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ABSTRACT

A HADRONIC TRA’\'SPORT MODEL FOR RELATIVISTIC HEAVY ION
COLLISIONS

‘Bao-An Li

A hadronic transport model for relativistic bheavy ion collisions is developed by de-
ﬁving and solving numerically a coupled set of transport equations for the phase
space distribution functions of nucleons, Delta resonances and pions. Starting from
an effective hadronic Lagrangian density with minimal couplings between baryons
and mesons, we ﬁrst. derive coupled equations of motion for the ’densi'ty matrices of
nucleons, Delta resonances, and pi mesons as well as for the pion-baryon interaction
'vertex function. By trun‘cati‘ng at the level of two-body correlations a closed set

of equations of motion for the one body density matrix is obtained. A subsequent

Wigner transformation then leads to.a. tractable sets»oi?wfela;t-ivistic ‘transport-equa-..... -

tions for interacting nucleons, Delta resonances and pions. The transport equations
are then solved numerically w1th the test partlcle method to study relativistic heavy

ion collisions.

The validity of the model can be seen from bits ability of reproducing available
experimental' data, explaining experimental and theoretical puzzles, as well as its
predicting power for new phenomena. The experimentally observed concave shape of
the pion spectra in relativistic heavy ion collisions is well reproduced. The mecha-

nism that causes the concave shape of the pion spectra is found to be the different



contributions of the delta resonance produced during the early and the late stages
of the heavy ion collision and due to the energy dependence of the pion and delta
absorption cross sections. The dependence of the shape of the pion spectra on the
beam energj‘, the’target and projecfile mass, and the impact parameter is also stud-
ied. An approximate scaling function for the shape parameter of the pion spectra is
predicted. Another new phenomenon that the model is able to explain is the prefer-
ential emission of pions in asymmetric nucleus-nucleus collisions. It is found that the
preferential emission of ﬁjons away from the interaction zone towards the projectile
side in the transverse direction and longitudinal direction is due to the stronger pion

absorption by the heavier target spectator.
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Chapt'er 1
Introduction

In relativistic heavy ion collisions at beam energies from a few hundred MeV up to
about 2 GeV per nucleon, nuclear matter at high density and high temperature can
be formed transiently. From a theoretical standpoint, this energy region provides
interesting Cllallelxges. Sin;e the beam energy is comparable to the mass of the nu-
cleon, noﬁrelativistic approximations to the nuclear dynamics problem 'are'np longer
suitable. In addition, the energies are high enough to create baryonic excitations, and
mesonic degrees of freedom become important as well. However, the achieved energy
density is well below what is required to dissolve the hadrons into deconfined quarks

L4

and gluons.

Relativistic heavy ién collisions offer us a unique oppqrtunity to study the be-
~ haviour 'of nuclear matter at extreme conditions as well as the reaction dynamics of
finite-size hadrénié systems. rAspeCt-s_, of pa.rtlcula.rmterest are iaoth of microscopic
nature, such as the in-medium hadron-hadron interactions and the dispersion relation
of mesons in hot and dense matter, and macroscopic, such as the nuclear equation of

state, the transport properties (e.g. viscosity and heat conductivity), and the collec-

tive motion during the compression and decompression phase of the reaction.

A thorough understanding of these aspects has consequences which reach far be-



o

yond the scope of nuclear physics. The explosion mechanism of supernovae, the inte-
rior structure of neutron stars and the formation of matter during the early universe
strongly depends on the properties of hadronic matter over a wide range of densi-
ties and temperatures. For example, in the graﬁtational collapse of massive .stars
the matter density can reach 2-4 times the normal nuclear matter density[B'row89a.],
and the stiffness of the nuclear equation of state then determines whether a prompt

explosion of the supernova can take place.

The beam energy range considered here is below what is required to produce a
quark-gluon plasma[Qmat87, Qmat90], a state of matter in which the building blocks
of nucleons and mesons become deconfined and move in an extended volume. How-
ever, an understanding of the physics mentioned above is mandatory for any reliable
analysis of the ongoing experimental search for this new state of matter. This is be-
cause the created qu"a.rk¥gluon_ plasma would’ be sﬁirohﬁded by and ﬁnelly hadronize
to the “colder” highly compressed hadronic matter. The properties of the hot and
deﬁse hadronic matter must therefore be well understood so that particles emitted
from it will not be confused with those from the quark-gluon plasma[Kapu91] and

therefore clear signals for the formation of the quark-gluon plasma can be detected.

As for the reaction dynamics, re'lbativistic heavy ion collisions provide us the pos-
sxbnhty to study the evolution of hadronic matter towards the equilibrium, the details
~ of the reaction mechamsms "and how the ‘nuclear force acts in the hot and dense
hadronic environment. In pa.rtlcular partlcles produced in relatmstxc heavy ion colli-
sions are good probes of the reaction dynarnxcs and the elementa.ry partncle production

rnechamsm[CassQOa Cass90b MoseCDl]

However, the extract:on of the propertles of hot a,nd dense nuclea.r ‘matter from
_experlmental data is comphcated by the reactxon dynamxcs When we use the term

hot and dense nuclear matter, abount. whxch we would hke to ga,m mformatlon, we



refer to nuclear matter in equilibrium. However, the initial state of the reaction is far
from equilibrium. In momentum space two Fermi spheres are separated by the beam
- momentum. The hot and dense nuclear matter is formed transiently, its properties
can only be inferred from observables in the final state. Equilibrium situations can
only be formed in very low energy and possibly very high energy nuclear reactiouns.
At lower energies we find compound nuclear reactions where nucleon-nucleon colli-
sions are severly suppressed due to the Pauli blocking, and the mean field keeps the
nucleons together long enough to equilibrate. At high beam energies, on the con-
trary, frequent nucleon-nucleon collisions cause the thermalization whereas effects of
the mean field are small. However, in the energy range considered here, the Pauli
blocking of the collisions is neither strong enough to avoid particle emission during
the mean field equilibration time, nor is it weak enough to allow a sufficient number
of ‘nucleot}-p}.lc’leon chlisions te%h’appe_nr before the system desintegrates. Therefore,
the extraction of the properties of nuclear mattef at high density andvﬁemperature
strongly depends on our understanding _of the reaction dynamics. It is the complexity
involved in the reaction dynamics which makes the properties of nuclear matter under

extreme conditions extracted up to now far from being accurate.

Considerable amounts of experimental data have been accumulated during the
- past deea.de by observihg the products resulting from rela.tivistic heavy-ion collisions,
. ‘such as nucleons, light and heavy nuclear fragments, pions, dileptons, photons and
‘ ka.ons (see,‘ for example, refs. [HarWSW Rand90]). Yet rﬂany of the quantitative
mterpreta.tlons of these data remain rather uncertain, as the propertles of the hot and
dense matter extracted by comparing the expenmenta.l observatxons w1th theoretical
’ calculations va.ry con51derably with the specific model employed. Sorne properties
“extracted with dlfferent methods are even mutually conﬁlctmg One exa.mple for this

“

is the numencal value of the nuclear rompressxblhty Wthh varies grea.tly depending



on the model assumptions employed [Glen38].

The most successful models. in terms of reproducing a variety of the experimen-
. tal observables in intermediate-energy nuclear collisions, are the Boltzmann-Uhling-
Uehlingbeck model (BUU) [Bert33a, Sf6c86] and its relativistic extensions[Koli87.
Bl3t88], quantum molecular dynamics (QMD) [Aich91], and quantum-corrélétion dy-
namics [Cass90a, Cass90b]. These models are developed by numerically solving the
BUU transport equation either in its quantum version or in its relativistic exten-
sions. However, the BUU transport equation describes the time evolution of the
phase space distribution function for only one kind of fermions. The collision integral
in this equation was derived by assul;'ling particles can make elastic collisions only.
The dynamics in these models developed for heavy ion collisions at intermediate ener-
gies is therefore restricted to the baryonic level. Mesonic degrees of freedom enter via
* . nuclear potentials only. In felativfstic hegwy vion collisions at beam energies around
1 GeV/nucleon, however, about one half of the' nucleon-nucleon cross section is in-
elastic, mainly through pion production. Therefore, the energy range to which these
models can be successfully applied is limited to beam energies below a few hundred
MeV /nucleon, although meson production has been treated in a perturbative manner -
in the subthreshold regions [Cass90a, Mose91, Baue89]. Also within these models, one
has studied pion production by assuming that Delta resonances have lifetimes longer
than the nuclear reaction tlme, this is the so-called Frozen Delta. Approxn’natlon
The number of Deltas at the end of the ca.lculatlon then is equa.ted to the total pion

multiplicity[Bert84].

Another approach which has been successfully applied to high-energy nucleus-
nucleus collisions is to treat all nucleons as essentially free particles interacting with
each other with their free nucleon-nucleon cross sections. Intranuclear cascade models

[Cugn81, Cugn82, Rand79, Cugn88] are based on this approach. Here, pion produc-



(1)

tion and reabsorption is included into the dynamical process through the formation
and decay of A resonances. These models were able to calculate properly the overall
features of nuclear equilibration [Rand79] and pion production [Cugn82, Kita86] in
heavy-ion collisibns with beam energies around 1 GeV per ﬁucleon. Although they
have some shortcomings when quantitatively compared to experimental dita, the

intranuclear cascade models have been remarkably successful.

However, in this energy range the long range nucleon-nucleon interactions are still
sufficiently significant that the particles are not free but are moving in a varying
mean field. Recent computer simulations of relativistic heavy-ion collisions{Wolf90,
Xion90a, Liba91a] have extended the ortiginal BUU model to contain pion production
and reabsorption in the dynamical process. They indicate that it is important to
include the mesonic degrees of freedom explicitly, while keeping the mean field, in
order to explain the dilepton production data [Roch88] and quantitative aspects of
pion spectra such as the two-temperature shap.e observed at the BEVALAC [Odyn88,
~ Chas90].

Nevertlieless, a complete set of transport equations which govern the dynamical
process in the hadronic ma.tte;t was not available until recently. With this situation in
mind, several groups have set out to provide a derivation of such transport equations
[Siem89, Sch689, Davidl, Bote90]. These attempts, however, are still at an early
stige, and a complete numerical realization is not available as of yet. o

It is the p‘urpos“e of this thesis to presént a complete: hadronic tra.nsport model
for relativistic heavy ion collisions[Liba9la, Baue9la, Liba91b';>Wlb‘r91a, Liba9ic,
Baue91b]. The framework for describing nuclear reactions is extended from the baryon
dynémics level to the hadron dynamics level. The model provides a framework for
the 'th‘et;retical'ﬁnderétanding of the nuclear physics phenomena observed, expected

and unexpected, in the energy range from a few hundred MeV/nucleon to a few



GeV /nucleon.
The thesis is organized as follows.

By starting fr_obm a hadronic Lagrangian density we derive in Chapter 2 a cou-
pled set of transport equations for the phase space distribution functions of nucleons,
deltas, and pions, which are the main constituents of hadronic matter formed in rel-
ativistic nuclear collisions. These equations reflect the physics of relativistic nuclear
collisions in an instructive manner. Moreover, an approximate solution of the equa-
tions is possible with present computers (Chapter 3). Our derivation is rather similar
to the approach taken in ref. [Waug89,,‘Ca5590c], but we go beyond that work by in-
cluding both A resonances and dynamical pions, which are expected to be significant

at relativistic energies.

Chapter 3 is devoted to the numerical realization of the hadronic transport model.
* We discuss in detail how the transport equations are solved numerically and present - -

inputs of the model.
In Chapter 4 we apply our model to study the dynamics of pion production.

In Chapter 5 we study. the concave shape of the pion spectra in relativistic heavy
ion collisions. The mechanism that causes the concave shape of the pion spectra is
found to be the different contributions of the delta resonance produced during the
early and the late stage of the heavy ion collisions and the energy dépen_dence of the

pion and delta reabsorption cross sections.

Chapter 6 is devoted to the study of the preferential emission of pions in asym-
metric nucleus-nucleus collisions. The experimentaliy observed preferential emission
of pions away from the interaction zone towards the projectile side in the transverse
direction is found to be due to the stronger pion reabsorption by the heavier target

spectator.



We will summarize in Chapter 7.



Chapter 2

Relativistic Transport Equations
for Hadronic Matter

In this chapter, we derive a coupled set of transport equations for the phase space
distribution functions of nucleons, baryon resonances and pions, and establish no-
tations for succeeding chapters. The transport equations furnish a computationally
manageable scheme for treating the dynamics of the interacting baryoﬁs an_d pions,

reducing the many-body problem to a set of coupled one-body problems.

First, in section 1, we construct the Hamiltonian for the hadronic matter, starting
from the effective Lagrangian density containing free fields of nucleons, deltas, -
o-, w- and T-mesons, as.well as. the' minimum: coupling-between:them:: In sectien-:-
2 we derive equations of motion for the one-body density matrix of nucleons, delta
resonances and pions. Subsequently, in section 3, we make Wigner transformations
of these eq\vla.tions,Ain order to obt#in a_éet of transport equations for the phase-space
distribution functions of baryons and pions. Thesé equations conta.iﬁ a Vlasov term of

the usual form and several collision terms, in analogy with the standard Boltzmann-

Uehling-Uhlenbeck equation[Bert88a].



9

2.1 Model for hadronic matter

This section introduces the model description of hadronic matter in terms of inter-
acting baryonic and mesonic fields. Throughout the developments, we employ ‘units

in which A and c are unity.
2.1.1 Model Lagrangian

For nuclear collisions at beam energies of up to around one GeV per nucleon, the
main baryonic excitation is the A(1236) resonance. Higher resonances have negli-
gible excitation functions. Therefore, a first step towards a complete description of
hadronic matter should include nucleons and A resonances, in addition to 7, o and
w mesons. Accordingly, we adopt a model hadronic Lagrangian density .involving the
baryon fields N(z) and A¥(z), the meson fields =(z), o(z), and w*(z), and their
| interactidns in the minimal coupling scheme comfnéhiy uéed fof rela,t.ivistic Hadronic

systems [Wang89, Cass90c, Wlbr91a),
L(z) = Lo%z) + L™(z) , (2.1)

;vhere £° and £™ are-the free-field and-interaction- Lagrangian- densities; ‘respec:-
tively. We have used z to denote the Minkowski four-vector (¢,r). Moreover, the free
Lagrangian density is | |
L) = F)(ird, - mu)N(z) + Bul)(i29, - Ma)A"(2)
+ 310m(e) - 9*n(a) = min(e) - w(@)] | (22
b Moo -miaE] |
- -.liF,w(z)F“"(z) + %miwy(z)Q“(z) ,
and the interaction Lagrangian density is

Li%z) = —igan ()15t N(z) - 7(z) + gonn N(2) N(2)o(z)
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— gunNN(2)7*N(z)wu(z)
+ gena[BL ()T N(z) - 07 (z) + N(z)TtA%(z) - 8,7(z))
 igeas BT A ) w(z) + goasFu(2) M%) 2)

- gwéﬁxu(x)7u‘$““)u(£) ) (23)

with F,, = d,w, — Qw,. The nucleon field N(z) is an isospinor, the A field is
described by the Rarita-Schwinger formalism[Rari41] as a four-vector with each com-
ponent as an isospinor. The pion field m(z) is an isovector and a Minkowski pseudo-
scalar. Furthermore, the sigma field o(z) is a scalar in both Minkowski and isospin

space, whereas the omega field w,(z) is a2 Minkowski vector and an isoscalar.

