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ABSTRACT
PHASE SELECTION IN THE K500 CYCLOTRON
AND THE DEVELOPMENT OF A NON- L | NEAR
TRANSFER MATRIX PROGRAM
By

Bruce Forrest Milton

A method has been developed for the rapid calculation
of particle orbits in a cyclotron with spiral-shaped dees
The method uses second order matrix transfer methods and has
been implemented in the FORTRAN program “"SOMA”, ( Second
Order MAtrix). SOMA has been checked against the slower
orbit integration program SPRGAPZ. A combination of SPRGAPZ
and SOMA has been used to investigate the phase selection
process in the Michigan State University K500 cyclotron.
This study led to the design of hardware necessary for phase
selection and the ancillary beam diagnostic equipment.
Finélly SOMA calculations and the phase selection

calculations are compared to experimental results.
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A schematic of how a single post can act in a
manner similar to a slit. The inner edge of the
post scrapes off those particles with too large
a radius, while the outside scrapes off those
with too low a radius on the next turn. The
dotted region is the surviving beam while the
cross hatched region is the removed beam

Radius plotted as a function of the starting
time for turns 32,33 and 33 for the PIG
geometry in the upper sequence and for turns 29
through 32 in the lower plot for the ECR
geometry. Associated with each central ray is a
set of 8 rays that populate the circumference
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left to right: the first one shows the
Situation at 6=84 Dbefore the blades are
inserted, the next one shows the situation

after a 60 mil blade has been inserted at 849
and the third shows the effect of inserting a
second blade at 6=204%. The following three
frames give the the analogous situation at
9=2049°, Note that the final phase width is
around 4 degrees and the full 0.02 inch phase
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rays with different R Pr values have a starting
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ray in both frames. As the shading demonstrates
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unwanted phase. In this particular example the
two phases are sufficiently close together that
a small amount (the unshaded portion) of the

unwanted phase passes the cacnnd ol it
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The radius plotted at the azimuth of the lower
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mw, to express it in inches. The shaded area
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deflector septum. This plot shows that single
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The end of the shaft at the median plane of the
cyclotron. The sixty-two mil tungsten pin
intercepts the unwanted beam. The pin s
mounted in a copper cap which is easily removed
for rapid pin change. Note: the copper end plug
is water cooled so the tungsten will be
indirectly cooled

Cross section of the phase slit drive
mechanism. See text for a description

The lower phase slit hole before the trim coil
leads were moved

A schematic of the trim coil leads in their
positions before moving. |t can been seen that
in both cases several leads  seriously

encroached on the phase slit drive space
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The special pliers built to allow bending those
leads which were trapped wunder the dee stem
spinning. With a iittle care they could be used
to move the leads without crimping the lead or
putting force on the feed- through

The fixture wused for locating the hole in the
dee stem spinning. The other end of the
indicator shaft was at the median plane so it
could be tapped with a hammer - to mark the
spinning with the sharpened point. The drill
bushings provided alignment of the clearance
hole and the two threaded holes for mounting
the air cylinder on the hex flange.

The fixture wused for setting the angle of the
drive. The cap on the end fits over the end of

the shaft when the normal cap with pin is
removed. The notch fits over the post on the
center locating fixture so the rotation of the

shaft is determined at either 0° or 180°

The lower drive mechanism installed. See text
for a description

A  schematic of the new viewer port probe drive
showing the major components. The two separate
drive systems allow for a bellows to be used in
the regular range of travel and O-rings to be
used for insertion and removal

A photo of the new drive installed on the

cyclotron. in  this photo the drive is in the
"running’ position and a probe has been
installed. ... ... ... .

The first probe wused with the new drive. The
Kovar insultators were not sufficiently good
thermal conductors, resulting in their becoming
electrically <conducting so this design was

discarded. . ... ...

The 2 jaw differential probe currently in
regular use. This design has proved to be very
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A schematic drawing of the phase probe. The PIN
diode is wused to detect gamma rays produced
when the beam strikes the probe tip. The smatll
size of the diode and amplifier allows it to be
located near the probe tip so the count rates
are high and the source is distinct from the
background

A typical spectrum of intensity versus time, as
measured with the gamma probe. Notice that the
divide by two of the RF stop signal causes all
features to appear—360O apart

A comparision between the PIN diode and a BaF
detector. Both detectors measured the same
beam, which was striking beam stop 1. The
measured beam widths are very similar

The calculated and measured phase curves for
two different magnetic fieids. The dashed curve

for the N5+ case is the calculated phase curve
when the mail coil currents are changed by 0.1

The phase width of the internal beam as
measured with the gamma probe at extraction
radius when the narrow first turn  slit is
installed

A calculation of the percent beam which
survives the first turn in the cyclotron for
the wide and narrow first turn slits. The
inflector collimator is 4 mm in diameter

A calculation of the percent beam which
survives the first turn in the cyclotron for

the wide and narrow first turn slits. The
inflector collimator is 1 mm in diameter........
A differential prbbe trace, taken with the

narrow first turn slit in place. The cyclotron

was tuned for good extraction............ ... .. ..
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A differential probe trace, calculated with the
program SOMA. Note .the similarities in
Structure to the actual probe trace of the
previous figure '

The current intercepted by the upper slit as a

function of its radial position. The
calcufation values were obtained with the code

The current intercepted by the lower slit as a

function of its radial position. The
calculation values were obtained with the code
SOMA. The poor agreement at lower radii is due

to an encoder mal function

The phase width as measured with the gamma
probe, for two different postions of the upper

‘A comparision of the phase width at extraction

with and without the upper slit. In both cases

5-12

the narrow first turn slit is present

The phase widths at extraction with one slit
inserted. and the combination of two slits. The
extracted current is reduced by a factor of two
when the second slits is inserted

The weigthed SOMA calculation is compared with
the measurements. Only the first turn slit is

in the machine. ... .. ... ... ... .. ... ... ... .. ...

The weighted SOMA calculations are compared to
the mesasurements for two different locations
of the upper slit. Note the relative
intensities of the peaks. These calculations
assumed 100m mm-mrad initial emittance

A differential probe trace taken during a 228+

35 MeV/A run. The wide first turn slit is

installed. The radial focussing frequency can
be determined from the <coherent oscillation
which is visible as the large amplitude
oscillatians
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The radial focusing frequency as calculated
with the equilibrium orbit code, and the values
obtained from differential probe traces. The
horizontal bars indicate the region over which
the value of vr was averaged. The vertical bars

indicate the possible error in determining the
number of turns in a precession cycle. . ...........
The current hitting the center and lower jaw of
the main probe as a function of radius. A
coherent oscillation is induced in z by raising
the inflector 0.445".......... L

The values of the axial focusing frequency as
computed from probe traces such as the one
shown in Figure 5-14. The horizontal bars indicate

the

region over which the value of v, was averaged. The

vertical bars indicate the possible error in
determining the number of
turns in a precession cycle............. ... ... .. ..

A schematic drawing of a probe head, as defined
in SOMA. The two dimensions, AIDIFF and THICK,

are input in inches........ ... ...
An illustration of the meaning of the various
initial ellipse parameters. See text for an

explanation of how they are input to SOMA.........




1. Introduction

At present the hajority of acceferator studies at the
National Superconducting Cyclotron Laboratory are devoted to
two cyclotrons, the K500 and the K800. The K500 cyclotron
has been in operation since 1982, and is running a regular
schedule of experiments. The K800 is under construction and
is expected to begin testing with beam in 1987, in the case
of the K500 the effort is directed at improving beam quality
and intensity, while K800 ‘work is devoted to more
fundamental design considerations. The two cyclotrons have
many similarities; size is their most obvious difference
The material reported here will be dealing only with the

K500, but in most cases is equally applicable to the K800.
The K500 cyclotron at Michigan State University1’2’3 is

a multi-particle, variable-energy machine. The bending | imit

is Kb =520 MeV, and the focusing limit is Kf=160 MeV, where

the energy Ilimit in MeV/u is either Kb(O/A)2 or K. (Q/A),

whichever is smaller4. The compact magnet has a pill-box-

shaped yoke that completely encloses the cyclotron. The main
field is produced by two pairs of circular superconducting
coils located just beyond the extraction radius (see Figures

1-1 and 1-2). The flutter is created by three spiral-shaped
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hills. The magnet gap on the hills is 6.54 cm. The RF

systems“6 consists of three dees located in the valleys
between the hills (where the magnet gap is 36”), and can be
operated over a frequency range of 9 MHz to 27 MHz. Figure
1-3 shows the range of energies and charge states that can
be accelerated. Originally the K500 ran with an internal
Penning lon Source (PIG), but as of March 1986\it has been

coupled to an Electron Cyclotron Resonance (ECR) ion

7
source
The K500 <cyclotron has several unique features that
make it an interesting case study. The high magnetic field

(By=3T to 5T) leads to a very compact magnet design, which

in turn leads to a small separation between turns of the
internal beam. The small size of the cyclotron necessitates
that all the attached hardware must be compact in nature, as

space is at a premium. The small magnet gap and the tight
spiral result in a median plane field with large gradients

In general these features place stringenf requirements on
any approximations ~that are made. Because the dees are
spiral shaped, the azimuth of the gap crossing is a function
of fadius, consequently dealing appropriately with the gaps
adds an additional <complication to any orbit computation

routines8.
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Transfer matrix programsg’37 provide the ability to

compute many orbits in a reiatively short time. This greatly
facilitates the investigation of bulk properties of the
beam. In addi{ion, these codes are quite powerful for
simulating = the output that would be obtained from a
diagnostic device such as a beam probe under different
operating conditions. Unfortunately none of the transfer
matrix codes available were suitable for use with the K500
cyclotron because of the spiral shaped dees, and the large
field derivatives, so the program SOMA ( Second Order Matrix
Approximation) was developed. The design of this program
will be the subject of chapter.2.

Most of the time it is desirable to run the cyclotron
in a manner that gives the most extracted current. Of course
there are exceptions, and in many such cases it is desirable
to reducg the phase spread of the beam, thus improving thé

time resolution of the beam, and reducing the loss of

. 10 . . .
internal beam on cyclotron components . One such Situation

is accelerator studies where the ability to observe distinct
turns is a major advantage. Phase selection of the internal
beam using the coupling between the horizontal and

longitudinal motions has been used for many years. but

nevertheless every such system requires a detailed
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investigation of its feasibility. Such an investigation will

be presented in chapter 3. In the case of the K500 the

highly non-linear nature of the central region and the low

number of turns involved makes orbit tracking with a
numerical integration program the preferred choice. After
the central region, the transfer matrix code provides a

rapid method of tracking the selected beam to extraction.
This makes comparison of experimental results to
computations much faster.

“In order to perform phase selection in the K500
cyclotron a rather intricate set of hardware was

constructed11, and this will be presented in chapter 4. This

hardware had to provide the necessary control functions,
within the constraints of the fimited space available and
the high magnetic field. As a result a large effort was put
into the construction and installation of the drive
mechanism. The construction of the viewer port (V.P.) probe
allowed for improved beam diagnostics which helped in
understanding the beam behaviour with the stits in place.
Also the V.P. probe drive made wuse of the gamma probe
convenient and easy . Thg J probe allowed the direct
measurement of thev internal beam's phase width, so'it was

invaluable for observing the results of the phase slits.
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In chapter 5 the results from a set of measurements of
orbit properties in the K500 cyclotron are presented. Most
of the measurements seek to confirm the computed magnetic
properties rather than discover unknowns. As will be seen
the agreement between running conditions and computations is
quite good. The measurements also confirm that the phase
selection system operates in a manner consistent with the

calculations of chapter 3.
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2. SOMA: A Cyclotron Orbit Code Using Second

Order Transfer Matrices

2.1 Introduction

For many vyears computer programs for the design of
charged particle transport systems have made use of a matrix
algebra formalism. The procedure is based on the fact that
to first order the final conditions may be expressed as
simple integrals of a few particular first order
trajectories (matrix elements) characterizing '‘a system. In
these codes; beam-line elements are represented by idealized

components for which the trajectories were derived

>analytica|ly. The programs then compute a transfer matrix

for the whole system by muitiplying together the transfer
matrices for each of the elements in the system. The results
provide rapid physical insight into the design of systems,
leaving ray tracing to final design confirmation, and the
computation of higher order effects. In a procedure

described by K. Brown12,¥jhis technique was generalized to

inctude second order effects in the very successful program

" TRANSPORT " . Some years ago a simple extension of the
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transfer matrix ideas in beamline codes was made to allow
them to be wused for the design of synchrotrons. Today
several matrix programs for synchrotron design exist that
cor}ectly treat second and even higher order abberations.

The extension to cyclotrons is more difficult since the
beam path does not consist of a set of discrete single
function elements, but rather a single, very complex
magnetic field, which varies as a function of radius and
therefore as a function of energy. The well known solution
to this problem is to compute the first order trajectories
around a closed (equilibrium) orbit, (EO), for a set of
energies spanning the range of the cyclotron. Results of
this type of calculation are commonly expressed using the

variables Wy v, and v, (the orbital, radial and axial

focussing 'frequencies). Historically, as cyclotron running

time became more valuable, and computer time less expensive

it became increasingly popular to track orbits in the
appropriate magnetic field, in order to have a better
understanding of the beam behaviour. When only a smatl

number of orbits need to be tracked in order to understand
the overall properties of the system this technique proved
to be very valuable. In cases where many orbits need to be

fol lowed. the large amount of CPU time required to do the
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numerical integration makes this procedure very demanding on
the available computer facilities. It was found that in
cases where bulk properties such as the radialt- tongitudinal
coupling are being investigated, a high degree of accuracy
in the individual orbits is not required. This meant that a
program that computed the transfer matrix elements and then
used them to determine the orbits of a large group of
particles, (each with different starting conditions) would
allow rapid investigation of these phenomena

At  TRIUMF (Vancouver, Canada) the first order transfer

matrix program ".COMA"9 was developed based on these

principles. In this case the transfer matrix elements are

computed by the equilibrium orbit code ”CYCLOPS"13 and
output at any number of azimchs, for a set of energies. The
minimum number of azimuths at which matrices are necessary
is determined by the number of accelerating gaps. These
matrix coefficients are then fed intQICOMA. and the program
selects a set of initial conditions for a set of particles
from a given distribution (see section 2.5). The initial
conditions are multiplied by the appropriate first order
matrix thus determining'”the orbit parameters at the first
accelerating gap. At the gap a delta function mode! is uéed

to evaluate the energy gain of the particle. The conditions
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at this gap can then be multiplied by the appropriate matrix
to determine the conditions at the next gap, and so on. The
actual matrix coefficients used are determined by
interpolating between the values that were computed by

"CYCLOPS”, and stored at a set of discrete energies. Tests

of "COMA” in a TRIUMF magnetic fieldg show that for static
runs in regions away from the stop bands, and with initial
displacements as lfarge as 2.0 in. from the EO the errors
were similar to the changes that occur when the Runge-Kutta
step size is <changed. In the case of accelerated orbits a
particle with an initial 0.25 in. radial amplitude had an
error of 0.001 in. after 165 turns. Checks which involved
passing through stop bands showed larger errors, but the
results were still usable.

