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ABSTRACT

SYSTEMATIC IMPROVEMENTS OF AB-INITIO IN-MEDIUM
SIMILARITY RENORMALIZATION GROUP CALCULATIONS

By
Titus Dan Morris

The In-Medium Similarity Renormalization Group (IM-SRG) is an ab initio many-body
method that has enjoyed increasing prominence in nuclear theory, due to its soft polynomial
scaling with system size, and the flexibility to target ground and excited states of both closed-
and open-shell systems. Despite many successful applications of the IM-SRG to microscopic
calculations of medium-mass nuclei in recent years, the conventional formulation of the
method suffers a number of limitations. Key amongst these are i) large memory demands
that limit calculations in heavier systems and render the calculation of observables besides
energy spectra extremely difficult, and ii) the lack of a computationally feasible sequence of
improved approximations that converge to the exact solution in the appropriate limit, thereby
verifying that the IM-SRG is systematically improvable. In this thesis, I present a novel
formulation of the IM-SRG based on the Magnus expansion. I will show that this improved
formulation, guided by intuition gleaned from a diagrammatic analysis of the perturbative
content of different truncations and parallels with coupled-cluster theory, allows one to bypass
the computational limitations of traditional implementations, and provides computationally
viable approximations that go beyond the truncations used to date. The effectiveness of the

new Magnus formulation is illustrated for several many-nucleon and many-electron systems.
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result. . ..
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Chapter 1

Introduction

1.1 Brief History

The quest to predict and understand the properties of nuclei starting from the underlying
nuclear forces goes back nearly 60 years, dating back to the pioneering work of Brueckner,
Bethe, and Goldstone [28-30]. In contrast predictive and accurate ab initio many-body
calculations were commonplace in quantum chemistry by the 1980s [31]. Progress was not
slowed there by the challenging aspects of the nuclear problem like the lack of a consistent
theory for the strong inter-nucleon interactions, and the need to perform computationally
expensive (and uncontrolled) resummations to handle the non-perturbative aspects of the
problem. Consequently, for many years nuclear ab initio theory languished as a predictive
force, and could only explain in semi-quantitative terms how successful phenomenology such
as the shell model and Skyrme energy-density functionals are linked to the underlying nuclear
interactions.

As experimental efforts have shifted towards exotic nuclei, there has been an increased
urgency to develop reliable ab initio approaches to counter the inherent limitations of phe-
nomenology. As evidenced by Fig. 1.1, tremendous progress has been made in recent years,
where the interplay of different threads, namely rapidly increasing computational power,
effective field theory (EFT) descriptions of inter-nucleon interactions, and renormalization

group (RG) transformations, have enabled the development of new many-body methods and



the revival of old ones to successfully attack these problems [27, 32-35]. Remarkably, it
is now possible to perform quasi-exact calculations including three-nucleon interactions of
nuclei up to carbon or oxygen in quantum Monte Carlo (QMC) and no-core shell model
(NCSM) calculations, and N = Z nuclei up through 288 in lattice effective field theory
with Euclidean time projection [12, 36-38|. Moreover, a host of approximate (but systemat-
ically improvable) methods such as Coupled Cluster (CC), self-consistent Green’s functions
(SCGF), auxiliary field diffusion Monte Carlo (AFDMC), and the IM-SRG have pushed the
frontiers of ab initio theory well into the medium-mass region, opening up new directions
to the challenging terrain of open-shell and exotic nuclei [21, 23, 24, 26, 39-46], with recent
highlights in the calcium isotopes [22, 47].

RG methods have played a prominent role in the resurgence of ab initio theory. A key to
optimizing calculations of nuclei is a proper choice of degrees of freedom. While Quantum
Chromodynamics (QCD) is the underlying theory of strong interactions, the most efficient
low-energy degrees of freedom for nuclear structure are the colorless hadrons of traditional
nuclear phenomenology. But this realization is not enough. For low-energy calculations to
be computationally efficient (or even feasible in some cases) we need to exclude or, more
generally, to decouple the high-energy degrees of freedom in a manner that leaves low-energy
observables invariant.

Progress on the nuclear many-body problem was hindered for decades because nucleon-
nucleon (NN) potentials that reproduce elastic scattering phase shifts typically have strong
short-range repulsion and strong short-range tensor forces. This produces substantial cou-
pling to high-momentum modes, which is manifested as strongly correlated many-body wave
functions and highly nonperturbative few- and many-body systems. For many years, the only

viable option to handle these features in a controlled manner was to use quasi-exact methods
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Figure 1.1: Taken from Ref. [11]. The chart of nuclides and the reach of ab initio calculations
in (a) 2005 and (b) 2015. Nuclei (including potentially unbound isotopes) for which ab initio
calculations based on high-precision nuclear interactions exist are highlighted. Essentially all
of the 2015 calculations include 3N forces. We note that the figure is for illustrative purposes
only, and is based on the authors’ potentially non-exhaustive survey of the literature.
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such as QMC or NCSM, which limited the reach of ab initio calculations to light p-shell nu-
clei. Powerful methods that scale favorably to larger systems like CC and many-body pertur-
bation theory (MBPT) were largely abandoned in nuclear physics, but exported to quantum
chemistry, where they enjoyed immediate success and quickly became the gold-standard for
ab initio calculations[48-50]. The success of CC and related methods in quantum chemistry
stems from the fact that Hartree-Fock is a relatively good starting point due to the relatively
weak correlations induced by the Coulomb interaction, in stark contrast to the nuclear case.
Additionally, the nuclear case is beset with difficulties with the quality of nuclear forces, and
other issues that plague self-bound systems like center of mass contamination.

New approaches to nuclear forces grounded in RG ideas and techniques have been de-
veloped in recent years that effectively make the nuclear many-body problem look more like
quantum chemistry [33, 37, 51-55]. The RG allows continuous changes in “resolution” that
decouple the troublesome high-momentum modes and can be used to evolve interactions
to nuclear structure energy and momentum scales while preserving low-energy observables.
Such potentials, known generically as “low-momentum interactions,” are more perturbative
and generate much less correlated wave functions. This has played a major role in expand-
ing the reach of ab initio calculations to medium-mass nuclei, since methods that exhibit
polynomial scaling can now be converged in manageable model spaces. See Refs. [33, 56, 57]
for recent reviews on the use of RG methods in nuclear physics.

As will be shown in the following, the IM-SRG approach extends the RG notion of
decoupling to the many-body Hilbert space by formulating “in-medium” flow equations, the
solution of which is equivalent to the partial diagonalization or block-diagonalization of the
many-body Hamiltonian [21, 24, 33, 39, 58]. Because of its favorable polynomial scaling

with system size, and the flexibility to target ground and excited states of both closed-



and open-shell systems, the IM-SRG provides a powerful ab initio framework for calculating
medium-mass nuclei from first principles that is grounded in modern RG principles.

Despite the inherent strengths of this method, it suffers from several shortcomings. Key
amongst these are i) the linear scaling with each additional observable one wishes to calculate,
ii) the need to solve a large set of coupled differential equations to high numerical accuracy,
iii) and the inability to approximate the effect of omitted terms in the simplest truncations
of the IM-SRG equations. The aim of this thesis is to show how a novel reformulation of
the IM-SRG using Magnus expansion techniques allows one to circumvent all three of these
weaknesses, at least for closed-shell systems. I will show that the IM-SRG, when coupled with
a true matrix exponential formalism via the Magnus expansion, provides a controlled, non-
perturbative scheme to find the ground states of nuclei and of quantum chemistry systems.
Moreover, there are promising indications that the methods laid out in this thesis will provide
important tools for deriving effective valence shell model Hamiltonians and operators from
the underlying nuclear forces, opening the door to an ab initio description of open-shell,
medium-mass nuclei.

The rest of this thesis is organized as follows. In Chapter 2, I start with a brief review
of many-body perturbation theory (MBPT) and CC theory, as many of the improvements
described in this thesis are based on analyzing the perturbative content of the IM-SRG and
understanding the similarities and differences from CC theory. In Chapter 3, the basic ele-
ments of the IM-SRG method are reviewed in some detail, and a sampling of its successes
in nuclei are presented. Note that the diagrammatic analysis of the perturbative content
of the IM-SRG in Section 3.5 is especially important. In addition to guiding many of the
improvements detailed in Chapter 5, this was my main contribution to the recent review

article [11] that much of the material in Chapter 3 is based on. Chapter 4 describes the



crucial reformulation of the IM-SRG equations using the Magnus expansion, and shows how
this eliminates many of the computational limitations faced by the conventional formulation
due to large memory overhead. Chapter 5 documents how the simplest IM-SRG(2) and
MAGNUS(2) truncations fail in certain quantum chemistry systems, and uses the perturba-
tive analysis of Section 3.5 to motivate improved truncations, which are then validated for
several electronic and nuclear systems. Chapter 6 highlights some interesting open topics
that are presently “in development”, such as a computationally inexpensive method to per-
form calculations in Brueckner orbitals and extensions to more challenging open-shell and

multi-reference problems. Finally, conclusions are presented in Chapter 7.



Chapter 2

The Many-Body Problem

In low energy nuclear systems, quantum chemistry, and solid state physics, one wishes to
be able to understand emergent phenomena from a microscopic Hamiltonian. Despite the
ambiguity in the inter-nucleon interactions arising from scheme and scale dependence, the
basic mechanics for solving all three systems are the same once a given interaction is settled
on. However, because solving the A-body Schrodinger equation in an exact and straight-
forward manner leads to a factorially scaling problem in A, approximate solutions are the
only way to move forward. A variety of different approximate methods have shown promise
in recent years, but in order to motivate both the strengths and deficiencies of the IM-SRG
method, and the to-be-presented Magnus formulation of it, we will begin by reviewing the
basics of the many-body problem and two established methods for approximately solving
it. The first, and most well known of these is MBPT, which will be covered in Section 2.3.
Further because of the strong relationship between IM-SRG and CC theory, and how CC
theory motivates improvements in the IM-SRG method, we will also present the important

elements of CC theory in Section 2.4.

2.1 Many-Body Schrodinger Equation

The main problem in non-relativistic many-body physics is to find the solution of the

Schrodinger equation for a system of A interacting elementary particles, generally fermions.



One can write down the time-independent ground state solution as
H W) = Ey Vo) - (2.1)

For the purposes of this work, it is useful to start with a Fock-space second quantized

Hamiltonian

1 2 1 3
H= Zqua};aq + ) Z V})(qgsa};agasar + 0 Z Vp(qgstua;agaiauatas , (2.2)
pq pqrs pqrstu

)

where Vp(q?m and V;)(;z sty are antisymmetrized two- and three-body interaction matrix ele-

ments, and a complete basis set of Slater determinants for the A-body Hilbert space as

A
@{p1...pa}) = [] 0}y, 00, (2.3)
k=1

given that the single-particle basis state to which the creation operators refer to are complete
in the one-body space. It is clear then that any A-body state can be written in terms of

these Slater determinants, and in particular the true ground state has the form

Wo) = > Cppopa [®{p1-..pa}) - (2.4)
p1<...<pg

This expansion demonstrates what was mentioned earlier, that a straightforward variational
calculation of the CP1-~-P A’s becomes intractable with increasing A. If the single particle
basis is truncated at n orbitals and symmetry is ignored, then there are (j}l) Cpp..py's
which must be determined. Even for very moderate systems being optimized on a very large

computational facility, this procedure is intractable. Figure 2.1 demonstrates the feasibility
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Figure 2.1: Matrix dimension versus Ny,q, for stable and unstable Oxygen isotopes. The
vertical red line signals the boundary, beyond which one might expect reasonable convergence
with respect to Nyqr. The horizontal lines show the computational power of a facility
expected to conduct these diagonalizations. Figure taken from Ref. [12].

of calculating the oxygen isotopes in a straightforward way taken from [12].

There are some common conventions which will be worthwhile to introduce in order to
be able to discuss MBPT, CC theory, and the IM-SRG in the next chapter. First I will
introduce the concept of an adequately chosen reference state, which will lead immediately
to the concept of normal ordering, which is invaluable for the purposes of bookkeeping for

the methods discussed in this work.

2.2 Normal Ordering

Reference states are a common ingredient to most many-body methods. Usually, their

function is to fix certain characteristics of the system we want to describe, e.g., the proton



and neutron numbers of a nucleus, and to provide a starting point for the construction of
a many-body Hilbert space that is superior to the particle vacuum. Describing many-body
states as excitations with respect to a suitably chosen reference state allows us to account for
the characteristic energy scales of the target nucleus, and introduce systematic truncation
schemes based on this information. It also suggests the use of normal-ordering techniques
in a natural fashion (cf. 2.2). Using a Slater determinant as the reference state is a suitable
choice for systems with a large gap in their excitation spectrum, e.g., closed-shell nuclei.
Among the Slater determinants, those that satisfy the Hartree-Fock conditions for a given
system are the most natural choices (cf. Sec. 3.3), because they minimize both the mean-field
energy and the beyond mean-field correlation energy in a variational sense.

Once a suitable single reference |®) is chosen, one can invoke the concept of normal
ordering. As mentioned, this leads to a natural organization of the complete A-body states
into their level of excitation away from |®). Normal-ordered operators can then be defined

by beginning with the most simple of these,
a};aq E:a;,aq : —Q—CIL;Tlaq, (2.5)
where the contraction is related to the reference state |®):
3

apag = (P| a;;aq |P) = pgp = Opgnp » (2.6)

where ny, is 1 or 0 depending on occupation in |®). This generalizes easily to A-body

10



operator:

T T

apy - Apn Qg - - - Qg
=:a aa agq
pum— p]---c pN qNu.' ql-

—i—aTa ‘a]L cﬂL a a '—aTa 'aJr aJr a QAge g, : + singles
pl ql.p2...pN qN.q2. p]_ q2p2...pN qN.q3 ql. g

1 7] 1 7] ; +
+ <ap1 gy ApyAgy — aplaq2ap2aq1) Hapg .- Gpplgpy - - Ggg - + doubles

+ ...+ full contractions. (2.7)

It is clear that (P :a;gaq :|®) must vanish, and a similar finding is true for general normal-

ordered operators in the reference state |®)
(®]: ahy .. ap, :|®) =0. (2.8)

It is then possible to invoke Wick’s theorem (see e.g. [16]), which is a simple ramification of
the definition of normal ordering in Eq. (2.7). This allows for the expansion of products of
two or more normal ordered operators:

:a}:l...aLNan...aql ::ail...a,tMasM...asl :

_ M-N .t T T :
=(-1) Hapy - QppQry - Qe Qg - Gy sy - Qs

M-NT+ ]
+(—1) CL;r,la,S1 Z&pz...a;[Man...asz :
M-1)(N-1) ]
+(—1)( ) )aqla;[l Hapy - Gpy Qg -0
+ singles + doubles + .. . . (2.9)

I

The phases appear as the a, operators are anti-commuted past a4. Since |®) is an A-body
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state and not the true vacuua, there is a new type of contraction,

G,W_JLCTJ = (@] apal |®) = dpg — ppg . (2.10)
as expected from the basic fermionic anti-commutator algebra. This provides a robust frame-
work for evaluating the product of normal ordered operators with the least amount of terms.
Also beneficial, is that it motivates a diagrammatic formalism that makes evaluation of terms
intuitive. An important finding from Wick’s theorem that will be relevant in the formulation
of the IM-SRG is that a product of normal-ordered M and N-body operators has the general

form
M+N

AMBN = N o), (2.11)
k=|M—N)|

Exploiting normal ordering, one can exactly rewrite the hamiltonian Eq. (2.2),

1 1
pq pqrs pgrstu
(2.12)

The individual normal-ordered contributions in Eq. (2.12) are then given by

E = Z<z’| T|i) + % S G v Jig) + é S k| VO Jijk) (2.13)

i ij ijk
. . 1 . .
fa = ®ITI0) +Z wil VP i) + 5 > (wil vV laij) (2.14)
ij
Lpgrs = (pq|V |7s) —I—Z qz|V |rsi) (2.15)
Wogrstu = <pq7‘\V |stu) . (2.16)
I use the convention where 1,7, ... refer to occupied orbitals in |®), a,b,... refer to

12



unoccupied orbitals in |®), and p, g, ... refer to either. In Eqgs. (2.13)-(2.15), it is important
to note that the zero-, one-, and two-body parts of the normal-ordered hamiltonian all
contain contributions from the higher-body free-space interaction. This suggests that the
dominant effects of computationally expensive three- and higher-body interactions can be

included in two- and lower-body operators via normal ordering.

2.3 Many Body Perturbation Theory

Armed with a quality reference state |®), it is often possible to expand the full solution and
properties around this reference. To do so is to follow the path of many body perturbation
theory (MBPT). I present here a brief summary of the material provided in [16].

The Hamiltonian is first partitioned into a diagonal and interaction part
H Vo) = (Ho + Hy) [Yo) = Eo [Vo) (2.17)
where H;y = H — H(), and the zero-order solutions based on H( are known
Ho |®) = B\ |@). (2.18)
Multiplying Eq (2.17) on the left with the reference (®g| one arrives at
Ey) + (@|Hy|Wo) = Eo (@ |W). (2.19)

Invoking intermediate normalization where (®|Wq) = 1, one arrives at the working expres-

13



sion for the correlation energy,
AE = By — B\ = (®|H ). (2.20)

Following the usual prescription to generate the different versions of perturbation theory

(e.g. Rayleigh-Schrodinger and Brillouin-Wigner), one arrives at the infinite order solution

[Wo) = Y {Ro(Q)(H — Eg+ ()} |®), (2.21)
m=0

with the resolvent operator

Ro(¢) = =T (2.22)

where Q projects onto the orthogonal complement of |®). This immediately yields a per-

turbative expansion for the energy of

o
AE =) (®[H{Ro(()(Hr — Ey + ()} |®). (2.23)
m=0
For the remainder of this work we make the choice { = E(()O) which corresponds to the

size extensive Rayleigh-Schrodinger perturbation theory. We use this decision to rewrite

RO(EéO)) as just Ry.
00
AE =Y (®|H{Ro(Hy — AE)}™ |®) (2.24)
m=0
Thus, as long as Hy and its spectrum can be found, Eq. (2.24) can be solved order by order.
The lack of small expansion parameter in this formalism indicates that convergence is not

guaranteed. Evaluation of terms in Eq. (2.24) is aided by the help of diagrammatic methods

applicable when working with a normal ordered Hamiltonian. The rules for interpreting

14



diagrams are found both in Appendix C and Ref [16]. For many systems, it is necessary to
find non-perturbative methods that resum certain classes of perturbative diagrams to infinite
order to achieve adequate accuracy. Size extensivity is guaranteed in Rayleigh-Schrodinger
perturbation theory, as all unlinked diagrams appearing in the energy cancel order-by-order
[59].

As we will see in Chapter 5, the intuition gleaned from diagrammatic MBPT will be
crucial in developing systematically improvable IM-SRG truncations. As an example, the

first non-trivial contribution to the energy that arises at second order in MBPT has the form

AEP = (|{H RoH }c @), (2.25)

where the subscripted C represents that only connected terms contribute. Plugging in the

normal ordered operators in Eqs. (2.14)—(2.16) for Hy, the expanded version of Eq. (2.25)

becomes
2] _ fiafaz zjabrabzy zykabc abczyk
_Z A lQZ 12 Z - (2.26)
ia v ijab " ijkabc U abe
where
. _ g0 _ puoN aj.-ay
All...’LNal...aN - 0 < Zl ZN ’H ‘q)zl 'LN> (227>

Similar analysis can be carried out for each order, but the cost of calculating diagrams even

at fourth order scales similarly to much higher quality many-body methods.
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Figure 2.2: Diagram demonstrating the diagramatic form of Eq. (2.26). The dashed line
indicates the resolvent operator Ry.

2.4 Coupled Cluster Theory

As mentioned above, it is often impossible to arrive at a satisfactory energy or wavefunction
from low-order perturbation theory, necessitating infinite-order partial resummations of Eq.
(2.21) and (2.24). One such resummation is CC theory, which has a distinguished history
in quantum chemisty, and is commonly regarded as the ab initio method with the optimal
compromise between accuracy and computational cost. Although first contemplated by nu-
clear physicists, the “hardcore” inter-nucleon interactions used at that time made it difficult
to apply CC theory to nuclei without performing a complicated rearrangement of the CC
equations to adequately capture the strong short range correlations [48-50, 60]. In chem-
istry it has become a mature field, most notably because of its ease of use, and its ability
to approximate more exact CC methods from less expensive ones without reverting to the

more exact methods cost. These features will be briefly reviewed in the following sections.
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2.4.1 Exponential Ansatz

CC theory relies first and foremost on the ability to parametrize the exact wavefunction as

the result of an exponential operator acting on a reference Slater determinant |®),

Tee)=el|®), T=Ti+Tr+..., (2.28)
with cluster operators
T = Ztai :azai . (2.29)
ai
1 Pt
Iy = 1 Ztabij H0qQpaa; ¢ (2.30)
abij

It can be shown via the linked cluster theorem that |¥ o) is an exact reformulation of the
MBPT wavefunction, and thus the CC ansatz is an exact reformulation of the Schrodinger
equation if 7" is not truncated [16, 61]. The energy and coefficients of the cluster operators

are determined by solving the algebraic system of equations

(@ e THe |@) = By, (2.31)
(@ e TH |®) =0, (2.32)
(@le THe |®) =0, (2.33)
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where |®%), |<I>%b>, ..., are particle-hole excited Slater determinants. The full algebraic forms
of Egs. 2.31-2.33 can be found in Ref. [16]. It is clear that if these equations are satisfied, the
similarity transformed hamiltonian H = e~ HeT no longer connects |®) to excited Slater
determinants. It is also important to note that the similarity transformation is non-unitary,
which makes the similarity transformed Hamiltonian H non-Hermitian.

Solving for the higher-body amplitudes like those found in Eq. 2.31-2.33 becomes in-
creasingly more expensive for each higher-body cluster that is solved for. Thus it becomes
necessary to truncate the cluster amplitudes, meaning the method becomes an approximate
solution to the Schrodinger equation. It is most common then to solve these equations ap-
proximately for only 7;, with n < my where m4 < A. Solving for up to 77,75,73, ... has
commonly become known as singles (S), doubles (SD), triples(SDT), etc. Most commonly,
T is approximated at the 77 + T» level, which is known as CC singles + doubles (CCSD),
which has a cost of ngnﬁ where n, and n,, are the number of occupied and unoccupied single
particle orbitals in the calculation.

One of the most important implications of using the CC ansatz is that of relative insen-
sitivity to the choice of reference. According to a theorem by Thouless [62], any two Slater
determinants |®4), |®g) that are non-orthogonal and therefore have non-vanishing overlap

are related (up to a normalization constant and phase factor) by a similarity transformation:

@) ~ exp (Ztm cala; : ) @) =TV 15, (2.34)

al

Since the T} are only defined in terms of particle-hole excitation operators, it is easy to see
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that cluster operators of different particle rank commute,

[1;,T;] = 0, (2.35)

because contractions between particle creation and hole annihilation operators vanish. Con-

sequently, the CCSD wave function can be written as

[Woesp) = el 1772 |@) = eT2eT1 @) (2.36)

and thus Thouless’ theorem (2.34) is directly built into the CC formalism. The single Slater
determinant mapped to by e’1 |®) will in general be of the better Slater determinants that
can be chosen, regardless of the original choice of |®).

It has been shown that the CCSD approximation contains certain classes of perturbative
diagrams like the so-called particle-particle ladders, and hole-hole ladders summed to infinite
order [63]. Further, the particle-hole ladders, and their interference with particle-particle and
hole-hole ladders are included as well. This separates it from more traditional resummation
methods like the Brueckner Hartree-Fock formalism or the Random Phase Approximation
(63, 64]. The perturbative content of the CCSD method is important to note now, as the
approximations to triples that are forthcoming were originally motivated by a desire to
increase the order by order accuracy of the method [16]. A close inspection of the CCSD
energy shows that it is complete through third order in MBPT, and is incomplete with

respect to MBPT beginning with connected triple excitations at fourth order.
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2.5 Approximate Triples

Since full CCSDT is computationally expensive even when using just a two-body Hamilto-

5

p» various approximations have been developed which take into account

nian, scaling at n3n
the leading effects of triples on CCSD. In this thesis, I will focus on the non-iterative triples
correlations which are calculated using fully converged singles and doubles amplitudes in the

absence of T3. These approximations share strong parallels both in form and philosophy to

the three-body IM-SRG approximations made in this thesis in Chapter 5.