It is convenient to employ the isospin generators T, T and ¢ which act on the

isospinor N(z), the isospinor A(z), and the isovector #(z), respectively. They satisfy

T=to ;l;‘r ' | S | (2.4)
and
!
_ 1 forp
o= { -1 forn ' | (25)
1 for n*
ta = 0 forx® (2.6)
-1 for 7~

It is also convenient to employ the isospin transition Qpérator T =(T:,7,7.),asin
refs. [Brow75, Oset82]. The matrix representation of 7, p=1, 0, -1, can be obtained
from the following equation,

(Drtgms = 3 (%Mrllk%rri,)(t")"; o (2.7)

k=-1
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where t£! = (1, +1,0)/v/?2 and ° = (0,0.1), and only k = M1 — m. contributes. The

above two expressions imply

H ooy (o0 0 00 |
0 0 o : 0
T, = e | ,T.= , To= 3 : :
*=1o o v I R I Y/ - (28)
0 0 0 71; 0 0

2.1.2 Equations of motion for the hadron fields

The equations of motion for the hadron fields can be obtained from the Lagrangian

density given in equations (2.1-2.3) by means of the Euler-Lagrange equations. The

result is
(79, —mn)N(z) = ig-NNT(Z) - 15T N(2) = gonno(z)N(z) (2.9)
| + gunnwu (@) N(z) = gena THAM(z) - 8,70(z)
(148, — Ma)A%(z) = igranm(z) - 1sTAX(z) - granc(c)A%() (2.10)
+ guAAwu(f)‘Y"A"(x) - ngAa"ﬂ’(z) -TN(z),
(848, + m2)a(z) = gonn N (2)N(2) + goaa Bu(2)A%(z) , (2.11)
(8,0 + mi)m(z) = —igennN(2)1TN(2) — igranBu(z) 1T A(z)

- g«zm[a“(_A-u(ﬂv)TlY(?))_+3u,(7\’f(?)'1",‘é_“(z))], - (212)

a“F'::’,, + mzw,(z) = ngN-N.(z)'YuN('z) + guAAKu(z)'qu“(z) . (2.13)
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The above set of equations form a complete closed set of equations for the evo-
lution of the various hadronic fields considered. In principle, the solution of these
equations can be used to describe nuclear reactions. However, due to computer lim-
itations, their s.olutiOn is presently not within tea.ch. An alternative way is to solve
transport equations for the hadron fields. For the purpose of deriving the transport
equations within the framework of the density matrix formalism we construct the

model Hamiltonian for hadronic matter in the next subsection.

2.1.3 Hamiltonian for hadronic matter

The main role of the meson fields in the Lagrangian (2.1) is to mediate the strong
interaction between the baryons. This is strictly true for the fields o(z) and w,(z)
which have no manifestations in terms of real ‘physical particles. Therefore, these
fields can be regarded as representing virtual mesons, and they can be eliminated
in exchange for effective potentxals acting among the baryons. However, the pion
field plays a dual role; not only can the pion mediate interactions (and in this role
it acts as a virtual meson, similar to ¢ and w) bu.t it can also be manifested as
" a real physical particle that can be observed. - Thus, the pion field is somewhat
akin to the electromagnetic field; the transverse component of the electromagnetic
field represents real photons while the longitudinal component mediates the Coulomb

interaction between charged pa.fticl_es.

" Inorder to construct an effective Ha»niiltenian for hadronic ma.fter, we eliminate all
* virtual meson fields, leaving only the real pion, in addition to the baryons, since real
particles are amenable to numerical simula.tion' Of course, such a separation can not
be made in an exa.ct manner, beca.use the pion has a ﬁmt.e mass, in contradlstmctlon
to the photon in QED Nevertheless, a useful a.pprox1rnate treatment can be made,

as we shall now describe.
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The elimination of the virtual meson fields can be accomplished by means of the
Green’s function technique. However, the equation of motion for the baryon fields
and pion field obta.ined in this way will be non-local in space and time. This is the
price paid for the elimination of virtual meson ﬁelds. Since we wiﬁh to formulate a
transport theory within the density-matrix framework, non-locality in time is incon-
venient. Fortunately, meson retardation effects are not significant in the energy range
considered here. Consequently, the instantaneous meson exchange approximation can
be xﬁa.de to establish time locality and thus make the equations of motion amenable
to the density-matrix treatment [Wang85, Cass90b, Wang89, Cass90c, Webe90]. For
the o and w mesons this approximation seems to be well justified. The pion, however,
has a smaller mass, our approximation has to be used with caution. In terms of the
meson propogator the instantaneous meson exchange approximation can be expressed

as
G(z - z') = G(r — v, t)§(t - t'). (2.14)

We have to keep in mind, however, that by using the instantaneous meson exchange
approximation, we give up relativistic covariance. With this approximation, an effec-

tive Hamiltonian for hadronic matter can be constructed as[Wlbr9la]
A =B+ H 4+ V. | | | (2.15)

The effective baryon Hamiltonian A, the Hamiltonian for the real pion A7, and the

baryon-pion interaction V* are

A = /tbf(zr)E(z’)w(:i)drw' e ST (2.16)

LW eV - mebeindr,

A = %/[1’;—(1) c#(z) + Un(z) - Un(z) + min(z) w(z))dr, . (2.17)
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and
P = [ (@07 @b()dr (213)
where
; N |
¥(z) = (ﬁ:g; ) = ( Ag; ) (2.19)
and
N(zl)N(zl)
A(z2)A(z1)

The baryon energy operator E of eq. (2.16) can be written as

. [ En(z) 0 S | |
E(w)—( 0 EA(z)) , (2.21)
where
En(z) = ai(—i0) + vomn (2.22)
Ea(z) = au(=i0) +70Ma o (223)

and o'-z,-'="‘yo7‘.- and o, = v-yo‘y'o = 1. Furthermore, U* and V(z, — ;) are defined as

follows,
O"(e)=Up-m(z), = - - (2.24)

" with

_ ": y UNN UNA ) e R RS TS TN 5 RIS )
.= , . 2.25)
' ( Uav Uan)’ . . ' (



Vlo

Unn = igenn1omT » Una = —g2va0T', , (2.26)

UAN = —g-Na%7T 0", .thA = igraa707sT 00 (2.27)
and

V(z1 = 22) = dijut » 1,J, Ky = N A. | (2.28)

Keeping in mind that U, is a matrix of isovectors, we can omit the boldface in the

following derivations without causing any confusion.

The equations of motion for the baryon fields and pion fields can be derived
from the effective hadronic Hamiltonian under the instantaneous meson exchange

approximation by virtue of the following Heisenberg equations,

oN

z—"[Hem N], : . (2.29)
= (A, &%), N | (2.30)
2 = (g ) (231)

The salient features of the hadronic Hamiltanion (eq. (2.15)) and the above Heisenberg
equations are 1) they have structure similar to those of non-relativistic quantum
many-body theory, and, as we shall see below, 2) tﬁey can be cast into density-
- matrix form, whxch when augmented thh correlatlon dynamxcs is sultable for a

non-perturba.txve treatment of quantum many- body problems

2.2 Density matrix treatment .

In this section we shall reformulate the hadron dynamics in terms of the density
matrix. Within the two-body correlation approximation, we obtain a set of coupled

equations of motion for the one-body density niatx;ix of baryons and pions.
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2.2.1 Density operators

The n-body baryon density operator py is defined as

P12, 1,2, o'y = 11 )N (2) - 0T (0" (n) - - - (1), ©(2.32)
with
n=z,=(trem), n = ! = (t,7,,m;), (2.33)

where m,, is the spin-isospin quantum number and we have used that ¢’ = ¢ due to
the instantaneous approximation (2.14). The n-body density matrix is defined as the

expectation value of j,, namely

pn(1,2,---n;l',‘?.',-~-n")'=(ﬁn(l,é,---n;1',2'---n')). : o (2.34)

The baryon number operator is defined as

N = Tri'(1)9(1) = Try NHL)N(L) + TnAL(1)A(1) . (2.35)
It is straightforward to show that[Wlbr91la]
: [N; 1A(1)1 = (), (Bl =v'), A=A (230)

From eqs. (2.32,2.35,2.36) we obtain the following reduction relations

X 1 L oo 1
Pn = 3 Tl'(n+1)Pn+1 = Tf(n+1)Pn+1

2 2.37

To obtain the correlation dynamics the key step is to separate out many-body

correlations from the reduced density matrices. This can be realized by a non-linear
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transformation [Wang33],

(1,2, 01,2 \n) (2.38)

= AS, an_p(l,‘Z,f?-.n —pl 2 (n—p))
p=1 ’
Xpp(n—=p+1,---,ni(n=p+1),--- )+ Ca(1,2,---.n;1',2,-..,n') ,
where the operation AS, should be understood as follows. | The operator A denotes
the antisymmetrization operation among those of the variables (1,2,---,n) that refer
to identical particies. (Thus, labels referring to nucleons are antisymmetrized sepa-
rately from those referring to deltas.) Furthermore, the subsequent operation by S
symmetrizes among variable pairs (1,1'),---,(n,n’) of identical particles. The com-
bined operation AS, then acts among n particles, and the repeated terms should
be omitted. Thus, for the one-particle density we have p = p; = C,, while the

two-particle density p; is given by

mLEILZ) = ASp(L1)p(2?)+C(L212) (2.39)

= p(L:1)p(%2) - p(L;2)p(2: 1) + Co(1, 25 1',2).

The most common approximations in quantum many-body theory can be obtained by
making the lowest order truncation. The simplest truncation approximation assumes
that all the many-body correlations vanish and leads to the mean-field approximation.
The next ord_er truncation, namely, C; # 0 and C,hs2 = 0 leads to the two-body
correlation dynomics. In the following we restrict ourself to the two-body cor}elation
dynéinics. -

2.2. 2 Equation of motlon for baryons

By usxng of the basxc anticommutation relatxon among ¥ and ¥+ we obtain the

equatlon of motlon for the n- body den51ty operator, o

i =[I:I"(n),ﬁ,.]+Tr(n+1)[V(n+1),ﬁn+1]- - (2.40)



13

Here H"(n) can be written as.
=f:l[1;f( + 0 ]+Z<:v i) )+Z‘l}”'(i). (2.41)
i= i<y i=
where H(n) is the single particle Hamilﬁonian
Hn) = iE )+Zv(z i) | " (2.42)
i=1 i<
and the potential U™ (z) is given by eqs. (2.24-2.27). The operator V(n+1) appearing

in eq. (2.40) is defined as
V(n+1) =szn+l . : (2.43)

The equation of motion for p, can then be obtained by taking the expectation

value of the operator g,

l’agptl = [A(n), pu] + Tr(ﬁ+1)[V(n + l),p,,.;.l] + ([i U"(i)'ﬁn]> X (2.44)
=1

Slnce g "(z) contains the pion fields, the last term in the above equation depends on

the quantity

(ﬁn(zl» T2y Tny .1."1, 1’27 te :t:‘)ﬂ'(y)) ’ (245)

which contain the irreducible vertices associated with the pion-baryon interactions.
'At present, we are not able to treat these in general. Nevertheless, we do find a way

to include the lowest-order vertex, which suffices for our present purpose.

Truncating eq. (2.44) at the second order, i.e. assuming Cy>2 = 0, we obtain

2 (el + T Dl + 0 T], (249
z% = [EQ1) + E@2) +9(1, 2) p2]+Tr3[v (1,3) + o( 2 3) p3)

+ (071 + 0" (2).82)) (2.47)
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where the baryon-pion vertex function I'(z.y.z’) is an isovector and it is defined as
M(z,y,2") = (¥ )w(y)v()) . (2.18)

Noticing that in the two-body correlation approximation C3 = 0 and therefore

p2 = ASipp) +Ca, (2.49)

ps = ASi(ppp +pCa) , (2.50)

the equations of motion, egs. (2.46, 2.47), become a coupled set of equations of motion

for p and C;. Explicitly, C, satisfies

.0C,
R

5 = [EQ(1) + £(2) + 9(1,2), Ca] + [6(1,2), AS0p]

+ Tra9(1,3) + 5(2,3), ASa(pep + pC2)L (25

where [-]; means linked terms in which any multi-variable functions can not be fac-

torized according to particle va.riables[WathS].

To further simplify the equation of motion for the one-body baryon density matrix
eq. (2.46) we need to solve eq. (2.51) for Cg, this can be done by closely following
the time-dependent G-matrix theory of ref.[Cass88, Wang89]. As we have shown.in
ref.[WIbr91a] this leads to

p2 = (L + 31 E)ouaG( BN ASap(1)p(2))[1 + GH(E)Bragly(E)]. (2.52)
Whéré
u(B) = [E-hM)-h@)+id™, - (2.59)
i) = E@+0G, " (2.54)
OG) = Traewd(@3)(1-Pa)p33), (2.55)

by = 1-Troee(Pa+Pua)p(3). (2.56)
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Here the operator £;; interchanges the coordinates of the identical particles i and j;

for non-identical particles it is zero. The G-matrix obeys the equation
G(E) = ©+ 9g12(E)012G(E). - (2.57)

From the above relations we can express the second term on the right hand side of

eq. (2.46) as
Tra[d, p2] = [Uur(G), o] + Ly | (2.58)

where the mean field Uy relates to the real part of the G-matrix and the baryon-

baryon collision term I}, relates to the imaginary part of the G-matrix

Unrp = TroRe(Gpo), (2.59)
- and .
I:b = -iTrg[iGTéuGIm(gm)on - ipgolm(glg)éféué )
+ GpaGlongl, - §12012Gp2G'] . (2.60)

‘The equation of motion for the one-body baryon density matrix then reduces to

Bp
zg‘t)-v = (Unr(G), o) + o + It (2.61)

Qhere the bafyon-pion collision term I}, is given by
I, =0T . (2.62)
~ 2.2.3 Equation of motion for pions

In order to close the equations of motion for baryons, it is necessary to determine the
equations of motion for the pion density matrix and for the pion-baryon interaction

vertex function T'.
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We start from the equation of motion for the pion field which can be written as

(040, + m7)m(z) = —ip(zz) , (2.63)
where |

o= (G 82 )= (2 5). ey
with

ANN = igNNTOYST » UNa = geNa 0T, , (2.65)

Uany = genaT0T 0% | Bas = igranvorsTéu, - ‘ (2.66)

Similarly to U, @ is a matrix of isovectors, and we omit the boldface in the following.
Eq-. (2.63) is the Klein-Gordon equation for the pion field, w‘hich contains the second-
_ order time» derivaﬁive. Therefore this equation is not a convehient: sta.rting point for
the derivation of the equation of motion for the pion density matrix. In order to

linearize the equation, we find the following identity useful,
52

9,0* +m?: = 5 Vii+m? _ _ (2.67)

= - (i%+ \/—V'~’+m,’,) (i%; NEZ +m3)' )

If this relation is combined with the free-particle approximation to the Klein-Gordon

operator, namely

.0 o o
in J-Vi+mi=E,, - (2.68)

the Klein-Gordon equation for the pion can be’apprbxir'“njatea by the following two

__equations,

i(z) = Em(z)+2;: aplzz), - e L (2.69)

# = —En(z) - ap(zz) . R B (2.70)



o
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The pion density operator is defined as

pr(z; ") = w(z') ®(z) . (2.71)

The Wigner function for the pions, f.(7.p, 1), can be obtained from the density matrix

pr(z:2') by means of a Fourier transformation (see eq. (2.76) in sect. 2.3.1),

8 8 -iPD-8 fﬂ'(l‘p?t) V -
-_ -—— — ' T ————————
/Tr p,,(r+2,r 2)e p ds.- B (2.72)

The associated equation of motion for j, is readily obtained from egs. (2.69,2.70)

and so is the expectation value of py,

8 - : ‘
i = [Eropd] + I, ' (2.73)
where
" _ 1 _1_1- . . . )
Iy = 2[E”u,l‘] . (2.74)

The equation of motion for the pion-baryon interaction vertex operator [' can be
obtained by using of the Heisenberg equation. It is shown that an analytical solution

for the baryon-pion interaction vertex can be obtained in the two-body approximation

as[Wlbr91a}

) ' Fre (.t 1
R @)=V

f‘(:i,y,:c') = —z1r6( (:z:)+E

Jie iy . (2.75)

l‘w 3 '
+ U2 - UG ))p:(

2.3 Transport "eqUati'ohs. for hadfénié matter

It should in prmcxple be poss1ble to solve equa.nons (2.61 and 2.73) numerlcally by, for

. example expansmn on a basis of TDHF wave functxons Thls was done by Tohyama
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et al.[Gong90] for the nucleonic systems. This approach, however, is severely limited
by the available computing resources and has only lent itself to very few exploratory

studies and comparisons with experimental observables.

A more tractable procedure is to introduce the Wigher traﬁsformation of the
density matrix. Within a semiclassical approximation, numerical solutions of the
equations of motion for the Wigner transform can be obtained by utilizing the test-
particle method. For a purely baryonic system this approach was introduced on
‘a mean field level by Wong{Wong82] and later utilized to study nuclear transport

phenomena by Bertsch et al.[Bert84, Bert88a).

We follow this latter approach and perform the Wigner transformation of our

equations of motion in this section.

