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ABSTRACT
CHAOS IN SEMICLASSICAL AND
QUANTUM MODELS OF NUCLEI
by
DAVID A. MCGREW

Nuclear chaos is investigated in a semiclassical model (with Bohr-Mottleson mul-

tipole interactions) and a quantum model (the quantum billiard model).

In the former, Bohr-Mottelson type Hamiltonians with multipole-multipole inter-
actions are constructed to investigate the relation between the collective coordinate
(the nuclear multipole) and single particle coordinates. The test particle solution to
the Vlasov equation leads to dynamical equations involving the individual nucleons
and a collective coordinate (the multipole moment), which are numerically ihtegrated.
The system is tested for chaos using the method developed by Wolf et. al., involv-
ing computation and decomposition of the Jacobian matrix at each timestep. The
model can have chaotic single particle dynamics; most interestingly, the single particle

dynamics can be chaotic while there is regular motion of the collective coordinate.

In the latter, a new method is introduced to solve Schrodinger’s equation for
a free particle in an infinite well of arbitrary shape (the Helmbholtz equat.ion with
Dirichlet boundary conditions), the ‘quantum billiard’ problem. The wavefunction is
expanded in a basis of products of sine functions, then the constraint operator is used
to contain the wavefunction to a region within the domain of the basis functions. In
this manner, a quantum billiard problem of arbitrary shape can be solved. Several
methods exist to solve problems of this sort, but as recent work reviewing these
methods has shown, all have shortcomings. This work represents a new direction in

the solution of these problems. This method is unique in that it provides a means



of computing an eigenbasis. It is also interesting from a physical standpoint in that

it can represent the Hamiltonian of a classically chaotic system in the basis of a

classically regular system.

Decay of a quantum billiard is investigated. The straightforward approach, a

numerical solution using a truncated basis, is shown to fail due to a lack of convergence

with increasing basis size.
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Chapter 1

Introduction

1.1 Chaos

Chaotic systems merit interest both because of their rich variety of behaviors and
their prevalence. In chaotic systems, determinism can lead to complicated motion
that appears to be ‘random’ because it is non-repeating (it has no finite period) and
is unpredictable (in the sense that accurate predictions about future behavior can

only be made for the very near future.)

Many natural systems display the hallmark of chaos: a sensitive dependence on
initial conditions. A small change in one of these systems can rapidly lead to a big
change. This fact was appreciated as long ago as 1882 by Poincare, [1] in his study of
celestial motion, and 1907 by Lyapunov, [2] who introduced the quantitative measure

of sensitive dependence, which we now call the Lyapunov exponents.

Chaotic physical systems are often referred to as non-integrable, as the Hamilton-
Jacobi equation cannot be integrated in these cases. Physics has historically con-
centrated on integrable problems, as these are more tractable. With the advent of
modern computers, the simulation of chaotic (non-integrable) systems became feasi-
ble. Even so, the simulations are quantitatively valid only for short timespans. John
Von Neumann, the mathematician and computer pioneer, predicted that computers

1



would eventually reliably predict the weather [3]. This confident statement predates
the modern appreciation of exponential sensitivity to initial conditions. The Earth’s
weather is a good example of a complicated non-linear system, and is quite sensitive

to initial conditions, rendering long-term prediction of the weather infeasible.

The simulation and prediction of the weather motivated Lorenz to make a phe-
nomenological model of a simple weather system [4]. This multilinear three dimen-
sional model, now associated with his name, simulates two dimensional flow between
a hot surface (the ground) and a cold surface (the sky). The model reduces the
problem down to its barest essentials, yet can produce all the ‘randomness’ that is
present in real weather systems, and a very complicated motion can ensue from its

three simple nonlinear equations. At the time this was a very surprising result.

The Lorenz system can undergo either regular or chaotic motion, depending on
its parameters. The transition of a system from regular to chaotic motion as a pa-
rameter is changed is called the ‘route to chaos’. Many systems have complicated and
interesting routes to chaos. Especially interesting was the discovery by Feigenbaum
[5, 6] of the ‘period doubling’ route to chaos, a universality class that many nonlinear
systems belong to. This was the first use of renormalization group theory in nonlinear

dynamics; other fruitful applications have followed.

Perhaps the largest stimulation that the study of chaos received was the devel-
opment of methods to analyze chaotic behavior in a real system without any prior
knowledge about the underlying mechanics of the system [7, 8, 9]. A complete rep-
resentation of the dynamics of the system in phase space can be made from limited
information about the phase space. The influential 1980 paper of Packard et al. [7]
brought these methods, and chaos in general, to the attention of the physics com-

munity and many physical systems were shown to contain an underlying chaotic



dynamics. For example, the dripping of a faucet [10] was shown to obey a simple

chaotic dynamics, through an analysis of the time between drips.

1.1.1 Flows, Maps, and Poincaré Sections

An important point in the study of nonlinear dynamics is that continuous time sys-
tems (flows) can be studied by considering discrete time systems (maps) of lower
dimension. A lower-dimensional discrete system can always be constructed for a flow
because of determinism. For example, a damped, driven oscillator has a two dimen-
sional phase space consisting of the position ¢ and the momentum p. A map can be
made by keeping track of the momentum p; every time the position q is zero. Here p;
is the momentum at the :** time the position is zero. By plotting gi11 vs. g, a return
plot is constructed; it predicts the value of p the next time that ¢ is zero. It works

because the deterministic equations of motion can, in principle, always be integrated

forward in time to find the next value.
This correspondence is often used to simplify the study of flows, as maps are more
wieldy things.

1.1.2 Exponential Sensitivity and Lyapunov Exponents

The Lyapunov exponent for a one dimensional iterated system

Tnyl = f(xn) (11)

can be computed elegantly by a summation over all trajectory points. Consider the

linearized equation of motion

of
bz

dZTp4y = = |z, dz (1.2)



which defines the dynamics of an infinitesimal displacement dz from the point z. The

Lyapunov exponent A for the system is defined as

(e + dz) - (<)

PR 7 los| &
_ o
= nl_l_{{}o n log, | =— 5z (1.3)

where f™(z) denotes the n** iterate of f. By the chain rule,

6f11. _ n Es—f'.
g lxo— H Sz =" (1-4)

i=1,

A = lim 1og21'1‘;£ |z

n—00 7 1
i=

lim — Z log2 . (1.3)

n—=o n

The simplest possible example of a dynamical system is

T = f(x)v (16)

where the dot indicates a time derivative and the domain and range of the function
f are the same. Consider what happens when the system (1.6) is integrated forward
in time from two very close positions, zo and zo + dz, where dz is small. f(z + dz)

can be expressed as

6f

52f
.rd 5
5z| +

flz+dz) = f(z)+ 2§12

e (dz)2 + ... (1.7)




When dz is small enough, everything but the linear term in (1.7) can be neglected,

resulting in the ‘linearized’ equation

flz+dz) = f(z)+ % |z dz (1.8)

(This approach is properly called ‘linear stability analysis’. See [11] for examples of
when this analysis is insufficient.) We can derive the dynamics of an infinitesimal

perturbation dz by considering the difference of f(z) and f(z + dz):

dz = 2 |z dz. (1.9)

By integrating this equation forward in time while we integrate (1.6), we can accu-

rately find the trajectory of the perturbation.

The measure of ‘sensitivity to initial conditions’ is the Lyapunov ezponent. A

Lyapunov exponent A is defined for this system as

| dz(t) |
| dz(0) |

If A > 0, then then perturbation grows exponentially in time; if A < 0, then the per-

A= lim %bgz[ L (1.10)

turbation diminishes exponentially in time. If A = 0, then the size of the perturbation

is a polynomial in time. A system is chaotic when it has a Lyapunov exponent that

is positive.

Lyapunov exponents can depend on the position in phase space of the initial value
z(0). When this is true, equation (1.10) will give a Lyapunov exponent averaged over

a trajectory. This is equivalent to a phase-space average Lyapunov exponent.

Systems with more than one variable can be analyzed in much the same way.

These systems will have as many Lyapunov exponents as they have variables; the set

5




of Lyapunov exponents is called the the Lyapunov spectrum. Let x be a vector, with

dynamics given by

x = f(x) (1.11)

where f is a vector function of the vector x. The infinitesimal displacement dx is

called a tangent vector. Its dynamics are given by

dx(t) = J(t)dx(t) (1.12)

where J(t) is the Jacobian matrix of partial derivatives with elements given by

of;

J,‘j = &;

(1.13)

The Lyapunov exponents are defined in a way similar to (1.10) as the eigenvalues of

the matrix

Jim %logz (J*(t)J(2)). (1.14)

The matrix J*(t)J(t) is positive definite, so its logarithm, defined as a matrix poly-

nomial, always exists.

Consider a nonlinear dynamical system with m coordinates. The time evolution of

the m dimensional tangent vector Z(t) is given by the linearized equations of motion

= J($)Z(t) (1.15)



where J(t) is the Jacobian matrix of partial derivatives evaluated at time t. Define
the flow matrix M(t) by the equation #(t) = M(t)Z(0). The Lyapunov exponents
of the system are found by considering the motion of m vectors. Let X denote the
matrix with the m tangent vectors as its columns. For simplicity, assume that X (0)

is the identity matrix, so that X(¢) = M(¢). Then the Lyapunov exponents ); are
defined to be

1
)\,' = tlllg 't-logz E,’,’ (1.16)
where L; is the :** singular value of the matrix M(t). (The singular values are defined

by the relation MTM = UTTU , where ¥ is diagonal and U is unitary.) Thus ¥;; is the

amount by which the i** tangent vector is stretched, and )\; measures its exponential

growth.

1.1.3 Divergence and Attractors

Systems are classified as dissipative or conservative, depending on whether a phase
space volume element in the systems diminishes in size over time, or remains constant,
respectively. If all the points of a region with volume V are integrated forward using

(1.12), then the divergence theorem gives us the time derivative of the volume V:

V=/ dxV - f. (1.17)
\4

If V- f is independent of x (as it is for the Lorenz system), then

V=(V-)V. (1.18)

and the volume has the exponential behavior V(t) = exp(V - ft)V(0). If V- f is

negative, then the system is dissipative, the volume element will shrink to zero ex-

7



ponentially fast. With the volume equal to zero, the trajectory of the system must
occupy a region of lower dimension. This region is called the attractor, and it can
have a fractional dimension, in which case it is called a strange attractor. Stable equi-

librium points or surfaces are examples of non-strange attractors. Strange attractors

are characterized by two relevant facts:

o The trajectory on a strange attractor has at least one positive Lyapunov expo-

nent.

o A strange attractor has a fractional dimension.

Fractional dimension can be understood by considering the number of cells N of
volume ! in a d dimensional space that are needed to enclose the attractor. As
I = o0, N(I) o< I"P, where D is called the capacity dimension. When D is a fraction,

the attractor has fractional dimension and is called a fractal.

If V-f is positive, then the system cannot be bound, which precludes any interest

in this sort of system.

Conservative systems, in which V = [;, d&xV -f = 0 and volume elements maintain
their size, do not have strange attractors. The physical systems that we will consider
are conservative, so that we will not discuss dissipative systems, attractors, or fractals

in any more detail.

1.1.4 An Example: the Lorenz System

The Lorenz system, discussed in section 1.1, typifies dissipative chaotic systems. The
model consists of the three variables, z,y, and z, whose dynamics are given by the

equations



dz
& = oly-2)

B oo art
3 = TeEtre—y
%;— = gy — bz, (1.19)

where b, and o are positive parameters.

Fig. (1.1) shows the Lorenz attractor (projected onto the z-y plane) for o = 16,
b=4, and r = 45.92. The plot was generated by numerically integrating the Lorenz

equations forward in time. The trajectory is clearly non-periodic.
Lorenz Attractor

1 ¥ 1 , T f 1

40

20

=20

o
T I T T T T I T T ¥ T l T T ¥ T l T T T T I T T
1 I 1 1 i 1 I i 1 [l 1 I 1 1 1 1 I 1 | 1 1 l 11

Figure 1.1: The Lorenz attractor, in the z-y plane, for ¢ = 16, b = 4, and r =
45.92, obtained by numerically integrating the Lorenz equations with the fourth-order
Runge-Kutta method.



