ABSTRACT

SOME OBSERVATIONS CONCERNING THE USE OF REALISTIC FORCES IN
A MICROSCOPIC DESCRIPTION OF THE INELASTIC SCATTERING
OF NUCLEONS FROM NUCLEI AT MEDIUM ENERGIES
By

Fred L. Petrovich

The problem of describing, in a microscopic'picture,
the process of inelastic nucleon-nucleus scattering at inci-
dent energies in the 15-70 MeV range is of current interest.
Of primary interest are the properties of the projec-
tile-target interaction. In this work several models for
this interaction are investigated by direct calculation.

All of the interaction models considered are consistent with
some portion of the. data concerning the free two-nucleon
force; hence, the term "realistic forces" which appears in
the title of this paper. To be specific, it is assumed that
the projectile-target interaction is given by (1) a pseudo-
potential derived from the impulse approximation, (2) the
long range part of the Kallio-Kolltveit potential (K-K force)
which is known to be a good approximation to the central

part of the shell model reaction matrix, and (3) a Yukawa

force derived from effective range theory.
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This study is restricted in that the local distorted
wave approximation (D.W.A.) is used throughout and no consider-
ation is given to components of the interaction with compli-
cated spin dependence such as the tensor and %°-5 parts.
Approximations are made to treat the exchange component of
the D.W.A. transition amplitude which is non-local. This
component appears because of the required antisymmetrization
of the projectilé?target wave function and 1t has been neg-
lected in most receht work on this problem. These approxi-
mations are discussed and some comparisons with exact calcu-
lations are presented.

Application is made to (p,p') transitions in closed
and pseudo-closed shell nuclei. Random phase approximation
(R.P.A.) state vectors are used to describe the states of
the target nuclei. Studies of the (e,e') reaction and the
(p,p') reaction (at incident energies in excess of 100
MeV) have shown that these vectors give a good description
of the transitions considered; therefore, these calculations
provide a test for the proposed interaction models. The
results obtained with all three interaction models are shown
to be in reasonable agreement with experiment, although the
Yukawa effective range force appears to be somewhat poorer
than the other two at incident energies below 30 MeV. The
inclusion of exchange plays an essential part in giving this
agreement. In most instances deficiencies in the shapes of

the theoretical angular distributions are noted.
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Further application is made to transition involving
low lying states 1n nuclei which possess one or two nucleons
outside of a closed shell. The purpose is to study core
polarization effects which are known to be important in
these transitions. The effects are estimated in calcula-
tions which use either a microscopic model or the macroscopic
vibrational model to describe the core. Emphasis is on the
completely microscopic calculations which assume that the
core can be described by a zero order shell model Hamiltonian
and that only the effect of simple particle-hole excitations
of this core with energies up to roughly 2w need by consid-
ered. The coupling between the valence nucleons and the
core 1s treated by first order perturbation theory and the
K-K force is taken to be the coupling interaction. This
model is essentially the same .as the one used recently by
Kuo and Brown in work on the spectra of nuclei of this type.
Contributions to (p,p”) cross sections due to core polariza-
tion are large. The relation between the effect of core
polarization on the spectrum and in inelastic proton-nucleus
scattering is examined. The microscopic model doesn't do too
badly on the (p,p”) cross sections, i.e. mass polarization
effects. The experimental data is underestimated somewhat.
However, effective charges for corresponding y-transitions,
i.e. charge polarization effects, are badly underestimated.
One case is found where this model does badly on the mass
polarization. This is explained by explicitly taking into
account the effect of a highly collective state in the core

nucleus.
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From this study it is concluded that a reasonable
description of this class of reactions is obtained using
'realistic forces” provided the treatment includes the effects
of (1) antisymmetrization and (2) long range correlationé in

the target nuclei, in particular, core correlations (R.P.A.)

and core polarization.
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CHAPTER 1
INTRODUCTION

There are several factors responsible for the current
interest in the microscopic description of inelastic nucleon-
nucleus scattering at medium energies, i.e. incident energies
ranging from 15-70 MeV. Most important are recent advances
in the theory of nuclear structure which provide a des-
cription of a variety of nuclear states in terms of the
motions of the individual nucleons which comprise these

systems.l’2

The medium energy region is of particular inter-
est primarily because it is the best source of data on thesé
reactions. This is credited to the new sector-focussed
cyclotrons and the large tandem accelerators.

Much has been said in the literature about this problem.
Ref. 3-7 are a representative sample of papers and a rea-
sonably good bibliography is contained therein. These papers
consider some of the formal aspects of the problem and discuss
those features of inelastic nucleon-nucleus scattering which
make these reactions valuable for studying nuclear structure.
Emphasis is on the distorted wave approximation (D.W.A.);

however, a good discussion of the coupled channels method is

given in Ref, 5. The treatment of the non-local D.W.A.



transition ampli’cudeJr is discussed in Ref. 3. This is
encountered when the required antisymmetrization of the
projectile-target wave functions is taken into account.

The results of several calculations are also avail-
able.8"ll’| In these works the local D.W.A. is used and the
question of antisymmetrization is ignored. It is assumed
that the projectile-target interaction can be expressed as
a sum of two-body interactions between the projectile and
individual target nucleons. The two-body interaction is
taken to be local and scalar, separately in spin, i-spin,
and coordinate space. Various radial forms are used and
the strength and range parameters are fixed by -direct
calculation and comparison with experiment. Simple shell
model wave functlions are used to describe the target nuclei.
Application is restricted to the (p,p') and (p,n) reactions
(a limitation imposed by the experimental data) and the
transitions considered serve to isolate different components
of the interaction. As far as the weak components of the
force are concerned, the information extracted in this manner
shows some consistency; however, these analyses yileld a
large range of values for the strength of the strong, non-
"spin-flip" components of the force. in addition these

strengths are considerably larger than that expected from a

knowledge of the free two~nucleon force.

1In this work the terms local and non-local D.W.A. are
used to specify the character of the operator appearing in
the D.W.A. transition amplitude, i.e. local or non-local in
the projectile coordinate.



In related calculations the description of the target
nuclel 1is improved so as to introduce explicitly the effects
due to core polarization in those transitions which proceed

through the strong parts of the interaction.15’16

The macro-
scopic vibrational model is used to describe the core and a
closure assumption makes it possible to fix the core para-
meters from experimental y-transition rates. The effects are
large and much smaller interaction strengths result when they
are included. It is likely that core polarization can account
for many of the inconsistencies noted in the earlier works.

The effects due to antisymmetrization are contained
in the exchange component of the transition amplitude which
1s necessarily non-local. Its properties are presently
being investigated. Initial results indicate that it cannot
be»neglected and that its importance is a function of inci-
dent nucleon energy, multipolarity of transition, radial
form and exchange nature of the two-body force, and initial
and final target states.17-19 This dependence places restric-
tions on the two-body interaction and implies a re-evaluation
of some of the conclusions obtained in analyses in which
antisymmetrization 1s ignored.

Considerable success has attended the use 6f "realistic
forces" in the bound state problem.2o"25 The theoretical
foundatlons of this approach are reviewed in several

1,26-29 (Ref. 27 due to MacFarlane is an excellent

places.
article.) The major step is this treatment is the intro-

duction of the shell model reaction matrix, or G-matrix, as



the interaction between bound nucleons.Jr This is obtained
directly from a two-nucleon potential in_a manner which

takes into account the presence of other nucleons in the
nucleus and eliminates the need for using wave functions with
short range two-particle correlations. The G-matrix used

in Ref. 20-25 is derived from the Hamada-Johnston (H-J)
potential which fits the nucleon—nucleon scettering data up
to 300 MeV.30 Application has been made to nuclel not more
than two nucleons away from a closed shell.

The success of this treatment of the bound state problem
is very encouraging. Because of its fundamental nature, it
avoids many of the difficulties associated with commonly
used empirical methods where the interaction is essentially

left free.20

The biggest difficulty is the compensatory
relation between the particular calculation which is per-
formed (the proper calculation is, of course, not known
a'priori) and the interaction which is so determined. These
remarks need not be confined to the bound state problem.

As an example, note that the initial empirical effortsB—lu
on the inelastic nucleon-nucleus scattering problem conceal
the importance of core polarization and antisymmetrization.

The purpose of this paper is to explore a parallel

treatment of the microscopic description of inelastic nucleon-

+The G-matrix referred to here is often called the

"pare" G-matrix. This provides a means of differentiating
between matrix elements of this operator and corresponding
matrix elements which implicitly contain effects other than
interaction of nucleons through this operator alone, e.g.
core polarization effects.



nucleus scattering. Here, asserted a'priori, are three
models for the projectile-target interaction. All of these
relate directly to the free two-nucleon force. The word
models is used because no attempt at a precise derivation of
the projectile-target interaction is made. This hopefully
can be done within the framework qf the many body theory of
these reactions in a manner analagous to that followed in
the treatment of the bound state problem. In this work the
asserted interaction models are simply investigated by
direct calculation. In related works they are used to
calculate optical potentials for elastic nucleon-nucleus
scattering in the medium energy region.3l’32
To be specific, it is assumed that the projectile-
target interaction is given by (1) a pseudo-potential derived
from the impulse approximation, (2) the long range part of
the Kallio-Kolltveit potential (K-K force) which is known
to be a good approximation to the central part of the shell
model reaction matrix, and (3) a Yukawa force derived from
effective range theory. These interactions have the same
forms, i.e. local, scalar, etc. . . . , as those used in
previous investigations and all calculations are carried out
using the local D.W.A. Any effects due to long range corre-
lations—-—-for example core polarization effects--are included
explicitly in the target wave functions. Antisymmetrization
is treatéd approximately in the impulse approximation and
the effects are contained implicitly in the pseudo-potential.

For the case of the reaction matrix and effective range



interactions a local approximation to the exchange component
of the D.W.A. transition amplitude is included in the calcu-
lations.

The impulse approximation33 is a free scattering approxi-
mation which can be derived from the formal multiple scatter-
ing solution to the nucleon-nucleus scattering problem which

was developed by Watson and collaborators, 3 38

This approxi-
mation has been applied with success to inelastic proton-
nucleus scattering primarily at incident energies greater than

100 Mev.39‘““

It is generally assumed to be invalid at
energies lower than 100 MeV; however, there are indications
that it might give good results at energies as low as

50 MeV.36’45 The pseudo-potential is simply a fit to the
Fourier transform of the freé two~-nucleon scattering amplitude
which is calculated from the H~J potential, off the energy

shell, 1.e. using nucleon-nucleus kinematics in place of

nucleon-nucleon kinematics.

The Kallio-Kolltvelt potential contalns a hard core
and has an exponential radial form.u6 It fits the nucleon-
nucleon S-wave phase shifts up to 300 MeV. The long range
part of this potential is defined by the Scott—Moskowski
separation method,“7 i.e. a separation distance is determined
(it turns out to be of the order of 1F) below which the
potential is set to zero. The separation method gives the
leading term in a perturbation expansion for the components

of the reaction matrix which act in states of even relative

orbital angular momentum. This force is a good approximation



to the central part of the G-matrix used in Ref. 20-2%4,

The latter 1s derived from a more complete potential and con-
tains addltional detail. Application of the K-K force to

the calculation of the low energy spectrum of O16 in Ref. 46
was one of the first attempts to use "realistic forces" in
the bound state problem. 1In evaluating bound state matrix
elements it 1s assumed that the K-K force acts only in
relative s-states.

The impulse approximation pseudo-potential and K-K
force are selected because it 1s possible that they are valid
representations of the projectlile-target interaction asymp-
totically, i.e. far outside and deep inside the nucleus,
respectively. Reference to the high energy features of
nucleon-nucleon scattering is contained in the potentials
from which they are derived. It is of interest to see how
these interaction models differ from the forces of regular
functional form which are obtained in the shape independent
analysis of low energy nucleon-nucleon scattering data.ug’ug
To this end calculations are performed with a Yukawa effective
range force. Consideration by way of discussion is also
_‘given to Gaussian and exponential effective range interactions.

There is an imaginary division of the remainder of this
paper into two parts. Details relating to the interaction
models, D.W.A. calculations, and exchange approximation are
contained in Chapters 2-5 and a few Appeﬁdices. Applications

and results are presented in Chapters 6 and 7 with Chapter 8

reserved for final remarks. To be a bit more specific, a



.discussion of the antisymmetrized D.W.A. is given in Chapter 2.
The approximation used to treat exchange is also developed
here. The impulse approximation pseudo-potential is presented
in Chapter 3. Chapter 4 contains some rough arguments con-
cerning the possible character of the actualrprojectile—
target interaction and its relation to the K-K force and
impulse approximation pseudo-potential. The effective range
forces are introduced in Chapter 5 where some of the pro-
perties of the "approximate" exchange component of the D.W.A.
transition amplitude are discussed and a few results obtained
with exchange treated approximately are compared with results
of exact calculations.18’19 At this point the X-K force and
effective range forces are compared on the basis of this
apprqximation.

Applications, mainly to (p,p') transitions in closed

and pseudo-closed shell nucleil, i.e. 012, 016, Cauo

208

s and

P » are consldered in Chapter 6. Random phase approxima-

tion (R.P.A.) state vectors are used to describe the target

50-54 Studies of the (p,p') reaction at incident

energles above 100 IVIeV“O_M and studies of the (e,e')

nuceli.

reaction55’56 indicate that these vectors give a good des-
cription of the transitions considered. These transitions

serve to test the proposed interaction models at least to

within the quality of the approximation used to treat énti—
symmetrization. Some inelastic electron scattering results
are presented in order to provide a frame of reference for
examining the (p,p') differential cross sections which are

presented.



Chapter 7 is devoted to the treatment of transitions
involving low lying states in nuclei which possess one or
two nucleons outside of a closed shell. Core polarization

15,16

plays an important part in these transitions and has

an equally important effect on the relative spacing Qf these
low lying 1evels.20_25 The effects of core polarization are
estimated in calculations which use either a microscopic
model or the macroscopic vibrational model to describe the
core. Emphasis is on the completely microscopic calculations
which assume that the core can be described by a zero—orderv
shell model Hamiltonian and that only the effect of simple
particle-hole excitations up to roughly 2w in energy need
be considered. The coupling between the valence nucleons
and the core is treated by first order perturbation theory
and the K-K force is taken to be the coupling interaction.
This is essentially the model first used by Horle and Arima

in calculating quadrupole moments57

and it is the same picture
that Kuo and Brown have used in Ref. 20-25. Differential
cross sections for (p,p') transitions and Y-transition rates
are calculated. For the most part, the K-K force is used

for the projectile-target interaction. The completely micro-
scopic (p,p') calculations are amusing as they constitute a
first attempt to calculate the observed cross sections
directly from a knowledge of the two-nucleon force. The
relation between the effect of core polarization on the spect-

rum and in transitions is examined. Conclusions are drawn as

to the validity of the particle-hole model.



CHAPTER 2

A}

DETAILS OF THE DISTORTED WAVE APPROXIMATION

1. D.W.A. Transition Amplitude and Cross Section
The antisymmetrized distorted wave transition amplitude

for the inelastic nucleon-nucleus scattering reaction
Raa,A*Ebb,B (where k is the relative momentum of the target
and projectile, the small letters represent the internal
projectile quantum numbers, and the capital letters are
used to specify the state of the target) is given by3>10s17
TDW=<B|§pap+arlA>
xmg ,<x(j)

a™ MM

where a local interaction model is implied and provision

<o>¢p<1)1t<o,1>1X;g%a<o>¢r<1>-xé£;a<1>¢r<o>> (1)

is made for the presence of spin-orbit coupling in the
optical potential. In this expression t(0,1) denotes

the <two-body interaction, the x's are the distorted waves
which describe the relative motion of the projectile and
target under the influence of the optical potential, and
cc-factor expansions of the target wave functions are
employed. The latter account for the presence of the crea-
tion (destruction) operators at (a) and the single particle

bound state wave functions ¢in the relation. The arguments

10



11

‘ 0 and 1 refer to all nucleon coordinates and fix the manner
in which the integrals are to be taken.

The f;rst integral in Eq. (1) is the usual direct matrix
element while the second 1s the exchange component of the
transition amplitude. In the former the same particle is
unbound in both the initial and final states, but in the
latter the particle which is unbound initially 1is captured
into the nucleus and a target particle is expelled into the
final unbound state.

The distorted waves are solutions to a one body
Schrodinger equation which contains the optical potential.
Spin projection is not a good guantum number when this

potential contains a spin-orbit term. In Eq. (1) X’ m
a a

(Xmgmb) is the m;(mg) spin projection component of the
solution with initial spin projection ma(mb). It is clear
that spin orbit coupling gives rise to "spin-flip" in inelastiec
scattering over and above that which occurs through direct
interaction via t. Note further the standard use of the
superscripts on the distorted waves to specify the boundary
conditions which they satisfy.

From the form of the transition amplitude it is seen
that inelastic nucleon-nucleus scattering is represented by
a one-body operator in the distorted wave approximation, i.e.
transitions are allowed between components of the target
wave functions which differ only in the state of a single
nucleon. A state of the target nucleus is defined by

its total angular momentum, projection, and additional

quantum numbers; the internal state of the projectile nucleon
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is fixed by giving its spin and i-spin projection; thus
- d -~ -
Az aAJAMA, a_mara, B= aBJBMB’ an b_mbTb Further a and b

will be used for maTa and mbTb’ respectively.

Scattering experiments are most frequently performed
with unpolarized beams and targets. Under these conditions
the differential cross section for inelastic nucleon-nucleus

Scattering is obtained by introducing kinematical factors

and appropriately summing and averaging over projections.

Thls gives
k.
_d__g___ ( U )2 b IT |2 (2)
as 2nh2 k Z2J +15 MM Dw

)
s
Mg

where u is the reduced mass of the projectile-nucleus

system.

2. Form Factors
Without loss of generality the j-j coupling represen-
tation can be selected as the single particle basis, ie.

P=n"2"3'm"1” and r=nfjmt, which gives

. .
=z ;_l_ P I I SR S} oQo- i al.‘ -
¢p (1) mgmg<£ 3 MmslI M0 2 (F ) 5 mE 5 17>
(3)
9,.(1)= <25 memg IJm>¢ (r )ll 1o
m,m 2 ) 2 Mg2

8
where <abaB|cy> is a Clebsch-Gordan coef’ficient.5 It is

convenient to rewrite Eq. (1) as
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)

T Dncn, ><v>x‘;%a<r yadr a3, ()

where

z a;l_._ P ./v» _];
<V>=<B| ¢ a a,|A> Em;<2 5 mymS|J 'm7><25 my

m | Jm>
mzms
o mi* _ my _ 3
x{d(ro—rl)f¢£, (r2)<b,p|t(0,2)|a,r>¢2 (r2)d r,

m_ ¥ my _
(r{)<bip|t(0,1)|r,a">¢, (ro)}. (5)

with the bra-ket notation applying to integration over the
internal coordinates only.