2.3.1 The Wigner transformations

The Wigner transformations for the baryon and pion density matrices are

filr,pyt) = /p T -% m') eP-%ds | | (2.76)
fa(r,kyt) = / p«(r_+ g,m;r - g,m’) e"P8ds (2.77)

where the caret is used to remind of the fact that these quantities are still matrices

with respect to the spin-isospin labels m and m’. They can be expanded as

' wage \12 _ _ .
f,,(r p,t) = Z,faaf(xp (—1(‘-1)2{—()-) uL,(H)ua(H) , . (2.78)
k) = foslk) (———‘——)mv* (tyua(k) (219)
" = G N By Eg(R) ) - TR '

,_‘ where tbe summatlon is taken over all poss1ble smgle partxcle sta.tes Here vg is the

 isospinor of the pion, ua(l'l) is the spm-lsospmor of the baryon whlch ha.s the effective
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mass M and the momentum II in accordance with the fact that the baryons are
moving in scalar and vector fields. Furthermore, a = (b, m,,m.) is used to specify
quantum numbers of the baryon, where b = N or A, and m,/m; is the spin/isospin

of the baryon. These spinors sétisfy the following orthonormality conditions

(ta(Mua(I)) = bao E(TD/ M (2.80)

and
(va(k)lvg:(k)) = 8psr - (2.81)

In the above equations we have used p = (E, P) for the four-momentum of baryons
and k = (E,, k) for that of pions. The effective momentum and mass of the baryon

are related to the vector and scalar fields through
M=p, _.Uu , | o | (28
M, =M.+U,, (2.83)
and the energy of the baryon in the nuclear medium is given by
E: = (ILIT + MZ)V2 . | (2.84)
2.3.2 The Vlasov tefms |
In order to bring out the physics of the kinetic ;quations for the lhadron density

matrices more clearly, it is instructive to compare.their form with the standard BUU

equation. For this purpose, it is useful to recast our equations of motion on the form

i%‘f —(E+UOnrp) = uthe, | (2.85)

Qo (g = 0. (286)

ot
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The left-hand sides of these two equations are the Vlasov terms, corresponding to the
collisionless one-body propagation. These terms will be rewritten in the usual form
below. The mean field Uyr in these equations has been assumed to only contain

scalar and vector components. It can therefore be deéomposed as
Unr(G) = —a,U*(z) + 10Ui(2) , (2.87)

with a, = (9;,Y07) = (ai, 1). Considering only the diagonal elements of p and p,

in isospin space, as is usually done, we may now perform a Wigner transformation

of eqs. (2.85, 2.86) and subsequently take the trace in spin space. Employing the

semi-classical limit for the mean-field terms, the following equations of motion for
the baryon and pion phase space distributions are then obtained{Wibr91a), with the

Vlasov terms in an explicit form

8fi(zp) I o

T e, ‘;' i Mb‘ z H '
It + E;(P) vx fb(xp) E;(P) vt U“(z)fob(zp) + E;(p)v' Uavpfb(zp)
= I(2p) + Ln(=p) (2:88)

for the particular state b of the baryon. For any charge state of the pion we have

Ofplck) kYT
) 4 k= ey, (2.89)

where the collision terms are given by

Ih(zp) = =i [ Telly(z, 12", 1) e PTar, (290
L (zp) = —i /T,r!:,(z, L) e PTdr, | 4 (2.91)
and »

I7(zk) = —i / Tl (z, 2, V) e FTar . (2.92)
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2.3.3 The baryon-baryon collision terms

The collision term I, represent the rate of change of the baryon phase-space dis-
tribution function as a result of baryon-baryon collisions. To calculate the collision
term, we use the spin-isospinor u, to represent a baryon; they satisfy the orthonor;
mality relation eq. (2.80). In this notation, the different NV and A charge st;t.es can
be considered as identical particles with different intrinsic quantum numbers a. The
two-body density matrix po=ASp(1)p(2) can then be antisymmetrized even between
N and A. The interactions used here does not contain the exchange term between N
and A, and so the exchange term of the. matrix elements of the interaction between N
and A automatically vanishes, due to the above orthonormality relations. Therefore,
the spurious terms in pyo due to the antisymmetrization between N and A have no
contribution to the collision terms I},. With this in mind, the calcula.tlon of It is

 straightforward, although lengthy. The final result 1s[Wlbr91a]

o Mz MM,
Ibb('tp) = (27\’)9 alazzaz mb/_//dpldp2dp3 E;IEZQE.

6(E;(p) + E;, (m) — E5,(p2) — E,(p3))6(P + Py — P2 — Pa)
((paspres|Glmanpsas)} - (2.93).
[{{P2e2psas|Glpaspran)) — ((Praapacs|Glpraipas))]

. [faz(zpz)fas(xps)fa,(sz )fs(zp) — Ta,(23)243(zps)fa1(zm)fb(zp)l :

where

{({pasprny |G|P2012P303)) o : (2.94)

J (s ()Gl s ) s T

The collision term I}, respects the Pauli exclusion principle as shown in the appearance

of fo(zp) = 1 — fa(zp) and fy(zp) = 1 - fo(zp). The effective interaction 9, and
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hence G, contains the p & n and N — A transition operators, and therefore all the
possible collision processes are included in this collision integral. The above baryon
collision term is of the same form as the NV collision term appearing in the standard

BUU equations, but generalized to accommodate the four A states of the baryon.
2.3.4 The baryon-pion collision terms

In this section we calculate the rate of change of the hadron phase-space distribution
function due to baryon-pion interactions. Let us first consider I},. It is given by

It (1,1) = (I},(11")), where the collision operator is
BB(11) = Udo)l(z,2,2') - D(z.',2)0a (). (2.95)

Taking the aw)era.ge of the collision operator is tedious and the details of this process
can be found in Appendlx A. As in the BUU equa.tlon the collision terms can be
sepa.ra.ted mto gam terms a.nd loss terms. (The same is true for [ ,,.) The phys-
~ ical processes represented by the gain and loss terms of I}, are shown in Fig.2.1.

Explicitly,

It (7, pyt) = Pua(ap) — Foua(2p) - | C(2.96)

The gain term is given by

.;n(zp)' o (2.97) -

// "a'P a(p’ )u(k)“(l’”“ar) (uaplit(k)|uatp)
3(27“)6 E3( P)Ea'(P’ ) E3(k)

: [f,(wk)fa'(zp)fa(zp)5(Ea(P)+E,r(k)— (P))5(P -k-p)

+f1r(zk)fa (zp' )fb(zp)5(Eb(p) El(k )- (p))ﬁ(p +k —p)] dp'dk ,
whiié the loss ter;n is
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The collision term I},

Filzp) | Aep)  Felzk)

gainﬁ +

fulzp) -~ frlzk) R )

fo(zp') f(zk) for(zp')

loss:

\
\

Figure 2.1: Diagrammatic representation of the gain and loss terms responsible for
changing the baryon phase-space distribution fs(z,p) as a result of baryon-pion colli-
sions. The terms on the left pertain to A resonances, b = A, while those on the right

are for nucleons, b=N. . PR
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L) // MM (ugrpli(p Ji(k)i(p)luap) - (u:rph_.‘.(k)lua'l?')
* e 4 ES(P)EG (D) E3 (k)
+ [fe(zk)f (20 fo(zP)E(ES () + Ex(k) ~ EL(P))é(P' - k - p)

+ /o 2k) for(2p) fo(zp)6(E (P) = En(k) = EL())8(P' + k - P)]Iﬂlp'd’c -

Here f,(zk) = 1 + fr(zk), and the subscript 7 has been used to specify the isospin
of the pion. These are the general expressions, and the matrix elements in these
equations assure that only physicé.l processes can happen. For example, only when
b specifies a nucleon do the first terms in these two equations contribute, while only
when b spéciﬁes a A will the second terms contribute. Each of the matrix elements is
a vector in spin-isospin space, as dictated by the underlined quantities, and the dot

signifies a contraction with respect to these labels.

We now turn to the collision term [},. It is given by I}, = ( Ir), where the collision

operator is

ifp(a:2) = %{ Ewl(z)a(z)l‘“(z,z',z) - P&’ 2, i) Eﬁ:z,)} . (2.99)
It can also be separated int6 gain terms and loss terms,
Lo ko t) = I3u(2k) = Ry (2F) (2.100)

"»‘:'The physical processes represented by the gain and loss term have been deplcted in

Fig.2.2. Explxcxtly,

L MM
...n(zk) f 16(2#)52/ / E-(pwn(m

{uarp |y(k)u(p +p)? l“ap) (ua,,|u(k)|ua p')
EX(k)

§(E(p') — E+(k) — Ea(p)) 6(p' = p— k)
Fo(zk) fur(zp) f o(zp) dpdp’ , (2.101)
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The collision term [},

fa(zp) fr(zk)
/
/

gain:

f-a;’k(ipl)

loss:

\
N )

JAC I AT

Figure 2.2: Diagrammatic representation of the gain and loss terms responsible for
changing the pion phase-space distribution fr(z.k) as a result of baryon-pion colli-

Soooslons. . - o
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and

* . ML
Iloss(‘rk) _‘ 16(27r)6§v//E.'\p)E;’(pl)

a

(ua’p’lg(k)a(}’ + P’)2!Uap) . (uaplg(k)‘ua'p‘)

Ei(k)
§(Ew(p') = Ex(k) = Ea(p)) 8(p' =P — k)
frlzk) fa(zp) for(zp') dpdp’. (2.102)

It should be noted that the fermion suppression factors f, and the boson enhancement
factors f, are included in these coilision terms automatically and follow from our

derivation.

2.3.5 Transport equations

In the previous section, we have given the s_emicia.ssical equations of motion, egs. (2.88,
2.89), for the phaséospace distributions fb(ip) and f.(zp) for baryons (nucleons and
deltas) and 7 mesons, respectively. The collision terms appearing in these equations
of motion are presented in eq. (2.93) for baryon-baryon collisions, and in egs. (2.97.
2.98) and (2.101, 2.102) for bion-baryon collisions. Together, these equations form
a complete set of coupled transport equations for nucleons, & resonances, and =
mesons, including all mé,ny-particle correlations up to and including the two-body
level. Three-body and higher correlations are neglected. This limits the applicability
of our theory to heavy-ion collisions up to only a few GeV per nucleon. For higher

energies, three- and more-particle effects are expected to play a more significant role

© [Dani0]. -
In the following chapters, we will not study the full eqﬁa.tion with both scalar and
vector mean field potentials. Rather we wish to focus on the dynamics induced by

the coupled collision terms for pions, Deltas and nucleons. For this purpose, we limit
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ourselves to the case of the presence of only a zeroth component of the vector mean
field potential to be able to compare with previous approaches.

With this assurnption, eq. (2:88). the transport equation for the particular state

b of the baryon (nucleon or Delta) leads to

afbégt) f;’ ¥, folzp) = V.U(2) - Ty folzp) = Li(zp) + Liu(zp). (2.103)
b .

For the pion we still have

of-(zk) k.

. = I;.(zk) . 2.1
g Velelek) = Balek) (2.104)

The collision terms can be written in more compact forms by using of four-dimensional

delta functions and introducing the square of the transition matrix element

Iy(zp) = : R (2.105)
LWb Ma‘ Mazh a3y E
W b} 1 *
T alag 'm.b / -/ / Eb Em Eaz E bb(plal p202 p?QS pab)

[fa,(zm)fas(xps)fa,(sz 175(2P) = Fay(22) oy (2p3) far (zP1) fi(2P)] -

6“)(P+P1 -p2- PS)( dPldpzdps

Where W}, (p1ai1, p20a2, p3cs, pas) is the square of the transition matrix element in
baryon-ba.ryon' collisions, whicl_l determines the tra.nsition rate. Expliciqu, it is given
by
Wi (pran, P2acz, p3as, pes) = {{paspron|Glpaczpaca)) | (2.106)
[((P:azpsaslélpabpif—’a)}“- ((P2e2psas|Glprcnpas))].

. -Since we are not pursuing a first principle l;heory at the present stage, the effect of the

~ . transition matrix-element will be simulated by using of the free spa,ce cross sections

-as we will discuss in detail in the next chapter. In thls respect we ta.ke the same path
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as all other presently available relativistic dvnamical models. The collision terms due

to baryon-pion interactions can be rewritten as

If,(xp) =

MM,
//WWM(QP tk.ap) -

ra'm?b

{{(1 + fo(zk)) furl 2D Fo(2D) = fr(zk)For(zD)) fi(zp)I6 W (P — k ~p)  (2.107)
+{fr(zk) farlzD ) Fo(zp) = (1 + fo(zk)) Four(zp') fo(zp))6W (P + &k - p)} -

: 1 ,

and
I (zk) =
MMy
52 | Ep gy Veeramh)

[(1+f,r(1:k))fa ::p)fa( fr(.tk fa(l'pf ( )]

50 - p— k>ﬁ dpdp. | | (2.108)

W .(a'p', vk, ap) and PVb’:,(ap, a’ p', vk) are the square of the transition matrix element
for the corresponding processes, again their effect will be simulated by using of the
free space cross sections and the width of the resonances. Explicitly,

W b ) = LA il

(2.109)

and

Wy (ap,o'p', k) =

(uarp | 2(k) 3P + P')?|uap) - (u,,m(('c)lqa:,') , (2.110)

EXk) -
“In summary of this cha'ptér','we have started from a relativistic field theoretical
La;g';an'\gi;ﬁrof"the' Waleck'a'tYpe, including ¢, w and 7 mesons. By integrating over

the degrees of freedom of the virtual mesons, we were able to obtain mean-field terms
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for the baryon interactions. However. the pion is treated as a real particle. [n this

way. we are able to incorporate the formation and decay of \ resonances.

Even though our theoretical framework fully utilizes relativistic kinematics. and
although we start from a fully covariant Lagrangian, our final results do not include

the true relativistic effects of retardation.

This is because we made use of the instantaneous meson exchange approximation.
eq. (2.14), replacing the Green's function G(z — z') by G(r — #',1)6(t — t'). This was
done to remove the non-locality in time introduced by the elimination of the virtual

meson fields.

The advantage of the transport equations as derived here is that one can represent
the phase-space distribution functions for nucleons, deltas and pions by test parti-
cle distributions for the different species. | With this, one should be able to extend
the powerful simulation techniques developed for the"no_‘n-rebla‘.tivi‘stic"case of the dy-
namical simulation of the phase-space distribution function of nucleons in heavy-ion
collisions to the relativistic coupled problem for nucleons, deltas and pions. Although
the transport equations presghted here are derived for a system of pions, nucleons
and Delta resonances; they can be-easily extended to contain. higher resonances, such . .
as the N*. In the following we will treat N*'s in a manner similar to that for Delta

resonances.

ey



Chapter 3

Numerical Realization of the
- Model |

3.1 Equations of motion for test particles

, _In this chapter, we present details of the numerical realiza.tion procedure of the
hadronic trax%spor; 'mbdel. , N o | |

The transport equations 2.103 and 2.104Af9r hadronic ma;tter, a?e Higﬁly coupled
through the collision integrals. However, their solutions can be obtained numerically
within the test particle method which was first introduced to nuclear physics by
Wong[Wong82]. The det.aiis of the application of the test particle method to solve

the standard BUU equation can be found in Ref. {Bert88a).

In the test particle method one discretizes the continuous distribution function

_ with a finite number of test particles representing individual phase space cells, i.e.
1
f(rp,0) = 5 2 8(r - r)é(p - p) | (3.1)

where »; and p; are coordinates of the individual test particles. N, is the number
of test particleé per nucleon. To obtain the equations of motion for the test parti-

cles corresponding to the solution of the transport eqs. (2.103 and 2.104) we take

35
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derivatives of eq. (3.1):

vV.f = -i—_Zé!(r—r,)é(p-—p,), (3.2)
A‘ ' .
V. = Zér—r. (p - p;). | | B3
of _ q or; o ap; '
5 = EIC-rasle-p) G 8~ rafp-p) R G

Substituting the above derivatives into the transport equations (2.103 and 2.104) the
equations of motion for the coordinates of test particles can be obtained. For the

baryon test particles

dr p '
- FB | (3.5)
d .

L = -v.U+Diy(p) + Die(a). | (3.6)

For the pion test particles, we obtain

dr k
TE &1
= = D (k). o (38)

Here D},(p), D}, (p) are the changing rate of the ba.ryon mbmentﬁm dxstnbutxon due
to baryon-baryon collisions and baryon -pion collxsxons, respectwely, in accordance
with the collision integrals I}, and I},. D,,,,(Ic) is the correspondmg change in the plon
momentum distribution due to baryon-pion collisions corresponding to the collision
.integral I, They are calculated in the same manner as in the cascade models[Rand79
Cugn3l, Cugn82 Cugn88] na.mely by dlscretlzmg the reactlon txme into small time
steps and solving the collision mtegrals wnthm each tlme s;tep .v;; a Monte Carlo

simulation method. [t is seen that the motion of test pap_t_xcles in the phase space
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is governed by the mean field (" and the vertex of nucleon-nucleon collisions. In the

following we describe these two ingredients of the model in detail.