1.1.5 Metric Entropy

Metric entropy (also called Kolmogorov entropy, K-entropy, Kolmogorov-Sinaj en-
tropy, and K-S entropy) is a measure of the rate at which information is destroyed
(or created, depending on your perspective) [12]. Knowledge of a chaotic system’s

initial conditions allow predictions about the system that become increasingly worse

with time; it is in this sense that information can be lost [13]. On the other hand, .

chaotic dynamical systems have non-repeating sequences, so it is apparent that they

are making information in some sense [14].

A derivation of the metric entropy K that is also a practical scheme for its com-

putation {15, 16] is as follows:

The information entropy I is defined by

I = Y plog,p: (1.20)

i=1,
where the sum runs over all m possible states of the system. It is equal to 0 if there is
perfect information (p; = é; x for some k) and equal to log, m if there is no information
(pi = 1/m).

Assume the phase space is divided into cells of volume %, where d is the dimension
of the phase space and [ is the length of a side of a cell. Assume also that time is
discrete, that is, t = nr for integer n. Define Piy..in to be the joint probability that
the state vector of the system is in the 1§ cell at time ¢ = 0, the i* cell at time
t = 7, and * cell at time t = nr. Thus Piy..in 1 the probability that the system
will evolve along the particular trajectory i, . ..4,, where the precision of location is

l. The information (1.20) evaluated over all possible trajectories,

10




TR T e

Ko = 3 piy.inlogypi i, (1.21)

1.

gives the change in the information in a system from time ¢ = 0 to ¢t = nr.

The metric entropy K is defined as the average rate of loss of information

1
K = lime lim —[K,,; - K,
Mmoo lim — [t ]
. L1
= hml—»oo JLIEO ;:7': Z Pil...i,._l log2 pi; O (1-22)

11ednoy

K can be connected to the Lyapunov spectrum. It is the positive Lyapunov
exponents that are responsible for the system spreading into new cells. A positive
exponent A will cause spreading in the direction of its associated tangent vector; if we
know that a system is in a certain cell initially, then it could be in a region of length

exp(AnT)l after n timesteps. This gives K = ). In general,

K=3 X\ (1.23)
where {);} is the Lyapunov spectrum of the system, and the sum runs over only those
positive exponents.

If the Lyapunov exponents are position dependent, then a phase space average

must be introduced as well, changing (1.23) to

=y frdxhilx) 1.24
K—MZ;O T (1.24)
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1.1.6 Fourier Spectra and Correlations
Power Spectra

The power spectrum of a time-varying variable z(t) is given by P(w) =| z(w) |?

)

where

z(w) = / wig(h). (1.25)

Multiply periodic trajectories z(t), which are not chaotic, have power spectra that
are non-zero at a finite set of points. In reality, the finite size of the integral in

(1.25) makes these spectra appear to be a finite set of spikes, with a small amount of

background noise.

Chaotic trajectories, on the other hand, have continuous power spectra, the result
of the non-periodic nature of chaotic motion. These spectra can often be qualitatively
distinguished from multiply periodic motion. The power spectrum of a trajectory
can be used as an indicator of chaoticity, and is especially useful in high-dimensional
cases where calculation of the Lyapunov spectrum is numerically infeasible (as the
computational effort is an exponential function of the number of dimensions in the

system).
Autocorrelations

In a one dimensional map system with dynamics given by ziy; = f(z;), temporal

correlations between the iterates can be computed as

C(m)= lim — E TiTipm — 2. (1.26)

=00
- nz_l
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Here (z) is the average of z; over all iterates. In chaotic systems, C(m) can decay

exponentially or with a power law (13, 17], while non-chaotic systems have correlations

that are constant or periodic as a function of m,.

It has been proven [18] that in Hamiltonian systems with N degrees of freedom
C(m) o« m@=M)/2_ The slow decay of the correlations in this system (a power law
rather than an exponential) is seemingly at conflict with the uncertainty inherent in
chaotic dynamics. However, correlations actually contain comparatively little infor-
mation, for example, the fact that the system is limited to within a certain volume

in phase space.

1.1.7 Hamiltonian Chaos

The dynamics of Hamiltonian systems have some unique characteristics. The nuclear

systems discussed here are Hamiltonian systems, so I will describe their interesting

aspects (14, 19, 20].

Hamiltonian systems are specified by a scalar function H(p,q,t) of the ‘momen-
tum’ p, the ‘position’ q, and the time t. The vectors p and q of size n together
describe the state of the system, and are said to exist in phase space. The dynamics

of the system are defined by Hamilton’s equations

. _ oH

6H
q = —— 1.27
q 5D (1.27)

When H is not explicitly time dependent, it is a constant:

13




g = %9 ‘fp sH
6t é6q 6t 6p

6H 6H §H §H

Sp éq ' éq p
=0 (1.28)

In physical systems, H (P, q,t) is identified with energy.

We can write (1.27) in the same form as (1.12), where x is the partitioned vector

X = ( g ) (1.29)

and the vector function f is

_¢H
- ()
5p

§H
= S (1.30)

where the matrix S has the simple partitioned form

0 -1\
S = ( 1 0 ) (1.31)
where all of the blocks are of size nxn. The matrix S enables Hamiltonian dynamics to

be written using partitioned matrices and vectors, reducing the number of equations.

The manipulation of equations involving S can be simplified by using the two relations

S?=—-1and §' = -S.

Hamiltonian systems are symplectic: they preserve the quantity dx’Sdx, the dif-

ferential symplectic area, where dx is an infinitesimal displacement obeying (1.12)

14



(this is the differential form of Poincaré’s integral invariant law). This can be demon-

strated by finding the time derivative of the differential symplectic area,

5 . .
sdx'Sdx = dx'Sdx + dx’Sdx

= dx'(J'S + SJ)dx

=0 (1.32)

which is zero because

J'S+57 = (SE2H/6x?)YS + 5(S62H/6x?)
= 6°H/6x* — §2H/6x?
= o, (1.33)
where we have used the fact that §2H/6x? is hermitian.

The Lyapunov spectra of Hamiltonian systems have a distinct pattern: there are
2n eigenvalues with n distinct magnitudes, forming a ‘mirror image’ about zero. To

see this, consider the differential symplectic area, which is independent of time,

dx'(0)Sdx(0) = dx'(t)Sdx(t)

dx'(0)J'SJdx(0) (1.34)

which must be true for arbitrary dz(0). Thus the Jacobian matrix J must satisfy the

equations

J'SI=8 (1.35)
15



and

Jt=8"1J'8, (1.36)

the latter of which is derived from the former. The last equation states that the inverse
of J and the transpose of J 4 are related by a similarity transform, and therefore have
the same eigenvalue spectrum. This implies that all of the eigenvalues of J must
come in pairs like @ and a~. From (1.14), the Lyapunov exponents are equal to the
logarithm of the magnitude of these eigenvalues and therefore come in pairs like log, a

and — log, a.

Poincaré’s Recurrence Theorem

The ergodicity of time-independent Hamiltonian systems with bounded orbits is man-
ifested by the recurrence theorem: any phase space trajectory will come arbitrarily

close to its initial position.

‘This follows from considering the flow of the points within a sphere of radius ¢
in phase space, centered about an arbitrary point. If the flow is not confined in this
sphere, it flows outward, and its volume is constant as it does so. Since all orbits are
bounded, they are confined to some region of phase space. The total volume swept
out by the flow from the small sphere cannot exceed the total volume of this region.

Therefore the flow returns to within the sphere.
1.1.8 Hierarchy of Chaos

Hamiltonian systems can have varying degrees of chaos. In order of ‘increasing ran-

domness’, the types of chaotic systems of interest to us are:

16



Ergodic systems are systems in which phase space averages are equivalent to time
averages, as any trajectory in phase space comes arbitrarily close to any point
in phase space. This weakest form of randomness is sometimes used to justify
statistical mechanics. Actually, ergodicity is such a weak condition that stronger

claims can be made for statistical mechanics [21].

K-systems have one or more positive Lyapunov exponents, or equivalently, have

positive metric (Kolmogorov) entropy. This is the definition associated with

chaoticity.

C-systems have one or more positive Lyapunov exponents for every initial condition,

or equivalently, have positive metric entropy everywhere. The stadium and Sinaj

billiards are C-systems.

There are some other definitions of chaoticity of systems, namely Mixing systems

and Bernoulli systems, but they involve ideas that are not of use to us.

The hierarchy of quantum chaotic systems is not so clear, and is still a matter
of debate. Regular systems have Poisson level statistics, completely chaotic systems
have GOE level statistics, and anything in between has a level distribution between
those distributions. Whether or not there is a canonical ‘path’ from one extreme to

the other has not yet been determined.

1.1.9 Billiard Models

A billiard system consists of a ball bouncing around in a box, with elastic collisions
so that the angle of incidence equals the angle of reflection These systems are simple
and can be easily investigated numerically, as only the collisions between the ball and

the retaining wall need be considered. At the same time, these systems have a rich
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variety of dynamics that can be regular or fully chaotic or anything in between. They

have been incorporated into more complicated models with good results.

If the momentum of a billiard in a two dimensional rectangular box is represented

by p(2) after the :*» bounce, then

p(i +1) = Mp(i) (1.37)

where the matrix M is given by

+1 0
M=[0 ?1}' (1.38)
The momentum vector only visits the four points
(P1(0), p2(0)), (=p1(0), p2(0)), (p1(0), —p2(0)), (—p1(0), —p2(0)). (1.39)

Most of the phase space remains unexplored, and the dynamics are regular, not

chaotic.

The Sinai billiard model adds a circular scattering center to the rectangular do-

main. The matrix M for reflections off of the circle is [22]

_ 11 40) - ¢dG) —20()q()
M=% | 2l 20 -0 (1.40)

where R? = ¢} + ¢}. The Siani billiard system is not limited to a finite set of points
in phase space, but instead explores the entire space. The phase space density is uni-
form within regions allowed by geometry and energy conservation. There is sensitive

dependence on initial conditions, and a positive metric entropy.
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Billiard Decay

A billiard can be allowed to ‘decay’ out of its container by creating a small hole in the
container. This changes the bound system into an unbound system. This was studied
by Bauer and Bertsch [22], revealing that decay was quantitatively different for chaotic
and regular billiards. Chaotic billiards have a probability of having decayed that is

exponential in time, while that of regular billiards is a power law in time.

The different decay laws for the chaotic and regular cases can be understood from
phase space considerations. In the chaotic case, the phase space density ‘leaks out’

steadily, resulting in an exponential decay law. In the regular case, a power law holds

for the decay.

1.2 Quantum Chaos

Quantum chaos is the study of quantum systems that are chaotic in the classical
limit; these systems are distinguished not by semsitivity to initial conditions but by

statistics of eigenvalues and eigenvectors [34, 23, 24, 25].

Classical chaos limited the development of semiclassical techniques early in the
development of quantum mechanics; it prevented the quantization of the helium atom,
for example. Semiclassical methods use classical trajectories, and chaos complicates

the trajectories too much [25].

In 1970, Gutzwiller derived a semiclassical formula, the ‘trace formula’, that ex-
presses the quantum energy eigenvalues of a chaotic system via a sum over the periodic
orbits of the system [27]. Periodic orbits exist in chaotic systems, but are rare and
unstable, and the trace formula is tricky to implement. Nevertheless, this reawakened

the semiclassical agenda of the pioneers of quantum physics.
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As classical chaos became more appreciated, the question of how chaotic dynamics
arise from the underlying quantum mechanics was asked. The fact that quantum
mechanical operators are linear and chaotic dynamical equations are nonlinear led
some to suppose that the two would be irreconcilable. This is wrong, as semiclassical
results can bridge both domains successfully, but it motivated consideration of the

quantum physics of classically chaotic systems.

These systems, which we call quantum chaotic systems, have several identifying
characteristics. The energy level spacings (the differences between two adjacent en-
ergy eigenvalues) of quantum chaotic systems have a probability distribution identical
with the Wigner distribution. Regular quantum systems have energy level spacings
identical to the Possion distribution. The main difference between these two dis-
tributions is that the Wigner distribution is zero at the origin, while the Possion

distribution is equal to unity there.

The phenomenon of ‘level repulsion’ which happens in quantum chaotic systems
was first identified by Wigner in the 1950s. The energy spectra of complicated nuclei,
beyond the first hundred or so states, are unpredictable. This motivated the statistical
treatment of nuclear spectra. The key observation was that the level spacings did not
obey a Poisson distribution, as would be expected if the energy levels were randomly
distributed. Rather, the observed distributions were close to what we now call the
Wigner distribution. The Wigner distribution of energy eigenvalues is expected from

matrices that are selected randomly with a probability proportional to the euclidean

norm of the matrix.

