl
functions. mogt of which are a convenience rather than a necessity. In-

deed, many of these functions could be deleted, and instead provided

e by librazy routineg. For example, both JANUS and BFM keep track of

time of day in rosident storag Under JANUS, tasks are informed
where to find the information if they ask for if. Under BPM, there is
a special realdent routine which may be,éailed, and which, after ex-~
tensive checking as to the form of the request, rhysically fransferl
the data to the area specifidd by the dsef;' Again, BPM provides two
files for compressed I/0 (M:CI and M:CQ, used for Compressed Input and
Coupressed Outpdt, respectively). Use of these files causes automatic
translationAboiween compressed .ode (where text is coupressed dy re-
placing strings of blanks with a blank count, all bytes are compressed
to 6 vits, dhd pundhod onto cards in binary), and BCD, through resident
_routines. 'Anyone desiring to use these functions could as easily call
upon a lidrary routino, with no loes_ in speed, and with an increase in.
availablo core if they were: not used.
" Upder BPM, all I/0 is done through files, cach of which hes se-

sociatod with it a. Device Control Block (DCB), which 15 90 words long.
Since there are 17 resident DCB's, l sk of regident core il dedicated

to this_storage, much of which is again superfluous. (The Basic Control

69
Monitor, an earlier SDS monitor, has 6 word DCB's.) Included are such
parameters as the file nam=, tab settings, file keys, etc. Many of
these parameters again have no real justification for inclusion in the
resident monitor. If such quantities are used in JANUS, they are unique
to a task, carried around with it, and not a system convention.

Let us now turn our attention to resource management. In this
regpect, JANUS end BPQ are go divergent that little comparison can be
made, While JANUS freely allocates regources to tasks upon request if
et all posasidble, it dces not set any restriction on usage. By con-
trast, BPM is extremely patofnalistic, thereby constraining permitted
operations. For exampls, BPM requires that each I/0 operation reforonce
the file associated DCB, which includes an accoﬁnt number (presumably

for billing purposes), a password (presumably for file security), ex-
piration date, and read and write account numbers (again'prelgmably for
security). Under JANUS, any task which references a file knows the
name of the file, and tAaks which have no need for the file do not
bother with it. If the file is write protected (e.g., a lidbrary disk
file) and.is accessable to users, the task provides the necessary se-
curity. This is a much simpler (and faster) process.

Both JANUS and BPM have functions to allocat§ and free core memory.
However, wyilc JANUS automgtically allocates fr=e pages for a task
during a tigbllico and permits a taik to get or free diskpages, the BFM
both permits and rcquiren these operations of the slave-mode user. (In
JANUS tasks with demand paging, the function of demand allocation is
easily provided by th; demand paging algorithm, and if desired the func—
tion of freeing pages within the address qpaci is easily implemented.)

Realtine 6r foreground processes are exactly what JANUS is

70
oriented and designed for. BPM also has a foreground facility, and
monitor functions guch as M:MASTER, which permits a user to enter
nagter—mode if his is a foraground job. A foreground user has two op-
tions under BPM. He may use the hardware structure of the computer for
speed, but act independently of the BPK. In this cass, he is not per-
nitted to use any of the BPM functions, such es I/0, from his interrupt
routines. In order to do I/O fyom the interrupt routines, all inter-
rupts must pass througk BFM, 8o they cen be monitored. The return
from such an interrupt routine requires threg RAD operations, and thus
80 milliseconds. This time would be excessive for most experimental
applications.

One of the most important aspects of a realtime system is
sccurity;~not in the éonventional sense of privacy of data, but 1nstead
in terms of the fresdom from the possibility of an individual introducing
a prdgram which destroys the system, and the realtime along with it. If
this can happen, intentionally or not, wo one performing a realtime
process will trust another to uss the computer in the background, es-
pecially if the process involves accumulating data over & long period
of time. If this situation cean occur, & multi—uscr-;yatem, no metter
how elaborate, 1s useless.

Under JANUS, one in?okes a specific task from a user library.
(while it is possibdle for tasks to be loaded from card d;cks using a
special task, this is understood to be strictly a debugging featurs,
and not for general usage.) No ta:; is added to the lidrary until it
has been thoroughly debugged to the satisfaction of ell concerned.

Wwhile a system-destroying error could lurk in any task, it 1s a rare

occurrénce. No task can be told to destroy the system, nor will any

*

71
task permit the execution of a user program under its control which can
cauge the destruction of the system. Such operations are not allowed

under the JANUS design philosophy.

By contrast, BPM is not at all safe. Programs cen be written which
will cause the BPM to overwrite itself in any number of ways, and thus
destroy itself. A user can declare himself ss a realtime process, enter
naster-mode, and do untold demage. It is even poasible to provide a i
set of control cards which cause all system files to be irrevocably

freed, thus destroying the system. Indeed, this is gometimes the only

way that some jobs may be done, using limited regources. ror example,
in using BPM with & 1.5 Mbyte RAD, an operation as simple in appearance
as assembling thf FORTRAN compiler from a magnetic tape requires so
much disk storege that the system must be destroyed to accomplish it
(as an aside, this “simple" process necessitates the u;e of approx;—
mately 470 distinct cards, each of which must be correct and in the
correct sequence).

As a final comparison. any time it ia considered doli?able. the
JANUS JBCM/JFCH tasks couid be upgraded, by the addition of suiteble
additional functions, into a JBPM, or JANUS Batch Processing Monitor,
without, of course, the realtime or other destructive characteriatics
of BPM. In that case, JANUS could essily timeshare several JBPM's

simultaneously, just as it now can do for the JBCM/JFCM.

11, MEASUREMENTS

Sinee computer logic signals have two values, it‘il possible to
connect a iogic signal to an electrical meter and directly measure the
fracticn of time the logic signal is in one state or the other. Cali-
bration is relatively simple: with the logic signal in the "O" state,
the meter movement is adjusted to read Ho" exactly, in spite of the
probable existence of small currents. If we now switch the logic signal
to the "1" state, it is ﬁdssible to adjuat a variable resistance in
series with the meter tc cause the meter to read exactly full scale--if.
necessary, these operations may be iterated‘for a higher dégree of ac~
curacy. Furthermore, if a meter is chosen which has a high sensitivity

(such that a low load upon the signal is offected)‘and a 0-100 scale

(such as 0-100 microamperes) it is possible to read the average time that

the logic signal apends in the "1" state directly in percent; gnd short
term fluctuations are integrated out by the meter. These measurenents
are accurate to the accuracy of the calibrated meter, nominally five
percent.

By a judicious choice of logic signals, it is posuibio to measurse
vericus operating conditions, and observe the effect of varying various
parameters. This was done on the ySU-Sigmn 7

As timeshared JANUS runs under the map, and realtime JANUS runs
unmapped, the fraction of time opent;in mapped mode is a measure of the
relative weight given each mode (note that the Swapper is an.unmappcd

realtime proco-u). Consequently a meter was attached to the signal

72

73
MAP, a level aet while the computer is in mapped mode.
_ Similarly, under JANUS, slave mode is used for all problem solv-
ing (production), master mode is used for all control (overhead). As a
result, the signal NMASTER wss used to monitor actual production opera-
tion.

JANﬁé uses the wait instruction only once--in the Jobchanger, under
the condition that no jobt is ready to proceéd. The associated signal
HALT provides a measure of the completely nonp;oductive overhead.

A fourth signal, PREl, while not actually useful for system para-
meters, does ﬁrovide a measure of the efficiency of code. The signal is
raised once and only once for a fixed durstion, in the courae of each in-
struction execution. By choosing‘an instruction with a well-defined
time, such aa branch (1 miérosecond) and providing a timing loop, it is
possible to calibrate -the me£er directly in ingtructions/second.

The most important factor, in a realtime oriented system, is the
time required to service an interrupt. TFor other than clock interrupts,
which are of loweast priority and which are frequently inhibi?ed. the
time required to service an interrupt is hardware, rather than soft-
ware, limited. This time is 6 microseconds + the'time required to com—
plete the instruction interrupted, if there is no higher priority inter-
rupt active: 6 microseconds + the time required to complete servicing
all higher priority interrupts if any are active. While there are

patholigical situations which do cause interrupt inhibition, these are
| demonstrably rare.

Similarly! 4 microseconds are required to exit from'a realtime in-
ferrupt process. (Compare with the SDS Batch Processing Monitor 13),

where an exit from a realtime prodess may require as much as 80

e

e

4
milliseconds.)

Actual metered measurements are more difficult to make, because
of the rapid fluctuations the system undergoes with time. However, it
is possible to provide quantitative numbers in certain relatively stable
situations, notably those which are not I/0 limited.

1. Single task active, requiring no swapping. An overhead of 2%
has been measured, and is entirely due to timeslicing the single task
to provide an entry for an asynchronocusly activated task.

2. Multiple tasks active, requiring no swapping. Times are 8%,
or just four times those measured in case 1, attributed entirely to the
fact that the time quantum is four times longer for the single task
case.

3. One task active, performing demand paging for pages not in
core. Times vary from 5% overhead for weli.ﬁ;haved programs to as much
as 50% for some cases, notably processors (such as the JBCH/J¥CM Loader)
which are required to physically move multipage blocks of storage around
within thevtack'u addresa space.

4, Two tasks active, swapping required. Times vary from 5% to
20% overhead, the difference between case 3 and case 4 veing attribu-
table to the high probability that execution of one task is proceeding
concurrently with the swapping for the other.

5, Three or more tasks, all requiring swapping. In general,
overhead approaches 100% in this case. This problem and a poasible
solution will be treated in more detail in Chapter 1l.

6. Realtime scope display. These scope displays are unbuffered,
and must be refreshed periocdically by the computer. They may be imple-

mented by computing the display points from a small data base (requiring

75
little core but much computer time), by having a large data base in-
itialized in such a form that.it may be written directly out to the
scope (requiring more core but less computer time), or a mixture of the
two. These displays are normally refreshsd 20 times a second to avoid
screen flicker disturbing to viewers. Two cases are of interest, one
involving a static displey (initialized storage), the other & dynamic
display (computed display).

A. Static display. The data analysis code MOIRAE, displaying
L4096 points, plus three dynamic vectors and several chnracters—-éO% of
the computer time is used to generate the display.

B. Dynamic display. The game code SPACEWAR, diasplaying 100 static
and 500-1000 dynamically generated points (position computed from orbit
equations as a function of real elapsed time)--10-30% overhead.

It is readily seen from these examples that multiple displays
would generally tie up the computer entirely, and the need for self-

buffered displays is indicated (such as storage scopes).

12. CONCLUSIONS

JANUS 1is finally‘operational, and is uged for significant parts of
each day. The principel delay to fulltime operation has been the lack
of systems programmers available tovintroduce additional capabilities
to the JANUS gystem which have not as yet been implemented (examples
of unimplemented capabilities are the lack of teletype and magnetic tape
handlers in the JBCM). The other difficulty is the necessity of re-
casting existing programs (especially realtime data acquisition) into
a timesharing form. These problems are, however, being met, and JANUS .
will approach greater permanence as these implementations 5ccur.‘

One of the most striking conclusions that can already be drawn
from ohserved operation of JANUS concerns demand paging. I feel that
JANUS has conclusively demonstrated the value of demand paging in a
batch processing configuration as a memory sxpansion device. By the use
of a relatively inexpensive map and RAD, one can simulate the existence
of a much larger, and more expensive, core mewory. Since in any in-
stallation the majority of problems will fit into core, the use of demand
paging introduces no essential overhead. For the few problems which do
not fit, there must be a mechanism provided for execution, either through
overlays, Job-chaining, or through some other means. Demand paging ex-
tends memory--no additional knowledge is required of a user in order to
demand page & large job. The efficiency of the job execution is his

problem, and it is relatively easy to explain how to optimize execution.

76

7

Any other method requires the user to introduce a large number of con-
trol cards, and to have a thorough understanding of éhe structure in-
volved (requiring that more systems programmers be available to anawer
user questicns). The other side of the problem, system programming, is
of comparable difficulty under either method. In general, resident
buffers are required under demand paging, but the necessary amﬁunt of
space in the monitor may be provided by being able to delete control
card processing relative to overlays, and Yy daletiﬁg core allocation
functions. A loader capable of segmenting overlays is not necessary,
and the effort required.for its generation and maintenance could be
directed elsewhere.

However, the demand paging currentk§ used in JANUS is impractical
for use in a timesharing environment where more than two or three talk?
are active. The difficulty with the JANUS implementation is the lack of
sufficient history to permit adequate judgzements as to usage of demand-
able pages. As JANUS permits each task to perform its own demand paging,
it is & relatively easy matter to test different demand vaging algorithms
by modifying some standard task. This has not been done as yet, be-
cause of a lack of available computer time, and the existence of higher
priority problems. The problem, and a possible solution, may be simply
stated.

Under JANUS, all memory or usage exists for only one timeslice.

In demanding a page.not currently in core, jobchange must be effected.
Only those pages referenced the ln;f time may be brought into core the
next tin;. If, as is frequently the case, three successive imstructions
reference three different pages, in a hard-swapping environment only one

instruction will be executed each timeslice. By the time the third

78
instruction is executed, the first is forgotten. Instead, what is
necessary is to kegp & record of each page of a task, with a memory of
how recently the page was referenced. The demand paging routine, in ad-
dition to setting the "used this time" bit iﬁ the task control page,
would also have to set the corresponding entry of this table to "refer-
enced this time". At slice start, the task must reset each entry back
by one. At task end, all entries must be compared, and the N most re-
cently referenced pages (where N is to be empirically determined, but
probably about 10) must be flagged in the TCP as “used tnis time". The
significance of this now changes from "used this time" to "used recently
enough to justify its presence"”., An alternative, and more suitable,
method would be.to flag up to N pages as sbove, but ignore all references
which occurred more than M timeslices ago, where M is also to beiem—
pirically determined.

Similarly, the usage of core memory pages.undcr JANUS does include
a two-bit (four level) memory as to how recently the pege was used. This
is an inadequate memory, but unfortunately is so deeply imbedded in JANUS
that it would be extremely difficult to change. The point would be well
to remember, however, in future implementations.

(Crude measurements made since the bulk of this thesis was writﬁen
indicate that this approach has definite merit. With the case of four
identical tasks oﬁcrating-concurrently. total running time was within
10-20% of the time required to run the same tasks serially, using this
method. Using the previous approach, times differed by 100-200%.)