The quantity <V>, called the partial matrix element,
contains all of the nuclear structure information for a
particular transition. It also contains the detalls of the
interaction model and the selection rules which govern thé
reaction. It is an effective one-body operator in the
projectile éubspace. Examination of Eq. (5) shows that <V>
is non-local, that is it depends on EO and El' Here this
non-locality arises‘due to the presence of the exchange
component of the transition amplitude; however, had t been
assumed non-local the direct component of the transition
amplitude would also contribute to the non-locality in <V>,

The general rotational properties of the partial matrix
" element can be exploited to reduce the distorted wave calcu-
lations for all transitions to a common form. It can be

3

shown quite generally that <V> can be written
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P oL - 1/2-m’
V>=1 501 TFreg, m(TgoTysb Bia”A) (1) <JpIMy s Mp=M [T >
l 1 - - - - - - i
x<3 5 m7,-m’ |8 m_-m_><LSM,m ~m” |J ,Mg-M, > (6)

B A

where M=MB—MA+mb~ma. FLSJ,M transforms under rotation of -
*

Lm?
time reversal properties, and L, S, and J satisfy the vector

the coordinate system as Y the i"L insures convenient

relations

J=Jp=J, | S=s_-8/>5=0,1 L=J-S. (7

It is clear that L,5, and J are the angular momenta trans-
ferred to the target nucleus through t in the inelastic
collision. If i-spin is considered to be a good quantum

number for the target nucleus Eq. (6) can be rewritten as
-L_T

Lsgtt Freg,m(TgsTy3a’A,p7B)(-1)

1/2-mZ
<V>= <JAJMA,MB—MA|JBMB>

1 l - - - - - -~
X<5 5 ma,mbISma—mb><LSM,ma-mb[J,MB—MA>

1
X<T,TM, M, =M, |T M, ><= Tt (8)
Tp Tp' B Tp 2

T_-T |l T, >
A TA’ b’>'a b'2 "a

where T=TB—TA=ta—tb

to Eq. (6) by defining

+T=0,1 and MTB—MTA=Ta—Tb. Eq. (8) reduces

L 5T 1 _r |1
LSJ,M°T FLSJ,M<TATMTA’MTB—MTAlTBMTB><2 Tl 3Ty~ Tpl5 > (9)

F

This expansion of the partial matrix element can be used to

write the transition amplitude as
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LMmbma
T (= JQI JM M -M >BSJ

pw-LSJY IpadMys alIpM

(10)

where J=[2J+1]1/2 and

i-L 1/2-m

b el P -
e (=1) <LSM3mZ-m’|J,M-m, +m_>

LMm. m Z
SJ m

B b a_
abld

xfjx(t):(Po>FLSJ uxt) (5 yadr adr, . (1)
! > a

- The cross section, Eq. (2), then becomes
do _ b2 2Jgtl LMmbmalz

&% 2 2By mim |
das 2ﬂh2 k 2d ,+ mbm LS SJ

(12)

with the interference between different S and L for a given
J occuring as a direct consequence of the spin-orbit coupling
. 'in the optical potential. In practice this interference is
found to be weak. As partial wave expansions of the distorted
waves are used in evaluating the integral in Eq. (11) the
multipole components of FLSJ,M(rO’rl) are needed. They are
defined as follows:
(F,F E FO L (rg,r )Y 4 (BY] 4 (£
L SJ,MY 02 1 a LL Lb g L, M L M

b b b
M Mb

x<L

p LM M, | LM> (13)
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oy <L LM M_|LM>
aba

(r ,T ):z
LLbLa 0°71 MbMa b

xffFLSJ,M(ro,rl)YLbe(rO)YLaMa(rl)ondﬂl (14)

The reductlion has been achieved. All of the "physics"

SJd

LLbLa(rO’rl)

which are independent of projection quantum numbers and are

for a particular transition is contained in the F

0 and rl. Given these

quantities the distorted wave cross section is obtained by
LMmbma
computing and summing the BSJ

functions of the radial coordinates r

as prescribed by Eq. (11)
and Eq. (12). Unfortunately, the calculation is still not
easy. It will be seen that each of these multipole components

is a fairly complicaoted quantity as far as computation is

SJ

LLbLa

angular momentum transfer L, S, and J to the target nucleus

concerned. Further, F (ro,rl) 1s assoclated with

with the projectile undergoing a transition from the state

of relative angular momentum La to L Even though only a

bl
few values of L, S, and J are c2xpected to contribute to a

transition there may be as many as twenty partial waves used

in the calculation of a cross section in the energy region
SJ

LLbLa(rO,rl) are
not only complicated, but many of them are required.

of interest here. The point is that the F

For the direct,or local component of the partial

matrix element an additional separation can be made.

SJ

(. .p.)=plST §(ro-ry) Ly L
LL L, 7071

b
(rqgli 5 (-1) “<L, LO0|L_0>} (15)

1"0 YT

F
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Using result (15) in Eq. (13), recoupling a spherical har-
monic, and using the closure property of spherical harmonics

gives for this case

LSJ
(ro r

When Eq. (16) can be used the calculation of the cross
section is considerably easier because the "physics" is

~LSJ

then contained in the F (rO) which are few in number and

depend on only one radial coordinate. In addition explicit
use of Eq. (16) in Eq. (11) gives an expression for BLMmbm
which is much simpler than the one obtained by using Eq. (13)
in Eq. (11). Computational difficulties associated with the
treatment of non-local partial matrix elements have been the
major reason for neglecting the effects due to antisymmetri-
zation in the past, Fortunately, this problem is well on
its way to solution.l6’17

In this work an attempt is made to account approxi-

mately for antisymmetrization in an expression of the form

(16). The calculations are then essentially reduced to

constructing the form factors FLSJ( 0).+ These have two
components - DLSJ(PO) which comes from the direct component
~LSJ

of the transition amplitude and E (ro) which approxi-

mately represents terms coming from the exchange component.

*
It is FLSJ M(ro,r ) which 1is properly referred to as

~LSJ

a form factor. When using the local D.W.A. F (ro) is the

essentialbpart of F In this work the term form

LSJ, M{rgsry)e

factor will refer to FLSJ(rO).
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Two approximations are used--one with the impulse approxi-
matidn and another for the case of the K-K and effective
range forces. The approximations differ only in detail—-
not in spirit. They are discussed in Section 6 of this

chapter. Explicit identification of ELSY

(ro) i1s made when
.using the K-K and effective range forces, whereas 1t is

implicit in the impulse approximation pseudo-potential.

Returning to the discussion of the complete partial

matrix element Eq. (13) is used to rewrite Eq. (6) as

Ur= L 1‘L(—1)1/2_m6<J IM, MM, [T oMo><E 2ot on Smioms >

LSJ A°TABTIAIY BB ST T My s Ty | S, —Iy

L M
a a

LpMy,

x<LSM,ma-mb|J,MB-MA><LbLaMbMalLM>
* ~ * A SJ

xY (F)Y (r.)F (r.,r.). (17)
LMy 07 LM T 1t

In the next two sections of this chapter it will be shown

that Eq. (5) can be written in the above form, thus allowing

identification of the FSJ (r,,r,). The discussion is
LLbLa 0’71

restricted to the static interactions being considered in

this work. These have the form

0C0,1)=t 0 (1) +o1 (110040 4t o (2 )T T +E (105,20, T4 T,

Lo-nM
ST

ST(r01)ofA(O)of(l)r?y(O)T§(1> \ (18)
Ay : '

where oi(1§) are the usual spherical tensor components of the

spin (i-spin) operator and 00 0

O=TO=1.
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3. Integration Over Internal Coordinates

Using Eq. (18) the following result is obtained for

the integrals over internal nucleon coordinates in Eq. (5)

1

g - + ” rd »
<b,p|t(o,1)|a,r>=z (- 1)A ytST( 01)<% Sma,—AI% mb><§ SmsAI% ms>

Ay

1 1 1 1 .
XS, Y 5Ty > <5 5T 7>

x{<z] 0% 13> <51 17| 15)° (19)
=2 A+y L 1 .1 -0l
<b;p|t(0,1)|r,a”> p(-1) tST( Ol) 5 Sms,-xl2 m> <5 max|2 m_>
Ay
1 1 1 1
X<§TT,—y|§Tb><§TTay’2T >
x{<5]|0°] [3><5] |77 |57 (20)

where <aa|ObBIcy>=<cbyB|aa><a|]Ob||b> is the convention
adopted for the Wigner-Eckart Theorem.58 The following

recoupling identity

1

1 1 - 1111l 4o
<2Sm A|2 m ><3 Sm_ A|2 m >=g Z .8° W(2 5 5 53 S87)
- S"S+)\’+A+1 l - - - _]_.- - 1 - P 1 d
x(-1) <5 8'mz,-A7|5 mp><5 8'm AT |5 mo> (21)

and its i-spin counterpart‘is used in Eq. (20). Then the

fact that
1,,,05y,,1 2
<O ] 15>=(8)

is used and summation indices are interchanged to give
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- cu) (_1 Aty E 1 - 1 .
<b;p|t(0,1)|r,a >-ST( 1) tST(r01)<§Sma,—A|§m >
Ay

1< 1 . .1 ol
X<3 ”msxl2 Mg><3 TTa’ yl2 Ty

1 1 o, 1y S0 1. 1, Ty 1 -2
x<z Ty |5t > {<5| 67| |5><5] |17 | 5>} (22)
where

l)S_S+T_T ;2/\»2

E 1 1112 cogyyL1L1n-
b5 (Fgp)=ghpt STTTW(E 5 5 53878 5 5 5TTT)

XtS'Ta(rOl) (23)

with W indicating a Racah coefficient2® Eq. (22) can be

summarized as <b’,p[t(0,l)lr,a’>=<b’,p[tE(O,l)|a’,r>.
The coefficients in the expansion of th(rOI) in terms
' . . R ST~
of tgn(ry,) which is given in Eq. (23) will be called}{ST s

E _ Y ss’mr . .
that is tST(rOl)—S,TQQST tS’T’(rOIL They are given in Table 1.

TABLE l.--Coefficients for expansion of th(rOI) in terms
of tS’T’(POI)'
s*T” S
ST 00 10 01 11
S
10 S
01 A
SR s S S
!
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It 1s not obvious from the above table, but the relationship
between tE(O,l) and t(0,1) can be stated very simply. To

see this note the following alternative expansion for t(0,1).
£(0,1)=hg Vg (rg1)Prg (25)

Here PTS=PTPS with PT and PS representing the usual i-spin
and spin projection operators — PO=% (1-30-51) and
P1=% (3+80-51) for the case of ordinary spin. Unlike the
previous relations for t(0,1) and tE(O,l), where the sub-
scripts S and T referred to the unit of spin and i-spin
which could be transferred from the projectile to the target
nucleon through the corresponding part of the interaction,
the subscripts on VTS(r01) indicate that it is the component
of the interaction which acts when the projectile and térget.
nucleons are coupled to total spin S and total 1-spin T.

SO SE TE

Commonly used is the notation VOO=V ,V10=V ,V01= 11"

where SO, SE, TE,and TO refer to singlet odd, singlet even,

TO

VRV, L=V

triplet even, and triplet odd components of the interaction,
respectively.
Expanding Eq. (25) and regrouping terms as in Eq. (18)

gives the following relations between tST(rOl) and VTS(rOI)'
._1 ‘
£00"16(Voo*3V01*3V10+9V11)
b =i _(-V. 4V —3V. +3V..)
10 16700 '01 10 11 p
(26)

1
£01°T8(-V00~3V91+V10*3V11)

1 _ _
€178 Vo0 Vo1 V10*V11)
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Similarly using Eq. (23) it follows that:

E _1
£00°18Vo0~3V0173V 49V 1)

E_1 , o
810718 (Voo Vg +3V; %3V, ;)

E 1 |
t01778(-V00*3Vg1V10+3V1 1)

E 1
11718 WVoot Vo1tV 10%V1,)

(27)

The right hand sides of Eg. (26) and Eq. (27) differ oﬁly
by the signs of.the even state terms. For the.case of an
even state force tE(O,l)=—t(O,l) and for an odd state force
tE(O,l)=t(O,1). Remembering that the transition amplitude
is proportional to the difference between the direct and
exchange components, it is clear (insofar as the integration
cver internal coordinates is concerned) that the exchange
amplitude contributes constructively to the direct amplitude
for the even components of the interaction and destructively
for the odd components. This result is a direct consequence
of the fact that the internal wave function of the two nucleons
is symmetric for odd states and antisymmetric fér eveﬁ states.
It could have been seen more easily by coupling the internal
coordinates of the projectile and target nucleons to good
spin and i-spin before integrating in Eg. (19) and Eq. (20).
This was not done, however, since Eq. (19) and Eg. (22) have
the form that is needed for the remainder of.this disucssion.
It is interesting to note that because of antisymmetri-

zation, "spin-flip" and "i-spin-flip" through direct inter-
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action is allowed even 1f 1t is strictly forbidden by the
form of the interaction. To see this note that a Wigner
force t(0,1)=t, (r,;) leads to tE(o,1)=%[t00(r01)+t10(r01)x
30-61+t01(rOI)?O-?1+tll(r01)80°51?0-?1]. Such consequences
appear formally because of the introduction of the pseudo-
interaction tE(O,l) into the exchange amplitude, but it
should be remembered that this is simply a convenient way
of cataloging the manner in which the incident projectile
can be captured by the target with expulsion of a target‘
nucleon into the final projectile state. To conclude this

section note that the partial matrix element Eq. (5) can

now be written as

-1

- a - 1
5 mzmS|J m’><i= mlmsljm>

>=<p|Ll a*
\V>—<B|rpapar|A>m§m;<2 5

m,
L7s

- = m¥ _ Mo, = 1.3
x{d(ro—rl)f¢2, (r2)<b;p|t(0,2)|a;r>¢2 (r,)d r,-

m¥ E My =
9.+ (r)<piplt (0,1)[a;r>¢Z (rg)}. (28)

4, Final Reduction of Partial Matrix Element

Since the componentsAof <V> which correspond to the
t:ansfer of total angular momentum J are of interest it 1is
convenient to couple the creation and annihilation operator
in Eq. (28) to good J.

+
a

AJM (j ’T’;jT)=mr§1'<j ‘jm’,—m|JMJ>(—1)'j—m 5 ’m’T’aJmT (29)

J
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The phase factor (-1)3_m insures that A has the correct

JMJ

transformation properties under rotation. If i-spin is
considered to be a good quantum number additional coupling

to good T is necessary.

™ z .1

Toeiv L 11 - 1/2-1
AJMJ(J J)—TT’ 2 2T ,_TlTMT>(_1)

AJMJ(J'T';JT) (30)

For these two cases it immediately follows that

+ -m » . -
<B|grapar]A>= J.I%T(—l)‘j <Jj7im ,-m]JMJ><JAJMAMJ]JBMB>
IM,
J
x<Jg| 1A (5777350 |9, (31)
and
2 + - - j"'m s ~ e - |
<B|L aa |4>= j%T( 1) 7y 7gm” ,-m | My ><T  TM M| T M >
j’m’T’
JM,
J
M,
x(-1)Y27 T L oo T <r, Ty My | TN, >
A B
T, \as L -
x<JBTB||AJ(j J)IlJATA> . (32)

Eq. (31) or Eq. (32) and the results of Eg. (19) and
Eq. (22) are inserted into Eq. (28) and a recoupling operation
is performed to introduce the transferred orbital angular

momentum. The necessary identity is
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z _ J"m . - - l.. l - l
e (-1) <j’jm”, m]JMJ><2 SmsA[2 ms><£,2 mzmsljm>
m_m’
Taan2 .
X<’ mems|yomes=l Y2ITILT(Lq)L-248 <LSMA|JM_ >
2 54 LM i’ J

X<LEMm, | £“m) ->X (J 737 527 4L; % S). (33)

-

Rearranging some Clebsch-Gordan coefficients, summing over
indices if necessary, and comparing with Eq. (17) allows

the identification

*
LZM YLbe(? )YL M (v )FLLbL (ro,rl)<LbLaMbMa|LM>=
a a
LMy
L .10235-122-718 T (573950-20:k L sydmary L L<namm |2 “m2>
J3- = > 32 2 T mzmi 3 %
%
L-f48° ;= = R M= 143
x(~1) 8(F-F ) 0,5 ()t gp(ry,)0, " (F,)a3r -
m; ¥ m
2 = \.E -
9> (rdtgnlrg e, (ry)l. (34)

In these relations X (abecj;def;ghi) is a 9-J symbol58 and

B(JT)'/§T<TATMTAMTB A]TB T ><2T'tb,Ta Tb!21a>

x<IpTp | |AT(3 ") [9,T (35)

for the case of good i-spin or

~2. 1 1 ...1
B(JT)=T§,T <§TT,Ta-Tb|§T ><5PTy 5T, - b|2T ><Ip| A5 (3717531 | [T ,>

(36)
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when 1-spin is not considered to be a good quantum number
for the target.

The meaning of the reduced matrix elements appearing
in Eq. (35) and Eq. (36) can be illustrated by writing them
in a somewhat more familiar form. By inverting the Wigner-
Eckart Theorem the reduced matrix element appearing in Eq.

(36) can be written as follows.

<aBJB[IAJ(j’T’;jT)[[aAJA>=MZM <J 4 IM,M

M_>(-1)J™™
Ay B

7198

x<j’jm’,—m|JMJ>

x<ad Molat. . La, |a.J.M.> (37)
BB B! %) m t %5me! %2 aMa

The Greek letters have been re-introduced to allow complete
specification of the nuclear states. Since A and B are

antisymmetric states containing n nucleons it follows that

+ _ ) +

<o J M
X< J pla

0 o, T ,M,> (38)

Jmt %47 2%

where the complete set of antisymmetric states composed of
n-1 nucleons has been introduced. The reduced matrix

elements in Eq. (35) and Eq. (36) arevsimply related to the
coefficients of fractional parentage (c.f.p.)59 and all
results can be put in the form of the usual fractional parent-

58

age expansion. The definitive relation is
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_1/2 .
|aAJAMA>-n <apJp,jT|}aAJA><JpJMpm|JAMA>. (39)

<a_J_M
o " 125
Using results (38) and (39) in Eq. (37) and summing over pro-

Jections gives:
P » » » AAA-].
<apdgl1A;(37t7331) [10yd ) >=8(3,dpT353 1T 7) I

S(JAJBJ;JJ 1T )=apJpn<apJp;JI|}aAJA><apJp;J T |}aBJB> (40)

A A J —JA+J—j’
x{JAJ’W(JJ'JAJB;JJp)(—l)'p }.

For the case of good i-spin it follows that:

T,y s _ . Caxenatmln, o =1/2
<aBJBTB||AJ(J J)I|aAJATB>—S(JAJBJ,TATBT,JJ YI37 TT(2)
S(JpIgT 3Ty TT333 )= Fo n<apJpr;J|}uAJATA>

pPPP
x<apJpr;J | YagdgTy> (41)
n o~ Jp—JA+J—j’
x{J,3°W(3J uAJB;JJp)(—l) }
11 . _1y P A
x{T,/2W(5 3 T, TpsTT,) (-1) }.