The sucess of "COMA” suggested that such a program would
be very wuseful for accelerator studies at MSU. However two
major differences between TRIUMF and the MSU superconducting
cyclotrons prevented the direct usé of "COMA”. The more
obvious difference is the accelerating gaps, which follow a
spiral in the K500 and K800 cyciotrons, rather than the more
conventional radial line. This difference implies a more
complicated gap <crossing routine, similar to the one

implemented in the'program ”SPRGAPZ”S. It also complicates
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the bookkeeping, as radial lines (used for output at a
constant angle) <cross the accelerating gaps. The other
important difference s in.the magnet structure. The K500
has a high field magnet (5T) with a 6.35 cm gap and a tight
_spiral, while TRIUMF is a low field magnet (.5T) with a 52.8
cm gap and modest spiral. The smaller magnet gap allows
larger azimuthal derivatives of the magnetic field, while
the tight spiral generates large radial derivatives. In a
transfer matrix program the first order matrix elements are
a function of the first derivatives of the magnetic field,
while the second order coefficients include terms involving

the second derivatives and so on. Thus the more rapidly

varying field allows the second order effects to be
significantly larger. In fact with initial displacements as
small as 0.010” there were significant differences between
the transfer matrix program and the orbit integration

routine (see 2.6). This was the motivation for developing a
transfer matrix code in which the second order effects were
included. It should be noted that a transfer matrix program
requires that the equilibrium orbit exists. |f the magnetic
field contains large stop bands such as those that would
result if the first harmon;c component of the field is large

in the region of v .=1.0 . then this would not be true. This
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restricts the use of these programs to cases where resonance
crossings are fast and the field imperfections small. A
separate treatment for harmonic bump coils will be given in
section 2.7.

tn the following sections the equations of motion of a
charged particle will be developed and then expanded about
the equilibrium orbit. After the method by which the

solutions to the first order differential equations are

found has been demonstrated, the second second order
contributions will be computed. Following this the effects
of the spfral gap shape will be discussed. Finally there
will be an outline of the routines used by SOMA, and some

comparison with an orbit integrating program. -

The approach wused to find the matrix elements is a
perturbation expansion, analogous to the Born aproximation
in quantum mechanics. First an exact solution is sought for
the case where the equations of motion (about the EO) are
tinear. As is well known, the solutions to this can be found
by integrating the orbits of two rays, (displaced from the
EQ)., between the two points for which the t;ansfer is
needed. Then the quadratic terms are added to the equatiqns
of motion and treated as a-perturbation. That is to say that
solutions are sought that are a combination of the exact

l'inear solutions (the weigenfunctions of the unperturbed
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case). As in the Born approximation the solutions are formed
using a Green's function. It will be shown in section 2.2 4
that the Green’'s function in this case is very simple. It
shodld be noted that because the equat{ons of motion are
truncated we no longer have a Hamiltonian and so the

solutions are not symplectic.

2.2 Calculation of Transfer Matrix Elements
2.2.1 Equations of Motion
The Hamiltonian with 8 as the independent variable, for a

charged particle in a magnetic field with median plane

symmetry is given by, 4

H=-rpe--16rA9 (2-1)

As is done in all the orbit programs currently in use at
NSCL, a length unit "a” and a field unit "b” are defined as

a=c/ub bzmoub/q (2-2)

where W

0=21rvr

I'h if Vo is the nominal RF frequency, M, is

f
the rest mass, g is the particle charge, ¢ is the velocity

of light in vacuum, and h is the harmonic number. We then

take the momentum unit to be nbc/a so that momenta are

expressed in units of length.
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Assuming that the magnetic field has median plane
symmetry, and is given in the median plane by B=B(r,8) then

to second order in z, near the median plane:

1 .2 ,3%8 188 1 3%B
B,y - Br3 20 (577 + T 5r * T2 382 )
. 3B ‘
B % a0 : (2-3)
- z o8B
Bo™ - T 36

If the field, B, is divided by the field unit b such that
B(r,8) - B(r.8)/b,

then Hamilton's equations yield,

, dr rp
r = % = ] r ,
J( pz-pf pi)
dp9
v _ 9 HNe. 2. A2y _ ’
pl’ = de J(p pf pZ) r BZ+Z Be,
rp )
dz z
z' = == = Py s sl 2-4
de (p -pT-PY) , ( )A
dp
oo 2 _ 9B _ r’ 2B
Pz =ad8 ~2( "% "~ 7 3¢) + and
, dr r
T = 5 = —7717——7
de = J(p? pZ-p2)
(where ¥ = 1 + E/m _c?).

The zero order solution to these differential equations is

known as the Equilibrium Orbit (EO). which., in a magnetic
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field having N sectors, and no imperfection, satisfies the
periodicity conditions,
ro(e + 90) = ro(e) , Pro (9 + eo) = pro(e), eo = 2w/ N.
We then wish to expand in terms of the displacements

(x,px,z, and P, ) from the EO where;

o " X Pr = Prg * Py T=To X

To simplify the results, we divide the equation for the
derivatives into terms of different order in the expansion

coefficients. As for notation, the digit in the subscript of

each term will refer to the order of that term. Also the
second order terms will be separated into those that depend
on x° (as well as x p, and pi ), and those that depend on

22, Thus the M2 contains the terms in the expansion of r

that depend on x?, x px , and pi . The overall derivatives

using this notation are,

r'o=r +r + 1’ + r’
0 1 x2 72
1 - 1} + v + 1 + T ,
pr pro Drt Drxz Drzz
2’ = z7 + 25
1 — 1 + v
pz Dzs p22

T o= TH +T] + 7;2 + T%g
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The results of expanding the equations 2-4 for the
derivatives in terms of x, p

x' % and P, and identifying

the orders of the various terms is given below. In each of

these equations, (which shall be labeled 2-5), where r or pr

appear on the right hand side of the equation, they refer to

the values of r or P, for the equilibrium orbit. Also the

2 2

equations will use Pg = (p p$0)1( , the theta component

of the momentum for the EO. The zeroth order components are:

o = Xt
P

the first order terms are:

p 2
R R S
Pg 03 X
8
p
— _r . 9B
Pt = o Py (B +r Y ) x
0
Z r p
= = \
pe 4
oy =z (r 28 Pros
Pyt = dr p. 36
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y rp
7"'1=—Lx+ rp,
pe p3 X
e}
second order terms are
2
2 r ps p
b _3_ T 2
'2'p3pr+2( s ) ey,
) 2]
rzz— ) “5?— pZ ,
e
- . 1p® 2 1, 8B 3°8B |\
prx 2 3 px 2 (2 Ar T 3r? ) x
Po
p2 2 2
o1 7z 1 0°B 1 3B 1 9°B 2 1 _93B zp
Pra2” "2 p  *2 f (5rZ * v e ¢ v2 5p )2 Y opg 00 7o
X rpf
22=DZ(59+ 3px),
Po
3B 328 Pr a%g p2 8B
pzz_z(arJ'ra“r?'pearae)x 3 38 © Py
P
)
J p 2
T o = © x P+ Ly S (1 3 — ) p?
3 X p3 0 X
Pg 9 5
I B S S
T22 2 3p2
Po

The procedure for finding r0 and pro is the same as that

used in the equilibrium orbit codes "GENSPEO” and “CYCLOPS”,

and is described in detail in reference 13. The method for
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finding the first and second order matrices will be

discussed in the next two sections.

2.2.2 First Order Matrix

In order to find the first order transfer matrices X and

Z as defined by,

we need two independent solutions, denoted (x1,px1) and

(x2.pX2) to the equationé for x’,p; and two solutions

denoted (21,pz1) and (zz,pzz) for the equations for z' and

p! . We also require the correction, X, to the time

ﬁv’;ﬂ‘ :
coordinate, (7), such that for a displtaced orbit + - 7+ + X,

For an orbit with initial displacements x(ei) and px(ei), X

will be given by,

X(Of) = X (Qf, Gi) X(Oi) + X2(9f, Gi) p_(6.)

1 X i

were X1 and X2 are to be found. It proves most convenient to

choose the initial conditions,

X (8.) = 1 p

D
1l
o

2(8;) Pyo 18y =1

1l
o




—

@
I

o

z2(ei)

|
o
e}
N
N
[ev]
A
It
w—b
[

because then,

Fx1 (8 x, (8,
X(8,,0.) = ,
froi Px1l8p) Pyol®y)
so. o, . | P10z (e
(9499 = P8¢ P8
X1 r pf
Xi =¥ [ — + p., 1,
pe pg X1
X, rp
X, =¥ [ Bg + pg sz]

The values of Xy Pyq €1C. are computed by integrating the

first order equations (2-5) along the equilibrium orbit

between 9i and Gf. As in all our orbit cpdes, the

integration routine uses the Runge - Kutta method of Gill15

with a step size of two degrees.

2.2.3 Second Order Matrix Elements

In the case of a first order transfer. where the final
conditions are given as linear functions of the initial
conditions, the results‘. are exact solutions of the

differential equations obtained when the equations of motion
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are expanded to first order . When the final conditions are
given to second order in the initial conditions, the results
are an approximate solution to the differential equations
thaf are a result of a second order expansion. Inherent in
this difference 1is that the method of finding the second
order matrix elements must be different from that used to
find the first order elements. The approach outlined below

is similar to that used by K. Brown12. In this approach the

orbits are to be given as a second order Taylor expansion in
the initial displacements from the equilibrium orbit. It is
then required that the expanded orbits satisfy a set of
differential equations that have been formed by expanding
the equations of motion to second order. For the first order
expansion coefficients this generates a set of first order
hoﬁogeneousf linear differential equations. For the second
order expansion coefficients the differential equations are
similar except that they are not homogeneous. The non-
homogeneous part of the equations has the form of a driving
function. Finally the second order coefficients are
evaluated via a Green's function integral containing the
driving function of the Jpartfcular coefficient, and the

solutions of the homogeneous equations.
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A convenient statement of the problem is that we require

the matrices A .D and E as defined by,

X X
( px)ef = X(8,,8,)( px)"a + A8, 8,) V(8

z Z

z f z i

X(Gf) = X1 x(ei) +X2 px(Bi) + E(8 ,Gi) V(Qi)

where,
F2 T
X P,
P
X z
V(8) = X pZ
DX z
px pz
22
Z p,
' 2
_pz _Je
Inspection of the differential equations 2-5 shows that some
of the rows of A and D will be identically zero, so to

eliminate carrying these rows we define

x 2 x z ]

X pX X pZ
V(&) = o2 V(8 = o,

z° px pz <)

4 pZ

Py |
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Thus the equations become,

X X
z z ‘
( pz)e = Z(O,Gi) ( pz)ei + D(Q,Gi) VZ(Gi) , (2-86)

X(9) = X(19) X(Gi) + X&B) px(Bi) + E(9 ,Gi) Vx(ei)'

The elements of matrices A and D are simply the second order
coefficients of a Taylor's expansion of the coordinates. |f
the differential equations (2-5) are written in matrix

notation. then they become;

G605 )e = KB ( 5)g+ ae) v (9
X X
d z ' X
d8l 5 )e = HO (1 )g+ Bo V(0 (2-7)
g‘é( 9 = m1 x(8) + m2 px(e) + Y(9) VX(G)

where the elements of « B, and Y are tabulated in table 2-1

| f the  equations (2-6) are substituted into the
differential equations (2-5), the result will be a
differential equation containing terms to second order in

the expansion coefficients. Proceeding in this manner, and

retaining only terms of second order or less, vx(e) and

vz(e) are




2 2 2
21 %0 21 Z22 %9 Pzo * %22 Pzo0

and,

X11Z11%0Z0 % 11212%0P 20" %12%11Px0%0" Xy2Z12Px0P20)

+X, .2 z. .+ X, .2

z 117217070

X 1Z X Za+tXnZ

21411%0%0" " 21 12%0Pz0*X

52Z11Px0%0* %22%12Px0Pz0

E(21221"ozo+x21222"opzo+X22221pxozo+ X52222Px0P 20

where the subscript zero implies that the initial values of
the coordinate are to be used.
Continuing the substitution and collecting the

coefficients of the initial values (xo,pXO etc.) a

differential equation for each first and second order

coefficient is obtained. The result shows a systematic
pattern,

Xip = Kyq Xgq Ky Xoq Xyy = Koq Xqq * Kap %oy

X' = kK X + k X X, = Kk X + K X

12 11 712 12 722 22 21 712 22 22




Tablie 2-1.
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The =elements of the arrays « and B. These arrays
contain the «coefficients of the displacements
(x,pX etc.) found in the differential equations
2-5.
_ a2 3
%12 = P° 1 Py
- 2 5
d13 =1.5rp pr / pe
_ 3
«16 = .5 r pr / pe
o - .28 1 3%
21 ar 2 ar?
_ 2 3
« = .57 (Qig 128 PR Qig )
24 T - 3rZ T r Br * 72 3@
1 3B
o = - —=
25 p9 00
d26 = - .5/ pe
_ _ 3
Big =11 pg Big =1 p 1 03
3B 3’8 Pr a2%g p? B
B,, =2, 8. 25 B . = - o3
21 ar ar p9 3r30 23 p% a8
_ 3
)2—Xpr/p9
. p2
3 2 3 >
Pg Pg
y. - 1Y«
6~ 2 4




An = Kyqp 2y, + ki, a

qon = Ko 3y, Koo a5, *fon

where the f's are functions of the first order coefficients
and the elements of o These driving functions are tabulated

in Table 2-2. A more compact statement of these results is,

dg X = K(& X S z-Le z
(2-8)

96 Ay = K(®) A+ F (8) 9D =L(e D+ G ()
(2-9)

f, (8 0

F (8) = f;::ei G (8) = 2;:291

(2-10)
a 0 d )
A(0) = ;:: ; D.(8) = d;::e;
%5 Zn =My An m2 o0 ¥ hn

The equations in the first row are the differential

equations for the first order coefficients, the solutions of

which are already known from section 2.2.2 . The
differential equations for the second order terms An and Dn
are Very similar in form to the first order equations,

except for the presence of a driving term (Fn or Gn)' Since
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Table 2-2. The driving functions which appear in the

differential equations 2-9. The values of the o's
and the B's are listed in table 2-2.

Fie = %o Xqq Xy + &3 X3,

12 = %2 ( Xqqy Xop + Xyp Xpp ) + 2 &g Xy X,

Fig = %p Xyp Xpp + & g X5,

fia = e 23,

f15 = 2% 221 Zp5

fi6 = %6 257

far = %y X3y + g X3,

fao = 2 %y Xyy Xyp + 2 ay5 Xy X,

fag = %y Xip + o550 X3,

fag = %y 29y + A55 2,72, + %e 25

fas = 2 %y 24y 2y, + “és (244 250 + 245 25))
t 2 &g Zyy 2y,

fag = %4 Zip + %5 Z1, Z,, + % Zg

9y = Byp Xy Zpy + By Xy, 2,

915 = Byp X4y 255 + By, *g1 222

93 = Bip Xyp 25, + By, X322 254




Table 2-2 (cont’'d).

29
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fhe driving terms are only functions of the first order

expansion coefficients (which are known), the solutions to

equations 2-9 can be found using a Green's function.

A_(8) F (8') A(8,8') d8' , and (2-11)

il
O o ®

9
Bn(e) f Gn(e’) A(S,0') de | (2-12)
0

where A is the Green's function.

The solution for the second order expansion coefficients

of the time, 7, are much simpler, since the right

hand side
of equation 2-10 involves functions of the first order
expansion coefficients only. Thus,
8
zn(e) = f (m1 a1n(9') + m2 a2n(9') + hn ) de’ . (2-13)
0 :
If the Green’s function is known then the second order

matrix elements can be obtained by numerically integrating

equations 2-11 ,2-12 and 2-13 , along the EO at the same

time as the first order equations are being computed.

2.2.4 The Green's Function164

The problem requires the solution of.
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|Q.

[1 - K(e) ] A (8) = F.(6) .

Q.
D

where | is the unit matrix and K is either K or L as defined

in equation 2-7. The solution, X of the homogenous equation,

|Q.

is known. The Green's function must be a solution of;
d , _ - Al
['de-K(G)]/\n(O,e)—l6(99),

subject to the conditions,
AN=2018 <89

and A(8 = 08'+¢ ) = 1.