In 1977, Berry [26] demonstrated that regular systems have energy spectra with
Poisson level spacing distribution. It was later demonstrated that chaotic systems

have energy spectra with a Wigner-like level spacing distribution. This called atten-
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tion to the broad applicability of the earlier random matrix theory results to quantum

chaotic systems.

1.2.1 Energy Level Statistics

Quantum chaotic spectra do not obey a Poisson distribution, p(s) = e~*, as would
be expected if the energy levels were randomly distributed. Rather, the observed
distributions were close to what we now call the Wigner distribution. The Wigner
distribution of energy eigenvalues is expected from matrices that are selected ran-

domly with a probability proportional to the euclidean norm of the matrix.
1.2.2 Random Matrix Theory

The central idea of what became known as random matrix theory was that compli-
cated quantum systems have Hamiltonian matrices with statistics indistinguishable
from those of matrices drawn at random from an ensemble. In this way we can

consider complicated Hamiltonian matrices ‘random’ [29].

There are some subtle distinctions about the ensembles from which the matrices
are drawn and the energy spectra that are analyzed. Quantum chaos is the study
of quantum systems that are chaotic in the classical limit; these systems are distin-

guished not by sensitivity to initial conditions but by statistics of eigenvalues and

eigenvectors.

GOE

The Gaussian Orthogonal Ensemble, or GOE, is the one in which we will be interested.
Hamiltonians in this ensemble are invariant under rotations in Hilbert space, so that
they have no ‘preferred’ basis. Wigner derived the eigenvalue distribution mentioned
above from the assumption that the random matrices belonged to this ensemble.
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This distribution is easily found for 2 x 2 matrices: assume that the probability
p of a matrix M being chosen from an ensemble is proportional to the trace of the
matrix Tr(M) (which is equal to the sum of the diagonal elements and the sum of the

eigenvalues). Then the probability p(s) of the spacing between the two eigenvalues

being equal to s is given by

p(s) = Zexp(—ms?/4) (1.41)

GUE

The other ensemble of interest is the Gaussian Unitary Ensemble, or GUE. It applies
in cases where there is a magnetic field, which destroys time reversal symmetry. The

level spacing distribution that it leads to is

p(s) = -3-7?32exp(-—4s2/7r) (1.42)

1.2.3 ‘Level Repulsion’ and Level Spacing Distribution

The principal qualitative difference between the Wigner and Poisson distributions is
at the origin, where the former is zero and the latter is unity. The Wigner distribution
is said to describe ‘level repulsion’, in that the levels avoid each other and are never

degenerate.

It is possible to heuristically derive the Poisson and Wigner distributions by using

the idea of level repulsion [30, 31]. For the nearest neighbor spacing distribution P(s),

P(s)ds = P(1€ds|0€s)P(0€ds) (1.43)
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where P(n € s) is the probability that the interval s contains n levels and P(n € ds |
m € s) is the conditional probability that the interval of length ds contains n levels,
when that of length s contains m levels. The second factor, P(0 € s), the probability
that the spacing is larger than s, is equal to [™ dz P(z). Assume that the first term

is equal to r(s)ds, which represents a ‘repulsion’. Then

P(s) = r(s) / ~ dz P(z) (1.44)

which can easily be solved to find

P(s) « r(s)exp (_ /Osdxr(:c)>. (1.45)

For r(s) equal to a constant, P(s) « exp(—s), which is the Poisson distribution. For

r(s) = s, P(s) « sexp(—s?), which is the Wigner distribution.
1.2.4 Analysis of Energy Levels

The energy spectra must be considerably massaged before they are analyzed. The
analysis can only be performed on sets of eigenvalues corresponding to states with
similar parity. The eigenvalue distributions themselves are not studied, but rather
the distribution of eigenvalue spacings. This is like studying the derivative of the
distribution function rather than the function itself. The spacings are normalized
so that the sum of the spacings is equal to one; this serves to make the distribution
universal by removing a free parameter. The resulting normalized spacings are binned,
and the numbers of spacings in each bin are themselves normalized to sum to one,
so that they reflect the probabilities of the spacings occurring in the bins. These

probability histograms are compared to theoretical probability distributions.
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The distribution of energy level spacings is now central to quantum chaos. Regular
quantum systems have poisson distributions, as has been proven ([32, 33]), while

having a GOE distribution is now an accepted criterion to be a quantum chaotic

system [34].
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Chapter 2

Nuclear Multipole Oscillations and

Chaos

2.1 Collective and Single Particle Motion

This chapter is based on work I did with Bauer, Schuck, and Zelevinsky originally
published in Physical Review Letters [35]. Many-body systems with strong interac-
tions, notably finite Fermi systems such as nuclei [36], can be well-represented by
considering single particles moving in static potentials. When there is a physically
important ‘collective’ coordinate, such as the total multipole moment of a nucleus,
it is possible to represent this with some weaker interaction between the single par-
ticles and the collective coordinate. The origin of dissipation in these systems is not
yet completely understood; in particular, the interaction of single-particle forces and

collective forces is an open question.

Giant multipole moments in nuclei are harmonically oscillating collective mo-
ments; it has been hypothesized that the energy of these oscillations would be dis-
sipated, through chaotic single particle motion, into thermal energy of the single

particles.

Our computations show that this picture is invalid, and that single particle chaos



need not lead to dissipation of the collective coordinate.

2.2 Dynamically Deformed Billiards

A schematic model that represents the interaction between a collective multipole
moment and the individual nucleons was developed by Blocki et al. [39, 40]. Nucleons
are represented by a classical gas of particles, and they are contained in a billiard
undergoing periodic deformations (which represents the collective multipole force).
The deformations are multipole dependent and oscillate with frequencies much smaller
than typical single particle frequencies. For octupole and higher deformations the
kinetic energy of the particles increases and the particles move chaotically. However,
this model is not consistent in that it has a ‘collective coordinate’ (the deformation

of the wall) that is independent from, rather than a result of, the single particle

coordinates.

Blocki el al [39, 40] consider a classical gas of particles contained in a deformed
billiard. The gas of particles initially has a momentum distribution equal to that of
a Fermi gas. The deformation of the walls of the container oscillate in time, with a

frequency much smaller than a typical single particle frequency.

They study the increase of kinetic energy of the particles as a function of time, and
find that for ellipsoidal shape deformations the particles act as a classical Knudsen

gas.

2.3 Introducing Self-Consistency

These models are not self-consistent in that they do not conserve energy: the particles
gain energy from their collisions with the wall, but the wall itself remains unaffected by

these collisions. We introduce selfconsistency into the problem by devising a nuclear
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Hamiltonian that features a multipole interaction but conserves the total energy of

the system.

We use the Bohr-Mottelson [41] type of interaction with a static potential of the
form r2 or r® and a quadrupole or octupole interaction through which the nucleons can

exchange energy, as studied by Stringari et al. [42, 43, 44] Thus our model conserves

energy, unlike the earlier models.

We also investigate the case with static 72 or r® potentials and static quadrupole
or octupole moments, which are similar to the Bohr-Mottleson model but do not allow

the exchange of energy between nucleons. These cases provide comparison with the

models of Blocki et al.

2.4 Bohr-Mottelson Type Hamiltonians

The single particle Hamiltonian H is

H = Ho+VO(r,¢)

2
= 2 v +v0,e (2.1)
2m

where VU)(r,t) is the potential leading to the multipole-multipole force and V; is the

static potential. The multipole-multipole potential is taken to be

VO(r,t) = ma(r)Qi(t), (2.2)

as in [42, 45, 43]. The static potential is taken as 1mwlr?, resulting in the Bohr-

Mottelson Hamiltonian [41], or as mwfr®, to investigate non-harmonic potentials.

The coupling constants yu; are calculated using a self-consistent normalization
condition [41, 44]
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_ 15mw?
H3,s = A < 7'4 >7 (23)
where A is the mass number of the nucleus. qi(r) is given by
q2(r) = mry
g3(r) = ruryr,. (2.4)

2.5 The Vlasov Equation and the Test Particle So-
lution

The multipole moments @);(¢) are given by

Q1) = G5z [ rpa(r)f(e,p,0) (25

f(r,p,t) is the one-body phase space distribution function, which is the Wigner

transform of the one-body density.

We treat these problems in a semi-classical approximation by a Wigner transform
of the von Neumann equation of motion for the density matrix, i8,p = [H, p], to
obtain a Vlasov equation 9,f = {H, f}. We then solve the Vlasov equation in the
test particle method [46, 47] using a fourth-order Runge-Kutta algorithm with a

typical timestep of 1 fm/c.
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2.6 Numerical Integration

Hamilton’s equations are integrated forward in time using a fourth-order Runge-Kutta
algorithm [48]. The basic idea behind this algorithm is that Euler’s method for solving
z = f(z),

z(t + dt) = z(t) + 2(t) - dt (2.6)

can be improved by using not just information about & at the beginning of the interval
dt, but also at points within the interval. Conceptually, the Runge-Kutta algorithm
takes ‘trial’ steps inside the interval, and uses i at these new points to more accurately

predict z(t + dt) (in actuality, these steps are not carried out).

The time steps in our implementation were all of order 1fm/c. That the numerical
calculation is fully self-consistent is shown by the fact that the system conserves total

energy to better than 0.1%.

2.7 Initial Conditions

The giant multipole oscillation is set up in a two stage process: first, the nucleus is
initialized in the ground state; second, an external time-dependent field is used to

initiate the multipole oscillation as is then shut off.

We start with spherical distributions of nucleons in coordinate and momentum
space, so that the particles uniformly populate a Fermi sphere (neglecting the defor-
mation potential V). In order to initiate a giant multipole oscillation of the nucleus,
a temporary external potential, sinusoidal in time, is applied. The actual potential

used is
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V(I r,t) = wsin(wpt)s(t)q(r) (2.7)

where wp is the driving frequency, and s(t) is a differentiable interpolation function,
strictly increasing from 0 to 1 over the range [0, 7], with zero first derivative at both
ends. The period 7 is chosen so that T is much larger than the period of the sinusoidal

driving force wp'. After t = 7, a large multipole oscillation is present (Fig. 2.1).
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Figure 2.1: Time evolution of the collective coordinate quadrupole moment @, and
the collective momentum quadrupole moment P, during the ramping stage. The
period T = wp! of the ramping potential is illustrated as well.
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2.8 Multipole Oscillations

After the excitation, regular undamped motion of the collective multipole coordinate
is observed for all cases (Fig. 2.2). This contradicts the wall-formula prediction for a
strongly damped octupole oscillation. A Fourier transform of these coordinates shows
a single peak at a dominant frequency and no w1 noise, indicating that no chaoticity
is present in these coordinates. This result is surprising as the collective multipole
coordinates are merely normalized sums of the single particle multipole coordinates,

and the single particles can exhibit chaotic motion.
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Figure 2.2: Time evolution of the collective quadrupole (top) and octupole (bottom)
moments for all combinations of static potential and multipole interactions. In all
cases, the collective moments have multiply periodic, and not chaotic, motion.
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2.9 Single Particle Motion

The Jacobian matrices for the single particles are given below, where r = (2% + y? +

22)1/2'

For Vp = tmwir? and I = 2,

0 0 0 ;11— 0 0
0 0 0 0 # 0
0 0 0 0 0 L
J = —mw? 0 0 0 0 0 (28)
0 —mwi p@Q; 0 0 0
0 ngz ——mwg 0 0 0
For Vp = jmwir? and [ = 3,
0 0 0 # 0 0
0 0 0 0 L o0
0 0 0 0 0
J= m 2.9
—-mw —p3Qsz —psQsy 0 0 0 (2.9)
—p3Qsz —mwg —p3Qsz 0 0 0
—;L;;ng —[,L3Q3$ —mwg 0 0 0
For Vo = imwir® and | = 2,
0 0 0 # 0 0
0 0 0 0 L 0
0 0 0 0 0 -:;
T=1 _mutrr 0 0 0 0 0 (2.10)
0 —mwir® @z 0 0 0
0 I,tzQz —mw8r2 0 0 0
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For Vo = {mw?r? and I = 3,

0 0 0
0 0 0
0 0 0
J= 6,.4 (2.11)

—mwer® —p3Qaz —psQsy
—#3Q3z —mw§rt —psQsz

—p3Qsy —p3Qar —muwlrt

oo oo oi
oo o o3fko
o o oiko o

Lyapunov Spectra with Time-Independent Jacobians

When ! = 2 and V; = Imwir?, the Jacobian is independent of all position coordinates.
Thus, when Q) is constant, the Jacobian is constant, and (1.12) can be immediately
solved to find the trajectory matrix M(t) = e”t, and we can analytically determine
the presence or absence of chaos. To do this, we need to consider the eigenvalue

spectrum of J.