3.2 The nuclear equa_ti'on of state.

The nuclear equation of state describes the response of the nuclear matter to different
temperatures and densities. Current knowledge comprehends a narrow region around

the nuclear ground state.

In the present work we use a Skyrme-type density dependent mean field potential

for nucleons,

o) = ab + b2y
L'(p)-apo +b(p0) . | , (3.9)

The potential energy density is then given by

B 2 b ) ‘ .
Wip = [Uleydp = 55+ o(Eye (3.10)

The properties of nuclear matter are still not very well known. Only its saturation
point at equilibrium, namely, density po = 0.17fm ™2 and binding energy per nucleon
E/A =-15.75 MéV; is well determined while even the-compressibility:coefficient at-
equilibrium is only known to lie between 210 MeV(Blaiz80] and 310 MeV(Shar38]. For
high density and high temperature nuclear matter no reliable information available.

" Here the compressibility coefficient K of nuclear matter is defined as -
K =9%(0P/0p) . (3.11)

" where the derivative is taken adiabatically and P is thepressure ‘For the parameter-

ization of the mean field given in eq. (3.9), K is given by |
7
Im

K=l pawbo) . o (3.12)



p/Po

Figure 3.1: The nuclear equation of state, the sohd hne is for the stxff equation of
state and the dotted line is for the soft one. ‘
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Here py = 1.36fm™! is the Fermi momentum. The energy per nucleon for nuclear

matter at zero temperature is given by

Wi(p)  : E,(

= — +

p

L | S C3.19)

|
Ot

£
Po
where E;=37.26 MeV is the Fermi energy. The parameters a. b and o are then deter-
mined by the binding energy per nucleon at po, a specified compressibility coefficient
K and the equilibrium condition of pressure P = 0. For the so called stiff equation
of state K = 377 MeV, a = —123.6 MeV, b = 70.4 MeV and ¢ = 2. For the soft
equation of state K'= 201 MeV, a = =358.1 MeV, b = 304.8 MeV and ¢ = I To
see the difference between the two edﬁation of states and their density dependence,
the two equations of state have been drawn in Fig:. 3.1 as a function of the nucleon

density.

It has been shown, however, that the stiff momentum: {ndependent equation of.
state produces about the same amount of transver’se momentum and similar flow
angle distribution in Béayy ion collisions as the av;;.ilable t;omentum dependent pa-
rameterizations, and that t;.vhe‘ soft momentum independent equation of state produces
less transverse momentum 'and smaller flow angles[Gale87a]. We will study the sen-
sitivity of the observables to the variation of the momentum-independent equation
of state. The mean field potentials of the A and N* are still very uncertain[GinoT8].
Hov?ever, relativistic heavy ion collisions are expected to provide informa.tionAa.bou't
these potentials[Siem88, Siem89]. In the follbwing we assumed that the potential

energies of the A and N* are the same as that of nucleons.
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3.3 Elementary nucleon-nucleon cross sections

3.3.1 Elastic scattering channels

We have taken into account the following elastic scattering channels

N+NV o N+V 31y
N+A—N+A, | (3.15)
NeN SN+N, (3.16)
A+AoA+A, (3.17)
N+ NT = NN - » (3.18)
N4 AN 4 A v (3.19)

Where the nucleon N, the A resonance and the N* resonance can be in any charge
state allowed by the chafge conservat‘ion‘.la'w. Here »\}ve adopt the well known Cugnon’s
parameterization for nucleon-nucleon elastic cross sections, both for the angular dis-
tribution and for the total cross section. Since no information about the collision
between a nucleon and a baryon resonance or the collision between two baryon reso-
nances is available, we assu;ned that all the elastic scattering channels have the same

cross section. The total cross section is parameterized as

ou(vB) = 55, (V< 1.8999), (3.20)
U”(‘/E);-‘1+1'00(\/33§f. ) +20, (Vo> 18993

In this parameterization, /s is the center of mass energy of nucleon-nucleon collisions

- and measured in GeV and ¢ is in mb. RN T
The differential cross section is given by .. . -

7 e (3.21)
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Where t is the negative of the square of the momentum transfer in the C.M.S. and b

is parameterized as

6[3.65(1/5 — 1.866)]°

T = ) 4 99
bVe) = 3 3.63(\/5 — 1.366)]° (3.22)

3.3.2 Inelastic scattering channels

The following inelastic scattering channels have been included in the model
p+p e n+ At (3.23)
p+pep+ AT, : (3.24)
n+pep+A, | (3.25)
n+pen+At, o _ (3.:26)
n+nep+ AT, s ’ - (3.27)
n+nen+d’ s (3.28)
p+pep+ N7, DA (3.29)
n+pep+NO R - (3.30)
ntpend N* o | (3:31)
n+nent NO | | (3.32)

A and N* productxon cross sectxons for each cha.rge state in all of the above inelastic
channels can be utlmated by usmg of VerWest and Arndt’s isospin decomposmon

formula[Verw82] for pion production in nucleon-nucleon collisions.

According to VerWest and Arndt the reaction cross section for single pion pro-
duction in nucleon-nucleon collisions can be reduced to four independent isospin cross

sections o;y withi, f = 1 or 0, here i and f are the initial and ﬁna.l isospin of the two



nucleon system. Explicitly,

op+p—p+p+r’) = ou. (3.33)
olp+p—p+n+7t) = op+on. | : | 13.34)
oln+p—p+n+r’) = é(010+0‘01), - (3.35)
on+p—n+n+rt) = -i—(a“-i-am) (3.36)
olntp—p+p+rT) = %(‘7114'001) (3.37)

Assuming that pions are produced through the intermediate state of A and V* res-
onances, the following parameterization for the isospin cross section o results in a

good fit to the experimental single pion production data of nucleon-nucleon collisions.

aitva) = T (e yp el la/ a0l

2p? po’ (s* — md)? +mil?’ (3-38)

where a, 3, nio and [ are parameters, 1t has been listed in table 3.1. s is the square

of the center of mass energy. Other quantities in the parameterization are defined as

Po= - ME (3.39)
so = (Mn+mo)?, (3.40)
Py = Z—O-M,fu (3.41)
Pe) = gols = (M = (M)Plls - (M + (M), 3.2)
¢’(s7) = 4%[8‘—(191&— M[s™ = (My + M), . (3.43)
o = qmd), | | (3.44)
s o= (MY, (3.43)
(M(s) = Mo+ (arctan(Z,) — arctan(Z '))4(—)1 (-——%-). (3.46)
Where
Zo = (Vo-My- Mo)% (3.47)
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Table 3.1: Isospin cross section parameters

parameter oy Ji0 o01
a 3772 1528 146.3
3 1.262 0 0

mo(MeV) 1188 1245 1472

T(MeV)  99.02 1374  26.49

2 “ .
Z- = (My+Me=Mo)g, (3.48)
Mo) ¢ | ,

for A resonance My=1220 MeV, ['0=120 MeV and for N* resonance My=1430 MeV,
=200 MeV. |

To gain some familarity with the energy depende;rice of the isospin .cross' seétion.
the isospin cross section have been calculated and plotted in Fig. 3.2 for a nuc;.leon

with kinetic energy Ej to collide with a nucleon at rest in the laboratory frame.

As shown in ref. [Wolf90], in terms of the isospin cross sections the inelastic cross

sections can be estimated as

cp+p=n+Att) =gy + %0’11, (3.49)
op+p—p+AT)= g&u, T T | (3.50)
“(""‘P"’P."‘ A°%) = ';'Uu"'%dlo, (3.51)
0’(" tp—nt Aty = %Uu + %0'10, ' (3.52)
a(p +p—> P+ 'N'+);‘0, Lo L - (3.53)
on+p—p+NO)= %0‘01, - (3.54)

on+p=—-n+N"*)= %am. - | | (3.55)
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These cross sections have been shown in Fig. 3.3 and Fig. 3.4. Cross sections for the n
 + n channels can be obtained from that of p + p channels by isospin symmetry. The
differential cross sections for the inelastic collisions have been assumed to be isotropic

in the nucleon-nucleon center of mass frame.

The reabsorption cross section for baryon resonances have been obtained from the

detailed balance. Explicitly, for V" resonance

2
on+ Nt —=n+p)= %;—0’(p+n —n+ V), (3.56)
o(p+ N —n+p) = -p-g-a(p +n—=p+ N9 (3.57)

For A resonance

1 P}
a(A*+p—»p+p)=1~;,—§-o(p+p-+A*+p), (3.58)
++ L pj \++ -
o(A +n—>p+p)=z-;).-g- olp+p— AT +n), (3.39)

1 p} |
a(A++n—»p+n)=§-;‘2—‘a(pr+n-»:3++n), (3.60)
0 -1 pj 0 7.
(A +p—»p+n)=§--}-)j2--o(p-+n—+;x + p). (3.61)

By using isospin symmetry and av_éfaging over the isospin degree of freedom the above

relations reduce to

a(N+A—->N+N)=l-gi-a(N+N—>N+A). (3.62)
Here py ié the momentumin the final NN channel in the C.M. of the colliding particles.
This assumes that the resonance is narrow; in general eq.(3.62) underestimates the

absorption rate of low-energy A's[Dani9l].



43

WO T T
12.5 F 3

~ 10.0F 3
’o . P o
E : ]
-~ 75k 3
= L ]
b - ]
5.0 .
2.5 3

AT I ,

500 750 1000 1250 1500
Ek (MQV)

Figure 3.2: Energy dependence of the isospin cross sections
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Figure 3.3: Energy dependence of the A production cross section in p + p collisions
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3.3.3 Direct pion production channels

Direct processes for pion production of the form
.\-x + .\'2 — .'\'3 + .'V4 + T E (‘36.})

account about 20 percent of the total pion production cross"séction[KitaSG]. However.
the energy dependence of the direct pion productioh cross section is unknown. We
will set the bercentage of the direct process in the total inelastic cross section as a
free parameter. meanwhile, reduce the A and .V production cross section estimated
in the previous section by this ‘percentage, so that by turning on or off and adjusting
this parameter we can study the effect of the direct processes on the experiméntal
observables. The kinematics of the three-body final state is not easy to treat and
one usually assumes that the pion takes all of the available kinetic energy in the
nucleon-nucleon center of mass frame of the initial state[Kita86, Aich85). Arother
way of determining the momentum distribution of the three-body final state is to use
the Fermi statisticé.l model. for pion production[Ferm54].' The essential assumption in

this model is that the production of pions in nucleon-nucleon collisions is governed by

statistics rather than by dynamics, with. cross. sections.determined by . the available.

phase space subject to conservation la,ws In the C M.S. of the two initial nucleons

the momentum distribution for one of the three particles in the dlrect process is given

P EP’{II— 2(m3 + m3) (m3 - m3)? pay
dpy 3 (E—-E1)?~pt  ((E- E1)?-pi)?

(3.64)

(m} —mi?

-5 -y d

{3(E - E1)2[1 -

[1 m2 + m3) (m% -— m3)1

E-E7 -9 " ((E- El)z-pz)a”
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The maximum of p, is given by

{[E* = (my + my + m3)}][E? = (my —my — ms)*]}/?
2E '

(Pl )max = (363)

where E> = /s is the total energy of the system. The momentum distribution of
the other two nucleons can be obtained from the energy-momentum conservation.
We have developed a Ménfe Carlo prdcedure to simulate the three-brody‘ momentum
distribution. In Fig. 3.5 we compare the pidh kinetic energy distribution obtained
from the above equation and that from the Monte Carlo proceduvre for nucleon-nucleon
collisions at the‘ center of .ma.ss'energy of 3 GeV. It is seen that the momentum

distribution of the three-body final state can be simulated satisfactorily.

Taking the cross section for the direct pion productionvas 20 éercent of the total
inelastic cross section, independent of the center of mass energy of the nucleon-nucléon
~collisions, we ﬁnd__t.ha.»t‘ the cal;ﬁlated pipn spectr'urnu fbr a nin_:leus-nu_qleus at E/A ~
1GeV is rather unchanged from thatvasvsumiqg all »p‘iops a.ré“ .p‘roduced through the
~ intermediate state of A and N* reso,n;ng:esA_[LibaQIa.]. _'Ifof avoid the ambiguity caused
by the unknown energy dependence of the direct process and to compare with other

model calculations we will neglect the direct process in the following calculations.

3.3.4 The pion-nucleon resonance and decay

'

' In the model we allow the decay of baryon resonances and the pion-nucleon resonance

of the form
A«'—»1r+N,N'4—>1r+N. | A (3.66)

Where A, N*, 7 and nucleon can be in any charge state allowed by charge conserva-

tion. The bréxiéhing ';a,tig‘sf the possible ﬁn_a:;luéta‘.tg is determined by the appropriate
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Clebsch-Gordan coefficients. The mass of the baryon resonance fromed in the pion.
nucleon resonance is uniquely determined by the reaction kinematics. The width for
the A resonance is parameterized following Kitazoe et al.[Kita86] as

_ 0.47¢°
- (1 + 0.6(q/m,,)2) mé

(3.67)

where ¢ is the momentum of the pion in the A rest frame. For .V* resonance a

constant width of 200 MeV has been used[Verw82).

During each time step of duration dt, the decay probability of the A’s and N*'s
present in the system is determined by an exponential law using the proper time

obtained from their widths,

Picy =1=e%/" , 7= (3.68)

=1} or

Since one of our pﬁrposes is to study pr§perties of the pion spectrum. in heavy ion
collisions, it is necessary to discuss how the pion spéctrum in a single nucleon-nucleon
collision is calculated. The & or V* resonance is assumed to be produced isotropically
in the nucleon-nucleon center of mass frame énd we also assume that the decay'of
the resonance has an. uottopxc angular, dxstnbutxon in the rest frame of the resonance.

The decay of the resonance is then calculated using the Monte Carlo integration
technique. This leads to a piorll’ spectrum in the rest frame of the resonance which is

finally Lorentz transfornied into the desired frame. As an illustration. we show in Fig.

3.6 the contnbutlon to the pion spectrum from the A resonance (dotted histogram),

N* resonances (dashed hlstogram) and the dlrect process (sohd hlstogram) in nucleon-
nucleon collisions at the center of mass energy of 3 GeV. The spectra from the three

processes are normalized to 1, respectively.

The cross section for the pion-nucleon resonance is also parameterized using

the Breit-Wigner formula with the maximum cross section from the experimental
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data[Part83],

Omax(TF +p = A**) = Gpax(m™ +n — A~) =200 mb. (3.69)
Cmax(T+ P = A*) = Guax(t0+ 1 — A% = 135 mb, (3.70)
Cmax(®™ +p = A%) = opa(t* +n — A%) = 70 mb. Ay
Omax(F~ + 9 = N0 = opa(7®+1n = N%) = 50 mb, (3.72)

Omax(TT +n = N7) = opac(r®+p — N**) = 50 mb. (3.73)

3.3.5 Pauli blocking for fermlons and enhancement factors
| for bosons

The phase'-space'occup:atﬂio’n factors for the final state of the fermions, 1 — fs(zp), are
treated via a Monte-Carlo rejection method. Since the computation of all possible
| ﬁnal-state phase-space oecupatieﬁ factors is a very time-ietensive task, we have de-
veloped a téchn‘ique to sﬁere' the six-dimensional phase-gpace oceupation probability
at every time step on a la.ttice[Ba.geQO]. In this way we are able to use a large number
of test particles (> 100) to represent a real pa.rticle in the reaction of two heavy nuclei
while using a reasonable amount of CPU time. BUU-type of calculations for heavy
system have-been:hindered-using:the.old. way-of. -vevalua&ing;-Rauli-.n blocking.factars. . .
For rea.ctlons mvolvmg mtermedla.te mass nuclei, as many as 400 test particles per

rea.l particle ha.ve been used

: The final state phase-space occupation probability factors for bosons, 1 + f-(zp),
ca.nnot be treated by conventlona.l rejectlon methods, because the possible range of
values of thns functlon is not between 0 a.nd 1 However, it is possxble to introduce a

cutoff, F, such
F > max(1 + f«(zp))

for all coordinate values (z,p) during the course of the nuclear collision. By
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multiplying the interaction matrix element by F and dividing (1 + f.(zp))/F one

can use the conventional rejection technique on this scaled occupation probability

factor[Wlbr91a, Welk91].