2.5.1 CCSD(T)

The most commonly used CC method in quantum chemistry and nuclear physics is CC
singles doubles plus perturbative triples, and denoted as CCSD(T) [65]. Here I will only
present an earlier version of this approximation, referred to as CCSD[T] or CCSD+T. If
starting with a Hartree-Fock reference state, the required diagrams to restore fourth order
MBPT content are found in CCSDI[T]. In this approximation, 73 is approximated correctly
up to second order in MBPT. This allows for an energy correction correct through fourth

order. T3 has the diagrammatic form found in Fig. 2.3, and algebraic form of
Toeiji ~ (@fE{RoI o} |®). (2.37)

It can be shown that all fourth order triple excitation diagrams found in Fig. 3.16 can be

found in CC theory as

1
AEccspir) = 3 > 1 Tapeiil* Dijrave (2.38)
" abcijk
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Figure 2.3: Diagrams demonstrating the approximate T3 constructed from converged 75
amplitudes in the CCSDI[T] energy correction. The dashed line represents the resolvent
operator Ry from perturbation theory.

where Ajjpgpe = €+ €j + € — €a — €a — €, and €; = f;;. 1t is important to note that Tjp.;
must be made antisymmetric before use in (2.38). By inspecting the diagrams in Fig. 2.3 and
counting the number of particle and hole lines, one arrives at the ngnﬁ scaling usually quoted
by a perturbative triples calculation. This will be the same scaling for all non-iterative triples
within CC theory. The addition of the AEsqg p[r) term to CCSD calculations improves
agreement with exact results at equilibrium geometries of molecules dramatically, but usually
begins to fail at stretched geometries even for single bond-breaking in chemistry results, and
more generally any time the system exhibits a strong multi-reference character [66]. The
situation is better, but still qualitatively similar for CCSD(T). For nuclear systems, it is
expected that these corrections behave similarly, but the issue of explicit three-body forces

makes the issue somewhat less transparent [67].
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2.5.2 A-CCSD[T]

One important development in CC theory is its recasting as the solution to a bi-variational
minimization [16]. This involves identifying the right and left eigenvector of the similarity

transformed Hamiltonian. The left eigenstate can be written as
(P|(1+A), A= M+Xo+..., (2.39)
where the different )\, are different rank de-excitation operators defined as

A = Z Nia :a;.raa 0 (2.40)
ai

1
ijab

This yields the formal CC energy functional as
E = (P|(1+A Thet o 241
r—cc = (P|( )(e e ) |®). (2.41)

If the A and T are truncated at the same level, for example at the singles and doubles level,
then the Eq. 2.31-2.33 result as the stationarity conditions for the functional as A;, and A; ;4
are varied. Additionally, one arrives at a set of A equations if Tj, and T} are varied. This
not only provides an avenue for generating observables, but also for further approximating
the effect of higher order cluster and A amplitudes. Again, isolating the perturbative content

to restore fourth order terms to a A-CCSD energy calculation,

AEN_cospir) = (P[A2(I'T3)c @), (2.42)



where T3 is approximated in the same way as it was for CCSD[T]. This correction allows
for the inclusion of different diagrams than CCSD[T], and generally behaves better when
describing bond breaking, but again breaks down for systems with a strong multi-reference

character [16, 68, 69].

2.5.3 Completely Renormalized CC Methods

Arguably the most complete non-iterative method for approximating full CCSDT from CCSD
methods is the recent formulation of completely renormalized CC commonly labelled as CR-
CC or just CR-CC from now on in this work [8]. CR-CC improved upon earlier completely
renormalized methods such as CR-CCSD(T) which performed much better than the non-
iterative triples presented above, but were not rigorously size extensive [70-72]. We will
follow the presentation found in Ref.[8]. Here we must define some notation for expedience.
As mentioned before, the cluster amplitude is truncated at some excitation rank. If we
denote this by the number m 4, then T'(mg) = Z;nfl Ty, and H(my) = e~ Tma) gel(ma),
CR-CC methods dispense with purely perturbative arguments and instead use a moment

expansion combined with a novel parametrization of the true full CI “bra” vector

(Uo|H = Eg (To| = Eg (®|Le Tma), (2.43)

It is important here to notice that although the £ is similar in form and function to 1 + A
from the previous section, they are not identical. £ is defined for higher-body components
above m 4, whereas 1 4+ A is only defined up to the same level of approximation as 7" in the
A — CC theory. This would make it unfeasible to incorporate a residual three-body force

in either of the previous approximate triples treatments. This parametrization leads to the
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asymmetric expression for the true ground state energy

(@ e T(ma) geTma) |p) _
Ey = = (®|LH D). 2.44
0= g Tl T gy = (EA ) 2) (2.44)

This allows for insertion of completeness in terms of excited Slater determinants to arrive at

A
Eo=3" 3 (@]l ) (@ Hmy) |9) = E(ma) + 0(ma, A).  (245)

11...in 1].--ln
n=0 i1 <...<ip
a1<...<an

The level of excitations inserted between £ and H(m4) can be truncated at another level
mp. If we also make the idenfication of the “moments” of the similarity transformed matrix
element as Mfllzin(m ) = (@?11.'.'.'1.2” |H(my) |®). This allows the CR-CC energy correction

to be written as a function of m 4 and mp,

mp
_ aj...an aj...an
d(my,mp) = E E lil...in MZ1ln (my). (2.46)
n=m g+1 11 <...<ip
a1<...<an

Having given the formalism underpinning CR-CC methods, I now turn to the relevant CR-
CC(2,3) method. That means that £~ 1+ Accgp + L£3. The £3 amplitudes are approxi-
mated by multiplying Eq. (2.43) on the right by eT(CCSD) \@abc>, yielding

ijk

(@|(1 + Accsp) H(CCSD) [®¢0) + (D|L3H(CCSD) |§h) = Eglfly. (2.47)

If the further approximation is made that <®7;1{1 |H(CCSD) ]@?fg) ~ 0 unless ijk = Imn

and abc = def, and that Ey ~ Eccgp, then the ll‘.‘jb,g can be isolated using only known
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quantities to yield

(®|(1+ Accsp)H(CCSD) |99%)

abc ijk
ibe(COSD) ~ - | (2.48)
Y Ecosp — (@ H(CCSD)|fh)

Full CCSDT tends to track full CI results quite well even for systems with a moderately large
multi-reference character. CR-CC(2,3) seems to give comparable accuracy to full CCSDT,
while the previous two fail to qualitatively reproduce full CCSDT in these cases [8]. This
ability of CR-CC(2,3) to mimic full CCSDT despite scaling in the same manner as CCSD(T)
can be tracked down to two main features. The first improvement enters by updating the
definition of “diagonal” than is used in the energy denominators of both CCSD(T) and A-
CCSD(T) corrections. The denominator of the first two methods are just the Moller-Plesset
denominators of the bare HF energies. In the completely renormalized theory presented,
one instead uses the energy denominator associated with the full similarity transformed
Hamiltonian, and diagonal two-body terms are included in the denominators. In Chapters
5 and 6, results will be presented with the label CCSD(2)p, which is equivalent to CR-
CC(2,3), where the denominator is made up of only one-body terms from the full similarity
transformed Hamiltonian. Secondly, the three-body “moment” of the CR-CC(2,3) correction
contains many more topologies not found in the previous methods, as they were only linear

in the Ty amplitudes.
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Chapter 3

In-Medium Similarity

Renormalization Group

As discussed in Sec. 1.1, the rapid progress in ab initio nuclear structure in recent years has
been driven in large part by the development of renormalization group methods to produce
soft “low-momentum” interactions from underlying “hard” interactions without distorting
low-energy observables. Soft potentials are highly advantageous for many-body methods that
rely on expanding wave functions in a finite basis of localized single-particle orbitals, as the
convergence of calculations with respect to basis size is dramatically improved. Moreover,
since strong short-range correlations are smoothed out, Hartree-Fock becomes a reasonable
zeroth order starting point for nuclei, making methods like MBPT and coupled cluster theory
based on building correlations on top of a “simple” reference state attractive methods for
nuclear structure calculations.

As will be shown in the following, the IM-SRG approach extends the RG notion of
decoupling low- and high-momentum degrees of freedom to the many-body Hilbert space by
formulating “in-medium” flow equations, the solution of which is equivalent to the partial
diagonalization or block-diagonalization of the many-body Hamiltonian [11, 21, 24, 33, 39,
58]. Because of its favorable polynomial scaling with system size, and the flexibility to target

ground and excited states of both closed- and open-shell systems, the IM-SRG provides a
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powerful ab initio framework for calculating medium-mass nuclei from first principles.

In the present chapter, I present the basic IM-SRG formalism and review some of the
successful applications to nuclei in recent years. After this introductory review and survey
of previous results, I present a detailed analysis of the perturbative content of the IM-
SRG in Sec. 3.5. While this section is rather technical, it provides crucial guidance for
understanding the similarities and differences with coupled cluster theory. More importantly,
the perturbative analysis in this chapter will play a key role in formulating the improved

approximations to be discussed in Chapter 5.

3.1 IM-SRG Formalism

3.1.1 Overview of the SRG

The main idea of the Similarity Renormalization Group (SRG) is to drive the Hamiltonian

H(s) towards a diagonal or block-diagonal form via a continuous unitary transformation [73]

H(s)=UT(s)H(0)U(s). (3.1)

Taking the derivative of Eq. (3.1) with respect to the flow parameter s, we immediately

obtain the operator flow equation

——H(s) = [n(s), H(s)], (3.2)
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where the generator 7(s) is related to the unitary transformation U(s) by

_ dUT(s)

= U(s) = —n(s). (3.3)

n(s)

Note that the formal solution for U(s) is given by the path- or S-ordered exponential

U(s) =Sexp /05 ds'n(s"). (3.4)

For now, the specific form of 7(s) is unimportant; I will revisit possible choices in Section
3.2, and how they can be designed to drive certain parts of the transformed Hamiltonian
to zero. In the original applications to nuclear physics, which we refer to as the free space
SRG, the aim was to soften the Hamiltonian by choosing 1 to decouple high- and low- mo-
mentum modes, driving the Hamiltonian towards a band-diagonal form with increasing s in
momentum representation, making the interactions more tractable for ab initio calculations
(33, 52, 54, 55|. On the one hand, the free-space SRG is convenient, as it does not have
to be performed for each different nucleus or nuclear matter density. On the other hand, it
is necessary to consistently evolve three-nucleon (and possibly higher) interactions that are
induced during the evolution to be able to soften the interactions significantly and maintain
approximate s-independence of A > 3 observables. The consistent SRG evolution of three-
nucleon operators represents a significant technical challenge that has only recently been
solved in recent years.

An interesting alternative is to perform the SRG evolution in-medium (IM-SRG) for
each A-body system of interest by normal-ordering with respect to an appropriate A-body

reference state [11, 21, 24, 33, 39, 58]. Unlike the free-space evolution, the IM-SRG has
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the appealing feature that one can approximately evolve 3, ..., A-body operators using only
two-body machinery thanks to the reshuffling of terms brought about by normal-ordering.
Moreover, with a suitable definition of the off-diagonal part of the Hamiltonian to be driven
to zero, the IM-SRG can be used as an ab-initio method in and of itself, rather than simply

to soften the Hamiltonian as in the free-space SRG.

3.1.2 M-Scheme Flow Equations for IM-SRG(2)

If the IM-SRG transformation is performed exactly for an A-body system, the transformed
Hamiltonian will involve up to an A-body interactions regardless of the initial particle rank
of the starting Hamiltonian. Within the second quantization formalism discussed above, it is

simple to show how these induced many-body forces would occur via the following equation,

[: azaZadac G aga}alak ] = 0ei aILaZa;alakad L (3.5)
In the free space SRG, the coupling between the different particle rank operators is “one-
way” . For instance, the two-body interactions feed into the flow equations for the three- and
higher-body interactions, but higher-body operators don’t renormalize lower-rank operators.
In contrast, for the IM-SRG these higher-body forces certainly feedback into evolution of the
lower-body interactions. To control the proliferation of many-body interactions, practitioners

of the IM-SRG method have typically performed a simple truncation in which only the

normal-ordered zero-,one-, and two-body parts of 7(s) and H(s) are kept, so that

H(s) =~ E(s)+ f(s) +T'(s), (3.6)

n(s) =W (s) + 13 (s) . (3.7)
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This is called the IM-SRG(2) truncation, and has been very successful in treating medium

mass nuclei [39, 58, 74]. In this work, I will also discuss the IM-SRG(3), where the three-

body forces are kept as well. The commutator expression with full three-body forces are

given in Appendix B, but the full IM-SRG(3) method without approximations has never

been implemented in physical systems due to its high computational cost. One of the main

thrusts of my thesis is the development of computationally tractable approximate IM-SRG(3)

calculations, see Chapter 5.

Evaluating Eq. 3.2 using the general commutator expressions found in Appendix A, one

obtains the IM-SRG(2) equations

dE
ds

dfiz _
ds

dl'1234
ds

where n; = 1

1 _
> (na = 1) foa + 5 > Naveal cdapnanpheny (3.8)
ab abed

> (4 Pio)mafaz + Y (na — 1) MapTp1a2 — FapMb1a2)
a ab

1
T3 Z(”anbﬁc + fiafipne) (1 + Pr2)nc1apl abe2 » (3.9)

abc

> {1 = Pr2)(mala234 — fiama234) — (1= P3a) (43T 12a4 — fa3mizas)}
a
1
+3 > (1= na — ) (m1206T ab34 — T12abMab34)
ab

= “(na = np)(1 = Pr2)(1 = P3g)mp2aaTa103 - (3.10)
ab

— n;j, and the s-dependence has been suppressed. Note that permutation

symbol P;;, which represents the following interchange

Pijg(...,i,...,j)Eg(...,j,...,i), (3.11)
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has been used to simplify the expressions.
The coupled differential equations in Egs. (3.8)—(3.10) are integrated from s = 0 until a

suitable decoupling condition has been achieved, with the initial value condition

H(0) = E(0) + £(0) +T(0). (3.12)

The perturbative content of Eqgs. (3.8)—(3.10) will be analyzed in Section 3.5. In that
presentation, it will become clear that, much like CCSD, the IM-SRG(2) includes infinite-
order ladder sums in the pp and hh channels (i.e., Brueckner Hartree-Fock type correlations),
infinite-order ring diagram sums in the ph channel (RPA type correlations), plus complicated
“interference” terms between the various channels. Furthermore, like coupled cluster theory,
the IM-SRG at any truncation level is based on a commutator expression. Consequently, the
Hamiltonian contains only connected diagrams [16, 75] and one obtains size-extensive results.
From Egs. (3.8)-(3.10), the two-body flow equation which contains doubly contracted two-
body operators dominates the cost. These terms scale polynomially as O(N%) with the
single-particle basis size N. This is similar in cost to CCSD, the Self-Consistent Green’s

Function Approach (SCGF) [19, 76, 77|, or canonical transformation theory [78, 79].

3.1.3 Symmetries and the Flow Equations

It is often useful to impose explicit symmetries on a hamiltonian in order to reduce unneeded
trivial effort. This is obviously true for the flow equations as well. Examples include spin
symmetry in coulombic systems, translational invariance in a plane wave basis, and spherical
symmetry with nuclear systems, all of which are utilized in this work. I will present only the

spherically symmetric JJ-coupled flow equations, as they are the least trivial example.
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If the single-particle indices are made to refer to radial, angular momentum, and isospin
quantum numbers i = (k;l;j;7;), then they do not depend on the angular momentum pro-
jection m;. Then the only non-diagonal part of the one-body matrix elements become the

radial quantum numbers, e.g.,

_ nmn .
f12_fk1k2 01115971 jo 0717 - (3.13)

Additionally, the two-body matrix can be coupled to angular momentum J to yield the

simplified (computationally) IM-SRG(2) flow equations

dE N 1 _
E = Z]c%nabfba (na - nb) + 5 Z ananchchabnanbncnd, (3.14)
ab abedJ
df12_2(1+P) f —|—iZjQ(n —n)( T4 o — fanih )
s 12)Mala2 2 a = 1) \Mabt p1a2 ~ Jab"lh1a2
a 1 abJ
11 = I
+ 772 Z J (nanbnc + nanbnc) (1+ Pp9) n‘cjlangbCQ , (3.15)
J1 abcJ
dFi]234 J=j1-J J J
s = > ( (1 — (=171 2P12) <771ara234 - f1a77a234>
a

_ <1 - (—1)J_j3_j4P34> (na3F{2a4 - fa3771]2a4) )

1 J J J
T3 > <n12abrab34 - F12ab77ab34> (1 =na —np)
ab

+ 3 (na—mp) (1 - (—1)J_j1_j2P12)

~2 |J1 72 J ;7! gl ,
_J J J g
x J' (n14abrab32 - F14ab77a532) ) (3.16)
g3 ja J'
where j = /2] + 1, indices with a bar indicate time-reversed states, and the 77 and T’ matrix

elements in the last line of Eq. (3.16) are obtained by a generalized Pandya transform (see,
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g o g1 g2 J /
Oiaga=—»_J' 0132 - (3.17)
J! g3 ga J'

It has been shown that this angular momentum coupling process drops the N number of

M-scheme orbitals down to roughly to roughly to N2/3 J-scheme orbitals [64]

3.1.4 General Observables

Within the IM-SRG framework, the consistent transformation of observables in addition to
the Hamiltonian is conceptually very simple: The operator O(s) is normal ordered with
respect to |®) and truncated to the same two-body level, and then subjected to exactly the

same transformation via the same differential equation

d

7:005) = [n(s), O(s)], (3.18)

This means that an additional set of flow equations for each O(s) need to be integrated
concurrently with the hamiltonian, roughly doubling the size of the system of coupled differ-
ential equations. This means that the method scales linearly with each additional observable
one wishes to calculate, rendering the IM-SRG (as presented) unsuitable for treating systems
where more than a few additional observables are needed. In Chapter 4, a novel formulation
of the IM-SRG using Magnus expansion techniques will be presented that bypasses this (and

other related) computational limitation.
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OpOh 1plh 2p2h  3p3h OpOh 1plh 2p2h  3p3h
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0pOh

1plh

1plh

2p2h
2p2h

3p3h
3p3h

(il H(0)[7) (i H(o0) |7)

Figure 3.1: Schematic representation of the initial and final Hamiltonians, H(0) and H(o0),
in the many-body Hilbert space spanned by particle-hole excitations of the reference state.

3.2 Choice of Generator

3.2.1 Decoupling

As mentioned previously, the IM-SRG transformation can be tailored to drive a suitably
defined “off-diagonal” part of the Hamiltonian to zero. To see how this works, let us consider
the case of a single reference system such as the ground state of a closed-shell nucleus.
Fig. 3.1 shows a schematic representation of the s = 0 normal ordered hamiltonian H(0) on
the left, where the reference state |®) is the OpOh state at the top left. To isolate the ground
state, we desire a transformation that drives the Hamiltonian towards the form shown in the
right panel, where the OpOh reference is now an eigenstate of the transformed hamiltonian.
Note that an initial three-body interaction would generate coupling between the npnh and
(n+3)p(n+3)h blocks, so the notation of Fig. 3.1 implicitly assumes we only have two-body
interactions.

Clearly, the matrix elements that couple the OpOh reference state |®) to higher excitations
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are

(@ H(0) : apay, :|) = fop, (3.19)

(®| H(0) : aLaL,ah,ah @) =T (3.20)

and their Hermitian conjugates. So for this particular problem, a suitable definition for the

“off-diagonal” parts of the hamiltonian to be driven to zero are

dioy o1 i .
H%(s) = prh tapay, +Z Z - Hapaayap, + He.. (3.21)
ph pp' hi!

During the flow, coupling is induced between the OpOh and higher states, e.g.

(®| H(s) raby ...ab yap, .. ap, :[@) #0. (3.22)

These induced forces are forced to vanish by our truncation, thus the eigenvalue obtained in
any truncated IM-SRG(n) type calculation is not variational. It is important that the size
and effect of this truncation can be investigated for systematic checking and improvement.
The matrix elements (3.19), (3.20) are approximately driven to zero, and the single zero-body
part of the hamiltonian becomes the eigenvalue of the exact ground state. Alternatively, one
could think of the final transformed hamiltonian as a unitarily equivalent hamiltonian in

which the Hartree-Fock solution is exact.
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3.2.2 White Generators

A generator must now be chosen, with the requirement that it will eliminate H od a5 the
hamiltonian is transformed via the IM-SRG flow equations. The class of generators which
provides the biggest numerical benefits, and most transparent connection to MBPT is that

found in the work of White on canonical transformation theory in quantum chemistry [58, 78]:

Lo ()

IA B fph ) ) pp’ hh ot ot .

/ Z AA/B ' pah' + E AA/B -apap/ahlah :— H.e.. (323)
ph ( ) pp/hhl pp/hh/<8

In future sections, I will appeal to the obvious three-body generalizations of this generator
in order to move forward with approximations to IM-SRG(3). Anti-Hermiticity of 7n(s) is
guaranteed by the sign change in the energy denominators under transposition in Eq. (3.23).

There are two different choices for the energy denominators employed in the White gen-
erators. These are differentiated by the superscripts in (3.23). They correspond to the
Epstein-Nesbet and Mgller-Plesset partitionings used in Many-Body Perturbation Theory

(MBPT) (see, e.g., [16]). White’s prescription in Ref. [78] leads to the Epstein-Nesbet case:

AJ, = (phl H [ph) — (| H |®) = f, = fi, + Tpppn, = — A, (3.24)

A g = (o BV [pp/hl') = (@1 H|®) = fy+ Fy = fi = Fyr = Ay = =Dy

(3.25)

where fo = fop, i = frp and

App’hh’ =T T Untnnt = pph = Uprntyrnt = Upptpnt = gl - (3.26)
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The Mgller-Plesset case is simpler, yielding

A =Tp— Tn =A%, (3.27)

pp’hh' =htly—Ih—Iy= —A];?h/pp/. (3.28)

These two choices give rise to almost no difference in practical calculations, but the con-
nection to Mgller-Plesset perturbation theory is easier to show with the Mgller-Plesset type
denominators. Almost all results presented in this work have been produced with Mgller-
Plesset type White generators.

If one wants to work with the J-scheme flow equations (3.14)—(3.16), it is not unambigu-
ously clear how to treat the two-body matrix elements in the Epstein-Nesbet denominators
(3.24), (3.25) in the angular momentum coupling process. Using the monopole matrix ele-

ments yield a straightforward solution to this problem, i.e.

p0) g2+ DT

abed = 5574 (3.29)

in Eqs. (3.24)-(3.26).

The big advantage of White-type generators in practical calculations lies in the fact that
it suppresses all off-diagonal matrix at roughly the same decay scale (see Section 3.2.5).
Thus, the suppression rate is not a function of any energy or momentum scale, and it
therefore does not represent a proper RG flow. This in contrast to the imaginary-time and
Wegner generators, which will be discussed in the next Section 3.2.4. This RG distinction is
unimportant in terms of final results, as any choice choice of generator that decouples the

reference from excitations is producing an eigenstate regardless of the organization of order
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of suppression.

The benefits of this uniform suppression of off-diagonal elements is difficult to understate.
Because the White type generator’s matrix elements are given by ratios of energies, f and
[' appear linearly of the right-hand side of the IM-SRG flow equations (3.8)—(3.10). This
clearly would yield a much less stiff set of flow equations than the Wegner generator, where
third powers of f and I' appear (see below), or the imaginary time class, where second
powers appear. Thus, for systems where the White type generator remains a well defined
object throughout the transformation, the number of integration steps required to solve the
IM-SRG flow equations are manifestly less than other generators. However, if one encounters
a systems with vanishing energy denominators [21, 39], the White generators will be poorly
defined. In this work, all systems presented can be approximated as closed-shell systems,

and thus the White type generators are in general a well defined operator.

3.2.3 Imaginary-Time Generators

One can also motivate a second class of generator, by appealing to solutions of the imaginary-

time Schrdinger equation. Using the off-diagonal Hamiltonian, Eq. (3.21), we define

nHA/B(s) = ngn (Aﬁh/B(s)> fon(s) :a};ah:

A/B
+ Z sgn (App/’hh’(s>> Fpp/hh/(8> :a;;a;,ah/ah :—H.c., (3.30)

where AA/B are again the Epstein-Nesbet and Mgller-Plesset energy denominators defined
in Egs. (3.24)—(3.28). The sign functions ensure that off-diagonal matrix elements are sup-

pressed instead of enhanced during the flow. Solving the IM-SRG(2) equations for the
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imaginary time generator shows that the decay scale for these matrix elements is approx-
imately given by the diagonal energy difference between the reference and 1plh or 2p2h
excitations. This energy difference is just AA/ B depending on the definition chosen for

1IA/B generates a proper RG flow, organized by energy differences in the

diagonal. Thus 7
choice for “diagonal”.

As mentioned, the quadratic dependence of the IM-SRG(2) equations on f and I" creates
a more stiff set of equations, and thus require more integration steps to solve. This generator
is robustly defined even in the presence of vanishing energy denominators, and thus provides
a good choice for systems where the White generator becomes a poorly defined object. This

has been found to be very useful in the multi-reference IM-SRG(2) method of Hergert et al.

81].

3.2.4 Wegner Generators

The generator which has been most formally explored is the Wegner type generators [73].
These provide a robustly defined generator for any definition of “off-diagonal”, and not
just ground state decoupling presented above. In the original work, Wegner proposed the

following generator

' (s) = [H(s), H*(s)]. (3.31)

Using the definition of the off-diagonal Hamiltonian for this work, Eq. (3.21), and the com-

mutators from Appendix A, one can arrive at the matrix elements of 7(s). In IM-SRG(2)
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calculations, one keeps only two-body and lower operators, yielding

ma =Y (1- Pio)ff,f% Z e = FoiTha)
a
1 o
+ 5 Z(nanbnc + ngngpne) (1 — Plg)Fglanggcz , (3.32)
abc

Mmoss = Y {(1 — Pro) ({05550 — FlaTa30) — (1= Psa) (fes 9504 — fg?ilrcllzazx)}

a

1 d d d d
+5 Y (1= na = m) (o Toas — T990 ap34)
ab

— Z — ) (1 — Pra)(1 — Pyy)T8, ;1% (3.33)

Clearly, the Wegner generator defined in Egs. (3.32) and (3.33), and the flow equations (3.9)
and (3.10) are nearly identical except for anti-hermiticity and hermiticity respectively. Thus
the spherical .J-scheme expressions for g/ (s) are easily obtained from Eqs. (3.15) and (3.16).