The JANUS capability of timeshared monitors, each capable of dedi-
cating resltime processes as necessary, has been successful. Many system

functions may be greatly streamlined, to produce an efficient systenm

79 _
task, While suffering from the necessity of using two independent ad-
dress |pace|, one of which (unmapped) is unique, it is possible to over-
come the problem by the congtruction of a relocatable task loader, pro-
vided that the multiple address spaces can be referenced in the process
generating the relocatable task. This will doubtless be a limitation ih
th; future, but is not yet a problem,

The use of a memory map is » great advance in computer design,
making posasible demand peging and therefore, more efficient use of core
memory. Im all probability, more and more computers will have a map
available., As the demand pPaged memory provides one of the most flex-
ible file systems available, I foresee that available address spaces
will increase to a large value, on the order of iO0,000,000 words and
boro. even though it would be impractical to have actual core memories
of this size. This will be true eapecially of small, non-tinqaharod
computers, such as are used for batch processing, regearch, and process
control, |

Finally, JANUS works as d;fined. There is room for improvement,
but more study of specific inefficiencies is roquireg to optimize the
computer usage. It should be possible to make JANUS as cfficiont for

many active tasks as it is now when there are only two or three active.

BIBLIOGRAFPHY

1.

2,

3-

L,

5.

9.

10.

11.

13.

14,
15.

BIBLIOGRAPHY

On~line Computers for Research, Nucleonics, January-Maréh 1967.

Dictionary of Classical Antiquities, Oskar Seyffert, Meridian
Books, 195_7.

Users Manual: 3Brookhaven Scheduler for Dats Terminal Network,
B.J. Shepard, April 10, 1968.

Tinesharing Systems Manual, General Blectrie Corp., May 196€.

An Advanced Computer-Based Nuclear Physics Data Acquisition System,
H.L. Gelernter et. al., Nuclear Instrum m agd Methodg 54 (1967)
77-90.

Initial Operating Experience with the Yale-IBM Nuclear Data
Acquisition System, M.¥. Sachs et. al., Internal Report No. 3_.
¥Wright Muclear Structure Lsboratory, !.10 Uninrlity.

Tine-sharing: A Computer for lnryono, Joffroy N. Bairstow,
Electronics Design, April 25, 1968.

System/360 Model 67 Timesharing Systems Preliminary Teehnical
Survey, IBM form C20-1647-0.

IBM System/360 Model 67 Timesharing System Technical Summary,
IBM, August 18, 1965.

IBM System/360 Operating System PL/1 Language Specifications, IBM
form C28-6571-4,

A Scheduling Philosophy for Multiprocessing Systems, Butler V.
Lampson, Communications of the ACM 11 (May, 1968), 347-360.

SDS Sigma 7 Computer Reference Manual, November 1967.

SIS Sigma 5/7 Batch Processing Monitor Operations Manual, January,
1968.

SDS Sigma 5/7 Basic Control Monitor Reference Nanual, May 1968.

Basic Language Reference Manual, General Electriec Corporation, My,
1967.

80

81

General References

nan-machine system, General Electric

A new remote-accessed
Fall Joint Computer Conference, 1965).

Corporation, (from Proceedings,

SDS Sigma 5/7 Batch Processing Monitor Reference Manual, July, 1968.

APPINDICES

AFPENDIX A.
Glossary of Terms

Absolute-~any datum (including instructions) the value of which is
independent of its location in a storage medium.

Active--the word is used in two different senses, depending on context.
A task is active if it 1s not on wait status, when discussing

scheduling. Also, a task is active (current) if the current time-
slice is assigned to it,

Address space-—the full range of addresses which may be accessed.
Algorithm--the speeific procedure used to implement & given process.

Assoclative addressing--a method of rofoi-oncing a datum by content
rather than by position. The datum consists of a key (the con~
‘tent referenced), and the associated information.

Background--a timesharing technique in which programs can bde run con~
currently with realtime processes in those periods when no
realtime activity is required of the computer.

Byte-——a unit of data, consisting of 8 bits. A dyte is identical to
one character.

Channel--a means of initiating a single I/0 data transfer which then

automatically runs to completion without needing further prograa
intervention.

Clock interrupt--the Sigma 7 has two standard realtime clocks, one
"ticking® at 500 Hs, the other at 2KXHs. These can be used to
time realtime processes.

Data——a set of information, other than instructions, used in performing
a process.

Dedicate-—changing the usage of a resource from general availability
to & specific usage. For example, under JANUS, a page of a task
B8y be dedicated into a page of physical core memory, such that

the physical page is used only for that task, rather than being
available for all tasks.

82

83

Double precision--the use of two words of computer memory to maintain
a single datum. The larger sisze permits a greater imformstion
content to be provided than under single precision (one word).

Foreground--a timesharing technique in which realtime processss can be
run concurrently with other processes, interrupting the dack- .
ground as necessary.

Honest task-—one which is careful to manipulate only those resources
which belong to it, and which does not indiscriminantly affect
those resources which belong to other tasks.

H/t disk--(head per track). A diskfile where a read-write head is
positioned over each track, thereby requiring no head movement
on an 1/0 operation.

Inactive task--a task which can temporarily perform no operation de-
cause it is waiting to be synchronized with a realtime event,
such as the completion of an I/0 operation.

Index register--a hardware feature permitting automatic arithmetic

operations during a refereance to an address, such as the addition
of a displacement to a base address.

Interrupt--a hardware feature which peramits the computer to change
states in a rapid fashion--interrupting the execution of one pro-
cess in order to execute a second process.

Intersection~~an area of storage common to two or more address spaces,
capable of being references by different names from each address
space. .

I/0—=the abbreviation for Input/Output; the process of transferring
data to and from the computer.

Location counter-—a datum within an assembler to keep track of the
address of each datum generated (including instructions) relative
to some specific point such as the beginning of the assembly. Used

to generate relocatable binary code for the loader, and to define
addresses. '

Map--a feature permitting the automatic translation of an effective
address to the real address used to reference a storage medium.
See also relocation.

Mask--a specific bit pattern used in performing logical operations
under coxputer control.

Master—the mode of computer operation wherein all operations are per-
mitted. Master mode is used normally for control operations.

Memory mapping--the process of using a map to translate addresses in
the computer core memory. '

84

Monitor——a program designed to supervise the usage of the coxputer in
executing a prodblem, and which provides the control functions
necessary and sufficlent to that probdlem, or to a set of problems,

Overlay--s method of generating a program for execution in such a
manner that independent subsets of the program may alternately
be exscuted within the same address space, and de capable of
referencing common areas.

Page--a natural unit of memory which is machine dependent. In the
Sigma 7, one page contains 512 words.

PL/ 1--a relatively recently developed high~level programming langusge,
containing many of the functions provided bty FORTRAX, ALGOL,
COBOL, and other special purpose languages in a fashion that per-
mits the statement of a problem in & msnner much more powerful
and flexible than in any single special purpose language.

Pointer—-a datum indicating the location of a set of data, referenced
instead of the data set itself.

Realtime--a realtime process is one which is initiated asynchronously
with respect to the normal flow of machine operation. A realtime
process is normally associated with an interrupt. :

Register-—a piece of hardware, normally consisting of an ordered set
of bi-stable elements, capable of operations in addition to &
storage function, such as srithmetic or logical operations. The
time required to access a register is much less than that required
to reference core memory. :

Relocation——~the capability of a datum to have, in sddition to a value,
information as to some other quantity to which the value is
related.

Resident--that portion of a monitor or supervisory system which is kept
permanently in core memory.

Slave--that mode of computer operation capable of being completely
controlled as to permitted operations. Computational functions
are permitted, but control functions are not. A mechanism is
_provided for a slave-mode process to request of the monitor that
a specific control process be performed.

" Tagk-—a sst of processes capable of being timeshared as a unit, in-
dependent of any other usage of the computer, and containing
those monitor functions necessary and sufficieat to its operation.

Task control page (TCP)——e bdlock of storage under JAWUS whieh is
alvays located in specific sddresses in the address space of a
task. This contains the status of the task, including trap and
memOTy page usage. Alsc referred to as the state vector for the
task, and is unigue to the task.

85

Two-sddress computer-—a computer where each instruction 'jncifiu both
a source and a destination, as opposed to & single effective ad-
dress, in addition to a process to be performed.

APPENDIX B.
JANUS R-f.rmeiﬁnml

Some features of JANUS are of interest primarily to progrmei'l
who intend to build tasks to operate umder JANUS. As has been noted
previously, there are no aids to building a task currently available.
While many of the couput#tional functions desired of a task may be writ-
ten in a higher language, such as'ronmn. it is still necessary that all
monitor and control functions be coded in assembly language. This roQ -
quires an understanding of specific functions available'in JANUS, and
how they are used.

The following sections deacribe the properties of JANUS on a cod-
ing level, and the system functions available. They are ordered in terms
of memory, disk, and address space usage, and then proceed 1‘nto task com~
nunicat.;ion-‘ and realtime operations. | |

‘The rather curious names which are sometimes used result from the
necessity of compromising between the negd for helpful snemonic }xnel
and the SYMBOL defined constraiamt liniting; symbolic name to 8 charac-

ters or less.

B, 1 Resident Tables aund Lists
JANUS comcerns itself primarily with certain tables and lists kept

for the purpose of bookkeeping. I now inteeni to provide a 1list of these,

86

87
aleng with their use. Nemes may be meationed which are as yet undefined
in this thesis: however, because of the interrelated mature of JANUS, it
is necessary to start somewhere. Table elements are almost alwvays exact-
1y on§ addressable base in size, such as word or byte. This is bedw.
when an element may be referenced from more than one place, including an
interrupt routine, it is necessary to referemce it in a way that is not
interruptable, either by setting a flag that it is not to be tou;:'hod, by
perfc;r-ing the operation in an imstruction which c.n- not be interrupted,
or by inhibiting the interrupt. JANUS is v:itton to take advantage of
realtime, thus interrupts are inhibited as little as possible. As ‘luch
as pessible is done with single non-interruptable instructionms.

However, there are certain abnormal conditions which may requ.iro} abf
normal action, including izhibiting all interrupts. These iaclude actual
hardware errors (e.g. memory parity), software errors (e.g. traps froeam
unmapped code), and one additional special case. The latter vruultn
from having a mumber of lists partially resident; with the rut' of the
l1ist existing on the disk within a task. Umder normal circumstances,
the non-resident task (the Housekeeper) is brought im to tidy up. Hew-
ever, in freak cases, it may be discovered tha;: a list is full or empty,
with no recovery procedurs available for the requestor. In this case,

a resident routine ie invokad—--fhe Tronbluhootof. This routise sus-
pends all functions while bringing into core emough ef the Housekeeper
to straighten out the difficulty. JFor the duretion of this process, all
faterrupte are ishibited. Hewever, this is definitely a last ditch ef-
fort on the part ef JANUS to stay viable, and thus hsppeas exteremely in-
froqu;ntly. provided all tasks and interrupt routimes are cerrect and

" homest. ARy pmtico which is not completely homest, expectimg certaia

88
timing relationships, etc, may work 99% of the time..the 100th time an

error will occur, frequently resulting in the destruction of the epera-
tion system. The method of getting aroumd this problem is discussed
below. |

This chapter will coiuider those tables used in timesharing tasks.
Let us consider first the one non—xjesident table, the Task Coatrol Page
(TCP). This page is alwoysb the firet unique page of the task, and is ef
fixed format. It containe all information as to the current status of
the task which is of interént to JANUS, 'I'his includes pointers to rou-
tines associated with traps, progrem status, Signals, and the task USAGE
table. The task USAGE table consists of & word (MAXSIZE) specifying the
.nin of the task under the map in pages, and the list (USEPAGE) of pages
and their attributes. Iach of the latter is ia mapped sequence; that is,
the N~-th entry corresponds to the N-th page of the addren; space. An
entry is null if diskpage O is specified, as this page is inaccessable teo
all tasks. The entries are designed to take advantage of the INTerpret
inetruction, such that the first four bits are usage- information, the
next' twelvs are gom.:ral information, and the last sixteen are ‘th‘o disk~
page address. The attribute bits have the following lipiﬁéncez

0. Absolute code (ABS) page. This page may be dedicated at any
‘ time, and bits 8-15 of the entry will specify the uamapped page to load
this page into, if bit O is set. ABS pages will be leaded inte core each
time the task is active.

1. Virtually dedicated page. This page must be im core for the
duration of any timeslice the task is active.

2. NEED-EEXT. Used primarily in a demand paging task which cannet

proceed uatil that page becomes available.

89

3. USED-LAST. Again used in demand paging, this bdit is set during
a timesliece if the page is used. If not set, and no other bits are set,
no effort will be made to bring in the page. Bits 2 and 3 are eleared
at the start of each timeslice. |

4, WRITEBACK. Indicates that this page is modiflied regularly,
and must be uneonditionally written baek on the disk.

5. Not used.

6~7. The Access Protection Lower Limit (ACL, =0-3) which may be
used for this page without error,

8-15. Used if bit 0 is set, as deseribed above. Otherwise ig-
nored, exeept at task generation and destruetion. At generation, the
page will be eopied onto a new diskpage and the eopy used if this byte
is non-sero. At dentm«tiox_x, only if this byte is non-szero, vill the |
page be freed. This allows multiple use of' an absolute task, nix;ee all
non-modifiable pages used will de the original eopy of fhe task, and are
shared by all task nopieq. Only the volatile storage will be different
for each task, and effieiency may be greatly improved. The .eonvention
used is that, if the task alloecates a page it did not start with, bit
14 is set, while if a copy of the page is used, bit 15 is set.

The table described above is the only one of whieh it 1s nesessary
to have knowledge in order to write a task. However, other assoeiated
tables are deseribed in order to allow one to beeome more familiar with
- the operation.

¥wo of the resident tab;u are required only deesause the hardware
reght;r. are not resdable. These are the ascess protect image (ACIMAGE)
and the nap image (MAPDIAGI). These are respectively 2-bit and 8-bit

entry tables, each with 256 entries, and are in map sequence.

RE R L e

90 .
Another table is the image of unmapped core (TRUECOEE). This is

again set up to take advantage of INTeri)ret. as was the usage table.

O. This bit is used by the troudbleshooter as a flag for pages it
is using.

1. This page is in use by the curreatly active task.

2. This page is being subjected to swapping.

3. This page is part of the next task.

4, This page must be written back oato the disk beforé being used
for anything else.

5=6. Unused.

7. This page is dedicated to swapping, and may not be used for ABS
pages. |

8. This page contains a TCP,

9. This page may become dedicated, and should be used only tem-
porarily.

10~13. Dedication level for this page.

14~15. Reuse priority for page.

16=31. Diskpage currently residing in memory page.

The last table actively associated with svapping is the stack of
Task Control Pages (TASKPAGE). Agaim a table of one word entries, this
is the only referemce to a task which is kept resident. Bits used are:

0., This task must proceed immediately, regardless of the time-
sharing riag (RUSE bit). |

1. This task must be started mext ia mormal sequemce; i.e., if
a task is being brought imto core er is ready to ge, JANUS will proceed
with 1t, but will ceuse this ome to be the ezt task readled (HUERY bit).

2. This task is leaded and is ready te proceed.

9l

'3-14. Unwsed.