‘The spectroscopic amplitudes S which have been introduced

are simply partial sums of the complete fractional parentage
expansion of the partial matrix element. They contain the
welghting imposed by the nuclear structure for the contribution
to the transition due to a single nucleon going from the

initial state Jj(jt) to the final state jJ“(j“t”). The factors
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appearing in Eq. (40) and (41) which have not been included
in S guarantee a convenient interpretation of the remaining
factors in Eq. (34).

When i-spin is not considered to be a good quantum
number it is useful to redefine the interaction by per-
forming the sum over T when Eq. (36) is used in Eq. (34),

i.e. define
(ro:L):'_ZvE’z%TT’Ta”Tb I%'T ’><-21—TTb > Ta™ Ty I%‘Ta”s'r(rm) - (A2)

t -
STaTbTT

with a corresponding relation for tE (r Table 2 gives

Ol)'
the coefficients in the above expansion for the various
combinations of i-spin projections. The first entry in each
c>lumn is the coefficient for T=0 while tﬁe second is for T=1.
I-spin projection equal to % denotes a proton and —% denotes

a neutron. Incompatible projection combinations are indicated
by a dash. The table simply shows that for inelastic proton
or neutron scattering the proton-proton and neutron-neutron
interaction is t +tSl while the neutron-proton interaction

SO
is tSO—tSl' Further it illustrates that only the iso-vector
part of the interaction contributes to the charge exchange
reactions. Since it will always be clear what reaction is
being considered no ambiguity should result if the subscripts
T, T, are dropped from t in Eq. (42). For the p,p') reaction
it is also convenient to use the subscripts pp and pn corres-

ponding to 1_=1= 1 and 1 =-T= l, respectively.
a 2 a 2
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TABLE 2.--Interaction components when i-spin is not used.

REACTION Ta" § 3 3 -3 -2 % . 11

(p,p”) 33 1,1 - _ _
(n,n”) -% —% 1,-1 1,1 - -
(p,n) 2 -2 - - - 0,2
(n,p) -3 2 - - 0,2 -~

Now Eq. (40)-(42) are incorporated into Eq. (34). 1In
E - -
addition t(r01)’t (rOI)? and 6(ro—rl) are expanded in spherical

harmonics. This expansion is defined by

(rysry )Y (r )Y (T l) (43)

f(ro )= EM L

with

1
fL(rO;rl)=2wf_lPL(cosa)f(rOI)dcosa | (44)

where o is the angle between r. and T

0 1°
m ~
wave functions are ¢ jL(§')=ilu (r)Y (r). The following
L n zml
integration formula facilitates the inversion of the resulting

The single particle

expression.

A AN

-1/2 -1,
[y, lMl(r)YL2M2(r)YL3M3(r)dsz (um) L1L2L3 L1L2001L3o>

M3
x<Ly 2M1M2|L My>(-1) (45)
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Contraction of Clebsch-Gordan coefficients and recoupling
in the exchange component, as was done previously in inte-
grating over the internal coordinates (see Eq. (21)), gives

for the case of good i-spin

SJ
FLLbL (ro’r )=
) 1 1
J.j,/‘ T<TATMTA,MTB-MTA[TBMTB><5 TTb,Ta—Tb|2Ta>
T
L—Z’—Q; I\AA’AAAA— . . .
xi Y2 328 LSITX(] JJ;lsz,z 2S)S(J Igd 3T TeT3357)
S(r -r.)
x(Um)~ {L R éTi(r )<12700|10><L L oo[Lo>———%——l—
r
0

) o1y T Pu(aL 271 L L) <o
un,z,(r Yup, (rg)g (- -1k W(LLy 2°L_3L°L)<2T00| L, 0>

ar - E i (46)
x<%°L oolLao>tSTL,(r0,rl)}.

For the case i-spin is ignored,

SJ

(r Ty )=
LLbLa 0

F

jg,/?1b““ “tyz jzm’LSJZ(J’JJ;z'mL;% %S)S(JAJBJ;JJ’TT‘)

TT”
A ~ ~ 6(1" —I‘ )
x(Un)_l{LaLbL—2I§ (r )<2£’OO|LO><L L oo[Lo>———9§¥L—
r
0

* 2 L’A;z - - - -
'un'z’(rl)unz(ro)L’('l) L*"W(eLy 2L, 3L°L) <4L 00|L, 0>

E

x<%°L oolLao>tSTT

,L,(ro;rl)}. (47)
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In these expressions

278
Tgm = fu cg (o) tom (rgsTo)u o (r))r, dr2

and

Lo g , 2
Igrr 1™ U g - (o) bgr - (rgsryluy, (ry)r,"dr,.

Using the symmetry properties of the Clebsch-Gordan

coefficients it is easy to see that the first term in Eq.

(16")

(u7h)

(46)

and Eq. (47) has the form indicated in Eq. (15). Identifica-

~LsSJ

tion of D (ro) follows directly.

LsJ _ ) 1 -
O) jj 22 T<TATMT My Mo, ITBMT ><5TT 5T,

(r Tbl% 5
A B A B

J3T, T T5357)

x5(J)Jgd;TpTy

T, -r,)

xf<3’%||———l§—g— TLSJ(Z)TT(Z)[|j%>tSTL(r0;rl)r§drl (46 )

“LSJ L e
D (ro)—jj,/E S(JAJBJ,JJ tt7)

-

TT
§(r,-r.)
xf<3 | |—252= T3 (2) | |g>tg o (g3 dridry
r
2

Th~ spin-angle tensor has been introduced, i.e.

LSJ_)
My TMA

L S

T <LSMA|JMJ>1 Y 0%

and the reduced matrix elements appearing in these relations

are given by

(47"
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§(r.-r
- 1 "2 LSJ

(2)17(2)] | §3>=
T2

AANAANAN l

iL+Q—£ (UH)-1/2/§J2LSJT<L£OOIZ'O)Z(j‘jJ;Z’stg %S)

*
xun,z,(rl)unz(rl) : (46 )
and

§(r,~-r,)
<J’|| 12 2 TLSJ

T

(2)]13>=

iL+2—2 (uﬂ)—1/2/§ l 1

JALST<L200|470>X(J 7352 74L;5 5 8)

xu:,z,(rl)unz(rl). (47 )

The V2 and i-spin factors in Eq. (U6") and Eq. (47") appear
because the partial matrix element contains the integrations
over internal projectile coordinates.

Examination of the above relations shows that the direct
component of the partial matrix element for a given L depends
on only one multipole coefficient of the interaction while the
exchange component depends on several of these coefficients.

In addition one of the more interesting consequences of anti-
symmetrization is noted. This concerns the relation between
the L-transfer and parity change (Aw) in a transition. 1In
inelastic nucleon—nuéleus scattering no change in the intrinsic
parity of the projectile is involved, thus any change in the
parity of the target during a transition requires a correspond-

ing change in parity in the state of relative projectile-target
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motion. This condition is displayed in Eq. (46) and (47)

L _+L -
where it is obvious that Am=(-1) 2 b=(—l)2+2

. These

same relations illustrate that the direct component of the
transition amplitude vanishes unless Aﬁ=(—l)L. Such a
relation does not exist for the exchange component and there
will be contributions to the cross sections when Aﬂ#(—l)L.

In the local D.W.A. one has the selection rules indicated

in Eq. (7) along with those given in Eq. (8) for i-spin and
the additional relation between L-transfer and Aw. For a
given value of J, (LSJ) can take the values (J,0,J) and
(J,1,d) or (J-1,1,J) and (J+1,1,J). With the inclusion of the
exchange component all four triads are allowed for a given J.

The contributions tc the cross section with (-1)L#Aﬂ are

referred to as non-normal transfers.

5. Zero-Range Interaction
A special case of some interest 1s an interaction of

zero-range, i.e. t(rOl)=T (50—51) which leads to t(ro;rl)=
é(ro—rl)
T —5 which does not depend on L; therefore the multipole
Yo
coefficlent of the exchange interaction can be factored out of

the sum over L” in Eq. (46) and (47). The sum then yields

* L) ‘2 - rd d Ed -~
£,\-1) L*“W(2L, 2“L_ ;L L) <2L oolLbo><z L700|L_0>=

~ "N A-2 .
L Lyl “<22700|L0><L_L 00|L0>

which gives the exchange component of FiJ (r,;r.) the same
LbLa 0°"1

form as the direct component. The following expressions are
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~

obtained for FXSY

(ro) for the case of good i-spin and the

case when i-spin is ignored, respectively.

~LSJ ) - 1 1
F () JJ,/§ T<TATMTA,MTB|TBMTB><§ TTys Ty~ Ty 57,2
T
XS(J 3T 3T, T 3337 ) (Tam=T0,)
A"B°°"A"B™? ST™ ST
S(r,~r,)
x<j gl |—22= 7 ()< T(2) |5 (48)
o
or
~LSJ ) R E
F0(rg)=35-v2 8(3,753335 1t ) (Tgr-1~Torr 1)
Tt~
S(r.-r.) .
x< | |—25-22 B89 oy | 155, (49)
o

It is clear that the effect of antisymmetrization in the limit
of zero range 1s simply to renormalize the strength of the
interaction. Further, non-normal transfers are not allowed

in this limict.

6. Approximate Treatment of Antisymmetrization

The approximations used to treat antisymmetrization in
this work are based on the fact the exchange scattering, as
compared to the direct scattering, is sensitive to a partic-
ular momentum component of the two-body interaction. To see
this note the form which the basic integrals of the D.W.A.
transition amplitude, Eq. (1), have in a momentum represen-

tation.
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Lagr=(2)™

X TV HED R R, SR RS Do (B)x S (Rpar (5O)
Tex = (2m)77

xfxg )T (R]) 6 (R +E =KD 65 (B -F, ) o, (Rx(H) (Rpar (51)

In the direct scattering the projectile goes from the initial
state Kl to the final state Ei by transferring momentum
a=El—Ei to the bound particle. In the exchange scattering
the projectile is captured and transfers momentum 5=Ei-ﬁ2

to the bound particle thereby expelling it from the target
with momentum El' Introducing the initial and flinal relative
momentum k and k” of the two nucleons it follows that:

(52)

To the extent that the scattering 1s governed by the kinematics
of the nucleon-nucleus system, i.e. on the average the bound
particle 1is initially at rest in the lab and for scattering

at a particular angle in the nucleon-nucleus center of mass

the average value of q is the assymptotic value, it follows

that:

-2

k k

(53)
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where N 1is the number of particles in the target and it has
been assumed that no energy is lost in exciting the target.
For the case of the K-K and effective range forces the
exchange integral is approximated by evaluating tE(lEi—Ezl)
at kEAB and removing it from the integral. In a coordinate

representation Eq. (51) becomes
Loy =t () Ixg T ¥ (B (71)6(F-7 )0, (5 x{H) (Fy)adrgade, . (50)

The following expressions result for ELSJ(rO):

~LSJ 1 1
B (ro) §J»5T<TATMTA,MTB—MTAITBMTB><§TTb,Ta-Tb|51a>
iy
xS(3 35331, 7,555 Al (B2)
S(r -r.,)
x<y | l—52= w57 (2)T(2) | 133> (55)
r
0
ELSI (p )—JZ:/E S(JAJBJ;jJ'TT’)Aéii,(Ag)
TT ( )
§{r.-r
x<y | |—52= %2y | ]3> (56)
To
A(D) 1X-T; g 3
(A )=[- fe t7(ry,)d r01]A2 2 (57)
)

2,2 _ 2
In Eq. (57) Ao—kLAB—2MELAB/h where M is the nucleon mass.

This 1is the simplest approximation which can be made to

treat the exchange component of the D.W.A. transition

amplitude. Comparing the above relations for ELSJ(rO) with

5LSJ

those for (ro) in Section 4 of this chapter leads to
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the following qualitative concluslions about the properties

of exchange scattering as treated in this approximation.

(1) The angular distribution for exchange scattering will fall

off slower in angle than that for direct scattering.

(11) The importance of exchange scattering will increase as

the energy decreases.

(11i) The importance of exchange scattering with respect to
direct scattering should increase with increasing L-
transfer.

(iv) The direct and exchange amplitudes will be roughly in phase.

These conclusions require assumptions regarding the behavior of

the multipole coefficients and Fourier transforms of the inter-

actions being considered, i.e. A(l)(lg) increases with decreas-
ing Ag and tL(rO;rl) falls off with increasing L. The assumed
behaviour is typical and the qualitative observations are in
agreement with the results of exact calculations.l7—19

Quantitative comparisons are made in Chapter 5.
One can object to this approximation for two reasons:

(1) it does not preserve the possibility of non-normal trans-

fers and (ii) the validity of taking tE(IEi—E2|) out of

integral in Eq. (51) is strictly valid only at high energies
where the importance of exchange scattering is diminished.

The quantitative comparisons in Chapter 5 serve as an

answer to the latter objection. Because of obJjection

(1) it is necessary that non-normal transfers be unimportant

if this approximation is to be useful. One reason for

favoring normal transfers over non-normal transfers is that

the latter only contribute through the exchange amplitude.
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For the case of a Serber interaction and isoscalar, normal
parity transitions (this being a hypothetical situation
simllar to most of the actual cases conslidered in this work)
a stronger argument can be given. A normal parity transition
1s defined by the condition Am=(-1)’% where J, is the lowest
allowed J-transfer. For this case the dominant normal
transfer is specified by the triad (JQOJQ) and the corres-
ponding non-normal transfers are specified by (Jktl,l,Jz).

An isoscalar transition proceeds through the T=0 multipoles
of the interaction. For a Serber interaction tOO is three
times stronger than tlo which introduces at least a factor

of nine difference in magnitude between normal and non-normal
transfers. In addition collective effects in the target
nuclel will be displayed in (JOJ) triads. For the case of

an abnormal parity transition, i.e. An=(—l)J2+1, the factor
of nine goes the other way. Neglecting the non-normal trans-
fers may be serious here.

By expanding tE(IEi—EZI) in Eq. (51) in a Taylor series
about Ag,additional terms can be included in ELSJ(rO). These
will correct for the finite spread of momentum components in
the distorted and bound state wave functions and will intro-
duce some dependence on the local momentum transfers. In
principle this series conserves the possibility of non-normal
transfers. It is presently being studied only with the hope
of improving the results for normal transfers. The series
is developed formally in Appendix A, but will not be discussed

in thils paper.
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The t-matrix for free two-nucleon scattering 1s a
function of q2, p2, and gq+p. The dependence on p is related
to the fact that it includes the effect of exchange scattering.
The pseudo-potential used 1in this work is determined from those
components of the free two-nucleon t-matrix which are off
the two-nucleon energy shell as prescribed above, i.e. Eq. (53).
On the average, exchange scattering is thus being treated in
essentially the same way. The pseudo-potential 1s strongly
energy dependent. It might have been better to include only the
effects of direct scattering in this pseudo-potential and

treat antisymmetrization in a consistent way throughout.

T. Transition Densities
It is convenient to introduce the transition densities.

These are

LSJ,T ) 1 1
13 (ry)=,5 V2 T<TATMTA MTB—MTAITBMTB><§ TTy s T~ Ty | 5T,>
xS(JAJBJ;TATBT;jj’)
5(r -r, )
x<j 3 |—32= rt 2)«(2) | 153> (58)
I'
1
and
_ §(r,-r,)
LSJ o 127 LLsJ
(rl)"jg,fi S(J,d5T333 tt7)<§ ]| ——:2—— (2)113>. (59)
1

Deleting reference to the fractional parentage expansion

these relations can be rewritten as
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LSJ,T 1 1
F (ry)= /? T <TATMTA S Mo, T MTAITBMTB><§TTb’T _Tb|2Ta>
N
S(r,-r.)
17741’ _LSJ
<JBTB||iZI————§-— (1)7t (1) ][, (58")
r
1
and .
§(r,=r,)
Pe5l(r =2 <JBHz — g, (59")
r
1

The sum on i in Eq. (58') runs over all target nucleons while

in Eq. (59') the sum on i runs only over those target nucleons

LSJ(

consistent with the subscript 11° on F ry ). For example,

in the (p,p') reaction this sum would run over either target
protons or target neutrons. The form factors are related to

the transition densities by the following expressions.

~LSJ

F LSJ,T

(r)r %dr (58")

(Po)=%fW%TL(ro5r1)F 1 97y

LSJ 2

(r )-TZ IWETT L(ro,r )F (r )r dry (59")

In Eq. (58") and Eq. (59")ﬁ/L(r0;rl) represents either the
appropriate multipole coefficient of the impulse approximation
pseudo-potential or

G(ro—rl)

2
0

. (1),,2
tL(rO,r1)+A (AO)
r
when the K-K or effective range forces are used.
Note that in introducing the transition densities an

additional partition of the inelastic nucleon-nucleus
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scattering calculations has been achieved. The first
separated the details of the interaction model and nuclear
structure from the distorted wave calculation. Here the
detalls of structure are separated from the radial form of
the interaction and the effects of antisymmetrization.

wLSJ

Detalled formulae for calculating F LSJ(r

(ro) and F 1)
for the cases of interest in this work are given in Appendix
B. The manner in which the transitions densities are related
to the inelastic electron-nucleus scattering form factors

and the reduced matrix elements for y-transitions is discussed
in Appendix C. This is important as it provides the means

for calibrating the nuclear wave functions used in testing

the interaction models in this work. The relation of the
transition densities to these reactions is independent of

the approximations involved in treating inelastic nucleon-

nucleus scattering in the local D.W.A.



CHAPTER 3
IMPULSE APPROXIMATION PSEUDO-POTENTIAL

The free two nucleon scattering amplitude has the
33

form

~

M= A+ Boo-ncl'n+C(oo+cl)-n+Eoo°q01°q+Foo'p01'p (1)
where q=q/|q|, q=k'-k; n=n/|n|, n=kxk'; and p=gxn. Here K
and k' are the initial and final relative momenta of the two
nucleons and g is the momentum transfer. The unit vectors

A A A

(q,n,p) form a right handed coordinate system and the
coefficients A,B,C,E, and F are functions of q2, q2+p2; and
q-p as well as iso-spin, i.e.

A= 114‘(3“1”0)*%;'(’*1“*0)%0'?1 (2)

where AO is the coefficient for the singlet i-spin state
and Al is the coefficient for the triplet i-spin state. The

free two-nucleon t-matrix is related to M by

2
¢ = - 4T 4, | (3)

Note that M can be written as follows

M= A+ %(B+E+F)50-5 + other terms (4)

1

42
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where the other terms are the parts of the scattering‘
amplitude which are not scalar in spin space. The components
of M have been calculated3® from the H-J potential using
nucleon-nucleus kinematics (as prescribed in Section 6 of
Chapter 2) for lab energies of 19.6, 27.5, 40, 50, 60, 95,
125, and 155 MeV. This gives] as a function of q°, EL g
and N. The dependence on N 1s weak which 1s evident from
Eq. (2.53) and only the N=12 results are used in this
work.