In the present calculation the mean boson phase space occupatidn probabilities
are on the order of (f,) = 51072, because we have, for example. = 50 pions of three
different isospin substates distributed over a total phase space volume of =~ 400 4°
for central La + La collisions at 1.35 CeV/ nucleon beam energy. Thus the effect
of stimulated emission of pions due to the effect of the boson enhancement factor is
negligible in the case studied here. In nucleus-nucleus collisions at CERN-energies,
however, this may not ‘be the c.a.se. Depénding on the a.séumptions for pion freeze
out and expansion of the hadronic system, pion phase space occupation probabilities
may become comparable to.l. a.hd one ﬁlay .inttod.uce a non-zero chemical potential
for pions. Kataya and RuuSka.nen[K_até..Q(j]' havé shown that then one can also obtain

a concave p; spectrum for negative pions due to this effect.



Chapter 4

Pion production dynamics

In this chapter we study theﬁi dynamics of pion production. In relativistic heavy ion
collisions of beam energy a.rouﬁd 1 GeV/nucleon about one half of the nucleon-nucleon
collision cross sections are in‘elastic,. mainly through pxon pfoduction. Pion production
may reveal interesting propertigs of the reaction dynamics. |

" To gain some insight into"tllle dynarhical propertiivesb of relativistic heavy ion colli-
sions and to get some familiarity with the dynamical characteristics of our model, we
show in Fig. 4.1 the time evolution of the accumulated total number of baryon-baryon
collisions and the reaction rates for several relevant collision processes. In the model
explicit isospin degrees of freedom have been used, the quantities shown in. the figure:

are the sums over all possible isospin channels.

The particular choice of the system Ca+Ca at a beam energy of E/A=1.8 GeV
and impact para.méter b=0 is made in order to compare with Cugnon’s cascade
calcula.tiqn[CugnSl, Cugn82, Cugn88]. The overall time dependence of the total col-
lision number and reaction rates is similar to that of the cascade calculation. The
accumulated baryon-baryon collision numbers saturates at around 10-15 fm/c. Af-
ter this time, mainly A decays and pion reabsorptions are present. We see that the

A destruction processes, NA — NN and A — -N 7, set in slightly later than the

35 .
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Figure 4.1: Upper figure: Accumulation of the total number of baryon-baryon colli-
“sions in the reaction of Ca+Ca at E/A = 1.8 GeV and impact parameter b = 0 fm.

Lower figure: Time evolunon of the rea.ctlon rate for the specxﬁed processes in the
‘same reaction. ~ R : : - g
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NN — NA process, because the former processes need an appreciable accumulation
of A's, and also because the A has a finite lifetime. The A decay rate is always higher

than that of the formation of this resonance.

[t is of interest to note the quantitative differences between 6ur model calculations
and the cascade model calculations. The saturated number of total baryon-baryon
collisions calculated in the present model is about 15 percent smaller than that of the
cascade model. This is mainly due to the better treatment of the Pauli blocking factor
and the inclusion of the mean field in our model. The time integrated cross section for
the A reabsorption process (-‘V;\. — ’VN) in the present model is about twice of that
in the cascade model. Consequently, the total number of pions observed in the final
state is about 30 percent less than that in the cascade model. A later modified cascade
calculation[Cugn88] shows that the discrepancies between the experimental data and
the ca.sca.dé _cﬁlculation on 'pion' 'product.ign in proton, pion iand heavy ion induced
reactions éan be remove'd\ i‘f’vox_le. artifically multiplies t’hhe cross section o(NA — V.V)-
by a factor of three without changing the cross section o(NN — NA). This has been
explained as an indication of the enhancement of the pion reabsorption in nuclear
medium and the underestimation of the pion re&bgorption in their model. However,
in our calculation the medium effect explanation iS not necessary, and the total pion
production cross sectioﬁs are in agreement with data (see below).

Since we are interested in t.he properties of pions, it is crucial to know the time
evolution of the source of the pions. In Flg 4.2 the popula.txon of free plons and pions
| stxll bound inside excited baryons (unborn pxons) is dlsplayed for the systern La+La
at a beam energy of 1350 MeV per nucleon and b=lfm. 'Itvls _.sgex} t_!l?t the total
number of pions, A’s and N*’s freezes out at around t=20 fm/c at a value which is
in good agreement with experimental data[Harr87]. The overall time dependence of

our bound and unbound pion multiplicities is similar to the one obtained from the
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Figure 4.2: Time evolution of the population of free pions, A 8 and N*’s in central
collisions of La + La at E/A = 1350 MeV.



cascade calculation.

In Fig. 4.3 we study the beamn energy dependence of the time evolution of the
pion multiplicity. First, we note that the reaction time scale is getting shorter as the
beam energy is increased. Secondly. the final pion multiplicity is proportional to the

beam energy.

In Fig. 4.4, We compare the.final pion multiplicity with that of the experimental
data for central collisions of La+La. The round plot symbols on the solid line are
our calculated results, and the square symbols with error bars are the experimental
data[Harr87]. A good agreement can be seen in the whole energy range. Similarly
good results have been obtained with a VUU-model{Moli87]. In Ref. [Moli87] a com-
parison of the data £o existing ca.séade model calculations is shown as well, and a

clear overprediction is observed for the cascade model.

In Fig. 4.5 we display» the mass depeindence of the time evolution of the pion
multiplicity in central collisions at a beam energy of 1.5 GeV/ nﬁcleon. It is seen fhat
the reaction time scale is rather insensiti\{é to the size of the colliding system .The
final pion multiplicity as a function of 2A, which approkimates the mass number of the
participant region in central?collisions, has béen shown in Fig. 4.6. It is seen that the
total pion multiplicity is almost linear with respect to 2A. This is in accordance with
the experimental ﬁhdings[Ha;r87]. The iinear dependence of the pion multiplicity on

- the mass number of the participa.ntr' region reflects f_he fact that pion production is a

bulk nuclear matter probe rather a surface probe.

The impact parameter dependences of the time evolution of the ‘pi.c_m population
and the final pion multiplicity have been shown in Fig. 4.7 and Fig. 4.8 for the reaction
of Ar + Kcl at a beam energy of 1800 MeV per nucleon. It is seen that for central

collisions at an impact parameter b < 1 fm, the time scale for pion production and
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the final pion multiplicity are insensitive to the impact parameter because of the
complete overlap of the projectile and the target. For larger impact parameters the
pion production.takes longer time. and the final pion multiplicity decrease linearly
with the increasing impact param.eter. Th.is is in consistence with the mass and the

energy dependence.

Due to the energy degradation in the reaction process, inelastic nucleon-nucleon
collisions maihly occur in the early stage of the ‘reaction. [n the later expansion phase
of the reaction only the resonance decay and the pion-nucleon resonance persist.
The relative time dependence of these processes has been shown in Fig. 4.1. This
property of the pion prodpction dynamics cause the_’sa.turation‘of pion multiplicity
in the expansion pha.se of the reaction. Thg ;aturation of the pion multiplicity can
be seen clearly in Fig. 4.3 and Fig. 4.5. This pvrorp'e;ty was first observed in Cugnon's
cascade }mo_delﬂ Ag‘alv_cul_at.ign. Since then it has stimu!ated a lot of studies of properties
of the compressional phase of hea__.vy iqn' cpllisiqps using of the pion multi.plicit_v. One
typical example is the eﬁ'ortrof extracting the nuclea.r equation of state from the
excitation functlon of the pxon multiplicity by assummg the dxscrepancv between the
experimental data and the ca.scade model prediction comes completely from the lack
of compression energy in the model[Stoc82, Harr87]. More elaborated models like
the Boltzmann-Uehling-Uhlenbeck transport model (BUU)[Bert84, Bert88a, Krus83)
and the Quantum. Moleculaf Dynamics model iQIv\./ID [Aich91], Which include the
mean ﬁeld in addxtlon to the two-body colhslons, found that the sensntmty of the
pion multiplicity is not so obvious, especially when momentum dependent forces are
taken into a.ccount[Ga.le87c] One therefore has been mvestlga.tmg expenrnentallv
other global propertles of plons llke plon spectra and plon flow. In the following two

cha.pters we w1ll concentra.te on the study of plon spectra and plon ﬂow respectively.



Chapter 5 |

The concave shape of pion spectra

Some features of the pioh kinetic energy spectrum in relativistic heavy ion collisions
are expected to provide information about the space-time dynamics of the reaction.
| One i‘nteresting'.feature'obser'ved is that pion spectra in central heavy ion collisions
show a concave shape on a lognthmxc scale, which can be well fitted by a superpo-
sition of two Boltzma.nn dxstnbut:ons with widely’ dxf'ferent slope’ para.meters This
phenomenon ha.s been observed in Ar+KCl collisions at 'a beam energy of 1.8 GeV
per hucleon[Br6c§4] and La+La at E/'A~'= 1.35 GeV [Odyn88)]. Preliminary results
from Au+Au at E/A = 1.15 GeV[Cha‘.s90]ua.lso show this feature. A typical example
of the-concave shape ;)fmt-hepiomépectmm--hasmbeen: given.in.Fig..5.1 for the reaction..
of Ar + Kel et a beam energy of 1. S‘GleV/h nucleon. Plot symbols with error bars are
’the expenmental da.ta, the solid curve is the Maxwell-Boltzmann distribution with a
temperature of 63 MeV It is seen that the experxmental spectrum deviates from the

| Ma.xwell~Boltzma.nn thermal dxstrxbutlon for the total energies of pions larger than

'o 5 GeV.

In ultra.relathstxc hea.vy ion colhsxons a.nd proton mduced reactlons, pion trans-
. verse mornentum spectra also show a concave sha,pe[Ha.rr89] Thxs ‘has generated a
lot of interest, and the ongm of thls phenomenon has been vngorously deba.ted in the

literature{Shur88, Leeh89, Kusn89, Kata90, Brow91]. Therefore, the understanding of
67
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Figure 5.1: The concave shape of the pion spectrum in Ar + Kcl reaction at a beam
energy of 1.8 GeV/nucleon. The experimental data shown by the plot symbols are
from ref. [Broc84], the solid curve is the one-temperature fit to the experimental data
with a temperature of T=63 MeV.
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the mechanism that causes the concave shape of the pion kinetic energy spectra in rel-
ativistic heavy ion collisions may shed some light on the origin of the concave shape of

the pion transverse momentuin spectra in ultrarelativistic nuclear collisions{Liba91a].

[n relativistic heavy ion collisions of beam energies around 1 GeV/nucleon, several
hypotheses have been made by the groups who discovered this effect in order to
explain their experimental results. These include the superposition of thermal pions
and the pnous from the final state A decays, higher resonances(Broc84] and the effect
of baryon ﬂow on the pions[Chas90]. Based on a simplified hydrodynamical model
calculation{Hahn38§], it wa,§ also conjectured that the concave shape of the pion spectra
may come from an isofropic H&'drodynaﬁical expansion of the hot compressed nuclea.xi

matter.

The cascade model predicts purely thermal pion spectra[Broc84], although it has
been very successful in predicting many other experimental observables in relativistic _
heavy ion collisionsf. The‘original BUU model uses the frozen Delta approximation

and also fails to exzplain‘the origin of the concave shape of the pion spectra[Chas90].

We propose that the concave shape of the pion spectra is a result of different
contributions of- A resonances produced early and-late-during the course.of the heavy.
ion collxsxon In the followmg we explore this idea in detail and compare our model

calculations with the available experimental data.

5.1 Mechanisms for the concave shape of pion
) spectra | |

In this section, we apply our model to study the mechanism that causes the concave
shape of pion spectra in central heavy ion collisions at beam energies around 1 GeV

per nucleon.
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5.1.1 Model calculation for the pion spectrum

In Fig. 5.2, we show the number of pions per energy interval for the La+La reaction,
pgdN/dE. as a function of the pion kinetic energy. where P is the momentum and

E is the total energy of the pions.

The time chosen for the figure, t=20 fm/c after the start of the calcula;ion: by
this time most of the baryon-baryon collisions have ceased, but a large fraction of the
excited baryons produced have not decayed yet. The real pions which are not bound
in resonances are represented by the solid histogram. For a thermally equilibrated

dilute pion gas at a temperature T, we can use the Boltzmann distribution function

1 dN - | =
FEIE = ¢ exP(=Eun/T). R _, (5.1)

As we can observe from Fig. 5.2. the free pions at 20 :fm/c can be well described with

a Boltzmann distribution of 'tempveratu're 78 MeV (straight line ﬁt).b

By assuming sudden decay of all A's and N*'s present at 20 fm/c. the contribution
to the pion spectrum from bound pions can be obtained. These are shown by the
dashed histogram. It is clear, that these pions do not show the same temperature as

the pions which are already free at this time, but indicate a lower temperature.

If we superimpose the two contributions to the pion spectrum, we obtain the result
which is represented by t_he round plot symbol#. The error bars are of statistical |
nature since we solve the transport equations (egs. 2.103 and 2.104) with a Monte
Caflo iniegratibn procedure. The concave shape obtained in th_is" wa.y cléirly hints at
a pion .speétrum with a two-temperature appearance. The low.tempe‘ralﬁilre is about
50 MeV for pions with Eyxn < 0.2 GeV and the higher one 1s a.bout78 MeV for pions
with Eg, > 0.2 GeV.

Different contributions to the pion spectrum at t = 40 fm/c is shown in Fig. 5.3.
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73

We note that the total pion spectrum obtained at t = 20 fm/c (Fig. 5.2) is almost
the same as that obtained at t = 40 fm/c when we stop our calculation. The reason
for this is that between these two time instances the A's and N*'s are almost moving

freely during this expansion phase before they decay.
5.1.2 Concave pion spectra

What is the reason for the pions that are still bound at t=20 fm/c or 40 fm/c to show
a lower temperature? We attempt to answer this question in Fig. 5.4 and Fig. 5.5.

The upper part of Fig. 5.4 shows the rate of proéesses
N+N-N+A o ' : (5.2)

during the La + La rea.ction. The lower part of the figure displays the proba.bility
distribution of baryon-baryon c_entér of mass energies, \/3 ’fof two different time
intervals durin"'g the course of the heavy ion reaction, as extracted from the computer
calculation. The dashed histogram corresponds to all baryon-baryon collisions of the
type Eq. 5.2 during the initial éompres§ionil phase of the reaction (dashe“dA hatcﬁed
a.rea...in‘..t.he.‘up.p.ex;_p.a.:x...,of.:_.t.hé,..ﬁgux_e)_,,_t,,5"6.,,£m/ c.. The solid histogram corresponds
in the same way to all colliéions for t > 12 fm/c (solid hatched area). We see that
the center of mass energy distribution in the early stage of the reaction peaked at a
higher energy than that in the later stage of the reaction. To be more quantitative
on the energy degra.da.txon in the rea,ctxon process, we show in an 5.5 the avera.ge

center of mass energy of nucleon-nucleon colhsxons of the type Eq 5.2.

We can clearly see that the early ba.tyon-baryon colhsmns are on average more
energetic than the later ones. This is because the central rapidity region is initially
free of baryons, but is increasingly more populated as the reaction proceeds. To ease

the understanding of the dynamical effect we illustrate schematically the rapidity
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distribution of nucleons in the reaction process in Fig. 5.6. A subsequent interaction
of a nucleon at central rapidity with a nucleon at target or projectile rapidity thus
becomes more and more probable towards the later time in the reaction. Since it is
less enefgetic than a reaction of a nucleon at projectile rapidity and one at térget
rapidity (the only kind possible in the initial stage of the reaction), the A’s produced
later are less energetic than the ones produced earlier, and the different contributions

to the kinetic energy spectrum of the pions can be understood.

The pion spectra shown.in Fig. 5.2 are the results of the full dynamical evolution of
the system, and this also includes the reabsorption of pionic excitations. We therefore
have to ask what the effect of pion reabsorption and rescattering on the pion spectrum
is.

In the present model pions can be reabsorbed throuéh the two-step mechani.s_m,
namely, N = A(;V') and NA(N*) = NN. Toillustrate ;he effect of pion reabsorp-
tion and rescattering on the pion spectrum, we compare in Fig. 5.7 the primordial 7~
spectrum with the final one obtained at t=40 fm/c from the full dynamical evolution
for the La+La reaction. The primordial pions are obtained by recording the momen-
tum, mass and isospin of ailAIs and N*’s when they are first produced during the
course of the reaction, and by calculating the pion spectrum which would be obtained
if all of these baryonic resonances were to decay right after they are formed, and the
resﬁlting pions would propagate without further interaction from then on. The pri-
mordial pions are represented by the round plét symbols on the solid histogram and
the’ final pions “are reprrlese\i;ted by t.heplot symeis’ on the{idc}t‘t‘ed histogram.