Physical systems with time-independent Hamiltonians, kinetic energy given by
p?/2m, and no momentum dependence in the potential have Jacobians with the

simple form

0 i1
- (0d) o
where the matrix A is defined by A;; = 6q26q The eigenvalues of J can be related to

those of A by using the identity for determinants of partitioned matrices [78], giving

[ J=A| =(=A)" | A=A2]. (2.13)

Thus if the eigenvalues of A are negative, those of J are pure imaginary. The eigen-

values of e/ thus have unit magnitude, and the singular values of M(t)/t are unity.
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The Lyapunov spectrum is entirely composed of zeros, and the system is not chaotic.

If any eigenvalue of J is nonnegative, then the system must be chaotic.

For V = -mwgr and [ = 2, A has eigenvalues equal to —w? —w? — Agy /m, and
—w? 4+ Agy/m. For the physical regime we are interested in, with the effect of the

static potential dominating that of the multipole interaction, there is no chaos.
2.9.1 The Lyapunov Spectrum

To investigate single particle motion, we test for sensitive dependence on initial con-
ditions by finding the Lyapunov exponents. These exponents are a measure of the
exponential divergence (or convergence) of initially nearby trajectories in phase space.
A dynamical system has a positive Lyapunov exponent only if it is chaotic, and the

lack of a positive Lyapunov exponent indicates the absence of chaos.

To calculate the Lyapunov exponents, we consider the motion of infinitesimal
displacements from a trajectory in phase space, called tangent vectors. These dis-

placements obey the linearized equations motion

=2 < () (2.14)

where x(t) is the six-dimensional tangent vector and J(t) is the Jacobian matrix of
partial derivatives evaluated along the trajectory in phase space. The ith Lyapunov

exponent \; is defined as

— jim Lo nx.t>||) "
h=fm (u o) (2.15)

where ||x|| denotes the norm of x and the tangent vectors x;(),z = 1,...,6, are

orthogonal. The logarithm base two is used so that the units of the exponents are
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bits per time.

2.9.2 Finding the Lyapunov Spectrum via Orthogonalization

We must adapt (1.12) to represent Lyapunov exponents for finite time, A;(¢), then

consider lims—.o, Ai(t) = A;. Exponents that are in reality zero will be represented by

a A(t) that goes to zero like t~1.

We follow the practical scheme of Wolf et al. [49, 50, 51] to numerically integrate
the linearized equation for six orthogonal tangent vectors. Orthonormality of the vec-
tors is maintained by applying the Gram - Schmidt algorithm between every timestep.
The first tangent vector seeks the direction in which it can grow most rapidly, and
determines the largest Lyapunov exponent. The second tangent vector cannot grow
in the direction of the first, since at every timestep its component in that direction
is eliminated. Thus it seeks the direction of largest growth in the space orthogonal
to the first tangent vector. In general, the i** tangent vector seeks the direction of
most rapid growth in the subspace orthogonal to the i — 1 previous tangent vectors.
The re-normalization of the vectors that occurs in the Gram-Schmidt algorithm keeps

them bounded and minimizes numerical error.

That this method is correct can be seen by realizing that the Gram-Schmidt
orthogonalization is equivalent to calculating a QR decomposition of the Jacobian
matrix, assuming that we start with orthogonal tangent vectors, equivalent to the
columns of the identity matrix. The QR decomposition of J is computed at each

timestep:

J =QR (2.16)

where J7 is the Jacobian at the j** timestep, @7 is orthogonal and R’ is right (upper)
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triangular. The actual Jacobian is the product I1; J-.

The diagonal elements R’; are equal to the growth of the i** tangent vector, so

that the :** Lyapunov exponent is given by

1 & ;
A= tl}glo A: Z log, RI.. (2.17)

J=0,
The Gram-Schmidt method is fine for our application, which has a six-dimensional

phase space, but for larger systems the more numerically stable Householder transform

would be a better way to implement the QR algorithm.

Consistent with an information-theoretic picture, we use log, in our calculations,

leading to the odd units of bits ¢/fermi.

We applied this method to twenty representative particles in the model and aver-
aged their exponents together. The sum of the averaged exponents provides a check
on accuracy; the sum should be zero as phase space volume is conserved in our sys-
tem. In all cases the magnitude of the sum of the exponents was less than 1077 bits
c/fm. The results are given in table 2.1, which lists the largest Lyapunov exponent
for each case. Note that the positive exponents are all significantly larger than 10~".

The convergence of the exponents with time can be seen in Fig. 2.3.

selfconsistent static
2 5 2 5

Q- 0 (2£1) x 102 0 0
Qs (4+£1)x10°°  (1.5+£05)x 10 (8+£2)x10=5  (1+0.3) x 10°°

Table 2.1: Values of the largest positive Lyapunov exponents obtained in the full
selfconsistent calculations and in the calculations with static external multipole po-
tentials. Units are bits ¢/fm.

The plots of A; vs. t where V; = 1/2mw?r? appear to have ‘icicles’ dangling

from them. This is due to the almost periodic nature of the particles in the har-
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monic potential. The linearized motion will be almost harmonic, so that periodically
the tangent vectors will approach zero and the logarithm of their magnitudes will
approach negative infinity. Odd looking Lyapunov spectrum convergence plots are
common in weakly chaotic systems. The irregular appearance of these ‘icicles’ is

due to the sampling period used to generate the plot and the harmonic period being

incommensurate, and the logarithmic scale of the plot.
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Figure 2.3: Convergence of the positive Lyapunov exponents with time for the single-
particle trajectories of self-consistent nuclear Hamilitonians. All combinations of
static potential and multipole interaction are shown.
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2.9.3 Constant Multipole Moments

When the ‘collective’ multipole moment is constant, the model consists of single
particles moving in a static potential. We investigated static multipole models for all
cases of multipole moment and static potential.

The static multipole model is especially interesting when the V5 = Imw?2r? and

I = 3. In this case, the Hamiltonian has the form of the Henon-Heiles Hamiltonian;
specifically, particles moving in the z-y plane are governed by the Henon-Heiles equa-
tions. This Hamiltonian has been well studied as a case of chaos in a physical system,

and is known to be weakly chaotic.
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Figure 2.4: A comparison of the Lyapunov exponent convergence plot for the anhar-
monic (r®) potential with a quadrupole interaction. The case with the static multipole
moment (left) is non-chaotic (as the Lyapunov exponents are all converging to zero),
while the self-consistent case (right) is chaotic.
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2.9.4 Evidence for Chaos due to Energy Exchange

An interesting result comes from comparing the selfconsistent and the static cases for
(Q2,7°). The former has chaos while the latter does not (Fig. 2.4). In the former
model the particles can exchange energy with the collective quadrupole moment,
whereas in the latter they cannot, as the quadrupole moment is static. Therefore, we

attribute the origin of this chaoticity to the exchange of energy between the single

particles and the collective coordinate.

2.10 Single Particle Energy Distribution

The energy density of the particles was computed by binning the number of particles
N(E + dE) with energies within a small range E to E + dE, then dividing by the
average energy (E + dFE)/2 for that bin. The energy densities computed in this way
all have large errors at small energy, as the error 6N in N(E + dE) is proportional to
the square root of N(E + dE) (assuming a Poisson distribution of energies) and the

E-! causes large errors at small energies.

Before the ramping which introduces the multipole oscillation in the nucleus, the
energy density is equal to a Fermi distribution at zero temperature, with some error
due to the randomness in the initialization procedure. After ramping, a temperature
has been introduced into the nucleus by the ramping. This temperature remains

constant afterwards, in direct contradiction to the model of Blocki et al.

2.11 Interpretation

We show ordered collective motion resulting from underlying chaotic dynamics, some-

thing qualitatively new in our investigation. This agrees with the idea of the mean
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field (static or coherently oscillating) generated by averaging out random features of
the motion of individual constituents. The smoothest component of single-particle
dynamics survives after such averaging and gives rise to the self-consistent mean field.
Therefore, chaos on a microscopic level does not necessarily lead to a catastrophic

breakdown of the system on the macroscopic scale.
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Chapter 3

The Constraint Operator Solution
to Quantum Billiards

This chapter, and parts of the two that follow, are based on a paper that I wrote
with the help of Wolfgang Bauer, which has been accepted by Physical Review E
[52]. We introduce a new method to solve Schrédinger’s equation for a free particle in
an infinite well of arbitrary shape (the Helmholtz equation with Dirichlet boundary
conditions), a problem of interest in the area of Quantum Chaos. We expand the
wavefunction in a basis of products of sine functions, then use the constraint operator
to contain the wavefunction to a region within the domain of the basis functions. In
this manner, a quantum billiard problem of arbitrary shape can be solved. Several
methods exist to solve problems of this sort, but as recent work reviewing these
methods has shown, all have shortcomings. Our work represents a new direction in
the solution of these problems. OQur method is unique in that it provides a means
of computing an eigenbasis. It is also interesting from a physical standpoint in that
it can represent the Hamiltonian of a classically chaotic system in the basis of a

classically regular system.
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3.1 Introduction

A billiard system consists of a particle bouncing around in a rigid box of arbitrary
shape. Billiard systems are useful in the study of chaos, as the chaoticity of the
system is determined by the shape of the box. Circles and squares give rise to regular
motion; in more complicated shapes, like stadia, both regular and chaotic motion is

possible, depending on the initial conditions (53, 54].

Quantum billiard systems are widely used in the study of quantum chaos. Quan-
tum chaotic systems can be characterized by statistics. The distribution of normal-
ized energy level spacings of a quantum system is one such characterization; chaotic
systems have Wigner distributions and regular systems have Poisson distributions
[26, 55, 84, 33, 34]. The wavefunctions of quantum chaotic systems qualitatively re-
semble a random superposition of plane waves, though ‘scars’ in the quantum wave-

functions corresponding to classical periodic orbits can appear [57].

The decay of quantum billiard systems through small exit channels is of current
interest. The chaoticity of the billiard system controls the decay of the system:;
regular billiard systems decay algebraically in time, while chaotic billiard systems
decay exponentially in time [22]. Recent work (58, 59] shows an even richer variety
of behaviors. The quantum chaotic billiard decay problem is yet unsolved; existing

methods of solving quantum billiards are unsuited for it.

Many methods exist for solving quantum billiard problems. The most used are the
Boundary Integral Method [32, 60, 61, 62, 63, 64, 65], the Plane Wave Decomposition
Method [57, 66, 67], and the Conformal Mapping Diagonalization Method [68, 69,
70, 71]. However, recent work reviewing the Boundary Integral Method [72] and the -

Plane Wave Decomposition Method [73] demonstrates that both have weaknesses.

The Boundary Integral Method solves a two dimensional billiard problem by de-
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riving an integral equation for the normal derivative of the wavefunction using Green’s
theorem [32, 60, 61, 63, 64, 65]. Discretization of the boundary integral results in a
complex determinant nonlinear in the wavevector magnitude, the zeros of which cor-
respond to solutions of the wavefunction equation. It is widely used, but has recently

been shown to have problems when the box geometry is nonconvex [72].

The Plane Wave Decomposition Method assumes an expansion in plane waves with
the same wavevector magnitude, then tries to force the wavefunction to be zero along
the boundary of the box by proper selection of the plane wave components[57, 66,
67]. If it succeeds in making the wavefunction approximately zero on the boundary,
then it has found an approximate eigenfunction of V2. The procedure iterates over
wavevector magnitudes, recording the eigenvalues that it finds. It is widely used to
find quantum billiard wavefunctions, but cannot be relied upon for accurate spectra,
as some eigenvalues can be stepped over in the iteration process. The wavefunctions

it finds are not necessarily orthogonal to very good accuracy, as shown in [73].