15. This task 1s on wait status. This bit is set at the request
of the task, and is removed only on the receipt of a Signal er if bits 0
or 1 of this word get set. Bits O, 1, 2, and 15 are cleared each time &
task is started.

16-31. The diskpage address of the TCP of this task.

Asgociated with this table are an entry (TSKCNT) specifying the
aumber of tasks which exist, and an §ntry (XEXTTCP) specifying which
task the Swapper is currently manipulating as the next task. NEXTTCP
has these attributes, set by the Jobchanger:

Q. This is a new task to load. TFlag cleared by Swapper.

1. This task is on rush priority.

2. All tasks are on wait status.

In order to understand the timesharing process, it is necessary
to know that the lowest priority interrupt in the machine must be a
clock, (the Jobchanging interrupt). Timesharing proceeds as follews
(Figure 19):

1. At some point in time during the execut;on of a task, the Job~
changing iaterrupt fires, either because the time is up, or because the
task has, for its own reasons, triggered the interrupt. As soon as
there are no higher level interrupts active, amd there is no inhibit on
the clock, an Exchamge Program Status Doudbleword (XPSD) instruction is
executed, which references tﬁe TCP of the task. As a result, the curreat
status of the task is saved, and comtrol is transferred to a part of the
task (Slice-ead routime) which performs all umique and aesessary slice-
ead fumctions, befere tramsferring coatrol to the. resideat Jebchanger

routine.

flov chart.

The Jod Changer -

Tigers 15.

ZoEl e

93

2. The Jobchanger performs common slice-end cleanqp. examining
each entry in table TRUECORE. The reuse priority (P) is & measure of
how recently that page was ia use, and to what degree it was used. The
lower the priority, the leas it is necedaary for that page to remain in
cofe; A non-zero priority ias reduced by one if the page was ngt part of
the current task. If the page was part of that task, the correspond-
ing entry in USEPAGE is found.. If not flagged as ABS, virtually dedi;
cated, or USED-LAST, the priority is'set to l--otherwige it is set to 3
if it must be written back, 2 if not. The flag for being a part of the
curreat task is also cleare@.

3. if NEXTTCP does not contain its rush flag, TASKPAGE is scanned
for the presence of a RUSH flag. If foumd, the rush flag in NEXTTCP i;
set, and the Swapper (BAD interrupt routine) is kigked. If only on; taik
is active, the Swapper is also kicked. In kicking €he Swapper, the RAD
status is checked. If not operational, a comment is ﬁroduced on the con~
sole teletype, and JANUS hangs the machine in an alarm loop until the
RAD becomes operaéional. . '

4, All tasks on wait status are checked for the presence of RUSH

or HURRY conditions, and for the presence of one or more Signnll.' If

_any of theae conditions hold, the task is removed froi wait status.

5. If any Signals exist, all TCP's which are in core are located
in turn. The map is set.to reflect the location of §ach one, and a search
is made of Signals, to lecate and transmit all Signmals for that task, de~
leting each Signal found in the process. |

6. The task specified by MEXTTCP is tested. If that task is mot
ready to proceed, a WAI? instruction is executed, and after the mext

interrupt, execution transfers back to step 3.

ol

7. If the task is ready to proceed, the map is set for the TCP,
and the access protects for all pages are set to 3. TRUECORE is scan-
ned for entries flagged as part of the next task. For each such éntry.
that flag is cleared; and the associated page name is picked up. Each
reference to that page s found in table USEPAGE and the eatry is INTer-
preted. If it is flagged as ABS or virtually dedicated, the access
protect specified in USEPAGE is set. The map is set, according to the
locations of the references in both USEPAGE AND TRUECORE. If the USEPAGE
entry is flagged as having to bde writteg back, the corresponding flag
is set in THUECORE. All "NEED-NEXT" and "USED-LAST" flags are deleted
from USEPAGE.

8. The NEXT and HURRY bits of the TASKPAGE entry are clegrﬁd.
Routine FINﬁﬁEXT is called to locate the next task to process, and thi;
information is saved in NEXTTCP. If more than ome task is active, the
Swapper is kicked, the timeslice duration is computed, and the Slice-
start routine of the new task is entered via an LPSD, resetting the Job-
changiag interrupt.

A typical example of the sort of timing problems which must e
always considered 1; seen here, in that, while the Jobchanger islthe
lowest priority imterrupt, the interrupt which ticks the clock is one
of the highest. Setting the clock and transferring to the task {oquiren
two instructiocns. As the Jebchanging interrﬁpt will fire only as the
cleck runs through gero, and not at all if the interrupt is active, it
is conceivable that, as a result of heavy intorrnét usage, the clock
may run out between setting and transferring control. The result
would be that a task would start with a timeslice, lot_of a nomiaal 100

millisecends, but instead, of twe months, the time required for the cleck

95

te tick 2 billiom times. Ai a8 result, the Jebchanger may not set the
clock itself, but imstead tells the task how much time to ask for, "Be-
cause of this, the Slice-start routine must always operate with the Jebd~-
chaager imhibited. Also, the task can play tricks, such as setting the
cleck to a fixed fraction of the time, and at the end of this partial
-timeslice, start a differeat segment of itself for the remainder of the
time. A task may thus timeshare itself within a tinolharing enviremment.

Let us now turn our attention to tho_Svapper, the resident RAD‘fV
iaterrupt routine (Figure 20). This routine may be entered iy two ways:
normally througﬂ an I/0 operation, or abmormally by beiag "kicked®, that
is, by the exccu;ion of a specific and easily reéognizahle invalid I/O
operation, instigated from outside the interrupt routine, ard which can
occur»qnly if the RAD is not busy.

1. Test if entered via kick, If not, check the last operation per-
forncd.‘ If an error was detected,.go to POINT 8. Oth;rvino determine
diskpage used, the entry of TRUECORE referencod, and the operatiom per-
formed. If write, clear all flags from the TRUECORE entry except 2
and 7-13. If read, set the diskpage inte the TRUECORE eatry, set Dbit 3,
and clear all bits but 3, 7, and 9~13. TFTinpally, delete that operatioa
frem the queue. ‘

2. Test NEXTTCP. If fugged as a new task, clear that flag,
clear TLAGé, clear bits 2 and 3 from all TRUECORE entries uscomditionslly,
and clear out the queus. Exit if no tnski should proceed, or if the
next task is ready. |

3. Copy the diskpage specified in the TASKPAGE entry specified
ty NEXTTCP. Determime if it is im cors. If mot, proceed to POINT A.

Otherwise set the flag in TRUECCORE accerdingly, and compute the

i
:
1
3
i
!

INITIALIZE
NO
YES TASK
'READY
o
U
Tep
" O 0
cone
Yes
POMTER
To TCP
AL yey
L]
SCAN
FOUND ONE 7 5
\RGE
Py ABS N\ "G MORE
aE WTO
(N
NO YES D
f 1s £
3 NO
)
» NO D\ FOUNG ONE
F
- s
Y N MORE PAGE "\ Es
L]
powT TO | YES oTHER —
A wexY
NO
o CounTs 8 A
TuRe
\
Tigure 20. The Swapper -~ flow chart.

97
unmspped address of USEPAGE for future refereace.

k. Test FLAGS. If not set to indicate all ABS pages have been
found, scam USEPAGE for ABS entries. XYor each one found, determine if
in the correct place in core. If so, set bit 3 of the THUECOR! eatry
and contimue., If not, determine if the required page is free, and if not,
find a new tauk and continue to 2. if possible. If the page is free,
scan TRUECORE for the desired diskpage. If found, copy into the cor-
rect page, writing the original contents out to the RAD if necessary.
Define the new contents, and free the page it was in. If the page was
not foumd, go to POINT F. When all ABS pages have been lecated, sget
FLAGS to reflect the fact, so that 4, can be skipped in the future.

S5 Check FLAGS to determime if all virtually dedicated pages
have been found. If not, scan through USEPAGE to lecate all such en-
tries, 1gnoring all ABS entries. Yor each one, scam TRUECOEE for the
diskpage specified. If not found, proceed to POINT A. Otherwise set
bit 3 in the TRUECOEE entry and continue. Whean all virtually dedicated
pages have been lecated, set FLAGS te reflect the fact, so that 5. canm
be skipped im the future.

6. Scan USEPAGE for all eatries fl.ggnd YKEED-NEXT*, igmoriag all
iABS and virtually dedicated pages. Scan TRUECORE for that page. If not
found, go to A. Otherwise set bit 3 and contimue, coumting that entry.

7. If less thamn 5 pages were fouad im step 6, repeat the search,
looking for "USED-LAST" pages. As soom as a total of § pages have been
foumd in either of these latter catogoriou. set the task ready to pro-
ceed (im TASKPAGE) amd exit.

POIiT A (Allecate). Two assignments are presented to this routime—-

the weights to give the swap dedicatiom (Wg) and dedication (¥p)

98
attributes in THUECORE. Each entry of TRUECORE ie¢ INTerpreted to deter—

‘mime if dedicated, or im use for the current task or the next task. If
not, a value is computed om the basis of:

V = 2*(WRITEBACK)+Wg*(swap dedication)+Wp*(dedication)

+2*(reuse priority),
where quant}ties in parentheacs are TRUECORE entry attributes. The page
with the lowest value V is passed to POINT F.

POINT F (Fetch). Set bit 2 (page umdergoing swapping) in TRUECORE
entry specified. 1If that page must be written back, generate an outpﬁt
entry and put into the queue. Always generate an input eatry for the
queue.

POINT S (Start I/0). Set up and iﬁitiate the I/0 operations for
the first entry in the queue, and then o;it.

As a result of the Swapper algorithm used, JANUS is a primitive
learning program, in that it tends to keep im core those diskpages used
most frequently. Given a set of tasks which may all fit into the machine
core memory simultaneously, and a demand paging scheme, only a few time
slices are required for JANUS to discover the pages required and bring
ﬂhem into core, where they will remaim until freed or replaced. As a
result, in the case where everything fits into core, the overhead due
to Swapping, Jobchanging, and demand paging drops to an extremely low

value comparéd with other timesharing systeas.

B. 2 Resideat Routinmes
Since it is required of most tasks that they be able to manipulate
the resident tables, ard since it should be umnecessary for a task te

have %o kmow all the details of the tables, it is desirable to have a

99

number of resident routines, callable from tasks, which will perform
the manipulative functions required.

The calling sequence is common to all routines. It ia:

-BAL,R11 ROUTINE

with parameters transmitted in R6-Rll as necessary. Any information is
normally transmitted back in the same fashion, and if necéaaany. CCL is
set to 1 if the request was satisfied successfully.

Consider in this section those routines which deal with the time-
sharing tables already deacribed. These will be subdivided for the pur-

pose of description by the table they reference. ZZach degcriptor will
be of the form:
NAME(*)
R Parameters transmitted Parameters returneq
Conments _
Where () is a flag in the deacriptor to specify that a success code is
returned. Rach parameter is described by contents and regigter thus:
B6 Value **00FFXX
where 8 hexidecimal digits are displayed, and the characters mean:
. Unpredictable garbage, to be ignored
0 Zero

F All bite set to 1. Angy hexidecimel digit may be usged.

X Field of interest.

B. 2 (1) Routines Which Deal with the Map

A- GEW v '
R6 - . Not used SERRRERS Unmapped address 000000XX
R?7 Mapped address 00000CXX Unchanged 000000XX

This routine permits referencing MAPIMAGE, in order to locate the

100
actual page a specified page maps into. The addresses are page addresses.
B. SETMAP
R6 Unmapped sddress 000000XX
R? Mapped address 000000XX

This routine returns if the nnp‘is set as specified. Otherwise,

MAPIMAGE is updated as requested, and the map i's reloaded before retura.

B. 2 (2) Routines which deal with the Access Protection.

A. GETAC
R6 Not used SEAERENS Current access 0000000X
R?7 Mapped Address 000000XX Not used PP

This routines permits referencing ACIMAGE, to located the currently
used access for a page. Page addresses are used.

B. SETAC

B6 Access Protect- 0000000X

R7 Mapped address 000000XX

This routine compares the access specified with that in ACIMAGE,
returning if they are identical. Otherwise it updates the image, and

releads the access protect registers.

B. 2 (3) Routimes Which Deal with Table TASKPAGE.
These routines are all of the same form, since in each case:
R6 TCP NAME ****XXXX
All routimes are called by nawme.
A. WAIT
The specified task is lecated, and placed on wait status.
B. RUSH
The specified task is lecated and its RUSH flag is set. This

routine is reentrant and may be called from an interrupt level.

101

c. HURRY

The specified task is located and its HUERY flag is set. This
routine >:l| resntrant and may be callod from an interrupt level.

D. KILL

The upocified. task is located, and removed from the ‘ring of ac-
tive tasks to & stack of dead tayks; to be serviced by the system
MORTICIAN task. Sinmce this routine has to rearrange & table which is
referenced from multiple intc-rrupt. levels, it is necessary to inhibit
both I/O and external imterrupts for a brief period (31.0 nicro;oeondl).
However, this routine is called but once for each task--thus the coa-
dition will neot oc'cur often. Furthermore, this is the only place in all
of JANUS where it is necuurj to 1nﬁibit these interrupts &s a normal
condition.

E. START

ﬁnucuury bits are masked off the task name, and an attempt is
made to add it to the rimg of tasks. If successful, a "wake up" Sigaal

is sent to the task.

B. 2 (#) Boutines Associated with Table TRUECOEE.
All referemces ars associative, ia that the diskpage coataimed in
& page of memory i.- specified. In all but epecific cases, the operation
will not succeed ﬁnlcu the specified page is ia coro‘. and flagged as
being part of the curremt task.
| L. cumm-
"R6 Disk address ****XXXX | Unnippod Page address 000000XX
If the page is in core, it ‘in flagged ai being part of the curreat

task.

_ 102

B. RITEBACK*

B6 Disk addréss ****XXXX Usnapped page address 00000OXX

The flag is set Ath.t the page ap.cin_‘.d must be writtem back omte
the RAD, because true copy no longer exists thers.

c. REDEFINE*

R6 0ld disk address ****XXXX Unnapped page address 000000XX

R? Hew disk address ****XXXX Unueed sREs RS

If the page lﬁccified by R6 is in cere, change the name to that
specified by R7. This routime is used in disk copying operations, since
a task may bring a page imto core, change its name (which in Qquivaloht
to making a copy), then modify the copy independent of the origimal.

D. IROPPILE®

R6 Disk address **"*XXXX

This routine is used to get rid of pages not curr,nfly.in‘nle.
but which must be preserved. ' If the page is in core, and not dedicated,
the page is removed from the‘range of the task. If, in additiem, the
page meed not be written back, the page of memory is freed.

E. DEDICATE= |

BR6 Disk address ****XXXX

If inm core, the dedication level of the page is imcreased by 1,
lecking it in place as a resident page.