Since A is a solution of the homogenous equation for 8 > @9’

(or 8 < 8") it must be a linear combination of X. |f Y(8')

is a matrix to be determined, then,

A8 >8") = X(8) Y(8')

The boundary conditions at 8 =86 give,

/\(9=e’+e) =1 = X(8") Y(9')

-. ' '1 ]

SoY(e) = x (e

S N8.8') = X(8) x"(e’)

A(B) = x”(e) X22(6) - X12(9) X21(9) = 1 so,
(x22(e') - X ,(87)

x‘1(e‘) =
Xy (87) XH(G)J
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2.3 Crossing the Accelerating Gaps17

When the equations for the matrix elements are integrated
along the equilibrium orbit they start and end on radial
lines that pass through the point where the EO crosses the
gap. As a result when the displaced rays are transferred 'up

to the gap, the values for the displacements (x,px, etc.)

are the values along a radial line. In order to compute the

effects of the acceleration correctly, the values of rop,

and T are needed at the point the displaced orbit crosses
the gap. Since the values of the orbit at this point are not
known, they must be éstimated. Moving the displaced orbit
onto the gap first requires the calculation of 80 (see
Figure 2-1), which in turn requires the value of §r. The

angle of the gad eg(r) is a given function of the form,

which has been input to the program. In our case the gaps
have been entered as a tablie, (GAPTH), of theta values at

equal ARg intervals in radius. A double three point

Lagrangian interpolation18 is wused to find the first and

Second derivatives:

de d?e
dr 1 o 2




fh

DISPLACED ORBIT

Figure 2-1.
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GAPTH(IR+1)

— ~ GAP
R=(IR+1)&AR.

GAPTH(IR)

The geometry of the gap crossing correction. The
gap position is given at points Gapth(ir). 86 is
the angle through which the orbit must be moved.
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The required 699 corresponding to a &r (unknown) can be

divided into first and second order components, as can Sr,
sO:

699 = 691 + 662 ,

§r = 6r1 + 6r2

Using the Taylor expansion for'éeg, and §r,
de 1d?—e
8§80 - 9 sr + - —9 Sr2
g dr dr?
de 1d29
S A LN PR SRS Gy R (2-13)
r 1 2 2 2
dr
Sr T x + r° 68+%r” 502

- 1 ] 1 l " 2
X + (r + x') 691 + rO 692 + > rO 691

where the zero subscript indicates the EO value. Coltecting

terms of the same order,

Sr =T 86, + x’' &8, +

2 0 °% 1 r

1 . 2
2 "o 499

| f these values for &r are then substituted into equation

(2-13) and the first order terms collected,

d
1 dr 0

O
D
I
e
x
+
-

691)
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SO,

X (d6_ / dr)
50, = —4
(deg/dr)

1 - "o

Now that the values of 661 and <Sr1 have been determined,

it remains to find &r_.

2
8r, = r" 80, + x' 88, + + v 592
2 0 2 1 2 0 1
de ] d?e ,
592 = —-g-dl' 5!’2 + 5 *9'2 <Sr1
der
de de d°e
B g g L 2 1 g 2
=4ar "o 692 * a7 ( x 691 3 g 681) + 5 2. Sr
- : 1. 2 1 2 2 2
692 = {x 691 +2 rO 691)(deg/dr) + > 6r1 (d<8 /dr<)
1 - . (de._ 7 dr )

0 g

So, using the appropriate values for the derivatives gives

8§06, =

r 59% ) «

I'O ()(1

1
" + = &r o d
59, - 0 17 2

1
172
1

The procedure for calculating the changes in each of the
orbit <coordinates introduced by 88 follows the same method
used to find §r. If q is any»coordinate then

g - g + 4q

where,
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Table 2-3. The derivatives of the orbit coordinates
necessary for the calculation of the gap
correction. The symbol “qQ” is any of the particle
parameters, The primes are differentiation with
respect to 9.

g o] q1 qo
2
p 2 p rp
r r r
r rop/ p — X + ——g— p — r' 4 3 p’
r 2] pe pe X pe 0 pe ro
P p
r 58 O 2B
P, pe- r B o G (B+rar)x Qpe pro (B+rar) o
z 0 r pz / pe 0
p
3B r dB
P, 0 z (r dr ~ p. 36 ) 0
0
J r ) r ,
T yor pe p x 3 pr px p ro * 3 pr pro
¢ Po 8 Py
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sq 2 q 60 + % q" 8§82

LR

|-

1 ) ” 2
(QO +49) ) 86 + ag 8§08

The values of the necessary derivatives are tabutated in

Table 2-3. In order to compute all these derivatives the
lues of - r B B + r 98 and r a8 EL 28 are
va Pg ! ar 31 " p, 06

stored along with the other EO values when the transfer

matrices are being computed.

Now that the values of r,pr and 7 are known on the gap

the effect of the RF voltage can be computed. The
computation of the acceleration process is identical to that
used in the numerical integration code “SPRGAPZ”, and is
described in detail in reference 8. |t suffices here to say

~

that both the energy and p. are modified by this routine.

Before proceeding to perform the transfer up to the next
gap, the wvalues of the displacements on a radial line are
again required. Since the energy has changed, so has the
equilibrium orbit. and thus this is not simply a reversal of
the previous process This time both the azimuth of the EO
and of the orbit are known. [g

]

88 ='699 - SGEO .
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This time the difficulty arises because the values of the
displacement from the EO, along the radial line, are not

known. What is known is,

¢ T "¢ To

P, = prg T Pg

zg and ng
The subscript “g” refers to the values on the gap. In the
following, coordinates without a subscript will be
understood to be evaluated on the radial line that passes

through the point at which the EO crosses the gap. The

required corrections &r and épr are

s

As before,

— ] ' _1_ " 2
dr = r0 8§86 + x' S0 + > ro §8° |

8P = p ) 88 + p. 56 + % pr, 862 (2-14)

The displacements on the gap (which are known) are given by,

X = r - T = X +&8r
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Putting these values for x and p_ into equations (2-14)

gives,
P 2 P
o 1 .. 2 _r rp —r
§r =y 80 + 5 g 88° + ( Py xg + ; pXg ) 86 - 5 88 §r
pe 6
rp?
- 3 80 épr
Po
5D, =P, 88 + X pr g2 4 [. of B 28 ]
Pr = Pro 2 Pro oL P Pxg = ) Xg 198
P
+D="6p +(B+r28) 5150
pe r r

Rearranging these equations and identifying the derivatives

of xg and pXg leads to,

p 2
sr (1 +5i §6) + ( L~§— 86 ) &p_ = Ar

© Pg (2-15)

3B P,
-8r (B + r 5—) S8 + (1 - — 886 ) 6p = Ap
r Pg r r

where Ar and Apr are the values of &r and épr respectively

if . .
i xg and pxg are used in place of x and px. Equations

(2-15) are a set of llinear equations in &r and épr. the

solution to which is given by,

p 2
&r = [ar - | =L ar & 2 Ap § 661 / DET
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p
sp. = [Ap. + { L Ap + (B + r 98 ) Ar} §8] / DET
r r Pg r r

p2 . 5 8 | r p?
DET = 1 - “r 882 + (B + r 22) 5§82

Py ar 3

Po Po
It is necessary to retain all the terms so that if the

accelerating voltage is zero, moving onto and back off the
gap will not result in a change in the values of the

coordinates. Calculation of the changes in z and P, follow

the same pattern, so:

dz = — p_ 86
Py 2
8 =z (r 98 EL Rl ) &8
P, = 8t " pg, 26
§z = - 5o Sp_ )
" b, (P,q - dp,

592 = © 57 - Eg 36 ) 86 ( zg §z )
§z2 + L s0sp. =L soap = Az
Pg Z  pg zg
(r 98 EL 8B ) 80 Sz + & = (r 98 | EL a8 ) 88 z_ = A
dr Pg 386 P, = r N 8 g P,
sz = [ A L se ap. 1/ DETZ
Z = z - D pz )
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§ =[ A ( r 88 | EL 28 ) 86 8z ] / DETZ
P, = P, - ar Po 38 Z
DETZ = 1 - L (28 r 28 L
- pe or pe 38 ,

The calculation of &+ is considerably simpler, because
there are no coupled equations. The correction to r is,

—_ ] 1 " 2
ST = TO 80 + 71 8§89 + TO 80

in which the only unknown value, T} , depends on x and px.

,r'____.L_ x+L_rpp=*—6L(Xg'6r)+up(p '6p)
e

1 p 3 r X 3 r Xg r
© Pg Pg
_ i « yr X ér X or s
pe g + p3 Dr ng pe p3 pr Dr
2] 0
_ J 8r ) L s
19 pe 3 pr pr

So.

sto=ar - (L8 L X, 55 ) se
P 3 Pr ©P¢
8- ,pe

Once the corrections have been computed the substitution,
q - q +4q
is made, and everything is set to make the transfer to the

next gap.
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2.4 Program Algorithms

SOMA is designed to operate as a self-contained unit with
the exception of the magnetic field grid which must be
produced by a separate program (the grid is the same as that
used by SPRGAPZ and CYCLONE). At the beginning of each run
the program either computes the transfer matrix elements or
reads them in from a binary file produced during a previous
run. I't the matrices are to be computed then the magnetic
field and gap table are read in. Then the program searches

for equilibrium orbits using the procedure of Gordon and

Welton19 . for a set of specified energies. After each EO is

found a search is made for the points at which the EO

crosses the gaps, and when found the values of r,pr and 6 at

these points are stored. A Separate routine is then used to
integrate the equations of section 2. 2 along the EO from one
gap location to the next. The integration technique is again

a standard Runge-Kutta15. In the input stream it can be

specified whether first order elements or both first order
and second order elements are to be collected. The input can
also specify up to 10 fixed angles at which the transfer
matrix coefficients will be stored. Currently the fixed
angles must fall on a standard Runge-Kutta step. After this

procedure is repeated for all the selected energies. and if
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the main probe option is selected, a probe transfer matrix
is then computed for each energy. This is done by
integrating from gap 6 up to the track location, which has
been input as a table of r,8 values. Finally all the
transfer matrices are stored on binary.files.

Once SOMA has an appropriate set of transfer matrices, it
then reads in the parameters common to all particles. This
includes the dee voltage, the locations of slits and probes
and the set of transfer equations required. In fact several
options exist for the transfer as shown in Table 2-4.Care
should be takenr when choosing options other than 1 and 6,
since these two are the only <cases in which a complete

expansion to a given order is done. That is to say that case

Table 2-4. --The order of the various parts of the transfer
as a function of the input parameter N.

N X z

1 first first
nd st | .

2 2 in x0,1 in zO first

3 1St in x_.and z second

0 0

nd . st .

4 2 in XO’ 1 in ZO_ second
nd . .

5 2 in xoand ZO first

o] ' 2nd in x.and z second
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one is the first order solution, case 6 is the second order
solution, and all the others are a mixture of the two. For
example, if N=4 then the Program uses exact median plane
equétions of motion, allows x to couple into z, but does not
couple Z into x. Cases 2 through‘ 5 are wuseful for
determining what terms are responsible for a given effect.

The next Step is computing the starting conditions for

all the particles (up to 5,000 may be run) and storing them.

The various possible sets of starting conditions are
discussed in section 2.5 . Particles are then run one at a
t ime, each being run until it reaches a turn Fimit, an

energy limit, or a radius l'imit, whichever comes first.,

At each gap a test is performed to determine if any
requested fixed angles fall between the current gap and the
next gap. “If a fixed angle is found then the particle

parameters (x,px,z,pz,T,r,pr) are computed for that angle

and stored. The fashion in which the parameters are stored
depends on what the fixed angle has been designated to
represent. After atl the fixed angles found have been
computed, the program proceeds to compute the transfer to

the next gap. At the gap, the parameters (E.x,px,z,pZ.T) are

updated as described in section 2.3, and the process repeats

itself as often as necessary. It should be noted that the
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. —— —Eo's
\  * STORED VALUES
O INTERPLOTATED

CURRENT GAP

The result of a fixed angle crossing a gap. The
transfer matrices of the orbits labeled 1,2, and
3 are <correct for a transfer from the current
gap to the fixed angle. while that for orbit 4
ts not. In this case the orbit being calculated
would wuse the values stored for 1.2.3. and 4
when the interpolation is being done. and would
give an incorrect result.
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computations for the fixed angles in no way affect the
values at the gap.

There is a difficulty that occurs in the region where the
fixed angle crosses the accelerating gap. The problem arises
because the values of the matrix .elements are found by
interpolating between values that are stored for fixed
energies. In Figure 2-2 one possible scenario is
itfustrated. In this case the transfer matrices stored for
orbits 1,2, and 3 correspond to transfers from the current
gap to the desired fixed angle, but the one stored for orbit
4 is a transfer from the next gap to the fixed ahgle (see
arrows) . I f, as in this case, the interpolation for the
matrix elements on the orbit use the valﬁes for orbit 4 and
orbit 3 then the results will be incorrect. It should be
noted that there are currently no structures in the K500
cCyclotron that cross the accelerating gaps. Nevertheless the
pProgram prints an error message when a transfer of this type
happens.

Thé fixed angles can be designated as one of two things,

either a flag or a probe. The flags themselves are divided

into two groups. intercepting and non-intercepting, At a
flag it the particle lies between the minimum and max imum
values for that flag, the orbit parameters are stored. |f

the flag IS intercepting then the particle is Considered
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removed from the beam, and the next particle is begun,
otherwise the run continues unchanged. After all the
particles have been run the program will produce scatter
plofs of any pairs of the orbit coordinates, at any of the
possible 20 flag locations. A slit can be described as 2
intercepting flags located at the same azimuth. For detailed
ray tracing the particle parameters at all gaps and azimuths
(or some combination thereof) can be printed.out.

A probe consists of a differential and a main jaw, which
can have up to 3 axial divisions or 60 phase divisions. The
probe is considered to move outward in radial steps. Upon
finding the orbit parameters at the probe azimuth the
program determines in which steps the particle would give a
current reading. The requirements for this determination are
that the probe location does not intercept an earlier turn
of the same particle, but does intercept the the current
turn. For each bin that these requirements are met the bin
count is augmented by 1. There are 20,000 bins available to
be divided between the z (or #) bins and the radial bins. At
the end of the run the probe bin values are written in a

binary file which can then be used as input to a plotting

routine.
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2.5 Starting Conditions

A transter matrix program is used to run large groups of
particles, so the generation of starting conditions is of
great importance. As a result the program offers a variety
of methods, each with its own particular use. The input
routine has the ability to <calculate the horizontal and
vertical eigen-ellipses, the accelerated equilibrium orbit
(AEO). and the average central phase, all at a given energy
known as the central energy. Any combinations of these
values can be used by the various routines used to generate
the starting cond{tions, or the values of these parameters
can be set in the input stream.

The simplest routine reads in the values E (energy),x,pX

, Z, and pz on gap 1 for each particle. A similar but more

complicated routine reads in the values of E,r,pr,z, and pZ

on gap 1. These two crude techniques are oriented towards
cases in which either specific orbits are being tracked, or
the initial conditions are being determined by another
program. The first technique can also be used to re-start a
previous run from the stored final conditions.

The next group of routinés are those designed to generate
the starting conditions for a group of particles which fill

ellipses. The ellipses can be either eigen-ellipses or be
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input as a major axis, minor axis and a tilt. The center of

the X, Py ellipse can be displaced from the equilibrium

orbit by either an amount determined to be the offset of the
AEO or by an amount given in the input stream. In all these
cases a specified interval of phase is divided into equal
steps, and each starting phase is given an ellipse to be
filled using one of the techniques discussed below.

In chapter 5 g special inpUt routine is used. In this
case it was desired to run a set of particles which matched
the conditions at the exit of the central region, In Figure

2-3 the energy and the displacements x and pX for a group of

particles which were run outwards from the spiral inflector
for seven turns with the program CYCLONE are shown. Each of
the rays run would in effect be a central ray for a given
phase. In each frame the solid line is a function of the
form noted in that frame. It can be seen that with
appropriate choice of the slope, the linear approximation

for x and P, is quite good. When using this special routine,
instead of keeping the displacements in x and pX for the

center of the «x-p ellipse, and the starting energy., the

X

same for all starting phases, the coefficients of these

functions can be input to SOMA and it will use them to
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calculate the ellipse center and the initial energy for each
starting phase.