The Conformal Mapping Diagonalization Method elegantly solves a billiard prob-
lem by finding a conformal map from the shape of the box to the unit circle (68, 69,
70, 71]. The problem is solved by the mapping, but this method is limited to two
dimensional problems with boxes for which a conformal mapping to the unit disk can

be found.

We present a novel method that solves the problem in a more ‘quantum mechani-
cal’ way. We find many eigenfunctions simultaneously by diagonalizing a Hamiltonian
matrix. This results in a (truncated) complete set of eigenfunctions that are necessar-
ily orthonormal (within the limitations of the diagonalization algorithm), unlike the
methods mentioned above. The availability of a complete basis provides a straight-

forward approach to time-dependent problems like quantum chaotic decay. We also
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connect this method to some existing methods.

Random matrices that are band diagonal are of interest in quantum chaos{74].
Band diagonal Hamiltonians are ‘natural’ in the sense that many systems have local-
ized interactions and localized wavefunctions. Our method, introduced below, results

in an approximately band diagonal Hamiltonian. A connection between the two may

prove revealing.

3.2 The Constraint Operator

Schrodinger’s equation for the quantum billiard is
V3(Z) + A¥(Z) = 0, (3.1)

where ) is an energy eigenvalue of the system in some convenient units. The boundary
condition, which characterizes the quantum billiard problem, is that ¥(Z) = 0 on the

boundary surface 61 of an arbitrarily shaped region I, the included region.

We express the shape of I by starting with a larger region T where we can solve

(3.1), then ‘cutting away’ the unwanted parts of T to make I.

We do this by constraining the wavefunction to be zero in the excluded region
E = T/I. Fig. 3.1 shows the regions I and E for the stadium billiard. (Most of our
examples are two dimensional, but the method can be applied to three dimensions or
higher.) In practice, we choose the region T so that it has a boundary with surfaces

of constant coordinates in a coordinate system where V? is separable.

Define the constraint operator C. for £ in T, which multiplies functions on its right

by the constraint function

o _J1 fZisinl
c(””)‘{o if 7 is in E. (3.2)
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Included region

4————— Excluded region

Figure 3.1: The included and excluded regions shown for the desymmetrized stadium.
The total region is the entire rectangle. The ratio of included to total regions p here

is 0.8570.

The constraint operator is the projector for functions over the larger, simpler
region T that are zero over E (it ‘constrains’ functions to be zero in E.) Functions in
the range of C are zero in E. Functions in the nullspace of C are zero in the region
I. C* = C, so that C is idempotent and has eigenvalues 0 and 1. Therefore, it is
the projector of its range, and 1 — C is the projector of its nullspace. We define the
included fraction p = [;dZ/ [; dT as the ratio of the included volume to the total

volume; we will use it below.

C is represented in the basis {¢;(Z)} of functions over T as the matrix C with

elements

Cs = [ dEe(@)Co(@)
- /I dZ $:(Z)8;(E). (3.3)
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We will return to the matrix C later to discuss its properties and its computation.

The solutions to the problem we are interested in are the eigenvectors of V2 that
are in the range of C. Intuitively, it seems that we can solve our problem by finding
the eigenvectors of CV2C. This is almost correct. To be completely correct, we will

derive the solutions using a Green’s function [75, 76, 77] then simplify the result using

our knowledge of the constraint operator.

3.3 Green’s Function Derivation

-

We need a Green’s function G(Z,7) that satisfies the equation

(V2 4+ N)G(&, %o) = —4m6(Z — Zo). (3.4)

Multiplying (3.1) by G(Z, %) and (3.4) by ¥(Z), then subtracting the second result

from the first gives

G(Z, 20)V*U(F) — U()V2G(Z, 7o) = 4 U(F)6(Z — 7). (3.5)

Integrating (3.5) over the included region I we obtain an expression for the wavefunc-

tion

__1_ - - _, 2 - - 2 - - _ lI’(.’f:’()) lf .’I?g iS iIl I
ym /Ida: [G(Z,%0)V?¥(Z) — U(2)VG(Z, 5,)] = { 0 (3.6)

if Zo 1s in E.
To enforce the boundary condition that ¥ = 0 on 6I we use Green’s theorem to

change the volume integral into a surface integral, then apply the boundary condition,

resulting in
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- ﬁ [.4A 16z, 2) Ve (@) (3.7)

for Zo in I. We then use Green’s first identity to return to a volume integral,

U(Zy) = ——/da: VG(Z,%o) - VU(Z) + G(F,Zo) V3U(T)] (3.8)
which is true for &, in L.

We choose the basis {¢;(Z)} of eigenfunctions of V2 over T. To express G(Z, Zo)
in this basis, we use (3.4) to determine the expansion coeficients, utilizing the eigen-

function expansion for §(Z — Z). This results in

i

The wavefunction ¥ has the expansion

= Yedi(Z). (3.10)

Now we put everything together. By substituting (3.9) and (3.10) into (3.8), we get

the eigenvalue equation

D edk(Zo) = > ) wi
k k

(@) [ & [Vu(&)V (@) + bu(H)VI8(@)]. (311)
ik

This can be simplified by converting it to matrix form. To effect this change, we first
multiply both sides by #;(Zp), and use the orthonormality of the basis functions over
the region T. Then
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b= T[]V ve-cn] 5w

1
= D [6iX = Sij - Cii Xl
Fi 1
(3.12)

where

S = /E dZV ;- V. (3.13)
Here we have used the fact that

/IdeqS,--Vqu - /devgb,--wj—/dew,--vqu
= A6, — A dEV; - Vs, (3.14)

The matrix C arises naturaily in this derivation; the right-hand side of (3.6) reflects

the fact that ¥ is in the range of C.

We now rearrange the equation into conventional matrix form,
(CA+S-Nyp=0 (3.15)

where A is the diagonal matrix containing the eigenvalues of the basis functions over
T. Solving this eigensystem gives us a solution to (3.1) in the basis of eigenfunctions

over T. Notice that the matrix in (3.15) is not hermitian.

We now use our knowledge of C' to make the eigensystem hermitian. The wave-
function expansion (3.10) was equated to the right-hand side of (3.11), which is zero

outside of I. Our wavefunction expansion actually represents a function that is equal
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to ¥ in I and equal to zero in E. Therefore the solutions to (3.15) are zero in E and

are in the range of C, that is, C¥(Z) = ¥(Z) or Cop = Y. We can introduce this

fact on the left hand side of (3.8) to make the eigensystem hermitian. The resulting

generalized eigensystem is

(CA+AC - A+ S~ \C)p = 0. (3.16)

or equivalently,

((C - %) OH+S-)C)p=0 (3.17)

where H;; = A; + \; and o represents the Hadamard or elementwise product defined

by (A o] B),‘j = A,'J'B,'j.

Alternatively we can modify the eigenvalye equation (3.15) by inserting C before

¥ and multiplying by C from the left:

C(CA+S-Al)Cy = 0
(CAC+CSC—xCyp = 0

(CAC+CSC -2y = o. (3.18)

Here the idempotence of ¢’ makes the eigenproblem hermitian.

The problem now looks ‘quantum mechanical’, as it has been reduced to finding

the eigenvalues of a hermitian matrix. We can express the problem as a perturbation

of the original hamiltonian A by using the complimentary projector 1 — C, which

is a ‘small’ matrix in some problems. We will not pursue this here, as we are not

interested in perturbative solutions.
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Now we investigate the details involved in solving (3.18). As C is a projector, it
can be decomposed as C = PPT, where PTP = 1,y,. P is an m X r matrix, where r

is the rank of C'. Then the eigensystem (3.18) is equivalent to

(PTAP - PTSP - \)¢' =0 (3.19)

where ¢ = PT¢’ and ¢’ is an r dimensional vector; there are r non-trivial solutions

to (3.18).

As the constraint matrix for a region that is the union of two non-overlapping
regions must be the sum of the constraint matrices for the two regions from (3.3), we
expect that the rank of a constraint matrix is proportional to the area in the range
of the constraint matrix. When the included region is the total region the constraint
matrix is the identity matrix, with rank m. Thus we expect that that the rank r of

C is given by the closest integer to um, which was confirmed numerically.

Before we solve (3.19), we need to find P; in other words, we need to find an
orthonormal basis for the range of C. This matrix is only approximately a projector,
due not to error in its elements but to the fact that it is representing C in a truncated
basis; therefore its range is not well defined. We use the r eigenvectors of C' with
the largest eigenvalues to define the range of C. This step is justified in appendices
B and C. The spectrum of C proves to be close to that expected for it, so that the

uncertainty in the range of C is not large.

In Fig. 3.2, we plot the eigenvalues of C, in decreasing order, vs. the fractional
eigenvalue number, which is the merely the eigenvalue number divided by the number
of basis functions m. The spectrum is quite close to that of a projector with fractional

rank equal to the included fraction p = f;dZ/ [; d7.
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Figure 3.2: The spectrum of C for the desymmetrized stadium, for m = 124 and
m = 1004, where r/m = u = 0.8570.
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3.4 Numerical Calculation of Matrix Elements

Unless the boundary 61 is along surfaces of constant coordinates we will need to use
numerical integration to find the elements of C' and S. This is because although the
basis functions are analytically calculable, the integral of a basis function over an
arbitrary region is not. We can integrate over E or I, as C and 1 — C are trivially
related. We have integrated over 1 — C' as the region is smaller, necessitating fewer
grid points in the numerical integration. Thus we will find C and S by approximating

(3) as a sum over all grid points in E of the Taylor expansion of the integrand.

To facilitate simple notation we will assume that 7 is two dimensional with com-

ponents 1, z2. Consider a cell surrounding a grid point Z,,;; with dimensions A, and

ha. The integral of ¢;(Z)¢;(Z) over the cell is

ﬁL h - -
2 2 - - 8 (LT
/_%L d:zcl/_,_,22 dz, l:¢i($)¢j($) |2 mia +k§2—?(_aiﬁ:ﬁ_(l |2y T+ . (3.20)

As we are using a regularly spaced grid, the integrals are over intervals centered

around zero and odd powers of z; and z, integrate to zero and (3.20) becomes

h1h2¢i(£)¢j(f) li"grid’ (3‘21)-

neglecting terms of order h$h, + hyh3. Summing over all grid points,

n

Cz'j = Z ¢i(5k)¢j(5k)hfh§ (3-22)
k=1,
where i, k = 1,2,...,n is a grid in the region E. h§ and h¥ are the dimensions of the

cell surrounding the k* grid point. If we define the m x n matrix Fyj = ¢;(Z;)(h¥hE)2,
then Cg = FFT. Notice that FFT is manifestly positive semidefinite, as expected.

The matrices F and P should not be confused; even though C = FFT ~ PPT
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P # F. That the matrices cannot be equal is obviously true, as F is m x n and P is

mXr,and n>>m >r.

We observed that in some situations using grids with an odd number of grid points
per side gave significantly better results than grids with an even number of grid points
per side. We attribute this to the greater number of coincidental zeroes of the basis
functions and grid points in latter case, which degrades computation of the matrix
elements. The number of coincidental zeroes and grid points can be lessened by using
grids that begin at £/2, not 0. Our grids are evenly spaced, except at the boundary,
where we put a point on the boundary and give it the appropriate weighting. The
two dimensional numerical integration of the matrix elements merits no more consid-

eration as the line integral computation of the matrix elements (discussed later) will

be superior.

We can find the elements of S with a similar approach. From (3.13),

Sy = Y280,

ki axl 6:81
= Y Di(DV,
k.l
S = Y DYDY (3.23)
]

where D}, = h(%) |z, - All of the matrices D'(D)T are positive semidefinite.

For a function ¥(Z) represented by a vector ¥ to be in the nullspace of FFT the

vector must satisfy

2 Fgbi = 0
=1,
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m

(h1ha)? Y- 8i(Ze)p; = 0 (3.24)
j=1v
for k=1,...,n. Demanding ¥ to be in the range of C is thus equivalent to demanding

that ¥(Z,) = 0 at the n grid points 7 used in the numerical integration. Only r of

the equations (3.24) are linearly independent, giving rank r to the matrix C.