F. UNDEDICT*

R6 Disk address "****XXXX

If in core, the dedication level of the page is decreased by 1.
If the resultant dedication level is zere, the page is free to engage
ia swapping again.

G. ALIOCATE»

- B6 Disk address ****XXXX Unmapped page address *00000XX

103

This routine evaluated the worth of each page of TRUECORE, ignoriag
all pages in use, dedicated, or which must be written back, and assigns
a value according to:

V = b=(reuse prierity) + 2#(dedicable page) - (Swap dedicated page),
where the quantities in parentheses are attributes of each TRUECORE
entry. .

If ome or more pages are not ignored, the one of these with the
lowest value is assigned the new diskpage specified, and fl.ggod as part
of the current task. This routine is used in attempts to acquire tem-
porary storage without proceeding through a Jobchanging cycle.

H. FREE*

R6 Digk address ****XXXX | _

If the page ia in core, and net dedicated, it is umconditionally
freed. That is, it is undefined, and will never be written back onte

the RAD.

B. 2 (5) Routines Associated with Disk Pages.

These routines deal with a stack of resources, which is only par-
tially resident. If at any time the stack is endamgered, the Jebchanging
interrupt is friggored. Hence any task should permit Jebchamge to occur
between each request to these routines. A diskpage address is a 16 bit,
non-zero, unsigned quantity specifying the locatiom om the disk where
it may be found.

A. ALOCDISK®*

B6 Unused *®sweess Allecated disk page 0000XXXX

If a disk page is available, it is allocated to the requestiag

task. No effert is made to know to which task a specific diskpage is

SR o

104
assigned.
B. FEEEDISK
RS Diskpage ****XXXX |
. The diskpage npo'ciﬁold. i; returned to the poel of free dill‘k imgu.

Siace JANUS }douino elaborate checking, 'it is the respomasibility
of the tasks to use these routines and resources properly. Typical ex~
amples follow, which iiluttrate the difficulty which may arise from
thoughtless use of the fumctionas.

1. Ovor-dodicdting a page. A page may be dedicated up' to 15,
times without difficulty. Thii is nufficiont if i1t is dedicated onmce
for each iaterrupt reutine which may referemce it. Knvon.r.l if it ia
dedicated a aixtunth.tim-. an afithnctic drq occurs, luéh that the
page is no loager dedicated. Im as much as such a page ig normally |
flagged as dedicable, that blt is also cleared, aad the carry may extemd
teo defining the page as a TCP, or evea dedicated for .\v.ap'p:lngf : Whol ’
undedicated, the page enters the swap swirl. The first 'tilo an wmmapped
masternede transfer is made iato the lic_ldlo of data or mapped cede, all
hell bresks leose. | '

2. Ovcr-udgdicating,a page. The same argumeats apply as in 1,
except that a berrew eccurs, leaviag the page tetally dod‘icatcd.')

3. Overdefining a page. Under certain circu.tneu,‘ it is pos-
sible for a free diskpage to be in cere. (For example, the last $ask
which freed t he page may have beea imterrupted by the Swapper aftor‘
freeing the page, bdut befere removing the rofcrnc; ‘rron the TCP, such
that the Swapper did cause the page te be breught iato core again, where
it might remain fer a long time under lew usage.) Alse, a frulify freed

diskpage is mest likely to be allecated next. As a result, ome should

- 105

never allocate a Page directly, but should inotead firet check if the
page is in core. If not, it nay be gllocated." If allocation is un-
succegaful, then thex_-e is no recburse qu1: to effect Jo‘;achange._ causing
the page to be actually loaded off the disk. | o

Similarly, in freeing a page, a task is being j)olite to all users
of the machine if it performs a sequence of:

A. PFreeing the diakpage,

B. Delgting the TCP entry,

C. Checking if the diskpage was in core, and if so, freeing that
page of memory, all without permitting Jobchange to occur.

4, Difficulty can also ensue fro-.freeing a disk page twice, .
since the name will now appear ih two places, and may be referenced by'

multiple tasks in the future.

S Mgking reqﬁents with invalid diak:page addresses. Any reference
to diekpage zero is ignored by ‘the Swappex; and Jobchanger, since disk-
page zero specifies an unused (null) entry in various tables. However,
if a task triei to look up page zero, and a null page exists in core,
then that page will be found. Similarly, defining a pasge to have a disk
page address outside the range of the RAD, or requesting that such a
page be brought into core, will cause the Swapper to hang unconditionally.
The oﬁly valid diskpage names are those a task starts with, or has

allocated.

B. 3 Demand Paging
Under JANUS, it is possible for a task to operate without being
entirely in real memory at all times. This scheme is called demand

paging, in that a given pege of the task is drought into the working

106
memory upon demand, whenever referenced. The routine involved ;’ over
half a page in lenéth, and there is a point of diminishing retufﬁs. be-
yond which it is no longer economical to use a half page of virtually

dedicated code for demand paging. Since demand paging applies only to

slavemode code and references, this limit is reached when there are about

five pages demandable., If there Are more fhan five, demand paging bde-
comes profitable. |

The demand paging algorithm is described here both for its use,
and to illustrate the use of previously deséribed JANUS roﬁtines. This
routine is full-biown. in that it takes care of all eventualitiei and
idiocasyncracies of the Signa 7 in addition to demand definition (the
automatic extension and definitiog of the task address space). Certain
features may be eliminated with previous kqowlédge of the ta:k uaage---
if it is known unconditionally that the trapping instruction will al-
ways do word nﬁdreseing. and will always be present with the correct
map and access, esoteric tests may be dropped.

The demand paging routine is connected .to the X'40' trap (non-
allowed operations), which includes violations of memory protection.
There are two parts, shown ia Figure 21?-one of which deals with JANUS,
and is called by the second, which interpretively decodes thq frapping
instruction. We consider firat the JANUS oriented routine.

Function SCANPAGE(EWA)--S(A). EWA is the Effective Word Address.
Theiroutine always expects a word address as an arguient. The routine
determines the status of the page referenced, and returns Condition
Codes (CC) as follows:

1. CC = 0, EWA in registers. 2. CCl = 1, EWA is not in core.

3. CC2 = 1, gituation improved--EWA is available, but usage was

107

*3awyo Aoy} - FurPed puwweq “[Z eInFig

108 . |
limited by accegs protection. b, CC3 =1, oituation_normai--EWA in
core, AC set as specified in TCP. 5. Error detected--unconditional

tranasfer to error routine.

Two quantities set by the main routine are referenced in addition
to the previously defined tables. These are: 1. MODCOUNT: maximum
number of pages left which may be modified by this instruction.

2. EXUFLAG: a flﬁg which indicates that the EWA is an instruction ad-
dress, and to be treated accordingly.

SCANPAGE IS OUTLINED: ,

1. If EWA is in registers, return wifh cC = 0.

2. Make EWA a page address (EPA).- Look up corresponding entry
in USAGE table, skipping to 9. if within range of task (EPA less than
MAXSIZE), and if Page address is‘non-nﬁll. |

3. If outside range of task, increase range to MAXSIZE = EPA+l.

L. Call ALOCDISK to allocate & diskpage. If none available, aet
CCl = 1 (page not in core) and return.

5. Use allocated page to make non-null entry in USAGE table,
thereby defining it. |

6. Call CURRENT to determine if digkpage i; in core. If so, skip
to 10. - |

7. Call ALLOCATE to get a core page. If successful, skiﬁ to 10.

8. Set NEED-NEXT flag in USAGE table, st CCL = 1, and return.

9. Set USED-LAST flag in USAGE table. Call CURHENT to determine
if page ie in core. Go to 8. if not. |

10. Hére if page is in core. Look up Access Protect Limit (ACL)
specified in USAGE table. AIf ACL = 3, error.

11. Call GETAC to discover the ACcess (AC) the page is operating

109
under. If AC = ACL, set CC3 =1 (situation normal) and return.

12. Teat égd clear EXUFLAG. If not set, skip to 16.

13. Set ACcess to Set (ACS) = 1, |

4. If ACS less than ACL, error. If ACS less than AC, call SETAC
to set AC = ACS. Set CC2 = 1 (situation improved) and return5

15. Otherwise get CC3 = 1 and return.‘

16. Reduce MODCOUNT by 1 and test. If negative (page will not be
moéified). set ACS = 2 and go to 1@.

The iain routine: |

l. Save trap conditions ard registers. If the trap conditions
do not include memory protect'vioiation, error.

2. Set EXUFLAG to indicate instruction address reference, MOD-
CAQUNT to no memory being modified.

" 3. Get EWA of trapping location, and call SCANPAGE.

4, If CCl is set, skip to 20--if CC2, return. If CC = 0, re-
load the reéietersr |

5. Get the instruction and save it. If it is indirectly addressed,
call SCANPAGE using the indirect address as an EWA. On return, skip to
20,, 1f CCl is set.

6; Reestore the registera. ANalyZe the 1bstructio§. aavingkqon-
ditions. Initialize various registeri, and get the N~th.ene:y‘fron
table OPCODE, using it to set MODCOUNT, OPCOIE is a table,.in instruc-
~tio# sequence, of the maximum number of pages any one instruction may
modify. (It is to be noted that, while 108 instructions of a possible
128 are defined, only 23 of these modify one or more pagai of core.

Only one of these c@n modify ai many as) pages with one ingtruction.)

Bestore the ANalyZe conditions and fan-out to various special handling

110
(noa. 7.-11.) on the basis of the instruction type.

7. If byte addressing, determine if decimal, . If not, make word
address and skip to 18, Otherwise determine upper limit of memory ad-
dreased. - Mafe both uppef limit and lerr limits word addrelses..then
skip to 17. |

8. If halfword, make word address and skip to 18.

9. If byte immediéte. determine‘deltinAtion and source pages.

If not translate, go to 17.; otherwise.‘call SCANPAGE to test destina~
tion, save condition codes, thenvcompute uppef limit bf source and skip
to 17. ‘

le. If douhlewdrd; make word address. Detéfnine if stacking in-
struction. If not, skip to 17.; otherwise call SCANPAG? to testVStack‘
Pointer Doubleword. If CCl =‘i, skip to 20., othérwise deterniné_upper |
and lower limits of core referenced, going to 18, vif onefiord~r¢ferénced,
17. 1if more than one.

11. If word addfe-sing, test for special cases and fgn out to:

12. if EXU, 13. if BAL, 14. if ANLZ, 15. if Multiple, and 16. if convert.
If none of these, go to 18.

12. Here if EXU. Call SCANPAGE to test EWA. Go to 20, if CCl = 1,
return if CC2 = 1. If CC3 = 1, EXU can proceed, but the target inatruc-
tion (which may be another EXU) cannot. (This case is one of the design
faults of the Sigma 7, which of all instructions allows infinite ievels
of referencing only to the EXU instruction. This capability is not only
unnecessary, but is indeed a handicap to use in demand paging, where
accessibdble addreas>space may be larger than the actual machine, to the
end that a slave mode program could hang up the entife machine with a

large ring of EXU's.) As a result, it becomes neéenoary to "shave" a

SRR TR AN T

111
chain of EXU's, as follows. A special pair of 1ocations are provided.

The target instruction is copied into the first of these locetions. If

_the addregs of the source EXU is not the gpecial location, the second

location of the pair is formed into an unconditional transfer to the

instruction following the EXU. The trapping Program Status Doubleword

" is modified to point at the special location,vrather'than at the source

EXU, and we return. This process, although slow, is safe in all cases
but one; namely BAL,

| 13. Here if~ﬁAL¢ Determine if the inntfuction‘waé at the special
EXU lgcation; and if not, nkip.to 8. If, however, the BAL was the tar-
get qf a trapping EXU, call SCANfAGE'to evaluate the EWA, and if CCl =1
is returned, skif'to 20, Otherwise;llook'up the-l{nk register specified,
and force a link (using the second special 1ocatioﬁ). and branch, plug;
ging the EZWA into the PSD. Then returp. -fhil sequence, whilc:hot fool~
proof, does guarantee that one level of executinngAL will work correct-
ly, with respect to FORTRAN-like parameter lista.

14, Here if ANLZ. Call SCANPAGE to locate EWA. Skip to 20. if

CC1l = 1, Otherwise determine if instruction being ANLZ'ed is indirect-
ly addressed, skipping to 18. if go, else to 19.

15, Here is LM or STM. Compute top address of segquence, and to

- to 17. if more than 1 word referenced, otherwise to 18.

16. Here if CVA or CVS. Compute top address, as EWA+32.

17. Here to check out two addreases. If the lecond.il in the

. registers, skip to 18. If the first is in the registers, reduce MOD-

CQUNT by 1 (if one or more pages may be modified, the first reference
will be of this class), and skip to 18, If both are in the same page,

skip to 18. Otherwise call SCANPAGE to evaluate the address, and save

112
the conditions.

18. Here to evaluate a single address. Cali SCANPAGE to do so,
merging conditions returned with previous conditions. -

19. If all pages querenced are in core, return..

20. Otherwise effect Jobchange,vand upon return, go to 2.

At thia point it would be well to point out several anomalous
cases. Theae are the cases where a sequence of instructions may work
differently in a demand-paging environment than in a normal environment.
Iﬁ as much as these are primarily hardware limitations, they must be
consldered as definite design errors in the Sigma 7. (It must be re-
marked, hoﬁever, that in general the Sigua 7 is ﬁ well-engineered ma-
chine, designed for the'conveniencé of the prqgranmer. rather than the

engineer. These design erfors are_duc-td a lack of foresiglit, since the

Signa>7rwas not planned with a demand paging capability; this device is
so powerful that it is frequently used, however.)

One of theae casges il the previously mentioned infinite chain of
EXU's. A secord is that of BAL, which the hardware treats as.a link-
and~branch. That is, the link register is set while the effective ad-
dre!n is being computed and teste4; If BAL traps because of an access
protect violation, the link register will have been modified from its
previouq valus. As a re;ult. one cannot safely use the link register
to hold either an index or indirect address for BAL, as thcrg will be
no recovery possible if a demand paging trap occurs.

A second nuisance is that of conditional branches (BCS, BCR). The
hariware assumes that a branch will normally go, and thus in anticipa-~
tion will access the effective address. If the branch doesn't go, the

hardware must recycle and get the next instruction. (This is why a

) 113
branch ghat doesn't go takes 50 percent i;nger to not branch.) ZEach
of these references will trap, however. As a result, more pages Eay
be referenced than will bé uq§d, especially since the Nb-OPerafion (NOP)
instruction, a favorite for parameter list;. is normally an uncondifional
no=-branch.