The IM-SRG equations reach a fixed point when 7(s) vanishes, the transformation ceases.
For the Wegner generator, a fixed point at s — oo exists if H Od(s) vanishes as required. It

has been shown that [73, 82]

i (15))” = ~20x (nf (s)n(s)) < 0 (339

since 1 (s)n(s) is positive semi-definite. This implies that with this choice of generator,
HO(s) is increasingly suppressed and H(s) is rendered into a form of H%(s).

Similar, to the imaginary time generator, the Wegner generator creates a proper RG
flow that supresses matrix elements based on the diagonal energy difference between the

reference and 1plh or 2p2h excitations. While formally appealing, and robust to vanishing
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energy denominators, this generator creates flow equations that depend on f and I' in a cubic
fashion. This leads to extremely stiff equations that require many, many steps to arrive at
a decoupled reference. Additionally, the cost to construct nIH is as much as evaluating the
flow equations, making each timestep approximately double the cost of the previous two

generators.

3.2.5 Decay Scales

Let us examine in more detail how the generators give rise to the different decay scales we
have claimed above, and thus create varying degrees of stiffness in solving the IM-SRG.
As with everything assumed above, we identify a diagonal and and off-diagonal part of the

hamiltonian,

H(s) = H%(s) + H(s), (3.35)

where H Od(s) is to be suppressed as s — co. It is then natural to work in the eigenbasis of
H%(0). Since the form of H%(s) doesn’t change, it is possible to assume that its eigenbasis

is invariant under s, so that at each step of the flow
H(s) |n) = Epn(s) |n). (3.36)

In this basis representation, Eq. (3.2) becomes

%mgm—zwmmem—wmwwm»

k

= — (B MU+Z(M%kWWﬁ<HWWWMM,BW>
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and (i| H%|i) = 0

Consider now a White type generator, which can be written as

G T (i HO
(ln' 5) =:§§%fjj§%fz, (3.38)
i J
and specifies Eq. (3.2) to the following
d . E; +E 2Ek ) )
(il H|j) = = H|j) +Z (B = (B, = By (A WL ) (3:39)

If the transformation generated by 7 truly suppresses H od and if it is assumed that H od
either begins small compared to H 4 or will become so during the flow, then we can neglect
the second term quadratic in H od Then it is possible to just inspect the first term in the
flow equations in order to illustrate how off-diagonal matrix elements are being suppressed.

In this case, Eq. (3.39) implies

}YOd k) (k| H
2{: il ’ (k] H i) 0, (3.40)
and the energies stay (approximately) constant:
Consequently, Eq. (3.39) can be integrated, and one arrives at
(i| HU(s) |j) = (i] H/(0) |j)e ™, s> sq, (3.42)
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as already mentioned in Section 3.2.2. This is not suggesting that the quadratic terms are
unimportant, just that the first term is what sets the decay scale.

The imaginary-time generator can be written as
(il |j) = sgn (B; — Ej) (| H*|j). (3.43)
and the flow equation

d . . . .
(il H1j) =~ |E; = Bj| il )

+ > (sen(E; — By) +sgu(E; — Ey,)) (i) H k) (k| H*|j) . (3.44)
k

Note that the sign function in the definition of n'! ensures that only the absolute value of
the energy difference between the states |i) and |k) appears in the first term. Integration of

Eq. (3.44) yields

. . . N —|E;,—E;
(il HO(s) 1) = G| HO(0) [jye™ B0, (3.45)
and off-diagonal matrix elements are suppressed, with a decay scale set by |E; — Ej|.
Finally, we perform the same kind of analysis for the Wegner generator
(@l "M 1) = GIHT, B ) = (B = Ej)(il H*|j) (3.46)

The flow equation reads

d

(i H|j) =~ (B — E;)° (i| H|j) + > (Ei + Ej — 2Ey) (6| HO k) (k| H*|5) . (3.47)

k
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and we obtain

~(E;=EBj)*(s—s0)

(i] HU(s) |j) ~ (i] H*(s0) |5)e (3.48)

Thus, the imaginary-time and Wegner generators yield proper RG transformations, in
the sense that matrix elements between states with large energy differences AFE;; = [E; — Ej|
decay at smaller flow parameters s than states with small AFE;;. The White generator, on
the other hand, acts on all matrix elements simultaneously. In Section3.3, it will be shown

that these different choices do not lead to large differences in the large s limit.

3.3 Numerical Explorations

In this section, we illustrate the general properties of the IM-SRG flow equations in numerical
applications, with special emphasis on a comparison of the different generators that were
introduced in the previous sections. To simplify matters, we only use a two-body interaction

throughout this section (see 3.3.1 for details).

3.3.1 Implementation

Baring a few cases, the IM-SRG has only really been implemented for nuclear systems,
therefore in this review chapter of the method I only present details for typical nuclear cal-
culations. The details that will be relevant for other systems will be introduced as the results
appear in later chapters. For nuclear systems, the IM-SRG is implemented in harmonic os-
cillator (HO) configuration spaces. The principal advantage of this basis in nuclear systems
is that one can factorize center-of-mass and relative degrees of freedom in the evaluation of
matrix elements (see, e.g., for [83]). This is an invaluable property for self-bound systems

like nuclei. For methods like the No-Core Shell Model, this property can be retained even at
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the many-body level for a suitable choice of model space truncation [12]. For methods which
use single-particle basis truncations, like the IM-SRG, coupled cluster, and self-consistent
greens functions, this exact factorization of center-of-mass and intrinsic wave functions is
analytically spoiled, although it is still observed empirically. We revisit this in chapter 4.

As mentioned before, the IM-SRG explicitly exploits spherical symmetry for nuclear
applications by working with the J-scheme IM-SRG flow equations presented in Sec. 3.1.3.
In these spherically symmetric basis sets, it is possible to achieve convergence for spherical
nuclei of interest in reasonable calculations. This is true even for “bare” interactions from
chiral EFT like the N3LO interaction by Entem and Machleidt, with an initial cutoff A =
500 MeV/c[1, 2]. This is the interaction used to produce most of the nuclear results presented
in this thesis, both at its original resolution scale, indicated by A = oo , and at a lower
resolution scale A = 2.0 fm ™!, which is generated by a free-space SRG evolution or softening
(33, 53].

To obtain reference states for the IM-SRG calculation, the Hartree-Fock equations for
the intrinsic Hamiltonian (2.2) are self consistently solved. The intrinsic Hamiltonian is then
transformed to the Hartree-Fock basis and normal ordered with respect to the Hartree-Fock
reference state, discarding the residual 3N part in the process (cf. Eq.(2.5)). Starting from
the zero-, one-, and two-body matrix elements of the truncated normal-ordered Hamiltonian
as initial values, the J-scheme flow equations (3.14)—(3.16) are integrated with the CVODE
solver from the SUNDIALS package [84]. For White and imaginary-time generators, we
choose the recommended Adams-Bashforth-Moulton predictor-corrector method for non-
stiff systems, while the fifth-order backward-differentiation method is used for the stiff flow
equations in the Wegner case.

In order to determine at what finite value of s sufficient decoupling is achieved, second-
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Nucleus A[fm~1] E14[MeV] Eex [MeV]
4He 00 -27.18 -27.26(3)
160 00 -126.01 -126.3(1)
40Ca 00 -366.23 -369(1)
‘He 2.0 -28.27 -28.27
160 2.0 -165.68 -165.68
40Ca 2.0 -595.98 -595.95(2)
8Ni 2.0 -1319.41 -1319.4(1)
1008 2.0 -1953.96 -1954.3(3)
1328y 2.0 -2752.03 -2753(2)

Table 3.1: IM-SRG(2) ground-state energies of selected closed-shell nuclei for the the chiral
N3LO interaction by Entem and Machleidt [1, 2], with A = oo and A = 2.0 fm~! (cf. Fig. 3.2).
FE14 are the energies obtained for epax = 14 at optimal hw, and Fex are extrapolated to
infinite basis size (see text), with extrapolation uncertainties indicated in parentheses.

order MBPT correction for the flowing Hamiltonian H(s) is used. This is a direct measure
of the off-diagonal part of the Hamiltonian as defined in Eqs. (3.21). When the second order
MBPT correction drops below 1076 MeV, the flow is stopped and the resulting zero-body

energy is considered the full ground state energy.

3.3.2 Convergence

In Fig. 3.2, the convergence of the IM-SRG(2) ground-state energies of the closed-shell nuclei
4He, 160, and 0Ca with respect to the single-particle basis size emax (see Appendix 3.3.1)
is shown. All calculations shown use the White-Epstein-Nesbet generator nc, Eq. (3.23),
and it should be assumed unless otherwise stated that this is the generator being used. It
should be noted that for the unevolved N3LO interaction, the Hartree-Fock solutions for all
three nuclei have positive energy. Nonetheless, the HF states still lead to reasonable and
converged IM-SRG(2) energies as shown in Fig. 3.2.

We can correct for the effects of using a finite HO basis by using the methods described

in Refs. [13, 14]. A HO basis with fixed epax has ultraviolet and infrared cutoffs which are
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els) and A = 2.0 fm~! (right panels). Notice the significant differences in the energy scales
between the left and right panels. Gray dashed lines indicate energies from extrapolation
the emax > 10 data sets to infinite basis size (see text and Refs. [13, 14]).
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given by

AUV = 2€max + 7h/CLHO s (349)
Lir = V2émax + 7ano, (3.50)

where ago = /fi/mw is the usual oscillator length, and m the nucleon mass. With these
definitions, we can perform a simultaneous fit of the data for (almost) all pairs (emax, hiw)

to the expression
2 2
E(emax, hw) = Eoo + Age MUV/AT 4 Age2hool1R | (3.51)

where the energy for infinite basis size Foo, the binding momentum ko, and the A; are
treated as parameters. For the unevolved N3LO interaction, we found it necessary to exclude
the emax = 8 data set to obtain stable fits for 160 and 40Ca, most likely because Ayy is
close to the cutoff of the initial interaction for emax = 8 and the lower values of Aw we
are considering. The resulting extrapolated energies are indicated by gray dashed lines in
Fig. 3.2, and they fall within 1% or less of the energies for epax = 14, the largest basis size
which was used in actual calculations. Both energies are reported for each nucleus in Table
3.1.

For the light nuclei *He, the IM-SRG(2) ground-state energy is about 2 MeV below the
exact result from a No-Core Shell Model (NCSM) calculation with the same chiral N3LO
interaction (see, e.g., Ref. [54]). Further, IM-SRG(2) results can be compared to Coupled
Cluster calculations with the same interaction [64, 85] (also see Ref. [74]). The IM-SRG(2)

energies are significantly lower than the CCSD energies, lower even than the A-CCSD(T)
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Figure 3.3:  Convergence of "®Ni, 199Sn, and '¥2Sn IM-SRG(2) ground-state energies
w.r.t. single-particle basis size emay, for the chiral N3SLO NN interaction with A = 2.0 fm ™.
Gray dashed lines indicate energies from extrapolation the emnax > 10 data sets to infinite
basis size (see text and Refs. [13, 14]).

results, a CC method which takes perturbative triples corrections into account. I will soon
present a perturbative analysis of the IM-SRG in Sec. 3.5, which shows the origin of the the
difference between IM-SRG(2) and CCSD. This overbinding can be explained by a systematic
undercounting of certain repulsive fourth-order terms in the IM-SRG(2) truncation, which
simulates the additional attraction that is otherwise gained from including triples correction.
For the (comparably) hard initial interaction, the IM-SRG(2) overshoots the A-CCSD(T)
results, while the reduced importance of higher-order MBPT corrections for soft interactions
causes the IM-SRG(2) results to fall in between the CCSD and A-CCSD(T) results (see
Secs. 3.5 and Refs. [58, 74]).

In the right panels of Fig. 3.2, we show the same kind of convergence plots for the chiral

1

N3LO interaction at the reduced resolution scale A = 2.0 fm~!. As expected, the speed

of the convergence is greatly enhanced by using a softer interaction [33], which is evident
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from the significantly smaller energy scales in the lower panels. In Tab. 3.1, we can see that
the extrapolated energies agree with the emax = 14 results within 0.01-0.1%. For 4He, there
appear to be some deviations from the otherwise variational convergence pattern in the other
cases. Of course, the IM-SRG is not strictly variational because of the truncations in the
flow equations (3.8)—(3.10). In the present case, however, these deviations are on the order
of a 10 keV or less, and are most likely dominated by numerical artifacts from integrating
the flow equations.

For a soft interaction, the large single-particle basis sizes we have used here are sufficient
to converge nuclei which are much heavier than 40Ca. This is demonstrated in Fig. 3.3,
where we show the convergence of the IM-SRG(2) ground-state energies of the proton- or
neutron-rich exotic nuclei "®Ni, 1008n, and ¥28n. The corresponding energies are included
in Tab. 3.1. Using only a softened chiral N3LO interaction, the binding energy of these
nuclei is overestimated significantly, continuing a trend which was already noticeable for 160y
in Fig. 3.2. This overbinding is caused by the shift of repulsive strength from the off-shell
two-body interaction to induced three- and higher many-body forces as the resolution scale
is lowered, of course, and fixed by including at least the induced three-nucleon forces [21, 74].
While the inclusion of three-body operators comes with computational challenges, we stress
that these induced terms have low resolution scales as well, and do not affect the rate of
convergence of the IM-SRG ground-state energies adversely. While computational issues
pertaining to the storage of 3N matrix elements present a challenge, converged calculations
with NN + 3N interactions for the A ~ 100 region and beyond have now become possible

[74, 86, 87].
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3.3.3 Choice of Generator

Let us now study the effect of our choice of generator on the IM-SRG(2) ground-state ener-
gies. In Fig. 3.4, we show the IM-SRG(2) ground-state energies for the five different genera-
tors discussed in Sec. 3.2. Note that the panels for the White and imaginary-time generators
show curves for both the Epstein-Nesbet and Mgller-Plesset choices for the energy denomi-
nators and sign functions, respectively. The resulting ground-state energies for 40Ca agree
within 15 keV, which amounts to relative differences from 1076 to 10~%. Remarkably, this
agreement holds for both the softened and bare N3LO interactions, and irrespective of the
used basis parameters epax and hw. The extrapolated energies therefore also only differ by
equally small amounts.

It is evident from Fig. 3.4 that the White and imaginary-time generators give very similar
results. For the bare N3LO interaction, the extrapolated 0Cq ground-state energies are
—368.9 MeV and —367.7 MeV, respectively, which is a difference of about 0.3%. For any
hw in the studied range, the energy differences between the two types of generators drop
below 1% from emax = 8 onward. As expected, the differences become smaller when the
resolution scale of the interaction is lowered to A = 2.0 fm™!. The extrapolated energies are
—596.0 MeV and —595.6 MeV for the White and imaginary-time generators, respectively,
which amounts to a relative difference of order 10~4. The extrapolated values are affected
by slightly larger differences for small and large Aw. Near the energy minima with respect to
hw, where the results are better converged, absolute differences are typically below 10 keV.

For the soft interaction, the results for the Wegner generator agree very well with those
for the other generators: The extrapolated 40¢Cq ground-state energy is —595.4 MeV. The

situation is quite different for the bare interaction, though. To understand what we see, we
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Figure 3.4: IM-SRG(2) ground-state energies of 4004 obtained with different choices of the
generator, as a function of hw and the single-particle basis size epax. The interaction is
the chiral N3LO potential with A = co (top panels) and A = 2.0 fm~! (bottom panels),
respectively. The dashed lines indicate extrapolated energies. For the Wegner generator, the
shaded area indicates the variation from using different data sets for the extrapolation (see
text).

first consider the convergence pattern that is predicted for a (quasi)-variational theory by
the extrapolation formula (3.51) [13, 14]. At fixed emax, the derivative of Eq. (3.51) with
respect to the oscillator parameter fuw indicates that the ultraviolet (UV) and infrared (IR)
correction terms are minimized at large and small hw, respectively. The exponents of the

UV and IR terms behave like A%V ~ —emax and LR ~ /émax as emax increases, hence we
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expect IR corrections to dominate eventually. Consequently, we can infer that the minimum
of the energy with respect to the oscillator parameter should move to larger hw first until
UV convergence is achieved, and then to smaller Aiw for IR convergence.

In Fig. 3.4, we only see the energy minimum move towards IR convergence at small Aw,
which suggests that the calculation is sufficiently converged in the UV regime already for
emax = 8, the smallest basis shown in the figure. For the Wegner generator, the minimum
is still moving to larger hw values, which suggests that the calculation is not yet converged
in the UV regime, and a slower convergence with basis in general. If we use the data
for emax = 8,10,12, which behave variationally, an extrapolation to infinite basis using
Eq. (3.51), yields —370.7 MeV, which is compatible with the extrapolated results for the
White and imaginary-time generators within uncertainties.

Going to emax = 14, we face a complication: while the energy minimum moves to larger
hw, the curve intersects those for smaller eyax. This is not ruled out a priori, because the IM-
SRG is a non-variational approach, but makes the assumptions underlying the extrapolation
formula (3.51) questionable. Setting aside the fundamental issue of applicability, we have
extrapolated the energy using different subsets of our calculated data, and thereby obtain
the shaded band in Fig. 3.4, which represents a 10% variation of the extrapolated energy.

To better understand the behavior of the IM-SRG flow for the Wegner generator, we
have to consider how its structure differs from our other choices for n. The definition of the
off-diagonal Hamiltonian H°%(s), Eq. (3.21), is the same in all three cases, so we aim for the
same (or at least similar) fixed points of the flow, where n(oc) = 0. However, we know that
the White and imaginary-time generators are directly proportional to H od je. the only non-
vanishing matrix elements are of the types Toh /hp and T W Wb pp! - The Wegner generator,

on the other hand, has many additional non-zero matrix elements coming from the evaluation
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Figure 3.5: IM-SRG(2) ground-state energies of “Ca for the regular (left, as in Fig. 3.4)
and restricted Wegner generators (right, see text), as a function of hw and the single-particle
basis size emax. The interaction is the chiral N3LO potential with A = oo (top panels) and
A=20fm! (bottom panels), respectively. The dashed lines indicate extrapolated energies.

of the commutator, analogous to the IM-SRG flow equation itself (cf. Eqgs. (3.32),(3.33)).

It does not come as a surprise, then, that the generators differ in the way they build
correlation effects from the many-body perturbation series into the flowing Hamiltonian —
a difference that will be enhanced for interactions for which order-by-order convergence of
the Many-Body Perturbation series cannot be guaranteed (cf. Secs. 3.3.4 and 3.5). For

illustration, Fig. 3.5 compares results for the regular Wegner generator with those for a
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restricted version defined by

111 .. / / / /
Niig  for ijkl = pp'hh! hh/pp’
v 111 v t
Nig =y > Mijkl = (3:52)

0 else ,

matching the structure of the White and imaginary-time generators. We have explored
restrictions of the one-body part as well, but they cause no noticeable differences while the
impact of the restriction in the two-body part is significant.

The convergence pattern of the restricted nIV is quasi-variational for both the bare and
softened N3LO interactions, and has the energy minimum moving towards smaller Aw, sug-
gesting that the calculation is converged in the UV regime, and now converging in the IR
regime. The extrapolated 40Ca g.s. energies are —367.4 MeV and —595.3 MeV, respec-
tively, in very good agreement with the White and imaginary-time generators, as well as
the unrestricted Wegner generator 'l in the case of the soft interaction (also cf. Fig. 3.5).
This strongly suggests that our hypothesis was correct, and it is indeed the additional non-
zero matrix elements in nIH which introduce uncontrolled behavior. It remains to be seen
whether we can reach a deeper understanding of the underlying mechanism. A likely expla-
nation is that the truncation of the commutator (3.31) to one- and two-body contributions
only (Egs. (3.32), (3.33)) causes an imbalance in the infinite-order resummation of the Many-
Body Perturbation series. For the time being, we have to advise against the use of the Wegner
generator in IM-SRG calculations with (comparably) “hard” interactions that exhibit poor

order-by-order convergence of the perturbation series.
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Figure 3.6: Decoupling for the White generator, Eq. (3.23), in the J™ = 0T neutron-neutron
interaction matrix elements of “0Ca (emax = 8, hiw = 20 MeV, Entem-Machleidt N3LO(500)
evolved to A = 2.0 fm_l). Only hhhh, hhpp, pphh, and pppp blocks of the matrix are shown.

3.3.4 Decoupling

As discussed in Sec. 3.2.1, the IM-SRG is built around the concept of decoupling the reference
state from excitations, and thereby mapping it onto the fully interacting ground state of the
many-body system within truncation errors. Let us now demonstrate that the decoupling
occurs as intended in a sample calculation for 40Ca with our standard chiral N3LO interaction
at A =2.0 fm~!. Fig. 3.6 shows the rapid suppression of the off-diagonal matrix elements in
the J™ = 0" neutron-neutron matrix elements as we integrate the IM-SRG(2) flow equations.
At s = 2.0, after only 20-30 integration steps with the White generator, the Ppp/hh/(s) have
been weakened significantly, and when we reach the stopping criterion for the flow at s = 18.3,
these matrix elements have vanished to the desired accuracy. While the details depend on
the specific choice of generator, the decoupling seen in Fig. 3.6 is representative for other
cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian
is driven to the simplified form indicated in Fig. 3.6. The IM-SRG evolution does not only
decouple the ground state from excitations, but reduces the coupling between excitations

as well. This coupling is an indicator of strong correlations in the many-body system,
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which usually require high- or even infinite-order treatments in approaches based on the
Goldstone expansion. As we have discussed in Sec. 3.1, the IM-SRG can also be understood as
such a non-perturbative, infinite-order resummation of the Many-Body Perturbation series,
which builds the effects of correlations into the flowing Hamiltonian. To illustrate this, we
show results from using the final IM-SRG Hamiltonian H(co) in Hartree-Fock and post-HF
methods in Fig. 3.7.

After the same 20-30 integration steps that lead to a strong suppression of the off-diagonal
matrix elements (cf. Fig. 3.11), the energies of all methods collapse to the same result, which
is the IM-SRG(2) ground-state energy. By construction, this is the result that would be
obtained in a Hartree-Fock calculation with the IM-SRG Hamiltonian. Energy corrections
due to correlations have been re-summed into the zero-body part of H(oc), and therefore
MBPT(2) or either of the CC resummations do not contribute additional correlation energy.
The collapse of the ground-state energies occurs in the same fashion for all (emax, iw),
although the rate and magnitude of the change in g.s. energy with the flow parameter s may
be quite different for each method.

Let us take a more detailed look at Fig. 3.7. For the bare N3LO interaction, the eyax = 10
results are not yet sufficiently converged with respect to either the single-particle basis and
many-body expansions, hence the ground-state energy changes quite significantly with s
(cf. Fig. 3.2). For the soft N3LO interaction with A = 2.0fm ™!, on the other hand, conver-
gence w.r.t. basis size is already quite satisfactory at emax = 10. Because this interaction is
more perturbative, the small energy differences between the different many-body methods,
in particular the second-order and infinite-order CC and IM-SRG resummations, indicates

good convergence of the many-body expansion! [33, 51]. We will return to this subject in

1 A discussed in Sec. 3.4, there is a caveat attached to this statement, namely that order-by-order pertur-
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Figure 3.7: IM-SRG(2) ground-state energy of 40Ca as a function of the flow parameter s,
compared to MBPT(2), CCSD, and A-CCSD(T) energies with the IM-SRG-evolved Hamil-
tonian H(s). We only show part of the data points to avoid clutter. Calculations were done
for emax = 10 and optimal hw = 32 MeV (top) and fww = 24 MeV (bottom), respectively,
using the chiral NN interaction at different resolution scales. The dashed lines indicate the
final IM-SRG(2) energies.

Sec. 3.5.
To conclude this section, we want to briefly discuss the four main scenarios that can occur
when we use IM-SRG Hamiltonians as input for other many-body methods. We assume that

calculations are converged w.r.t. basis size, etc.

1. Full IM-SRG, exact many-body method: For exact methods like the No-Core Shell

bative convergence strongly depends around which reference state the perturbation expansion is constructed.
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Model or No-Core Full Configuration, the ground-state energy would be flat as a func-
tion of s. By performing an untruncated IM-SRG calculation, we essentially split the
diagonalization of the many-body Hamiltonian into a part that is obtained by solving
the IM-SRG flow equation, and a part that is obtained with traditional eigenvalue

methods, with s serving as an arbitrary separation point.

. Full IM-SRG, approzimate many-body method: The ground-state energy varies with s,
but for s — oo, the approximate many-body method yields the ezact eigenvalue due
to the untruncated IM-SRG transformation. Here we see how the IM-SRG can be used

to improve the input Hamiltonian for other many-body approaches.

. Truncated IM-SRG, exact many-body method: Again, the ground-state energy varies
with s, and the overall variation is a measure of the extent to which the IM-SRG

truncation violates exact unitarity.