We :ﬁrst t;oﬁ‘i'te the fa,vr;gje:dieffé‘rver'x’cég in"Atﬁe normalizations of the two histograms:
The number of finally escaping pions is only on the order of 10% to 20% of the total

number of pionic excitations generated during the course of the heavy ion reaction.
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Second, we see that the primordial pion spectrum does not show the concave shape
observed in the final distribution. Due to the effect described above. the primordial
pion spectrum is, however, not quite of the Boltzmann type as predicted by the
thermal equilibrium model calculatio>ns[Hahn88. Pirn79, Barz81]. The reason f;)‘l.'
this additional shape change lies in the energy dependence of the elementary pion
absorption cross sections obtained from detailed balance. High energy pions with
kinetic energy larger than 0.2 GeV are rescattered or reabsorbed at a higher rate

than low energy ones.

In addition, pion absorption is a two-step process and thus dependent on the
square of the nucleon-densfty. This a.ls§ favors the reabsorption of the higher energy
pions produced early in the reactiox; (when the Barybn density was high) over the
reabsorption of lower energy pions produced later in the heavy ion reaction (when
the baryon dénsity was .lower). Clearly, a d_ynamic.al calculation of pion reabsorption
is thus essential for the correct explanation of pioﬁ eneréy spectra, é.nd a calculation

utilizing an energy independent pion mean free path in nuclear matter is insufficient.

From the above atgumenté bas;ed on Figs;. 3.4 and 5.7, it is clear that we do not
have oaly.twa.contributions of different. temperature to.the pion spectrum, but rather
a continuous change from the initial high temperature contribution to the final low

- temperature. The formation of the concave shape of the pion spectra is due to the
gradual change of mean energies of the formed baryon resonances and the gradual

change of reabsorption conditions during the course of the reaction.

[n the s-tudy of pion épectra i‘n reiativistié heavy ion collisions an imbortant ques-
tion is to what extent the slope of pion spectra reflects the true temperature of the
system in the early high-compression phase of the reaction. From the coﬁparison of
the two spectra shown in Fig. 5.2 and Fig. 5.7, we see that the higher temperature

extracted from the pion spectra in the final state more accurately reflects properties
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of the system in its early phase. However. one should use caution in applying the term
“temperature”, because what we observe is not the consequence of an equilibrated
system, but rather of a non-equilibrium transport process of a system on its path

towards kinetic equilibration.

Within the preserrt transport model, one can also test the other hypotheses made
to explain the concave shape of the pion spectra. By studying the dependence of the
shape of the pion spectrd on the nuclear equation of state, we can study the effect of
the baryon collective flow on the pion spectra. It is found that nuclear collective flow
are very sensitive to the nuclear equation of state. With a stiff nuclear equation of
state one predicts a higher average transverse momentum in the reaction plane and
a larger flow angle for nucleons.[BertSSb]. Within the present model calculations, it
is found that pion spectra calculated with"a. stiff nuclear equation of state and a soft
nuclear equa.tlon of sta.te are not drstmgurshable within the statlstlcal error bars It
indicates that one should at most expect a small effect on the pxon spectra from the

baryon collective flow.

The effect of higher resonances pn the plon spectrum, such as that of 'V'(1440) s
included in the present model, has been studled by turning off the reaction channels
involving N*'s. It is found tha.t the presence of N*’s has only a very small effect due
to their small productrou cross sections in the energy range of mterest here. This
finding is in agreement with that of Randrup from the study of the hadromc matter
equlhbratron process[Ra.ndTQ] 1t was found that as long as the bea.m energy remains
on the order of 1 GeV/ nucleon xt suffices to mclude only the A resonance. However, at
higher energres. E',,.,.m 2 2 GeV/ nucleon hxgher baryon resonances as well as direct

multrple pron productlon grow mcreasmgly unportant in the reaction process, and

therr effects on the plon spectra. remains to be explored
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5.1.3 Comparison with experimental data

In Fig. 5.8, we compare our model calculation with experimental data for central (b
< 2.8 fm) reactions of ha + La at a beam energy of 1356 MeV per nucleon. The
experimental 7~ number distribution, (PE)"'d.N/dE at 90 £30 degrees in the center
of mass of the target and projectile, is shown as a function of pion kinetic energy and
represented by the round plot symbols. The data can be well fit by a two-temperature

fit of the form
‘ (PE)"‘dN/dE = A, exp(-Exin/T1) + A2€xp(=Ein/T2), (5.3)

with a x? per degree of freedom of 0.9 (T, =45 MeV and T; =101 MeV), whereas
the minimum x per degree of freedom is 3.4 for a one-temperature fit with' T = 58
MeV[OdynSS] For compa.rlson, the one-tempera.ture fit (T = 49 MeV) to the data
is shown with the da,shed line. Our calculatlons are represented by the histogram.
Calculation and data both show a clear deviation from the one temperature fit. The
data are in reasonable agreement with our calculation. A slight tendency of under-
predicting the higher energy pions of energy Eyin > 0.4 GeV is noticed. One of the
reasons is 't‘hat‘:'-a'-semiclassical*;monlentum“distri‘butiom-har-been--usedw to-initialize the . .
nucleons, therefore the calculation lacks the quantum hrgh momentum components.

Thrs is a problern our model shares wrth all the other semlclassxca.l dynamxcal models.

In the lowest energy bm, we overpredlct the data by a factor of 2 3, which is

due to the fact that the detaxled balance of eq. 3.56-eq. 3.61 was derived assuming

. that the baryon resonance ha.s a zero energy width. As we wxll dlSCllSS in Chapter

T the use of thls detalled bala.nce underpredlcts the reabsorptlon of low energy A's.
Using a new deta.xled ba.la.nce whxch takes mto account the finite wrdth of the baryon
resonance, the low wnergy part of the pion spectrum can well reproduce that of the

experimental data.
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Figure 5.8: Comparison between calculations (histogram) and the experimental data

of ref. [Odyn88] (plot symbols). The dashed line is the one-temperature fit to the
expenmental da.ta. thh temperature T = 49 MeV.
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To show the change in apparent temperature as a function of the kinetic energy

of the pions, we introduce a local slope{Shur33, Baue91b]

| 4 1L 90, . | - .

and plot it as a function of Egin.

In Fig. 5.9 we perform such an analysis and compare our calculations (histgrams)
with the experimental data (circles). The errors bars were in both cases obtained
by taking forward and backward difference formulas to compute I; and using the
difference in the results as an‘i"ﬁdication"fof the errors. It is clear that data and
calculations are in good agfeement within the error bars, and that they both show
a change in local slope not compatible with a one-tempe;a.ture piciure. In this fig-
ure, a one-temperature spectrum would show up as a straight horizontal line. 'For
comparison, we also show the local slppe’éi’(”tracted frofn the best two-femperéture fit

according to eq. 5.3 to the data (T} ;45 MeV, T; = 101 MeV, and 4,/A; = 5.0).

In Fig. 5.10, we p}erform’vanother comparison between ’.our calculation and the
experimental data for cer.xtrzg.l' collisions of Ar+KCl at a beam energy of E/A = 1.3
‘GeV. This:is-the-experimental-data set in. which the.twe-temperature:structure of the . .
pion spectrum was first found [Broc84]. Again, the experimental data are displayed
by the round plot symbols, and the solid histogram is our calculation. The dashed
curveisa one-temperaiureAﬁ‘t; to the spectrum with T = >63 MeV.

- As can be seen from the figure, the pion energy spectrum shows a devmtxon from
the simple exponentlal law for plon energtg§ “grea.ter tha.n 0 5 GeV A fit with two
slope parameters (T; = 58 MeV a.nd T, =110 MeV) reproduces the whole spectrum.

Similar to the situation in La + La reactions shown in Fig. 5.8, experimental data

and model calculation agree quite well.
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Figure 5.9: Local slope T; as a function of the pion kinetic energy for the central
collision of La + La at E/A = 1350 MeV. Circles are the experimental data and the

histogram is the model calculation. The solid line represents T; as extracted from the
two-temperature fit to the experimental data. -
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It is well known that the cascade models with A resonances and their decays
predict a single exponential spectrum. In principle. the main differences between our
hadronic transport model and the cascade models are the inclusion of the mean field

for baryons and a more proper treatment of the Pa.uh blocking in the present model

The agreement between our model calculations and the available experimental
data indicates that to correctly describe the experimental observables in heavy ion -
collisions of 1-2 GeV/nucleon beam energies, it is necessary to include the mesonic
degrees of freedom explicitly, while still keeping the baryon mean field. This is because
in this energy domain the long range nucleon-nucleon interactions are still sufficiently
significant that the particles are not free but moving in a varying mean field both in

space and time.
5.2 Systematics of pion spectra

From our previous discussions, we see that what is important for reproducing the
experimentally observed concave shape of the pion spectra is the correct description
of the effects of the reaction dynamics on pion production and absorption. Pions in
the high...tempexa.tu:e,,compc;uent;;.are, mainly produced in the early high-compression
phase of the reaction, probably during the first one or two nucleon-nucleon colli-
sions per nucleon. On the other hand, low energy pions are mainly produced in the
~late expa.n#ioxi phase of the reaction. -Pion spectra therefore indeed carry interest-
ing information aboﬁt the space-timé dynamics of heavy.ion collisions. Mofe of this
information can be obtained by studying the dependence of the shape of the pion
spectra on the beam energy, mass and impact parameter.

: Since the éystemé.tic experimental 'stix'dy"B'f the concave shape of the pion spectra is

“' underway on SIS /GSI by the KaoS cdlla'l;o:réiibh,ﬂ[()‘éséSQ] it is therefore interesting to
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study these systematics based on our model calculations also. Moreover. a comparison
between the two systematic studies will further determine the mechanism that causes

the concave shape of the pion spectra and further test our model ingredients. -
5.2.1 Energy dependence

We first study the energy dependence of the shape of the pion spectra in central
collisions of La+La. In experiments one usually measures the pion spectrum at around
90 degrees in the C.M. system in order to avoid the ‘corona effect’,[Brocd4] so that
reliable information about the dynamics and properties of the hot and dense matter
in the participant region can be exti'at':'t;ed; All the spectra presented in the following
are then calculated in the C.M. system at 90+30 degrees in accordance with the

experimental situation of the KaoS collaboration.[Oesc89]

Pion spectra in central collbisbivons have béen caléﬁiated for;beam energies from 0.3
GeV/nucleon to 2.1 GeV /nucleon; typical ones are displayed in the upper part of Fig.
5.11. Pion spectra at beam energies below 0.7 GeV /nucleon can be well described by
a one-temperature Boltzmann distribution. This is because in this energy range the
nucleon-nucleon inelastic cmss: section is.small, only the first collision of a nucleon with
target rapidity and a nucleon with projectile rapidity can effectively produce pions.
For beam energies greater than 0.7 GeV/nucleon, if one fits the lower energy part of
the specfrumwith a singlevexpon'ential distribution it is seen that the deviation of
the spectrum from the single e_prpential distrjbution increases as the beam energy
increases up to around 1.5 GeV/nucleon. The general feature obsei'ved here is in
agreement with the experimental findings.[Odyn88] However, the tendency is not so
obvious at beam energies ahoxg lSGeV/ ngcleqnf As can ‘be‘ seen the slope of high
energy pions also increases astbe beam energy i‘x‘l‘crqas_es. As ;we bave:cvl-iscussed in the

last section, pions in this high “temperature” component are produced in the early
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Figure 5.11: Upper figure: Calculated energy dependence of the pion spectra at 9030
degrees in the center of mass frame for La+La reactions at impact parameter b = 1
fm. Lower figure: Energy dependence of the shape parameter R of the pion spectra
shown in the upper figure. The solid line represents the analytic scaling function of

equation 5.6.



high-compression phase of the reaction. The slope of the high-energy pions reflects
the amount of energy deposited in the participant region via barvon excitations. which

is monotonically increasing with beam energy.
5.2.2 Mass dependence

In Fig. 5.12, the upper part showsrour predictions on the mass dependence of the pion
spectrum. All calculations are performed for s&mmetric systems at a beam energy of
1.5 GeV per nucleon and an impact parameter of 1 fm. For light systems. such as
C+C and“ Ne+Ne (not s‘_ho_wn), the spectra can be well described by a one-temperature
Boltzmann distribution. The reason for this is that, for light systems the size of the
participant region is éfnall which is compatible with the mean free path of the nucleon,
and therefore on average particles only suffer one collision during the course of the
reaction. For heavier sy"st.ems from Ca+Ca to Tb+Tb the situition is différent. If
one fits the lower energy part of the spectrum w‘i?th a single éxponent.ia.l distribution
one sees that the deviation of the spectrum from Itl;e single exponential distribution
increases as the mass of the system increases. 'i'his feature of the mass dependence
also agrees with the experiq;entai resﬁlts[ChasQO]. Looking at the experimental pion
spectra shown in Figs. 5.8 and 5.10, the deviation of the spectrum from the single
exponential law in La+La is much larger than that in Ar+KCl, given the fact that
the beam energy per nucleon in the La+La reaction is 450 MeV smaller than in the
reactxon of Ar+KCl. We also observed that the slope of hxgh- energy pions is almost

. mdependent of the mass of the colhdmg nuclel

5.2.3 Impact parameter dependence

Little knowledge of the impact parameter dependence of the pion spectra is presently

available from experimental data. The Kao$ collaboration has thus planned to study
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Figure 5.12: Upper figure: Ca.lcula.ted mass dependence of the pion spectra at 90 £ 30
degrees in the center of mass frame for a beam energy of 1.5 GeV/nucleon and impact
parameter b = 1 fm. Lower figure: Mass dependence of the shape parameter R of the
pion spectra shown in the upper ﬁgure "The solid hne represents the analytic scaling
function of equation 3.6. : : : )
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Figure 5.13: . Upper figure: Calculated impact parameter dependence of the pion
spectra at 90 & 30 degrees in the center of mass frame for Ar+KCl reactions at beam
energy of 1.8 GeV/nucleon. Lower figure: Impact parameter dependence of the shape
" parameter R of the pion spectra shown in the upper figure. The solid line represents
the analytic scaling function of equation 5.6. ‘ . .



92

-

this dependence. In particular. a change in the slope of high-energy pions with cen-
trality might indicate a thermal origin for these pions. while a similar slope would
favour a dyn_amical decay process. Our predictions of the impact parameter depen-
dence of the pion spectrum ar-e shown.'in the upper part of Fig. 5.13. The reactioﬁ
of Ar+KCl at a beam energy of 1.8 GeV per nucleon has been chosen. It can be
seen that the spectra are almost parallel to each other and show a conéave shape
for impact parameters smaller than 3fm. Ebr impact parameters larger than 53fm
the spectra show only one temperature component. This is, because at large impact
parameters too few pa‘r‘t‘icleAs are inside the collision zone. and pions are produced in

first collisions only.

In experimgnts the centrality of the ;gaction are usually measured in terms of the
charged parti‘c’lev multiplicity, ig thlS case charggd pions. In our model calculations
there is the impact:; pa.r‘;.r‘netver a.nd the mul‘tip‘licity of charged pions in thbe final state.
It will therefore be possible to make a di.rect;cvomp’arison between éur calculations

and the coming experimental data from the KaoS cplléboration.
5.3 Approximate analytic scaling function

~To describe the shape of the pion spectrum quantitatively and further study its de-
pendence on beam energy, mass and impact parameter we perform a least square fit
" to the .sbebtx‘u'ni:with a two-temperature distribution function of eq. 5.3 and define
the shape parameter as

. A‘TI

=l 5.3
AT + AT, ( 3)

With T, we refer to the lower temperature in the two temperature fit. It should be

noted that this temperature is not the same as obtained by fitting the lower energy
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part of the spectrum with a single exponential function. R represents approximately

the fraction of the pion vield from the first exponential{Odyn38].

The s‘ha.pe parﬁrn_éters as extracted from our computer calculations are plotted in
Figs. 3.11. 3.12, and 5.13 as functions of beam energy. mass and impact parameter.
respectively. The energy dependence of the shape parameter is rather ﬁa:t. As a
function of the total mass of the >systern, R increases from about 0.5 to 0.8 when the
tétal masses of the system grows from 24 to 160. For heavier systems. R saturates
at aflound 0.8. For Ar+KCl collisions at a beam energy of 1.8 GeV per nucleon,
the shape parameter is about 0.7 for _impact parameters smaller than 2 fm; it then

decreases to about 0.4 at b = 5 fm.