Yet another source of annoyance is that the accgus protection

necessarily u;ad to implement demand paging does not‘apply’to mapped
| magter-mode code. This has two results. TFirst, all storage commonly
referenced by master-mode must be virtunlly'dedicafed or ABS fo insure
that it will be in core at all timeas whenvit-may.be referenced. Second,
there is no guarantee that anyinbn—virtually dedicated area will be in
core at any given time. On the Exeéution of a CAL'instruction (a
specific set of instructiogs.which ailog’fhe slave~mode to;nako up to
64 unique requests to master-mode by trapping) the only pieceoipf*nonr
dedicated area guaranteed‘accesaable are the instruction 1ts§1f, any in-
direct address, a possible chﬁin of EXU's leading fb the CAL, and the
registers. Specific address references are guaranteed accessidble only
until the fir;t time Jobchange can occur. (The alternative is to use
a_SCANPAGE—like routine.to.éheck each possible reference.) Hence, all
parameters must be transmitted through the registers.

The only real criterion for using master-mode is to perform op-
erations which are tc be denied to the slave-mode directly. Let uas
conslder these operations briefly. They can be divided into two cate-
gories; the execution of privileged instructions, and the referencing
of storage in a way not allowed to the slave-mode. We can eliminate
many of the problems deacribed by the extension of master-slave opera-

tion to include two more classes. Let us ca11>the-e meta~master and

11b
‘netarslave operations. Master and slave would still have thbir present
form of operation. ﬁetarslave, hbwefer, would permit the execution of
privileged instructions, while applying all the addressing reotrictioﬁa
of the access protection. Meta#ﬁasfer would also be restricted by the
access protection, except that write protection would not apply. With
this change, the only pages which ﬁeed be virtually dadicatgd under |
JANUS would be those containing the TCP and the X'4Q0' routine. The
X'40' routine iould be the only one which need rph'in master-mode;
#ll other monitor functions other than unmapped ingerrupt routines (to
which demand paging cannot epply anyway) could run successfully in
meta-modes. |

| In addition to meta-modes of operation, there are sgverhl other
features, which, if i-plg-eniéd via hardware, iouldlbe a boon to denand
paging and timesharing in géneral. Theae wouiﬁ‘bé‘in addition to read-
and writeable map access protection registers, siﬂgle Ievei executes.
and recoverable instructions, as diacussed above.

One of thg:e is a change register; containing one bit for each
mapped page of memory, the bit corresponding to a page would be nncén—
ditionally set each time thaf pege was written into. The change re-
glster could be cleared before each-time;lice. and at the end of the
timeslice all modified pages could'bevlocated. looked up, and flagged
as having to be written back.

A second would be a refereﬁce register; like the change register,
a bit would be set whenever a page was referenced.

The access trap nhoﬁld be divoreed from fhe non—alioved'operation
trap, permitting independent_opgration.

The moet powerful tool would be the introduction of a privileged,

115
execut ion-analize instruction. One would initialige the registers,
specify the pseudo—hode to operate under, and execute this instruction.
It would interpretively execﬁte the instruction ;t the effective address,
Qnder the identical conditions gnder which the trap occurred, stopping
short of actually modifying core or registers. When a point is reached
within the target instructioh where a trap would have occurred, execﬁ4
tion would bé aborted, anq the instruction would cause a register to
contain three pieces of information-~the offending address which would
cause the trap, the protection»currently sét for the offending page,
and the maximum ACcess Réquired'(ACR)‘which would avoid the trap. Com
puting the page, one could compare ACR with ACL in the TCP; if less, an
error condition would holdf If AC was not 3,-one could immediately go
set.AC‘= ACL. Writeback and USED-LAST would be automatically controlled
by the change and reference registers regpectively. and would not have

to be manipulated by software on each trapping reference.

B. 4 Program Optimization

While almost any program will run under a demand paging acheme, it
is possible to write pfograms which are conpletely pathological, execu~
ting almost no instructions per second. Conversely, it is also possible
to write programs which take advantage of tinesharing and denand paging.
Fortunately, programs written in this fashion are not penalized when op-
erating in a normal environment. For example, because of de-and paging,
it becomes feasible to use multirecord I/0 buffers resident in core for
each device; manipulated by a task during a'tineilice, and by an interrupt
routine a-ynchronouuly Then onLy very slow devices, or interactive

devices where buffering is infeasible, will be a lilit on the apeed of

116
the program. The program will no longer be primarily 1/0 limited, as it
would be when only a single record buffer was used, requiring waits.

The primary methods of optomization are those of limiting modifi-
cations and references. Limiting modifications neaﬁs that one does.not
rewrite areas within the address space indiscriminantly, but instead
causes all variables to be located in’contiguoda pages or blocks of
pages, such that a minimum nunbef of pages will have to'be rewriiten on
the digk. A major item to avoid igs rewriting sequences of code. The
designers of the Sigma obviously had this concept in mind when they
very carefully excluded all instructions which would allow qne to
easily build instructions in core. Any time if is necessary to build
an instruction in line of code, the Sigma designers made it easiér.tofpne
indifect addresnes,.indices. or, if abeolutely necessary, to build the |
inetruction in a reglater and execute it there. This hold§ true alqo
for the inesertion of in-line parameter lists. Further, to_avoid'variab- '
les imbedded in code, it is desirable to use common storage arcas as
much as possible.

The second main facet of optimization is organizationf. If N
routines which are always referenced together are in the same page, the
program will execute more than N times faster than if each routine was
isolated in its own page, surrounded by little used routines. Remexber
that demand paging is only a scheme of sutomated overlqys}-whichvéause A
recentiy unused areas of core iend:y'to‘be repiaced w;th delinded pages;
if in each instruction it is necessary to-fetch.another_page. efficlency
is decreased, since we are now executing useful (as opposed to overhead)
instructions at a rate of one every 40-50 milliseconds, the delay being

necessitated hy waiting for a slow device, the BAD.

| 117)
B. 5 Signals and the MESSAGE CENTER

" One capability required of any systenm involving asynchronous op-
erations is that of synchronization. Synéhronization is effected by
the occurrence in fime of a@ event of unspecified form and'leaning.de-
fined by common convention between thelnynchrbnizing and synchronized
parts. This idea can essentially be reduced to ome bit of information--
the event has occurred. It is not normaliy necegsary or denirable‘to
. be able to specify that the event has jugt occurred, since this neces-
sitates &efining Just. -

In a timesharing aystem, especially one with a§ much flexibility
for saynchronous operations as JANUS has.'this'§Ynchronizing capab?lity
is especially important. Synchronizatioﬁ is necessary between tasks,
as when a subtask muat inform 1fs parent that it is done, and between
interrupt routines and their controliing task, to inform the task of
the occurrence of a condition.- A task may bé unable_to proceed-untii
the occurrence of a specific event,.and may have put itself on wgit
status. The occurrence of the event should be capable of pulling the
task out of walt atatus.

In JANUS, synchronization of this form 1s provided by means of
Signals, of form: -

Q0XXYYYY,
where XX is a unique Signal number (0-255), and YYYY is the name of the
task it is directed to. The Signal number is pventunlly_nsed as an index
to set a bit in the TCP: if greater th;n 255, the bit will still be
set, but not in the normal signal region. Two,81gnﬁls‘have standard
definitions; Signal 0 1§ a w@ke—up Signal, Signal 1 is a standard

abort Signal to the task.

118

Signals may be sent from any level of JANUS-~from the highest
level active interrupt routine to the lowest léve1~of a task. Signals
are gent to the MESSAGE CENTER via the sequence:

BAL,R11 MESSCENT

B6 = Signal.
Thé MESSAGE CENTER will always accept a Signal, under all conditions of
interrupts. The operation performed is to push the Signal onto a stack.
In the event that the stack ii full, the Troubleghooter is invoked to
handle the conditioﬁ, and upon return, the attempt is made again. The
volume of the stack ls checked, and if it is getting significently full,
the Housekeeper task is flagged to HURRY and process the stack; if very
full, the Housekeeper is flagged RUSH priority, and Joﬁchangé ig ef-
fected. Thus only in extreme cases should the Troubleshooter be called-
upon to handle Signal difficulties. If called in; the Housekeeper will
even out the resident stack, moving excess Signals tq its own swappable
stack, or returning’then if the resident stack becomes empty.‘ Thus it
is possible that a tine delay of up to seconds can occur between sending
and recelving a Signal, under heavy Signal usage..

Great pains have been taken to ingure that Signals are neither
lo;t nor duplicated. This is done b& the use of reentrant routines
and multiple stacks, all to avoid‘the necessity of having an gccensible
copy of a Signal in more than one piace. Thus the stack of Signals 18.
pot scanned for a Siénal for a specific task in order to remove that
Signal--it is inetead unstacked, saved in a secondbstnck. and af a
later point, Signals are individually removed from the second stack,
and if not d;lired. returned to the first stack via the MESSAGE CENTER.

This degree of complexity is necessary because the stack of Signals

119

Bay be simultaneously feferenced frém nany ievels. For example, while
vfeferencing the Sigpal stack, a»tasﬁ may be interrupted to effect Job-
change, the Jobchanger interrupted by an interrupt routine while fetch-
ing a Signal. interrupt routines interrupting each othef? and finally
when the stack is full, the Troubleshooter interrupts the current ac-
tive routine and locks out all‘usqge(yhile'it unscranblei-the'difficulty.

Hovever{ there are'limita beyond whicﬁ nothing can save ; Signal.
These usually occur in‘the case of uncontrolled sending of Signall.
These can be avdided by reasonable opération. ‘Tagks should permit Job-
change to function between sending Signall. Interrupt routines should
téke care to send a Signal only once, even if the condition is recog-
niged repeatedly, until the interrupt routine knows that the task ﬁag
recognized and acted upon the Signalf A si!ple way to-do.this is to
use the preformed Signal as a'flag.‘ The>Signal is placed in the re-
quired location by the task when necessary. The interrupt routine
would exchange a null entry for the'Signal when necessary, énd if the
Signal fetched was null, would ignore it. Thus a Signal vqgld be seat
only once. There are other methods to accomplish the same ends. Null
Signals should not be sent to the MESSAGE CENTER indiscrimimantly, as
a significant amount of time is required to delete them, for the dura-

tion of which valuable stack space is lost..

B, 6 Timekeeping
It is often desirable to perform temporal synchroniszatiom, either
at the end of a specific delay, or at a specific time. As the computer
‘nornally keeps track of time by clock interrupts, which are limited in
number, and as this fumction should be provided to all users in a time-

sharing system, a resident routine is called for. In JANUS, the lowest

120
level priority clock interrupt is the Jobchanger; the next higher is the
TIMEKEEPER. Time reg\;uts are performed by the calling sequence:

BIG_BEN _

R6 XXXXXXXX Delay requested (milliseconds)

‘R7 $9585SSS Signal (Form 1) -

R? gﬁv-'xxxx Unmepped sddress (form 2)

The .time request is compared with the time c;ol_ay remsining until
the next ihtorrupt--if less, it is set as a new dola&. The entry is
then pushed into & stack. At each interru:pt. each entry in pulled and
updated. If the specified time has elapsed, and the entry is of form
1, the Signal is sent on to the MESSAGE CENTER; otherwise the entry is
gaved on a second stack, while the first is emptied. Then the entries
are removed from thé second stack, one by ou,' and if the tipo,io not
up, uond back to BIG_BEN. Otherwin the entry is of form 2. and the
interrupt routine performs & BAL, Rl1l to that unnap'pcd addreu. The
routine there can performs required operations before returning, and can
agsume R6-R1l are volitile. This provides a capability of clocked im-
tormpi routines, such as mighf be used to generate an unbuffered
graphic display.

In uning form 2._ there are certain constraints which must apply to
thc“ exteraal routine. First, the routine may not manipulate the clock
inhibit bit im its PSD. Socomi. ‘there is no‘ax.ztoutic‘ deletion of such
a requeat upom task exit--it is necessary for s task to wait until' the
time a.étunlly rums out, and comtrol is transferred to the cxtend rou-
tiio. While the external ifoutino would lomily request amother d@lay
of the TIMEKEEFER, when exiting it must stop itself. Third, the ex-
ternal routine must always be in core whea such a request i‘l pending.

Fourth, any time delay requested by aa external routine should be greater

121

than the time nornallj required from request to return, otherwise the
computer will hang. npending all of its tine in the interrupt routines.
Fifth, external routines ahould refrain from making more than one re-
quest at a time.

rorn 1 requests allow the task to be signaled at the end of a glven
time, Enough infornation is available to any task to allow it to com-
pute a time delay required to be signaled at a given time. . Thul it 1is
possible for a task to be started, and thereaftor perform some proccas
every hour on the hour. if so desired. Likewise a task perforling a
low priority calculation could be brought awake only between nidnight
- apnd 6AM, or at some other tiné when the ébmﬁuﬁer is light lo;ded;

Since a centralized routine is called for by the natnro of things.
| only a small increase in the code required onablel the TINEKEEPER to
| perforn time of day calculations. The currunt vtlues are available to
any task which deaires to reference thol. These qulntitien.a_reii

BCDTIME HEMM 4 bytes of hours and minutes on word boundary.

BCDDATE DDMMMYY .= 7 bytes of day, month. and year on a double-

» word boumdary. -
BCDDAY . DDID 4 bytes of day of week on a word boundary
TRUETIME XXOXXXXX 1 word of half-milliseconds elapsed to last
interrupt. - |
IASTTOCE XKXXXXXX 1 word of half-milliseconds to elapse between
_interrupts. o
TICE XXX 1 word of half-milliseconds required until
pext interrupt.
The TIMEKEEFER deals in'aétual time, independent of uiage. As a

result, the times are quite accurate. Zach night at midmight the

3 122 '
Housekeeper task is call in to update BCD -TIME, -DAY, and -DATE. The
calendar is good to'lo,OO0,000 years.iand inclndes leap year calculations.
The time stack is another‘of,thqse stacks and lists whicﬁ extend

‘ onto the disk via the Housekeeper. Whenever the stnci threateans to
overflow, the Koﬁsokoeper is called in to tidy ﬁp. All entries are um-
stacked, converted to an ﬁhsolufe time, and saved in the Housekeeper
stack. The Housekeeper then reorders t his stack. and returns e@ough of
the imminent time requests to haif fill the reaident stack. As the re-
sident stack ia emptied, the lam§>proce|s takes place; Thun.vlong de-
lays wiil drift onto the disk untii thcy bccOng inninQnt. Short delays

~onthe disk drift back to being resident. Thé delay is thus a guaran-
teed minimum delsy-~-it may actually be longer in duration than rqquoatgd.
If the resident stack does ovorflbw'wﬁile ' requ;lt is being‘nadc. the A
Trduhleshooter is invoked to un-cfamble things, Jusf as it is fqr the

MESSAGE CENTER.

B. 7 Unique Resources

There are a number of umique resources available to the computer
which cannot be shared uinultgneously. but must be sequentially allecated
to one task at a time from the system pool. Uniquo rcnourccsiaro’char;c-
terized bty an almost universal ailociation with interrupt rputinés, and
thus with I/O operations.)