In the other ellipse-type routines the starting energy
can be randomly distributed about the central energy if
desired. In all of these cases the ellipse can either be
uniformly poputlated, or randomly populated. The most
convenient choice is to populate the ellipse being studied
uniformly, and to populate randomly the other ellipse, (eq.

uniformly populate the X- P, ellipse and randomly populate
the z-pZ ellipse), to get an idea of the spread caused by

the <coupling. Uniformly populating both ellipses implies a
large number of particles. The random population is produced

using a standard random number generator to select x and P,

values between 0 and the ellipse maximum. Then the program
checks to see if the coordinates fall within the elltipse

proper, and if not it selects new values for x and px, until

they do. The wuniform population is done by assigning a
square of fixed area to a point which is located at the
Ccenter of the square. Points are placed in phase space until

N0 more squares will fit into the ellipse
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2.6 Comparison of SOMA with SPRGAPZ

tn  this section the results of median plane calculations
with the program SOMA will be compared with the results
obtained with the orbit integration code SPRGAPZ. The tests
discussed are only a sample of the many checks preformed.
The program SPRGAPZ integrates the exact median plane
equations of motion, and the linearized z motion equations.
This allows the coupling of the x motion }nto the z motion,
but not the z motion into the x motion. In the following
section comparison of the z motion will be done with the
program SPRGAPZ4 which wuses equations for the vertical
motion that are valid to fourth order in z. There are three
areas from which one expects to generate differences between

SOMA and SPRGAPZ. The most obvious source is the transfer

matrices themselves. As the transfer matrix technique is an
approximation of g given order there will be contributions
from the higher order terms. In this case it is expected

that the error would be proportional to the qext term in the
Taylor expansion. In Figure 2-4 the differences after one
turn (without acceleration) are shown. As in all the figures
.involving comparisions of orbits between SPRGAPZ and SOMA
the differences are plotted ;gainst a measure of the initial
displacment from the EO. In each a set of rays lying on the

boundry of an eigen-ellipse was run. and  the maximum
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difference for each ellipse was plotted. The area of the

egigen-ellipse was O.2f2 mm-mrad. |f the expansion is done to

first order the error function goes as (5.6E-6) f2. At this
radius, (16"), an emittance of 5 mm-mrad corresponds to a
maximum orbit center displacement of 0.03”. |f the expansion
is taken to second order the the error is proportional to
(1.6E-8)f3. in other words the errors are third order in x.
in the first ofder case the results are exactly the same as
that found if the first order equations of motion are
integrated numerically. Note that this is not true for the
second order case where the solution is to second order in
the exact first order solution, not an exact solution of the
non- linear differential equation.

There is also a difference generated by the interpolation
of the matrix elements when the orbit's energy lies betweeﬁ
the stored vélues. tn Figure 2-5 the differences between
SPRGAPZ and SOMA are plotted for different interpolfation
step sizes. For each step size a ray was run whose energy

was exactly halfway between two stored values, (the worst

possible case). The initial condition of the ray was a
displacement of 0.003", and the results are plotted after
one turn without acceleration. At this energy (11 MeV) a

step size of .2 MeV results in differences of less than a
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Figure 2-5. The differences between SOMA and SPRGAPZ when
the spacing between stored values is changed.
The initial displacement was 20.03". and run for
one turn without acceleration.
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tenth of a mil. Larger step sizes lead to much larger
errors.

The third source of differences is the gap crossing
routine. These are the hardest to measure as they only occur
when the accelerating voltage is on, so both of the other
two effects will be present at the same time. The situation
is also confused by an uncertainty in the location at which

the orbit crosses the gap. Since the final orbit is not

sensitive to small variations in the gap position this
uncertainty is only a problem when looking at specific
values on a gap. In Figure 2-6 the differences after 100

turns with acceleration are shown as a function of the
initial displacement from the EO. These differences are the
sum of all three sources of error. As can been seen in the
figure the differences for first and second order do not
have different slopes as they did in Figure 2-4. Thfs is
mostly caused by the fact that accelerated orbits are always
displaced from the EQ, so even the F=0 ray has a displacment
of at least 0.02” from the EO at many points. There are also
errors caused by the gap crossing routine, which are
seperate from those caused by the expansion technique. A
comparison of a first oraer transfer with first order gap

crossings, and a first order transfer with second order gap

Crossings is also shown in Figure 2-6 . This illustrates
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that the orbits are relatively insensitive to the gap
position. Those differences that do occur, arise because of
differences in the energy gain as shown in Figure 2-7. In
this figure the the difference in energy is plotted for the
same rays as shown in Figure 2-6. For the rays of small
initial emittances the error is 5 parts in 107, which is the
same magnitude as the-round-off error. The difference in x
for a vray which is initially 30 mils from the EO (e=5mm-

mrad) after 100 turns, is only 1 mil in x and pX combined.

certainly adequately small uniess ray tracing is being done

2.7 Treatment of Harmonic Field Bumps20

As shown by M. M. Gordon35 the perterbations of the radial

oscillations due to asymetric accelerating kiéks. can be
duplicated wusing an equivalent field bump. It is therefore
reasonable to assume that the effects of the field bump can

be represented by making appropriate changes in P, (and pz)

at each of the 6 accelerating gap locations. That is to say
the field bump is to be represented by a series of delta

functions, such that,

b(r.8) =) u () 6(9-6k(r”)). k=1,2, ..., 6.
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The values of the uk(r) can be <chosen to give the

appropriate first and second harmonic bumps, while
suppressing all 3N components.
Using equations 2-4 we find that the appropriate momentum’

kicks must be such that,

Y Spr(k) = -7 b
3b  Proap
Ldp, (k) =zl r 57 - 5 35 |
<]
b = g1sin(9) + h1cos(9) + gzsin(ze) + h2cos(29),

where g1,h1.g2 and h2 are the measured bump components at

this r. We therefore define U v and W such that at gap k

the impulses are;

Y uks(e-ek) = g1sin(9)+h1cos(9)+gzsin(2e)+h cos(28)

K 2
_dg, .. dh dg, .. dh,
E vks(e-ek) = dr‘snn(e)+dr1cos(e)+dr sm(29)+dr cos(29)

Y w, 8(8-8,) hysin(8)-g,cos(8)+2h
k

1 sin(2e)-292cos(29)

2

Using orthoganality these three equations give us four
linear equations for each of u.v. and w. The 3N harmonics

can be surpressed by requiring that the sum of the even k
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terms and the sum of the odd k terms are zero. and thus

there are six equations for six unknowns. in matrix notation

the linear system to be solved is,

%in(ei) sin(ez) ...... sin(96)" fu, v, w7 ©1 dgildr h‘ .
cos(6,) cos(6,) ...... cos( 8y) u, v, w, h, dh, /dr -9,
sin(26,) sin(262) c... sin(28;) U Vg Wil= mwlg, dg,/dr 2h2
cos(291) cos(282) Ce COS(296) u, v, w, h2 dh2/dr -292
1 0 1 0 1 0 Ug Vg W 0 0 0
Lo 1 0 1 0 1 ] lug vy wg o o 0 |
SOMA uses the }MSL, (international Mathematical and

Statistical Libararies INC), subroutine LEQIF to solve this
system of equations at each radius value at which a bump

profile has been given. The values of u

~

k’Vk and wk are

stored in a table at the beginning of the run. Each time an

orbit crosses a gap, (k), the program interpolates in the

table to find the values for U Vi Wy at the orbit radius,

and then computes the impulses

6pr = - U
Py
épz = z(r Ve t E— wk).
0
Figure 2-8 shows a typical example of an orbit calculated

with SPRGAPZ and SOMA. In this case the orbit begins on the
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EO for E=4 MeV and then the bump causes it to precess. When
run with a wide varity of initial conditions, and different

bump magnitudes the results were always qualitatively the

same as those shown in Figure 2-8.

2.8 Vertipal Motion

In order to observe the non-linear z-motion offered by
SOMA a simple Comparision case was run. A set of 64 rays4was
formed from aij the possible combinations of eight rays
located on the perimeter of the vertical eigen-ellipse with
emmitance of 75 mm-mrad, and eight rays located on the
perimeter of g 35 mm-mrad eigen-ellipse in the horizontal

plane. The magnetic field was the same 12C4+ 30 MeV/u field

used before, SO the emittances correspond to a final

emittance at extraction (30 MeV/u) of 62330 mm-mrad and ex -
14 mm-mrad. The same rays were also run with the code

SPRGAPZ436 which Correctly treats the magnetic field to
fourth order in 2 (ie. the equations of motion have terms of
fourth order in z). All particles were run for 300 turns
(field geometry was for a 500 turn total), so most of the
acceleration region is covered.

In Figure 2-9 are shownrthe results from both the SOMA

and SPRGAPZ4 runs. In both cases the points all |ije very
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near the eigen-ellipse, and the spread due to the different
X-p values is approximately jh0.02” on an ellipse with a

half major axis of 0.2”". The fact that this spreading is

very similar in both cases indicates that the contribution

of the z3 term in SPRGAPZ4 is very small, since it is not
included in SOMA. There is however a small difference in the
amount of rotation around the ellipse boundry in the two

cases which leads to a possible cambined z,pz error of

0.026". This is probably again caused by the poor EO closure
on the spiral gaps. I'f SOMA is run without the «x motion
coupling into the z, (N=5 in Table 2-4), then the 8 points

in each group become one as would be expected.




3.0 A Computational Examination of Phase

Selection in the K500 Cyclotron

3.1 Introduction
,Phasé Selection is generally used in cyclotrons when it

is desired to achieve single turn extraction and its

associated benefit321. Although we may wish to take

advantage of single turn extraction eventually |, our initial
goal is to achieve separated turns over most of the
acceleration region so that detailed accelerator studies can
be carried out. As shown in Figure 3-1, the high magnetic
field in the K500 cyclotron leads to a turn separation which
is rather small compared to the ;urn width associated with

the phase spread. [f one also includes the spatial extent of

the beam (the X, P size) then it is apparent that with the

t150 phase width transmitted by the central region, distinct

turns would be observable only for the first few inches. |f
on the other hand the phase width were reduced tao * 20.
separated turns would be observable for all of the
acceleration process. and beam centering could be

determined. Centering ts of great practical importance
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Plots of simple estimates of the turn separation
and turn widths associated with different phase
widths. The turn separation (solid curve) is
estimated using AR=AE*R/2°E while the full width
of ‘a turn with a given A is found using

AR=( AB) 2R/ 4.
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because it reduces phase oscillations, minimizes the
effects of non-linearities and makes extraction much less
22

sensitive to the dee voltage . Separated turns also allow

the measurement of the radial focusing frequency v and,

with an induced coherent osciltation. the axial frequency

Phase selection in cyclotrons is performed by taking

advantage of the <coupling between the radial (r,pr) and

longitudinal (E-d#) motions of the particle323. Figure 3-2

gives a typical plot of radius versus starting time. Note
the horseshoe shape, with the. peak occurring at the starting
time corresponding to the largest average energy gain per
turn up to that point. The shape of this curve is a direct

consequence of the cos(¥) depéndence,(where g is the average

phase), of the energy gaiﬁ< In the case of an axiaffy
injected beam it is possible to populate all the starting
phases that will clear the posts in the central region. When
running with an iﬁternal ion source this is not necessarily
true as the source to puller voltage is used to pull ions
from the source and thus the density of ions will be

dependant on the starting time. With the flexibility offered

by an axial injection system it is possible to design the
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Figure 3-2 The radius of the <central ray. shown as a
function of starting time. for four successive
turns. Note the typical horse-shoe shape
resulting from the cos{¥d) dependence of the

energy gain.,
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central region to allow only the desired portions of the
curves in Figure 3-2 to survive the first turn.

At the center of the horseshoes }n Figure 3-2 there is
no radial dispersion with phase. On the other hand, on
either the leading or trailing edges, the radius is strongly
dependent on the phase. As we wish to separate particles
with different phases on the basis of the radius differences
this feafure will be very much needed. (In section 3-4 there
will be a discussion of how the slope of the curves can be
modified). Given that we require a one-to-one correspondence
between vradiqs and phase, it will be necessary to insure
that only one side of the horseshoe is populated. When the
beam is axially injected into the K500 the particles with a
starting time of TO=2500 have the largest energy gain per
turn in the- middle of the cyclotron, ie. by the time they
reach 15" they are at the'centef of the horseshoe. Also the
particles with TO=2600 have the least centering error at
15", so it would be advantageous to populate the starting
phases between 250° and 260°. The process of selecting which
starting times are populated will be referred to as “coarse
selection”, since it will limit the phase width in the
machine to +*10°, while the mofé careful selection at 7" will

be referred to as “fine selection”.




Figure 3-3.

| I—— nal
~1 ]

Electrode structure for the K500 first harmonic
central region wusing a PIG source. Four orbits
are shown corresponding to starting times ( from
outermost at 6=09 to innermost), T,=230.240. 250.
and 260 degrees. The peak electric field between
the source and puller is achieved at TO=27O4 A

slit is located on the 0% hill extension of the
center plug allowing weasy installation and
removal. This slit removes all particles whose

starting times do not fall between 230 and 250
degrees.
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3.2 Coarse Selection
The f}rst stage of the phase selection procéss is a
coarse selection made near the center of the machine where
the Vlarge turn separation allows the installation of a slit
with a large enough frame to avoid the possibility of

undesired phases passing outside the frame. |f such a system

were designed to transmit only 200 of phase the situation
ilfustrated ianigure 3-2 would be single valued. In Figure
3-3 such an aperture is shown for the first harmonic central
region using a Penning lon source. In this figuré we have
superimposea 4 orbits on a bmedian plane section of the
central region <electrode structure. The four rays have

starting times .7, , of 230°%, 240%, 250°, and 260°% and an

initial x=px=0. As shown, only the 2400 and 250O rays pass
through the slot formed by a U shaped block mounted on the

hill portion of the <center plug, (2300 almost does). (By
locating the slit on the center plug it can be removed and

inserted by pulling the center plug, a considerably easier

task than raising the magnet cap.) Since a s of 270°

corresponds to the peak ‘electric field in the source-to-
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Figure 3-4. The electrode structure for the first harmonic

central region with axial injection. The window
frame attached to the dummy dee following the
pultier is used to neutralize the coupling

between the first and second dees. Five orbits
are shown corresponding to starting times of
2300 (outer-most at window),2400,2500,2600, and
270° (inner-most). By narrowing the radial width
of the window it will be easy to remove those
starting times lying outside 245% to 2600
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puller gap it is unlikely that many ions outside the 230°.

260° range shown can enter the first turn. In the case of

later starting times (towards_270°),there is insufficient
time  to cross the source-to-puller gap, and for the earlier
times there is insufficient electric field to pull the ions
from the source. The solution in the case of an axially
injected beam is quite different as shown in Figure 3-4 for
a first harmonic mode. In this central region the RF
coupling/ between dees is neutraliéed by a window frame
structure mounted on the dummy dee which screens one dee
from another. By enltarging the rédial extent of the vertical

sections of this frame it can also be used to select a group

of starting times, in this case between 245° and 260°. With

~

this particular central region the =250° ray has the least

0
centering error at 15", whereas in the PIG case best
centering occurred for the ray with 70=24O°. In both cases
the phase spread transmitted by the narrow slit is

approximately =* 10° around the “centered” orbit.
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Inflector entrance
inflector exit (from x-—space)
—————— inflector exit (from y-space)

Q/u=0.5 B,=36.2 kG

T T ) - 1

Q/u=0.19 B_=49.7 kG

i v | 1

Figure 3-5. RF t ime differences for particles on the

boundary of a 100w mm-mrad phase space with
respect to the..central ray. The dotted line
indicates the difference at the entrance of the
inflector. The solid and dashed iines show the
differences at the inflector exit. The abscissa

is just an arbitrary parameter around the
"boundary of the phase space
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3.3 Phase Selection for Axially Injected Beams
Conventional wisdom would say that a phase sélection
system is not necessary when the beam is being axially
injected, since the beam can be pre-bunched before entering
the cyclotron. In fact we do use a buncher located ju;t
before the entry into the cyclotron yoke, but there is a

fair amount of de-bunching of the beam as it traverses the

yoke24and inflector. This debunching is illustrated in

Figure 3-5. where the difference in starging times is
plotted as a function of particle number. (There are 8
particles distributed around the perimeter of an ellipse.)
As the bunched beam will have a phase spread in the

neighborhood of ten degrees the beam entering the cyclotron

will again have a phase spread of thirty dégrees: the only
differeﬁce now. is that the buncher phase is another
adiustab‘e parameter. In the case of the axially injected
beam there is a further concern that the non-linearities in
the spiral inflector will produce a distorted phase space

which <could make phase selection difficult. To reduce this.
effect we can work with a small beam spot. It was found that
if the analysis system in the beam transport system was used
to select a beam with an emittance of 25r mm-mrad

(unnormalized) . that after the strong focusing that takes




Pr (inches)

Figure 3-6.