. Truncated IM-SRG, approximate many-body method: This is the most common, and
most complicated case. Because of the IM-SRG truncation, the IM-SRG will reproduce
the exact ground-state energy only approximately in the limit s — oo. If the approx-
imate many-body method contains content beyond the truncated IM-SRG, then the
result may actually degrade to some extent, whereas the IM-SRG still improves the re-
sult in the opposite scenario, but the uncertainty of £(co) is hard to quantify unless one
also uses exact many-body methods for comparison. Both of these scenarios are realized
in Fig. 3.7: MBPT(2) is less complete than the IM-SRG(2), so the MBPT(2) energy is
improved towards the exact energy. Note that this improvement can come in the form
of attractive or repulsive corrections, because MBPT(2) typically underestimates the

g.s. energy for the bare interaction, but overshoots with soft interactions [33, 58, 88—
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92]. Both CCSD and A-CCSD(T) differ from the IM-SRG(2) at fourth order in MBPT
(see Sec. 3.5). CCSD typically underpredicts the nuclear binding energy, hence the
additional correlation energy provided by the IM-SRG improvement should improve
agreement with exact methods. A-CCSD(T) contains fourth-order 3p3h (triples) cor-
relations, which are typically attractive, and missing in the IM-SRG(2) (cf. Sec. 3.5).
This explains why the CCSD(T) ground-state energy actually increases (i.e., the bind-
ing energy decreases) with IM-SRG(2) input Hamiltonians as s — oo for the soft
interaction. As mentioned above, epmax = 10 is not yet sufficiently converged in the
case of the ground-state energies shown in the top panel. For larger bases, the IM-
SRG(2) again increases the A-CCSD(T) ground-state energy Ref. [74]. Part of this
increase is benign, because A-CCSD(T) is known to overestimate ground-state energies

(16, 64, 67, 93-95].

3.3.5 Radii

In Sec. 3.1.4, we have discussed the evaluation of observables other than the ground-state
energy, by solving additional sets of flow equations along with those for the Hamiltonian. As
an example, we show the convergence of the charge radii of 1He, 160, and 4°Ca in Fig. 3.8.
The results are obtained by normal-ordering and evolving the intrinsic proton mean-square

radius operator,

R = Z% (1 n 73(")> (r — R)? | (3.53)

1
where the isospin operator projects on protons, and R is the center of mass. We obtain the

charge radii by applying the corrections due to the mean-square charge radii of proton and
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Figure 3.8: Convergence of 4He, 160, and 40Ca IM-SRG(2) charge radii w.r.t. single-particle
basis size emax, for a chiral N3LO NN interaction with A = oo (left panels) and A = 2.0 fm—1
(right panels). The gray dashed lines indicate experimental charge radii from [15].

neutron (see, e.g., [96]):

N
Ry = \/Rg +7r2+ 77"7% = \/Rg + (0.8775 fm)2 — 0.1161 fm? (3.54)

with values of 7’% and 2 taken from [97].

Focusing on the results for the bare N3LO interaction first, we find satisfactory conver-
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gence of the charge radii to the level of 1% over a wide region of basis parameters hw. For
different emax, the curves intersect in the vicinity of the Aw that minimizes the ground-state
energies (cf. .Fig. 3.2). The IM-SRG(2) result for the charge radius of *He is quite close to
the experimental value. It is somewhat counter-intuitive, however, that the radius is slightly
underpredicted, while about 1 MeV binding energy is missing (see Tab. 3.1). For 160, the
binding energy is similarly close to the experimental one, but the charge radius is already
too small by almost 10%, while overbinding and underestimation of the radius are consistent
on a superficial level with 40Ca.

Using the softened N3LO interaction with A = 2.0 fm™! as input, convergence of the radii
improves dramatically over the bare N3LO case. On the scales shown in Fig. 3.8, results from
emax = 10 onwards are all but indistinguishable. At the same time, the underestimation
of the radii becomes worse, which is consistent with the increased binding energies that are
reported in Sec. 3.3.2. Part of the problem is that the change of the resolution scale of
the N3LO interaction induces 3N, ... interactions which have not been taken into account.
These induced interactions give repulsive contributions to the g.s. energy, and are therefore
also expected to increase the radii to some extent Refs. [19, 21, 42, 74, 86, 87, 98-100].

Under a change of resolution scale A, the radius operator (or any other observable) should
be transformed consistently with the Hamiltonian, causing it to gain induced many-body
contributions. Since RG transformations like the free-space SRG, and related methods like
Lee-Suzuki, are designed to deal with high-momentum /short-distance physics, their effect on
the radius and other long-ranged operators, and therefore the size of induced contributions,
was expected to be small [101-103]. A recent free-space SRG study suggests that induced
contributions may be small but not negligible in view of the discrepancies between experi-

mental and calculated radii from state-of-the-art ab initio many-body calculations [104].
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A related issue is the use of simple one-body anstze like (3.53) for the mean-square proton
radius and other radius or transition operators. These specific forms neglect two- and higher
many-body contributions which are generated by exchange currents, for instance, and should
be included in the “bare” operator in the first place. Chiral EFT provides a consistent
framework to treat these effects on a similar footing as the interaction itself [105-114], but
the exploration of these structurally richer operators in nuclear many-body calculations is

still in its infancy [115].

3.4 Choice of Reference State

3.4.1 Overview

As explained in Sec. 3.2.1, the IM-SRG generates a mapping between an arbitrary reference
state |®) and an eigenstate |¥) of the Hamiltonian. In a finite system, i.e., in absence of
phase transitions, and without symmetry constraints on the basis, such a mapping always
exists, because we can diagonalize the Hamiltonian and construct a unitary transformation as
the dyadic product of the exact ground state and the reference state, plus suitable additional
states to complete the basis. Performing an evolution with the untruncated IM-SRG flow

equations is equivalent to such a (partial) diagonalizati0n2.

3.4.2 Harmonic Oscillator vs. Hartree-Fock Slater Determinants

In previous sections, we have explained that the ground-state energies of the untruncated
IM-SRG flow equations do not depend on the choice of reference state. In practice, the IM-

SRG(2) truncation of the flow equation system (Egs. (3.8)—(3.10)) introduces an artificial

2Problems could only occur if we used a pathological generator.
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Figure 3.9: Top panel: IM-SRG(2) energy of “VCa with a HF (solid lines and symbols) and
a HO reference state (dashed lines, open symbols), obtained with the Wegner generator.
Bottom panel: Overlap of the HF and HO reference states.

reference-state dependence.

In Fig. 3.9, we compare ground-state energies for °Ca that were obtained with a naive
HO Slater determinant and a HF Slater determinant, respectively. For oscillator parameters
16 < hw < 24 MeV, the two types of calculations essentially converge to the same ground-
state energies. In this range, the HO and HF determinants have their largest overlap, as
shown in the lower panel of Fig. 3.9. Outside of this window, the overlap drops off steeply,
which suggests that the HF single-particle wave functions differ appreciably from the plain

HO single-particle wave functions. Of course, we have to keep in mind that these differences
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Figure 3.10: IM-SRG decoupling of 1p1h excitations for different generator choices, starting
from a HO reference state. The figure shows the 40Ca ground-state energy as a function of
the value of the flow parameter s. The unit of s is suppressed because it differs with the
choice of generator. The gray line indicates the result of the Hartree-Fock calculation with
the same interaction and basis parameters.

are amplified exponentially when the many-body overlap is calculated as the product of
single-particle overlaps.

Beyond hw = 28 MeV, the IM-SRG(2) energies obtained with a HO refererence state
actually grow with the basis size emax, which suggests that the IM-SRG is no longer targeting
the Hamiltonian’s ground state in those cases. This conclusion is supported by our inability
to obtain converged results with White-type generators (see Eq. (3.23)) for the larger fiw
values. The IM-SRG flow stalls because of divergences in the generator matrix elements
that are caused by small energy denominators, which can be viewed as indicators of level
crossings in the spectrum of the evolving many-body Hamiltonian.

So we see that unlike CC theory, truncated IM-SRG calculations are sensitive to the
quality of the starting reference. This can be easily explained if the unitary transformation
generated by the IM-SRG(2) is inspected. In order to have this insensitivity to reference

choice, we would need to be able to take advantage of the unitary version of Thouless’ thm
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found in (2.34), proven by Rowe,Ryman, and Rosensteel in Ref. [116], relating any two

non-orthogonal normalized Slater determinants |®4), |®g) via

1Bp) = exp (prh capap : —X7, ralay ) 1 4) . (3.55)
ph

Unfortunately, Eq. (3.55) does not apply to the IM-SRG in a straightforward fashion.
As mentioned in Sec. 3.1.1, the unitary transformation generated by the IM-SRG is

formally given by the S-ordered exponential

U(s) = Sexp /05 ds'n(s'), (3.56)

because the generator dynamically changes during the flow. It can be defined as a product

of infinitesimal unitary transformations,

Ngnooﬂe L Xes 357

or the series expansion

_ Z% / sy / Cdsy. / “dsaS{(s1) . n(sn)} (3.58)

Here, S ensures that the flow parameters in the operator products appearing in the integrands
are always in descending order. Unlike the cluster operator of the CC method, the generator
n(s) necessarily contains particle-hole de-excitation operators, or else it would not be anti-
Hermitian as required for a unitary transformation. Thus, it is possible to have non-vanishing

contractions between generator components of different particle rank, and commutators of
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Figure 3.11: Schematic illustration of the energy flow equation (3.61) for the White generator
with Mgller-Plesset energy denominators (Eq. (3.23)) in terms of Hugenholtz diagrams (see
text). The grey vertices represent H(s), and the double lines indicate energy denominators
calculated with f(s). On the second line, the flow equation is expanded in terms of H(s—Js)
(simple black vertices) and the corresponding energy denominators from f(s — ds) (single
lines). The braces indicate which term of H(s) is expanded, and dots represent higher order
diagrams generated by the integration step s — ds — s.

such components do not vanish in general:

9 (s), 79 (s")] # 0. (3.59)

As a result, U(s) does not factorize automatically, and it is this lack of factorization that
makes the IM-SRG(2) method sensitive to reference states. We will revisit this sensitivity

to reference state in the context of chemistry systems in Sec. 6.1.
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3.5 Perturbative Analysis of the Flow Equations

3.5.1 Overview

The expressions for the White-type generators discussed in Sec. 3.2.2 are a manifest link
between the IM-SRG and Many-Body Perturbation Theory. For the sake of discussion, we
focus on the White generator with Mgller-Plesset energy denominators, keeping the short-
hands A, A o Bl etc., but dropping the superscript B. The generator with Epstein-

Nesbet energy denominators can always be connected to this case by series expansion, e.g.,

1 1 Z(thph )k (3.60)
fp_fh+rphph fp_fh X fp fh ' '

Let us now consider the flow equation for the ground-state energy (3.8), but broaden
our perspective beyond the IM-SRG(2) truncation to keep track of the induced three-body
contribution (cf. Eq. (B.2) and the discussion in Sec. 3.2.1). Plugging in the White-Mgller-

Plesset generator with explicit three-body contribution, we obtain

T 02 1 W s rn]?
_2Z|fph| Z W ppnnt1” o'y B (3.61)

pp/hh, pp/hh/ 18 pp/hh/ App p”hh/h//

The right-hand side of Eq. (3.61) has the structure of the second-order MBPT correction to
the ground-state energy, but the matrix elements and energy denominators depend on the
flow parameter s. Thus, Eq. (3.61) implies that the ground-state energy F(s) is RG-improved
with contributions from higher orders of MBPT during the flow.

In the following discussion, we characterize all operators in terms of the same dimen-

sionless book-keeping parameter g. We also assume that the initial Hamiltonian satisfies
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the hierarchy fd > ' > W throughout the flow. The hierarchy of I' and W, in particular,
is compatible with the natural hierarchy of chiral two- and three-nucleon forces [32, 33].

Initially,

E(0) = 0(g"), f0)=0("), T(0)=0(). (3.62)

If we do not include an initial three-body term, and choose a HF Slater determinant ( fod —

{fph> fnp}) as the IM-SRG reference state, we also have

ol =0, W(0)=0. (3.63)

From the flow equations (3.8)—(3.10) (or (B.2)—(B.5)), we can conclude that corrections to
I'(s) are of order O(g). Corrections to f(s) are O(g?) because they are generated by terms
which are quadratic in I'(s), and the same reasoning holds for the induced off-diagonal and

three-body matrix elements,

oUs) = 0(g?), Wi(s)=0(g?), fors>0 (3.64)

(also cf. Sec. 3.2.5). This establishes that the three terms in the flow equation (3.61) are of
order O(g*), O(g?), and O(g*), respectively.

In Fig. 3.11, the effect of integrating Eq. (3.61) by a single step s — ds — s is illustrated
schematically in terms of Hugenholtz diagrams (see, e.g., [16, 117]). Expanding the H(s)
vertices in terms of H(s — ds) vertices, we see that the I'(s) term has contributions from
O(g?) through O(¢g*). Expanding in H(s — 20s) instead, we would get additional higher

order diagrams, and so forth. Thus, we perform a (partial)re-summation of the many-body
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perturbation series by integrating the IM-SRG flow equations from s = 0 to co.

Fig. 3.11 shows that all topologies for second- and third-order energy diagrams are gener-
ated, and we will demonstrate below that we build up to the complete energy through O(g?)
when we integrate Eq. (3.61). The I'(s) term also generates fourth-order diagrams with up
to 4p4h/quadruples excitations, but f(s) and W (s) terms clearly contribute at fourth order
as well. The former are included in the IM-SRG(2), which is therefore third-order correct,
similar to Coupled Cluster with singles and doubles (CCSD). To obtain a formally correct
fourth-order energy, we need to keep the induced three-body terms, e.g., use the IM-SRG(3)
truncation or some appropriate approximation, as, for instance, in CC with singles, doubles,
and perturbative triples (CCSD(T)).

We stress, however, that the perturbative analysis will not provide us with a means to
judge the IM-SRG truncation error in nuclear physics applications, aside from a guaranteed
linear scaling of the error with the particle number A due to size extensivity [16, 118].

In the remainder of this section, we will analyze the IM-SRG in greater detail. The main
goal of this analysis is to provide an understanding of how the IM-SRG relates to other dia-
grammatic methods like finite-order MBPT, the Self-Consistent Green’s Function approach
[19, 76, 119], or the Coupled Cluster method, which can be analyzed diagrammtically along
the same lines as the IM-SRG (see, e.g., [16]).

As mentioned above, we choose a HF Slater determinant as the reference state |®) for
the IM-SRG and the MBPT expansion. Then f,(s) vanishes for s = 0 (because of the
HF equations) and s — oo (because of the IM-SRG decoupling condition), and we will only
have to discuss canonical HF MBPT diagrams in the language of [16]. The inclusion of non-
HF (where f,, # 0) and non-canonical HF diagrams (where f,_,, f;;/ are non-diagonal) is

b

straightforward but tedious because their number grows much more rapidly than the number
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of canonical HF diagrams [16].

3.5.2 Power Counting

In the following discussion, we will use superscripts to indicate the order of individual terms
in the IM-SRG flow equations. Let us first address the subtleties in the power counting that
was defined in Egs. (3.62) and (3.64). The natural orbitals for a HF Slater determinat |®)
are the HF orbitals, which means that f(0) is diagonal in the particle and hole blocks of
the s.p. basis, and f,,(0) = fp,(0) = 0. Since these are the off-diagonal matrix elements
defining the one-body part of the generator (3.23), n,; vanishes as well, and the one-body

flow equation at s = 0 becomes

df12

0l
ds

abc

s=0

Thus, corrections to f start at O(gQ) (cf. Sec. 3.2.5), and we have

Fopt () = T3 0,0 + £20(5) + (3.66)
P (8) = S+ £ () + . (3.67)
fon(s) = Fi () + ... (3.68)

where the notation 7[0] indicates that the term does not depend on s. It immediately follows

that corrections and s-dependence of the Mgller-Plesset energy denominators also appear at
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Agpls) =B + AL 1 (3.69)
Aabed($) = Dljg + Doy + -+ (3.70)

Consequently,the generator matrix elements are given by

2] (3] [4] 2] A [2]
fph fph fph fphAph 5
"o = 31 0 R+ e HOW) 371)
ph ph ph ph
[1] 2] 3] [1] 2]
F / / F / / F / / F / / / /
o = S A ot
pp’ hh! pp/ hh! pp/hh’ ( pp/ hh! )

and their Hermitian conjugates. Based on these considerations, we will proceed to discuss the
one- and two-body flow equations at increasing orders O(g"). Since the energy flow equation

does not feed back into the flow for f and I', we will discuss it separately afterwards.

3.5.3 O(g) Flow

As shown in the previous section, corrections to the one-body Hamiltonian f only begin to
contribute at O(g?), hence

f1[12]:0 = fl[lz}(s)ZO, (3.73)

where the dot indicates the derivative with respect to s. The first-order contribution to the

two-body flow comes from the first line of Eq. (3.10):

iy = -3 {0 - P Fllhy - - P Finll0} . 67

a
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where we have used Eqs. (3.71) and (3.72), and f[l] = 0. Since n only has pphh and hhpp
matrix elements and f [0] s diagonal, we have

- [1 —[0 -0 —|0 -0 1
FL}J’hh’ = - (fg[y] +f1[7/] - f;L] - fg/]) HLIJ/W

_ _xlor
- Apphh/npp,hh/ ) (375)

[1]

and an analogous equation for the Hermitian conjugate, while f‘123 4 = 0 otherwise. Thus,

the flow equations can be integrated easily, and we obtain

1] ] e % forabed = pp'hh!, hh'pp’
Fabcd(s) - I‘abcd X (3'76>

1 otherwise,

with

fabcd = Fabcd(o) . (377)

3.5.4 O(¢?) Flow

We begin our discussion with the second-order contribution to f. Using Eq. (3.76), the

IM-SRG flow equation (3.9) yields

2 _ 1 ( 1] 1] 1] 1] )
fpp/ ~ 9 Z np//phh/th/p//p/ + 77p//p/hh/th/p//p

p//hh/
1 _[1] _[1] 6_28 6_25
== T
5 2 Tyt Tuitnry | o+ <
o' i/ o' ph! hh! o'/ B W
— o712 -2
:QfZ[);,e 5 (3.78)
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The flow equations for the other matrix elements of f [2] (s) have the same structure, consisting
of an s-independent amplitude and a function containing a decaying exponential in s. With

the initial value condition f[2/(0) = 0, we obtain

5 _ (1—e"25) forab=pp,hi,
fc[zb](5> =Fo X (3.79)

forab = ph, hp .

For s — oo, the IM-SRG builds up and adds the amplitudes 7;51, and 75{, to the effective
one-body Hamiltonian, which precisely correspond to the second-order contributions from
MBPT. We can express them succinctly in terms of the antisymmetrized Goldstone diagrams

shown in Fig. 3.12:

72 =2 (P + 1) (3.50)
Fﬂ, = % ((f2)y + (R h)) (3.81)
P = (f3)pn + (F)np - (3.82)

The rules for interpreting such diagrams are derived in most many-body texts, so we only
summarize them in Appendix C for convenience. For the particle-hole matrix elements, we
have

120) = o0y =0, (3.83)

because we start with a HF Slater determinant and demand that the reference state is
again decoupled from 1plh excitations for s — co. At intermediate stages of the flow, the

amplitudes ?2[32}1 and ?% contribute to the build-up of higher-order MBPT diagrams.
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Figure 3.12: Antisymmetrized Goldstone diagrams for the O(¢?) effective one-body Hamil-
tonian (see text). Interpretation rules are summarized in Appendix C.

For the second-order two-body vertex Fm, the same kind of analysis yields

.

(1—e72%) for abed = p1paps3pa,

hihahzhy,
p1hip2he, ...,

P 1(5) = T ¥ (1—e=%) for abed = pypapsh, (3.84)
hihohap, . .. |

se for abed = pypahihs,

where the dots indicate all allowed permuations and Hermitian conjugates of the explicitly
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' (see text). Interpretation rules are summarized in Appendix C.

given indices. The corresponding amplitudes are

T2
Upipopgpy =

T2

p1p2h1ho

(T'1)p1pop3py

(1)
((F2)h1h2h3h4 + (F2)h3h4h1h2> ,

((F5)p1h1h2p2 + (FG)h2p2p1h1> )

Thihohgp + (1

= (FQ)ppohth

1
2
1
2
= (F3)p1p2p3h + (1 -
1
T2
= (T

+ (T1)pgpspipa)

+ (T10) Ay hgpypy + (1 —

PplPQ)(F4)p1p2p3h )

—= Phyng ) T8k hohgp

Bppo)(T11 +T12)py pohy ho »

p2 ho

2) effective two-body vertex

(3.85)
(3.86)
(3.87)
(3.89)
(3.89)

(3.90)

where we refer to the diagrams in Fig. 3.13. Expressions for the remaining combinations
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2]

of indices can be obtained by using the antisymmetry and Hermiticity of Fabc 4 Equations
(3.85)-(3.90) are given in a hybrid form, i.e., they contain explicit Hermitian conjugates and
line permutations of the diagrams. This allows us to express our analytic expressions for
the amplitudes in terms of the minimal set of diagrams in Fig. 3.13. If one envisions the
inverse problem of constructing the IM-SRG flow equations from diagrams, one would of
course include all possible diagram topologies, and express the amplitudes purely as sums of
diagrams before deriving analytic expressions.

As in the schematic discussion of the energy flow equation in Sec. 3.5.1, we also want to
keep track of induced three-body terms. The IM-SRG(3) flow equation for the three-body
vertex, Eq. (B.5), reveals that there are O(g?) contributions from products of n([llb]c 4(s) and
Fglb]c 4(8), hence we have to analyze w2, However, we will limit the discussion to the matrix
elements of W2 which can actually contribute to the fourth-order corrections to the ground-
state energy (see Fig. 3.1 and the discussion Sec. 3.5.1). Integrating the (’)(92) three-body

flow equation, we obtain

p

(1—e=2%) for abedef =
p1p2h1hopspy
hihopipahghy,
Wﬁ]cdef(s) = W([fb]cdef x o (3.91)
se”? for abede f =
p1p2p3hihahsg,
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Figure 3.14: Antisymmetrized Goldstone diagrams for the 0(92) effective three-body vertex
W (see text). Interpretation rules are summarized in Appendix C.

where the dots again indicate allowed Hermitian conjugates and permutations of indices. In

terms of the diagrams shown in Fig. 3.14, the amplitudes are

72 _ 1
p1p2hihop3ps — 2 (<W1>p1p2h1h2p3p4 . (Wl)h2p3p4p1p2h1) , (3.92)
72 1
W hihopipohahy = 3 ((W2)h1h2plp2h3h4 T (WQ)pzhgmhlhgpl) ) (3.93)
72l
pipopshihohy = FP1P2/P3)P(hiha/h) (W3 + Wiy popshyhohg » (3.94)
where we have defined the three-body permutation symbols
P(ij/k) =1— Py, — Py, (3.95)
P(i/jk) =1~ Py — Py, . (3.96)
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Figure 3.15: Antisymmetrized Goldstone diagrams for the O( g3) effective two-body vertex I
(see text). Black (@) and gray vertices (O) correspond to it (Eq. (3.77)),7[2] (Egs. (3.80)—

(3.82)), T (Egs. (3.85)—(3.90)), and w2 (Egs. (3.92)—(3.94)), respectively. Interpretation
rules are summarized in Appendix C.

3.5.5 0O(¢*) Flow

The analysis of the third-order one- and two-body flow equations is straightforward, but the
number of terms (or diagrams) we have to consider increases significantly. Here, we content

3]

ourselves with analyzing I ’hh’( s), the only missing ingredient for the discussion of the

energy flow equation through (’)(g ), as in the overview presented in Sec. 3.5.1. Using our
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results from the previous sections, the two-body flow equation can be written as

~[3] —— (3] ) —5 Al ( —3s —s>

Fpipanihe = Tpipanihg ¥ A+ D)pponing 5¢° 4 (BHC)y ponyny (€ € )
(3.97)

which is solved by
2 —3s s
(3] _(ALTD ST s (R € — € —s

M@= @+D), S (B T), (—2 T se ) |

(3.98)

The amplitudes A to D are given by the diagrams shown in Fig. 3.15, where black and

grey indices indicate the first- and second-order vertices, respectively:

Apipahihg = (1= Ppypo) (A1)pypghyhg + <1 - Ph1h2> (A2)p1 pohy hy

+ (A3 + A0y ponyhy T (1= Ppypg) (1 - Ph1h2> (A5)pypohyhg » (3.99)

= _ 2] ~12]
By pohyhy = ”p1p2h1h2AP1P2h1h2

+ (1= Bpypy) (B)pypohihy + <1 - Phlhz) (B2)p1pohyha

+ (B3 + B4)p1p2h1h2 + (1 - PPpo) <1 - Phlhz) (B5)p1p2h1h2 ) (3.100)

p1pohi1he = (1 - Phth) (Cl)p1p2h1h2 + (1 - PPIPQ) (02)p1p2h1h2 ) (3101)

p1pohihy = (1- Ph1h2) (Dl)ppohth + (1 = Bpypy) (D2)p1p2hlh2 : (3.102)

>

A and B are contained in the standard IM-SRG(2) truncation, whereas C' and D are leading-

order induced three-body terms. In particular, the former is a product of W[Q] and the
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two-body generator,

1 2! =]
Cp1p2h1h2 - 5(1 - Phth) /Z//: ,Wplh/p2p/h1p// p/p//h/h2
h

pp
L e A1
—(1-F w 3.103
+ 2( P1P2)h/h;p/ hlp’hgh’plh’mh’h”p’pg , ( )
1]

while the latter is a product of I''’ and the three-body generator instead:

Tl

_1 -p)
Dp1p2h1h2 - 5(1 - Phth) Z nh,th//ppop/Fhlp”h/h//
h/h//p/
1 -p) al
+ 5(1 - Pp1p2> Z np’p”thlh’hQFplh’p’p” . (3.104)
p/p//h/

This distinction is of little consequence in the present analysis, but may become important
if the Hamiltonian and the generator are not truncated to the same particle rank. Note,
however, that the diagrams for C and D have different topologies: The former couples the
reference state to an excited 2p2h state via intermediate 2p2h excitations, whereas the latter

has intermediate 3p3h states.