A typical set of results are shown in Fig. 1 which
shows the real part (the free two nucleon scattering ampli-
tude is, of course, complex) of'%(3A1+AO) as a function of

q for E =19.6, 50, and 125 MeV. The components of the

LAB
scattering amplitude which are not scalar in spin space
are small for lab energies below 100 MeV. This 1is good as
this study i1s restricted to those components of the inter-
action which can be expressed in the form of Eq. (2.18).

The pseudo-potential is obtained simply by inserting
the first two terms on the right in Egq. (4) into Egq. (3) and
taking the Fourier transform of the resulting relation. As

-nmr
m /mr

a matter of convenience a Yukawa radial form, i.e. Ve
has been assumed for the components of the pseudo-potential.

This 1s tantamount to fitting the components of M(qz) to
M V 2, 2\-1
- == — (m“4q%) .
m2 m

The strength and range parameters of the various components

of t(r;E ) are read off graphs of the form of Fig. 1.

LAB
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The range m is determined roughly by the half maximum and
the quantity X§ is proportional to the value of the scatter-
m

ing amplitude in the forward direction (3=0). The constant

of proportionality is-41.5 MeV-F° with the scattering amp-
litude given in F and X? given in MeV-F3.
m

The strength and range parameters for the spin, i-
spin components and p-p (n-n) and n-p spin components of

the pseudo-potential are given in Table 1 for E =20-60

LAB
MeV. Two Yukawa fits to the scattering amplitude have also
been made although they have not been used in any calcula-
tions. Unlike the one Yukawa fits which only fit the
scattering amplitude closely in the forward direction, these
fit it quite well over the entire range of q displayed in
Fig. 1. The parameters for these two Yukawa fits are availl-
able but will not be given here.

Inspection of Table 1 shows that the pseudo-potential
has a large imaginary part. The real part of %(AI—AO) and
both the real and imaginary parts bf the spin-flip, non-1i-

" spin-flip part of the scattering amplitude vary quite
strongly with energy and are not fit very well by the Yukawa
function. The former indicates large non-localities and the
latter indicates that the two Yukawa fits should probably

be used 1in these cases. Neglecting these difficulties for
%(AI—AO) is not serious because the imaginary part, which is
comparable to the real part, is fairly well determined.

For the purpose of facilitating comparison of the

various components of the pseudo-potential with each other
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and with corresponding components of other interactions

real 1F range Yukawa "equivalent" to this interaction has
been determined over the energy region from 20 to 60 MeV.
This is given in Table 2. The real 1F range Yukawa form
has.been selected as 1t is the form which has been popular
in recent analyses. This "equivalent" interaction is no
more than a rough representation of the actual pseudo-
potential, i.e. in a calculation it won't reproduce pre-
clsely the multipole and state dependence of the prototype.
From the table it is seen that the pseudo-potential is
similar to a Serber force and the strengths of the components
decrease fairly rapidly with‘energy. The latter effect is a
direct result of the decreasing importance'of the exchange

component of the scattering amplitude.

TABLE 2.--Strengths for real 1F range Yukawa "equivalent" to
impulse approximation pseudo-potential. All values are in MeV.

0 1 0 1
e Yoo Vio Yor Vi Yoo Vop Ymp Vi
20 -86.9 33.6 45.9 38.3 -53.2 59.5 =123  -=17.2
30 -69.3 23.1 35.4 29.5 -38.6 U46.1 -103 -12.8
40 -56.3 15.5 26.0 20.5 -34.9 30.1 -81.8 -10.9
50 -48.8 11.4 22.1 15.9 -29.8 22.2 -67.4 - 9.6

60 -43.8 4.3 18.3 13.6 -25.5 18.0 -59.1 - 9.2




CHAPTER 4
THE PROJECTILE-TARGET INTERACTION

By analogy with the bound state problem the two-body
interaction to be used in nucleon-nucleus scattering cal-

culations is given by the integral equation

. B Q |
t= v-v m t ) (l)

where v is the nucleon-nucleon potential, Q is the Pauli
operator, and e is the energy denominator defining the many
body Green's function - defined in accord with the conven-

1,20

tions of Kuo and Brown. The presence of the ie in

Eq. (1) makes t complex. It is possible to express t in

terms of the operator

- Q
t, = v-v 'e-tB (2)

which is real. This expression is

t = tB-intBQd(e)t. (3)

If the imaglnary part of t is small, and from the deformed
optical potential description of inelastic nucleon-nucleus

scattering (see Section 2 of Appendix B) it is expected to

48
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be small with respect to the real part in the medium

energy region, Eq. (3) can be approximated as
~ _s |
t-tp-imt Qd(e)ty. (3")

This argument, which is based on the relative magnitude of
the real and imaginary part of the inelastic scattering form
factors given by that model, is valid only in the region of
the target nucleus where the form factor is appreciable.

Eq. (2) formally is equivalent to the definition for

the bound state reaction matrix,1’20

but it must be remem-
bered that the energy denominator, e, appropriate for the
3cattering problem is not the same as that for the bound
state problem. Kuo and Brown have solved Eq. (2) for the

1,20

bound state problem taking the H-J potential for the

nucleon-nucleon interaction. Using the Scott-Moskowski

b7

separation method, they have shown that the attractive,

even components of tB are well represented by

(4)

where v, is the long range part of the H-J potential and
Virg is the long range part of the tensor component of this
potential.

The second term in Eq. (4) only acts in triplet states

and is given approximately by
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Q. . 8 _ 2 2 2
“Vrp VT %S Vo (T) t oo Vg ()8, (5)

where sz(r) is the radial part of the long range part of

tensor component of the H-J potential, 812 is the "tensor"

operator, and <e> is a mean energy denominator which is

highly state dependent. The state dependence of <e> will be

discussed in a moment. The first term on the right in Eq. (5)

gives a very important contribution to the central, triplet

even component of tB while the second term gives a small

(10%) contribution to the even tensor component of tye
In writing Eq. (4) several terms in the Scott-Moskowski

expansion have been omitted. They consist principally, for

the H-J potential, of a contribution t, from the repulsive

S
core and various second order terms including a cross-term
between ts and Vo These additional terms are state
dependent, but their net effect is small. They will be
ignored. Note that Eq. (4) comprises a local interaction
in configuration space.

The odd components of the nucleon-nucleon potential
are repulsive; therefore, the corresponding components of tB
can not be obtained from the Scott-Moskowski expansion since
it does not exist. Kuo and Brown use the reference spect-

rum methodl’2o

to treat the odd components. This does not
yield a configuration space interaction. In any event, tB
1s repulsive in singlet odd states and has some attractive

triplet odd matrix elements. 1In binding energy calculations,
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the net effect of these odd state interactions is negligible,
therefore, it is concluded that the average effect df the odd
state interactions is small.

The contribution to the triplet even component of tB
contained in Eq. (5) is state dependent due to its dependence
on <e>. Equivalently it is density dependent. The mean
energy denominator <e> is state dependent because of its
connection to the Pauli operator which appears on the left
in Eq. (5), i.e. as the effect of Q is reduced as the density
decreases,the strong tensor interaction between relative s
and d states is felt more strongly and this must be accounted
for by a decrease in <e>. This effect is very clear in
nuclear matter calculations. At low density contributions
to the binding energy from relative 3S states are consider-

1

ably larger than those from the 1Sostate, showing the full

strength of the tensor force. At observed densities the
two contributions are about equal. For high densities the
1SOcontribution is the greater - an effect which is an
important aid to nuclear saturation.

An estimate of this effect can be obtained by compar-
ing calculations of the bound state matrix elements for two
free nucleons in a nucleus, without the presence of other
nucleons, and with those where the presence of other nucleons
is taken into account. 1In the first case, taking O16 as an

66 3g

example, the 1 matrix elements are ~16 MeV, while with the

Pauli Principle taken into account they are -9 MeV. The 180

matrix elements are .8 MeV and very quite slowly with
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density. Thus the average s-state matrix element, which is
by far thé largest, varies from ~8 1/2 MeV in the nuclear
interior to ~12 MeV far outside the nucleus.

Thls somewhat lengthy discussion of the bound state
reaction matrix has been given with a view towards assuming

that it is equivalent to t_ for the scattering problem,

B
i.e. differences between the propagator of Eq. (2) for the
bound state problem and the scattering problem (in the
energy region of interest here) do not alter tB appreciably.
The stability of the separation distances (they remain
essentially constant up to 30 MeV in the two-nucleon center

of mass) for the important even components of tB supports

this hypothesis. With this assumption, near the target

E _.E E E
A tB-iﬁtBQG(e)tB

(6)
£9=0
where the superscripts E and 0 stand for even and odd,
respectively, and
E_ T 8 2 .
tB = Vit s sz(r) (triplet states)
(7)
= vi (singlet states)

where the superscripts T and S denote triplet and singlet,
respectively.
In writing Eq. (6) the odd state components of t are

being neglected and in writing Eq. (7) the second order



53

contribution to the tensor force has been dropped. The state

E
B

porated in Eq. (7) by defining <e> to be a function of the

dependence of the triplet component of t_ could be incor-
local density.

Now consider the region far outside the target nucleus
where the density is low and the effect of other nucleons 1is
negligible. Here the propagator in Eq. (1), Q/e,
becomes the propagator for two free nucleons, l/eo, and £t is

given locally by ¢t i.e. the pseudo-potential given

impulse’
in Chapter 3 which was derived from the free two-nucleon
scattering amplitude. The tensor force now makes itself
felt with full strength, but not in the real part of the
irteraction. The approximation of Eq. (3') is no longer
valid, and the optical theorem forces the strength into the
imaginary part of the interaction. The large imaginary
component of the pseudo-potential is evident in Table 1
shown in Chapter 3.

Combining these local arguments leads to a picture
of a force which is primarily real inside the nucleus where
the effect of the tensor in generating an effective central
force is somewhat damped, going over to the impulse approxi-
mation at large distances, i.e. a force which has a large
imaginary component. This asymptotic region is, however,
likely to be at a derisity where all form factors are quite
negligible. That is to say the picture of the force in the
region of the target, which is where the scattering takes

place, is of prime importance. In summary, near the target t
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is expected to be complex and density dependent. The real
part is expected to increase outside the nuclear surface
by about 50% on the average; the imaginary part to be quite
small in the interior, peaked outside the nuclear surface,
as all the form factors involved in evaluating tg QG(e)tg
are peaked at the nuclear surface, but small for incident
energies up to about 40 MeV. At much higher energies this
is not true.

As the incident energy increases then the difference

between g and %— becomes less important and the impulse

approximation bgcomes valid. However it should be pointed

out that this approach asymptotically at high energies is
gquite slow. The impulse approximation is still a poor
approximation at 150 MeV, even though it predicts cross-
sections correctly. Its order of magnitude is quite good,

but it's phase, i.e. the relative strength of the real

and imaginary part of the interaction, is quite wrong as

is shown by the fact that the ground state expectation

value of timpulse does not give thé optical potential (real
and imaginary part), and that variables likely to be sensi-
tive to the phase, like polarization, are by no means pre-
dicted SUCCGSSfU11Y-uO"u3 It works better at 1 GeV, though the
tests then are not as s‘cr:i.ngen‘cl.“‘l Therefore, t is to approach
timpulse only slowly for the energy region we are consider-
ing. On the other hand, as far as its magnitude 1s con-
cerned, disregarding its phase, the impulse approximation

might not be too far out.
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The arguments which have been presented above are very
rough and, in fact, they could be wrong in detail. They
are intended more as a suggestion than actual truth. The
resolution of the points which have been made is a problem
related to, but separate from, the purpose of this work
which is to determine whether or not one make some sense
out of inelastic nucleon-nucleus scattering using the inter-
actions which are already available and convenient to use
in D.W.A. calculations. These are, of course, the impulse
approximation pseudo-potential and the interaction defined
in Eq. (6) and Eq. (7). It should also be mentioned that an
essentially identical discussion of t has been given,
independently, by Satchler§7 He has also made some estimates
of the imaginary part of t.

The Kallio-Kolltveit potential is an s-state potential

46

with triplet even and singlet even components defined by

i -
ka(r) = 4o r<c

= —Aie_ai(r-c) r>c

where AL=475.0 MeV, aT=2.521uF‘1, A,=330.8 MeV, as=2.u021F‘1,

and ¢=0.4F. The long range part of this potential is known

E
to give a good representation the central components of tB

as defined in Eq. (7). In the calculations of this work,
the non-central parts and the imaginary part of tg are neglected

and the K-K force is taken to represent its central part of

tg. Fixed separation distances, ds=1.025F and dT=0.925F,

are used throughout. The K-K force acts only in relative
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s-states, but since this 1s an inconvenient restriction for
D.W.A. calculations it is allowed to act in all even states.

This leads to a slight overestimation of tg. Density depen-~

dent versions of the K-K force have been proposed by Green.

E
B

These forces are not examined in this paper.

These account for the variation of t- with <e> in Eq. (7).68

In lowest order calculations, all of the bound state forces
discussed here are found to give a reasonable account of the
real part of the optical potential in the medium energy region;
therefore, at least the spin, isospin averages of the monopole
components of these forces are adequate for the scattering

31,32 In detail the K-K force gives larger well depths,

problem.
smaller mean square radii, and somewhat poorer agreement with
phenomenological potentials than do the other forces. A rea-
sonable estimate of the imaginary part of the optical pbtential
has also been obtained with these forces. The impulse approxi-
matlon pseudo-potential failed to describe the optical potential
in that it gives too small a real component and a very large
imaginary component, i.e. its phase is incqrrect.

A real 1F range Yukawa "equivalent" to the K-K force
(A) has been determined. It is compared with other "equi-
valent" interactions in Table 1. These are the impulse
approximation pseudo-potential for ELab=60 MeV (B), the
empirical interaction of Ball and Cerny69 determined from
studies bf the (He3, He3') and(He3,t) reactions in 1lp-shell
nuclei (C), the interactibn used by Glendenning and Veneronﬁa
in studles of the Ni isotopes 1in the (p,p') reaction (D),

14

and the interaction used by True70 in N shell
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model calculations (E). The agreement between the forces is
almost complete. The lab energy of 60 MeV was selected for
timpulse’ because the implicit exchange contfibution to this
force should be diminished here. Note that only the magni-
tude of the strengths for interaction C are given. The
analysis did not give any conclusive information as to the
actual exchange mixture of the force. Further, a guess of
the magnitude of enhancement effects in the target nucleil

was used in arriving at the value of V for force C. These

00
effects are considerably smaller in 1lp-shell nuclei than

they are in heavier elements. The overall agreement of

these forces is very satisfactory.

TABLE 1.--Comparison of strengths of various real 1lF range
Yukawa "equivalent" interactions. All values are in MeV. A

is the K-K force, B is timpulse at Eppp=60 MeV, C 1is the inter-
action determined Ball and Cerny, D is the interaction of
Glendenning and Veneroni, and E is the interaction of True.

" 0 1 0 1
Force VOO VlO V01 V11 Vpp Vpp Vpn Vpn
A -36.2 6.30 17.8 12.1 -18.4 18.4 -5i4 -5.75
B -43.8 4,30 18.3 13.6 -25.5 18.0 -59.1 -9.20
c69 |30-40| |11-27| |21} |17 - - - -
D” -40.5 6.80 20.2 13.5 =-20.3 20.3 -60.7 -6.70

570 _41.1 7.40 20.0 13.7 =-21.1 21.1 =-61.1 =-6.30




CHAPTER 5
THE APPROXIMATE TREATMENT OF ANTISYMMETRIZATION

In thils chapter some results obtained with anti-
symmetrization treated approximately (as discussed in Section
6 of Chapter 2) are compared with corresbonding results obtalned
with the exchange component of the D.W.A. transition amplitude
treated properly. The exact results are due to J. Atkinson
and V. Madsen. '™%% A modification of the D.R.C. (Direct
Reaction Calculation) code available at Lawrence Radiation
Laboratory, Livermore, California has been used in obtain-
ing these results.71 This code 1is rgstricted to inter-
actions with radial dependence which can be easily expressed
as a combination of not more than three Yukawa functions.
Because of this all comparisons are for interactions with
Yukawa radial form. No direct information concerning this
approximation, is available for the interaction of primary
interest in this work--the K-K force. The recently developed
non-local D.W.A. code at Oak Ridge National Laboratory has
been set up to handle interactions of this type, i.e. which
have a "hole" in them, and new results should be forth-

16

coming.
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1. Yukawa Function
The essential ingredient of the approximation under
consideration is the Fourier transform of the interaction.

For the Yukawa function

Vir) = Ve ™ /mr (1)
this transform 1s given by

V(Az) = (1311V/m)(>\2+m2)_l . (2)

Table 1 gives the value of this transform as a function of the
lab energy for m=0.5, 1.0, 1.5, 2.0, 2.5, and 3.0F Y. V has
been taken to be 1 MeV and it is to be remembered that the lab

°_2ME/K°. The last row in this

energy and AZ are reliated by A
table gives the ratio of the Fourier transform at 20 MeV with
respect to that at 80 MeV. These energles span the region of
interest in this work and this ratio is indicative, within the
framework of this approximation, of the relationship between
the range of the interaction and the energy dependence of the
exchange component of D.W.A. transition amplitude. It is

seen that this ratio decreases with the range and is approach-

ing one in the zero range limit.

2. Transitions in Zr90+p

Dependence on Energy and Multipole

The ratio of the exchange integrated cross section to

the direct integrated cross section has been given for the

90%*

L=0,2,4,6, and 8 transitions in the ngo(p,p’) Zr reaction
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TABLE 1.--Fourier transform of Yukawa interactions of various
ranges as a function of the lab energy.

V(E)[MeV.F3]
m(F )
E(MeV) ‘5 1.0 1.5 2.0 2.5 3.0
0 101 12.6 3.72 1.57 .804 465
10 34,0 8. 44 3.06 1.40 . T46 A1
20 20.5 6.36 2.60 1.26 .696 120
30 14.6 5.10 2.26 1.15 651 . 400
40 11.4 4,25 1.99 1.06 613 .382
50 9.33 3.65 1.79 .975 .578 . 366
60 7.90 3.20 1.62  .906 547 .351
70 6.85 2.84 1.48 . 847 .520 . 337
80 6.04 2.56 1.36 . 794 .4g5 .325
90 5.41 2.33 1.26 748 472 .313
100 L. 89 2.14 1.17 .707 451 .302
%%%%1_ 3.40 2.148 1.91 1.59 1.41 1.29

at 18.8 MeV as a function of the inverse range of an interaction
of Yukawa radial form.l8 For the L=2 transition the Oex/cdir
ratio has been calculated as a function of energy with the

range of the force fixed at 1F.19 A Serber exchange mixture

has been assumed, and j-j coupling wave functions for two
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protons in the 1g9/2 orbit were used to describe the tar'get.Jr

The 18.8 MeV optical parameters of Ref. 8 have been used
throughout. Results obtained approximately are compared

with the exact results in Fig. 1. The exact results are shown
as dashed lines and the approximate results are indicated by
solid lines. In the lower graph the corresponding results

are bracketed and labeled with the L-transfer.