77
o1 LT T
o0 | :
o.ogg— -—
oos |- -
0.07 :—,l....l....l....l....lT:

048 0.49 0.5 0.51 0.52
R (inches)

The phase space at the exit of the inflector
when the initial beam has an emittance of 25y
mm-mrad. The momenta have been divided by gB, to
express them in units of length. °
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place during the yoke traversal, the beam spot size at the
entrance to the inflector would be 1 mm in diameter. The gap
in the inflector is 4 mm, so a 1 mm beam should pass through
suffibiently far away from the electrodes to avoid serious

non- linearities. (See Figure 3-6, a plot of X- P at the exit

of the inflector.) To insure that the spot size at the
entrance of the inflector is indeed 1 mm in diameter the
collimator atkthe inflector entrance could be replaced with
one that has a 1 mm hole instead of the usual 4 mm. I[n cases

where the beam intensity from the ECR ion source is high,

this will still leave sufficiently large beam currents to
run experiments. So far as distortions are concerned the
only remaining question is whether or not the electric

fields on the first few turns would distort {he phase space.
in Figure 3-7 we show the results when a group of eight rays

populating the perimeter of the ellipse shown in Figure 3-6

are accelerated forward 3 turns using the Program CYCLONEQS.
This program integrates the equations of motion in the
measured magnetic field and in an electric field which has
been computed with a refaxation code. For each ray several

different starting times were-run, so the values of R and Pr

at the final position are plotted as a function of the

average phase on the tast turn. By interpolating to get the
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The R and Pr plotted for a group of rays that
started on the perimeter of the ellipse shown in
figure 3-6, after 3 turns, as functions of their
average phase. In the middle frame the results
of interpolating to find each ray at an average

phase of -4% is shown. Note the ellipse shows no
distortion.
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8 G 24 32 40
TURN NUMBER

Radius difference ri-r0 at 6=840 VS turn number

for a family of central rays. Ray 0 leaves the

source at TO=2350, the others at the times
labeled on the plot. At turn 33 a bar of *+. 02
inches is shown. to give an idea of the radius

variation expected from the r.pr distribution
around the central ray.
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R’Pr values for the particles with the same average phase we

get the ellipse shown in Figure 3-7, which is almost
distortion free, as desired. The use of particles with the
same average phase is particularly important since these are
the particles which will have the same energy gain per turn
and therefore they will all arrive at the deflector with
almost the same energy. Also by using this grouping of the
particles one avoids an apparent distortion which is

actually due to the energy dependence of R and Pr

3.4 Fine Selection

Upon leaving the «central region the beam is well

behaved and has a phase width of approximately 20°. It

~

remains to reduce this 20° to something of the order of 4°

0

or 5§ As is apparent in Figure 3-8, at this level of phase

selection the radius spread due to the phase is comparable
to the beam spot size, so the interaction between these two
must be taken into account. To achieve the best possible

selection one would like to place the next set of
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obstructions where Q, defined by26:

is a maximum. At fhe same time it is advantageous to do the
selectibn as near as possible to the center of the machine,
where the beam energy is low, so as to reduce the possible
activation of the cyclotron components. At any given radius
the AR term in equation 3-1 is a result of two separate
effects. First there is the change in radius associated with

the energy difference between two particles with different
26 .
phases. It can be shown™ ", that a good first order
approximation for the energy difference is,
AE - - Ag 5 sing dE

and the resulting radial difference is given by,

AR

N |—
m
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From these equations it can be seen that the maximum value

of Q would be obtained when Jsind is a maximum. Figure 3-9

shows a representative phase curve and the JsinddE for the

K500 cycliotron. At 7" the integral of sing is large but is

not at a maximum. lIncreasing the value af the integral at 7~

would entail sharpening the initial drop in the phase curve,

which would lead to a quite different phase history for the
inner part of the machine. The phase curve shown in the
figure has been chosen to meet several important criteria.
First the large initial positive phase is chosen to gain
electric focusing in the first few turns. The negative
excursion and subsequent rise back to zero, which is
centered about 6", is a result of tailoring the field so
that v, at 6.5"” does not become too small. At this radius
the energy is too farge for -there to be much electric
focusing, but the flutter is not yet at a maximum, so a
small gradient is added to the field to raise the vertical
focusing. At the same time the initial fall-off of the phase
curve (inside 2") is determined primarily by the iron
geometry of the cycliotron and thus is not easily changed
with the trim coils. I't will be shown below that with a
phase curve determined by these criteria {such as that shown

in Figure 3-9) the Q will

be sufficiently

large at the phase
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MSU-86-197

T,=250°

}tum "n+1'

Figure 3-10.

A schematic of how a single post can act in a
manner similar to a siit. The inner edge of the
post scrapes off those particles with too large
a radius, while the outside scrapes off those
with too low a radius on the next turn. The
dotted region is the surviving beam while the
cross hatched region is the removed beam
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shit location. Since this process also produces a magnetic

fietd with good values of v, and v, trim coil power, and

the integral of sing at extraction (near zero), it will be
used in the subsequent calculations.

The second source of radius variation with phase is
centering. When particles cross the initial gap between the
source and the puller the energy they gain is significantly
larger than their initial energy, thus théir total energy at
the exit from the first dee is very sensitive to the voltage
present on the dee at the time of crossing. Since the dee
voltage is a function of phase the energy will be strongly
dependent on the phase of the particle. In the K500
cyclotron the details of the central region require that the
phase at the first gap crossing be different from zero,
otherwise the radius spread could be made small by running
near T0=2700.-AS seen in Figure 3-4 the variation in energy
leads to a large difference in radius at the exit of the

first dee. From this gap onward the percentage change in

energy at a gap crossing decreases. Soon all the particies
have - similar rigidities, but the differences in radii
remain, SO0 each starting phase will have a different orbit
center. All the particles begin their trajectory at the same

point (the source exit), so as the orbits precess about the
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equilibrium orbit, there will be approximately two locations
per turn at which the orbits are all at the same radius. In
the K500 the fine selection will be done at two locations

1200' apart (but on the same turn). If the phase dependent

centering were arranged such that the radii were either
~dispersed or focussed at one slit location, they would not
be at the other location. Phase dependent centering is
extremely sensitive to the central region geometry, so fhe
best method of studying it is direct orbit integration, the
results of which will be discussed below.

In Figure 3-8 we plot the radius differences ry"Tg at a

fixed azimuth, where i~ is the ray which leaves a Penning

lon Source at TO=235O‘( the results for an axially injected

beam are qualitatively the same). At the radius of turn 33
(approximately 7”) there is a space between trim coij number
2 and trim coil number 3, so at this radius in the center of
the hill a 1/2” diameter access hole passes from the liner
through the pole and exits on the magnet cap. To preserve
the magnetic symmetry there are six such holes but because
of the space requirements of,the system only two of them are
usabile, one on hill A ané’the other on hiftl B. As can be
seen in Figure 3-8 the Q at this turn is quite good ( for

particles near T =235° ). while the turn separation is
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still about 100 mils (see Figure 3-1) and the energy is only
6% of the extraction energy. Included in this figure is 3
bar of * .02 inches, which is intended to give an indication

of the radius variation expected from the X, P, distribution

around the “central ray”.

The 100 mil (.100") turn separation at this radius is
insufficient to allow thé ipsertion of a slit, but wilj
allow the insertion of ga post between turns. Although posts

are less common than slits they have been used at other

laboratories26 with good' results. In principle, after two
turns the post has had the same effect on the ‘beam as a
slit, So long as the size of the post is such that it
scrapes beam from both the turn before it and the turn after
it, as model led in Figure 3-10. In this mode of operation
the high radius particies are Scraped from turn “n” on the
inner edge of the blade and the low radius particles from

the turn "n+1” on the outer edge of the blade. With v, 1.0t

the composition of tﬁe beam at turn “n+1" jg little changed
from that at “n” and the post has removed the high and low
radii from the successive turns just as a slit would from a
single turn.

A more detailed ~analysis of the selection

process. involving the x.px spread of the beam. s presented
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Radius plotted as a function of the startihg
time for turns 32,33 and 33 for the PIG
geometry in the upper sequence and for turns 29
through 32 in the lower plot for the ECR
geometry. Associated with each central ray is a
set of 8 rays that populate the circumference
of a .02 inch radius circle in R,Pr space. From

left to right: the first one shows the
situation at 6=84 before the blades are
inserted, the next one shows the situation

after a 60 mil blade has been inserted at 849
and the third shows the effect of inserting a
second blade at 8=204°. The following three
frames give the the analogous situation at
9=20409. Note that the final phase width is
around 4 degrees and the full 0.02 inch phase
space around the central time survives. The
rays with different R.Pr values have a starting
phase that gives them the same energy gain per
turn as the central ray with which they are
associated, thus the horizontal label is
actually a measure of the energy gain per turn.
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Figure 3-12.

0.09
R (in) R (in)

A simple demonstration of why two slits are
required to do a careful phase selection. Shown
are two bundles of rays with a one degree phase
difference. Note that at the first azimuth it
is impossible to remove all of one phase
without affecting the other phase. After the
particles have traveled 1202 in azimuth they
have executed a third of a betatron oscillation
as hightighted by the cross marking the same
ray in both frames. As the shading demonstrates
it is now possiblie to remove almost all of the
unwanted phase. In this particular example the
two phases are sufficiently close together that
a small amount (the unshaded portion) of the
unwanted phase passes the second slit.
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in Figure 3-11. In this figure we have plotted the radius
against a pseudo starting time for three successive turns at
the location of the phase slit holes. The horizontal label
is referred to as a pseudo starting time because the actual

starting times for rays with different values of r.p, have

been adjusted27 so that all rays with the same horizontal

fabel will have the same energy gain per turn. In the first
and fourth (numbering from left to right) the situation is
shown with both slit mechanisms retracted. In the second and

fifth frames the results are shown after a 60 mil blade has

been inserted at an azimuth of 840 (upper slit mechanism).
It can be seen that this blade provides most of the phase
selection desired, but it is still necessary to eliminate
those unwanted partiéles whose betatron oscillatiéns have
placed them at the same radius as particles with a . desired
phase. To do this final cleaning up operation a second slit
is required. At this radius in the K500 the radial focusing

frequency v, is close to 1.0. After the azimuth has changed

by 1209 those particles whose large x components moved them

towards the radius of the desired phases will now have moved
away from the desired phases, as illustrated in Figure 3-12.

Iln the figure two bundles of rays that differ in phase by
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one degree are plotted. As the shading demonstrates; with
two slits it is possible to remove afmost all of one phase
(to the right of the line) while not removing any of the
particles whose phase is one degree different. In this
example the two phases are sufficiently close together that
a small amount (the unshaded portion) of the unwanted phase
passes the second slit. The closer the phase of a bundie is
to the desired phase, the larger the wunshaded region
becomes. (In other words, more of the horizontal phase space
associated with that phase passes the slit.) It is the
particles in the unshaded area which eventually produce the
sloping sides of the gaussian-like peak seen in a beam
current versus phase plot. In the third and sixth frames of

Figure 3-11 the result of placing such an obstruction at an
azimuth of 204° (lower siit mechanism) is shown. The group

of rays present in the final turn has a phase spread of i20
around the chosen central phase. By correctly tailoring the
phase curve and the RF frequency, the particles with the
central phase will have the maximum energy (within a given
turn) at the outer radii of the machine. fn chapter 5 these

Computations will be compared-to experimental results
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3.5 Further Considerations

The discussion up to this point has made use of prbits
which were computed in a magnetic field having perfect three
fold‘symmetry. In actuality there are small, but nonetheless
important, first and second harmonic components in the K500
magnetic field. When the imperfections are present, care
must be taken to center the beam if a truly well defined
beam (a primary goal of phase selection) is to reach the
extraction radius. At the radius of the phase slits the
strongest controls on the beam centering are the relative
dee voltages and the relative dee phases. At the same t ime
the dee voltage can be used to fine tune the position of the
turns relative to the posts. The technique would then be to
provide a reasonably centered beam at the posts by using the
relative dee voltages and phases. and the right positioning
(fine adjustment only) by using the average energy gain per
turn (sum of the dee voltages). The centering at the posts
cannot be perfect, as it is desirable to obtain the best
centering at a higher radius where the turn number is
larger. This centering is achieved by using the center bump
coil. In the case of the K500 there is not complete freedom

to set the bump coil since it should be set to values which
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reduce the first harmonic in the region of the v, = 1.

resonance at 5.5",
In the case of a main tield for a particle with a
charge- to-mass ratio of 0.25 and a final energy of 25 MeV/ n,

a center bump setting of B1=12.1G #;=-70.2° meets these

criteria. When orbits are run in this field the selection
process is not significantly changed as can been seen in
Figure 3-13 where data similar to that in Figure 3-11 is
shown. In fact those differences that do occur between the
case plotted in Figure 3-13 and that in Figure 3-11 can be
attributed to the different phase curve used in the two
cases. This highlights the need to Optimize the phase curve
and the Starting phase (by positioning the first turn slit)
and the size of the posts. The next Figure (3-14) continues
the calculation in a field of three foldvsymmetry the rest
of the way out to the deflector entrance. This shows that at
least in principle, single turn extraction can be achieved
in the K500 cyctotfon when running in first harmonic mode.
To achieve single‘ turn extraction, however, mubh work is
needed to verify the stability of the various systems, and
to determine the <correct. centering conditions at the

résonances near extraction. The phase curve and frequency
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26.56

R plotted versus Pr for turns 507 and 508 at 9
= 336, corresponding to the entrance to the
electrostatic deflector. Pr has been divided by
maw, to express it in inches The shaded area
corresponds to a possible location of the
deflector septum. This plot shows: that single
turn extraction of the resulting beam should be
possible. The energy spread of this group s
less than 6 parts in 10%. :




99

need to be tailored carefully as well by using the procedure

28

described by Gordon




-4, Phase Selection Hardware and the VP Probe

4.1 Introduction

During 1985 hardware was constructed to pérform the
experiments discussed in chapter S. All of this equipment
was constructed for general operational use on the K500

cyclotron. These components fall into two groups; those

concerned with phase selection only, and those oriented

towards general beam diagnostics. in the second group is the
viewer port probe that has proven to be a valuable every day

diagnostic device. In the first group is the hardware

required to accomplish phase selection as described in

chapter 3.