There are four routines used to allocate ahd free uniqup resources.
Each searches through the resident list of ucique codes, returning feil-
ure if the device is not located (non;xistgnt). A "downed" doviﬁo is

nonexistant.

123

IOASK*)

R6 ##**IXXX Unique device code

R7 **2*XXXX Name of requesting task
If the device is owned, the routine returns failure, otherwise it assigns
the device to the reque-tingvtask.

IOWAIT* . _

R6 *s*83XXX Unique device code.

R? SSSSSSSS Sigmal for requesting task
If the device is available, the routine operates exactly as does IOASK.
In this case the signal will never be sent--instead the task name from
the Signal will be used to aseign the device. If tho dev1ce is in use,
the requeat is added to a stack, and the Housekeeper is signaled, in
order to add the request to the non—re;ident queue for later assignment.
In this case, CC3 = 1 is returmed. Whexn the task's turn fbr-tha device
. comes up, the device is assigned to the,ta.k. and'tho‘Signai is sent to
inform the task that it now has the device. |

IODOWN* '

BR6 ***8XXXX Unique device code

R7 sx*sXXXX Name of requesting task

If the task discovers that the specific device is not operational
(usually by means of an operator key-im), this routine may be called.
The device is found, and checked to belong to the requesting task. If
so, the request is passed to the Housekesper, to allow flagging the de-
vice down. A downed device cannot be allocated, and all requests, both
penﬁing and future, will wait until the device is brought up.

IOFREE" :

R6 *x#8XXXX Unique device code

R7 *235XXXX Name of requesting task

This routine operates exactly as does IODOWN, except that the re-

quest sent to the Housekeseper will not cause the device to be flagged

down, but instead passed either to the next register, or back to the

124

system pool, Tho' device will be available as socon as the Housekeeper
ha: proco-:od.tho 'rQqnost.

In the Sigma 7, umique resources are of two forms, treated dif-
ferently by 'the:hardwhre. and thus ﬁy programs. |

One form is used through the I/0 processor (I0P). Characterized
by being sequential byte (churact?r) oriented; the IOP is normally used
to transmit a buffer in to or out of core mnor.y, ard is comnected to
I/O-d-vicu. such as the cardreader. These devices have a unique ad-
dress, which specifies a device subcontroller. A subcontroller uy‘ |
have multiple devices aftached (e.g., telqtyplo ‘with paper tape capa-
bility), but a task buii a subcontroller fron.JANl_IS. Intcrrupts gen~
esrated by IOP devices all fi]_.tgr thrbugh a commoa port, nceolu'i‘tating
a common reaideat routine. | |

Four routines are -pccifical]y'nlociatéd with the IOP,

IOASSIGN
B6 *#*90XXX Device address
R?7 ***XXXXX Unmapped extermal iaterrupt routine address

The parameters are merged and inserted ‘into the reaidogt nt/ack of
active devices.

IORELEAS

RS **R80XXX Dcvi‘civaddreu

The resident stack of ecfive dovicu is scanmed to find the enﬁry
corrupoi@ing to the device gpocitiogi. Vhen found, the ontry" :.lnlrc- . |
placed by the top eatry in th; stack, which is then deleted.

I0KICK |

R6" XXXXXXXX P‘uudo-A‘IO status

It is frequeatly desireable to be able to generate a §ovico in-

terrupt without affectimg the device. For example, the imterrupt routine

BRI A

125
must be able to determine the device status. It 1s easier to kick the
interrupt routine thaa to have duplicate code outside the interrupt
routino. IOKICK makes this poosible»bY’pulhing the pseudo-AIO ;tatul
into & "kick" stack (quoue)-and then triggering the I/0 interrupt.
This, in effect, providonba signal path from the task to the iaterrupt
routine. The routine is reentrant, and may be called sparingly from any
interrupt level. |

The interrupt routine is not,difectly callsble,

Ou interrupt, the interrupt is acknowledged (this AIO should be
the only one ever executed in the machine) an& the device address re-
turned is then. used to scar for the device in‘tho acfivc device stack.
If not found, diagnostic information is ogwcd and the Héunokeepor,il :
signaled. If found, the calling sequeace BAL,R1l is porféfncd‘tc the
address associated with the device, with R6 containing the AIO‘Stdﬁnl.

Upon return, the AIO is again eiocuted. This occurs until the AIC

- indicates that no interrupt was recognized. At this point, a umique

flag is added to the kick queue. The kick quoﬁc is not scanned, one
entry at a time. Each eamtry is treated exactly as an AIO status word,
and sent to the cdrrooponding,intcrrupt routine. When the flag pops
off the queue, the interrupt routine exits.

The second form of resource ii that associated with the Direct
I1/0 (DIO) port. The DIO is characterized by word data tramsfers be-
tween the exterasl world and the registers, under program control. It
is used primarily in situsations where a buffer canmot be used bec;usc
the data must be manipulated before use. Th@no resources iaclude in-
terrupts, register pages (used exclusively by some interrupt routines),

and external d.vicis (in the MSU configuration, these extersal devices

126
_are General Purpose Iaterface (GPI) half registers, and will henceforth
be referred to as such).
All devices are specified by an 11-bit address; a 3~bit prefix
code is defined to distimguish between differentbdevico; with the same
address. This codothl the values: |
0--1I0P,
1—-cxt9rnal interrupt,
2--ragister page, and
L4--GPI. B
The DIO addresses are rumbered sequentially, from the l‘iﬁét to
the maximum number available. Thus, (MSU configuration) external im-
terrupts, 0-7; register pages, 1-3 (0 is cosmon to all uzqu); GPI, 0-?.‘
The only resident routines geared specifically to the DIO a:el
those tialing with the externallintérruptl.

DTCHINTR
R6 *$8%*XXX Interrupt address
R7 will is loaded with the standard system interrupt location

plug and then control is transferred to:

ATCHINTR |
R6 S288XXX Iaterrupt address ,
R? XXXXXXX Imstruction to plug into interrupt locationm.

The operation is performed. ‘

One point must be stressed with respect to use of routine IOWAIT.
A task requesting a device through IOWAIT norp.lJy‘entir| th; waitv
state if the device ia not currontlj available. A situationa can occur,
whereby two tasks, each using a umique device, can request the other's
device. They will then harg upor each other, both beiag out of oo;vico.
and kciping their device out of service until ome or the other is

explicitly told to let go. Amy task which can get into this situation

127
should have a capability built in to provid; for this occurramce, It
sy be avoided by asking for the »additional device thi'ough IOASK, by
using only one device at a time, freeing it before getting another,
or by the use ofv-ynbionts.'
| The allocatable resources do not include the conoélo‘ teletype or

RAD, as these are permanently aasigmed to JANUS.

B. 8 Prefices and the Comsole Teletype

Az operation common té almost all tasks is that of comlicntiion
with the operstor. As JANUS handles the RAD through the Swapper, so
also does it handle the console teletype. The teletype handler is
shared by all users. Iaput is chafactor direcfcd‘. in that a ’uniquo pre-
fix directe the imput to the correct task, Iaput Ray thﬁ .ibo, ncr‘ublqdd.-‘ '
not nocoiurily in the order of fequ_épt. Outpﬁt is stx"ic‘tly o_rd'u'x’-‘cd.v 5
such that sach request is added to a queue, to be typed out in du@i tiio.I
If imput is im progress when an output request is _n’ndc. thevinput is
interrupted and a recovery procedure is set up, such tiut when the out-
put is dome, the origimal ;nput is echeed and imput is thoi continﬁd
at the poiat the htorruptioxi occurred. o _

| Each request is accompanied by & unique prefix. Certaim prefixes

ars dofind. such as & for JANUS, CR for the card reader, I,P, Cp, PL.V .
TYS, MTO for other devices. A task which requires a umique prefix nay
get it from JANUS in a manner amalogous to .ditk'pagu. '!'hat i..-b there
are twe routimes which allew a task to get or retura a pr’ct‘ix.‘

GETPRETX |

B6 ssessest Jot used CCCCCCCC Umique prefix allecated

PUTPREFX .

R6 CCCCCCCC Umique prefix freed.

128

A prefix is a werd of TEXTC format; that is, tho first hytc is a
count of the useful btytes which immediately trail the coumt. ZExtra
anused bytes are blanks packed onto the end of the word.

Again like diukpagis. prefix han¢lingbinvqlvou a small resident
stack, aid a larger |tack«1n,tho_Bousok§§pcr.. Thobﬁounokcopor may be
. called in to adjust thobfolidont |tnck.,nld’if the stack over-or undof—
"flews, the Troubleshooter is invoked to fix natters.

The teletype has a mumber of routincs alsociatod with it. I will
firlt list those vhich are callnhle fron tasks, and thea comsider the
intorrupt routine:

DISPLAY*

R6 XXYfYYYY Count of ﬁyﬁos: nﬁpped.lddroao of rocorﬁ

R?7 CCCCCCCC TEXTC profix

B8 OOXXXIXXX Signal to semd '

This routine is ﬁnod prinariij for lew priqrity output, whers it
is not di.irublo fo dedicate & ﬁage cortaining a record. If the one-
rccord.buffor is mot free, failure is specified. Sinilarly. if the
output queue is full. Otﬁcrwiio save the Signal, cepy the recerd imto
the d;oplqy buffer, flagging it busy, them make up’a new asst of type
parameters to send a Sigmal to the Housekeeper on completion. (Om re-
ceipt of this Sigmal, the Housekeeper frees the buffer, flags it mot
busy, and Sends the Sigmal origimally specified.) Thea proceed fovroutino:

mree

R6 XXYYYYYY Count of bytes; unnappod addro.. of recerd

R? CCCCCCCC TEXTC Prefix

R8 00XXXXXX Siglal.to send

BRegisters ars uachanged ard failure is specified if unable to

accept the request. Otherwise "kick" the interrupt routine, retura

success.

129

ACCEPT* : ' ,
R6 XXXXXXXX Count of bytes 000XXXXX Byte address of RESBUF

R? CCCCCCCC TEXTC Prefix 000XXXXX Byte address of input
R8 OOXXXXXX ' Signal to send

Registeras ares unchanged and failure‘is sﬁecified ir uhable to
accept the request; Otherwise, compute the addresses to return, then
return successg.

When.a task has received a Signal that the input requested has
occurred and ia.in HESBUF; the input should immediately be processed,
eifher'by copying RESBUF into the task's storage area or directly. As
soon a8 possible, the buffer should be f:eed to allow'other input to
proceed. | |

. TTYFREE .

’Thin routine clears the flag that the input buffer in‘iﬁ use, and -
‘"kicks® the interrupt routine. |

Two routines are avallable to delete 1n§gt requests., (Thig is a
job of the task on exit, and at certain other times.)

DELETETY

R6 ***SXXXX Name of task

DELTfSIG

'26 SSS#SSSS Specific Signal

In either case, the entry is flagged to indicate the type of
gearch, saved in a "delete" cell, and the interrupt rout}ne is “kicked*;

The interrupt routine has five modes of operation.‘

1. ZIEntered via "kick". Test if to delete input feqpcst. 1f so,
search and delete as necessary for all occurrances of thg condition, then
clear the "delete" flag and exit.

If not delete, test if any requests are in the output queue. Skip

130
if not, or if in override or type mode. Otherwise halt the current in-
put opération. 1nitiﬁlize a recover&, and go start output.

If not type, check if buffer freed. If so, and not typing, start
new 1npux--ptherwise initialize recovery.

2. Character mode.. Used while inputting a prefix. If after 3
characters have been input, no match is found with any‘:equests. a
queition mark is output.‘and character mode is reinitialiged. If the
prefix is recognized, copy the prefix into BESBUP,_then proceed to read
the associated record. (RESBUY is‘the'otandard buffer for'concole tele-
type messages, and is of TEXTC format,.ipéluding the prefix.) |

3. Input mode. Used while inpﬁtting'a record. ifyterminated by
EOM character, discard the entire line and revert to character mode afte;
reponitioning the carriage. |

‘b. Type mode. While active, enable the override. When one record
is done, remove from queue. If the queue is empty, disable the over—
ride, clear the override flﬁg. and proceed to recovery. If not empty,
and override iavnot‘flagged. start the ne#t operation. ‘If override is
flagged, proceed to ovefridg mode.

5. Override mode., For the duration of the type mode, the console
interrupt is active as an override., If pressed at this time, override
is flagged, and at the end of the current line instead of proceeding to
a new record override mode ias entered for the duration of one input re-
quest. The input is recovered, and any interrupted input is continued.
This ailow. an input to be forced thrpugh a large nﬁnber of nuccoiaive.
outbutn. Override mode is recognized by the éonlole interrupt light

being 1it while the mode is active.

131
B. 9 Diskfiles

| In a paged environment ﬁhereAdontiguou: pages are not necessarily
available, there are -two nethods_of combining a collection of pages into
s file. One method is to provide an ordered list of the component pages
of the file, This scheme is illustraﬁed by JAﬁUS taska, which are no-
thing more than execut#ble files. In this case, the list is the USAGE
table on the.TCP. This scheme allows random acéea§ of file pages, but
requires the allocation of é fixed size block to hold the list, thus
getting an upper limit to the sige of‘the file.

The second method is that of "chained" files, where each page in-
cludes information as to the Aext_and, last pages in the chain. While
necessarily less fle;ible than the first method vith'respect to access,
the limigations on chained fileerarg no str9nge: than would be imposed
by the use of addressable magnetié.taﬁe@ where ﬁ iihéle record inthe
middle 6f the file can be rewfitten. The rést of this section will con-
cern itself with chained files exclusively. | |

JANUS has certain routines and tasks which deal with files. To
make use of these, the JANUS file conventions muat be followed.

Each page of a file ia a'true4p#ge (512 wordas) of fixed format.
The format of each page et |

Word 0 / OOOOXXXX Poiﬁtér to last file page in chain,

Word/}/ 0000XXXX Poinﬁer to next file page in chain,

WOrd 2-511 Available file page data area.

A null (0) pointer indicates the last page of the file in that
direction. Thg first page of a file ias in the FILE NAME.

One regident routine is:

Unfile*

R6 S#*#XXXX TFILE NAME.

_ 132

The FILE NAME is jzushed onto a resident stack. If successful, the
MORTICIAN task is signaled, and will eventually come in and chain for-
ward through the file, freeing the diskpages. In this case, only the
forward pointer on each page is examined. Note that if a page in the
middle of a file is presented, preceeding pages are not touched,

InAorder to avoid confusion which might arise, I wish to define
certain terms.

A file consiats qf one or more blocks. END-FILE correiponds to
the terminal condition of the last block, going forward. |

A block consists of one or more records, terminated by a MARI_oxj
END-FILE. A MARK is completely equivalent to a tape mark, which how-
ever is sometimes referred to as an endfile. This usage i.s not fol-
lo§ed here. Similarly, a block‘ is somQtimea referred to as a file, but
this usage is agein not followed. |

A file is normally of constant format-—RECORD or STREAM. A RECORD
FILE has as part of its specification, a fixed record size parameter.