In order to ﬁnderstatxd the'séalingi behaviour of the shape parameter R we may
attempt to formulate a.pproxnma.te scaling laws, based on our knowledge of the mech-
.amsm that causes the concave shape of the pxon spectra. As we have discussed
préviously, pibné in the h'ighe‘l' temperature component are mainly produced in the
early high-compression phasé during the course of the reaction. To obtain an approx-

imate scaling function we assume that pions in the higher temperature component are

completely from first' colltsms n t.be -early phase-of &he reaction.. This-approximatios.. ..

is valid for beam energies which are not too high. To contribute to the lower energy
component, at least one of the colliding nucleons has to have had at least one previous
. collision to tra.nsportv it into the ‘mid-rapidity sourcé’.HWe_use Poisson statistics for
the probability distribution of the number of nucleon-nucleon collisions. Under these

simplifying assumptions, the scaling function for the shape parameter is given by

] —e® —Re™ s
= — . 5.6
Rermem ~ o be

" Here, the numerator represents the. probablity to have had at least two collisions,

whereas the denominator is the probability for nucleons to have had at least one col-
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Figure 5.14: The systematics of the average number of nucleon-nucleon collisions
suffered by each participant nucleon
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lision. Here 7 is the average number of nucleon-nucleon collisions per nucleon[Baue33}.

/\p/\dann(E) fo d-rdy fjo’o d:xd:zpt(z.z + y'2 + z%)l/'zpp(:z + y2 + 33)1/2
‘;'fo d:::dy_ff; dz(pp( 22 + y* + 22)V2 4 py(z? + y? + 23)1/2)

n=

-1
—~—

Here ann(E) is the energy dependent t;)tal nucleon-nucleon cross éectioﬁ. The inte-
grations over x and y are performed o;'er the geometrical overlap area O A, is a
correction factor resulting from the fact that the final-state phase space for the scat-
tering nucleons is partially Pauli forbidden. With use of geometrical considerations.

it can be approximated by

2p% — LA2(3pr — h)\?
)\p=(l— Pk = sk (e ) (53)

(PF + po)>
with b = (pr — ps)0(pF —-Pp)- A4 is another correct‘i;)n factor used to include properly
the effect of energy degradation and pion reabsorption. A constant of 0.6 has been
. used in our calculations. The systematics of the collision number calculated from eq:

5.7 have been displayed in Fig. 5.14.

Even thoﬁgh we _éxpect “tlAlie above scaling fﬁnctidn: qu the shape parameter to be
only an approximation, we can still compare it with the numerical values extracted
from)..the'..‘calculat.ed‘.specttae.ﬂ _The res;.ll;.s othained frorﬁ Eq. (5.6) are displayed by
the solid lines in the lower parts in Figs. 9, 10 and 11. A’s can be seen, the qualitative
features of the numericai calculations argreproduqed. and:the gross features of the
shape parai'hétei' and therefore the systematics of pion spectra_'in.relativistic heavy
ion t;.ollisions at beam energiés around 1 GeV/ nucleon can be understood in terms of
the simple scaling arguments presented héré.~ ‘

In summary of this chapter, an application of the hadronité mo&el to the study of
the pion spectrum shows that the shape of the pion spectrum reflects the effect of the
reaction dynamics on pions, the mechanism for the concave shape of the pion spectra

in central heavy ion collisions is found to be due to the different contributions of
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the Delta resonances produced early and late during the course of the reaction. The
available experimental pion spectra have been reproduced. The systematic study of
the shape of the pion spectra indicates that the concavity of the pion spectra increases
with both the beam energy and the mass of the collidiﬁg nuclei, and decrease with

impact parameter.

An approximate scaling function for the shape parameter of the pion spectra has
been derived from a Qlauber-type multiple collision model to understand the system-
atics of the pion spectra. Upcoming experimental results from the KaoS collaboration
on the systematics of the concave shap.e of the pion spectra are expected to further

test our model predictions.-

We conclude from our study in this cha.pteri that in heavy ion collisions of beam
energies around 1 GeV/nucleon it is necessary to treat mesonic degrees of freedom
A. explxcnly, thhout neglectmg the nuclea.r mea.n field. This is important to the under-
standing of the observa.bles sensmve to the dynamical degrees of freedom in relativistic
heavy ion colllslons and to rehablv infer propertles of hot and dense matter produced

in these colhsxons



Chapter 6

Preferential emission of pions

The existence of a collective flow signature among ,tl_le final state baryons of rela-
tivistic heavy ion collisipns at beam energies around 1 GeV/nucleon has been firmly
established by the sphgricity analysis[dyu182. Dani83] aﬂd the in-plane transverse
momentum analysis[Dani85] of the rich harvest of data from the Berkeley plastic ball
detecior. These methods have revééled vth.e colléctivé‘r;xoﬁ_ion follév?in'g the decompres-
sion of the hot and dense nuclear matter in both the reaction plane and perpendicular
to the reaction plane. In the reaction plane a sidéward deﬁect{on of spectator particles.
the so called “bounce-off”, .and an azimuthally asymmetric emission of participant
particles, the so called “side-splash” liave been observed[Stic80; Buch83: Gust84}: A+
collective flow of nucleons perpendicular to the reaction plane, the so called “squeeze-

out”, has also been found[Gutb89].

For ease of the following discussions, we discuss the basic idea of the transverse '
momentum analysis here in more detailed. The idea is to investigate whether a
single particle of the event knows something about the whole event, i.e. the question
whether the particles are collectively correlated. Danielewicz and Odyniec proposed
to construct the reaction plane form the beam direction and the vector

Q; = ) wibLi (6.1)

1#]
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determined from the detected particles in each event of mass svmmetric nucleus-
nucleus collisions. §; is the momentum component of the particle i perpendicular to
the beam direction. The weight w; is taken as | for y; > y.m and —1 for y, < yom.
where y.n is the center of mass rapidity of the nucleué;nucleus collision and y, is the

rapidity of the particle i defined as

E+ P
= it )
y=In E—» (6.2)
The transverse momentum of the particle j in each event is defined as
pe; = {Q; - Fuill@)1}- (6.3)

The average transverse momentum (p:) is obtained by averaging over all events.
The average transverse momentum analysis, namely plotting the average transverse
momentum (p;) v.s. the rapidity vy, can now be performed. A positive (negative)
average transverse momentum for positive (negative) rapidity indicates that éarticle§
flow collectively. Fig. 6.1 shows as an example the average transverse momentum in
the reaction plane, (p;), as a function of the rapidity in the laboratory frame for La
+ La collisions at a bbéa.m er;érgy of 800 MeV per nucleon. The characteristic S-shape

of the resulting curves, is a clear signature of collective nuclear matter flow.

Due to the small mass of pions compared to that of baryons, it has been pointed
- out that the pions might serve as a good probe of any hydrodynamical flow[Goss39].
Moreover, as pion:s are ma;inly coming from thé det':a.y"of A"reson\ahée‘é in theﬂ relativis-
tic heavy ion collisions, the remnant of the collective flow carried by A resonances

might be seen in the final state pions.

Looking for flow signatures among the final state pions, several groups{Kean86,
Dani88, Goss89] have studied the transverse momentum distribution in the reaction

plane for pions. One of the most striking results from the DIOGENE collaboration{Goss39)
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is that the in-plane transverse momentum of pions is always positive even for back-

ward rapidities, for the asymmetric (Ne or Ar) + ( Nb or Pb) systems.

However, the Intra-Nuclear-Cascade model predicts values compatible with zero
over the whole range of rapidity[Goss39). 4The Quantum-Molecular-Dynamics model
calculation of the pion transverse momentum distribution{Hart38] indicates that the
introduction of the mean field describes some of the experimental effect. but the
model predicts less asymmetry than observed experimentally. Therefore, the ques-
tion whether the experimentally observed preferential emission of pions away from
the interaction zone towards the projectile side in the asymmetric nucleus-nucleus
collisions is due to the collective flow of pions or due to the shadowing effect of the

heavier target spectator has not been: resolved.

In this chapter, we report on the results of a study about the pion transverse
momentum distribution in the reaction plane by .using of our hadronic trarisport |
model. The preferential emission of pions towards the projectile side in the transverse
~ direction in the reaction Ne + Pb at a beam energy of 800 MeV/nucleon is found
to be due to the stronger absorption of pions by the heavier target spectator. The
calculated transverse momentum distribution of pions_> in the reaction plane agrees

with that of the experimental data.

6.1 The mechanism for the preferential emission
 of pions | S

In our model calculation, the reaction plane is known @ priori and we refer this
' pla;rie’ as the true reaction plane in the following discussions. The reaction plane
~estimated from the observed charged particles will be referred toasﬂt':h‘e estimated

" reaction plane. To study the mechanism for the preferential emission of pions in the
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transverse direction, we first study the pion transverse momentum distribution in the

true reaction plane without using the experimental detector filter.

In Fig. 6.2. the rapidity distribution and the transverse momentum distribution
(scaled with the mass of the pion) in the true reaction plane fér r* frérn the reaction
Ne + Pb at a beam energy of 800 MeV/nucleon are shown with the solid histograms.
The calculation was done at an impact parameter of 3 fm which coincides with the
condition of the experimental data[Goss39]. It is seen that the rapidity distribution
peaks near the center of mass rapidity of 0.1 unit and is asymmetric about the center of
mass rapidity. The transverse momenturmn of pions in the true reaction plane is positive
even for negative rapidities, which reflects the fact that the pions are preferentially

emitted towards one side of the participant region in the transverse direction.

As discussed earlier, in the baryon transverse momentum analysis, the S shaped
distributlion in the reaction pla.né with the’average.‘in-pla..ne »tra;nsverse momentum (pz)
positive (negative) fot positive (negative) rapidities in the C.M. system for repulsive
interactions has been taken as a signature of the collective baryon flow[Dani85}, and
S-shaped distributions of opposite sign are also found in the beam energy region
below. 100. MeV /nuclean. wl;e:e attractive interactions dominate{Krof89]. Both the
flow parameter and the average in-plane transverse momentum have been found to

be sensmve to the nuclear equation of sta.te[MthS Gale87a, Bert88b]

Is the nonzero |ﬁ-§lané “trar.nsverse rhorﬁentum of plons a remnant of the baryon
collective flow carried by A resonances ? To answer thxs questxon we have studled the
dependence of the pion transverse momentum distribution on the nuclear equation
of state. Within statistical fluctuations results from the calculations done with a stiff
"~ équation of state corresponding to a nuclear matter compressibility of K = 380 MeV
" and with a soft equation of state corresponding to K = 210 Mye{j\"_a.r.e;t‘_hel same. This

indicates that the effect of baryon collective flow on the pion transverse momentum
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distribution is negligible and the origin of the positive in-plane transverse momentum

of pions is not predominantly the remnant of the A flow.

It has been speculated that the mechanism that causes the positive pion transverse
momentum in the reaction plane might be due to the target shadowing effect{Keans6.
Goss39), and this idea has been demonstrated in a phenomenological model assuming

that pions have a constant mean free path in nuclear matter[Goss89).

In the present dynamical model calculation, pions are reabsorbed through a two-

step mechanism, namely,

r+ N—= A,

N+A=N+A. | - (6.4)

The cross section for these processes in each isospin channel have been discussed in

detail in Chapter 3.

To study the effect of the pion reabso;ption a.nd‘ rescat;éring and therefore check
the shadowing effect in forming the positive in-plane transverse momentum of pions.
we calculated the pion transverse momentum distribution and the rapidity distribu-
tion by turning.off the pion reabsosption.channels (6.4) and the A rescattering channel
N + A = N + A. Results of this calculation are shown with the dashed histograms
in Fig. 6.2. (For ease of comparison, we have normalized the total production cross
section of these primordial .pions to the one for the .pions produced including the

reabsorption and rescattering channels.) In this case the in-plane transverse momen-

tum is zero within stafistical error bars and lthewra.pidit'y distributic?h is symmetric
about half-beam raﬁidity of 0.6 unit, which réﬂcété the ‘_f‘a.ct, t'hAa.t the pions are emitted
isotropically in the center of mass frame of two colliding nucleons. |

Comparing the rapidity distributions obtained with and without the reabsorp-

tion and rescattering channels ( solid histogram and dashed histogram ), we first
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Figure 6.2: Upper figure: =* rapidity distribution calculated with ( solid histogram

) and without ( dashed histogram ) the pion reabsorption channels for the reaction

of Ne + Pb. Lower figure: Calculated r+ transverse momentum distributions in the

. true reaction plane with ( solid histogram ) and without ( dashed histogram ) the
" pion reabsorption channels. " o
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notice that pions with positive rapidities emitted towards the target side are more
reabsorbed compared to pions with negative rapidities emitted towards the projectile
sider This reflects the preferential emission of pions in the longitudinal direction. as
one would expect for the highly mass-asymmetric system. Second. the reabsorption’
and reemission of pions as well as the rescattering of A’s help to thermalize'the sys-
tem. This effect appears as the change of the peak of the rapidity distribution from
the mid-rapidity to the center of mass rapidity as the reabsorption, reemission and

the rescattering channels are turned on.

From the results of these calculations. it is clear that the positive in-plane trans-
verse momentum of pions in the wymﬁetric nucleus-nucleus collisions is due to the
stronger reabsorption of pions by the hedvigr target and therefore the speculation
about the shadowing effect of the i:targ.et.. is conﬁrrﬁéd.

" In symmetric nucléus-nucleus collisions the specta.tox;s ;;e the sé,me on both sides
of the interaction zone. It is interesting to study the pion transverse momentum
distribution and the rapidity distribution in symmetric systems to test the sensitivity
of the model to the geometry of the pion a.bsori)in'g matter. In Fig. 6.3, the rapidity
distribution and the ttansv;.r.se momentum distribution are shown for pions from
central collisions of La + La at a beam energfy of 800 MeV/nucleon. It is seen that both
the rapidity and the in-planeetr‘ansverse momentum distributions are symmetric about
the center of mass rapidity of 0.6 unit and the transverse momentum distribution has

a typical S shape.
6.2 Comparison to the experirhent'al data-

In order to compare the model predictions and the experimental data of the pion

transverse momentum distribution, we have made a full simulation of the central
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Figure 6.3: Rapidity distribution and transverse momentum distribution calculated
for La + La reaction at E/ A= 800 MeV a.nd the tmpact pa.tameter of 1 fm.
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Pictorial Drift Chamber (PDC) acceptance of the DIOGENE collaboration{Goss39!.
The PDC detector covers the polar angle 8 from 20 to 132 degrees. Due to the
~low energy limit of the detector. only particles satisfying the following relations are

accounted. For pions
pr/m >066+0.77y, y <O0; (6.3)
pr/m >0.66-0.63y,y>0. " (6.6)
For baryons
p/m>036+072y, y<0; A (6.7)
pi/m > 0.36 - o.Sy vy >0 ., - | " (6.8)

In the same way as‘in‘ thc éxperimenﬁal data analysis[Goss89], we estimate the reaction
plane for each event from the bea;ﬁ‘difection and the vector
Q=Y wibu ] B : (6.9)
i ' ,

determined from the detected protons. Here the weight are w; = y; — §, and § is the
average rapidity of the detected protons. This weight is different from the one that
was originally proposed for symmetric systems since the center of mass rapidity of the
participant systém is not known qA priori in each event for asymmetric nucleus-nucleus
collisions. - | | ‘

In Fig. 6.4, we perform a comﬁarison betbweeAn thé experim;htal data >a,nd the model
calculations for the Ne + Pb reaction. The experimental data are represented by the

round plot symbols. The solid histograms are the model calculations, the error bars in

the model calculations are statistical in nature, since we solve the coupled transport
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Figure 6.4: Upper figure: calculated #* rapidity distribution after using the detector
filter cut for the Ne + Pb reaction at E/A = 800 MeV. Lower figure: Comparison be-
tween the experimental pion transverse momentum distribution ( round plot symbols
)and the model calculation (. histogram ) for the same reaction.
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equations for the hadronic matter with a Monte Carlo integration technique. The
experimental data are in reasonable agreement with our model predictions. To show
the effect of the detector ﬁl_ter cut. the rapidity distribution of the detected r+'s in
the model calculation has been shown in the uvpper part of Fig. 6.4. Since the cé.scade
model did not reproduce the preferential emission of pions. it has been cortjectured
that in-medium effects and pion production channels involving more than two nu-
cleons could be important in the energy range studied hére[Goss89]. However, our
calculations indicates that it is not necessary to introduce additional medium effects
and many-particle processes beyond the nuclear mean field and the Pauli exclusion
principle for final state nucleons to understand the phénomenon of the preferential

emission of pions.