4.2 Phase Selection Hardware

As described in chapter 2, phase selection in the K500
cyclotron requires two small tungsten blades to be inserted

between turns 32 and 33 on successive hills. Easy insertion

and removal of the blade from the beam chamber and
adjustability of the siit position (to accomodate different

orbit patterns) were seen to Dbe desirable features of a

phase selection system. Also, since the lifetime of the
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blades was uncertain, a large effort was expended on
developing the ability to change blades with minimum
disruption of cyclotron operation. This.last feature would
also’ altow for adjustment of bléde size (by changing the
blades), which is analogous to changing the slit size in a
conventional system. Access to the median plane on the hills
consists of two, half inch diameter holes located near the

center of hills "A” and "B” (see Figure 1-2) at a radius of
7.038". The hole on hill A (9=83.50) emerges on the upper

pole cap, while the other (G=203‘50) emerges on the lower
cap. This requirement is imposed by the relative locations
of the Center plug gate valves

The features required are realized by mounting a one
inch long tungsten blade (pin) off-center in a small copper
cap that ig bolted onto the end of a forty inch long
stainless steel shaft traversing the magnet poles. Since the
pin is located off-axis, rotating the shaft in the access
hole resulits in the desired adjustability in the pin's

radius (and an unimportant change in its angle). Moving the

shaft up and down by one inch will move the blade in and out
of the beam chamber, while pulling the shaft all the way out
will aillow changing the blades. In actuality the shaft is

two concentric stainless steel tubes set up in a spray tube
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cooled so the tungsten will be indirectly




103
configuration (as shown in Figure 4-1) so that the beam end
of the shaft is water cooled. This feature indirectly cools
the tungsten blade which will intercept the unwanted beam.

Control of these functioﬁs is provided by a mechanism
located between the center plug and the dee stem on the pole
cap at the exit of the access hole. The access hole lies
beneath the flared éortion of the dee stem spinning; the
limited space available requires the compact and intricate
device shown in Figure 4-2. 1t can be seen in this figure
that the mechanism consists of twWo major groups of parts
those below the bellows which are rigidly fixed to the poile
cap, and those above which are moved up and down on a pair
of rails by the pneumatic cylinder. 1t is this one inch of
bellows motion that allows the shaft to move so that the
blade can be inserted into, Oor retracted from, the beam
chamber.

Located at the top of the moving section is the
rotating water manifold. Inlet water surrounds the shaft in
the smal| chamber formed by the first two coaxial O-rings.
passing through the four radial holes in the shaft to reach
the <center tube. The water (gturns from the tip between the
inner and outer tubes, ftowing out through another sét of 4
radial holes into the the smal | Chamber formed by the second

and third O-rings. Just below the third O-ring the shaft
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Cross section of the phase sl it

Figure 4-2.
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diameter is reduced to form a shoulder which rests on the
worm gear. When the thrust plug screw is tightenéd this
shoulder and the ball bearing in the thrust pltug trap the
shaft axially so the shaft must travel in and out withAthe
actibn of the air cylinder. A key on the shaft jﬁst below
the shoulder mates with a keyway in the worm gear; turning
the worm gear causes the shaft to rotate. On the opposite
side of the worm, a second worm gear is mounted on a servo
potentiometer,' providing information about the rotational
position of the shaft. The driving worm is driven by a motor
mounted three feet awgy on the dee stem support beam. Torque
is transmitted from motor to worm gear by flexible dri?e
cable. This system was chosen so that there would be
sufficient room to shield the synchronous motor from.the
high magnetic field.

The ability to change the blades with the minimum
disruption of cyclotron operation requires removing the
shaft without raising the <cap or otherwise breaking high
vacuum. The blade-changing operation begins by removing the
thrust ptlug, exposing a set of threads in the top of the
shaft. Removing the two copper patches in the dee stem
spinning allows a rod to beﬂpassed through the spinning and
threaded into the the top of the shaft Pulling on this rod

draws the shaft out of the cyclotron. while the sliding seal
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Figure 4-3. The lower phase slit

hole before the trim coil
leads were moved. '
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O-ring maintains the vacuum. When the piston is in the
retracted position the bellows formé a Jlock chamber
sufficient to accomodate the pin and cap assembly. The ball
valve can then be closed using a 1/4” drive rachet wrench to
turn the the brass béll valve coupling one quarter turn.
Once the valve is closed the shaft can be retracted the rest
.of the way. Insertion is accomplished by reversing these
operations,

The parts below the ball valve form the mount for the

rest of the assembiy. The base flange is threaded so that it

screwé onto the tube which separates the liner‘vacuum from
the main vacuum. When fully threaded on. it also compresses
the O-ring making the liner vacuum seal. To prevent this
flange from backing off, screws pass through 4 of the 12
clgarance holes in it and thread into the pole cap. The

redundant <clearance holes were necessary since the point at
which the threads on the liner tube would bottom out was
unknown. Above the base flange is the ball valve body, which
is also the support for the guide rails. Since the guide
rai(s must have the correct orientation relative to the dee

stem, all orientations were made possible by having the

bolts holding the ball valve body to the base plate pass
through thirty-degree-wide <clearance siots to pick-up four

of the twelve available threaded holes in the base plate
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4.3 Installation of the Phase Slit Hardware

The photograph in Figure 4-3 shows the lower phase slit
hole before installation of the hardware. As can be seen in
this figure and in Figure 4-4, some trim coil leads passed
through the space required by the phase siit drive. This
would not have been true had the feads conformed to the
designed configuration. Therefore the first part of the
instaltation process was devoted to re-routing.the errant
leads. To facilitate this operation both the upper and lower
center plugs were removed. Next the center plug extensions
and the gate valves were removed. After removal‘of the the
hill_ extensions, the center plug liners were unbolted and

pulled out as far as the dee spinnings would allow, about

six inches. This disassembly exposed the flare fittings on
trim coil #1, and improved the access to the fittings on
some of the other trim coils. In all cases the leads were

either cut or unsoldered at the transitions between the 1/4°
and 3/8" copper tube. In those cases where the feed- throughs

were exposed, the flare fittings were undone and the segment

of 1/4" line was re-maﬁufactured. For trim coils #3 and #4
on the wupper cap and trim coil #4 on the lower cap, the
feed- through 1ies beneath thé dee stem spinning. Here, with
the cut end free. the leads were bent using the modified

pliers shown in Figure 4-5 During this operation care was




Figure 4-5.

The special pliers built to altlow bending those
leads which were trapped under the dee stem
spinning. With a little care they could be used
to move the leads without crimping the lead or
putting force on the feed- through.
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taken to apply as little force to the feed- throughs as
possible, because they are known to be fragile. With a-
little practice this bending technique proved to be quite

efficient ~and simple. After the bending was complete the

leads were re-insulated, the transitions were soldered
together, and the leads water tested. At this point we also
cleaned all the feed-throughs and repai}ed any damaged

insulation on any of the other coils. (This work seems to
have removed a short that existed in lower trim coil #1.)
With the trim coil leads in the proper locations, the
phase slit base plate could be screwed on and the center
plug liner re-installed, thus restoring the liner vacuum.
Next <came the task of making the access holes in the dee
stem spinning and spinning flanges. Location of these holes
was accomplished with the special tooling fixture shown in
Figure 4-6. When the rod with the sharpened point was passed
through the pole to the median pltane, striking this rod with
a hammer created a locating mark on the spinning. Using a
right angle drit]| and a 19/32” bit, a hole was drilled
perpendicular to the surface of the spinning and centered on
the punch mark. Using a hand file, the hole was entarged in
the wvertical direction sod‘that an ovai shaped hole was
formed which would allow a 9/ 16" shaft to pass through

freely. The holes in the upper flangé were drilled with a
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b3

Figure 4-6. The fixture used for locating the hole in the
dee stem spinning. The other end of the
indicator shaft - “"was at the median plane so it
could be tapped with a hammer to mark the
spinning with the sharpened point. The drill
bushings provided alignment of the clearance
hole and the two threaded holes for mounting the
air cylinder on the hex flange




113 -
portable drill press, while thg lower ones were made with a
hand drill motor. In both cases the drill was guided by the
drill bushings in the locating fixture

In order that the half-inch shaft might pass freely
through to the median plane; the bead formed where the liner
tube is welded to the liner was cleaned up with a
combination of oversized hand reamers and a file. With this
work complete, the drive mechanisms could be mounted and the
shafts installed.

After the motors were installed it was found that
there was excessive wind-up in the flexible drive cables.
This difficulty was resolved by <changing to a larger
diameter drive cable and improving the alignment of the worm
gear and the worm. With these modifications the drive
performed quite well.

To calibrate the position of the pin, the fixture shown
in Figure 4-7 is used. By placing the U shaped slot over the
dowel pin in the dee locating fixture and rotating the phase
stit shaft until the cap fits onto the the end of the shaft,.
the location of zero degrees can be found.

The complete installation of the phase slits excluding
the drive cable modificationﬂénd alignment took close to two
weeks to complete.Over half of that time was devoted to re-

routing the trim coil leads.
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Figure 4-8. The lower drive mechanism installed. See text
for a description.
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4.4 Construction of the Viewer Port Probe

During commissioning of the K500 <cyclotron, a
relatively simple two jaw radiai probe was instaliled in the
extréction region. The success of this device led to a
decision to construct a more sophisticated model which could
be removed under vacuum and would increase the travel from
4"  to 12". After extensive design and assembly work in 1985

such a device was installed on the cyclotron in November of

that year.

Figure 4-9 is a schematic view of the probe as
constructed. During normal operation the lower table is
locked in the innermost position and the upper table (a
precision siide table) is moved in or out with a ball screw
driven by a stepping motor. In this 'running’ condition the
moving vacuum seal is provided by the stainless steel

bellows mounted between the front plate and the upper table.
To remove the probe the lower table is driven to its outer
limit so that the end of the guide tube is in the lock
chamber, and then the gate valve is closed. During this
operation a pair of viton O-rings separated by a floating
spacer ring (all |abeledﬁ sliding O-ring in Figure 4-9)
provides the vacuum seal. This division of sealé means that
the bulk of the time (during regular probe travel) the

bel lows are used. but for changing the probe. when the
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travel is 40", the O-rings are used. The lower table is
mounted on Thomson pillow blocks, and driven by a ball screw

attached to a synchronous motor. A complete probe change can
be accomplished in hatf an hour, making repairs and

modifications relatively simple.

Another important feature of this design is the ability
to accept any probe that meets the following simple
requirements: that it match the bolt pattern on the plate,

and that the maximum diameter from the plate inwards be
5/8”. The length of the probe from the mounting flange to
the tip may be anything from 45.5" to 59.325". Presently
four different probes have been constructed. The first of
the tested designs is shown in Figure 4-11. The object here

was to provide isolated water and electrical circuits within

the limited space. It also provided fairly good positioning
of the tungsten jaws to ensure the correct differential
lengths. Unfortunately the Kovar feed- throughs were poor
thermal conductors, consequently after beam hit the probe
for any length of time the temperature of the jaws rose
dramatically and eventually the feed-th(oughs became
.electrical conductors. The(design currently in regular use
is shown in Figure 4-12f‘ This one is the same as that
orginally wused with the 4” drive but with length changed.

Also the jaws are now a single piece of molybdenum which




Figure 4-10.

A photo of the new drive instalied on the
cyclotron. In this photo the drive is in the
running’ position and a probe has been

instalted.
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should improve the cooling while at the same time reducing
the possibility of producing alpha emitters. One of the

other probes developed is being used as the target for the

radioactive beam experiments of M. Mallory et a|39

4.5 The Gamma probe

The fourth probe, which has been constructed for use in the
VP probe drive, is designed to measure the phase of the
beam. This is to be done by detecting the gamma rays
generated from the beam striking the probe tip with a PIN
diode located just behind the probe tip. A schematic of the
phase probe is shown in Figure 4-13. At the exit of the
probe the signal is again amplified, and then sent to the
control room. In the control room the signal is fed into a
constant fraction discriminator (CFD). The output of the CFD
is then wused as the start signal for a time-to-amplitude
conveter (TAQC). The stop signal for the TAC/is a pulse
generated at every second poSitive zero crossing of the RF
signatl. Dividing the stop signal by two means that all thg
features in the time spectrum will appear twice, 360°’apart‘
This then gives an immediate calibration between channeis
and degrees of phase. without any worry about cabte length.

The TAC output is digitized using a multichannel analyser
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Figure 4-13. A schematic drawing of the phase probe. The PIN
diode is used to detect gamma rays produced
when the beam strikes the probe tip. The small
size of the diode and amplifier allows it to be
located near the probe tip so the count rates
are high and the source is distinct from the
background.
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A typical spectrum of intensity versus time. as
measured with the gamma probe. Notice that the
divide by two of the RF stop signal causes all
features to appear 360° apart.
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for a preset length of time. A sample output is shown in
Figure 4-14.

If the peak width in a spectrum, such as that in Figure
4-14, is to be attributed to the phase width of the beam, it
is necessary to measure the time {esolution of the PIN
diode. This proved to be more difficult than expected,
because the diode’'s §mall size resulted in too low a count
rate for a coincidence measurement. What was done, was to
measure the rise time of the diode when pulsed with a fast
laser. These measurements concluded that the rise time was
better than 500 ps. In Figure 4-15 the time spectrum of the
external beam, as measured with the PIN diode, is compared
to a measurement of the same beam made with a BaF detector.
The time resolution of the BaF was known to be better than
300 ps, and the two detectors produced very similar results.
Given that the gamma probe can make a reliable determination
of the phase, it can be used to measure the phase width of
the beam between 20” and extraction. As wgll it can be used
to measure changes in the phase as a function of radius. but
the determination of the absolute value of the phase will
need to be done with a different technique{ such as

frequency detuning.
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comparision between the PIN diode and a BaF

detector. Both detectors measured the same

beam., which was striking beam stop 1. The

measured beam widths are very similar.




5. Experimental Results

5.1 Frequency Detuning

The phase history of the beam is a very sensitive
function of the magnetic field, thus an independent measure
of the phase would verify the procedures used to compute the’
magnefic field. Several methods are available to measure the

phase, but the frequency detuning method first proposed by

Garren and Smith31 is the most straightforward. The

Separated longitudinal equation is,

E
=
. 2mh Wy -
= §i L ALALL =0 -
sin 4 = sin ¢O + T3E ; ( o 1 ) dE (5-1)
0
. 2wh
= sin g, + ST F(E)
G
where, F(E) = ( “h 1 )dE ,
. J w
0

“and SE is the energy gain per turn.
Since F(E) depends only on the energy and not the initial
value of the phase (¢0f,d}he width of the beam in sin g( E)
is constant when equation 5-1 is valid. If the phase of any

part of the beam reaches + 90°. i decelerates inward. to

127
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the machine center and is lost. If the central ray of the
beam reaches 900 at a given radius this can be observed on
an integrating probe as a reduction of the beam current to
haif amplitude at that radius.
Rewriting the longitudinal equation for a new RF
frequency w gives,

(W - wy) )
2mh 0 ( \
SE < t F(E) + E §, (5-2)

sing’(E) = sind(E) +

where @' (E) is the phase obtained with the new RF frequency,
and #(E) is the phase at the operating frequency Wy -

Defining the frequencies W, and w as the frequencies which

drive sing to +1 and -1 respectively, equation 5-2 becomes,

2v(ua - W) . }
+1 = sind(E) + v F(E) + E
SE wy
2n(u{ - wy) ‘ )
-1 = sind(E) + SE o t F(E) + E y.
Let e, = (w, - wy) / W, and we find the expression for sing
is,
. - 2rE .
sind(E) = (%x1 - ~SE * ei S|n¢0)/(1 + ei).