2] [1]

By expanding the grey I'"" vertices in Fig. 3.15 in terms of I''”, we can also see how the
IM-SRG flow performs a non-perturbative resummation of the MBPT series, as indicated in

Sec. 3.5.1. The diagram As, for instance, is expanded as

VYN N

3.105)
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and contains ladder diagrams (first row), as well as diagrams where ladder and polarization
configurations interfere (second row). Such interference diagrams set the IM-SRG apart from
the traditional G-matrix and RPA approaches, which only resum ladders and polarization

diagrams, respectively [120].

3.5.6 Energy through O(g*)

Let us now consider the energy flow equation. At 0(92), we have

o) 1 1] 1]
E 2 Z nh1h2p1p2rp1p2h1h2

h1hop1po

_ 1 —[1] _[1] —2s

=3 Z Ty hopipo L p1pahiha® - (3.106)
hihop1po

Integrating this equation with £ [2}(0) = 0, we obtain

hthﬁlﬁQ h hjgp P2

ie, B 2] (00) is just the standard second-order MBPT correction to the energy of the reference
state (cf. Fig. 3.11).

Likewise, the flow equation for the O(gS) energy reads

. 1 1 2 2 !
£ - 2 2 <771[11]h2p1p2rz[>1]p2h1h2 * 77%1]’127911’2F7[’1]p?h1h2>
hihop1p2
Fgl]hgplpg_l[?l]mhl@ 2
_ Z Z[O] o 28 (3.108)
h1hopip2 h1hop1p2
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and integration yields

ik 72

r
1
EBl(s) = (1= s nem2) Y Auinipe piahite, (3.109)
hihop1p2 h1hop1po
For s — o0,
il ng
EB(o0) = 1 3 Ihapipa” pipalihy (3.110)
4 A 0]
hihop1p2 h1hop1p2

2]

and plugging in T from Eq. (3.90), this immediately becomes

EBl(c00) = @ + @ + @ (3.111)

the standard third order energy correction.

2]

At O(g?), we have to consider products of 2/ and the second-order Hamiltonian contri-

butions f[Q], F[Z], and W2 (cf. Fig. 3.11), as well as the cross terms

4 _ 1 ( (3] (1] )
E3—1 ~ 9 Z 77hlhzmpgprghﬂlz + [77 = F]
p1p2hiho
2] (1]

1 o Phihgeiey | o) L pipaiihg
_ - T _MmaPIP2 | op _PLPom2 112
Z h1hop1p9 —|0] * h1hop1p2 A10] 3 )

p1p2hiho h1hgp1p2 h1hopipa

The first term is due to the expansion of the energy denominator in 77[3] to second order

(cf. Sec. 3.5.2). However, it is easy to see that contributions from this term cancel in the

[0/2] 1]

m A
sum, because o i o i

is antisymmetric under transposition while I' is symmetric. Thus,
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Figure 3.16: Connected Hugenholtz diagrams for the fourth-order energy correction E®)
(Ref. [16]).
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the energy flow equation becomes

2
[4] _ 92,25 N 272] | 57 25 =[2] T2l
2 257¢ Z”hpf ph T3 2. Thyhopipa! prpohyhy
ph p1p2h1ho
2
S 25 —{2] 2
*15°¢ Z Thyhohsp1pops "V p1papshihohs
p1pop3hihohs
— 1]
2 T
7 _og .7 p1pahiho
T > [+ D)h1h2P1P2 App
p1p2hiho 1h2pp2
e—4s _ o—2s . Fz[)ll}pﬂzlhg
—S —_——a - &
_ (T + se > (B ihopinm 5 . (3.113)
p1p2hiho "1hap1py

Integrating and taking the limit s — oo, we obtain the fourth-order energy correction

4 I 252 ] —[2] 712]
El ](00) ) Z”hpfph + ] Z ”h1h2p1pgrp1p2h1h2

ph p1p2h1hg
1 —[2] 7i712]
T Z Thihghgpipaps"Y p1popshyhohs
p1pop3hihohs
. f[l} -
R =) = A p1poh1ho
e S A=)+ D= O gy 22
8p1p2h1h2 1hop1p2 1hop1P2 Ah1h2p1p2
=g v B B+ B v Y B 4 B (3.114)

In Fig. 3.16, we show all fourth-order Hugenholtz energy diagrams for the canonical HF
case (see Sec. 3.5.1 and Ref. [16])). It is a straightforward but arduous task to identify the

diagrammtic content of the individual contributions to F [4] by plugging the expressions for
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the amplitudes from the previous sections into (3.114). We find

1 4
=525 (3.115)

1=1

1 12
=52 Di, (3.116)

1=1

1 16
= §ZTZ (3.117)
42%(25 +ZD> (3.118)
[B =QR3+Qu+ @5+ (Q1+Q2+Q6+Q7) (3.119)
E[él] =3 (Ql +Q2+ Q6 + Q1) , (3.120)

1 16
=520 (3.121)

1=1

so Bl (00) contains all required diagrams, and is indeed the complete fourth-order energy.

3.5.7 Discussion

As concluded on general grounds in Sec. 3.5.1, the IM-SRG(2) energy is complete to third

order in MBPT, but misses certain contributions in fourth order. Our detailed analysis

shows that
[4] gl [ I gl gl
Envsrae) = £y HE W T Eg
4 12
=D Si+) DitQ3+Qu+Q5+3 (Q1+Q2+Q6+Q7), (3.122)
1=1 1=1
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i.e., IM-SRG(2) contains the complete fourth-order singles and doubles contributions, as well
as the symmetric and half of the antisymmetric quadruples diagrams shown in Fig. 3.16.
In the discussion of Fig. 3.7 in Sec. 3.3.4, we have observed that the IM-SRG(2) ground-
state energy of Ca for the chiral NN Hamiltonian with A = 2.0 fm ™! lies between Coupled
Cluster results at the CCSD and A—CCSD(T) level [16, 93, 94]. Overall, the three methods
agree within a few percent of the total ground-state energy. This pattern has consistently
emerged in all our IM-SRG calculations for finite nuclei with softened chiral interactions
(resolution scales A ~ 2fm~1), both with and without 3N forces [21, 23, 58, 74]. The
diagrammatic content of these methods through fourth order explains this behavior, at least
qualitatively. In terms of the quantities (3.115)—(3.121) defined in the previous subsection,

the fourth-order energy contributions to CCSD and A—CCSD(T) are

Eousp = B} + B + By + B + B

4
ZSZ+ZD +ZQ,, (3.123)
=1

and

4
ZSZJFZD +ZT +ZQZ, (3.124)

respectively. In a typical calculation, CCSD ground-state energies are too high due to missing
correlation energy from attractive fourth-order 3p3h (triples) configurations that are included
in A—CCSD(T) through EI[/ZIL/] p- In all our calculations, the asymmetric quadruples diagrams

Q1,2,6,7 (cf. Fig. 3.16) are repulsive. The IM-SRG(2) misses half of this repulsion, namely
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Figure 3.17: Effect of fourth-order quadruples (4p4h) contribution Eg], Eq. (3.120) on the

ground-state energies of *He, 160, and 40Ca (see text): Comparison of IM-SRG(2) with and

without E[C,Zl], calculated with the initial Hamiltonian H(0), to CCSD and A—CCSD(T). All

calculations used the chiral N3LO Hamiltonian with A\ = oo in an emax = 14 single-particle
basis. The shown CC values were taken at optimal Aw.

the E[gﬁ] term, and mocks up missing attraction from the triples terms EI[;IL/] p In this way.

Let us now consider the implications of our analysis for calculations with the unevolved
chiral N3LO Hamiltonian. Referring back to Fig. 3.7 again, there is a larger variation
between the 4VCa ground-state energies from IM-SRG(2), CCSD, and A—CCSD(T). This is
expected because of the Hamiltonian’s higher resolution scale, which adversely affects the
many-body convergence. We find an IM-SRG(2) ground-state energy that is lower than that
of A—CCSD(T), which contains the complete fourth-order energy and is therefore expected
to be a better approximation to the exact result from the MBPT point of view. A similar
observation was made for He in the first published IM-SRG study [58], where the IM-
SRG(2) ground-state energy of —27.6 MeV was found to be about 2 MeV lower than the
A—CCSD(T) and exact NCSM results. This motivated the development of a perturbative

truncation scheme that is discussed in Sec. 3.5.8, but no longer used in practice.
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In Fig. 3.17, we show the effect of adding the fourth-order quadruples term E[g] to the IM-

SRG(2) ground-state energies of 4He, 160, and VCa. In light of our perturbative analysis,
especially Eqgs.(3.122) and (3.123), it is not surprising that the repulsive contributions from
this term shift the ground-state energies in close proximity to the the CCSD results, which
are shown for reference. The agreement is not exact due to fifth- and higher-order differences
in the perturbative content of IM-SRG(2) and CCSD.

Finally, we want to remark on the different origins of the induced three-body vertices
which contribute to E[é} and E[g], as pointed out in the discussion of Egs. (3.103) and (3.104)
in Sec. 3.5.5. This is relevant for asymmetric truncations of H and 7 at different particle
rank, and the development of approximations to the full IM-SRG(3) scheme by the selective

addition of terms to the IM-SRG(2) flow equations. E[é] is a product of W2 and the two-

4]

body generator, while E[D is a product of fm

and the three-body generator. Thus, it is
sufficient to consider only the induced three-body interaction W to fully include the fourth-
order quadruples®. A full inclusion of fourth-order triples requires the induced three-body

interaction as well as the use of a three-body generator.

3.5.8 Perturbative Truncations

As discussed repeatedly throughout this work (see, e.g., Secs. 3.3.4, 3.5.1), order-by-order
convergence of a many-body perturbation expansion strongly depends on the resolution
scale of the Hamiltonian, and the choice of reference state on which the perturbation series

is constructed. This is particularly true for the case of nuclear Hamiltonians [33, 51, 92, 122,

. 4] . . . .

3In Ref. [121], Evangelista and Gauss have demonstrated that E 4 is not included in a modified CCSD
scheme if intermediate terms in the nested commutators are only expanded up to two-body operators. These
intermediates correspond to the pieces of W that are induced by the commutator of two-body operators,

hence the mechanism for generating E[é] is very similar in CC and IM-SRG.
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123]. Nevertheless, it is worthwhile to attempt and organize the right-hand side of the IM-
SRG flow equation — essentially, the 5 function of the IM-SRG flow (see, e.g., [124, 125])
— in terms of a perturbative expansion, which is a common feature of RG approaches
throughout all fields of physics.

Based on the power counting from Egs. (3.62) and (3.64), an earlier work [58] introduced

a perturbative truncation which eliminates terms of O(g3) from the flow equations (3.8)—

(3.10):
dil 1 _
o5 =3 > Naveal cdapnanpicig, (3.125)
abed
dfi2
s = > (14 Pio)niafa
a
+ Z(nanbﬁc + natipne) (1 + Pr2)nerapl abe2 - (3.126)
abc

dl’
;234 Z{ (1 = P12) frana23a — (1 — Ps4) fa3moaa}

+3 Z(l —na — np) (M2ablab3a — T12abMab34)
ab

- Z —np)(1 = P12)(1 — P3a)mp2aal 103 - (3.127)

We will refer to this truncation scheme as IM-SRG(2’) in the following?.
The integration of the IM-SRG(2’) flow equation yields a third-order complete energy,

while certain contributions from fourth order onward are missing. Using the same definitions

4 (Note that the labeling was reversed in Ref. [58], which primarily used this perturbative truncation
scheme for numerical calculations.
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Figure 3.18: Comparison of *“Ca ground-state energies of the regular IM-SRG(2) (solid lines)
and perturbative IM-SRG(2’) truncations (dashed lines). The default White generator n'#,
Eq. (3.23), was used in both cases. The interaction is the chiral N3LO potential with A = oo
(left and center panels) and A = 2.0 fm~! (right panel), respectively. The dashed lines
indicate extrapolated energies. For the IM-SRG(2’) truncation, the shaded area indicates
the variation from using different data sets for the extrapolation (see text).

as in Eq. (3.114), we find that

4 4 4 4 4
El[lx]d-SRG(z’) = B+ (B - EJU> + By
12
|
=D D+ Q3+ Qi+ Q5+ (Q1+ Q2+ Qs+ Q) (3.128)
=1

i.e., the IM-SRG(2’) does not contain the fourth-order singles contribution. This is caused by
the absence of the single-particle term in the energy flow equation (3.125), and the diagrams
A1 and Ay from the amplitude A (see Fig. 3.15 and Eq. (3.99)).

In Fig. 3.18, we compare 40Ca ground-state energies obtained with the regular and per-
turbative truncations. For the soft N3LO interaction with A = 2.0fm ™!, shown in the right
panel, the two truncations give almost identical results. The agreement between ground-

state energies is on the level of 10™% or better, with extrapolated energies for 4°Ca differing
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by only 2 keV.

For the bare interaction, on the other hand, the truncation schemes behave quite dif-
ferently. The IM-SRG(2) ground-state energy has a quasi-variational convergence pattern,
which allows us a stable extrapolation to infinite HO basis size. The IM-SRG(2’) trunca-
tion’s ground-state energy minimum is still moving to larger Aiw for the considered bases,
indicating a lack of UV convergence, and the variational pattern breaks down as we increase
emax from 12 to 14. Extrapolation from different subsets of the calculated energies using
Eq. (3.51) produces large uncertainties which are indicated by the shaded band in Fig. 3.18.

As discussed above, the IM-SRG(2’) ground-state energy, Eq. (3.128), does not contain
the fourth-order singles. In Fig. 3.19, we demonstrate that the omission of this contribution
accounts for the bulk of the energy difference between IM-SRG(2) and IM-SRG(2’), using
40Cq as an example. Moreover, the addition of the fourth-order singles restores the varia-
tional behavior of the ground-state energy as a function of the single-particle basis size epax.
Compared to the regular IM-SRG(2), the IM-SRG(2’) flow equations lack O(g?) contractions
of f and I with the two- and one-body parts of 1, respectively. The effect of this omission on
the two-body matrix element is hard to analyze in greater detail, in part due to their sheer
number. To test the impact of the missing terms on the flowing one-body Hamiltonian, we
calculate the Baranger effective single-particle energies (ESPEs) by diagonalizing the final
f(00) in both truncations (see [126-128]). The neutron and proton sd— and pf—shell ESPEs
in 40Ca are shown in Fig. 3.20, and we find that the results obtained with IM-SRG(2) and
IM-SRG(2’) are practically indistinguishable.

We conclude by following up on the perturbative analysis of the difference between IM-
SRC(2) and CC results with the unevolved chiral N3LO Hamiltonian that was begun in

Sec. 3.5.7. In Ref. [58], the overestimation of the ‘He ground-state energy in IM-SRG(2) cal-
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Figure 3.19: Effect of adding the fourth-order singles (1plh) contribution (cf. Eqgs. (3.115),
(3.118) and (3.128)) to the IM-SRG(2’) ground-state energy of 4°Ca (see text). The singles
contributions for different Aw were calculated with the initial Hamiltonian H(0). All shown
results were obtained for the chiral N3LO Hamiltonian with A = oc.
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Figure 3.20: Effective neutron (left panel) and proton (right panel) single-particle energies

of 90Ca from IM-SRG(2) (solid lines) and IM-SRG(2’) (dashed lines) calculations using the
chiral N3LO interaction with A\ = oo in an emax = 14 single-particle basis.

culations when compared to A—CCSD(T) and exact NCSM results was the main motivation

for the investigation of the IM-SRG(2’) truncation. The IM-SRG(2’) result closely matches
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the CCSD result for *He, —23.98 MeV, but the present discussion reveals this agreement as
accidental, an artifact of the omission of attractive fourth-order singles producing a similar
change in the ground-state energy as the addition of the repulsive quadruples term E[éf]
(see the discussion in Sec. 3.5.7). While both truncations work equally well for sufficiently
soft, perturbative nuclear Hamiltonians, the IM-SRG(2) truncation remains well-behaved

at higher resolution scales, at the same computational cost, which is why we favor this

truncation scheme in practical applications.
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Chapter 4

Magnus Formulation

4.1 Introduction

Chapter 3 demonstrated the effectiveness of the IM-SRG(2) method for ground state calcula-
tions of nuclei at (sub)shell closures. However, we now need to address the primary computa-
tional limitations of the method as it was presented. The IM-SRG calculations presented in
chapter 3 typically use ODE solvers based on high-order Runge-Kutta or predictor-corrector
methods to solve Eq. 3.2. The use of these high-order methods is essential as the accumula-
tion of time-step errors will destroy the unitary equivalence between H(s) and H(0), even if
no truncations are made in the flow equations. State-of-the-art solvers can require the storage
of 15-20 copies of the solution vector in memory, which becomes problematic for large model
spaces. For example, a typical Oxygen calculation in a basis set corresponding to an epax
of 12, IM-SRG(2) calculations require around 30 GB to run. This large memory footprint is
exacerbated if one wants to calculate additional observables, roughly doubling the memory
requirements assuming the same NO2B truncation as for the Hamiltonian. Moreover, the
additional flow equations for each observable can evolve with rather different timescales than
the Hamiltonian, which increase the likelihood of the ODEs becoming stiff. In this chapter,
we will demonstrate that these difficulties can be circumvented by recasting Eq. (3.2) with
the Magnus expansion[129]. The new formulation is convenient for establishing improved

truncations to be discussed in chapter 5. The presentation follows a recent publication in
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Ref. [130].

4.2 Formalism

In the notation of our present problem, our starting point is the differential equation obeyed

by the unitary transformation,

= (U (s), (4.1

where U(0) = 1 and Uf(s)U(s) = U(s)UT(s) = 1. This can be formally integrated and

written as the time-ordered exponential

U(s) = To{e™ Jo n(sNdsy (4.2)

51—/dsn /ds/ ds"n(s")n(s") +

(4.3)

Eq. 4.3 is not very useful in practical calculations since i) there is no guidance on how the
series should be truncated, ii) one would need to store n for multiple s-values, and iii) it is
not obvious how to consistently transform the Hamiltonian and other observables in a fully
linked, size-extensive manner with the truncated series.

The essence of the Magnus expansion is that, given a few technical requirements on 7(s),

a solution to Eq. 4.1 of the form

U(s) = U (4.4)

exists, where Qf(s) = —Q(s) and Q(0) = 0 [131]. In most previous applications of the
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Magnus expansion, one typically expands €2(s) in powers of 7(s) as

Q=> Q. (4.5)
n=1
Combining this with the exact derivative
dQ =By
I ﬁadQ(n)
k=0
4.6
addy(n) =1 (46)

adb (n) = [, ad¥ ()],

where B} are the Bernoulli numbers and adé‘fz (1) the recursively defined nested commutators,

one can obtain explicit expressions for the €y, (s),

ue-- | " dsyn(sy)
Qo) =5 [ st [ dslutsn).nten) (4.7)

As expected, rewriting the time-ordered exponential as a true matrix exponential moves
the complications of time ordering into the expression for €2(s). The utility of the Magnus
expansion lies in the fact that, even if {2 is truncated to low-orders in 7, the resulting
transformation in Eq. 4.4 using the approximate {2 is unitary, in contrast to any truncated
version of Eq. 4.2.

For large-scale IM-SRG calculations, the expressions in Eq. 4.7 are of limited value since

they require the storage of 7(s) over a range of s-values. Therefore, in the present work we
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instead construct €2(s) by numerically integrating Eq. 4.6, subject to certain approximations
discussed below. The transformed Hamiltonian, and any other operator of interest, can then

be constructed by applying the Baker-Cambell-Hausdorff (BCH) formula,

H(s) =e'He =302 hads(H) (4.8)
O(s) =e0e =302 hadk(0). (4.9)

4.3 Analytical Model

Before discussing how we truncate Eqgs. 4.6 and 4.8 in practical calculations, it is instructive
to study a simple matrix model that can be solved without any truncations. Consider the

initial Hamiltonian

1 1
H=T+V = , (4.10)
1 -1
where the diagonal “kinetic energy” term is
1 0
T = . (4.11)
0 —1

Let us now try to diagonalize H using the Wegner generator presented in chapter 3, making
n(s) = [T, H(s)], solving the SRG equations using the Magnus expansion and by direct

integration of Eq. 3.2. Note that for this choice of initial H, both 7(s) and Q(s) are real,
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antisymmetric matrices throughout the flow

n(s) = igy(s)o2 (4.12)

Q(s) = ign(s)oa, (4.13)

where o9 is the Pauli matrix. Consequently, Eq. 4.6 terminates at the first term and Eq. 4.8
can be summed up to all orders using the well-known properties of Pauli matrices. This

simplicity also allows for an analytical solution for H(s) = gp(s)T + gy (s)V, where

g1(s) = V2tanh(V/32s + arcsinh(1)) (4.14)
gv(s) = V2sech(V/32s + arcsinh(1)) . (4.15)

The large memory footprint of high-order adaptive solvers is the main computational chal-
lenge in large-scale SRG calculations, so in addition to using a Gordon-Shampine integrator
to solve Egs. 3.2, we demonstrate what happens when a naive first-order Euler method
is used to integrate Eqgs. 3.2 and 4.6. The results are shown in Fig. 4.1, where we plot
|H11(s) — Egs| — which should go to zero at large s — versus s for different Euler step sizes
0s. Unsurprisingly, we see that the direct integration of Eq. 3.2 accumulates large time-step
errors, with the plateaus at large s displaying a strong dependence on the Euler step size.
Even when Eq. 3.2 is integrated with a high-order method with very conservative absolute
and relative tolerances of 1e —12, the solution fails to produce the exact answer. The Magnus
solution, on the other hand, converges to a final answer at large s that is independent of
step size and agrees with the exact result to within machine precision. Even more, the naive

Euler step with ds = .001 is indistinguishable from the analytical result. The insensitivity
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Figure 4.1: |Hq1(s) — Egg| versus s for different Euler step sizes calculated via direct integra-
tion of the SRG flow equation, Eq. 3.2, and using the Magnus expansion, Eqs. 4.6 and 4.8.
Also plotted is the integration of Eq. 3.2 with the Gordon-Shampine integrator.

to the time step size is due to the fact that while each Euler step in Eq. 4.6 gives an error
of order O(8s?), the exponentiated operator at the end of the evolution is still unitary. This
is the primary advantage of the Magnus expansion; by reformulating the problem to solve
flow equations for Q(s) instead of H(s), one can use a simple first-order Euler method and
dramatically reduce memory usage. Once €)(s) is in hand, the transformation of H(s) and
any other observables of interest immediately follows from Eq. 4.8. Note that in contrast to
the direct integration of Eq. 3.2, the dimensionality of the flow equations does not increase

when one evolves additional observables.
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4.4 MAGNUS(2) Approximation

Having illustrated the advantages of the Magnus expansion in a simple model, we would
now like to apply it large-scale many-body calculations. Before going into necessary ap-
proximations, it is instructive to highlight how the Magnus formulation of the IM-SRG
makes the connection to coupled cluster theory more tangible. We recall from chapter 2
that closed shell coupled cluster theory is centered in the philosophy of decouping a single
reference from higher excitations via a non-hermitian similarity transformed Hamiltonian
H=eTHeT. The IM-SRG is also based on this same philosophy, but within the Magnus
approach, the means of doing so become more transparent. We are now solving the hermitian
H(s) = £28) He=5)  which bears more than passing similarity to .

Unlike in coupled cluster theory where the BCH formula for the similarity transformed
Hamiltonian terminates at finite order, both Eqs. 4.6 and 4.8 involve an infinite-order series
of nested commutators that generate up to A-body operators. Thus, to make progress, we
introduce the MAGNUS(2) truncation in which all commutators (as well as (s),n(s) and
H(s)) are truncated to the NO2B level. Even with this approximation, the expressions for
d)/ds and H(s) involve an infinite number of terms. However, for both Egs. 4.6 and 4.8 at

the NO2B level, we empirically find that the magnitude of terms decreases monotonically in

k for all systems studied thus far. Therefore, we numerically truncate Eqs. 4.6 at the fth
term if
By |ladg, ()|
— L . 4.16
‘ k'HQ” Ederlv ( )

For the truncation of (4.8), we could use a similar criteria as for the derivative expression.

However, since we are interested in the ground-state energy, we use a simpler condition where

101



the series is truncated when the zero-body piece of the k™ term falls below some threshold,

{ad§y(H)}op

il < €B(CH - (4.17)

In the calculations presented below, we will find that the final results are insensitive to
large variations in €gery and egog, which we take as an a posterior: justification for our

truncations.