The importance of exchange increases with increasing
multipole and with decreasing energy. Note that cex/cdir
deviates more from 1, the zero range value, as the range
of the force increases. For L=6 and L=8 cex is greater than
Odir® The approximate values of Oex/odir for L=U4 are about
one, but the exact values are less than one. Qualitatively,
the agreement of the approximate results with the exact
results is quite good. The approximate results overestimate
the exact results except for the case L=8. The agreement
between the approximate and exact values of Oex/odir improves
with increasing energy. Thereis no pronounced change in the

agreement as the force range becomes shorter except for the

L=8 case. The approximation is improving with increasing

~ + o+ o+
iTg be more precise the ot ground state and 0 , 2 , 4,

6t and 8 excited states are considered to be due to the allowed
couplings of two lgg/ protons. The allowed normal transfers
are specified by thé %riads (J,0,J) and (J,1,J) where the
transferred J must be the same as the total angular momentum

of the final state. The (J,1,J) contribution vanishes due to

a structure selection rule. Two non-normal transfers,
(J+1,1,J), are also allowed. Only the contributions due to
normal transfers are being considered in the following discuss-
ion, therefore it is unambiguous to specify each transition by
the L-transfer implying the contribution due to the triad (J,0,J).
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Figure 1.--Comparison of approximate and exact results showing the

variation with energy and interaction range of the ratlio of the
exchange to the direct integrated cross section for several multi-

poles in the zr90(p,p') reaction.
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multipole which is very good since the contributlon from the
exchange component cf the transition amplitude is becoming
more important at the same time. The last effect is consistent
with the fact that transitions of high multipolarity are not
sensitive to the details of the nuclear interior which are
ignored in the approximation.

The result indicated by the center line and labeled
L=0 in the lower graph of Fig. 1 is interesting. This approxi-
mate result was obtained by considering the ground state and
first O+ state of ngo to be described by more realistic
configuration mixed wave functions involving both the 1g9/2
and 2pl/2 proton 1evels.8 The ratio oex/odir for this case
1s quite different than the result obtained using only the
unrealistic (1g9/2)2 configuration. This indicates that the
contribution to cross sections due to exchange can be quite

sensitive to the wave functions involved.

Total Cross Section (Direct + Exchange)

If maximum interference between the direct and exchange
amplitudes is assumed it follows that the total integrated
cross section (direct plus exchange) 1is given by
o

ex )20

= Q
(¢}

Odir. (3)

. 2 _
Op ~('/gdir + /Eex) = (1 + dir

dir
This assumption is quite good. It has been shown that the
direct and exact exchange amplitudes are essentially in phase

except for extreme forward and backward angles.l8’19 This 1is true

to a greater extent in the approximate calculations. Table 2
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values of Omxact Approx/aEXaCt
1

and 2.0F ~. Eq. (3) has been used to determine

and o as a function
values have been taken from Fig. 1. The numbers
indicate a maximum error of 40% in the approxi-

ross section. This occurs for L=0 and m=.8F +.

ustrate the rate of improvement of the approximation

ing energy note that o /aExact goes from 1.15

Approx
goes from 30 to 50 MeV for the L=2 transition
given in Fig. 1. Ohxact B80€S from 2.17 to 1.95
e energy region indicating that the enhancement

t cross section due to exchange is decreasing

y with increasing energy for this particular

TABLE 2.--Comparison of approximate and exact values of O,
the enhancement of the direct cross section due to exchange,
for two values of the interaction range appearing in Fig. 1.

m=., 8r" 1 m=2,0F

L 0‘A rox O‘A rox

OtExac’c OtExact OLExact 0‘Exac’c
0 1.44 1.40 2.40 1.35
2 2.00 1.32 2.77 1.26
Y 3.04 1.35 3.33 1.29
6 5.66 1.22 4,58 1.19
8 14,8 . 804 6.82 .978
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Fig. 2 shows the direct, exchange,and total integrated
cross sections as a function of multipole for the cases
m=.5F 1 and m=3.0F 1 of Fig. 1. Both the approximate and
exact results are shown for Oox and o, and maximum interfer-

T

ence has been assumed in obtaining ¢ The absolute normal-

7
ization of the results is arbitrary, but the relative magni-
tude of each,for each force range ,is as shown. This figure
illustrates how Orp falls off slower with L than does Odir
due to the contribution from oex——an effect which is not very
pronounced for m=3F_1¥—and how the fairly large errors in the
approximate values of cex/cdir are not so strongly reflected
in Orpe
Fig. 3 compares the behavior, as a function of multipole,
of oT(Exact) for the 2F range force with O3ir for forces
with m=1.0 and 1.5F-1. The behavior is similar. A previous
empirical analysis of these transitions, in which antisymmet-
rization was ignored, led to the conclusion that a 1F range
~ Yukawa interaction reproduced the observed multipole depend-

ence of the cross sections.8 A longer range would have been

selected had antisymmetrization been taken into account.

Angular Distributions

The direct (D) and approximate exchange (E) angular
distributions for the 2F range Yukawa force are shown 1n
Fig. 4. All curves have been normalized to one at peak. With

the exception of the L=0 transition the exchange angular
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Figure 3.--Exact value of o,, for a 2F range Yukawa
force 1is compared with o for a 1F and 2/3F range
Yukawa force as a function of L.
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distributions fall off only slightly slower with angle than
do the direct and ,for the lower multipoles)the latter exhibit
quite a bit more structure. Both the direct and approximate
exchange angular distributions for the .33F range Yukawa force
are essentially the same as the approximate exchange angular
distributions shown in Fig. 4. |

In Fig. 5 the L=2 direct (D) and exact exchange (E)
angular distributions given by a Yukawa force with a range

slightly longer than 1F are compared.18

Comparing these with
the L=2 results in Fig. 4 indicates that the approximate
exchange angular distributions may fall off faster with

angle than do the exact exchange angular distributions. This
also might be multipole dependent, but no comparison is
avallable for the higher multipoles. The differences, for
large angles, between both the direct and exchange angular
distributions shown in Fig. 5 and those which correspond in.
Fig. 4 is attributable to the fact that the spin-orbit term
in the optical potential has been excluded in obtaining the
results shown in Fig. 5. 1Inclusion of optical spin-orbit

coupling is found to have no effect on the ratios of inte-

grated cross sections discussed previously.

Form Factors

The direct and exchange form factors corresponding to
the results given in Fig. 2 are shown in Fig. 6. The overall
normalization for each force range is again arbitrary with

the relative scaling given correctly. For the short range
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force (m=3.OF_1) all of the form factors including the exchange
(zero range) form factor are similar in shape with the peak
magnitude of the exchange form factor assuming a value inter-
mediate to those for the L=0,2 and L=4,6,8 direct form factors.

1).

J

This ordering is preserved for the long range force (m=.5F
however, the differences in peak magnitude of the direct form
factors is much more pronounced. Here the direct form factors
are also much broader than the exchange form factor and peak

at larger radii. The differences in peak radii between the
L=0,2,4,6, and 8 direct form factors is not very large for
either force range. Examination of these form factors
emphasizes again that a multipole independent assumption has
heen made about the exchange scattering and that the variation
of Oex/odir is due mostly to the changes in the direct scatter-
ing. The exact results call for additional multipole and

energy dependence in the exchange scattering.

Relation of Energy Dependence
to Interaction Form

It is found for both the long range and short range
Yukawa interactions that the approximate Gex/cdir ratios are
given to within 5% by taking the square of the ratio of the
areas under the appropriate form factor curves. The area is
defined as the product of tﬁe peak magnitude and the half
width of the curve. To what extent this will be true for

other transition densities and forces with different radizl

forms is not known. For example, it has been noted that
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L=0,2,4,6, and 8 form factors obtained from the (1g9/2)2

transition density with a Gaussian interaction of 2F range
exhibit a much larger spread in peak positions than is seen
for the 2F range Yukawa force.9

Nonetheless, this observation indicates that the energy

dependence of o /o for a given transition density and

dir’ “ex

multipole can be written

g
X (m) = (aV(E)12 x ()
dir

with K, the ratio of the integrated cross section obtained
with a é-function force of unit strength to the direct
integrated cross section, being roughly constant. Eq. (4)

implies that

Tex ~ (1) (1) 2 9ex
gg;r(El) ~ [A (El)/A (E2)] T (E2) . (5)

dir

o and o,, as a function of energy

Fig. 7 glives o ex’ 7

dir?

for the L=2 transition and the 1F range Yukawa force. The
conventions are the same as those for Fig. 2. This figure

simply illustrates that o,, drops off faster with energy than

l11

does Odir due to the behavior of oex’ that the approximation

is improving with increasing energy, and that large errors

are not observed in op even at the lower energies. The result
indicated by the center line and labeled Oex (F.T.) has been
obtained by fixing K from the value of cex/odir at 25 MeV and

then using Eq. (5) to get this ratio at the higher energiles.
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The value of Oax is then easily extracted given o The

dir’
agreement between Oeyx (Approx) and Oy (F.T.) is quite good.

.l.
This relation can be used with Eq. (3) to estimate, for

a particular transition and force, the ratio of the enhance-

ment of the direct total cross section due to exchange at

two different energies given the value of oex/odir at one

energy. Table 3 gives the values of a(20)/a(80) which have

been obtained through the use of these relations for the
90

m=.,5, 1.0, 1.5, 2.0, 2.5, and 3.0F Y., The values of 0o /0

L=0,2,4,6, and 8 transitions in Zr for Yukawa forces with

dir
at 20 MeV are those shown in the lower graph of Fig. 1. The
differences between these ratios for the different multiples
increase with the force range. For the 2F range force the

energy dependence of ¢, should be quite different for the

T
various multipoles provided the direct total cross sections
vary slowly with energy, i.e. O for the higher multipoles
should fall off faster with energy than for the lower
multipoles where Oex is making a smaller contribution. This
is an example of an effect due to antisymmetrization which
might be used to study the properties of the projectile-

target interaction.

Non—-Normal Transfers

The cross sections for the non-normal transfer specified

by the triad (J-1,1,J) have been calculated for these five

19

transitions for a 1F range force. In all cases they were

found to be smaller than the corresponding normal exchange -

+Note that ooy (Exact) and ooyx(F.T.) will only agree if the
extrapolation is for energies above 40 MeV; however, reasonable

approximate values of o (see Eq. (31)) might be obtained over
the entire energy region.
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TABLE 3.--Approximate energy dependence of enhancement of
direct cross section due to exchange as a function of multi-
pole and range of a Yukawa force.

m{F 1) a(20)/a(80)

L=0 L=2 L=4 L=6 L=8
0.5 1.31 1.60 2.27 3.26 5.10
1.0 1.56 1.74 2.07 2.47 3.22
1.5 1.54 1.62 1.75 1.92 2.10
2.0 1.43 1.47 1.52 1.60 1.67
2.5 1.33 1.35 1.38 1.41 1.45
3.0 1.30 - 1.26 1.27 1.29 1.32

cross sections. Only for the L=8 transition, where exchange
scattering is dominant, was an appreciable contribution to

Op obtained. Here the (718) component gave 25% of o This

7
is encouraging, however, it must be noted that the S=0 and
S=1 components of the proton-proton force are equal in magni-
tude. If the component of the force contributing to the
non-normal transfer was larger than that contributing to the
normal transfer (as in the hypothetical situation outlined in
Section 6 of Chapter 2) the non-normal transfer would clearly

be more important for the L=8 transition and might be impor-

tant for the lower multipoles also.

3. Transitions in 012, 016, and Cauo + p.

As a further check,comparison calculations have been

performed for some of the transitions which are being used
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in this work to "calibrate" the effective interaction.
These are the excitation of the 1 T=1 (Q=-15.1 MeV), o¥r=0
(Q=-4.43 MeV) and 37T=0 (Q=-9.63 MeV) levels of 12 by 28.05

and U5.5 MeV protons, the excitation of the 3 T=0 (Q=-6.13 MeV)

16

level of O by 24.5 MeV protons and the excitation of the

37T=0 (Q=-3.73 MeV) and 5 T=0 (Q=-4,48 MeV) levels of Ca“O

by 25 and 55 MeV protons. The experimental results to be

12 at 45.5 MeV and for ca® at 55 MeV have been

12

shown for C

d72,115

publishe while the results for C at 25 MeV is the

unpublished work of P. Locard and S. Austin. The experimental

16 at 24.5 MeV and for CauO at 25 MeV are the

results for O
unpublished work of W. Benenson and C. Gruhn, respectively.

In these calculations the interaction was taken to be the
1F range Yukawa 'equivalent"to the K-K force which was given
in Chapter 4. The wave functions used in these calcula-
tions are specified in the following chapter. For the time
being it is sufficient to say that both the exact and apprdxi—
mate results have been obtained in a consistent manner from
these wave functions. Optical spin-orbit coupling has
beem omitted and the optical parameters used are given in
the next chapter.

Only normal transfers have‘been considered. The targets
being considered all have O+ ground states, therefore the J-
transfer must equal the total angular momentum of the final
state. All of the transitions except the one ending at the

12

1+T=1 state of C are of normal parity. For these only the
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cross section specified by the triad (J,0,J) has been cal-
culated while that specified by (J-1,1,J) has been calculated
for the abnormal parity transition. |

The exact and approximate results are compared with
each other and with experiment in Fig. 8,9, and 10. The
total differential cross sections are shown in all cases.
The dashed curves are the appréximate results and the solid
curves are the exact results. The direct differential cross
sections and the approximate and exact exchange differential
cross sections are shown only in Fig. 8 which gives the
results for the L=3 transition in 012. Here the direct
angular distributions are shown as center lines and dashed
and solid curves are used to designate the approximate and
exact exchange angular distributions, respectively. No
ambigulty results from not distinguishing the exchange and
total differential cross sections in this figure as the latter
aré always larger. Not much need be said about the differ-
ences between the exact and approximate results. It is quite
clear that no serious discrepancies have been introduced in
treating exchange by this approximation. The differences
that are observed are generally consistent with those noted

in discussing the Zr2°

results, i.e. the approximate total
differential cross sections tend to overestimate the exact
ones at the lower energies by less than 40% and the differ-

ences all but vanish at the high energies. The shapes are

generally consistent with some deviations being noted at
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forward angles for the L=3 transitions in 012 and 016. The
only pecullarity that is observed occurs for these same
cases--here 1t 1is found that the approximate results tend

to underestimate the exact results. In the light of the
other results which have been presented this 1s not expected
and an explanation is not readily available.

The value of Odir and the approximate values of ©
12

ex

and o, for the L=3 transition in C at 28.05 MeV are 6.59,

T
12.9, and 36.5 mb, respectively. At 45.5 MeV the values
7.48, 7.46, and 28.8 mb are obtained. Note that O41p has
changed only slightly with energy and that oex/odir
(28.05) = 1.96 and 9x/%gip (45.5) = .997 which are in the
ratio 1.97. The value one would predict using Eq. (5) and
Table 1 is 1.86. |

The comparison of the results with experiment is of
some interest. It is found that this 1F range Yukawa force
yields results which are in reasonable agreement with experi-
ment at the lower energies but appreciably overestimate the
hilgher energy data.Jr Thus 1t is concluded that the experi-

mental data favor an interaction whose range is longer than

1F.

4. Summary

Although the results which have been presented do not
constitute a complete study of the approximation it 1s felt
that they demonstrate that it is probably qualitatively

+The optical parameters used in the calculation for
the L=3 transition in 016 were not very good. Better para-
meters are given in Ref. 73, The results shown in Fig. 10
should be reduced by a factor of 2-3.
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correct over the entire medium energy region and may be
quantitatively valid at energies exceeding 40 MeV. For the
lighter nuclei considered it was found that the shapes of the
total differential cross sections computed approximately were
in reasonable agreement with those computed exactly with the
possible exception of the L=3 transitions in 012 and 016.
Here differences are noted between the exact and approximate
exchange angular distributions. Differences were also noted
for the L=2 transition in Zr90. The energy dependence of

o] and O has been related to that'of o] through the

ex dir

Fourier transform of the force being used. Further, it would
appear that the damping of exchange scattering in the nuclear
interior, i.e. the correction terms discussed in Appendix A,
would 1mprove the approximate results. As the exact calcula-
tion of the exchange transition amplitude is quite involved
it is felt that this approximation and the relations based

on it can be put to good use in any analysis of the effects

due to antisymmetrization.

5. K=K Force
The singlet even and triplet even components of the K-K

force have the form

V(r)

i
(]
2]
A
Q

(6)

which lead to the following expression for the Fourier

transform,
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V(A2)=4ﬂVe"md(m2+A2)"2{§i§i§[(m2+x2)(md-1)+2m2]

> > (7)
tcosAd[d(m +r“)+2m]}

As this force acts only in even states the A(l)(kz) are

given directly by the Fourier transform of the appropriate

component of the interaction. Table 4 glves the strengths

of all components of A(l). The notation ASE and ATE’ AST’
and Agp and Apg is used. The last row in this table gives

the 20 to 80 MeV ratios as was done in Table 1.

The values of these ratios, as compared to those given
for the Yukawa functions, are illustrative of the long range
character of the K-K interaction. The results of Section 3
of this chapter indicated that a long range force is needed.
The behavior of the A(l)(E) is, for the most part, regular.
The extreme long range behavior of A10 and the fairly short
range character of Agn indicate that a great deal of cancel-
lation has taken place in constructing them. This leads
one to suspect that these components of the interaction are
not well determined.

Unlike interactions with regular functional forms, the
long range behavior of the K-X interaction is not reflected
in its range parameter. It is attributable, instead, to

the presence of the "hole" in the interaction. To see this

it is only necessary to note that

V(A%) = UnfoJO(Ar)V(r)r2dr (8)
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and to remember that the main envelope of the Bessel
function appearing in this integral is confined to values
of r~%. Since XA,, and Agp are roughly 1 and 2 F—l, respec-
tively, while the cutoff radii are approximately 1F, it is
clear that this main envelope is falling within the "hole".
Continuous exponential functions with the same range
parameters as the singlet even and triplet even components
of the K~K force give (20/80) ratios of 2.05 and 1.96,
respectively, as compared with the corresponding values of
9.75 and 5.36 given in Table 4.

It is interesting to estimate the effect of the energy
dependence of the Separation distances (which is being
neglected in this work) on the values of A(l) (E) given in

Table 4, To do this it is assumed that

Q.
|

= 1.025 + (.05/60)(E-20)
(9)
d

t 0.925 + (.03/60)(E-20)

where E 1s in MeV. These linear relations represent reason-
ably well the energy dependence of the cutoff radii as cal-
culated by Kallio and Kolltveit.u6 Table 5 contalns the
results obtained fér A(l) (E) under this assumption. The
values of A(l) (20) given in Table 5 are identical to those
given in Table 4 as the separation distances have been fixed
at this energy. It is seen that ASE is quite sensitive to
this change while the effect on ATE is smaller insofar as

the (20/80) ratios are concerned. The energy dependence of
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the separation distance 1is somewhat more pronounced

in the former case. The differences between Tables U4

and 5 taken with the related effect on the direct component
of the transition amplitude are large enough to produce
noticeable differences in calculations; however\it is doubt-
ful that they will be more important than the effects of the
density dependence, imaginary component, and odd state
components of the interaction which are also being neglected
in this work. Further, most of the available data lies in
the energy region from 20-50 MeV and none of the strong
transitions observed are likely to isolate the singlet even

component of the interaction where the effect is the largest.