. . . . 32
Using this formulation instead of the more common™ .
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2 wy - u&(r) - w(r)
ut(r) < w(r)

sing(r) =

means that the phase can be found at radii for which either

w, or W cannot be found. The trade-off is that the energy

gain per turn SE must be known.

ldeally, determination of the phase using this method
requires only that the machine parameters (RF voltage,
magnetic field etc.) are stable in time. In practice however
there are several limitations. First of all the centering of
the beam affects the results by shifting the radius at which
the half intensity is observed. As is well known it is not

33

possible to center the beam at all radii at once , SO

usually the best centering is reserved for the large radii

where the turn density is greatest. In the K500 even this is
not possible, because, in order to minimize beam losses
during the resonance crossings at the outer radii, it is

necessary to run with the beam off center for most of the

machine34. Another difficulty arises because the main probe

in the K500 is a complicated set of train cars that travel
on a spiral shaped track located on the center of one of the
hitls (see Figure 1-1).'(Becau3e of its complex nature,
detgrmining the exact location of the probe is difficult., so

the position read out can be wrong in some places by as much
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as 0.5". If the phase curve changes rapidly, as-it does at

large radii, the frequency required to drive the phase to

90° becomes a constant. For example in Figure 5-1b the w

for radii larger than 26.0" will be a constant because the
current will always be lost at 25.0"
In Figure 5.1 the results of measurements in two

separate magnetic fields is shown. The agreement in both

cases is quite good, except for a sharp bump in the N5+
case. Either this discrepancy is caused by a probe
calibration error or it is a result of a change in the main
field. During this particular run the main coils currents

drifted by as much as 0.1 amperes, as the lead temperatures

changed. Unfortunately the problem was not detected until
late in the run so there is no way of determining when it
happened. Since the data was taken in sequence it is

possible that the bulk of the excursion took place as data
between 14"  and 12" were being collected. The dotted curve
in the figure is the phase curve if the Coil currents are

reduced by 0.1 Amps.

5.2 Phase Selection

The previous Chapters have discussed the phase

selection hardware and how it is intended to achieve its
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goals. In this section experimental results of a test run of
the phase slits will be presented. As described in 3.2 the
coarse selection is done with a slit located on the dummy

dee between the puller and the second dee ("C” dee). The
only way the aperture of this slit can be changed is to
raise the cap, which is a one day job. As a result it is
difficult to compare directiy beam conditions with and
without the small slit. In Figure 5-2 the output from the

gamma probe, collected when the coarse selection slit was in

place, is shown. This can be compared with the computed
results in Figure 5-3. The computation was done by tracking
particles through the axial injection System and around the
first turn in the <cyclotron. The initial beam filled the
available aperture and any particle which hit either the
inflector (including the collimator) or a dee post was

removed from the beam. This calculation predicts that the
phase width after the first turn would go from 43°% to 140
( FWHM) when the narrow silit is installed. This is in
exceltient agreement with the Y-probe measurement done at
extraction radius (Figure 5-2). that gave a résult of 14.89.
Figure 5-4 is shown for reference. |t gives the results‘of a
calculation similar to taat shown in Figure 5-3. but with
the collimator aperture reduced to 1mm. With a 1 mm

collimator the starting emittance is reduced to 257 mm- mrad
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as was discussed in section 3.3. At the time of the test run
(when the first turn silit was instal led) there‘was an
alignment difficulty with the spiral inflector and so it was
not possible to run the reduced emittance case, but in the
future it may be possible to do so.

With the <coarse selection in place the differential
traces (Figure 5-5) showed a much more pronounced turn
pattern than usual. The large periodic structure is a result
of a Coherent oscillation. in Figure 5-6 the computer
program SOMA has beeﬁ used to estimate whatra probe plot
would be tike, given'the calculated orbits. For this case it
was aésumed that the phase width was 14° and the starting
conditions were an eigen-ellipse. The area of the ellipse

was chosen to be 100mr at the inflector entrance, and the

center of the ellipse was located using the prescription of
Figure 2-3. The computed and measured turn patterns are
similar in atl aspects; 1) the turn spacing is the same,

indicating that the energy gain per turn is close to the
calculated wvalue, 2) the space between turns is reduced in
the same regions. 3) the region of bunched turns due to the
coherent Qscillations occur at similar radii. The last point
indicates that most of the ;éntering error is induced by the

central region (in the calculation the centering error is

built into the initial conditions). since the field used in
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the computations does not contain the imperfection
harmonics. Attempts to center the beam with the center bump
usually result in large beam losses, probably from the
reduced stability region which results when the bump coil is‘
not cancelling the first harmonic at v, = 1.

As described in section 3.4 the fine selection is

accomplished with a pair of tungsten posts whose positions

are adjustable. I f proper selection is to take place, one
must find the locations at which the posts lie between

turns. Figure 5-7 shows the measured and calculated current
distributions at the upper post azimuth. The arrows‘in the
figure show optimal post locations. The computations were
done with the program SOMA, using the differential probe
option with the probe width equal to the post thickness. The
measured points were obtained by placing the main probe at
=10."” and recording the current as a function of siit
position. Since the only possible loss mechanism is the
post, the current lost must be the current hitting the post.
The values for the lower slit are shown in Figure 5-8. The
reduced amplitude variation at this location is caused by
the increased turn width Iat this azimuth. The plots of
Figure 3-10 show that at the lower slit position (6=2049)

the radius changes much more rapidiy with phase. than at
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values were obtained with the code SOMA.
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0=84%, and so the turns are more smeared. The poor agreement

between measured and calculated results for the lower
mechanism at smaller radii is a result of an encoder error
(later measurements indicated the device is non-linear).

Another method of determining the'optimum location for
the posts is to look at the gamma probe data. The Y-probe
output for two different positions of the upper slit is
shown in Figure 5-9. With the upper slit at 71 (arbitrary
display wunit) the Dbeam is being split by the post. As the
post is moved to 125, more of the earlier phases survive the
post and some of the later ones are removed. When the upper
post is in position 125 the beam is being scraped from the
outside of one turn and the inside of the next turn as it
should.

The phase width with the upper siit at 125 is compared
to no slits in Figure 5-10. With the post at this location
the FWHM was 5.2° The same procedure was then followed for
the lower slit. The reduced turn separation at 8=204 ( lower
slit) made placing this stit a more difficult task, but it
could be used to reduce the shoulders on the peak 'in Figure
5-10, as can be seen in Figure 5-11. The phase width with
both slits inserted was 4 §0 (FWHM) . Table 5-1 compares the

beam current on beam stop 0 (after extraction) with and

without the stits Re-examing the calculations of chapter 3
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Figure 5-9 The phase width as measured with the gamma

probe, for two different postions of the upper
slit.
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wWith and without the upper slit. (n both cases
the narrow first turn slit is present.
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it would appear that if the lower post had a smaller
diameter, the phase width could remain the same but the
amount of beam surviving both posts would increase.

In Figure 5-9 the main peak is accompanied by tails on
either side and this substantially increases the full width
of the peak. As may be noticed these tails were not
predicted by the computations shown in chapter 3. During the
experiment the initial emittance was 100mr mm-mrad. while the
calculations assumed a starting emittance of 257 mm-mrad. To
see if this increase in emittance could account for the
tails a SOMA caiculation was preformed. The calculation
began at turn 8 with a phase width of 20° and an'emittance
of 26.5 mm-mrad. As seen in Figure 5-3, when 1007w mm-mrad is
run  with the small first turn slit, the slit also acts to
eliminate some of the horizontal emittance. To simuiate this
effect the dashed curve in Figure 5-3 was used as a
weighting factor for the different starting timeé. Figure
5-12 compares the result of weighting the SOMA output to the
measured phase width. As can be seen the weighting results
in a very close agreement with the experimental data. Again
using this weighting procedure the calculation was prefqrmed
with the upper slit in {Wo different locations. These
results are presented in Figure 5-13. In both cases the

calcufations predict the focations and relative heights
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the measurements. Onily the first turn slit is
in the machine.
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of the peaks. The one difference between measurements and
calculations is that the calculations tend to go to zero
between peaks. There are several possible explanations for
this.' One possiblity isA that because the detector was

located at extraction radius, while the calculations end at

7.3" there has been some smearing in between. Another
possibility is that the various starting conditions such as
the initial emittance are not correct. It is also possible

that unbalanced dee voltages changed the centering and so
the the turn separation at the slit has changed slightly.
Nevertheless the similarity suggests that reducing the
emittance will remove the tails.

Table 5-1 The phase width and the extracted beam current at
beam stop O for different combinations of slits.

SLITS . PHASE W IDTH CURRENT AT BSO
Coarse only 14. 80 46 nA
Upper at 125 5. 20 20 nA
Lower at 121 . 20 nA
PSU=125, PSL=125 4,29 10 nA

The calculations shown in Figure 3-10 suggest that the
phase widths should be 7.59 (FW) for the upper slit alone
and 4.5° when both the posts are inserted. which is in good

agreement with the 5 2% and 4.2 obtained experimentally.
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Figure 5-14. A differential probe trace taken during a N
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be determined from the coherent oscillation
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Rprobe (1nChes)

The radial focusing frequency as calculated
with the equilibrium orbit code., and the values
obtained from differential probe traces. The
horizontal bars indicate the region over which
the valtue of v, owas averaged. The vertical bars

indicate the possible error in determining the
number of turns in a precession cycle
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5.3 Radial Focusing Frequency
The differential probe plots of Figure 5-14 show a
targe coherent oscillation. This coherent oscillation is

produced by the initial centering error mentioned in section

5. 2. The radial focusing frequency is related to the number
of turns in a cycle, Nr, by;
1
vr= 1+ N

As can be seen in Figure 5-14 the number of turns in a cycle

cannot be counted directly, because beyond 10." the spacing
between turns is comparable to the thickness of the
differential wire on the probe. Since we do know the

refationship between energy and radius, we can estimate the

number of turns in a cycle using,

Ex - E,
N = . (5-3)
/
r 3(q A)Vdee Cos{( @)
Given in Figure 5-15 is the computed VvV, versus radius for
22, 8+ . . .

the Ne 35 MeV/A field, along with the experimental
values. The horizontal bars indicate the radial interval
over which the number of turns i S calculated, and the
vertical bars indicate the error in the average v, value
arising from the possible error in determining the radi.i

Each data point is determined by measuring the radius of the
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beginning of a precession Cycle and the radius of the end of
the cycle. Then an equilbrium orbit program is used to

determine the energies for the two radii, and the average

value of cos(d) in this range 

5.4 Axial Focusing Frequency

The head of the main probe is divided into three equal
vertical sections, each 0.25"” high. For these measurements a
large coherent oscillation is induced by placing a .455"
shim under the spiral inflector, thus moving the position at
which the beam exits the inflector off the median plane.
Plotting the current on each of the sections as the probe is

drawn outwards gives a profile of the vertical position of

the beam spot. In Figure 5-16 the current on the center and
lower jaw are plotted over a 10~ radial range. As can be
seen in the figure the current moves back and forth between

the two jaws. The negative values of the current result when
electrons are knocked from the jaw, since the electron

trapping system s only effective on the sum of the three

jaws. From plots such as Figure 5-16 the number of vertical
oscillations over a radial range can be determined. The
number of turns in the saﬁé range can be determined using
equation 5-3. The number of turns in a complete cycle of the

axial motion is related to the focusing frequency
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1 .
N_ = 3 , if v <

The result of these measurements in the 14N4+ 20 MeV/A field

is shown in Figure 5-17 along with the computed values. The
horizontal bars give the radial range over which the average

value of v, is found, while the vertical bar gives the error

which arises from incorrectly estimating the number of

cycles in the radial range.
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Figure 5-16.
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The values of the axial focusing frequency as
computed by the equilibrium orbit code. and the
values obtained from probe traces such as the
one shown in Figure 5-14. The horizontal bars
indicate the region over which the value of v,

was averaged. The wvertical bars indicate the
possibie error in determining the number of
turns in a precession cycle.




6. Conclusions

I'f the sucess of a Computer program lay solely in its
speed, then SOMA will be a huge sucess. In a run such as
those done to produce the plots shown in chapter 5, 300
particles were accelerated for approximately 90 turns, using
a total CPU time of 15 min. By comparison, a rule of thumb
for the orbit integration code SPRGAPZ is, 1 minute to run
one par;icle 100 turns. That is to Say a similar run with
SPRGAPZ would have wused approximately 270 minutes of CPU
t ime, a factor of 18 increase. Of course speed is not the
only determining factor. For example flexibility is of great
importance. ‘Currently SOMA has several sophisticated input-
output (10) routines, that make the handling of large
numbers of particles much easier. The bookkeeping alone
would make an orbit integration code run with 300 particles
a tedious task. A case in point is the probe option; it
reduces the probiem of determining the patterns thét would
be exhibited if there were a given set of orbit conditions,
to a trivial probiem. With the orbit codes previously

available, this was a difficult undertaking, and it seemed

154
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as it one could never run enough particles to get a truly

smooth curve.

As with all new programs SOMA wil! need constant
upgrading for some time, as users request more specific
features. As mentioned in section 2.6 the equilibrium orbits

as calculated between gaps do not close perfectly, and this
could be improved by adding an extra iteration to the EO
search. Last, but not least, the 10 routines could use some
cosmetic improvements. In particutlar, softWare néeds to be
developed for the plotting of the calculated probe traces,
as the present system is cumbersome and slow.

A transfer matrix program such as SOMA lends itself to

the study of several sets of phenomena . two that come to
mind immediately are an investigation of beam conditions
that lead to better extraction, and an investigation of
centering. Obviously for the centering study SOMA will not
be wuseful for the first few turns, and care must be taken

when displacements are large. Nevertheless centering often

takes over 50 turns, and is phase dependant, SO the
increased speed of SOMA would be useful. |t may also be
possible to use SOMA, along with other programs, to

determine the centering error from a probe trace. The

situation for extraction studies is very similar. Again a
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large number of particles needs to be run since the radial-
longitudinal coupling is very important. Also the region of
interest (the two resonance crossings), requires close to

100 turns, so the turn number times the number of particles

is very high.

The results presented in section 5.2 show basic
agreement with the computations, which suggests that the
calculations presented in chapter 3 could be expanded upon

using SOMA. The programs also show that with the correct
operating conditions it is possible to achieve a narrow
phase width. Combined, the computations and the experiments
show that phase selection in the K500 is feasible. Naturally
this leads one to wonder about the possibility of single

turn extraction, which Figure 3-13 suggests is theoretically

possible. In practice it will require considerable effort.
For example the small, slow osciliation of the main coil
currents in time must be reduced if sufficient stability is

to be maintained. At the same time a large effort is needed
to reduce the centering error which appears to arise from
the central region. On the mechanical side, these studies
could be made considerably weasier if the main probe were
improved. In particular..'correctly calibrating the probe 
reducing the vertical bounce as the probe moves. and

improving the electron traps on the jéws. are.all things




157
that would make probe data maore reliable. From a practical
point of view, if the phase selection system is to be useful
for beams other than those Produced in copious amounts by
the ECR, the transmission into the cyclotron has to be
improved. Separated turns (and single turn extraction) would

be helped significantiy by reducing the initial emittance.

Perhaps this can be done by reducing the inflector
collimator to 2 mm in diameter, but again this would result
in unacceptably low beam currents unless the transmission
improves,

It is probably fair to say, that in most cases the
computed values are more easily interpreted than the
measured ones, but often ignore important machine

conditions. When it comes to making measurements in the K500

it can be very difficult to achieve repeatable results, so

there will always be a need for both computational and
experimental studies of the K500. Now that the basics of
phase selection are understood and confirmed, it is hoped

that much further progress towards single turn extraction

can be made.
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APPENDIX |

SOMA INPUT

The input and output to SOMA has been distributed among
many FORTRAN IO wunits in order to simplify modifications.
The primary input file (unit 5) contains most of the program
switches and the <cyclotron parameters. Other information
such as the magnetic field, harmonic bumps, and the spiral
locations are on separate files. Table 7-1 gives a complete
listing of all the 10 units used by the program and a short
description of the information kept on each oﬁe

The first line of the wunit 5 file must contain the
values of the two logical variables LMATRICES and LPROBE{ in
that order. If LMATRICES is true then the run begins by
calculating the transfer matrices requested on unit 11,

otherwise the program attempts to read the transfer matrices

from wunits 51 and 52. When LPROBE is true then the program

will either calculate or read in (again depending on the
value of LMATRICES) theﬂ transfer matrices for the main
probe. ?ollowing this first line are any number of |ines
containing the values of various input.parametersl Each line

158
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Table 7-1. The input-output units used by SOMA.
Unit Description
INPUT
5 input parameters
11 initialization of transfer matrix computation
12 initial conditions
13 spiral locations
14 harmonic field bump data
44 magnetic field
OUTPUT
30 orbit parameters of particles which hit flags
31 printout at constant theta
33 probe output (binary)
34 printout at gap locations
35 printout at end - for restart
BOTH
51 gap to gap matrices (binary)
52 constant theta matrices (binary)
53 main probe matrices (binary)
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begins with the number (between 1 and 50) of the input
parameter Dbeing set. Al input parameters have default
values so only those differing from the default need be
entered. The parameters may appear in any order and the list
is terminated by a “-1". The input parameters divide into
three groups. Those with ID numbers 1 through 9 give the
descriptions of the probes and flags to be used. The
parameters 10 through 34 are al|l single entry real numbers
while 35 through 50 are single integer values, so this last
group contains most of the Switches.