4.5 Hamiltonians and Implementation

Before presenting the results of IM-SRG(2) and MAGNUS(2) calculations of the homoge-
neous electron gas (HEG) and 100, we review some details of our implementations for both
systems. For the homogeneous electron gas, we perform our calculations for the closed-shell
configuration of N = 14 electrons in a cubic box with periodic boundary conditions. Note
that if one is interested in extrapolating to the thermodynamic limit, calculations should
be done for a larger closed-shell configurations of N = 38,54, 66, ... electrons, with finite-
size corrections for the kinetic and potential energy taken into account. Here we neglect
these corrections since our primary purpose is to demonstrate the effectiveness of the Mag-
nus expansion, and the quasi-exact Full Configuration Interaction Quantum Monte Carlo
(FCIQMC) results we compare against also neglect these corrections [3]. The relevant single

particle orbitals are plane waves with quantized momenta

Vo (T) = L kT (4.18)
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where L3 is the box volume, Xo 1S a spin eigenfunction, and k = %(nx,ny,nz) where

ng, Ny, and n, are integers. We follow common practice and use the Wigner-Seitz radius to

characterize the density of the HEG,
re =0 (4.19)
where aq is the Bohr radius and r( is defined in terms of the density as

N
mrg = - (4.20)

[GURE

We use a basis set truncation which keeps M single particle states with energy less than
some cutoff E., although other choices are possible [132].

In the plane wave basis, the kinetic energy matrix elements are diagonal

1

Tij = 5ki*0ij. (4.21)
and the Coulomb matrix elements are given by
11
V%jkl = ﬁq—25ai,ak5aj,al5q,krkk5q,krkj. (4.22)

Note that the q = 0 term is omitted due to its cancellation against the inert, uniform
positively charged background that is needed to make the system charge neutral [133]. Since
we are interested primarily in the correlation energy, we have omitted the Madelung term in

all of our calculations.

103



For the calculations of 160, our starting point is the intrinsic nuclear A-body Hamiltonian

H = (1 - %)T +7@ 4y (@) (4.23)

where T(2) is the two-body part of the intrinsic kinetic energy, and we restrict our attention to
two-nucleon interactions only. Results are presented for input NN interactions derived from
the N3LO (500 MeV) potential of Entem and Machleidt [17] at several different free-space
SRG resolution scales, A = 2.0,2.7, and 3.0 fm 1.

In both MAGNUS(2) and IM-SRG(2) calculations, we start by normal ordering the
Hamiltonian with respect to the HF ground state. In the case of the HEG, translational
invariance implies the HF orbitals are plane waves. Therefore, the HF reference state is just
a Slater determinant comprised of the lowest energy doubly occupied plane wave states for
N = 14 electrons. For 60, we must self-consistently solve the Hartree-Fock equations by ex-
panding the unknown HF orbitals in a harmonic oscillator basis truncated to oscillator states
obeying 2n + [ < emax, where epax is sufficiently large so that the results are approximately
independent of the Aw value of the underlying oscillator basis. For the NN interactions used
in the present calculations, a cutoff of eax = 8 is sufficiently large for most purposes. Once
a converged HF ground-state is obtained, the Hamiltonian is normal-ordered w.r.t. to this
solution, and the resulting in-medium zero-, one-, and two-body operators serve as the initial
values for the MAGNUS(2) and IM-SRG(2) flow equations. These are subsequently inte-
grated until sufficient decoupling is achieved, as determined by the size of the second-order
many-body perturbation theory MBPT(2) contribution of the flowing Hamiltonian H(s) to
the ground state energy. We use a threshold of 1070 Hartree (MeV) for the HEG (160)

calculations, respectively, which corresponds to relative changes in the flowing ground-state
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Figure 4.2: Relative importance of the k™ term in the Magnus derivative as defined by the
lefthand side of Eq. 4.16 evaluated in the NO2B approximation. The top row is for the
homogeneous electron gas at Wigner-Seitz radii of a) rg = 0.5 and b) rs = 5.0. The bottom
row is for 160, starting from the chiral NN potential of Entem and Machleidt [17], softened
by a free-space SRG evolution to (¢) A = 2.0 fm~! and (d) A = 3.0 fm~!. The electron gas
calculations were done for N = 14 electrons in a periodic box with M = 114 single particle
orbitals. The 160 calculations were done in an emaxr = 8 model space, with Aiw = 24 MeV
for the underlying harmonic oscillator basis.

energy of 1077 or less for both systems.

4.6 Results

We begin by examining the numerical evidence for truncating Egs. 4.6 and 4.8 by hand. In
Figure 4.2, we plot the lefthand side of Eq. 4.16 for the HEG (top row) and 150 (bottom row)
as a function of the flow parameter. To assess the role of correlations, the HEG calculations

were performed at two different Wigner-Seitz radii, rs = 0.5 and r¢ = 5.0, and the 160
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calculations were done using NN interactions at two different resolution scales, A = 2.0 fm~!
and A = 3.0 fm~!. For the HEG, the r¢ = 0.5 contributions are completely negligible by
the k = 2 term, which is not surprising since the kinetic energy dominates in this weakly
correlated high-density regime [133]. Even for the r4 = 5.0 case, where correlations and non-
perturbative effects start to become sizable, one finds that the successive terms in Eq. 4.6
decrease monotonically, though the individual terms are substantially larger than for the
rs = 0.5 case. Analogous results are found for 160; the individual terms are larger for
the harder A = 3.0 fm~! interaction since the system is more strongly correlated, but they
systematically decrease with increasing order k.

Figure 4.3 tells a similar story for the BCH formula, where the lefthand side of Eq. 4.17
is plotted as a function of the flow parameter. In all cases, we see the importance of suc-
cessive terms decreases monotonically. Reassuringly, we find that the final results in our
calculations are essentially independent of the convergence criteria provided €geriy S 1074
and egopy < 1074, where the latter is in units of Hartree (MeV) for the HEG (160) calcula-
tions, respectively. For instance, raising both convergence criteria from 10™% to 10~% changes
the ground state energy at the 1 eV (1077 Hartree) level in the 160 (HEG) calculations,
respectively.

As was illustrated for the toy model in Sec. 4.2, the key advantage of the Magnus expan-
sion is that one can use a first-order Euler method to accurately solve the flow equations.
We now demonstrate that the same conclusion holds for realistic IM-SRG calculations. Re-
ferring to Figs. 4.4 and 4.5, we show the 0-body part of the flowing Hamiltonian H(s) versus
the flow parameter for the electron gas! and 160. The black solid lines denote the results of

a standard IM-SRG(2) calculation using the adaptive ODE solver of Shampine and Gordon,

1For the HEG, we plot Ey(s) — Efyp, which approaches the correlation energy at large s.
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Figure 4.3: Magnitude of the 0-body contributions of the & term in Eq. 4.8 evaluated in
the NO2B approximation. The top row is for the electron gas at Wigner-Seitz radii of (a)
rs = 0.5 and (b) rs = 5.0. The bottom row is for 160, starting from the chiral NN potential
of Entem and Machleidt [17], softened by a free-space SRG evolution to (¢) A = 2.0 fm™!
and (d) A = 3.0 fm™!. The electron gas calculations were done for N = 14 electrons in a
periodic box with M = 114 single particle orbitals. The 160 calculations were done in an
emaz = 8 model space, with hw = 24 MeV for the underlying harmonic oscillator basis.

while the other curves denote IM-SRG(2) and MAGNUS(2) calculations using a first-order
Euler method with different step sizes ds. For the electron gas, the exact FCIQMC results [3]
are shown for reference. Unsurprisingly, the IM-SRG(2) Euler calculations are very poor,
with the various step sizes converging to different large-s limits. The MAGNUS(2) calcu-
lations, on the other hand, converge to the same large-s limit in excellent agreement with
the standard IM-SRG(2) results. The insensitivity to step size is due to the fact that the

time step errors accumulate in (s) as opposed to H(s). At the end of the flow, Q(s) is still
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Figure 4.4: Flowing IM-SRG(2) and MAGNUS(2) HEG correlation energy, Eo(s) — Exp,
for Wigner-Seitz radii of a) rs = 5.0 and b) rs = 0.5. The solid black line corresponds to
IM-SRG(2) results using an adaptive solver based on the Adams-Bashforth method, while
the other lines correspond to MAGNUS(2) and IM-SRG(2) results using different Euler step
sizes. The red circles denote the quasi-exact FCIQMC results of Ref. [3].

an anti-hermitian operator, and the transformation in Eq. 4.8 is unitary, up to truncation

Given that the MAGNUS(2) results are independent of step size over the range consid-
ered, one might try to keep increasing the step size to reach the ground state in fewer steps.

This unfortunately is not possible, as the flow tends to diverge with too large of a time
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Figure 4.5: Flowing IM-SRG(2) and MAGNUS(2) ground state energy, Eg(s), for 160
starting from the N3LO NN interaction of Entem and Machleidt [17] evolved by the free-
space SRG to a) A = 2.7 fm~1 and A = 2.0 fm~!. The solid black line corresponds to
IM-SRG(2) results using an adaptive solver based on the Adams-Bashforth method, while
the other lines correspond to MAGNUS(2) and IM-SRG(2) results using different Euler step
sizes. The calculations were done in an ey, = 8 model space, with hw = 24 MeV for the
underlying harmonic oscillator basis.

step. One of the strengths of the SRG approach is that the transformation is adapted as
the Hamiltonian is transformed. With too large of a time step, we rob the method of this
flexibility and run the risk of applying a “large rotation” of the Hamiltonian that induces

large three- and higher-body components. This would not be a problem if we evaluated the
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BCH and Magnus derivative expressions without approximation; the method would find its
way back since the large rotation is still unitary if no truncations are made. However, in
the MAGNUS(2) approximation we make, the neglect of the induced three- and higher-body
terms can lead to a lack of convergence. Empirically, we find that this difficulty is avoided
by enforcing that at each time step the “off-diagonal” matrix norm ||H°d| is decreasing.
This can be implemented by using a simple mid-point integrator algorithm and decreasing
the time step if ||[H°4| has increased between the first and second half of a step.

As a final demonstration of the utility of the Magnus expansion, we turn to the evolution
of operators other than the Hamiltonian. In the conventional approach based on the direct
integration of Eq. 3.2, the dimensionality of the flow equations increases with each additional
operator to be evolved. In contrast, in the Magnus expansion the dimensionality of the flow
equations does not change; the additional computational expense shows up only in the
evaluation of the BCH formula for the transformed operator, Eq. 4.9. For a given operator
O, we have

(Uo|0| W) = lim (| 0e M) |o) | (4.24)

lim
S§—00
where |®) is the reference state. Therefore, the 0-body piece of the transformed operator
approaches the interacting ground state expectation value in the large-s limit.

As a proof-of-principle, we perform a MAGNUS(2) evolution to evaluate the ground state
expectation value of the momentum distribution operator ny = aLak for the HEG, and the

generalized center of mass (COM) Hamiltonian for the 60 nucleus,
. 1 ~9.9 3, .

Figure 4.6 shows the MAGNUS(2) ground state momentum distribution for a system of N =
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Figure 4.6: Electron gas momentum distributions calculated in the MAGNUS(2) approxi-
mation. The calculations were done for N = 14 electrons in a periodic box with M = 778
single particle orbitals.

14 electrons in a periodic box for several different Wigner-Seitz radii. Even with the neglect
of finite size corrections and the extremely coarse momentum grid due to the small box sizes
considered, the qualitative behavior agrees with expectations for the electron gas; correlations
become more important at larger rg, leading to a stronger depletion of modes with k < kp
and smaller discontinuity at the Fermi surface. We note that the MAGNUS(2) results are
in good agreement with the IM-SRG(2) calculations based on Eq. 3.2 as well as results
generated by the Feynman-Hellman theorem, but at a fraction of the cost. In addition to
providing a memory-efficient means for evolving operators beyond the Hamiltonian, Fig. 4.7
shows that the MAGNUS(2) approximation gives a small but robust computational speedup
for a range of basis sets, even including the additional effort of generating the momentum
distributions, which were not computed in the IM-SRG(2) timings.

For our second illustration of operator evolution, we consider the generalized COM Hamil-

tonian, Eq. 4.25. In calculations of nuclei, the ground state expectation value of this quan-
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tity is useful to diagnose whether approximate solutions of the Schrodinger equation are
contaminated by spurious COM motion. Since nuclei are self-bound objects governed by a
translationally-invariant Hamiltonian, an exact solution of the Schrodinger equation must
factorize into the product of a wave function for the physically relevant intrinsic motion

times a wave function for the COM coordinate,

[¥) = [¢)in @ [¢)em - (4.26)

As is well known, there are two strategies to rigorously guarantee this factorization; one
can work in a translationally-invariant basis from the outset, or one can work in a so-called
full NAaw model space comprised of all A-particle harmonic oscillator Slater determinants
with excitations up to and including Nhw. Neither choice is optimal since the former is

limited to light nuclei due to the factorial scaling of the required antisymmetrization, while
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Figure 4.8: Center of mass diagnostics for MAGNUS(2) calculations of 100 starting from
the N3LO NN interaction of Entem and Machleidt [17] evolved by the free-space SRG to
A =20 fm~ L. See the text for details. The calculations were done in an emax = 9 model
space.

the latter limits the choice of the single particle orbitals to the harmonic oscillator basis and
does not carry over to methods that are capable of reaching heavier nuclei, such as coupled
cluster theory and the IM-SRG where it is more natural to define the model space via an
energy cutoff (e.g., 2n + 1 < epax) on the single particle states. In the case of calculations
with an epgax cutoff, there is no analytical guarantee that the COM and intrinsic wave
functions factorize.

In Ref. [18], Hagen and collaborators gave an ingenious prescription to diagnose whether
or not Eq. 4.26 is satisfied in such calculations. The basic idea is to assume that the factorized

COM wave function is in the ground state of Hep (0) with lowest eigenvalue. Note that @ # w
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in general, where w is the frequency of the underlying oscillator basis. The prescription to

find @ involves solving a quadratic equation

hw = hw + ;Ecm(w) + \/%(Ecm(w))2 + %hchm(w), (4.27)
where
Eem(w) = (V|Hem (w)|P) (4.28)
= lim_ (®]e4) Hepy (w)e 4| @) (4.29)
= Sli)ngo{ems)Hcm(w)e_Q(s)}Ob. (4.30)

Since there are two roots of Eq. 4.27, we choose the one that gives a smaller value for
Eem(@). Applying this prescription to our calculations of 160, we obtain the results shown
in Fig. 4.8. In the top panel, we see that the expectation value of the COM Hamiltonian
Hem(w) is approximately zero for w ~ 20 MeV, but varies parabolically and becomes rather
large away from this point. This suggests that if Eq. 4.26 is satisfied, the frequency of
the factorized COM Gaussian should have w ~ 20 MeV. This is born out in the bottom
panel, where the two roots of Eq. 4.27 are plotted as a function of Aw. Picking the root
that minimizes Eem (@), we find that indeed @ ~ 20 MeV over a wide range of w, and that
Eem (@) =~ 0. Since the excitation energy for the first spurious COM mode is hw ~ 20 MeV,
while Fep (@) ranges between 0.03-0.14 MeV over the entire range of fuv, we conclude that

the factorization of COM /intrinsic motion is satisfied to an excellent approximation.
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4.7 MAGNUS(2) Conclusion

In these simple systems, we have shown that all the utility of IM-SRG(2) calculations in
Chapter 3 is available now at significantly decreased cost, with the option of investigating
any observable without conducting the full IM-SRG(2) calculation again. We have thus
circumvented two of the largest weaknesses of the method, the already mentioned need to
solve a large set of differential equations with small errors, and the linear scaling in desired
observables. We would now like to address the undercounting of a certain class of diagrams
mentioned in 3.5. Within the MAGNUS(2) formulation, we have a fairly straightforward

way to proceed with this, which will be presented in Chapter 5.
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Chapter 5

Approximating the IM-SRG(3)

Having established that the exact solution of the vast majority of many-body problems is
beyond the reach of even the most advanced methods in chapter 2, practitioners instead set
their aim on finding systematic approximations that, in some limit, approach the complete
solution. This philosophy is evident in coupled cluster theory, where one can truncate the
cluster operator T' at increasing excitation rank, giving a hierarchy of improved approxima-
tions (CCD, CCSD, CCSDT, etc.). Moreover, since truncations beyond the CCSD level can
become extremely expensive for larger systems, much effort has gone into the development of
computationally cheap non-iterative approximations to these higher truncations. The central
aim of the present chapter is to describe how analogous approximations can be constructed
in the IM-SRG.

In Chapter 4, we argued that the direct integration of the IM-SRG(2) flow equations in
Eq. (3.2) is limited by the large memory demands of the high-order ODE solvers that are
needed to control the accumulation of numerical errors. One of the major themes of my thesis
is the use of the Magnus expansion to eliminate these difficulties by reformulating the problem
so that the set of flow equations to be solved is given by Eq. (4.6). As discussed in Chapter
4, this reformulation, which in the NO2B approximation is deemed MAGNUS(2), can be
solved with a simple first-order Euler method and yields a nearly identical transformation as
the IM-SRG(2), but with much smaller memory requirements. As a result, the MAGNUS(2)

makes it feasible to extend calculations to heavier systems and, more importantly, perform
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calculations of other properties besides spectra.

In addition to providing substantial computational improvements, the Magnus formula-
tion provides a particularly transparent path towards developing approximate MAGNUS(3)
calculations from converged MAGNUS(2) calculations. The development of such approwi-
mate NO3B calculations is essential, as the full IM-SRG(3)/MAGNUS(3) methods naively
scale as n?, which makes them intractable for large-scale calculations. In the present chapter,
we will first delve into quantum chemistry type systems to demonstrate the shortcomings of
IM-SRG(2) type calculations even with respect to CCSD, despite the fact that they should
be naively related to each other. From there, guided by the perturbative analysis of Section
3.5, we will introduce computationally feasible approximations to mitigate these shortcom-
ings. And then finally, we will introduce a family of methods that are analagous to CCSD

plus non-iterative approximate triples.

5.1 Deficiencies of the IM-SRG(2) in Chemistry

The first application of the IM-SRG(2) to ab-initio many-body calculations, though couched
in somewhat different terminology and notation, was carried out by White in treating an
H0 molecule in a DZP basis set [78]. While the method was more or less abandoned in
chemistry systems, though see the related work of Evangelista and collaborators [134] and
Chan et al. [79]. An important finding in that first seminal work was that, unlike CCSD
which generally underbinds with respect to FCI, IM-SRG(2) produced results that were
dramatically overbound at equilibrium and not convergent at even modest bond lengths.
This was peculiar, as the scaling and philosophy of the methods are similar.

Pinpointing the failure of the IM-SRG(2) and MAGNUS(2) to produce converged results
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in HoO and other stretched molecules can be guided most easily by the perturbative analysis
found in Sec. 3.5. As we have already pointed out, diagrams making up those (3.120) are
undercounted by a factor of two in both IM-SRG(2) and MAGNUS(2). These are properly
accounted for in CCSD calculations, so initial attempts to resolve non-convergence centered
around restoring this content to the transformed Hamiltonian. Evangelista et al. had similar
findings when the BCH of traditional coupled cluster is applied via one- and two-body
intermediates, as opposed to the full diagrammatic content of the cluster amplitudes found
in (2.31)-(2.33) [121]. The lack of these diagrams caused dramatic overbinding with respect
to full CCSD in HoO and similar molecular systems. As discussed in the following and in
3.5, this is also the reason IM-SRG(2)/MAGNUS(2) results track in between CCSD and
CCSD(T) calculations for a wide range of closed-shell nuclei, 2D quantum dots, and the

homogenous electron gas.

5.2 The IM-SRG(2*) Approximation

In the traditional IM-SRG formalism, it is not straightforward how one might restore the
above undercounted terms without storing a full three-body operator, which is a six-index
tensor. This is certainly something we wish to avoid, as calculations are often memory
limited even with the 15-20 copies of a two-body Hamiltonian. Since these diagrams are
found in the IM-SRG(2), but with the wrong weight, maybe it is possible to find a way to
re-weight the effect of what is already included without changing the computational cost
too much. Indeed, this can be done. Figure 5.1 and Figure 5.2 both show similar third-
order contributions to the transformed Hamiltonian, both of which lead to identical fourth

order energy contributions. The first is found in IM-SRG(2) calculations, while the second
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enters via an intermediate three-body force that one would naively need the IM-SRG(3)
to include. A similar attempt at mocking up twice the total effect of diagrams found in
Figure 5.1 was made recently by Evangelista in Ref. [134], simply by doubling the pre-
factor of the derivative to flowing one-body Hamiltonian in Eq. (3.2). While this brought
results into good agreement with CCSD at equilibrium, and stabilized convergence for some
bond-lengths, it obviously distorts the single-particle spectra. This ad-hoc distortion has
some undesirable consequences, particularly if the resulting transformed Hamiltonian is to
be used for subsequent applications (e.g., the computation of excited states or a valence shell
model Hamiltonian). In the present work, we describe an alternative fix in which, rather
than doubling “by hand” the prefactor of the single-particle spectra flow equation, we store
the change to the single particle Hamiltonian separately from the transformed Hamiltonian
itself. This can be easily accomplished by introducing an auxiliary one-body operator y with
the following flow equation,

qur

1 o _ _
ds 2 Z(nan + gy ) (nsnina, + sfgn) (1 + Por)nugstD stur (5.1)

stu

subject to the boundary conditions

er(o) =0. (5.2)

It is then possible to amend the flow equations in the following way

= [n(s), H(s) + x(s)]. (5-3)
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This allows for a direct solution of (3.2) that correctly accounts for all (non-triples) fourth
order energy content. We note now, that although the inclusion of x corrects the asymmetric
fourth order quadruples diagrams correctly, it is not technically incorrect in the way it cor-
rects the flowing two-body vertex. This can be seen by comparing the resulting contributions
to the third-order vertex in Fig. 5.1 and Fig. 5.2, since one has triple contractions between
first order generators, and one does not. We will revisit whether this is an advantage or
not in Sec. 5.3. Despite this slight discrepancy, this inclusion stabilizes the flow away from
equilibrium geometries compared to the naive re-weighting correction in [134]. Since this is
not a true three-body IM-SRG, and still scales in the same way as IM-SRG(2), we refer to it
as IM-SRG(2*). Unfortunately, we have not yet discerned a way to keep track of the induced
three-body force required to account for a triples type calculation in the direct solution of
(3.2). Fortunately though, the main thrust of my thesis work has been the development
of the Magnus formulation of the IM-SRG, which offers a more transparent path towards
approximating the neglected induced three-body interactions. For this reason, we will not

actually present any IM-SRG(2*) results in this work.

5.3 The MAGNUS(2*) Approximation

The MAGNUS(2) method has the same undercounting of the fourth-order quadruple-excitation
diagrams mentioned above, and therefore exhibits the same overbinding and lack of stability
for stretched bonds. We now present the analogous MAGNUS(2*) method that corrects for
these undercounted terms. As we will see, it is more natural in the Magnus formulation to
approximately correct for terms that are missing or undercounted in the MAGNUS(2) level

of truncation.
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Figure 5.1: The dark circle and square represent the bare Hamiltonian and generator respec-
tively. The light circles in the first column represent the second order 1-body Hamiltonian
originating from [n, H];g. If the second order 1-body vertex is expanded in terms of bare
quantities, the 4 asymmetric Goldstone diagrams on the right are the result.

We start by recalling that the Magnus formulation centers around the application of an
exponent 2 via the Baker-Cambell-Hausdorff expansion in Eq. (4.8). In the MAGNUS(2)
approximation, every internal commutator is truncated at the NO2B level. In the diagrams
of Figs. 5.1 and 5.2, we can replace the generator n with €2, which shows that the dia-
grams from internal one- and three- body terms arise from BCH terms [, [2, H];glop and
[©2,[Q2, H|3p]ap respectively. We have attempted to restore the diagrams in Fig. 5.2 as they
are, but it appears that the effective one-body operator arising from the triple contraction
of ) with itself, which appears in the second column of expanded diagrams, generally causes
problems at stretched geometries of molecules. In contrast, for nuclear systems we include
them as they are, and see no problems with convergence, which was never a problem for
these systems even in the IM-SRG(2)/MAGNUS(2) calculations.

In keeping with the same philosophy as the IM-SRG(2*) method, we modify the ex-
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Figure 5.2: The dark circle and square represent the bare Hamiltonian and generator respec-
tively. The light circles in the first column represent the second order 3-body Hamiltonian
originating from [n, H|3p. If the second order induced 3-body vertex is expanded in terms
of bare quantities, the 4 asymmetric Goldstone diagrams on the right are the result.

pression for each adjoint operator in the BCH formula with a one-body operator )Zk in the

following way,

H(s) = ?He %= ado(H) (5.4)
k=0 "
—~k
ado(H) = adb(H) for k=0,1, (5.5)
~k ~k—1 he1
ado(H) = [Qadg (H)+xX"'] for k>1, (5.6)
where the one-body operator )Zk is defined as
X = 3 u(ngne + fghy) (s + fisiign) (1 + Pyr)Qugst Xk (5.7)
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and X* = EEI@(H Jop- Although this corrected BCH expression was motivated by pertur-
bative considerations, it appears that this general topology of terms, i.e, the diagrams of
Figs. 5.1 and 5.2, but with the full flowing vertices (which themselves are non-perturbative
resummations), are very important. To clarify, every piece of this diagram involves “off-
diagonal” components of the Hamiltonian, and feeds directly back into the flow of the same
“off-diagonal” vertices. This seems to promote its importance beyond a naive perturbative
counting of terms. For instance, the third such modified nested commutator, which con-
tributes to energy at fifth order, changes answers by .1-.5 mH for the molecules we present
results for. Therefore, we keep all such nested commutators in our calculations. This might
raise concerns that other neglected topologies arising from [, [Q2, H]|3p]1 g 2p are not neg-
ligible. To check this, I have implemented all terms arising from expressions of internal
three-body commutators that immediately are triply contracted with the two-body 2, as
they can all be factorized into an N evaluations. However, these terms typically affect the
final answer (at equilibrium) by a negligible amount of around .1 mH or less. We are not
claiming that higher-body terms in further nested commutators are also negligible, but gen-
erating them will cause the method to scale the same as the full IM-SRG(3), and therefore
they are not considered in this work. This question will be explored more in future work, at
least for sufficiently small systems so that the full calculations can be carried out, to verify
that they are not sizeable.