In summary of this chapter, we pemformed hadronic transport model calculations
of the pion ra.pldnty distribution and the in- pla.ne transverse momentum dxstnbutlon '
We discussed the effects of the ta.rget shadowmg and the A flow in forming the positive
in-plane tra.nsverse momentum of pions m a.symmetnc nucleus-nucleus collisions. We
found that the mechamsm for the preferentxal emission of pions from the interaction

»zone towards the prolectlle sxde in the transverse dlrectxon is due to the stronger
reabsorpnon of pions by the heavier ta.rget The model prediction of the pion in-

plane transverse momentum distribution agrees with the e‘cpenmental data.



Chapter 7

Summary and Outlook

In tlns work we have developed a new hadromc transport model for relatmstlc heavy
ion collisions at beam energies a.round 1 GeV/ nucleon by denvmg and solvmg numer-
ically a coupled set of transport equations for the phase space distribution functions

of nucleous, Delta resona.nces and pions.

Startlng from an eﬂ'ectwe hadromc Lagranglan densxty with minimal couplmgs'
between baryons a.nd mesons, we first derxved coupled equatlons of motion for the
density matrices of nucleons, Delta resonances, and pion mesons as well as for the
pion-baryon interaction vertex functxon By truncatxng at the level of two-body corre-
lations.a.closed set of equations of mnr.mn fo: the one: bodv density matrix-is obtained: -
A subsequent Wigner transformatxon then leads to a tractable set of relativistic trans-
port equations for interacting nucleons,‘ Delt‘a resonances and oions. The transport

- equations are then solved numerically with the test pkarl:i'clevnxethod. ﬁ

The model aims at formulating a framework for the theoretical understanding of
the nuclear physics phenomena in relativistic heavy ion collisions. We first applied
our model to study the dynamics of pion pfoduction and the pion multiplicity. The
experimental excitation function of pion multiplicity was reproduced. The application

of the model to the study of pion spectra reveals that the mechanism that causes the

109
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concave shape of the pion spectra is due to the different contributions of the delta
resonance produced during the early and the late stages of the heavy ion collision
and due‘ to the energy dependence of the pion and delta absorption cross sections.
The dependence of the shape of fhe pion spectra on the beam energy. the target and
projectile mass, and the impact parameter has also been studied. An approximate
scaling function for the shape parameter of the pion spectra is predicted. Another
new phenomenon that the model is able to explain is the preferential emission of
pions in asymmetric nucleus-nucleus collisions. We have found that the preferential
emission of pions away from the interaction zone towards the projectile side in the
transverse direction and longitudinal direction is due to the stronger pion absorption

by the heavier target spectator.

The success of the model in reproducing different experimental data sets for total
pion excitation functions, pion kinetic energy spectra, the two—tempera}t:u're appear-
ance of pioﬁ spectra, and preferential emission of pions in asymmetric nucleus-nucleus
collisions indicates that our model is able to describe most features of pion produc-
tion physics in relativistic heavy ion collisions. This supports the conclusion that the

approximations entering our model should be approximately valid.

Our transport equations for baryons contain a vector field and a scalar field, which
are momentum dependent. As_a first step of the model, only the zeroth component
of the vector field has been taken into account, which has been parameterized by a
vdensity dependent functional. Further impfovement of the fnodél should incorporaté

the momentum dependent vector and scalar potentials.

Our transport equations include in principle the possibility for a changed disper-
sion relation for pions in nuclear matter. It was first pointed out by J. Kapusta and
C. Gale that the pion dispersion in hot and dense nuclear matter can be studied

by looking at the dilepton spectra in relativistic heavy ion collisions{Gale87b], since
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=¥~ annihilation is the main source for the production of dileptons with large invari-
ant masses. Interesting phenomena have been found in the dilepton spectrajRoch33;
in BEVALAC heavy ion collisions. Conventional transport models[Xion90a. Wolf90]
with the free space dispersion" relation for pions seems unable to completely under-
stand the observed features of the dilepton spectra. Extension of our hadronic trans-
port model to include the in-medium dispersion relation for pions would be useful for

the study of dilepton physics.

Further extensions to the study of two-pion correlations and kaon production are

presently in the planning stages.



Appendix A

Derivation of Ig7T and Igr7r

To calculate I}, and I}, we need to use the explicit expressions for J/"(z), Ue(z),

and 4(z), i.e. eqgs. (2.24), (2.25) and (2.64). The exélicit exﬁressions for p(zz’) is

pez) = (le), o (A1)
where
M 1/2 o
wf(a:)=§(ﬁ:;(;)) aLPuLpe‘p.z' (A.2)
and
. \1/2 |
”’(”=Z(EA-JG)) —— (A3)
ap a

The explicit expression for p.(zz') is

pe(zz’) = x() - ®(z) LT - (A4)
where
w(z) = 2(——1—-)” 2 e BB (RN bf =ik +iE(RY] (A.3)

S, (k)

where the creation and annihilation operators b!, and by are isovectors. In the above

expansions, only the positive energy components are included.
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Before proceeding to calculate the collision terms due to pion-baryon collisions.

we list the approximations to be used in the following

<azx'p'aapal‘lp"aalm)' = fa(P)fa‘(Pl)5aa’5pp'6a1a’15mp'l , . {A.6)

+ fa’(p’)(l - fa(P))aaa'ﬁpp'l6a'a15p’p1‘ '

{b n-l:b ) = fr(k) "’5}:’:” ’ » (A.7)
(bakbli) = (14 fr(k))bnmrns (A.8)
(brkbeie) = (BLebhiw) = (bee) = (L) =0. (A.9)

Now we are ready to calculate the collision terms, first for I}, (zp). The collision

operator can be written as
Re(ea) = I + Ho 4 I - I - 16 - I, | (A.10)

where I and IR are Hermitian conjugate of each other. The zero-order terms in

m(z) can be expressed as

Ig2(z2")

, 9, 1 0.
= —wp(zz)&(h (z) + Ea(z)- h ( ). ( )u(b';)l’(zz)
= Z E [UL:p:ﬂ( uap] [ua,plu(Pl )“ax‘m]

a'p’.apa';p’,faxm
1 M;M;NW;IM;ol

[ M
E+(pi — m) Ea(p)ES(P)ES, (P1) Eg, (P1)

§(Es(p) + Ex(py — 1) — EG(P)) -

ol papal aame" #-ipztipiz-ins (A.11)



114

The expectation value of this quantity is
R VM
L ! — L i = Tl 2 ?' , - o
[07\’(II ) - ([ON(II )) Z E.(p)E.(p,)(uapy.(p 14 )uap)

a'plap T a

(u ap—(P P)uap )'E‘;r;l-__'—p,‘y
§(Ex(p) + Ex(p—=¢') = ES(P))

far(P)(1 = fu(p))e®t==2) (A.12)

In phase space it has the form

w;M-, G o
[é;r IP = Z E Pl) ua’p‘ly.(p -p )Iuap) . (uap’H(P =D )]ua'p'>

1 . R [
mm(p) + Edp - ) - B2 ()

§(p = P f(P')(1 = fa(p)) . | | (A.13)

To go further. we notice that the inter’a.ction'ma.ttix @ (eq.2.64) contains differen-
tial operator 4, in it’s off_-dia.gonal elements, na.n;ely the V & A transition matrix
- elements. Correspondingly, it has terms linear in p and terms independent of p in
momentum space. For terms linear in p, & (p p) and therefore Io,, must be van-
ish in accordance with é(p = p’) Since E‘( )+ EL(0) — E3(p) # O witha = N
orA, terms mdependent of p, namely (uarp|id(1)|uap) and (unp|d(1)|un,) also van-
ish in accordance with 6(E;(p) + Ex(0) = E3/(p)). We then have I%(zp) = 0. and
IR (zp) = 0. Because of (bn) and (b,’,,,) are zero, the linear terms in - ﬁeld vanish
1dent1ca.lly, (.’tp) IR (zp) = 0. Therefore, only bllmea.r terms in 1r(z) contribute

to I¥,. Formally

L=15 -I%, . E (A.14)
wher_e

I% (22



= -3l0"(2)-0 ')|*6(h(z) + Eo(z) - h(z')
d . = 3
Ur(a)ﬁ("') (Exlz))™? (a)P(II)
= _gic “(z) = Um(2)6(h(z) + En(z) - h(2"))
U 513(a2) (Belz)™ &l g )blz2)
. "[‘ Wl“M- M. l/2
- 8 rk.x'k! ap.a'p’ aypy a 4E (k)E" ‘kl E.( (#)Eal(Pl (pll

6(E;(p) + Ef(k) E;'( )) a p'aapa:,'p’ aa),p[

il po? i ) l
e'?'® ""*“’l"")’(u:,'l,:ly( - P1)Uayp, )E—"(—pT)‘

[(b”keikz—iEw(k)t +’b:ke_lkt+lsn(k)t)

(b”lk'eik’:—is,;(lg')t + bL -|k'z+lE,,(k')¢) ( u! i y.(k k')u(p) uap) )

+ (uf' ﬁ(pl)2ﬂ(0)uap)(b’rk’eik:’-iEp(k)t+bi;ke-ik:'+€5p(k)t)

a'p’

(bﬂ'k,eikltl;ist’(k,)‘ + b::kle_ik':""isw‘(k‘)‘)
+ z(bfkeik"‘z'(")'+b,f,,;e""’"+‘5v(k)’t‘) :
(bfakoef\kf?'-iEf:(k')t +b:,, -;k' ! —iE (k' )t) ap'“(P)ﬂ(k*)“(*P)uap)] (Al{)) )

and analogously for /R. The expectation value of i%, is then

B =iy ENCEUS

5 - MIM, 1 A ,
82,2, B DB (P 2 (7) BN — ) erklF — Pliy)

rk ap,a’p’
§(E3(p) + Ea(k) = Ez(p) far(p)(1 = fa(p))e® =2
(Lfe(k) + (1 4+ Fo(R))ulege (3(2)i1(0) + &(0)is(P)?)tap]

+ 2 fa(k)e ™= + (14 £ (k)™ (ul, (P K)ik(P)uas)) -
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The baryon component of the Wigner transformation of I% (zz') is therefore

1 " —iD-
hilap) = W/Tr‘”l’e’(” Je™PTdr (ALT)
_ T MMy, L
- 8,2“%‘:,, 2E.(k)E;(p")EL(P') Eg(pu_ﬂ)(uap' 12(p” — p)|uarp)

([f+ (k) + (1 + Sl far(P) (1 = folP"))

S(E;(p") + Ex(k) = ES(P)S(P' ~ P) - (uarr|2(p)*2(0) + &(0)(p)?|up)
+2[f=(F) far (P')(1 = fo(p"))o(P + K - PYS(E(p") - Ex(k) - EL.(P))

(1 + fe (k) far (P)(1 = fu(P"))E(P' = k = P)S(ES(P") + En(k) = EZ(p))]

(Uarpr |ﬁ(Pl).{£(k)a(P)‘uap) )

This expression for the collision terms can be simplified, as we shall show. As discussed
previously in the calculation of I£,(zp), the terms containing (uasp|i(0)|uqp)- vanish.
Moreover, 4( k) consists of terms linear i:ri k and terms independent of . Fo_r the first
kind, &(k = 0) = 0. For the second kind, ﬁ(k) = %(1). Wealso haQe (unp|B(p')?a(1)+
4(1)4(p)*|ua,) = 0. Therefore only the “diagonal” terms survive, (uqy|a(p')?a(1) +
4(1)%(p)*|uap) # 0, with a=N or A. With the on-shell approximation, we also have
p" = p, and §(Ej(p) + Ex(k) — E;(¢'))6(p’' — p) = 0. Therefore the terms containing
4(0) vanish. With the above conditions and approximations, the collision terms for
baryons due to pion-baryon interactions can be simplified and, furthermore, they can

be separated into gain terms and loss terms,

I5(zp) ' | o (A.18)

= = Mﬂ' (uaﬂlu(p)n(k)u(p)luﬂp) (uaplﬁ(k)lua'p')
ga;{n. PES (zf) . Ew

~ (k) far(P)(1 = fo(R))E(E5(p) — Ex(k) = EL(P'))S(P' + k - P)
+ (14 f2(B) far(P)(1 = fo(p))S(E} () + Ex(k) = ES.(P'))6(p' = k - p)]
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[Br (Ip)

=3I ¥

W', Mg (uarp|8(p)AR)a(p)|uap) - (uapld(k)luarp)

rk )pmb ( )

[f2(R)(1 = far(P' ) fo(P)S(E5(P) + En(k) -
+ (L4 fo(k))(1 = for(pN) fo(R)E(E} () -

Finally, let us calculate I],. Its operator form is

i:”(.t:t’) - ;un(zz) [lou(xz') '

where

i m(z:z: ) = QEi(x)g(x)_l‘"(;,z',z) ,
and

ir (zz') = f‘(’z' z,z')i(z') !

lou.‘ _7 y oLy u 22’(’)

In more detail

. . _r 1
[Sam( ) - IGE,(I)

(0*(z-) - U”(h-)] Az~ z.,.)

i(2)8(h(z-) + Ex(2') - h(z4))

( )p(m ),

(A.19)

(A.20)

(A.21)

(A.23)

where z; = z+¢(¢ — 0) means that h(z.), h(z4), U"(:c..) and U*(z,) should operate

on p(z_z.4). Aftet having operated, z; should assume the value z. Since U (z)

contains the pion ﬁeld n(z), we encounter the dnfﬁculty of calculating the expectation

value (m(z) - ®(z)) for the gain term and (m(z') - ®(z’)) for the loss term. Since we

-+ . know that

pr(zz’) = (m(2) - w(2))
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1
- / AP fa(k)dk

1
- L3E %)

i 2E(

((b(2") + bL(2'))(bulz) + bL(z)))

- >3 E 2')be(z) + bi(z)bu(2") + be(2")bi(z) + b} (=)0} ()
k = fr

tn

r

R

as £ — z, there is an uncertainty for the order of operators bi(z) and b}(z). Since

k) (A.24)

the gain term for the pion due to pion-baryon interactions is related to the pion
production process and the loss term’is related to the pion reabsorption process, to

eliminate the above uncertainty one should use

z) - ®(z))

(e |
R zE:( S{(be()bl(=) + bu()8L(2) + be()be(z) + Bl (b))

1+fx(k) S (A.23)

l"'J

T

1(

and

((z ’) - w())

2 5 E,( 55 Ok(@)be(2) + l(2)tu(2) + bu(2)bu(2) + B(2)El(2))

ZE(k)f:(k) S - (A.26)

Apart from the above exceptions, the calculation of I3, is similar to that of It

The expectation value of the gain term [7,;, is

() = () |
e il
E ) E3(p)ESi ()

rk apa’p’ a1p1a)p]
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:q(z-y)+l(P -ply , ,
[ dady BB = Bl = 1) - Eulp)

em'(:’-—y')-i—:h’.—m)u'
(2m)3E3 ()
(u; o & (q )umm)(l + f2(k)) far (Pl)(l - fa'(P))sa'Ol‘sa"'n&"”‘6”’!
M,

(up U Q)UP' + P)uay) [ da'dy’

16\“:2 E, (k E5p) E(p) P = Ex(p = P') = Ea(p))
gi{p'=p)z=2') 1 ,
'Ep = AN~ o)

(ulpdi(p = 2)ilp + ') ?ttap) - (uh, (P = P )tarp).
The gain term in phase space is thgn o

ITia(zk) = / TrI:_m(z:c) "'P'»"drE,(k) -

| 16 2 E' p)E‘ (P’)

apa'p’

(o [ )5 + )2t - (i)
E(k)
8(E5(p') = Ex(k) = Ea(p))5(p' — p - k)

(1 + fe(B)) far(P')(1 = falp)) -

The loss term can be found analogously to be

Iou(zk)
- / Telp o (22')e=PT dr Er(k)

MM
- 16 2 E‘(P) o (P)

ara'r'

(el + ) i) - gl E)ttry)
ENR)

S(EZP) = Ex(k) - Ea(p))S(p' ~ p — k)
f(B)falp)(1 = farlP)) - |

(A.27)

(A.28)

(A.29)
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In the continuous limit. changing the summation over momentum into integra-

tions. we obtain the expressions for /7, and [ as in eqs. (2.101) and (2.102).
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