Input parameter number 2 is used to indicate the number
of flags to be described. Immediately following the Iine
which began with a "2~ there must be one line containing the

values of; Gf, ITYPE, RMIN, RMAX, for each flag. The flag is

assumed to be located at angle ef and is only in effect when

the orbit radius lies between RMIN and RMAX. The flag angle
must have a transfer matrix, but many flags can share the
same matrix if they have the same azimuth. Up to 20 flags

may be requested. There are three types of flags. The first

type (ITYPE =1) is called a transparent flag. In this case
when the orbit radius lies inside the flag. then the orbit
parameters are saved but the orbit is unaffected. |f I TYPE

is 2 then the flag is opaque. in which case when RMIN <
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R(ef) < RBMAX then the orbit parameters are saved, the

particle is considered lost, and the program proceeds to the
next particle in the input distribution. When ITYPE=3 then

the orbit parameters at Bf are recorded on unit 31 whenever

the particle radius lies inside the flags range.

A line beginning with a 3 contains information on the
snapshots to be produced at the end of the run. A snapshot
is a scatter plot of any two of the possible 9 orbit
parameters. A snapshot will be produced for the initial
conditions, the final conditions, and all flags of types 1
and 2. For each snapshot desired a pair of integers are
given, with the first integer Specifying the orbit parameter

to be put on the horizontal axis, and the second doing the

Table 7-2. -- The ID codes for each of the parameters that
are saved.

1D Parameter Description

1 r orbit radius

2 pr radial component of the momentum

3 z vertical position

4 pZ vertical component of the momen tum
5 T time

6 E energy

7 X displacement in radius from the EO
8 p displacement in P, from the EO

©O
S,
i

T
9]
>
<

average of the phase at the Jlast 6 gaps
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same for the vertical axis. The labeling of the various
parameters is given in Table 7.2 For example the line
”3,1,2,9,1,” would produce Scatter plots of pr VS r and r vs

g at the run's conclusion.

The “4” line provides the descrip{ion of the probes to
be <considered during the run. A maximum of two Probes, one
radial and the other the main pProbe ére allowed. The
parameters on the '4 card’ are;

4,NP,Ri.Rf,AH.IB!N,ABIN.ADIFF,G,THICK.
Probe information will be accumulated between R. and Rf. with
!

a bin size of AR. IBIN determines jf a second Parameter g
to be binned as well. |f IBIN=1 no other binning is done.
When IBIN is 2, Z is binned and when |BIN=3 the phase s
binned. ABIN is the bin size for the z or pPhi bins (up to 60
phi bins are available). When NP is 1 the probe is radiaj
and it is located at an azimuth 6. On the other hand if NpP=>?
the main probe matrices are used and @ jg ignored. The
parameters ADIFF and THICK give probe head dimensions as
shown in Figure 7-1.

The various possible initial conditions discussed in
section 2.5 are selected using parameter 42 A value.of 2

for this parameter runs the restart option. n this case
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Figure 7-1. A schematic drawing of a probe head. as defined

in SOMA. The two dimensions, AIDIFF and THICK,
are input in inches.
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unit 12 contains a line for each particle to be started. The

format of these I|ines is;
d,r,pr,E,T,d,d,z,pZ(1OX,3f12.5,f12.6,f12.3,4f8.4)

where d is a dummy variable. A file which meets these

requirements is produced on unit 35 at the end of each run.

When IP(42) =1 the program expects the initial conditions to

12, The unit 12 file should contain one tine for each

particle to be run, with the following format:

Energy,x,px,z,pz,¢ (6f12.5).

Table 7-3 shows the femaining possiblities’for parameter 42,

each of which gives a different method for calculating the
initial ellipses.
Table 7-3. --. The source of the initial ellipse values as
determined by parameter #42.

1P(42) X-PX ellipse Z-PZ ellipse

3 calc. eigen-ellipse calc. eigen-ellipse

4 calc. eigen-ellipse input

5 input calc. eigen-ellipse

6 input input
The eigen-ellipses are computed for an EQO energy equal to
the central energy. . P(28). The definitions of the various
ellipse parameters are given in Figure 7-2. The X-PX ellipse
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Px

X
Figure 7-2. An iflustration of the meaning of the various
. initial ellipse parameters. See text for an

explanation of how they are input to SOMA.
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center (xO and pxo) can be set in three different manners.
| f IP(48) =IP(45) =0, then the values of xo and pXO will be

P(30) ’énd P(31) respectively. . |f IP(48) =0 and IP(45)=1 then
the program will calculate the AEO for a particle starting
with the central energy, P(28). The AEO is found by running
3 particles for one turn with acceleration. A linear fit is
then wused to determine the starting condition which Qill

result in the X, P, values remaining the same after one turn.

These initial conditions are then run and the process

repeats until the closure is better than 10'8 or 10

iterations have been made, which ever comes first. The final

method of setting Xo @and p  is to make them a function of

the initial phase. L f IP(48) =1 then unit 12 contains one

line which is,

a b a,., b (4f12. 5) .
Then

Xo= a4 + (g - ¢r) a

2 ]

Prog = by + (- ) b

1 2

E = ECen cos(g - ﬂr),

where, Ecen= P(28) central energy.

dr = P(29) reference phase.
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A full ellipse is started for each value of the phase (g),

where the phase, &, is:

g = ¢_o + i x Ad, i=0, ng- 1,
where.
8, = P(27), A® = P(26). and ng - (P(41).
When IP(44) =1 then 4; is calculated. The calculation is

per formed using;

E
rl
. . 2mh W
snn(¢1) = snn(fzfo) + SE | (C) - 1) dE
E Q0
0
so ¢1 is the phase at EI = Ecen’ when ¢0 is the phase at the

first energy E, at which transfer matrices are stored. The

new value for ¢o (to be used as described above to determine

the starting phases) is computed to be

B, = 9, - P(26)xIP(41)/2,

so that tﬁe phase group is centered about the phase given by
an EO code.

Table 7-4 contains a tisting of the input parameters 10
through 50 and their default values. I't should be noted that

the RF frequency is,

= i S = /
W, ¢ h (1+¢) W if, w q Bo m,
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where ¢ is the frequency error and h is the harmonic number.

Parameters 16,17,18 are a, b, v respectively for the X~PX
ellipse, while 20,21,22 are the same for the Z-PZ ellipse.

The area per point (#24) is the area assigned to each
particle in the uni form distribution, SO0 there are
approximately mab/ P( 24) particles populating the ellipse.

The number of transfer equations (#39) is explained in Table

2-4, When I1P(40) is zero the Z-az ellipse is uniformly
populated. | f it is one then the X-PX ellipse is uniformly
populated, and a value of 2 causes both ellipses to be

uniformly popultated. Those ellipses not uniformly populated
will  be randomly populated. IP(46) is wused to stop the
printing of the initial particle parameters in the log file
(unit 6). IP(47) determines whether the gap correction is

done to first or second order.

Unit 11 is read whenever transfer matrices are to be
calculated. The five lines in this file contain:

Ei,AE,NE

N ANGLE

TH_ ANGLE( i), i=1., N ANGLE

N EQU ﬂ

q,BO.NSEC.NR‘NSW
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Matrices will be computed for the energies

E = Ei + AE x i, i=0, NE- 1.

N_ANGLE is the number of fixed angles for which transfer

matrices will be calculated. Up to 10 fixed angles may be
requested. The next line contains the azimuths of the fixed
angles, and these must fall on ga regutar 2% Runge-Kutta

step. When N EQU is 1 only the first order transfer matrices
are computed and stored, but when N_EQU=2 the full second
order transfer matrices are Calculated. The final line gives
the particle charge in units of €, the central field, the
number of sectors, and the number of radius values at which
the field is stored. If NSW is non- zero the magnetic field
is assumed to have a header which is concluded by an end of
file mark.

The magnetic field is input on unit 44. This file
begins with a header of up to 10 lines, concluded by an end-
of-file mark. Following this is the magnetic field values in
a regular r, 8 grid. The data is Stored so that theta varies
most rapidly. The theta step size is one degree and there
120 theta values if NSEC=3 and 360 theta values if NSEC=1.
The input format is 8F9.5 and there are NR radius values

beginning at R=0.0" and increasing in 0.5" Steps
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The gap locations are given on wunit 13. The first

record is,
NRGP, RO, AR (15, 2F10. 5).

The gaps themselves are given in the SUbsequent records as a

table of angles,

91(R0), 92(R0) (2F12.5)

91(RO+AR),92(RO+AR)

etc.

(NRGP entries in the table).

91 is the entrance to dee1l1 and 92 is the exit (gap2). It is

assumed that there are 3 dees evenly spaced around the

machine, S0 6 gaps are defined. The © vs R function for a

gap is assumed to be linear between data points (a spiral in
real space) for the purpose of interpofation and
differentiation. There must be at least two r values, and
any orbit to be computed must be between the r |imits of the
gap table. It is advisable to keep the table interval small
enough that large discontinuities in the derivative are
avoided. There is no restriction on the value of 8. but the

following 6 values must satisfy these conditions:

V 0
82(r) > 81(r) + 10

0
2(r_) - 91(0’) < 110
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I 8(r+Ar) - o(r) I < 90°.
These |limits ensure that No two spiral lines fall in the
same integration step, ahd there is ho +/ - 3600 ambiguity in
the table. Note that in most éases, a table with onty two r
values would require more than a 90° difference in
successive theta values. Gap print-outs are done at the
gaps;

IG = IGO0 +IDG x i, i=0, ng-1
where,

IGO= 1P(37), IDG=IP(36), and ng=1P(38).

These print-outs appear on unit 34, and if a large number of
particles are run this file can become extremely large.

When IP(49) is different from zero then the program
expects information about the harmonic field bumps to be
located on unit 14, The file should contain;

b1,b2,¢1,¢2 (4F3.5)

RO, AR, NR (2F, 15)

BUMP1( i) i=1, NR (8F9.5)

BUMP2( i) i=1,NR (8F9. 5)

where b1 and ¢1 are the amplitude and angle of the first

harmonic bUmp; and b, and 4, are the same but for the second

harmonic bump. The bump field will be specified at the

radial positions:
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-- The input
entered on
brackets.

parameters
unit 5,

PARAM(10)
PARAM(11)
PARAM(12)
PARAM(13)
PARAM(14)
PARAM(15)
PARAM(16)
PARAM(17)
PARAM(18)
PARAM(19)
PARAM(20)
PARAM(21)
PARAM(22)
PARAM(23)
PARAM(24)
PARAM( 25)
PARAM(26)
PARAM(27)
PARAM(28)
PARAM(29)
PARAM(30)
PARAM(31)
PARAM( 35)
PARAM(36)
PARAM(37)
PARAM(38)
PARAM(39)
PARAM(40)
‘PARAM(41)
PARAM(42)
PARAM(43)
PARAM(44)
PARAM(45)
PARAM(46)
PARAM(47)
PARAM(48)
PARAM(49)

10

through 50,
The defaul't

values are

that are

in

DEE VOLTAGE (KV)

HARMONIC NUMBER

FREQUENCY ERROR

PHASE ERROR OF DEEl IN DEGREES
PHASE ERROR OF DEE2 IN DEGREES
PHASE ERROR OF DEE3 IN DEGREES
X RADIUS OF ELLIPSE (INCHES)
PX RADIUS OF ELLIPSE (INCHES)
TILT OF X-PX ELLIPSE (DEG)
AREA OF X-PX ELLIPSE (MM-MRAD)
Z RADIUS OF ELLIPSE (INCHES)
PZ RADIUS OF ELLIPSE (INCHES)
TILT OF Z-PZ ELLIPSE (DEG)
AREA OF Z-PZ ELLIPSE (MM-MRAD)
AREA PER POINT (IN**2)

+/- % DELTA E

INCREMENT IN PHASE (DEG)

PHASE OF FIRST GROUP (DEG)
CENTRAL ENERGY (MEV)

REFERENCE PHASE (DEG)

DELTA X (IF 45=0)

DELTA PX (IF 45=0Q)

NUMBER OF TURNS

SPACING BETWEEN GAP PRINTS
INITIAL GAP PRINT

NUMBER OF GAP PRINTS

NUMBER OF TRANSFER EQUATIONS
IF 0 THEN Z-PZ UNIFORM

NUMBER OF PHI GROUPS

INPUT DATA TYPE

RANDOM NUMBER SEED

IF NE 0, CALC PHI INITIAL

IF 1 THEN USE ACCEL EO

IF 1 SUPRESS INITIAL PRINT
ORDER OF GAP CORRECTION

IF 1 READ ELLIPSE CENTER

IF 1 USE FIRST HARM. BUMP

FINAL VALUE OF RANDOM NUMBER SEED WAS

0.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.01071
0.01071
0.00000
9.14804
0.01071
0.01071
0.00000
9.14804
0.00500
0.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
50

1

1
1
6
1
1
1
1

24927964

0
0
0
2
0
1
1

24927964

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

50.00000)
1.00000)
0.00000)
0.00000)
0.00000)
0.00000)
0.01000)
0.01000)
0.00000)
5.00000)
0.01000)
0.01000)
0.00000)

15.00000)
0.00500)
0.00000)
1.00000)
0.00000)
0.00000)
0.00000)
0.00000)
0.00000)

100)
1)

=
S

24927964

SONOOOHWHMFOO
g P L N
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R =R0O + i x AR i=0, NR- 1.

The product b, x BUMP1( i) should

1 give the first harmonic

compaonent of the field at the radius step i in kilogauss.




APPENDIX |1

ORBIT CODE PARAMETERS

Chapter 2
All tests were run in a K500 magnetic field trimmed for
12 4+ ;
30 MeV/u c . The central field was Bo=34'50535 kG , and

the RF voltage was Vdee=60.4 kV. The field had perfect 3

fold symmetry and the RF frequency was equal to B When not

0
specified test runs began at E=11.0 MeV/u. Al tests with
acceleration began with #=0.0 . The z motion study began at

E=5.0 MeV/u and ran for 300 turns.

Chapter 3
. ' 12 4+ .
The PIG cases were run in the K500 30 MeV/u C field

with BO=34.50535 kG and Vdee=60.4 kV.. The ECR case studies

were done in a K500 field for 25 Meviu '%0%*  witn

BO=42.20057 kG, >and Vdee=73'06 kV. Except where noted, the

magnetic fields had perfect three fold s&mmetry.
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Chapter 5

Comparision to the experimental results in section 5.2

done in a K500 field for 20 MeV/u '2N%* which has

B,=33.3192 kG, V = 51.5 kV, and 3 fold symmetry. The

dee

initial phase width was -18%9 to 29 at E=0.38717 MeV/u. The

centering conditions using the technique of Figure 2-3 are,

X =-0.034 - 0.0033(8-4 )

0

Pyo= +0.030 - 0.0061(¢-¢r)

E = Ecencos(ﬁ-ﬁr)

g =-13.0°
r

Ecen= .38717 MeV/ u.

The relative densities of the different starting times was

determined wusing Figure 5-3 for the case of 100w initial

emittance and a small first turn slit.
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