This modified truncation of the BCH commutators provides a robust convergence pattern,
which agrees with CCSD results at equilibrium geometries for every molecule and basis set
we have investigated in this work. As bonds are stretched, the results from MAGNUS(2*)
begin to underbind with respect to CCSD results. However, this underbinding may prove

to be a good thing, given that three-body effects (which should be attractive) have not yet
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been fully accounted for in the above method. We should also mention that here, there
is nothing that is more or less valid when applying this corrected BCH expression for any
observable we are dealing with. In other words, it should be generally applicable for any
operator dominated by its NO2B and lower components.

In spirit, this approximation captures much more than the three-body Mukherjee decom-
position found in canonical transformation theory [79]. The difference is that there, they are
decoupling an “active space”, and that their tensor decomposition introduces a state speci-
ficity to the transformation. It would be interesting to go back and use our approximation
presented in a complete active space calculation to see how it compares. For now, that is

beyond the scope of this work.

5.4 Approximations to MAGNUS(3)

In Chapter 2 we reviewed the main non-iterative CCSD plus some non-iterative approximate
inclusion of three-body cluster amplitudes. We present here the various ways that similar
approximations can be included our framework. Having just summarized how the effect
of certain three-body operators that are internal to the BCH can be included, we now
turn to approximate the leading effects of including all NO3B effects as well, termed the
MAGNUS(3). Like CC methods presented earlier, we are only interested in non-iterative
methods that are just slightly more costly than the MAGNUS(2*) calculation they are based
upon.

All of our methods are reminiscent of CC theory, but given that they are framed in
terms of a transformed Hamiltonian that is Hermitian, they are more intuitive. For the

remainder of this section, any non-subscripted €2 is the converged operator of a MAGNUS(2*)
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decoupling. We denote H = H(co) = eXH(0)e~ in order to simplify equations. If we want
to incorporate physics beyond the NO2B Hamiltonian, then we need to allow for a three-body

interaction W in the following way,

H ~ {E + ]F—F F}MAGNUS@*) -+ W (59)

The contents of the brackets contain the final Hamiltonian we generate in our fully converged
MAGNUS(2*) transformation, and as such, it is completely “diagonal.” The W part of
the interaction, on the other hand, can connect our reference ® to triply excited Slater
determinants. For now, we will leave the form of W unspecified. Given that it is possible to
generate it, the most straightforward way to immediately give an energy correction due to
W is just second order perturbation theory. We have already given the form of this in Eq.
(2.26), but for the reader’s ease we reproduce it here. The energy correction AE[?)] can be

written as

zykabc abczjk 1
‘2 Z - _2 Z ijkabc abczykAabcz]k (5.10)
" ijkabe Ukabc ijkab

Although this energy correction was motivated by perturbation theory with the transformed
Hamiltonian, there is an alternate derivation in which it arises in another way. We also take
a moment to note that the denominator Aijkabc can be made from the bare or transformed

Hamiltonian, and can be chosen freely to be Moller-Plesset or Epstein-Nesbett type. If we

introduce a second transformation eQ, with elements of the following form,

= Wabci ik
J
Qabcz’ ik — R

, (5.11)
Aabcz’jk
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then we can transform the final MAGNUS(2*) Hamiltonian as
H=eae 2. (5.12)

If we assume that this second transformation’s BCH expansion follows the same pattern of
monotonically decreasing terms as shown in Fig.4.3, then the brunt of the energy correction

will come from the first few terms. Isolating the first few terms, we arrive at

ABjy = [0, Hlop + 5[0, 12, Alos (513

1
2
Here we will have to restrict the Hamiltonian H appearing in the second commutator to
only have the diagonal form used to define A, else the numerical scaling to establish AE[3]
will rise from its cheapest n%nﬁ to at least n3n8 or higher depending on how much of H is
included in this commutator. But keeping the prescription as presented, the two formulas
yield identical results as designed. The reason for demonstrating the same energy correction
arises from BCH formalism, is that it allows for the straightforward inclusion of observables
at the same level of accuracy, and in future work with other applications of the MAGNUS(2)
to valence space and multireference methods, we will will not need to appeal to a more
complicated perturbation theory to proceed.

We now turn to how we approximate W, and it is here that we begin to really draw
analogies with the CC methods presented earlier. If we recall how the triples energy cor-
rection to CCSD[T| was established, T3 was approximated as linear in the converged Th

amplitudes, with the bare resolvent. We can form a similar approximation, W = [Q, H]3p,

and also using only the bare HF energies in the denominator to establish Q. In order to do
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this we need only elements of the form Wepeiir = [Q, Hgpeiji-

[, Hlapeije = (1= Pap = Poe) (1 = Pij = Pip) (D QapitTicjs — D TaviaQacjie — (2 < 1))
l ’ (5.14)
Not surprisingly, this is the term that dictates the ngnﬁ scaling already mentioned, and is
exactly the same expression that appears in coupled cluster theory in Eq. (2.37) and Fig.
2.3. Once established, AEj3) corrects the Eyyagnys(o«) energy to fourth order in MBPT
with regards to the original reference. It is important to notice that this energy only goes
beyond fourth order via the use of an infinite order two-body €2. This will be the crudest
approximation we can make in this formalism, and we denote it MAGNUS(2*)[3]-A, with
energy correction AE[3]_ A
For next level of approximation, instead of using the original bare Hamiltonian for usage
in our denominators, we can use the fully transformed one-body Hamiltonian resulting from
a MAGNUS(2*) calculation. Thus the resolvent is updated by the fact that our single
Slater determinant is a much better approximation after the MAGNUS(2*) transformation.
This type of correction will be denoted by MAGNUS(2*)[3]-B to make the connection to
renormalized coupled cluster theory.
We can go one step further by not limiting ourselves to induced three-body interactions
that are only linear in €2. This is accomplished by using an “internal BCH” to establish the
two-body piece that is contracted with © to form W. This is motivated by returning to

the matrix adjoint expression of H from Eq. 5.4, which only begins at k& = 1 for an induced

three-body force

= ~k
W =302 hado(H)zp = [, Hlsp + 5[ [ Hllzp + . ... (5.15)
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If we want to approximate this as fully as possible without increasing the single n%n% itera-

tion, it is easy to form a fully renormalized internal vertex by rewriting

1 -

W= 08 + 50 H] + g = 903 o mod(Haplap = [0 M. (310

|
2 (k+1)!

This makes it possible to use Eq. 5.14, just by replacing H with H. We suggest that this re-
placement makes connects philosophically with the completely renormalized coupled cluster
CR-CC(2,3), as everything that goes into the triples matrix elements is consistently trans-
formed. We call the method arising from these choices MAGNUS(2*)[3]-C. All topologies
of terms found in the three-body M of CR-CC(2,3) can also be found in W, although ad-
mittedly some of them will be under counted. This can be seen as identical terms can arise
identically from [, [2, H]|3p|3p, which will be omitted in our truncation scheme. These
should be further investigated to see how large they are. It has been found that using
Epstein-Nesbett type denominators in the analogous denominators of CR-CC(2,3) lead to
results that track much more closely to full CCSD[T] [8]. We will also explore another
scheme, where the denominator from MAGNUS(2*)[3]-C is made to include diagonal ele-
ments from the fully transformed two-body Hamiltonian resulting from a MAGNUS(2*). We

will denote this as MAGNUS(2*)[3]-D.

5.5 Applications

Despite the fact that these corrections have been motivated by the failure of the IM-SRG(2)
methods in chemistry systems, it is fitting that we start elsewhere, as the story of the

success of these methods in chemistry systems is still nuanced. We will first investigate

128



Method W Aijkabc

MAGNUS(2%)[3]-A  [Q, H]3p <q>gjb,gy f \@gjb@

MAGNUS(2%)[3]-B [, H]3p <q>%b,gy f \@gjb@

MAGNUS(29)[3-C [, Hlsp (@] |5%)

MAGNUS(2%)[3]-D [Q, H]3p <q>g]b,g| f+F|c1>gjb]g>

Table 5.1: Approximations made in the various MAGNUS(2*)[3] variants.

the ability of the corrections presented above to dramatically improve calculations of the
electron gas. Then we will present some simple, but realistic nuclear calculations for He
and 100, that show generally expected results. Finally we will show results for a handful
of chemistry results, with varying level of success. We will then use some of the failures in
chemistry systems to highlight another tool that the MAGNUS(2*) class of methods can

add to treating difficult systems where Hartree-Fock is not an adequate starting point.

5.5.1 Electron Gas Results

In Chapter 4, we examined the ability of the Magnus formulation to reproduce IM-SRG(2)
calculations for both the electron gas and finite nuclei. In figure 5.3, we benchmark results of
MAGNUS(2) to quasi-exact calculations at a variety of densities and basis set sizes. When
compared to CCD calculations, MAGNUS(2) (and IM-SRG(2)) results are always between
the exact FCIQMC and CCD calculations. A similar pattern is found in the vast majority
of nuclear calculations, where the naive IM-SRG(2) and MAGNUS(2) results fall between
CCSD and CCSD(T) calculations, see the discussion in Chapter 3. When we now apply the

MAGNUS(2*) to the electron gas, we find answers that are virtually indistinguishable from
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Figure 5.3: Ground state calculations for 14 electrons confined to a box at densities of rg/ag
of .5,1,2,and 5 and performed at 3 basis set sizes of 114,186, and 358 with various methods.
Although CCSD results are not plotted, correcting the MAGNUS(2) commutator expressions
as shown in Eq. (5.4) makes MAGNUS(2*) indistinguishable from CCSD on these scales.
Further, the triples correction due to the MAGNUS(2*)[3]-D binds the result back down to
agree very well with FCIQMC results from Ref. [3]|, while the bare denominators found in
variant A of MAGNUS(2*)[3] overbind dramatically.

CCD. This indicates that the apparent higher quality of the IM-SRG(2)/MAGNUS(2) results
(relative to the analogous CCD and CCSD results) is generally a result of cancellation of two
classes of errors, one repulsive omission that is fixed by including the MAGNUS(2*) terms
of Eq. (5.4), and one attractive ommision that is fixed with the inclusion of approximate
triples. We now turn to the different variants of MAGNUS(2*)[3], and as a visual guide to
what approximation is being made, we refer the reader to Table 5.1. Variants A and D of
the MAGNUS(2%)[3] correction are plotted in Fig. 5.3, the others are not shown for clarity.
The success of the MAGNUS(2*)[3] approximations is fairly astonishing, even given the sim-
plicity of this system. The most naive approximation AE[3]_ 4 causes slight overbinding at a
rs/ag = .5, to fairly dramatic over binding at rs/ag = 5. This is not surprising as the system

is exceedingly non-perturbative at rs/ag = 5. At this density even the plane wave HF energy
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Method rs/ag=.5 rs/ag=1.0 rs/ag=2.0 rs/ag=>5.0

Hartree-Fock® 58.5927 13.6036 2.8786 2099

FCIQMC® ~.5169 -0.4611 -0.3842 -0.2645
ccpb 0.9906 0.9714 0.9313 0.8445
CCDT? 1.0007 1.0032 1.0152

MAGNUS(2) 0.9972 0.9912 0.9802 0.9617
MAGNUS(2¥) 0.9905 0.9714 0.9311 0.8434
MAGNUS(2%)[3]-A  1.0011 1.0056 1.0263 1.1234
MAGNUS(2%)[3]-B 1.0010 1.0043 1.0162 1.0401
MAGNUS(2%)[3]-C 1.0006 1.0021 1.0081 1.0151
MAGNUS(2%)[3]-D  1.0005 1.0016 1.0061 1.0107

Table 5.2:

@ FCIQMC results from Ref. [3].

b CCD and CCDT results from Ref. [4].

Ground state of 14 electrons calculated in a basis set of M=114 plane waves with various ap-
proximations. The Full Configuration Quantum Monte Carlo correlation energy is reported
in Hartree. All other energies are reported as a fraction of the correlation energy recovered
with respect to quasi-exact FCIQMC results.

is bound, so it is surprising that we achieve satisfactory results at that density. The fourth
order MBPT triple excitations for rg/ag = 5 produce results that are over bound by a little
under a full Hartree. The triples energy gap approximately doubles when using transformed
instead of untransformed energy denominators, that is Aijkabc ~ 20 ikabe- This benefit of
using transformed denominators can be seen in the drastic improvement from A to B in Table
5.2. The inclusion of the internally transformed H makes another large improvment from B
to C. And finally C to D, where the transformed Moller-Plesset denominators are replaced
with Epstein-Nesbet type, creates a small, but measurable difference that makes AE[3]_ D
shows very good agreement with FCIQMC results. A recent publication produced full triples
results for the smallest of these basis set sizes, and the comparison of all methods to the
FCIQMC are shown in Table 5.2[4]. Most interesting is that methods C and D outperform

even full CCDT results for this system. There is no reason to expect that this pattern would
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hold for all basis set sizes. Unfortunately, this clear and systematic improvement that is seen
in the periodic electron gas is much more complicated to see in more realistic systems like

nuclei and molecules.

5.5.2 Nuclear Results

For nuclear systems, where the IM-SRG(2) method has found great success in treating
medium mass nuclei, there have been fewer problems with convergence, but the open question
of why IM-SRG(2) methods, which scale as CCSD, generally tracks A-CCSD(T) type results.
For the results we are about present,we use a NN-only chiral N3LO chiral interaction by
Entem and Machleidt [1, 2] softened to A = 2.0 fm~!. Figure 5.4 shows the same conclusion
that was drawn from the electron gas, that is, it appears that when corrected MAGNUS(2*)
results agree very closely with CCSD. For 4He, MAGNUS(2*) comes from being overbound
with respect to A-CCSD(T) results to being in very close agreement with CCSD. When the
AEp3_ ¢ correction is added to is, it is in very close agreement with the A-CCSD(T) results.
This can be seen again similarly in 160 calculations, shown in Fig. 5.5. This has been coded
up by Nathan Parzuchowski in his large scale spherical nuclear code, and he has performed
the spherical coupling of the W operators so that it can be scaled up to treat heavier nuclei.
The details of this process, which is exactly the same as recent A-CCSD calculations can be
found in the appendix of [64]. It will be fruitful to explore these new approximations, and
investigate how they behave and can be extended in the presence of a full residual three-
body force, in the same spirit as recent works which analyze A-CCSD methods with chiral

three-nucleon potentials.
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Figure 5.4: MAGNUS(2*) results, with final MAGNUS(2*)[3]-C for the largest basis set
for *He with the chiral N3LO chiral interaction by Entem and Machleidt [1, 2] softened to
A = 2.0 fm~!. We notice that correcting the commutator as shown in Eq. (5.4) provides
repulsion that brings MAGNUS(2*) up to CCSD. Further, the triples correction due to the
MAGNUS(2*)[3]-C binds the result back down to agree with ACCSD[T]. CC results from
Ref. [18]
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Figure 5.5: MAGNUS(2*) results, with final MAGNUS(2*)[3]-C for the largest basis set
for 160 with the chiral N3LO chiral interaction by Entem and Machleidt [1, 2] softened to
A=2.0fm™L.
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5.5.3 H-,0 Results

We finally turn to chemistry systems, where the efficiency of the approximations is more
difficult to gauge. We have spent much of this work explaining first in 3.5.7 of Chapter 3
how IM-SRG(2) is missing diagrams that CCSD keeps, and then discussing how this led
to the catastrophic failure of the IM-SRG(2) in chemistry systems. In Table 5.3, we plot
the results of several CC vs our calculated magnus results for HoO in a cc-pVDZ basis
set[135], at equilibrium bond (R, = 1.84345 bohr) and HOH angle fixed at 110.6 for several
symmetrical stretchings of the molecule. Although this is not an easy system to treat since
it involves double bond breaking, we present it first to address the issue of convergence. The
first and most important finding is that in this typical double bond breaking test system,
where White’s seminal work on the IM-SRG(2) failed, the MAGNUS(2*) calculations are
robustly convergent[78] except at an O-H bond length of 3R, which we will show in 6.1
is an artifact of MAGNUS(2*) sensitivity to reference states. We see that as the O-H
bond is stretched, MAGNUS(2*) is generally underbound with respect to CCSD. This may
actually be beneficial, as it offsets the large triples correction that will be added to it, to
give reasonable results. We see that MAGNUS(2*)-A,B,C give results that are underbound
with respect to FCI by a few mH, while the D variant remains quite close even in the face of
failing CCSDT results. This is a very interesting finding, as we will see in treating Hydrogen
Flouride, that the MAGNUS(2*)[3] methods fail while CCSDT remains within chemical

accuracy.
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Method Re 1.50Re 2R, 2.5R, 3.0R,

Full CI® -76.241 860 -76.072 348 -75.951 665 -75.917 991 -75.911 946
CCsD? 3.744 10.043 22.032 20.307 10.849
CCSDT® 0.493 1.423 -1.405 -24.752 -40.126
CCSD(T)? 0.658 1.631 -3.820 -42.564 -90.512
CCSD(2)7¢ 0.906 2.825 3.805 -15.830 -33.035
CR-CC(2,3)¢ 0.344 1.142 -0.551 -23.100 -40.556
MAGNUS(2) -0.897 N.C. N.C. N.C. N.C.
MAGNUS(2¥) 3.797 10.384 25.162 36.554 N.C.
MAGNUS(2¥)-A  0.688 2.195 4.131 -1.646
MAGNUS(2*)-B 0.794 2.735 6.725 4.865
MAGNUS(2%)-C 0.982 3.342 8.952 8.825
MAGNUS(2%)-D  0.299 0.994 1.531 -4.497

Table 5.3:

“From Ref. [5].

bCCSD and CCSD(T) results obtained with PSI4[6].

“From Ref.[7]

IFrom Ref. [§]

A comparison of various CC ground-state energies obtained for the cc-pVDZ H9O molecule at
the equilibrium OH bond length R e = 1.84345 bohr and several nonequilibrium geometries
obtained by stretching the OH bonds, while keeping the HOH angle fixed at 110.6. The
spherical components of the d orbitals were used. In post-RHF calculations, all electrons
were correlated. The full CI total energies are given in hartree. The remaining energies are
reported in millihartree relative to the corresponding full CI energies.

5.5.4 Neon Results

We now turn to a simplified atomic system of the closed shell system Ne in a cc-pVDZ
basis set[135]. This is just to show that the extremely accurate reproduction of FCI found
in the homogenous electron gas of Table 5.2 was not accidental given that there are not
pressing issues of reference state dependence in this system, or extremely difficult to capture
static correlation. We observe that again, MAGNUS(2*) reproduces CCSD quite well, with
the approximate MAGNUS(3) methods performing as well or better than full CCSDT with
respect to full CI. It should be observed, that in the publication that the CC results were

taken from, the unitary variants of CC had similar performance in the cc-pVDZ basis set,
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Method  Full CI9 CCSD? CCSDT® CCSD(T)®

Energy -128.679 025 0.9935 0.9992 0.9990
Method —~ MAG(2*) MAG(2*%)[3]-A MAG(2*%)[3]-B MAG(2%)[3]-C MAG(2*)[3]-D
Energy 0.9936 0.9996 0.9994 0.9989 1.0004
Table 5.4:
“From Ref. [9].

A comparison of CC and Magnus IM-SRG ground-state energies obtained for a Neon atom
in a cc-pVDZ basis set. In these post-HF calculations, the 1s orbital was frozen. The full
CI total energy is given in Hartree. The remaining energies are reported as a fraction of the
correlation energy recovered relative to AE = Egp-Epcr.

and then recovered slightly less energy than full CCSDT in the larger cc-pVTZ basis set[9].

5.5.5 C, Results

I must highlight now that my implementation of the IM-SRG and MAGNUS equations
was implemented inside a plug-in for the chemistry suite PSI4 [6], but certainly not at
a production level. Given that the understanding of how point-group symmetries was not
understood when writing the plug-in, that symmetry has not been exploited. That makes
typical calculations for re,we, and other energy dependent quantities like that infeasible for
even modest basis sets. It is a goal of the writers to rewrite a production level plug-in for
PSI4. This introduction was needed to explain why only the energies are being compared
here for Cq, a system we choose to treat because it has large multi-configurational content
even at equilibrium|9, 136]. In this system, we observe that again, MAGNUS(2*) reproduces
CCSD quite well, with the approximate MAGNUS(3) methods performing similarly to CC

methods.
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Method  Full CI CCSD? CCSDT® CCSD(T)®

Encray  75.729 853 29.957 3.371 2.042
Method MAG(2F) MAG(2%)BJ-A MAG(2%)[31-BMAG(2%)3-C MAG(2%)3]-D
Energy 31.234 3.671 6.634 9.420 -2.448
Table 5.5:
“From Ref. [9].

A comparison of CC and Magnus IM-SRG ground-state energies obtained for Co at the
equilibrium FCI bond length of re = 1.27273 Ain a cc-pVDZ basis set, taken from Ref. [9].
In these post-HF calculations, the 1s orbitals was frozen on the C atoms. The full CI total
energy is given in Hartree. The remaining energies are reported correlation energy recovered
relative to AE = EHF"EFC[‘

5.5.6 HF Results

In Table 5.6, we demonstrate the outcomes when HF in a DZP basis[137] is treated with
MAGNUS(2*) methods. We find generally much worse results than we found in any of
the previous systems. With regards to full CC methods, CCSDT provides chemical ac-
curacy across the whole potential energy surface, and CR-CC(2,3) approximates this very
well. CCSD(T) fails badly, The only place where satisfactory results compared to either
CCSD(T), CR-CC(2,3) is achieved is at equilibrium H-F bond length. Everywhere else, we
find dramatically overbound results, and non-systematic results even for the MAGNUS(2*)
base method, where it becomes very close to full CI results at 3R, and then unbound at
5R.. We suggest that this, like the failure to converge at large bond lengths for H9O, is a
results of reference state dependence and the fact that Hartree-Fock references become much

less accurate starting points during bond breaking.
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Method R, 2R, 3R, S5Re
Full CI® 100.160 300 -100.021 733 -99.985 281 -99.983 293
CCSDP 1.634 6.047 11.596 12.291
CCSDT® 1.0007 1.0032 1.0152 0.431
CCSD(T)b 0.325 0.038 24.480 -53.183
CCSD(2)7¢ 0.229 1.45 2.177 1.443
CR-CC(2,3)° 0.119 0.062 -0.096 -1.005
MAGNUS(2) -0.897 N.C. N.C N.C.
MAGNUS(2%) 1.581 4.495 0.988 14.249
MAGNUS(2%)[3]-A 0.115 -3.170 -29.319 24.377
MAGNUS(2%)[3]-B -0.056 -2.167 -20.846 -10.924
MAGNUS(2%)[3]-C 0.121 -0.723 -12.437 -3.252
MAGNUS(2%)[3]-D -0.324 -4.080 28.661 -31.390
Table 5.6:

“From Ref. [10].

bCCSD and CCSD(T) results from [6].

“From Ref. [8]

A comparison of CC and Magnus IMSRG ground-state energies obtained for the equilibrium
geometry of Re = 1.7328 bohr and other nuclear separations of HF with a DZ basis set. In
these post-HF' calculations all electrons were correlated. The full CI total energies are given
in hartree. The remaining energies are reported in millihartree relative to the corresponding
full CI energy values.

5.6 Summary

We find that for the electron gas, nuclear systems, and the very simple chemistry systems,
that the MAGNUS(2*)[3] methods do a very good job of reproducing full CI results where
available, and perform as expected where they are not. This represents a huge step forward
for the ability of the IM-SRG to deal with these systems cheaply at higher accuracy, and to
get a handle on the expected contributions from higher order methods. For more complicated
chemistry systems like HoO and HF, there are other open questions. We have shown that
the truncated IM-SRG(2) method is in general sensitive to the quality of starting reference
states. It is believable that the failure of the method in these systems is due to this, in the

next section, we will explore this possibility.
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Chapter 6

Other Work

The majority of this thesis has been focused on establishing the Magnus formulation of the
IM-SRG equations as an effective way to move forward in treating the shortcomings of the
traditional solution both in the generation of observables, computational effort, and the abil-
ity to approximate the inclusion of three-body forces . We have shown that the exponential
formalism that underpins the new formulation offers the possibility of further advances. Here
we will present a few areas where work is current and promising, but full conclusions are not
yet ready to be drawn. The first of these will be informed again by coupled cluster methods
based on finding the best single reference by approximating Brueckner orbitals; this is some-
thing that is even more natural in the context of Magnus IM-SRG as we will demonstrate.
We will also take the opportunity here to present the possibility of generalizing our approx-
imate three-body inclusion methods in the context of excited state methods being pursued
by other practitioners of the IM-SRG method. Finally, we will present how the IM-SRG can

also be used to motivate multiconfiguration wavefunction methods in the spirit of CIPSI.