3.5 Computational Algorithm

Here we present a straightforward algorithm that solves (3.18); it uses a subroutine
to find all of the eigenvalues and their associated eigenvectors. The only complication
in this procedure is that finding all the elements of an m x m matrix that is equal
to the product of three matrices (as is CSC) is an order m* process, which should
be avoided. As the matrices will be large, the eigensystem solving routine should be
one that uses only one array, such as Householder tridiagonalization followed by QR

iteration. An uncomplicated algorithm that follows this advice and uses three storage

arrays is as follows:

o In the first storage array:

1. Compute the elements of C using numerical integration.
2. Compute the eigenvalues and eigenvectors of C.

3. Truncate the spectrum of C to find P such that C = PPT and PTP =1.

o In the second storage array:

1. Compute the elements of S using numerical integration.
2. Compute the eigenvalues and eigenvectors of S.
3. Truncate the spectrum of S to find D such that S = DDT.
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o Compute PTD and write it into the third storage array.

o Compute PTAP (which is order m?) and write the result in the second storage

array.
o Compute (PTD)(PTD)T and add the result to PTAP in the second array.

o Compute the eigenvalues of PTAP + PTSP which resides in the second array.

The algorithm solves three m X m eigensystems and three times computes the

products of m X m matrices.

3.6 Comparison to an Analytic Case

To evaluate the accuracy of our method, we found the eigenfunctions of V? over a unit
disk; we used a unit square for T and a unit disk for I. As the disk is ‘separable’, the
eigenfunctions are known to be the product of sine functions and Bessel’s functions.
The eigenvalues are the zeroes of the integer order Bessel functions. We found the
first 300 eigenvalues by finding the zeroes of the Bessel functions with a Newton -

Raphson method for comparison.

Even though the circle and the square are both separable, their symmetries are
quite different. Nevertheless, the constraint operator solution works. With 868 basis
functions, we obtained rms fractional eigenvalue error of 2.0138 x 10~ for the first

300 eigenvalues (Fig. 3.3).

The errors of the eigenvalues depend on the eigenvalue number in a consistent way.
To show this, we introduce the fractional eigenvalue number, which is the eigenvalue
number 7 divided by the number of basis functions m. This enables us to put data
for solutions with different m values on the same plot. Fig 3.4 shows the fractional

error as a function of the fractional eigenvalue number. The dependence is nearly
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exponential for the higher eigenvalues, while the lower eigenvalues have fractional

errors bounded by a constant.
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Figure 3.4: The fractional eigenvalue error as a function of the fractional eigenvalue
number for the unit disk with m = 124 (boxes) and m = 316 (pluses).

We assume that ¥ = 0 in E; we can easily find out how bad this assumption is.

Define the volume fractional error v to be the integral

— hud 2
1/—/Edw|\Il|. (3.25)

0 < v <1, with only values near 0 being acceptable. The average volume fractional
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error for the first 300 eigenvalues was 7.113 x 10~3. The volume fractional error
also has a consistent distribution (Fig. 3.5.) The volume fractional error is roughly
exponential in fractional eigenvalue number for low eigenvalue numbers. We observed
that the rms energy eigenvalue error converges to a finite value when n is increased
but m is held fixed (Fig. 3.6.) This is expected, as the matrix elements converge to

their correct values with increasing n and there will always be a finite error when m

is finite.
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Figure 3.5: The volume fractional error as a function of the fractional eigenvalue
number for the unit disk with m = 124 (boxes) and m = 316 (pluses).

We observed that the rms energy eigenvalue error converges to zero as m — co.
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The exponent of m was approximately —0.4 for the disk (Fig. 3.3).

The application of the constraint operator method to one dimensional problems
is superfluous. For comparisons sake, we solved the one dimensional problem with a
sine function basis. The rms fractional eigenvalue error decreased as m~!. When the
included region I is separable, the Constraint Operator Method can be decomposed
into two one dimensional problems (see appendix C, equations C7 and C8). Thus

we expect that the rms fractional eigenvalue error in the two dimensional case can,

1

at best, decrease as m~1/2. The observed exponent of m in the convergence of the

eigenvalue error of the unit disk is consistent with this.

3.7 Comparison with the Plane Wave Decomposi-
tion Method

The Plane Wave Decomposition Method devised by Heller [66] uses a basis of plane
waves to express the wavefunctions, then demands that the wavefunctions be zero
on some points evenly spaced around the boundary surface. The eigenfunctions are
found by an iterative process: an eigenvalue is assumed, the linear equations that set
the wavefunctions equal to zero at the points are solved, then the error in the bound-
ary condition is evaluated. The process is repeated until the error in the boundary
condition vanishes; the wavefunction is then an eigenfunction of V? that satisfies the

necessary boundary conditions.

Because of its iterative nature, it cannot be relied upon to find every eigenvalue
[73], even though the error in the individual eigenvalues can be made arbitrarily small
by varying the step size. The Plane Wave Decomposition Method finds eigenfunctions,
but each eigenfunction is found in a different basis, as the wavevector magnitude is not

the same for each eigenvector. This renders impracticable the task of manipulating
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the set of eigenvectors.

The Constraint Operator Method has limited eigenvalue accuracy, but it finds
a (truncated) complete set of eigenfunctions. The chore of knowing all m? matrix
elements prevents the eigenvalue accuracy from being improved by using a large m.

This is the price that is paid for finding a complete basis.

The relative merits of the Plane Wave Decomposition Method and the Constraint
Operator Method suggest that the methods could be used in conjunction. The Plane
Wave Decomposition Method can be used to improve the eigenvalue accuracy of the
Constraint Operator Method, using the eigenvalues found by the latter as starting
points. This would alleviate the Plane Wave Decomposition Method’s problem of
stepping over eigenvalues, and reduce the time spent searching for eigenvalues. The

net result would be a complete set of eigenfunctions with accurate eigenvalues.

To check the method in a non-integrable case, we also solved the desymmetrized
stadium problem, where the included region is as shown in Fig. 3.1. No analytical
solution is possible, so we compared our eigenvalues to those produced by the plane
wave decomposition method for the same problem. With 378 basis functions, we ob-
tained a rms fractional energy eigenvalue deviation of .002 for the first 100 eigenvalues
of the two methods. The first four wavefunctions are plotted in Fig. 3.7, which shows
the wavefunctions over the total region. We checked the distribution of normalized
eigenvalue spacings in both of our test cases. The disk spacings closely follow a Pois-
son distribution, and the stadium spacings closely follow a Wigner distribution, as
expected (Fig. 3.8.) We regard this as evidence that the constraint operator solution

preserves the essential details of a system.
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Figure 3.7: W(&) for the first four eigenfunctions over the desymmetrized stadium.
Something like Gibbs phenomenon can be seen, with the maximum error occurring
near, but not on, the boundary 1.

62



:l | L I.I-—l | S l L | LR DL | L LI I_

0.8 — T —

: O/CN . :

0.6 B L] O\ O ]
= L. :
0.4 = —
0.2} —
0.0 11 11 I | I T | I | I S l L1 11 I l$l \.r—

00 05 10 15 20 25 30
S

Figure 3.8: The distributions of normalized energy spacings for the desymmetrized
disk problem (eigenvalues 100-200) and the Wigner distribution.

63



3.8 Connection with the Finite Difference Method

The constraint operator solution can be connected to the Finite Difference Method.

Consider the change of basis given by Fy* = . From (10), the function

UE) = 3 4@ 3 Py

i=1, j=1,
= Y% Y 6i(@)8i(&)(hihs)*
i=1, i=1,
= D %6 (E - &) (3.26)

j=t,

where 87'(Z — ;) is the unit normalized delta function expanded in a size m basis.

This corresponds to changing to a basis of n delta functions, which is qualitatively
similar to the finite difference method with an n x n array. n must be considerably
larger than m in order for the numerical integration of the matrix elements to be
accurate, and we have not neglected terms in representing V?, demonstrating the

relative merit of the constraint operator method.

3.9 Other Operators, Bases, and Boundary Con-
ditions

Although we used a basis such that A was diagonal, this is not necessary. It may be
possible to get better results by using other bases; for example, wavelets are more
‘localized’ than plane waves and may better represent the constraint operator. Below
we derive the correct eigensystem in a general basis. For complete generality, we

assume that there is a quantum mechanical potential term V(Z).

Now we need a Green’s function G(Z, Z,) that satisfies the equation
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(V24 V(2) + NG(Z,50) = ~4x6(3 — 7). (3.27)

This leaves (3.5) through (3.7) unchanged. As our basis does not diagonalize V?, this

changes our expression for G(z, Zo) to

G(Z,Z0) = 4n Y (T = V = N ™);04(2)8;(30). (3.28)

i

The matrices T and V are given by

T; = — /T dZ 6,(3) V29, (Z)
Vi = [ dE6(@)V(@)e;(). (3.29)

The expansion for ¥ is still

U(Z) = Y brd(Z) (3.30)
P

but here the functions are not eigenfunctions of V2. Substituting the expansions into

(3.8),

> ad(Eo) = 3 ([T -V — /\]_l)lmk(fo)/sdA [6iV ¢;]. (3.31)
p

Tkl

To convert this into matrix form, we multiply both sides by #i(Zg) and then use the

orthogonality of the eigenfunctions, giving

i == ([T =V = N)uAL;
I

(T-V-A-\)p=0 (3.32)
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where A;; = [¢dA - [¢;V4i]. A can be expressed in terms of C as

4y = [dA (89
— /1 dv [$;V29; + V; - V]
= [ dvpcis;+ J 40 i 94
= D Cul=T4) + (9);
k

A= (1-0T-S5 (3.33)

and the final form of the eigenvalue equation is

(C(T =V +8)C = \)é = 0. (3.34)

In the case of Neumann boundary conditions, 7 - VU¥(Z) = 0 on the boundary

surface, and (3.7) is replaced by

¥(@) = -~ [dA-NE@VGE ), (3.35)

changing (3.32) to

¥ =3 ([T~ V = A ™)udle;
i

(T-V+A=A)p=0. (3.36)

The final form of the eigenvalue equation is then

(C(T =V = 8)C = \)¢ = 0. (3.37)
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3.10 Wavelet Bases

Wavelets are sets of orthogonal functions that are simultaneously localized in both
frequency space and coordinate space [79]. This suggests that they would be a better
basis to use with the constriant operator method than the eigenfunctions of V2, which

represent V2 perfectly but represent the constraint operator poorly.

In fact, matrices which become smooth away from the diagonal can be shown to be
well represented in a wavelet basis [48] (the constraint matrix C has this property, as
will be shown in the next chapter). A discrete wavelet transform (which corresponds
to changing to a wavelet basis) applied to a matrix of this type results in a sparse
matrix. The V? operator is also well represented by wavelets. The sparsity of the
matrices resulting from this transform would greatly improve numerical efficiency and
the accuracy of the results. Of course, it would be preferable not to use a discrete
wavelet transform, but rather find the matrix elements in a wavelet basis. This is

certainly a promising avenue for future research.

3.11 Approximating a Projector

In (3.19) we choose the r eigenfunctions of C with the eigenvalues closest to unity
to span the range of C. This is a sensible thing to do, but we would like a firmer
justification for this step. Here we show that this step is equivalent to replacing C

with the ‘closest’ rank r projector C’, namely the one that minimizes the Euclidean

matrix norm

IC = C'|l2. (3.38)

To show this, we write C' and C’ in terms of their unitary decompositions:
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C = Uty
' = Vv (3.39)
where the diagonal matrix T'ii contains the eigenvalues of C, and I'.=1ifi <r and

is zero otherwise. T',I", and U are known to us; to solve the problem we want to find

a unitary matrix V that minimizes

IC~C; = |T-UVT'VUY
= T[T - UVID'VUY)T - UVIT'VUh)

= Tr[[? + (I')? - 2I'UVITVUH) (3.40)

which is equivalent to maximizing

T'UVITVUY = 3 3 DL(UVHalw(VUHu
=1, k=1,
= S (VUi |2 T (3.41)
=1, k=1,

Define the m x m matrix M by M;; = (VU?);;, and note that it is orthostochastic
(that is, 3=, Mi; = ¥; M;; = 1.) Define the vector v by v = T'i. Then we want to

maximize the sum

> (M) (3.42)
=1,
As M is orthostochastic, My majorizes v; the sum of the r largest elements of M~ is

less than or equal to the sum of the r largest elements of -, with equality holding for
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M = 1. We minimize the norm by taking M = 1, which means that U = V. Thus

C and C' are diagonal in the same basis, and replacing F with P is equivalent to

replacing C with C’.
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Chapter 4

The Constraint Function
Expansion

We are currently pursuing the approach of expanding the constraint function (2) in
the eigenfunctions of V2. The matrix elements of C and S are completely determined
by the elements of this expansion. Fewer numerical integrations are required, and
Green’s theorem can be used to express the constraint function elements as integrals
over the boundary surface §I. We expect better results from this approach as the
problem of coincidental zeroes and grid points that can arise with the area integration

will not be present when surface integrals are used.