In this case, all records are of identical size. These records are nor-
mally packed intoc & file pege, with no spaces between thenm.

Conversely, a STREAM FILE does not have fixed sizes. Instead, each
record has associated with it a record size discriptor (COUNT), normally
the first item in the STREAM EECORD. To locate the next record, it is
necessary to combine the reéord pointer with tpe COUNT to develop a new
record pointer. swms have the advant;age of improved f@cking
deneity. .However. it is occasionally desirable to locate a previous re-
cord. In order to locate the beginning of a record, knowing the end,
we must have the size. Hence we define a REVERSABLE STREAM FILE, char-

acterized by SUPER-RECORDS, which consist of STREAM RECORDS bounded

133
at each end by a SUFERCOUNT.
- COUNTS and SUPERCOUNTS are normally of the same resolution as
the elements of the record: Iin all future discussion I will be refer- -
ring to a record of btytes, COUNTS and SUPERCCUNTS which fit into a h&te.
and which specify the number of bytes. | |

Given a record of N bytes, a STREAM RECORD would consist of N+1
bytes, the first of which (COUNT) would contain the vaiuc N. (Thi§ is
also referred to as TEXTC formet, from the usage in the assembler.) A
SUPER-RECORD would consist of N+3 bytes, where the first and last
(SUPERCOUNT) would have the value N+2, and the N+1 bytes between would
be a normal STREAM RECORD.

In addition to the records, it is desirable for the file to com-
tain control information. Immediately apparent examples are END-FIIE,
ENDPAGE, and MABK. CONTROLS should be readily distinguished from normal
records-~-8s8 no normal record has a COUNT of zero, this is our identifier.
A CONTROL is a one-byte record with a COﬁNT of zero, except in one apecial
case. Thus there are 256 possible CONTROLS. A REVERSIBIE CONTROL has no
COUNT--the control byte follows the initial zero SUPERCCOUNT directly.
Fxcept in the case of the ENDPAGE condition, each REVERSIBLE CONTROL is
thfee btytes of form 00-XX-02. In the apecial case of the ENDPAGE con-
dition, the rest of the page is the ENDPAGE RECORD, and the last half-
word on the page is the SUFERCCUNT, which however is still a byte count.
This is necessary, as a aingle byte is too small to be able to apecify
a large ENDPAGE RECORD. | |

It is important that these conventions for reversible files be
known, as one system task (SYSGEI) is capable of generating reversible

lidrary files.

134

Unique controls défined are as follows:

00 ENIPAGE. This is also the END-PIIE condition, when there is
no forward chain specified for the pége.

01 PAUSE. Normally cauaes the_recéivef'of the file to halt until
some condition is satisf;ed.

02 MESSAGE follows. The record following is not a normal data
record;’but ingtead contains special infqrmation to the resder.

09 File is awitching to BINARY, or to UNFORMATTED mode.

0D File is switching to BCD, or to FORMATTED mode.

10 MARK. Used to identify the end of a block of fecords.

FF. Null. This control is Just filling space, and is to be ;g-
nored. It n@y be uged, for example, to clear a PAUSE cohdition on a
driven file. (A driven file is,being_read as it is being written, thus

the necesgsity of halting the receiver if it catches iup to the driver.)

‘ 'B. 10 Symbionts

A symbiont is a task which.perforns a limited set of self-defined
opefations on a file, usually transcribing it tq.another file. This
discussion will be limited to I/O Ayﬁbionts only, where exactly two files -
are involved, one of which is associated with a physical device.

Consider first the range of applicability of such a qymbiont task,
Since it must be capable of tranamitting a stream of records from suc-
cessive files, it cannot be used for an interactive (bi-directional) de-
vice, such as a keyboard or graphic display. Furthermore, since it deals
with STREAM FILES, positioning operations are not readily implemented,
or are meaningless if includeé.

In this context, we see that the range of applicability covers only

135
those physical devices which are mono-directional. These would include
card readéra. line ﬁrinters, card puncheg, plotters, and under certain
circumstances, magnetic tapes, Specific idiosyncrasies of particular
devicea require gpecific conventions,vvhich in general conflict with.
those of other devices.

A set of symbiont tasks has been constructed for several of thé
commonly used I1/0 devicea. This set could be expanded, but currently
includes the cardreader, lineprinter, cardpunch, and plotter. Theae
syubiont tasks are gsystem tasks, and special regident routines are pro-
vided to permit any task to communicate with the requested symbiont task.

The calling sequence ig the same in all cases:

R6 XXXYYYY,

R7 S$SSSSSSS Signal to send on completion, |
where YYYY is the name of the first page of a standard non-rewindable
stream file. XKXX are attribute bits. Currently the only bit defined
is the firat (8000), which signifies that the file may not be discarded
after the symbiont is through with it. Unless that bit is set, output
symbionts will return each component file page to the system pool as the
information therecn is uaed.

The resident entry pol#ts are:

CRAO3SYM,

LPAO2SYM,

CPAO4SYM,

PLAOGSYNM.

The operation in each case is identical.

On entry, R6-R7 are pushed onto a small resident stack unique to

the specific device. If not successful, CC4 = 0 ia returned--otherwise

136

a Signal is sent to ths,task, which is always on the ring of tasks.

When the’ta;k cycles throuéh. it empties out the stack, puttihg
each request into a queue interngi to the tesk, in the order requegti
‘were made., If the task is working on a file, it is busy. |

A Busy symbidnt. on completion’of a filq; frees the I/O device,
and deletes that fiie entry from the queue. If the queue 1s empty, the
task goea into the wait state, and upon return, checks the queue again.
If the queue is not empty, it requests the device anew; and when thé de-
vice is assigned, proceeds with the next file in segﬁcnca. This mode
of Oper#tion, freeing And reallqéating;@hé deiice afterieach file,
permits any other task to sneak in and icquire the'dovice to perform
it's own If0 operations. |

Once a symbiont has been4given a file, it is controlled froﬁ.thu
teletype, by means of the device prefix. Valid kéy;iﬁ controls are:.

GO Continue with the current operation.

DOWN Flag the device down, save the file for further continuation

when the device goes up.

ABORT Discard the rest of the file.

In ueing input symbionts, (currently the cardreader only), a page
is given to the qymbiont.- The symbiont will_alldcatc further pages as
necessary, ant perform all neéeasury chaining operﬁtioﬁs. The cpeéif
fled signal is returned to the contfolling task when the END-PILEvéonr

dition arises.

B. 11 Control Commands and the Amperscanner Task
All useful operating aystems ihcorpdrate.nome means of communica-

tion with the outeside world. Under JANUS, this function is provided by

137
& system task, the Amperscanner (the name is contrived from ampersand,
which is the teletype prefix uscd to direct input to JANUS, and scanner,
which function the task performs). |

The Amperscannér always has a request pending for input on the con-
nple teletype, unless it is actively precessing a line of input. Input
is formally free field--th;t is,‘kgyword; may have no imbedded blanks,
and must be separated by one‘of more blnnkc or other.delimiters.

The control commands are formed by a keyword, folldwgd»by pos-
8ible modifiers. Unused'médifieru are‘igﬁoféd. ﬁniesu‘they actively
garble the meahing of a command. In thé case of a garbled or unknown
command, no action is taken, aund a question mark is output on the'fele-
type. Keywords fall into three main ciiegoriqs. | _‘

One keyword category is that where they kdyﬁord is th@~nﬁﬁo of a
library task. In this case, the Amperscannﬁf'willblécateithé task‘In '
the library, snd will proceed to make a wérking copy df the task,.per¥
forming & copy operation on all those pages which will be modified, on
the basis of information kept in the master copy of the TCP, _The copy
is then added to the ring of tasks, ond signaled to start. If unable
to start & tagk, either because of a lack of diskpages, or because
JANﬁS can accept no new tasks, an appropriite comment is produced and
the operation is aborted. The Axperscaner is the parent of all such
tasks, and will take care of destroying them after fhiy exit.

A second category permits changing variousvsystem'paxunitcro. such
as time and date. ‘

The third category pe?mits one to query JANUS as to the status of
various features, such as resources. One keyword in the category (MANUAL)

causes a standard system file to be printed, providing a manual of

e

138
operation which lists all keywords implemented, and includes a brief

description of each one's significauce.

B. 12 The Housekeeper Task

As mentioned previoualy. all possible effort has been made»to
keep the JANUS resident as smallvas.possible. To this end, all large
data sits and little used code which need not be resident are kept in
the Housekeeper task, and broﬁght into core on demgnd on a timeshared
basis. Thus, infrequently used function;, such as the calendar and
date computations, are provided by the_Housekeepo;, without tying up
core memoIy. | |

Since the Housekeeper is the major non-resident system task, it
has certain non-standard feature§. For exampie; the housekeepqr~TCP is |
dedicated pormancnfly in core, in the first page above JANUS. in'thi',-
sense, it is the Task Control Page of JANUS itself--thus JANUS‘can bcli
considered a task. In normsl éircﬁm:tances, the TCP of all other tasks
map over the JANUS TCP, and it is not Qeen by other tasks. To all other
taska, there is just an additional page of memory which ia inaccelsible.
However, it is the TCP of unmapped JANUS, and thus,gny unnappod trap»f
which occurs funnels through the Housekeeper TQP, (Unﬁaﬁped traé: are
discouraged, and are normally a sign of either programming or nachine
error.) In addition, this page contains a number of;itandard.qysfemw
console teletype meassges u.cg by the Housekeeper and Alperqcinncr.
These are kept here 40 that valuable mapped task address space will not
be cluttered up by storage not relevant to the tuakt.

The Hounokecper is invoked whenever an unugual circumstance occurl.

This includes the case where a resident stack is depleted or surfeited.

139

Whenever the Housekeeper is cxecuted a standard fdnction is to cﬁuae
all resident stacks to be adjusted untii exactly half full.

In certain freak cases (whxch -xperience has shown occur most
rgrely) it is possible that a request from a task to JANUS, whlch af-
fccts;one of the resident atgckl, cannot be fulfilled. In this sit- |
uation, it is possible for resident routines =zt any level to call upon
the Trouble-hooter. a special rﬂsident routine. This routine has the'
power to override the whole system, in a last-ditch ?ffort to stay
sane. It can, if necessary, actually. take the RAD away from thg(,b
. Swapper, checkpoint storage, and bring iﬁ-ehoﬁgh of the Housekéep«r to
attempt to recover. If it was necossany to checkpoint core, that core
will be restored after the recovery attempt.

Because of the interruptable nature of.ﬁalks. and;bdciune oflthp
pos:ibilitf that the Troubleshoaoter may be invokédvby [hiéh level in-
terrupt, it is necessary that.the Housekeeper be feeﬁtrant. As a re-
sult, resources are normally kept track‘bf in thfee different areas,
in such a way as to defeat the interruptable nature of the Sigme 7. Fof
example, staék manipulation instructions are not interruptable. As a
result, resources have a resident stack, an intermediate Housekeeper
stack, and the Housekeeper data set. Data are transferred via stack op~
erations between registers and atecks. The igterm.diate stacks are buf-
fer stacks; kept half fuli. data may be transmitted between them and
the resident stacks by both thn Tféuhlgnhootor (which uses the inter-
mediate Housekesper routinés) and the Housekeeper. The Housekesper
calls upon the intermediate routine to :traighton‘out reaident storags,
and then transfers data betwegn the intermediate stacks and the main

data sets of the Housekeeper. While unwieldy, this process permits

~

140
‘JAHUS to run without inhibiting extsrnal 1ntorruptl used for realtime
applications, and still gunranteel that no datum will be lost or dup-
licated.

By adequate arranging of routines in the Housekeeper, such tﬁat
all reentrant storage is at the beginning, it is pocsiblc for the.
Troublouhdoter tq need‘onxy & part of the Housekeeper. As JANUS now
stands, it is only necessary for the Troublenhootor to use one pﬁgo
in addition to the Housekeeper TCP.

In addition to the above functions, the Hous;koep;f mq& boinig-
naled by the qucrscanor to perfora ccrtain oporntion:. luchlas out=- |
putting ltqndard messages to the con-olo. It may be callod upon by .
JANUS for uinilar functions, a3 when a machine srror (such ll watchdog

times runout) occurs.

APPEN'DIX_ C.
The JANUS Basic/File Control Monitors

When JANUS was undertaken, it was realized that the execution of

FORTRAN programs would be a major requirenent_. It was felt that, since

SDS had supplied with the computer a 3uic Control Monitor (BCM) 1% and
various processors such as FORTRAN, SYMBOL usen’uler, LOADER, and DUMP-’
IRG LOADER--gome of which would be used in generating JANUS—-it would
be an excess waste of effort to generate our own version of the pro-
cessors, especially since SDS would maintain theirs. As a result, it
was decided to bulld a timesharing monitoi' which would interfnce.the
SDS-provided processors to JANUS.

A brief examination of the BCM showed that it could not be read-;
ily changed to our requirements, if for no other'reajon than that it
was inadequately documented. . (One of the requirements of acceptable
JAlﬁJS coding arose from this e.xporie.nce--all code was to be adequately
documented with comﬁents in the source zuchv that anyone faniliar with
the computer could easily 'understand any part of any JANUS éode.) As
a result, it was decided to start completely anew to write the JANUS
Basic Control Monitor (JBCM) which would perfornm the necessary inter-
facing functions. .

With certain eiceptiona-. the JlBCM 1s used in exactly the same way

as the BCM. These exceptions are usually minor, and except for some

141

‘ 142
changes in certain control cards, a program which operates under the
BCM will also opel:ate under the JBCM.

The difference in control ;:ards are as follows:‘

1. The JOB card must havé the users nsme on it. This is fre-
quently the only way to identify output from sevefal faskn.

2. Assignment of files to TYAOL (the console teletype) are in-
valid and are sufficient reason to exit a Job. ’

3. The 3DS~defined BIﬁ, BCD, and X0D cardQ are replaced by the
standard JANUS BIN, BCD, and MARK cards, resﬁectivjely.

'4. In an effort to cuf dow‘n the number of control cards used,
the loader was modified so that the data card is no lon'gér needed, or
accex;table. |

5. Many of the operator lystép lﬁeyinq_ have been delﬁted’,‘ leaiiné'
only X, E, and P (Fin; which will abort the: task).

Further changes are that, since the I/O is buffered in the JBCM,
the check function is a null operation. Devices are also addressed
differently than under BCM.

In compensation, sdditional features have been 1mplenent‘e&_.

These are: | | |

1. Additional system DCB's, nemely M:SI, K:G0, MiCI; MiCO> M:MAP,
“and Mi1GR. Some of these are defined in the SDS Batch Prqceuing Mon-
'itor (BPN), a higher level monitor than the BCM. The defsult device
assignments are CRAO3, nnro. CRAO3, CPAOL, DIAPO, and PLAOG r;bpecunxy

2. Default specifications are assigned to the FORTRAN vDCB'l. to
agree with the FORTRAN usage for READ, PRINT, and PUNCH.