6. Effective Range Forces

It has already beén noted that the (20/80) ratios
for typical Yukawa forces are much smaller than most of
those appearing in Table 4. In fact, since the long range
limit of the Yukawa function is the Coulomb potential, the
maximum value of (20/80) for the Yukawa is 4. The Gaussian
function, its Fourier transform, and the relation for the

(20/80) ratio are given below.

2 2 4
V(r) = ve @ T (10)
32 2, >
v(a2) =y T — e /Hm (11)
m
A2 -22 2
V(20)/V(80) = exp( 8020y . ..731/m (12)

4m



89

For an interaction of exponential form the corresponding

relations are:

V(r) = ve ™ MC , (13)
(m“+2A )2
(m2+x§ )2
V(20)/V(80) = —5 20 5 (15)
(m +A20)

Eq. (14) follows directly from Eq. (7) in the 1limit as 4 goes
to zero. Note that V(20)/V(80) for the Gaussian form can
assume any value from 1 to « whereas V(20)/V(80) for the
exponential function can vary only from 1 to 16.

The Fourier transforms of the components of the K-K
force clearly cannot be matched with a Yukawa function over
the 0-80 MeV energy range. It was found that this matching
could not be achieved with an exponential function either.
For example, an exponential function with V=-59.7 MeV and
m=.636F-l glves the same value for (20/80) as the singlet
even component of the K-K force; however, it gives V(0)=
-5840 MeV.F3 which 1s about six times the value given in
Table 4 for the K-K force (Aéé)(o)). In addition, V(E) for
E intermediate to 20 and 80 MeV are smaller than correspond-
ing values of Aéé)(E). A reasonably good match can be obtained
with Gaussian functions. Gaussian interactions with V=
-34.9 MeV and m=.567F ' and V=-67.3 MeV and m=.660 give the.

same (20/80) ratios as the singlet even and tfiplet
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even components of the K-K force, respectively. They also
glve V(0)=-1070 and -1300 MeV.F3 which are reasonable agree-
ment with the corresponding K-K force volume ingetrals.

Table 6 contains the pertinent data for Gaussian,

. exponential, and Yukawa forces which fit the scattering

lengths and effective ranges which are sufficient to
characterize low energy nucleon-nucleon scatteringuB’u9.
Flg. 11 shows the Fourier transforms of these forces compared
with that for the K-K force. The transforms for the K-K
force are bowed slightly upwards on the graphs, while those
for the Gaussian are straight lines. Both the exponential
and Yukawa transforms are bowed downwards. From the figure
it 1s concluded that the Gaussian effective range force is
quite similar to‘the K-K force and that the Yukawa effective
range force shows the greatest deviation from it. This is
consistent with the remarks made in the preceding paragraph.
In fact the strengths and ranges for the Gaussian functions
given in Table 6 are nearly the same as those obtained by
matching to the K-~-K force.

These conclusions are not surprising. Like the
effective range forces, the K~-K force is consistent with the
low energy nucleon-nucleon scattering data. It is evident
from Fig. 11 that all of the forces are similar (on the
average) for small values of E(<20 MeV). The Gaussian func-
tion has properties similar to the K-X force and when the two

are forced to correspond over a small region (0-20 MeV) they
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automatically are similar over a much wider region (0-80 MeV).
On the other hand two dissimilar functions forced to corres-
pond over a small region will not correspond over a wider

interval.

TABLE 6.--Forces which are consistent with low energy nucleon-
nucleon scattering data.

Singlet Even Triplet Even
Gaussian V(MeV) -39.5 -71.0
m(F™ 1) .637 676
V(0) (McV.F3) -850 ~1279
V(EO)/V(BO) 6.06 4,95
Exponential V(MeV) -138 -186
m(F 1) 1.58 1.48
V(0) (MeV.F3) ~880 —1442
V(20)/V(80) 3.39 3.71
Yukawa V(MeV) -47.6 -41.5
m(F~ 1) . 855 .633
V(0) (MeV.F3) . =957 ~2060
V(20)/V(80) 2.72 3.14

The Yukawa effective range force has been selected for
calculations in order to see how sensitive inelastic nucleon-
nucleus scattering is to the differences noted in Fig. 11.

In using this force it is assumed that there is no interaction
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FOURIER TRANSFORMS OF
K-K AND EFFECTIVE
RANGE FORCES

] V | I

1000 -

SINGLET EVEN

IOO [ '\. ......

va

77

TRIPLET EVEN —

1000

FOURIER TRANSFORMS (MeV . F3)

100 | 1 1 ‘ i
0 10 20 30 40 50 60 70 80

E (MeV)
Figure 11.--Comparison of Fourier transform of singlet
even and triplet even components of the K-K force with
those of Gaussian (G)exponential,(E) and Yukawa(¥) e¢ffec—
tive range forces.
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in odd states as is done for the K-K force. Table 7 gives
the values of A(l)(E) for the components of this force.

The format is the same as that of Table 4 for the K-K force.

Note added in proof: A set of calculations from the
O.R.N.L. group have just been made available through a pre-

%
74 These are for the Zr90(p,p')Zr9o reaction at

print.
18.8 MeV and 61.4 MeV and for the Zr92(p,p')Zr92* reaction

‘at 19.4 MeV. Again the L=0,2,4,6, and 8 transitions in zr9°
have been considered and (1g9/2)2 wave functions have been
used. In Zr92 the L=0,2, and 4 transitions corresponding to
the (2d5/2)2 neutron configuration have been treated. The

long range part of the Hamada-Johnston (H-J) potential, includ-~
ing the second order tensor contributions to the triplet-even
interaction, has been used for the projectile-target inter-
action. The odd state components of this interaction have

been neglected and a separation distance of 1.05 F was used,

In these calculations the exchange component of the D.W.A.
transition amplitude has been treated exactly and oex/odir
ratios have been given.

These calculations have been repeated using the K-K
force and the approximate treatment of exchange of this work.
The results are compared in Fig. 1'. This comparison is rea-
sonable because of the similarity of K-K force and the H-J
interaction‘used above as was pointed out in Chapter 4. The
discrepancies between the exact and approximate results shown

in Fig. 1' are much larger than any noted in the comparisons

made in Chapter 5. For L=0 in Zr2° at 18.8 MeV the
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Figure 1'.--~Comparison of exact.results obtained with long

range part of H-J potential with approximate results given
by K-K force.



96

approximate value of cex/cdir for the K-K force is about
10 times the exact value obtained for the H-J force. For
L=2 the approximate value is 4.7 times the exact value and
for L=8 the approximate value falls about a factor of 2
below the exact value. Uncertainties this large might
amount to factors of 1.5-3 in the magnitude of the complete
cross sections. Also note that the results indicate that
the approximation is over-estimating the eﬁergy dependence
due to exchange.

They have also reported that the Gaussian effective

range force gives cex/odir ratios which are in agreement

with those obtained with the long range part of the H-J

potential. It is also estimated from their results that the
H~J force gives somewhat weaker (25%) cross sections than
the K-K force. Similar differences between the H-J and

K-X forces were noted by Slanina in his optical potential

calculations.31’32



CHAPTER 6

STUDY OF INTERACTION MODELS

IN D.W.A. CALCULATIONS

As a matter of convenience this chapter is divided
into two sections, i.e. Section A and Section B. The D.W.A.
results obtained with the impulse approximation pseudo-
potential, the K-K force, and the Yukawa effective range
force for select transitions in 012 and CaLlO are presented
in Section A. Section B is devoted to a random collection
of results. Some (e,e') results are presented and occasional
reference is made to (p,p') studies at energies in excess
of 100 MeV. The (e,e') results (at least electric multi-
pole transitions) test only the proton activity in the
transitions. This is sufficient, at least for N=Z nuclei
where protons and neutrons play symmetric roles.

In viewing the results to be presented, keep in mind
that a detailed fit to the experimental data is not the
point of these calculations. An investigation of the inter-
action models with respect to the gross features of the

experimental data is all that has been attempted.

97
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1. Section A

The transitions considered here are the L=0, 2, and
3 transitions in ¢*% and the L=3 and 5 transitions in ca0
which were introduced in Section 3 of Chapter 5.T The L=0
transition in ¢'2 is an abnormal parity T=1 transition. It
tests the tll components of the interactions. The other
four transitions are normal parity T=0 transitions which
test the tOO components of the interactiors. Some of the
results of Section B provide information concerning other
components of the projectile-target interaction.

Fig. 1 displays the R.P.A. vector ? for the 1%p=1
(Q=-15.1 MeV) state in 012. The analytic expressions for
the L=0 and L=2 transition densities (Section 1 of Appendix
B) are given along with graphs of these functions. The
harmonic oscillator constant is also specified, i.e.CK=.610F_l—
a value consistent with elastic electron scattering.32’55
The calculation of the transition densities from the R.P.A.
vectors is discussed in Section 3 of Appendix B. Note that
P01 45 considerably larger than Pl (n) ang that
both peak somewhat inside the nuclear surface. Only the
(011,1) triad is considered in the (ps,p') calculations of

this work.

TSee discussion of Fig. 8-10 in Chapter 5.
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cl2
¥ T=1 (Q=-15.1 MeV)

P h X Y
Ip1/2 | 1p3s2| 100 |-06
#5/2| Ip3/2| 02 | Ol
2p1/72| Ip3/2| -06 | -0
2p3/2| Ip3/2| -06 | -0I
2s1/2| I1sir2| -o1 | -0l
Id 3/2 |sw2' 02| o

22
FOM (1)=(- 024243 + 455677 +0594a74)"”
2“ 1 (1)=-34405%+ 01450 "
a= 610 F!

r(F)—
Figure 1l.--R.P.A. vector and transition densities
for 1*T=1(Q=-15.1 MeV) level of Cl2,
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The phases of X?Tj and YjTj appearing in Fig. 1 differ
_pTh ph I +1/2
from those given in Ref. 50 by the factor (-1) . The

reason for this phase adjustment has been given elsewhere.ul_”3
It is made for all the R.P.A. vectors which are taken from
Ref. 50-53 for use in this work. From Fig. 1 it is clear
that the R.P.A. is saying that the 1'T=1 state in c'2 15 very
nearly a pure lpl/2-1p3/2 particle-hole pair. It is well
known that such a wave function predicts an electromagnetic
Ml form factor which is much larger than experiment.56
Investigation of this level, via the impulse approximation,
in the (p,p') reaction at 156 MeV showed that reducing the
L=0 transition density by (3.3)1/2 is sufficient to produce

a theoretical result which is in reasonable agreement with

42,43 Such a factor is consistent with the electro-

011,1

eXxperiment.
magnetic studies. The expression for F (r) and the
graph of this function in Fig. 1 already contain this reduc-
tion factor.

Fig. 2-5 contain information, corresponding to that of
Fig. 1, for the four remaining, normal parity excitations

12 and Cauo. The R.P.A. vectors shown have been taken

in C
from Ref. 50, 50, 54, and 51, respectively. These normal
parity vectors exhibit considerably more mixing than the
abnormal parity vector of Fig. 1. Examination of the sigze
of the Y-amplitudes indicates that the effect of ground

state correlztions is much more important for normal parity

transitions than for abnormal parity transitions. Here
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CIZ
2* T:0 (Q=-443 MeV)
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pi2 [1p32| o1 | 05 F2929( )2 (176 o 1% 057 a' 1Y) x
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vz | ipae | .
P %0 | 02 FA20 9P + 2 a 1Y) x
2pi/2 | p32| 11 | o8 o
2pv2 | Ip32 | -12 | -09
a2 [1si2| -20 | -14 az6IOF"
452 | 1si/2| 29 | 20
0020} -
1;; I 00I5} -
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| .
el
= 0.0i0} -
-
3
W
0.005} §
3 1 1 1 ) 1 o ) 1 1 1
o | 2 3 4 5 8 O 05 10 15 20 25 30
-|
r(F)— q(F)—

Figure 2.--R.P.A. vector, transition densities, with theoretical
and experimental inelastic electron scattering form factors for
the 2+T=0(Q=-4.43 MeV) level of cl2,
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CO‘O

Figure U.,--Same as Figure 2 for 3-T=O(Q=

3" T20 (Q=-3.73 MeV)
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agaln 1t is seen that the transition densities peak inside

J1J,0

the nuclear surface and that the F (r) transition densi-

tles can be neglected. The harmonic oscillator constant for

40 is taken from Rer. 32.

Ca
Also contained in these figures is a comparison of the
theoretical and experimental inelastic electron scattering
form factors for the excitation of these levels. The calcu-
lation of the theoretical (e,e') form factors from the transi-
tion densities is discussed in Appendix C. These results
are essentlally the same as those contained in Ref. 55. They -
have been recalculated more as a check than for any other rea-
son and are shown [or completeness. The overall agreement
between theory and experiment is quite good, although the
data for CauO is admittedly sparse. The'ground state corre-
lations are responsible for factors 1.5-3 in the theoretical
form factors which are from four to an order of magnitude
larger than results obtained in single particle-hole excita-

55 The enhancement effects are largest for the

L=3 transition in Cauo. The mixing in the R.P.A. vector

tion models.

for this transition is evident from Fig. 4.

Looking at these results a bit more closely, it is
seen that the L=2 transitions for 012 gives a result for
lF(q)I2 which is about 15-20% too small. The theoretical
form factor for the L=3 transition in 012 haslabout the
right magnitude, but it peaks at slightly too iarge a value
of q. Ref. 55 ektends the comparison of theory and experi-
ment for these two transitions up to about q=3.5F—l. The

theoretical results overestimate the data in this region
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which could be an indication that the theoretical transition
densities are too large in the interior of the nucleus. The
experimental data for the L=3 transition in Cau0 is ambiguous
and 1t is seen that the theoretical result in Fig. 4 falls
in between the two sets of data points which are in disagree-
ment. The corresponding result of Ref. 55 has been obtained
with the R.P.A. vector given in Ref. 51 aﬁd it is in agree-
ment with the upper set of data points in Fig. 4. The
experimental data for the L=5 transition is also not very
definitive. It appears that the theoretical result here
could be a little too large and might peak at much too large
a value of q.

It is concluded from this discussion that (1) the
transition densities presented in Fig. 1-5 should not be
responsible for any gross discrepancies in the (p,p') results
which are to be shown and (2) the effects of long range
correlations, which are included in the R.P.A. vectors, are
playing an important part in building up the magnitude of
these transition densities. Better transition densities
have been constructed for the L=2 and L=3 transitions in 012
by fitting directly to the experimental (e,e") data.75 These
have not been used as they do not differ a great deal from
those presented here and‘the differences are well within the
uncertainties associated with the local reduction of the

4o is

D.W.A. transition amplitude. The (e,e') data for Ca
not sufficiently accurate and complete to even allow con-

sideration of improving the transition densities.
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D.W.A. calculations have been performed for Clz(p,p')
c12* 4t 28.05 and 45.5 MeV and ca’%(p,p')ca®* at 25 ana
55 MeV. The differential cross sections obtained for the
above transitions using the impulse approximation pseudo-
potential are compared with experiment in Fig. 6-8. Cor-
responding results for the K-K force are shown in Fig. 9-11
and those for the Yukawa effective range force are given in
Fig. 12-14. The total differential cross sections for the
L=3 transition in 012 are decomposed into direct and exchange
components in Fig. 10 (K-K force) and Fig. 13 (Yukawa effec-—
tive range force). Optical parameters used in the calcula-
tions are given and referenced in Table 1. The form used
for this potential is given in Eq. (B.13). A tabulation
of the theoretical total integrated cross sections, O

is contained in Table 2. Values of ¢ and cex for the

dir
K-K force and Yukawa effective range force are also displayed
in this table.

A gulck glance at Fig. 6-14 shows that all of these
forces are giving a fair reproduction of the data. Fdr the
normal parity transitions it is found that the results obtained
with the impulsé approximation pseudo-potential and the K-K
force best reproduce the data. The impulse approximation
gives results which are slightly smaller in magnitude than
the K-K force. These differences are no larger than 20%.

The results for the Yukawa effective range force are found

to underestimate these cross sections at the lower energies,

but at the higher energies they are very close to the results
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TABLE 2.--Integrated cross sections corresponding to results
shown in Fig. 6-14. Decomposition of integrated cross section,

O s into 4ip and Oox is given for the K-K force and the Yukawa

effective range force. All cross sections are in mb.

i
Target | E(MeV) | J7 E Force o, .(mb) 0y (mb) oT(mb)
| KK 1.22 470 3.18
1t | ER 1.33 .303 2.86
IA - - 3.05
KK 22.4 33.5 1.02
28.05 ot ER 17.9 21.3 73.6
IA - - 94,0
KK 5.06 12.9  30.1

|
3’A§ ER 4,06 8.22 22,1
L IA - - 26.9

cl12

KK 1.06 .150 1.99
1t ER 1.30 .122 2.18
A - - 2,08
KK 17.0 9.12 47.0
45.5 ¥ | ER 13.0 7.42 37.6
IA - - 39.7
KK 4. 75 4,28 16.1
37 ER 3.63 3.48 13.4
IA - - 13-9
KK 16.1 14.6 58,2
37 | ER 12.2 9.14  39.6
- IA - - 52.9
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Target E(MeV) Force odir(mb) oex(mb) oT(mb)
KK 2.21 8.35 16.9
ER 1.79 5.26 12.6
IA - - 14.5
Cal&O
KK 15.5 2.51 29.4
ER 11.7 2.44 23.7
IA - - 22.6
55
KK 2.28 1.32 6.30
ER 1.69 1.28 5.64
IA - - 5.15
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obtained with the other two forces. . Differences between the

K-K force and the Yukawa effective range force were also
noted in Ref. 32, i.e. the Yukawa effective range force over-
estimated the real well depth and the mean square radius of
the real part of the optical potential, giving much poorer
agreement with phenomenological potentials than the K-K force.
The differences between the K-K force and the Yukawa
effective range force for these normal parity transitions
can be understood from Table 2 and/or comparison of Fig. 10
and 13. From Table 2 it is clear that the values of O 3ip
for these two forces do not show any pronounced energy
dependence. The K-K force gives slightly larger values of
odir' The values of gex do vary significantly with energy,
with those for the K-K force exhibiting the sharpest energy
dependence. Because of the slower drop-off with energy of
Oex for the Yukawa effective range force, the magnitude of
the total differential cross sections it produces catch up
with those for the K-K force as the energy increases.
Differences of this type were suggested in the discussion
of these forces in Section 6'of Chapter 5. It was also
pointed out in Section 3 of Chapﬁer 5 that forces of longer
range than a 1F range Yukawa were necessary to reproduce
the energy dependence of the expefimental cross sections -
a condition satisfied by both of the above forces. As a
result of the note added to Chapter 5 no conclusion will

be drawn concerning the significance of the differences

between these two forces in relation to the data. This
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note indicates that the approximate treatment of anti-
symmetrization is better for Yukawa forces than for the K-K
force which would leave any conclusion open to question.