This approach connects the constraint operator with the theory of Fourier ex-
pansions. Some of the properties of C' mentioned above can be proven using this
approach. The band diagonality of C and S is manifested, as a truncation of the

constraint function expansion to m functions results in matrices with bandwidth 2m.

The Constraint Operator Method will work with arbitrary bases; a basis other
than one that diagonalizes V2 may result in a higher computational load but greater
accuracy. In particular, we speculate that wavelets might do a better job of repre-

senting the constraint operator than the Fourier basis does.
It is possible to expand the constraint function (3.2) in terms of the Neumann
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functions that also satisfy the Helmholtz equation over T. This expansion makes the
computation of the constraint matrix C less numerically intensive, and also facilitates
proving some elementary facts about that matrix. However, it is more complicated

to implement, especially in that it requires the introduction of Neumann functions.

Denoting the Neumann functions over T as v;, we have ‘co-orthogonal’ bases,

where

/Idfv,'(bj = M,'j (4.1)

and M is a hermitian matrix that is non-diagonal, as the Dirichlet and Neumann
functions are not mutually orthogonal. In practice, a sensible choice of bases can

make the matrix M easily calculable.

Expanding the constraint function as ¢(Z) = ¥; v;(Z)c;, we can find the expansion

coefficients ¢; in terms of integrals over the surface 61:



1
= — dAn - Vv; 4.2
X Jopr SOV (42)

where 7 is the outward unit vector normal to the surface element §4. The last
equality comes from the fact that 7 - Vv; = 0 on the boundary 8T, which is satisfied
for all Neumann functions. It is an interesting and useful result that the integral

need be taken only over the segment of the boundary that does not coincide with the

boundary of the total region.

Here it must be assumed that A; # 0, which is true for all but the constant func-
tion (which is the first Neumann function). Assuming that the Neumann functions

are indexed in order of increasing );, then the expansion coefficient of the constant

function is

0 = /T dz o)
= [ | (4.3)

which is just the volume of the included region.

We can now solve for the constraint matrix C using this expansion:

C,']‘ = /di"¢,c(x)¢
= [ 6T u@sic

3 ke /T dF :d0 (4.4)

and the ‘surface term’ matrix S is given by

/ dZ o(&)V: -V,
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S," = ;ck/Tdi‘V@-ijk. (4.5)

The terms [, d7 ¢;¢;v; and Jr dZV ¢; - Vv, can be simplified somewhat using re-
lations between the Dirichlet and Neumann functions [78]). We will do this later for

the particular case of sine and cosine functions.

4.1 A One-dimensional Example

Signifigant insight can be gained by considering a one dimensional problem. The
constraint operator solution is an unnecessary complication in this case, but the
results we derive in this case can be related to higher dimensional cases. Similar, but

more complicated, relations hold in the higher dimensional cases.

Consider the one dimensional problem of finding the eigenfunctions of % in the

interval 0, L that are zero on the boundaries. We know the solutions to be the func-

Tz

tions ¢; = (%)% sin *7% with eigenvalues —(%)%2. Expanding the constraint function,

c(z) =) cicos 2 (4.6)
< 3
where
o _ 1=0
c'_{ %f,dzcosﬂ’f- 1#0 (4.7)

Here p is the excluded fraction 71; J1dz. From Bessel’s equality, we know that

1
e + 3 Y=y (4.8)

We can obtain a bound on the magnitude of the elements ¢; by integrating (4.7) by
parts, giving ||ci|| < 2£ for i # 0 where n is the number of points on the boundary of
L
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The matrix elements of C in terms of the ¢ vector are

i

-3 forz =94
Ci' = Ry 2C2 ' .7.7 49
’ { a(cni—jn —ciy;) fori #j. (4.9)

S can be similarly expressed as

Sij — { 2 W (CO + 62,) fOI‘ 1= j7 (410)

EJﬁ(C||i_j|‘ - C,'+j) for ¢ # ]
If the constraint function ¢(z) is a finite sum Z?:o, ¢i, then the matrices C and S are
band diagonal with bandwidth b. If ¢(z) is well represented by a finite sum, then we

expect C' and S to be well represented by band diagonal matrices.

C can be expressed as the sum of a band diagonal matrix C, with bandwidth b
and a residual 6C = C — C}. The Weiland - Hoffman theorem [80] can now be used
to bound the RMS error of the eigenvalues of Cy:

+ 1
2

SO -MGE| < Lyect,

'
Ll

lim —Z[/\ CE| < lim ~[5C],

m—00 m—00 m

z=1 ]

f: . (4.11)

1=b+1

The RMS error in the eigenvalues of Cj is thus related to the convergence of the

expansion of ¢(z).
4.1.1 The Rank of C

As the constraint matrix for the union of two different regions must be the sum of

the constraint matrices for the two regions from (3), we expect that the rank of a

74



constraint matrix is proportional to the volume in the range of the constraint matrix.
When the included region is the total region the constraint matrix is the identity
matrix, with rank m. Thus we expect that that the rank r of C is given by um. The
rank of a projector is equal to its trace; we can use this to prove our conjecture. The

limit of 2Tr(C) as m approaches infinity is

1 1>
T = lim —Y Cq
1711-1»1‘010 mTr(C) mg}go m i C

1 &L
= THim oY)
= u (4.12)

Thus the ‘fractional rank’ r/m of a constraint matrix is approximately equal to the

included fraction u.

If we define the included region I to be the region from 0 to uL, then p is the
included fraction and the solutions those of a region with L’ = pL. The C matrix

has elements

1

C, = { My sin((i — j)mp) ~ 2 sin((6+ j)mp) i i #

= 5sin2rip ifi=j (4.13)
and S has elements
(5),; = | B (g in( = i)mu) + gy sin((i + j)ww)) i # 1
1] — 122 T s . e . ( . )
(1 - p) B — Gsin2rip if e = 3.

Note that lim, ., C = 1,lim,; S = 0, and lim, o S = A as expected.

Numerical solution of the 1-d case shows a distinct pattern of errors. The fractional
error in the eigenvalues is approximately constant for most eigenvalues. The result

that 6A; ~ \;a where @ < 1 has an interesting result for systems obeying

75



p(t) = exp(H1)p(0). (4.15)

Let the unitary transform UTHU = A contain the eigenvalues of H, and let H’ be

our estimate of H, with UTH'U = A’. Then

expH't = Uexp(A't)U!
~ Uexp(A(l —a)t)U?
= exp(Ht) (4.16)
where t' = (1 — a)t. This corresponds to quickening the system; the qualitative

features of the time evolution will be preserved, but the system evolves in time faster.

4.2 A Two-dimensional Example

In order to limit the size and complexity implementing this approach, we introduce
a double-index notation in order to solve a two-dimensional problem with a square

total region T.

The Dirichlet functions are denoted

oij = 2sin(ire) sin(jry) (4.17)

and the indices z and j run from unity upward. The Neumann functions are denoted

2cos(iwz) cos(jmry) for ¢, #0

o = ) 22 cos(inz) fori#0,5=0
v 21/2 cos(jmy) fort=0,7#0
1 forz,7 =10
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= wj; cos(imz) cos(j7y) (4.18)
where w;; is used to absorb the index-dependent normalization factor.

One fruitful line of approach is to express the product of a Neumann function and
a Dirichlet function in terms of Dirichlet functions. Then (4.4) and (4.5) can be found

immediately by using the orthonormality relations. Using trigonometric relations, we

find that

0;iTky = 2wgysin(irz)cos(knz)sin(jry) cos(lny)
= wifsin((z + k)rz) + sin((z — k)wz)][sin((j + {)7y)sin((j — I)7y)]

= WrI[Oisk el + Oivkjot + Oick iyt + Tick j—i)- (4.19)

We need to find the matrix elements C; jx,, where ¢,; denotes the first basis

function in double index notation and k,! denotes the second. The elements are

given by

Cijikd = ch,t[rdfai,jak,l’ra,t (4.20)
3,t

where c,; is the coefficient of the constraint function expansion using double index

notation.

Some relations that will be useful are

1
2/ drsin(irz)sin((k + s)rz) = 6bik+s
0

1
2/ desin(irz)sin((k — $)7z) = ks — 6i k- (4.21)
0

which give us
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dZ o; .o = Yoz dz
- 4,0kiTst = 1 Jr za’i,j[o'k+s,l+t+a'k+s,l—t+0k—s,l+t+ak—s,l—t]

w,,

= Tt'[5i,k+s(5j,z+t + 851-t — 8;41)
F(6ijk—s = 85t (8504t + 6510 — 8j1-1)]
ws,t

= (Bikts + Gikos + Giomkt) (it + 650 — 650-1)  (4.22)

Using these, (4.20) becomes

w
Cijikd = > Cs,th't[éi.kq-s + Sik—s = O omk][6510e + Ojus + 64-1]
8,t

1
= 2 Climklli=1 W=kl =1 + Sickio][L + 85-,0]

1

= 2 Cli=kl i+ W=kl 411 + Elizky o]
1

= 7 CRli= Witk i+ {1 + 8j-110]

o Gt Witk (4.23)

4.3 Band Diagonality of C

The banded nature of C is explicitly apparent in the constraint function approach.
When the constraint function expansion is truncated at n basis functions, C will be
band diagonal with a band width of 2n. This can be seen directly from the equations
for the matrix elements C; j;: suppose that the index s runs from unity to s, and ¢
runs from unity to #'. Then ¢, is zero for s > s’ or t > t'. The first term in (4.23)
contributes along the diagonal. The last term in (4.23) will provide the trailing edge
of the band.
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4.4 Finding the Expansion Coefficients

The constraint function’s expansion coefficients can be obtained by numerically inte-

grating the line integral in (4.2). For A,; # 0,

oy = — / dlA-Vr,,
Ast Jo1/6T

ws,t

dl [ngsm sin(s7z) cos(tmy) + nytr cos(swx) sin(try)] (4.24)
Ast JSI/6T

The basis functions can be rapidly oscillating, so be careful when numerically inte-

grating.

4.5 Questions About the Constraint Operator

The constraint operator determines whether or not the quantum billiard problem that
it describes is chaotic or not, as it represents the geometry of the problem. Thus it
is natural to ask what is the difference between a constraint operator for a chaotic

problem and one for a regular problem. This is an interesting open question.
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Chapter 5

Matrix Structure and Eigenvalue
Error of C

5.1 The Eigenvalue Spectrum

In practice, the eigenvalue spectrum of C is observed to closely follow the function

!

1) = [epr "‘>+1]_ , (5.1)

T

where ¢’ = i/m is the ‘fractional eigenvalue number’ and u = r/m (Fig. 3.2.) This
function closely approximates the unit step function, which is the eigenvalue distribu-
tion expected for a projector. When a = 1, 7 is the Fermi function; for 0 < a < 1, 7
is greater than the Fermi function, and when « > 1, v is less than the Fermi function;
all cases are possible. In (Fig. 3.2) we see that y(u) is approximately the same for
m = 124 and m = 1004, as expected, though the slope of v at 7' = u is larger for

larger m.

5.1.1 The ‘Temperature’ of C

The ‘temperature’ T can be found, by anaiogy to the Fermi function, using the slope
% of (5.1) at ¢/ =
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_a2—a-1
&
dil 8

_ () logy(v(k))
= A (5.2)

We observed that T is inversely proportional to m, with a proportionality constant

which can depend on the region I.

5.2 Band Diagonality

An essential fact about this method is that the matrices are approximately band
diagonal in the basis of the eigenfunctions of V? arranged with their eigenvalues in
increasing order. More precisely, they are well approximated by a matrix with all
elements zero when ||i — j|| > b, where b is the bandwidth. This is important, as
we need to represent infinite matrices with finite ones, and would like to understand

exactly what we can safely neglect.