3. MBI and M:BO are auigxﬁed to DFAYO (as was M:GO).

4. M:G0 is rewound at the bdeginning of a job, and when a LOAD

143
| card 1s encountered. As a result of these default specifications, the
control cards required for a load-and—go!lIOE‘rRAN Job are:
JOB NAME
FORTRAN
, .
(FYORTRAN DECKS
(:
LOAD
RUN
(
(' DATA DIECKS
(,

. 5. Certain xﬁonitor funcfioﬁe implemented in BPM _bﬁt not in BCM
have been implemented in the JBCM. These may be found in the EPM manual
under the titles: |

M:TIME,

MIKBYIN,

M:TPILE. -

6. BHeasonable English langusge error messages. (This was a
major complaint with the BCM since the error message m‘ 65 02 Ol 00
ébverod moﬁ than fifteen diff'erent errors, froa r.ete.roncing nonexis-v
tant memory to the floating point calculation -AtA)

7. The inclusion of éxtra control. comnds. luch as UM.OAD.

By allowing multirecord I/0 buffers, the timesharing capability is
grutly extended. As a result, there is one page of'nonitbr alloteii to
each 1/0 device, used for buffer and interrupt routines. In addition, a

demand paging algorithm is included, as are certain other functions.

144
The JBCM ig divided into two areas: slave and master. The
naster-mode area is inferfaced directly to JANUS. The slave-mode area
con_tains those functions which provi&e the personality of the BCM, All
control card, I/0, trap Mdling; _and other functions lpeciflc for the
‘BCM operate in Qlave-mode.. and are demand puged.v The slave-mode ioni-
tor area is ﬁvg pages in extent. However, when a program is running,
using the JECM only‘for 1/0, only one of those pages need be in.
Furthermore, thege pdges are write protected and need never be writfen
back to the RAD, improving swap eff'icienq. |
| A recent rewﬂtg of the JBCM' introduced & new feature. By re-

arranging the mte:rmde storage, and adding code which was usenbléd

on the basis of an assembly parmtér. it became possible to reassemble -

the JBCM in the JFCM mode. The JFCH (JANUS File Co_ntrol Nonitor) dif-
fers from the JBCM maialy i'xi the mt.ermode area. Whereﬁ the JBCM is
device oriented, the 'JFCM is file orient_ed. and does all I/O[(zﬁép.r.tidna
using the system symbionta. The JBCM permits one td provi&e & program
paraneters in a conversational mode, since the JBCM ig cénnect'ed dir-
ectly to the dévicu. The: JFCM conversely causes -n.entire card file

to b? input before stdirti’ng, and does not cause output until the Jjob is
done. As a result, it "swallows" jobs, freeing all I/0 until the end of

the jod, and runs truly inthe‘vbackground. Since it uses no I/0 devices

directly, multiple copies of' the JFCM may run simultaneously. _Further-

more, since over half ‘ofn the JFCM is never nodiﬁed, the original copy
of the page 1z used in each copy running, md ia thus cémvﬁ‘to‘alll the
JICM tasks. As a result, there is a much higher probability that part
of the monitor is in core, necessitating no BRAD operutioh,_ and making

swapping more efficient. The J¥CM has the o‘bvioni capability of bveing

R R

145
fed a long jJob, and then feedirig short jobs to another JFCM or to the
.JBCH to be completed and output while the first job is still. being
digested, thus shortening turn-around time for short ,joba. without

significantly affecting the t1me required for long jobs.

APPENDIX D.
Notes on Cyclotron Control Implementation

One of the design goals for the use of the Sigma 7 is the control
of the cyclatron by the computer on a tiheshnred basis. In the ultimate
form, this would be powerful enough for an experimenter to invoke the
task, type in a minimum get of parametéra (such as particle, energy,
beam intensity, energy resolutién.vand eiperinental station), and then
walt the necessary time for the computer to inform hin that the cyclo-
tron 1is opofating‘under those conditions. The computer_would then con-
trol the cyclotron, informing the experihenter when the bean was outside
the range specified, or if an abnormal condition oqcurrgd. - This would
continue until the éxperinenter ﬁigned off, at which point a diagnostic
listing would be printed out, giviné information of use to the cyclo-'
tron service personnel.’

How much of this dreanm is_possihle? Since the coiputer is re-
placing people to make adjustments and measurements, the access time re~
quiredvin of humen speed, on the order qf geconds. It becomes perfectly
feasible to control the cyclotrén'fron-a demand paged slave-mods. task,
This is good, since a progrea of‘the complexity described would have
to be written in a higher level language, such as FORTRAN, whiQh is
- notoriously untrnotiortny for computer control operatioﬁl. Such a pro-

gram can be written. Where then do the constraints lie?

146

147

The first constraint is obviously the matter of hardware auitable
for coiputer control. Since this is outside the range of this thesis,
I will not commentlfurther, and cdntinué under the assumption that it
is available. |

The second constraint is the task monitof. This vduld be gimilar
to the JBCM or JFCM in many respects, but not idéntical; {For control,
& realtime capability 1s required, and if this were available in the
JPCM, any user could accidentally or maliciously send false control
signals.) On the other hand, many of the functions frovided in the
JBCM/JFCM could be elininated. Under the mild constraint that the FOR-
TRAN be compiled under the JBCM/JFCM, one can delete all processor and
control card handling. Furthergore. the FORTRAN runtime and math lib-
rary actually reference the monitor in only thfee or four places, prif
marily fo; 1/0. By changing fheae routines to 1nterf;ce ¢1recf1y with
the mastermode monitor, then all of the.JBCM/JFCM nlave—node storage
could be eliminated completely.

Agaln, I/0 can be limited to files in addition to a teletype. As
a regult, the obvious candidate for the monitor would be the JFCM., From
this, one could probably delete all I/O but plotter and lineprinter,
since a JANUS Cycl&tron Control Monitor (JCCM) would not need to read
or punch,

Thus, the JCCM pould ba‘made fairly simply from the JFCM by adding
a small realtime handler'(prqbably under 40 words), changing the FORTRAN
runtime, and deleting great pieceg of JFCM code, When this action is
finally desired, it can be don§ in a relatively short time.

The third constraint, and probably the greatest, is the cyclotron

controling program written in FORTRAN. It will undoubtedly be based upon

148

or similar to the SETUP program, in order to compute the operating con-
ditions. There will then be additional subroutines te read the cyclo-
tron parameters, compute the correction fequired, and perform the necesg-
sary control operations. At this point. the additional complexity 154
troduced; of recogpizing cemponents whiéh are drifting excessively 80
that maintenance nay be performed, will quite iikel} ﬁe & minor per-
turbation on the amount of wqu involved. The program will deubtlela
be written plecemeal, with each new'cepability checked first under com-
. puter simulation (which must also be written and debugged), and then in
- real-1ife. Furthermore, a new control capability may well contradict

an older capability, requiring repfograming and even redesign of ﬁard—

- ware,

Before any geeat amount of work ig done on cyclotron control, an

. effort should be mede to define the problem for a11 concerned. Once a
definition 1s agreed upon and is available, 1t ig time to specify hard-
ware, software, and scheduling.configurations; A control program of
this complexity eannpt work well 1f built of independent moduleuf;each
function will interact with others, and must be thoroughly checked,
first for correctness of operation, then for interactions, and finally
for successful operation in a timesharing environment. As for any com—
plex realtime JANUS task, it is desireabie to first develop an operational
stand-alone system, with the foreknowledge thatlit will eventualLy be
timeshared, and only when it is working rationally iﬁ a stand-alone con-
figuration should the timegharing features be added. This is simply
because for basic testing, timesharing is superfluous, serving only to
confuse results..and without any reel gain, since any realtime prdgram

could not be trusted in & timesharing environment with any other user

149
until completely debugged. Simulations can be performed under JBCQ/JFCM,
but any sctusl control attempts should be completely debugged under the
BCM as @ stand-aloﬁg system.). A

What sort of problems might dne‘encounter in & cyclotron control
programl Therg would, of course, be various codes for computing initial
parameters for a specific operating'configuration on the basis of thep:y.
Associated with these would be a capability to set the cyclotron con-
trols to the correct valﬁe, in fhé corfept seoquence end with the proper
timing. This phase could be readily generatéd from programs which exist
todey, such as the SETUP code. There_wduld aiab have to be procedures
available to make actual measuremenfé. from quantities'as slmple as volt-
age, current, and pressure, to patterns as complex as.the cyclotron turn
pattern. These would ihtroducé the néed for patﬁern recognition codes
capable of anslyzing the current‘state of fhe cyclotron, and determin-
ing how the machine should be returned for best oﬁeration. There might
be "learning" features, such that the program éould véfy pafametérs
uged in calculation such that control operatiods would cdnverge faster.
(Under JANUS, this could be resdily implemented by keeping tgese para—
meters iq & set of pages in the task library, modifiable and of wﬁich
the original copy would &lways be used by the task. Learned pafaﬁcters
would thereby be changed in the library source.) Thege featuréé‘will
probably take a great deal of time to develop. »'

Thus, cyclotron coﬂtrol programs contain thfee'typga of fﬁnctipns——
initializﬁtion. gegquencing and stabiliéntionn and tﬁning. The firat two
have ilreedy been implemented to sone_extent withdut'tﬁe use of an on-
line computer. They could be implemented fully without the‘computer

through standard feedback technigues at probebly less cost than if the

150
computer were uged. The real sdvantage of using an on-line computer
would come sbout by implementing the third--end hardest--category.
| As & result, while I feel thet this goal is poasible and probatly
feasible, an actual computer ccantroiled cyclotron of any significant
#alue is probably a minimum of two years awsy, anda the syst=m described

in the opening paragraph is more likely five years awsy.

APPEIDIX E.

dotes on Conventicnal Terminal Implementation Under JANUS

Cne of the most important uses of conventidnal timegsharing sys-
tems has been to allow simultaneous sccess to the computer from several
remote terminals. Tﬁese terminals generally consist of low apeed I/O
devices, auch as teletype keyboards and paper tape. High gpeed devices,
while not technically impogsible, are uncommon due to the cost of a
wide-band data 1ink, required for s high data rate. Let u§ consider
terminals consisting of teletypes only, possibly with low apéed paper
tepe facilities. How might @ulti—terminal operétion be implemented
in & tasking environment such as JAHUS?

Coneider first the manner in which a large number:ofvterminals
would be coupled to the computer. The easiest (and most exﬁensive)
method would be for egch terminal to be connected to the IOP separately.
Much more likely would be the use of a communications link. In &
comnunications link, a large number of terminals are connected together
as a single IO device, which includes a computer controlled switch-
board. A mechanism is provided to scan sll terminals for the preaence
of an input signal, as are remote addreosing'mechanisma; If the link
were not busy, the presence of an input signal would cause an interrupt.,
The interrupf routine would have to perform & scan to locate the

specific terminal requesting service, perform the necessary operations

151

152 .

to switch the data link to that terminal, and initiate a data transfer
(normally one chgracter). After the data transfer was accomplished,
the character input would need to be examined to determine if it were &
specific "break" chafactgr; such as s carriage return, necessitating
specific sction. Once that action was initiated, the terminals would
be rescanned for more input reguests. If pregent, the process would be
repeated. If not, any cutput pehding would have to be precessed, aéain
by setting the data switchboard to the specific terminal and initiating
& character transfer.

The uge of a communication§ Iink implies the usé of a centralized
I/0 handler. The question of‘terﬁihal implementation can thug be re-
phrased in terms of the broader iégue~4that of implementing centralized
I/0 in & highly decentralized task'structure such as used in JANUS. To
put the following disCﬁssion on a>fi:per»bisit, I will specifically dis-
cuss the nimulation of an exis#ingvfimesharing gystem, the BASIC system
developed at Dartmouth Collegé and exﬁanded by General Electricvls).

Assume that each actife terminal reguire§ a 100-byte imput buffer._
a 100-byte output buffer, and approximately 50~bytes of status informa-—
tiqn. such as a list of'current treak characteras. Assume further that
the coumuwunications link controlled 64 terminmls. A possible implemen-
tationvmight be as follows:

Under these conditions.~it»would be necessary to dedicate Q-k words
(64 terminals x 64 wordu/terminai) for terminal data blocks. This im-
mense I/0 package would be‘ﬁ,part.of & LINK task. The LINK task would
have one main -function--when a-tgrminal signed on, the LINK woﬁld start
a subtask, unique to that terminal, by making a copy of a standard

TERMINAL task, and informing it, through the medium of the TCP, of the

153
location of the specific puffer block sllocated to that terminal. The
LINK task would also have the job of destroying a TERMINAL task after
| sign-off, and of communicating specific items of 1nformntion (such as
reports of aystem chenges) to the t-rminals when they were inactive.

The TERMINAL task would have many functions, including user re-
cognition, accounting,. and'recognitién of standard compmands. Yor some
atandard connands and functions, such as OLD, it would have the capabil-
ity of locating the user's ent*y in the system file, locating his
specific file therefrom, 8 nd £inding A specific program file therein.
For other functions, guch 8s RUN it might actuslly s tart a specific
subténk providing it with the terminai block information and an input
file. The extent of using subtasks for Varioun functions depends
greatly on their complexity. As only one function is in use at a time,
the.decision as to whether to domand page functions vithin 8 task or |
to start subtasks, ig somewhat hCadegic,vbeing-linited primarily by the
fact that the maximum size of'dfiaak is bounded by addreaé‘space limi-
tations. One main function of the TERMINAL task, howevef,'would be the
taking of appropriate action on each line of input. (as signaled by the
interrupt routine in the link task) performing the necensary operationa
" if & command, nnd‘tfansferring th; line to the appropfiatd file if not
(in a duplex system, the inferrupt routine would be charqu-iith‘the
echoing of input, end such operations as backspacing) By using large
buffers, the T"EMINAL task need not have a nmall access time, e.pécialurl
88 the BASIC eystem does not check syntax until execution time, and
therefore there is little p:oblem with fast fesponge vith‘diagno;tic

messages.

The implementation described is not the only podsible or best

154
implenentationr-eince terminel usage of this sort is not forseen at
our inatallation. little effort has been expended to work out all the
g'details required other than th- broad outline. to determine if JANUS
‘couId be used 1n auch an applicntion _ From the above discuosion it
should bedc;earvthat.it'can, agd may even be capable,of,hqhdling as
zmﬁny,aﬂlseiérei hundreddterminals at once;*fHohv;eiIdJeNUéiﬁould do -

. on many other factors, including the nctuﬁl 1mplementa-

nd-the efficiency of code dev-IOped (how much code could be

uoed;infv mmon to several termxnals) and is therefore open to e

'binterpretation..