Recently, Agassl and Schaeffer79 have obtained a good
fit to the 55 NeV data for the L=3 transition in Cauo. In
their calculation antisymmetrization was treated exactly and
they used a Serber force of Yukawa form with a range of
1.37F. This force is similar to the Yukawa effective range
force used in this work. They used the R.P.A. vector of
Ref. 53 to describe this transition. Thelr result is con-
sistent with this work. They also found that the force CAL,
used in the calculation of the state vectors, fails to repro-
duce the data for this case.

For the abnormal parity transition, Fig. 6, 9, and 12,
the magnitude of the theoretical cross sections obtained
with all three forces are in reasonable agreement at both
energies. _Actually, at the lower energy O for the Yukawa
effective range force is slightly smaller than O for the K-K
force. This situation reverses at the higher energy; therefore,
the trend is the same as in the other cases. As this is an
L=0 transition exchange is not as important. Further the
values of Odir for the Yukawa effective range force are
larger than those for the K-K force which is a reversal of
the results for the normal parity transitions. This 1is
simply a reflection of the differencesbetween the forces at

large radii. For the K-K force ¢ decreases a little with

dir

energy and o for the Yukawa effective range force remains

dir
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almost constant. Unllke the normal parity transitions, there
are noticeable shape differences in the theoretical differ-
ential cross sections for this transition with the experi-
mentél data favoring the results obtained with the impulse
approximation pseudo-potential. It is concluded that the
cross sections for this transition are sensitive to the pre-
cise shape and phase of the two-body force.

The theoretical cross sections have a tendency to fall
off too slowly with increasing anglé and they don't show
enough structure. No attempt has been made to try and improve
the shape agreement between the theoretical and experimental
angular distributions. It is known that better shapes would
result if the theoretical form factors could be pushed out
radially. The density dependence and the imaginary part of
the projectile-target interaction might produce this effect.

It has been observed in many cases that the direct
cross sections computed with the K-K force show good shape
agreement with the experimental angular distribution. This
shape agreement is then lost When the exchange component is
included. This does not happen with the Yukawa effective
range force.

The reason for this is that the direct form factors
for the K-K force are more surfaced peaked than those for
the Yukawa effective range fcrce. This is evident in Fig. 15
where the direct form factors for the L=2 transitions in C12 |
are compared. Also shown are the complete form factors

(with exchange) for 28.05 MeV. The total form factors peak
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well inside the direct form factors. The difference in peak
positions for the direct form factors in this figure is about
.4F, whereas this difference for the total form factors is
only about .1F. The latter accounts for the similarity of
the final results for the two forces. The long tail on the
form factors for the Yukawa effective range force does not
aid in giving better shapes.

The cross sections shown in Fig. 10 and 13 are not
extremely good examples of the above point. Here the total
cross sections show fairly good shape agreement with the
data out to at least 100 degrees. The direct cross sections
show too much structure. It is noted, however, that the K~K
direct cross sections show more structure than those for
the Yukawa effective range force which 1s consistent with
form factor differences like those displayed in Fig. 15.

It would appear that some of the deficiencies in the
angular distributions of Fig. 6-14 are attributable to
deficiencies in the transition densities. In particular,
the fact that the angular distributions for the L=3 transi-

12 and those for the L=5 transition in Ca40 peak

tion in C
at too large an angle appears to be consistent with the

(e,e') results which have been shown. The impulse approxi-
mation pseudo-potential and the Yukawa effective range force

12 which

yield cross sections for the L=2 transition in C
fall under the data. The (e,e') results suggested this.

The K-K cross sections do not reproduce this discrepancy.
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As a result of the uncertainties in the approximate
treatment of antisymmetrization it is suspected that the
magnitude of the differential cross sections for the K-K
force might be overestimated appreciably, at least at the
lower energies. This effect will be greatest for the L=0
transition and will become less important with increasing L.
It has &already been suggested that the L=2 result is being
overestimated from the comparison of the (e,e') and (p,p')
calculations. It has recently been indicated that the
tensor force might be important for the abnormal parity L=0
transition.Bo Including it is found to improve the shape
agreement between theory and experiment at 45.5 MeV, parti-
cularly at forward angles. It may be that the approximate
treatment of exchange is masking the need for this contri-

bution to this transition.

2. Section B

Target Li6

The Jﬂ,T values for the first three states of Li6 are

+ + 14

1, 0; 3, 03 and O+, 1. The second state 1s observed at

2.18 MeV above the first which is the ground state. The
third lies 3.56 MeV above the ground state. Differential
6 *

cross sections have been measured for the Li6(p,p')Li

81 Theoretical

(Q=-2.18 and -3.56 MeV) reactions at 24.4 MeV.
cross sections have been calculated using the K-K force.
Shell model, LS-coupled wave functions have been used to

describe the target and the value 0= .‘581}?"'l has been assumed
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14 The opticallpara-

for the harmonic oscillator constant.
meters are also given in Ref. 14. For the Q=-2.18 MeV transi-
tion only the contribution from the triad (202,0) is important
and only the triad (Oll,l) is allowed for the Q=~3.56 MeV
transition; therefore, the components of the force which

are involved are t

and t respectively. The results

00
are shown in Fig. 16.

11°

The agreement between theory and experiment is poor.
The L=2 cross section is badly underestimated and the L=0
cross section 1s overestimated. In addition, the latter
result does not show any of the structure displayed in the
data. Similar agreement with experiment is obtained when
these wave functions are used in the analysis of the (e,e')

reaction.82 Fig. 17 shows a rough fit83 to the experimental

(e,e') form factorSM for the L=2 transition. Adjacent to
it is the result which is obtained using the transition
density, empirically determined from this fit, to calculate
the corresponding (p,p') crosé section with the assumption

that the transition still goes through the t part of the

00
K-K force. The correspondence between the (e,e') and
(p,p') results is good and it is concluded that the LS-
coupled wave functions do not give a good description of
the target.

Excellent fits to inelastilic electron scattering data
have been obtained, for both the transitions under discus-

82

sion, on the basis of the cluster model. A parallel

analysis of the (p,p') data is planned. This possibly could



127

*q488aB3 8y3z SQTJI0SSp 03 Pasn sABY suoTloung areM paTdnoo-gT ‘Topow TTOUS pue
SUOT3BTNOTED TBOT39J09Y3 9U3 UT Pasn uaaq SBY 20a0F Y- aul °suojoad ASW h°'h2 £q g¥T1 Jo
S89B3S POAJTOXd OM3 3SITJ O9Y3 JO UOTIBJTOXS 8Yj J0J SUOTI0SS SS0J0 [BTIUSISIITd--'9T San3Tg

s.om 091 Obl 021 001 08 09 Ob 02 O _zom 091 O¥l 021 001 08 09 OF 02 O
1 1 1 1 L 1 i 1 1 I 1 1 1 1 3 1 i 1
) + e
+
+* -0l ~1-0!
.0]8/qus ++ | ; ++ [eis/qu
()4 . . TP
+ An M.
+ op vt 5P
+
110 — + I 0202 — !

juswiiedxy +
=10 AFNOSG'E€-=0
AN b b2=3" 1T,

juswiiedx3 +
0=1',€ AGNBI2-=D
AN b'b2=3° 17,




128

*9T *38Td UT _umoys j3Tnsad JUuTpuodssddod 9Y3 JI9A0 juswsaoxduwT 8y3 830N *80407

-y 8ayj3 Jo jusuodwod oop aU3 y3noays ss03 uoTlTSURIZ ays 3eyl uotjdumsse oyl UJTM BLRD
(12°9) 9y3 03 3TJ 9yjg woaJ L3TSUSP UOTJTSUBIY ayj Juisn uoigoesa (,dd) syj JoJ paureiqo
1Insax ayjz ST 3UYITJIL ayjz uo umoyg °*pafLerdsip ST qu UT UOT4TSUBI] g=T 9Y3 J0J J0308J
‘waoJ 3UTJge33BOS UOAJ09TS OT4SBISUT ayj3 09 3TJ TBoTaTdws ySnoa B 4J8T oay3 uQ--°LT 2an3T4d

«Obi 002! + 00! °08 009 «Ob 002 Gl el (M 6’ L 18 1
f T T T l 1 T —, 01 T T T T T T T T..o_
-
- 01 Y
m/m.lmlm
)
$ $ h dOHSIE ' WIZHNY38 :dX3 e
* - —
ASWo'b2=3 ¢ 3?
NILSNY :dX3 @ ~ ol —2-01
(,d'd) | (,8'9)

(ASW681'2-=D) 0=1 ,¢
o1

‘—-Z-|(b).-/|



129

be extended to transitions which have been observed in
neighboring nuclei. It may be necessary to improve the treat-
ment of antlisymmetrization and to include the tensor force in
this work, particularly for the case of the L=0 transition.
These points were previously made with respect to the L=0
transition in C12 which was discussed in Section A of this
chapter.

Target 012

There is a 27T=1 state in C1°

at Q=-16.1 MeV. The
triads (202,1) and (212,1) can contribute to the excitation
of this level in the (p,p') reaction. The components of the
projectile-target interaction which are involved are t01 and
tll’ respectively. Both triads make appreciable contribu-
tions to the cross sectioh as isrseen in Fig. 18. This is
to be contrasted with the situation for normal parity T=0
transition where only the non-"spin-flip" contributions
were found to be important. Here the impulse approximation
pseudo~potential has been used with the R.P.A. vector of
Ref. 50. The data 1s from Ref. 72 and all parameters are
fixed as in the previous C12 calcﬁlations. The total cross
section shown has been obtained by summing the (202,1) and
(212,1) Qomponents incoherehtly. No significant change
occurs when a coherent suq is-performed. The magnitude of

the theoretical result is in reasonable agreement with

experiment, but the shape is quite poor. A comparable fit
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2C ; E=45.5 MeV
Q=-16.1 Mev 2*,T=|
+ Experiment

-—— 202l
—— 2121
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Figure 18.--Comparison of theoretical and experimental differ-
entlal cross sections for the excitation of the 2%T=1(Q=-16.1
MeV) level of cl2 by 45.5 MeV protons. The impulse approxi-

mation pseudo-potential is used for the projectile-target
interaction.
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to the 156 MeV (p,p') data has been obtained using this

42,43

vector, so this result is an indication that the t01,

component of the 'realistic" interactions is not unreasonable.

Target O16

Fig. 19 shows the theoretical result obtained with
the K-K force for the excitation of the 3 T=0(Q=-6.13 MeV)

level of O16

by 24.7 MeV incident protons. The data is the
same as that shown in Fig. 5.10. This is an L=3 transition

which goes through the t.., component of the force. The R.P.A.

00
vector of Ref. 50 was used in the calculation and the harmoqic
oscillator constant was set at a=.559F_1. The agreement

between theory and experiment 1is good; however, since this
calculation was performed better optical parameters have

been obtained and it has been shown that the Gillet vector
does not give a good fit to the l1lnelastic electron scattering

73

form factor. Correcting these deficiencies leads to a
theoretical result which falls about a factor of 1.5 below

the data. An explanation of this discrepancy is not presently
available. |

Target CauO

Theoretical cross sections have been calculated for the

excitation of the 3 T=0(Q=-6.28 MeV) and the 2 T=0(Q=-6.02

4o

MeV) states in Ca “+p at 24.5 MeV. These are preliminary

results which have been obtained in a study of the Cauo(p,p')

*
aMO

C data collected by C. Gruhn and collaborators. The
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60 , E=24.7 MeV
Q=-6.13 MeV 37,T=0
+ Experiment

3030

¥ 1 L} ! LJ T ] 1) 1
O 20 40 60 80 100 120 140 160 BCM
Figure 19.--Comparison of theoretical and experimental differ-
entlal cross sectlions for the excitation of 3"T=0(Q=-6.13 MeV)

level of 016 by 24.7 MeV protons. The K-K force is used for
the projectile-target interaction.
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impulse approximation pseudo-potential has been used in these
calculations, R.P.A. vectors are from Ref. 54, and all para-
meters are fixed as before. Only the triads (303,0) and
(112,0) have been considered and these transitions go through
tOO and th’ respectively.

The L=3 cross section is shown on the left in Fig. 20
where it 1s compared with the result shown previously for the
excitation of the first 3 T=0 state in Cauo. Thére is a
noticeable difference in the shape of the two experimental
angular distributions. This difference is not related to the
difference in Q for the two transitions. The magnitude of
the cross section for the second L=3 excitation is an order
of magnitude 1owér than that for the first. The theoretical
calculations reproduce the data quite well. In detail the
change 1n shape comes ébout because of differences in the
dominant configurations of the R.P.A. vectors, i.e. the
lf7/2—1d3/2 particle-hole pair is the largest component of
the first state vector (see Fig. 4) while it is the 2p3/2-
1d3/2 particle-hole pair which is most important in the
second. Because of the node in the 2p3/2 radial wave func-
tion, the transition density for the secohd excitation 1is
large and negative in the interior and has a positive peak
Just outside the nuclear surface. From Fig. 4 it is seen
that the transition density for the first excitation is
small and negative in the interior and has a dominant positive
peak Jjust inside the surface. The former simulates a some-

what larger diffracting object and hence the cross section for
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this case falls off faster with increasing angle. This is an
amusing comparison as 1t demonstrates some sensitivity to a
particular detail of the target wave function.

The result for the L=1 transition 1s shown on the right
in Fig. 20. The magnitude of the theoretical cross section
is seen to be in reasonable agreement with experiment, but
there is no apparent correlation in shape. The R.P.A. says
that this state is almost a single 1f7/2—1d3/2 particle-hole
palr. It would be interesting to examine the effect of the

tensor force in this transition.

Target Pb200

Theoretical differential cross sections have been
calculated for the excitation of the 3 (Q=-2.62 MeV) and

57(Q=-3.11 MeV) levels of Pb208

at 40.0 MeV and 24.5 MeV,
‘respectively. Experimental data for the former transition
is given in Ref. 77 and 85 and in Ref. 11 for the latter
transition. Optical parameters used in the calculations
are to‘be found in these same references. The K-K force
is used, the R.P.A., vectors are from Ref. 52, and o was
taken to be .4O5F L. The resuits are compared with the data
in Fig. 21. The agreement between theory and experiment for
the L=3 transition is not bad, but the L=5 result falls a
factor of 2-3 below the data.

The proton and neutron L=3 transition densities are
almost identical; therefore, this transition tests the t

00
component of the force., Using this same vector to calculate
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®e 208 Pb ; E=24.5 Mev
° Q=-3.10 Mev
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Figure 21.--Theoretical and experimental differential cross

sesgéons for 37 (Q=-2.62 MeV) and 5~ (Q=-3.10 MeV) levels in
Pb by 40 and 24.5 MeV protons, respectively. For the L=3
transition the dots are the data points from Ref. 77 and the

circles are the data goints from Ref. 85. The K-K force is
used for the projectile-target interaction.
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the form factor for inelastic electron scattering, a fit to
the data 1s obtained which is comparable to that shown in

Fig. 21.03

Nothing can be said about the L=5 transition as
there is no (e,e') data available although the poor result is
probably a reflection of a deficiency in the R.P.A. vector

for this transition.

1 T=0 Excitations
12

C™" 1s known to have a 1 T=0 level at Q=-10.8 MeV and
the same J",T is assigned to the Q=-5.90 MeV level in Cuo.
R.P.A. vectors are available for these states in Ref. 50

and 54, respectively. These vectors contain a spurious
component which represent translational motion of the center
of mass of the target rather than internal excitation of the
target. These vectors have been "cleaned" by constructing

86,87

the corresponding spurious states and projecting them

out. Theoretical results obtained with the K-XK force, using
both the original vectors (spurious) and the clean vectors,

are compared with each other and with the data in Fig. 22.

The magnitude of the cross sections is not given satisfactorily
in these calculations, but it is interesting that the clean
vectors reproduce the shape of the experimental angular dis-
tributions quite well as compared to the spurious vectors.

As the projection technique is not rigorous it is difficult

to say more about these results.
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CHAPTER 7

CORE POLARIZATION IN INELASTIC
PROTON-NUCLEUS SCATTERING

1. Introduction

In this chapter the calculations are extendéd to (p,p™)
transitions involving low lying states in nuclei Which
possess one or two nucleons outside of a closed shell.

The importance of core polarization on the low lying
spectra of these nuclei and in these transitions has been
discussed by many authors. Several methods have been used
for estimating these effects which can be expressed most
simply as a renormalization of operators acting on the
valence nucleons, e.g. the effective two-body force between
valence nucleons and the effective charge of a valence
nucleon,

One method is a perturbative treatment of the particle-
hole excitations of the core which are induced by the valence
nucleons. This is carried out to lowest order and particle-
hole excitationsup to about 2fw in energy are inéluded.

In following this procedure the interaction of one
core nucleon with another core nucleon is neglected, i.e.

& zeroth-order shell model Hamiltonilan describeé the core.

139
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As the interaction between core nucleons is responsible for
the exlstence of low lying collective statés in the core
nucleus, it is clear that this method does not include the
contributions from these states.

Thls approach is used by Kuo and Brownzo_zs’54 in their
attempt to explain the spectra of nuclei with one or two
valence nucleons. They have shown, looking in a systematic

way at nuclei in the vicinity of 016, Cauo, Cau8

Sr88, and Pb208, that core polarization gives rise to a

, 126,

strong pairing effect which is the major feature of
the observed spectra. Horie and Arima were among the
first to use this method in their calculation of gquadrupole

moments.57

Recently, Federman and Zamick have used this
model to examine some of the properties of the effective
charges for quadrupole transitions for nucleons outside of
Cauo and N156 cores.88 These studies have been extended to
other nuclei89 and additional efforts have been directed a%
estimating the validity of neglecting low-lying collective
states of the core nucleus.9o’91

An alternative method is to use the macroscopic vibra-
tional model to describe the core.92’93’15’16 The inter-
action between the valence nucleons and the core is treated
in a manner completely analogous to that discussed in
Section 2 of Appendix B where the interaction of a pro-
Jectile with a nucleus, sc described, was considered. The
elgenstates of the macroscopic vibrational Hamiltonian need

not correspond to physical states of the core as the model

i1s used as a vehicle for parameterization. Under the
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assumption that the core strength is ét an energy large
compared to any of the energy differences between the
valence nucleons involved, the role of a given core multipole
in the core polarization process is fixed by a single para-
meter, CL’ the stiffness parameter for multipole L. The
renormalization of the two-body forces between nucleons
outside the core (bound and/or unbound) as well as the
effective charge are easily expressed in terms of these
parameters. Using this method, and fixing the CL on the
baslis of empirical effective chérges, Love and Satchler15’16
have demonstrated that core polarization can give a very
important, even dominant, contribution to (p,p”) cross
sections.