5.2.1 The Wieland-Hoffman Bound on Eigenvalue Error

C can be expressed as the sum of a band diagonal matrix C, with bandwidth b and
a residual 6C = C — C,. The Weiland - Hoffman theorem [80] can now be used to

bound the RMS eigenvalue error of Cj:

LS @) NG| <m0 (53)

m

1=1,

Interestingly, m~/2||6C|; can be computed due to the idempotence of C:
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Ci = Y.CZ
J

= 2 Ci+ ) G

fi=3li<b [li=3l{>%
16CI; = dlCa— > CZ. (5.4)
i lli-j]|<b

Here we have neglected the fact that m is finite, but this analysis works for large m.

It is easy to compute m=/2||6C||2, and easy to update it if m is increased. A pro-
gram can use this to determine the minimum value of m that has a certain maximum

allowed rms error in the spectrum of C.

9.2.2 Measuring Band Diagonality

To investigate the rate of convergence of m=1/2||6C|| to zero as b increases, we need
a measure of the size of the k™ off-diagonal. To account for the fact that different
off-diagonals have different numbers of elements, we define £, to be the rms value of

the elements of the k** off-diagonal:

_ [Ziicit=x CE)
€k = [ N, ] (5.5)

where Nj is the number of elements in the k** off-diagonal. For large m, the bound

on the rms eigenvalue error of Cj is

1 o0
—6Cli=23¢. (56)

k=b,
We observed that §, ~ b~! (Fig. 5.1), implying that the bound on the rms eigenvalue

error of Cy is proportional to 4~1/2.
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Figure 5.1: The rms value £ of the 5 off-diagonal elements of C as a function of b, for
the disk (upper curve) and stadium (lower curve), demonstrating the band diagonal
nature of C.
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5.2.3 Banded Random Matrices

There is current interest in banded random matrices, as these matrices correspond to

physical systems with ‘nearby’ states that are strongly interacting [81, 82, 83].

The study of banded random matrices begs the question ‘banded in what basis?’
Every Hamiltonian matrix can be transformed into a banded matrix by a unitary
transform (for example, an incomplete Jacobi rotation diagonalization). The idea is
that the Hamiltonians of interest are banded in ‘natural’ bases, like the plane wave

basis. Regardless of the interpretation, many naturally occuring Hamiltonians are

like banded random matrices [84].

The constraint operator approach results in a banded Hamiltonian matrix for a
quantum billiard problem. The matrix elements decay with a power law b~3/2 away

from the diagonal, and increase with the power law %2 along the diagonal.

Quantum billiard Hamiltonians derived with the constraint operator method can
themselves form an ensemble, for example, the ensemble of all Hamiltonians with

the same total region T but different included regions I, with the included fraction g

fixed.

5.3 Separability

Whenever the wavefunction is separable, the matrices C and S must be separable as
well, reducing the two dimensional problem to two one dimensional problems. When
(3.1) can be solved by separation of variables, then the vector ¥ will be decomposable
into the Kroneker product 1 = £ ® . As there are separable eigenvectors 1 = £ ® 7,
there are separable unitary matrices that diagonalize C and S. Therefore C can be

written as the Kroneker product C = C* ® C¥ and S can be written as the kroneker
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sum S = S*®1+1®S5Y. As we choose the total region T to correspond to a separable
case, we can always write T' as the Kroneker sum of two matrices: T = T°Q1+1QT".

Considering all of these separabilities, the matrix in (3.18) becomes

(C°RCUT*®1+1QT'+5°@1+1Q 8- AQ1)C*Q CY

= (C%(T* + 5% = X°)C*) ® C¥ + C* @ (CY(T* + 5% — A\)CY) (5.7)

where we have written A = A*®1+1® )Y and made repeated use of the mixed product

identity. The solutions are given by the Kroneker product of the one dimensional

solutions ¢ and 7, where

(C*(T® + 5% — X*)C%)¢ = 0

(CYTY + 8¥ — \V)C¥)y = 0. (5.8)
5.3.1 Separability and Chaoticity

There is a well-recognized correspondence between non-chaoticity and separability;

this correspondence extends to the matrices C and S.

5.4 Error in Eigenvalue Estimates of Infinite Rank
Operators in Finite Dimensional Bases

5.4.1 Truncation and Diagonalization

An infinite or extremely large matrix can often be well approximated by a finite
or smaller dimensional matrix when the matrix to be approximated is nearly block

diagonal or band diagonal. Suppose we have an m x m hermitian matrix H that
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we would like to approximate with an n x n matrix A. The matrix & will have the

conformally partitioned form

B4 2) (5.9)

where Aisn xn, Bisn x (m—n), and C is (m —n) x (m —n). We can diagonalize

our approximation A with a unitary matrix U, as it is hermitian as well:

UtAU = A. (5.10)

The entries of the diagonal matrix A are our estimates of the eigenvalues of H;
assume without loss of generality that they are arranged in increasing order. Define

the unitary matrix Q as

o-(4 7). (511

partitioned in the same manner as H. The matrix H' = Q' HQ is unitarily equivalent

to H, and therefore has the same eigenvalues. Writing out H' in partitioned form,

/ A U'B

We can find a useful upper bound on the difference between a diagonal element of a
matrix and the nearest eigenvalue using the Gersgorin disk theorem, or an adaptation

of it.
5.4.2 The Gersgorin Theorem

Let A be an eigenvalue of H, with the associated eigenvector . Then
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> Hijz; = Az (5.13)
J

for i =1,...,m. Subtract the diagonal elements from both sides:

Z H,-jxj = (/\ - H,','):l:j. (5.14)
J#i

Square both sides and use the triangle inequality:

Yo Hizj 2] (A = Hy) | z; |2 (5.15)
pry

for all <. Now choose 7 such that | z; |2>| z; |? for all j. Using the triangle inequality

again,
|2 P30 [ Hij P20 (A= Hy) | 2 |2 (5.16)
i
or
SOV HG P> (A= Hy) 2. (5.17)
Y

Thus | A — H; |< r;, where r; = (i | Hij 12)%-

In order to be able to associate the i* largest eigenvalue ); with the it largest
eigenvalue estimate A;;, we must ensure that the disk | Ai = Ay |[< r; does not overlap

with any other disks. This requires that

Aiprivt = Aig > ri+ iy (5.18)
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and
Ay - Ai—l,i-l >ri+rig. (5.19)

When these requirements are met, then the error bound for the §t* eigenvalue
holds. This provides a criterion for the size of the matrix A: as n increases, all rs

decrease ( or at least do not increase.) Thus n can be chosen so that conditions (5.18)

and (5.19) hold.

5.4.3 A Bound of the Eigenvalue Error

Apply equation (10) to A’ , then

A = A |[< (5.20)

and r; is the bound of the error in our estimate of the ;%* eigenvalue, where ; = 1,...,n.
The row sum of H’ is now the row sum of UTB. Writing out the matrix product,

then using the triangle inequality once again,

2 _ 12
ri = Z | H,-j
J#

= Z | (U'B);; |?

= > IS ULBy P
7 k

INA

SIULEY | By P (5.21)
k J
= ZMkiak (522)
k
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where o = 37, | By; |? is in some sense the error associated with the kt* row of A

and the orthostocahstic matrix M is defined by M;; =| U; |

To benefit from this analysis, we need to have a bound on oy, which depends of

course on the individual matrix considered.

As the equation

7'? = ZMkio'k (523)
k

represents a convex linear combination of the oys, it follows that r? < max o for

t=1,...,n.
5.4.4 Projectors and Matrix Sections

A matrix P representing a projection operator necessarily satisfies the equation P2 =
P. When P is n dimensional, yet is representing a rank m operator with m > n, it
cannot satisfy this equation exactly. We can, however, derive an expression for the

row errors 0. Consider the diagonal element P, which is

Py=P: = i Py Py

k=1,
m

= D | P )
k=1

= Y | Px ) 4o (5.24)

k=1,

using the fact that P is hermitian. The row errors are 0 = k=1, | P |* =Py

The matrix section H' of H is PHP where P is a projector. We can make a

similar analysis of the error in this case. Assume that H is diagonal, then consider a
diagonal element of H’:
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Hy = 3 |PuPHa+ Y | Pl Hu

k=1, k=n+1
= > | Py > Hux + 0. (5.25)
k=1,

Unfortunately, we cannot find HY; directly; the finite sum on the right is our estimate
of it. This means that we cannot solve for o; directly. However, we can make an
estimate of it by increasing n and observing the convergence of H'. The fact that
we must make an estimation is unfortunate; it turns our error bounds into error

estimates, but still provides a guide to the eigenvalue error.
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Chapter 6

Quanfum Chaotic Decay

When a bound system is allowed to decay through a weak channel into a continuum,
the results are quite different depending on whether the bound system is classical or
chaotic. Bauer and Bertsch ([22]) demonstrated that the probability of decay for a
chaotic billiard system is exponential in time, while that of regular billiard systems
obeys a power law in time. Thus the chaotic systems decay faster, which is expected

as chaotic systems explore phase space faster.

Bauer and I sought to establish these decay laws for a similar quantum system,
without result. The problems inherent in connecting a discrete state to a continuum
undermine the approach of using the constraint operator method. The work in this

direction is outlined, and its failings are noted.

6.1 Finite Basis Approach

The approach of using quantized states as a basis fails in describing quantum chaotic

decay.

In order to allow a quantum billiard to decay into an exterior solution, assume that
there is an infinitesimal hole in a wall of the confining box. The billiard wavefunction

can be nonzero in this hole. This points to a fundamental difference between bound
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billiard wavefunctions and decaying billiard wavefunctions: the former are Dirichlet
functions (zero at the boundary), while the latter can include Neumann functions
(with zero normal derivative on the boundary.) Thus the space of decaying billiard

wavefunctions is not spanned by the bound billiard wavefunctions.
6.1.1 A Complete Basis

The simplest possible complete basis for the decaying billiard system consists of all
the bound system eigenstates and a delta function at the hole in the wall. This ignores

the connection between the hole and the outside, but it captures the essence of the

problem.

A basis of this sort can be constructed by including both Dirichlet and Neumann
functions in the basis, then demanding that the wavefunction be zero everywhere on

the boundary except for one point z;.

We will use the definitions (4.1) for the Dirichlet and Neumann functions. The

wavefunction W(z) is represented in this basis by the partitioned vector

wD
= 6.1
P ( W ( )
where ¥? is the vector of Dirichlet function coefficients and ¥P is the vector of

Neumann function coefficients. The Hamiltonian for this system will be

AP X
where AP and AV are the diagonal matrices containing the eigenvalues of V2 in the

Dirichlet and Neumann bases, respectively.” X is the ‘cross term’ matrix resulting

from the non-orthogonality of the Dirichlet and Neumann functions.
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To impose the condition that ¥ on the surface 61 is proportional to a delta function

6(zo), ¥ must be in the range of the projector

P= ( 0o ) (6.3)

where a; = v;(z0)/ T, vg(zo). That P2 = P follows directly from aat! - aat =
a(a’a)at = aat. P has a rank equal to n + 1, where n is the number of Dirichlet

functions.

As Py = 4, H is transformed into

1 0 AD x 1 0
t —
PIHP = (0 aa’f)<XT AN)(O aaT)

AP Xa 1
(1 a) atXt alANg al

= QH'Q! (6.4)

il

where Qism xm+1 and H' is (m+1)x (m+1). Define the (m+1) x 1 wavefunction

vector ¥ in the ‘contracted’ basis as

D
i ¥
v=(%) (65
where 6 is the magnitude of the unit delta function at zo. The contracted basis

consists of the Dirichlet functions and a delta function at zg with unit height and

unit norm.

Two regions can be stitched together by asserting that § for one region equals §

for the other; the Hamiltonian matrix describing the dynamics of this system is
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alx! afAVNg, al X} (6.6)
0 X2a2 AZ,D

where the subscripts refer to the systems and

alANa, = ajAY ;. (6.7)

This last condition can certainly be met if the two systems are identical. Therefore,
we need consider only the interaction of a single system with the delta function
on its boundary to understand the dynamics of quantum billiard decay through an

infinitesimal hole.

6.1.2 Non-Convergence

The Hamiltonian above is useless, however, as the element which represents the in-

teraction of the delta function with itself does not converge with m. Specifically,

Jlﬁngo alAVq, (6.8)
is not finite.

Any larger hole in the wall could be represented by an integral over delta func-
tions. This would still have the problem of non-convergence, as it would include an

integral over non-convergent quantities. Thus the problem of non-convergence is a

fundamental one.
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