6.1 Improving the Reference

In Chapter 2 and 3, we showed how a reference plays a crucial role as the starting point of
the IM-SRG,CC, and MBPT type methods. For the IM-SRG, we have shown that results

are sensitive to the choice of reference. We have also shown why CC methods are generally
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not sensitive to starting reference. The quality of approximate triples, even in CC theory,
generally depends on the quality of the reference. Thus chemistry literature is full of attempts
to choose the best reference; one of the most interesting is by using a Slater determinant
composed of natural, or Brueckner Orbitals. This Brueckner reference |®pgp) can be defined
as meeting one of two equivalent criteria. The first is that the overlap of the Brueckner
reference with the true ground state is maximized, that is, (®|¥q) is largest when |®) =
|®PBR) [16]. A second commonly stated condition for this state is that the full CC ground

state built on a Brueckner reference has the following property,

T+ +To+T Tyt +T
[Uoe) = e AT T2 [@pR) = 7 AT T2 |dpp) (6.1)

or that 77 vanishes in the fully converged solution [16]. To restate one more time, this
means the Hamiltonian needs no single particle change of basis and the ground state |¥g)
contains no single particle excitations when expressed in Brueckner orbitals. This ideal set of
orbitals are fairly easy to grasp philosophically, but are often as expensive to pursue as a fully
correlated solution itself. Although there are several ways to accomplish this, it has been
pursued in depth within CC methods [16, 138, 139]. The one we will present here is the one
that will bring insight to our method, and the one that is implemented in the PSI4[6] software
suite under the name BCCD or Brueckner CCD. In it, full CCSD calculations are conducted,
and then the resulting 77 amplitudes are used to generate a new set of orthonormal orbitals.
These are then used to transform the Hamiltonian into this new basis. A CCSD calculation
is carried out again, and this procedure is iterated until the 77 amplitudes are vanishingly
small. In this way, they approximate the Brueckner reference within approximated CC

theory. One can see that this is a very expensive procedure, and generally these so called
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BCCD energies, and CCSD energies are very close for normal systems precisely because of
Thouless theorem (2.34). However, when the effects of T3 are approximately included instead
of exactly included, the starting reference becomes influential. There is also some evidence
that in the case of symmetry breaking, BCCD calculations can provide some large benefits
as well[139].

The same requirement is more tricky to observe in the Magnus formulation of the IM-
SRG, since as we have mentioned several times, e 2B~ B +# e 2B e_QlB, or any different

rank operators for that matter. It is however evident that even in the IM-SRG formalism,
Vin—sra) = ¢ PAB- 2B N8 [0pp) = e PABTR2B bpp), (6.2)

since any €2(1) will still create 1plh excitation from |®ppr) which by definition do not
belong. The Magnus formulation has shown that we do not need to solve a differential
equation perfectly in order to arrive at our desired decoupled Hamiltonian. It turns out that
the MAGNUS formalism still works if freed entirely from the differential equation. If we

force the transformation to instead take the form of

—Qyp -0
VBrragNUS(er)) =€ 1Be 2B |P), (6.3)

and we can still accomplish decoupling in our formalism, then |®) — |®Pgp), at least again
within our MAGNUS(2*) approximation, which should be similar to the BCCD. We also
dispense with the additional matrix adjoint terms in Eq. (4.6) besides just operator 7 itself,

since we are no longer trying to follow the differential equation. If we now look at how this
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is practically carried out,

oo

1
H(S) — GQQGQ]_HG_Q].@QQ = EadIéQ (engB_Ql) (64)
k=0
1
Q7. - _ ~adk
o R k=0 k!adQl(H)' (6.5)

So we apply the transformation in two steps, first applying the one-body €2y g, and then the
Q9p to the resulting Hamiltonian. Because there is no error in applying a one-body 4 p
within our method, this represents a perfect change of basis without approximation. This is
in contrast to applying both the one- and two-body pieces together, as €2y g then appears in
three-body intermediates that are truncated. In this way we establish a new method, which
we name Brueckner IM-SRG, or for this work and its established truncation scheme, BMAG-
NUS(2*). Further, all the same approximate MAGNUS(2*)[3] methods can be carried over
with no necessary generalization, thus we will also present the BMAGNUS(2*)[3] methods
where their interpretations are obvious with the exception of where the bare Hartree-Fock
energies were used in variant A. For BMAGNUS(2*)-A, the diagonal energies from the one-

body diagonal Hamiltonian of e He=1 are used to make the denominators.

6.2 Brueckner IM-SRG Results

For this section, we will present most of the chemistry systems treated from Chapter 5, but
now with the analagous BMAGNUS(2*)[3] methods. I will not be presenting anything for
the electron gas, as momentum conservation makes the plane waves the only basis set one can
work with without dramatically increasing the computational effort. I will also not present

any Brueckner results for nuclear systems. This is mostly a result of not having any nuclear
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BCCD results to draw comparisons with, but a future work centered on this BMAGNUS(2*)
methods in nuclear systems should be forthcoming very soon. Alongside the chemistry re-
sults, I will present the BCCD(T) results from PSI4. For these methods, it is also interesting
to output the BCCD and BMAGNUS(2*) reference energies in order to compare the charac-
ter of the orbitals produced from the two approximations, and affirm that BMAGNUS(2*) is
a similar approximation as BCCD. We will present these BM AGNUS(2%),..s in most of the
systems. Given more time and understanding, it would also be beneficial for understanding
to actually produce the overlap of the two references, but coaxing PSI4 to output its BCCD
orbitals proved beyond our ability in the time available.

We begin again with the results from the very simple system of a cc-pVDZ neon system
at equilibrium. Even though this a very simple system, we can begin to characterize some

benefits of the Brueckner procedure.

6.2.1 BMAGNUS(2*) Results for Neon and C,

We begin to see a pattern here for what happens with both BMAGNUS(2*) type results.
Almost universally, the Brueckner results are underbound versus the Magnus results based
on Hartree-Fock references. We see this is particularly helpful in bringing the BMAG-
NUS(2*)[D] method, the most complete method, back to agreement with exact values.
This appears to be a general finding. Because of this we will choose to only present the
BMAGNUS(2*)-D method for these results. Unless otherwise mentioned, the other results
are further underbound with respect to presented results. Similarly, we see an overbound
result for MAGNUS(2*)[3]-D rise up to BMAGNUS(2*)[3]-D and become very, very close
to FCI results for Co in Table 6.2. From these results, it is reasonable to believe that in

the absence of strong static correlation, BMAGNUS(2*)[3]-D collects a larger fraction of
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Method  Full CI9 CCSD? CCSDT® CCSD(T)“

Energy -128.679 025 0.9935 0.9992 0.9990
Method ~ MAG(2*) MAG(2%)[3]-A MAG(2%)[3]-B  MAG(2%)[3]-C  MAG(2*)[3]-D
Energy 0.9936 0.9996 0.9994 0.9989 1.0004
Method ~ BCCD, BCCD(T) BMAG(2%),.;y BMAG(2*)[3]-D
Energy -0.0013 0.9991 -0.0010 0.9998

Table 6.1:

“From Ref. [9].

A comparison of CC and Magnus IMSRG ground-state energies obtained for a Neon atom.
In these post-HF' calculations, the 1s orbital was frozen. The full CI total energy is given in
Hartree. The remaining energies are reported as a fraction of the correlation energy recovered
relative to FCI in mH.

Method  Full CI* CCSDh* CCSDT“ CCSD(T)®
Energy  75.729 853 29.957 3.371 2.042
Method MAG(2*) MAG(2%)[3]-A MAG(2*%)[3]-B MAG(2%)[3]-C  MAG(2*)[3]-D
Energy 31.234 3.671 6.634 9.420 -2.448
Method SCF BCCD,..f BCCD(T) BMAG(2%),.; BMAG(2*)[3]-D
Energy  343.396 364.157 1.665 357.704 0.516
Table 6.2:
“ From Ref. [9].

A comparison of CC and Magnus IMSRG ground-state energies obtained for Co at the
equilibrium FCI bond length of ro = 1.27273 A. In these post-HF calculations, the 1s orbitals
was frozen on the C atoms. The full CI total energy is given in Hartree. The remaining
energies are reported in millihartree relative to the full CI energy.

correlation energy even compared to full CCSDT. It is imperative though to take time to
write a production level code in which symmetry is exploited in order to benchmark against

full IMSRG(3) results in reasonable basis sets.

6.2.2 BMAGNUS(2*) Results for HF and H,O

In the treatment of HF in the DZ basis, and HoO, we see that where BCCD results are

available, that the reference energy of BMAGNUS(2%),.. s and BCCD,, are very close to

144



each other. Further, in bond breaking of HF, where MAGNUS(2*)[3]-D results become
dramatically overbound as at 3R, and above, the Brueckner BMAGNUS(2*)[3]-D is stable
and reasonably close to FCI answers. These results still are not nearly as well behaved as CR-
CC(2,3) for this system. But if we instead look at HoO, not only do we still get convergence
at 3Re, but we continue to get reasonable results even while CCSDT is extremely overbound

for double bond stretching.

6.2.3 Brueckner Summary

In conclusion, we see that BMAGNUS(2*)[3] results are reasonable, and almost always
outperform CCSD(T) results, but may not be competitive CR-CC(2,3) results for every
molecule. Rather generally, the Brueckner results appear to be producing a reference that
is similar in quality to BCCD references, which is most interesting as production of these
references has a computational cost very similar to a single MAGNUS(2*) calculation, while
these BCCD calculations required about 10-50 full CCSD iterations before the effects of T}
are small enough to be neglected. Even if old T7 and T5 are used as the starting point of each
iteration, this results in a BCCD calculation that is one the order of 10 times the effort of a
single CCSD calculation. Further, since we force {29p to keep the structure of Q2 = Tt—T
for BMAGNUS(2*) results, it can be set to scale exactly as CCSD, n2n4 over the nb of

MAGNUS(2*) with a general Q.

6.3 Extensions to MR-IM-SRG

The IM-SRG formalism and applications presented so far use a single Slater determinant

as the reference state. In nuclear physics, these approaches are only appropriate for the
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Method Re 1.50R, 2Re 2.5, 3.0R,

Full CI* -76.241 860 -76.072 348 -75.951 665 -75.917 991 -75.911 946
Cccsp? 3.744 10.043 22.032 20.307 10.849
CCSDT? 0.493 1.423 -1.405 -24.752 -40.126
CCSD(T)? 0.658 1.631 -3.820 -42.564 -90.512
CCSD(2)7° 0.906 2.825 3.805 -15.830 -33.035
CR-CC(2,3)¢ 0.344 1.142 -0.551 -23.100 -40.556
SCF 217.834 269.982 363.967 476.756 573.585
MAGNUS(2%) 3.797 10.384 25.162 36.554 N.C.
MAGNUS(2*)-D 0.299 0.994 1.531 -4.497 N.C.
BCCD,.c ¢ 218.758 276.328 383.342 515.316 *
BCCD 3.887 10.668 22.126 16.988 *
BCCD(T) 0.682 1.803 -3.753 -46.317 *
BMAGNUS(2%),.;  218.621 275.693 383.154 519.876 634.684
BMAGNUS(2*) 3.874 10.829 26.836 42.469 47.968
BMAGNUS(2*)-D 0.385 1.600 4.597 3.615 -3.583

Table 6.3:

“From Ref. [5].

bCCSD and CCSD(T) results obtained with PSI4[6).

“From Ref.[7]

IFrom Ref. [§]

A comparison of various CC ground-state energies obtained for the cc-pVDZ HoO molecule at
the equilibrium OH bond length R e = 1.84345 bohr and several nonequilibrium geometries
obtained by stretching the OH bonds, while keeping the HOH angle fixed at 110.6. The
spherical components of the d orbitals were used. In post-RHF calculations, all electrons
were correlated. The full CI total energies are given in hartree. The remaining energies
are reported in millihartree relative to the corresponding full CI energies.In Ref. [10], the
authors noticed that there are two SCF solutions, one of which poorly describes the weak
H-O bonding. In the chemistry suite, PSI4[6], we could not force the CCSD routine, and
thus the BCCD routine to use the correct SCF starting reference. This is why there are no
results reported for 3.0R,

description of nuclei around (sub-)shell closures.

In open-shell nuclei, correlations cause the emergence of phenomena like nuclear superflu-
idity or intrinsic deformation. With reference-state constructions, one can attempt to capture
these effects at the mean-field level to some extent, by breaking symmetries either sponta-

neously or explicitly. Pairing correlations can be treated in the Hartree-Fock-Bogoliubov
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Method R, 2R, 3R, 5Re

Full CI® -100.160 300 -100.021 733 -99.985 281 -99.983 293
CCSD? 1.634 6.047 11.596 12.291
CCSDT® 1.0007 1.0032 1.0152 0.431
CCSD(T)? 0.325 0.038 -24.480 -53.183
CCSD(2)p¢ 0.229 1.45 2.177 1.443
CR-CC(2,3)¢ -0.119 0.062 -0.096 -1.005
MAGNUS(2¥) 1.581 4.495 0.988 14.249
MAGNUS(2%)[3]-D 0.324 ~4.080 -28.661 -31.390
SCF 138.329 206.485 299.388 375.354
BCCD, 139.775 221.576 344.157 454.695*
BCCD 2.012 6.622 10.696 318.710%
BCCD(T) 0.261 0.844 ~4.339 317.288*
BMAGNUS(2*), s 139.475 222.492 355.615 445.704
BMAGNUS(2¥) 1.920 7.170 16.971 22.019
BMAGNUS(2+)[3]-D 0.090 1.071 4.659 6.505
Table 6.4:

® From Ref. [10].

b CCSD and CCSD(T) results obtained with PSI4[6).

“From Ref. [§]

A comparison of CC and Magnus IMSRG ground-state energies obtained for the equilibrium
geometry of R, = 1.7328 bohr and other nuclear separations of HF with a DZ basis set. In
these post-HF' calculations all electrons were correlated. The full CI total energies are given
in hartree. The remaining energies are reported in millihartree relative to the corresponding
full CI energy values.

(HFB) formalism, which is formulated in terms of Slater determinants of fermionic quasi-
particles that are superpositions of particles and holes. Intrinsic deformation will develop
if the single-particle basis is not symmetry restricted, e.g., in an m-scheme formalism, and
rotational symmetry breaking is energetically favored.

An m-scheme IM-SRG or CC calculation may be able to converge to a solution if the
excitation spectrum of the symmetry-broken reference state has a sufficiently large gap, i.e.,
a single dominant configuration. If such a solution is found, one must eventually restore the
broken symmetries through the application of projection methods, which have a long track

record in nuclear physics (see, e.g., [140-151]). At this point, one is no longer dealing with
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a single-reference problem, although the projected states retain an imprint of the original
symmetry-broken (single-)reference states that simplifies practical implementations.

In the domain of exotic neutron-rich nuclei, the single-reference paradigm may also break
down. The complex interplay of nuclear interactions, many-body correlations, and, in the
dripline region, continuum effects, can cause strong competition between configurations with
different intrinsic structures. This manifests in phenomena like the erosion and emergence
of shell closures [22, 23, 44, 152], or the appearance of the so-called islands of inversion (see,
e.g., [153]). Their description requires a true multi-reference treatment.

The Multi-Reference IM-SRG (MR-IM-SRG) is capable of dealing with the aforemen-
tioend scenarios [21, 23, 45]. It generalizes the IM-SRG formalism discussed in this work to
arbitrary correlated reference states, using the multi-reference normal ordering and Wick’s
theorem developed by Kutzelnigg and Mukherjee [154, 155]. The idea of decoupling the

ground state from excitations readily carries over, except that excited states are given by
:a;-raj: |D), :a;[a;[alak: |D), ...,

and the single-particle states are no longer of pure particle or hole character. The flow
equation formulation of the MR-IM-SRG makes it possible to avoid complications due to
the non-orthogonality and possible linear dependency of these general excitations (see [45]
for more details).

While only one-body density matrices appear in the contractions of the standard Wick’s
theorem, additional contractions that involve two- and higher-body density matrices enter
that encode the correlation content of the reference state. In the MR-IM-SRG framework,

correlations that are hard to capture as few-body excitations of the reference state can be
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Figure 6.1: Ground-state energies of the oxygen isotopes from MR-IM-SRG and other many-
body approaches, based on the NN-+3N-full interaction with Agn = 400 MeV, evolved to
the resolution scale A = 1.88fm™! (A = 2.0fm™! for the Green’s Function ADC(3) results,
cf. [19]). Black bars indicate experimental data [20]. See Ref. [21] for additional details.

built directly into the reference state.

In a first applications of the MR-IM-SRG framework, spherical, particle-number projected
HFB vacua have been used to compute the ground-state energies of the even oxygen isotopes,
starting from chiral NN+3N forces [21]. This work improved on previous Shell Model [25, 156]
and CC studies [99], that included NN+3N interactions in MBPT or for the latter with
3N forces in a more phenomenological, nuclear-matter based normal ordering. Based on a
Hamiltonian that is entirely fixed in the A = 3,4 system and consistently evolved to lower
resolution, we found that MR-IM-SRG, various CC methods, and the importance-truncated
NCSM consistently predict the neutron dripline in 240 if chiral 3N forces are included (see
Fig. 6.1), as pointed out in the context of the Shell Model in Ref. [156].

Encouraged by this success, we moved on to the calcium and nickel isotopic chains [23],
where importance-truncated NCSM calculations are no longer feasible. The same family of

chiral NN+3N Hamiltonians that successfully reproduce the oxygen ground-state energies
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Figure 6.2: MR-IM-SRG results for Ca two-neutron separation energies, for chiral NN+3N
interactions with different cutoffs in the 3N sector, and a range of resolution scales from
A = 1.88fm™! (open symbols) to 2.24 fm ™! (solid symbols). Black bars indicate experimental
data [20, 22]. See Ref. [23] for additional details.

overestimate the binding energies in these isotopes by several hundred keV per nucleon, in
MR-IM-SRG and CC (also see [86, 87, 98]), as well as the second-order Gor’kov Green’s
Function approach [44]. The revelation of these deficiencies has led to a variety of efforts to
improve on the chiral interactions [47, 157-165].

Contrary to the ground-state energies, chiral NN+3N forces reproduce relative quantities
like the two-neutron separation energies quite well, aside from the exaggerated N = 20
shell closure (Fig. 6.2). In particular, they show signals of sub-shell closures in 52’54Ca, in
agreement with Shell Model calculations based on NN+3N interactions in MBPT [22; 152].
These observations indicate which terms in the chiral input Hamiltonian may be deficient,
and this information can be used in future optimizations.

Ongoing work within MR-IM-SRG relevant to this thesis focuses on overcoming the same
shortcomings the traditional IM-SRG faced, and that the Magnus formulation circumvented
in the single reference IM-SRG methods. Initial inspection indicates that multi-reference

MAGNUS(2) calculations will faithfully reproduce their MR-IM-SRG(2) calculations as it

150



did with single reference IM-SRG(2). Further, it appears that one might expect that the
largest missed corrections to MR-MAGNUS(2) would be completely analogous to the MAG-
NUS(2*) and MAGNUS(2%*)[3] type corrections. This is of course conjecture and will need
full inspection to verify. One reason we presented AE[3] in terms of commutators is that
it avoids the appeal to perturbation theory, which becomes very expensive with a multi-
reference type state. As mentioned above the MR-IM-SRG avoids complications due to the
non-orthogonality and possible linear dependency of excitations through this usage of gener-
alized normal ordering. Thus, it would be expected that we could come up with an analagous
AE[?)] based on leading expression from the multi-reference BCH. This would be in the same
spirit of recent multi-reference perturbation theory based on the driven similarity renormal-
ization group motivated perturbation theory found in [166]. Further, using the factorization
scheme of [167], it would be possible to factorize these expressions in Eq. 5.13 to nb scaling.
This is only helpful for the multi-reference formalism where there is no distinction between
particle and hole states, as the most expensive term for a closed shell system scales as nong
which is generally larger than ngnﬁ Thus it might be possible to correct the MR-IMSRG(2)

to the MR-MAGNUS(2%*)[3] without affecting scaling, yielding around CCSD(T) accuracy

even for open shell nuclei.

6.4 Extensions to Excited State Formalism

For open-shell systems, rather than solving the full A-body problem, it is profitable to
follow the Shell Model paradigm by constructing and diagonalizing an effective Hamiltonian
in which the active degrees of freedom are A, valence nucleons confined to a few orbitals

near the Fermi level. Both phenomenological and microscopic implementations of the Shell

151



Model have been used with success to understand and predict the evolution of shell structure,
properties of ground and excited states, and electroweak transitions [168-170].

Recent microscopic Shell-Model studies have revealed the impact of 3N forces in predict-
ing ground- and excited-state properties in neutron- and proton-rich nuclei [22; 25, 152, 156,
171-174]. Despite the novel insights gained from these studies, they make approximations
that are difficult to benchmark. The microscopic derivation of the effective valence-space
Hamiltonian relies on MBPT [175], where order-by-order convergence is unclear. Even with
efforts to calculate particular classes of diagrams nonperturbatively [176], results are sensitive
to the HO frequency hw (due to the core), and the choice of valence space [25, 171, 172]. A
nonperturbative method to address these issues was developed in [177-179], which generates
valence-space interactions and operators by projecting their full NCSM counterparts into a
given valence space.

To overcome these limitations in heavier systems, the IM-SRG can be extended to derive
effective valence-space Hamiltonians and operators nonperturbatively. Calculations without
initial 3N forces [39] indicated that an ab initio description of ground and excited states for
open-shell nuclei may be possible with this approach.

The utility of the IM-SRG lies in the freedom to tailor the definition of H od t6 a specific
problem. For instance, to construct a Shell Model Hamiltonian for a nucleus comprised of A,
valence nucleons outside a closed core, we define a HF reference state |®) for the core with
A particles, and split the single-particle basis into hole (h), valence (v), and non-valence
(q) particle states. Treating all A nucleons as active, i.e., without a core approximation, we
eliminate matrix elements which couple |®) to excitations, just as in IM-SRG ground-state
calculations [21, 58, 74]. In addition, we decouple states with A, particles in the valence

.‘_

space, :dyy - . .aj{) Av: |®), from states containing non-valence states.
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Figure 6.3: Excited-state spectra of 2223240 based on chiral NN+3N interactions and com-
pared with experiment. Figures adapted from Ref. [24]. The MBPT results are performed
in an extended sdf; /2P3/2 Space [25] based on low-momentum NN+3N interactions, while

the IM-SRG [24] and CC effective interaction (CCEI) [26] results are in the sd shell from
the SRG-evolved NN+3N-full Hamiltonian with hw = 20 MeV (CCEI and dotted IM-SRG)
and Aw = 24 MeV (solid IM-SRG). The dashed lines show the neutron separation energy.
Figure taken from Ref. [27].

After the IM-SRG derivation of the valence-space Hamiltonian, the A-dependent Hamil-
tonian is diagonalized in the valence space to obtain the ground and excited states. For
the oxygen isotopes, a good description of the experimental spectra is found (Fig. 6.3). Re-
cently, these calculations were extended to nearby F, Ne, and Mg isotopes showing excellent
agreement with new measurements in 24F [180] and that deformation can emerge from these
ab initio calculations [41]. Future directions include extending the valence space, which will
give access to the island-of-inversion region and potentially the full sd-shell (and higher)
neutron dripline.

The results being produced by Stroberg and collaborators [41] are already reliant on the
Magnus formulation of the IM-SRG described here; and quickly it is becoming clear that

effective valence space observables will be readily available because of it. This could help
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to answer long-standing questions about a whole host of shell-model phenomenology from
first principles. It is imperative that we inspect the effect of three-body forces, induced and
otherwise, in these effective valence spaces interactions. The generalization of this work’s
findings for ground state decouplings will not generalize easily to the new non-trivial defini-
tion of off-diagonal used to decouple valence spaces, but the path forward is straightforward

and needs to be inspected.
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Chapter 7

Summary and Conclusions

This work investigated the IM-SRG method, which has seen increasing recent use in nu-
clear physics due to its flexibility and relatively gentle scaling with system size. Despite its
amazing success in nuclear physics, its initial failure to successfully treat even fairly simple
chemical systems was more than a little puzzling. As a first step towards solving this puzzle,
[ investigated the truncated IM-SRG(2)’s perturbative content. It was found that it under-
counted a class of fourth order quadrupole excitation diagrams that CCSD theory includes
correctly. Being that the two methods seem to have a similar machinery, computational
cost and philosophy, it became one of my goals to find a way to restore this content to the
method so that it would possible to bring the success of the IM-SRG to chemical systems as
well. Incidentally, the outstanding performance of the IM-SRG(2) in nuclear calculations is
related to this undercounting of 4th-order terms, as it mimics the partial cancellations that
occur between these repulsive contributions and attractive triples correlations in CCSD and
CCSDT calculations. In other words, the undercounting of this class of diagrams mimics the
effects of triples correlations for nuclei, which is why the IM-SRG(2) results fall in between
CCSD and CCSDT calculations for all nuclei studied.

It was during this quest to find a way to restore the full counting of these terms that it was
found that the IM-SRG flow equations could be recast using the Magnus expansion. This led
to formulation of the IM-SRG equations which not only alleviated the need for solving the

flow equations with expensive high-order ODE solvers, but also allowed for the generation
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of observables at no additional cost. The first calculations showing these benefits have been
conducted for nuclei and the electron gas, with very promising results. As mentioned, this
formalism has already found its way to several other independent practitioners of the IM-
SRG formalism, particularly those developing valence space interactions, to great success.

With the Magnus formulation in hand, it was then possible to revisit these missing terms
that caused the naive IM-SRG(2) and MAGNUS(2) truncations to fail for chemical systems.
Not only was it possible to