Another variant is to consider the coupling of the
valence nucleons to low lying physical states of the core.
The macroscopic vibrational model can be used to param-
eterize the physical core states, although more consistent
calculations would use microscopic wave functions for the
core states--such as R.P.A. vectors. The energies of these
core states are often comparéble with the energy differences
between valence nucleons and this has to be taken into
account. This method has been used extensively in the

lead region.93’9Ll

Calculations of this type are useful
in examining the particle-hole model with respect to

neglecting low=-lying collective states of the core.
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Atkinson and Madsén have glven yet another procedure
for relating the effect of core polarization in electro-
magnetic transitions to the effect in the (p,p”) reaction.t?
All these models are attempts to enlarge the vector space
used 1n shell model calculations in an easy to handle way
and, at the moment, rest on a very empirical rather than
theoretical foundation. These models are discussed in more
detail in Appendix D. At any rate the main purpose of the
present chapter of this paper is to extend, to the scatter-
ing problem, the microscopic perturbative calculatlion of
Kuo and Brown.

Due to the selection rules, transitions generally
glve more detailed information about the nature of core
polarization than bound state calculations. For example,
consider a nucleus with two like valence nucleons which
are restricted to the (j)2 configuration. Such a nucleus
will have a O+ ground state. It is shown in Appendix D
that the pairing éffect on the ground state binding energy
is due to the coherent effect of a number of core multi-
pole excitations, whereas transitions between the states
of the (j)2 configuration which start or end at the ground
state depend essentially on only one core multipole. The
(p,p”) reaction is particularly useful for studying core
polarization since the available experimental data, unlike
that for electromagnetic transition rates, is not limited

primarily to quadrupole and octupole transitions.
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1170, 7090 89 209

, and Bi are the nuclel considered
in this paper. The first two have two valence protons and
the last two have a single valence proton. In all cases
the 3p-1lh (or 2p-lh) components of the target wave func-
tions are included as prescribed in Appendix D. The K-K
force is used as the interaction between core and valence
nucleons. Angular distributions for the (p,p”) reaction
and effective charges are calculated and compared with
experiment. 1In the (p,p”) calculations the K-K force
1s also used for the projectile target interaction. These
calculations constitute an attempt to reproduce the (p,p”")
experimental data from a completely microscopic model with
Lhe assumption that the projectile and target nucleons all
interact via the same force which in turn is closely
related to the free two-nucleon potential.

As an example of a particularly convenient
way to relate the effect of core polarization on the
spectrum and in transitions, calculations are carried out

90
150 and Zr using the macroscopic vibrational des-

for T
cription of the core and fixing the core parameters from

the bound state matrix elements of Kuo and Brown. This
procedure is discussed in Appendix D. All results are
reviewed with respect to coupling to physical core states
and in iight of the empirical formula of Madsen and Atkinson.
A very interesting result is obtained in the case of B1209
where it is found that the transition considered is

dominated by a single core phonon.
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2. Calculations and Results - TiSO, ngo, Y89

Macroscopic Vibrational Model and Relation between
Core Polarization in Spectra and Transitions

(zr?° ang 71°9)

In zr20 the transitions from the oF ground state
to the 0%, 2%, 4%, 6%, anda 8% states with Q=-1.75, -2.18,
~3.07, -3.45, and -3.58 MeV, respectively, for 18.8 MeV
incident protons are considered. The fransitions from the
ot ground state to the 2% ang 4% levels of Ti°° with
Q=-1.55 and -2.68 MeV for 17.5 and 40 MeV incident protons
are also treated. The two 0 levels in Zr90 result from
| the mixing of the (1g9/2)2 and (2p1/2)2 proton configura-
tions where the rétio of g to p amplitudes in the ground
state 1s about three quarters. This ratio has been fixed
both theoretically and experimentally.8’9’5“’95’96 The

+ +

+
2, B+, 6, and 8 states in question in this nucleus are

due to two protons in the 1g9/2 orbit. The states in Tiso
are described as two valence protons in the lf7/2 shell.
There is also a 6+ state due to this configuration, but
it has not been resolved in inelastic proton scattering
experiments.

For these cases the multipole decomposition of the
- 3p-1lh contributions to the <(j)2olléffl(j)20> matrix elements

25,54

have been given. Comparison of the decomposition with

Eq. (D.25) and Eq. (D.26) allows the extraction of the

parameters <kv>2e A knowledge of <kv> is required to

L
determine the parameters <kv>eL which are needed to calculate
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the transition matrix elements. Following Bohr and
Mottelson§3 <kv> is taken to be 50 MeV in these calculations.
Estimates of this quantity, based on reasonable finite
potential wells, for various orbitals in several nuclei
produce values from roughly 35-75 MeV.lS’16 Unceftainties

in the value of <kv> are probably the major source of error
1n_making this comparison between the spectrum and transi-
tions.

Table 1 gives the values of <kv>9 deduced in this

L
manner. For Zr9g<kv>62=.ll9, which is the same as the value
given in Ref. 15 and 16. The latter value was extracted
from the effective charge and can be obtained without
knowing <kv>. It should be pointed out that the potential
wells used in these references had <kv>~70 MeV. 1In the

last column of Table 1 the parameter C. is tabulated. This

L
parameter represents the effective stiffness of the core to
2L—pole surface vibrations and is simply the inverse of GL.
From the table it is seen that the core of T150 is somewhat
softer than the core of ngo and the L=2 vibrations are most
important in both cases. This is ekpected as is the indicated
increase in core stiffness to higher order vibrations. The
indicated core coupling is by no means negligible, however,
even for the highest core multipolé. Note the large mono-
pole coupling indicated for 2p1/2 protons outside the Sr88
core. On the basis of nuclear compressibility, L=0 vibrations

are not expected to be so important.
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TABLE 1.--Extraction of <kv>6L from bound state matrix
elements of Kuo and Brown.

Zr90
I i <()%0]]|c 11(35)%0> (MeV) WO <k se. L
¥ J J 3p-1h / € L v 'L (MeV)
0 1g9/2 -.020 .0796 .00504 9920 -
2 lgg,, ~.578 0970 .119 420
4 lgg ,, -.359 .0900 .079 633
6 lg9/2 -.218 L0770  .057 877
8 1g, ,, -.122 542,045 1110
0 2p1/2 -.241 .0796 .061 820
320
0 2 0 CL
L J <(J3) Ol|G3p_1h||(j) 0>(MeV) M K20 (Mev)
0 3f, -.033 .0796 .00892 5610
2 1f, , -.753 .0950 .159 314
4 1f7/2 -. 460 .0839 .110 455
6 1f -.233 .0602 .0775 645

7/2
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The admixture of a core excited component in a shell
model configuration is proportional to <kv>2/cﬁﬁwL (see
Eq. (D.1")). Assuming the hydrodynamical values for the
mass parameter D2 gives 9.2 and 10.8 MeV for the energies
of the effective quadrupole phonon in ngo and Tiso.

Using these energies and the C, of Table 1 in Eq. (D.1")

2
leads to values of 12% and 14% for the L=2 core admixtures
in the ground states of Zr9o and Tiso. Admixtﬁres this
large are not completely tolerable in view of the per-
turbative treatment being used. Ref. 15 and 16 report
7% L=2 core admixture in the ground state of Zr90. The
discrepancy cannot be accounted for by differences in
the values of <kv> and 02 which have been used here and
in those works.

As an example of the pairing effect which is
due to the core polarization, the results of shell
model calculations of Kuo and Brown for Ti50 and Zr90
are shown in Fig. 1. Theoretical results obtained with
and without the inclusion of core polarization are com-
pared with experiment. For both of the spectra shown
the zero of energy is that of two non—;nteracting protons
in the lowest avallable orbit outside of the filled core.
The experimental energies have been plotted with the

97

ald of the mass tables of Mattauch et al. ‘The experi-

mental energies for TiSO have been shifted by .4 MeV
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because the Coulomb interaction was not included in the
shell model matrix elements.

The filgure clearly shows that core polarization gives
a large attractive contribution to the J=0 matrix elements,
a small attractive contribution to the J=2 matrix elements,
and repulsive contributions to matrix elements of higher
J. In both cases the theoretical 2+ energy is too high.
For Zr°° both of the o' states and the 4+ state need to be
pulled down.

The theoretical results for TI50 are in better agree-
ment with experiment than are those for ngo. The TiSO
results are for a full 1f-2p shell calculation while only

90

the 2p1/2 and 1g9/2 crbits were included in the 7Zr calcu~

lation. Note that the ground state energy in Tiso is 2.90
2 2
MeV below the unperturbed value. <(1f7/2) Olcygff](lf7/2) 0>
has the value -2.068 MeV with -.869 MeV coming from the bare
force and -1.199 MeV as a result of core polarization. The

additional -.832 MeV ground state binding energy is due to

very small admixtures (less than 5%) of (1f5/2)2, (2p3/2)2,
and (2pl/2)2 components in the ground state wave function.
For Zr90

2. 2
<(lgg,,)70| Vool (1eg ,,)“0>=-.57 MeV-1.01 MeV

)2

<(2pl/2)20lq/eff|(2p1/2 0>=-.121 MeV-.0105 MeV
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where the first number in each case is the bare matrix element
and the second is the 3p-1h correction. An additional —.3 MeV
1s added to the first matrix element to account for excitation
of the two valence protons to the (1g7/2)2 configuration and
~=.2 MeV is added to the second matrix element to estimate

the effect of configurations with two .2p3/2 holes. A pure
(lf‘7/2)2 calculation for Tiso would probably also underbind
the O+ ground state.

In summary, the perturbétive treatment of core polariza-
tion gives a dramatic contribution to the theoretical results;
however, the underbinding of the O+ and 2+ states indicates
that the effect is being underestimated. It 1s uncertain how
these deficiencies are distributed between the different
core multipoles. Further, the choice <kv>=50 MeV may result in
contributions to transitions from core polarization which are
somewhat larger than the matrix elements of Kuo and Brown

actually imply--at least for ngo.

Microscopic Transition Densities (Zr90 and TiSO)

In the completely microscopic calculations for Zr90 and
TiSO (detailed formulae are given in Section 3 of Appendix D)

particle-hole pairs have been taken from the following shells:

Zr90 Particles: 24, 1g7/2,3s,1h,2f,3p,1i13/2,2g9/2
Holes: ld,2s,1f‘,2p3/2 (and ].g9/2,2p1/2 for neutrons only)

Tiso Particles: 2p,1f5/2,1g,2d,3s

Holes: 1p,1d,2s and lf7/2(for neutrons only)
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These orbits include all the particle-hole excitations with
energies up to roughly 24w, except those proton-proton hole
excitations for which the particle level is the same as the
valence orbitals, i.e. in Zr'9O the proton particle-hole
pairs 1g9/2—jh and 2p1/2—jh are neglected as are lf7/2—jh
proton excitations in TiSO. The single particle energy
levels have been taken from the Nilsson chart at zero deform-
ation. The parameter fAiw which fixes both the harmonic
osclllator wave functions and the energy denominators has
been taken to be 9.1 and 10.5 MeV for zr°° and 1159,
respectively.

The composition of the core transition densities,
FLOL(C) and FLOL

p n
the L=2-6 transitions in T1i°° are displayed in Tables 2 and

(C), for the L=2-8 transitions in Zr2° and

3. The important particle-hole pairs are listed with their
energy denominators. The amplitude of the state
l[(Jj)L(jpjh)L]o> in the l(j2)o> ground state, A,, and the
amplitude of the state |[(J3)0(J 3, )LIL> in the 1(3)°L>
excited state, AE, are listed along with the fractional
contributions, %, of a particular particle-hole excitation
to its respective core transition density (either proton or
neut;on). Observe that in ngo if is only the states with
j=1g9/2 that are involved in the L=2-8 transitions. For
the definition of the amplitudes see Eqgq. (D.39). The ratio

LOL LOL

of Fn (¢) to Fp (C) is also given in each case--denoted by

N/P.
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The transition densities are, of course, functions of
radial position within the target nucleus. The radial
dependence of the valence transition density, FSOL(D),
is given by unz(r)unl(r) while the radial dependence of
the contribution of a particular particle-hole excitation
to 1ts core transition density is given by unplp(r)unh )
The particle-hole excitations which give important contri-
butions almost invariably satisfy the condition

unpzp(r)unhzh(r)”unm(r)unz(r)’
i.e. have radial wave functions similar in shape to those of
the active valence nucleons. This fact was eXxpected and
used to fix the sign the radial integrals in arguing the
phase of the effect of core polarization on transitions in
Section 3 of Appendix D. Exceptions occur, for the most part,
only when a particularly small energy denominator is involved.
Since the radial wave functions of the valence nucleons are
nodeless for these cases it is not surprising that most of
the important particle-hole excitatlions are formed from

orbitals with nodeless radial wave functions.

LOL LOL
p b

and their important individual components have the same sign

LOL(C),

(D), F o

The essential point is that F (c), F
and approximately the same radial shape. This fact, which
is a result of direct calculation, was assumed in deriving

the empirical formula for enhancement factors due to core

polarization in Section 4 of Appendix D. It also Justifies
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‘comparison of the transition densities and their components
through percentages and ratios as is done in Table 2 and 3.

In the tables only those particle-hole excitations which
make up at least 5% of their respective transition densities
are listed. In each case the total fraction of the complete
core transition density due to the listed particle-hole
excitations is given. This is designated by T. This number
illustrates the importance of contributions not included in
the tables.

Relatively few particle-~hole pairs make important
contributions to the transition densities, particularly for
the L=2 transitions, the L=6 transition in 120 and the L=8
transition in zr°%., It is also noted that for the L=2
transitions the following condition is highly favored.

1
2

I = ..]:. R - = i = =T,=
I =05 Jp =t |3, 1=1=2

This was also noted by Zamick and Federman in their calcula-

88

tions of quadrupole effective charges. For the L=6 transi-

50

tion in Ti and the L=8 transition in ngo‘a similar condi-

tion is favored, namely:

=g 7L ==
=1, %5 jp+jh L=6 or 8

These results follow from Eq. (D.52) and Eq. (D.49) which
show that the contribution of a particular particle-hole

pair to the transition density is proportional to (23p+1)x

LOL

T.T
P h

(M (jhjp)]2 which 1s essentially given'by
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(23r1) i+ (3, 3, L\?

172 -1/2 0

It can be shown that vector éddition coefficlents of the
above type achieve their maximum value when the conditions
cited above are fulfilled.63

The increased fractionization of the core polarization
strength for the transitions with intermediate L-transfers
occurs because the above coupling conditions are not satis-
fied simultaneously with the condition that the particle
and hole orbitals have nodeless radialiwave functions, 1.e.
particle-hole excitations with nodeless radial wave func-
tions that do not satisfy the coupling condition are as
favorable as those satisfying the reversed conditions.

The percentages given in the brackets for each transi-
tion are the admixture of particle-hole pairs coupled to L
in the ground state. This i1s obtained by summing the

squares of the A There are 16.8% L=2 particle-hole

Gl
palrs in the (1g9/2)2 component of the ground state of ngo.

50 4 33%. These

The L=2 admixture in the ground state of Ti
values are to be compared with the corresponding values of

12% and 14% obtained using the macroscopic vibrational model to
describe the core. The comparison is relative as the energy

denominators used in obtaining the latter values are somewhat

arbitrary.

The core transition densities which have been obtailned
here would be essentially unchanged if average energy

denominators of 14.5 and 17.1 MeV were used in place of
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the Nilsson denominators for Zr90 and Ti5o, respectively,
in all instances except when the particle and hole occupy
sub-levels of the same principle shell. These average
energy denominators are somewhat smaller than the values

2w assumed by Kuo and Brown. 2224

The Nilsson scheme gives
small energy denominators when the particle and hole are

in the same principle shell. This is consistent with Kuo

and Brown's use of empirical energy differences for these
cases. Because of theilr smallness, it 1s these energy
denominators which are most uncertain. Further it is evident
that the transition densitles are very sensitive to these
small energy denominators since the 2d5/2—lg9/2 and 1g7/2—

90

1g9/2 neutron-neutron hole pairs in Zr and the 2p3/2—

ir and 1f -1f neutron-neutron hole pairs in 120

7/2 5/2 7/2
(all of which have small energy denominators) appear in
the wave functions with fairly large amplitudes. It is
estimated that a factor of two change in these small denom-
inators could make 20-~40% changes in the magnitude of the
transition densities obtained, with the core transition
densities in Ti5o being slightly more sensitive to this

change than those for ngo.

50,the differences between the L=2 ground state core

For Ti
admixtures obtained in the microscopic calculations as com-
pared to those obtained in the macroscoplc parameterization-
are attributablevto differenceé in the energy denominators

used here and in Ref. 25, Most notably, the latter

quotes larger values for the small energy denominators in
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Ti50 than have been used in this work. Specifically it gives
E(ph)=4.8, 6.82, and 8.75 MeV for the 2p3/2-1f7/2, 2pl/2—
1f7/2, and 1f5/2—lf7/2 neutron-neutron hole excitations,
respectively. Corresponding values used in this work are
3.0, 5.0, and 4.5 MeV. Replacing the smaller energy denom-
inators by the larger ones reduces the L=2 ground state
admixtures in Ti°° from 33% to 18% and a 20% decrease in the
magnitude of the corresﬁonding neutron core transition density.

Probably the most startling feature of the results
presented in Tables 2 and 3 is the large imbalance between
the proton-proton hole and neutron-neutron hole core polar-
ization contributions. The difference is so large as to
se¢em unreasonable. It is the natural result of these cal-
culations for three reasons. The first is simply the differ-
ence in strength between the neutron-proton and proton-
proton forces which results in an average increase of about
2.75 1n the importance of a particular neutron-neutron hole
as compared with the corresponding proton-proton hole. The
second 1s the presence of the excess core neutrons which
contribute neutron-neutron holes via small energy denom-
inators. From 45-70% of the neutron core transition denéi-
ties result from excess-neutrons. Such contributions are
indicated by an asterick in the tables. The last reason 1is
the neglect of the proton particle-hole pairs for which the
particle level is that of the valence protons. Federman

88

and Zamick included such contributions in their investi-

gatlon of quadrupole transition rates and found that they
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gave roughly 35% of the core polarization due to protons.
They observed a neutron-proton imbalance in their results,
but they considered evenly closed cores so 1t was due only

to the n-p and p-p forces difference.

L=0 Transition in Zr90

90 needs separate discussion.

The L=0 transition in Zr
As was mentioned previously the ground state wave function
and O+(Q=—1.75 MeV) wave function are mutually orthogonal
)2

combinations of the (lg and (2p )2 configurations,
9/2 1/2

i.e.
107 (g.5.)>= .6i(1g9/2)20>—.8[(2p1/2)20>
lo*(Q=-1.75 MeV)>=.8[(lg9/2)20>+.6l(2p1/2)20>

The transition density has two components--a (lg9/2)2 com-
ponent and a (2p1/2)2 component corresponding to the matrix

elements
48<(1g, ,,)%0 |T] (18g ,,)%0 >
) 9/2 9/2
2 2

Strictly speaking the theory also allows for contributions

corresponding to the matrix elements:

2
.36<(2py ,,)%0 | T] (1gg ,5)%0>
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There is no valence contribution to these matrix elements

as the 1initlal and final valence configurations differ in the
state of more than one particle. Further theA3p-lh inter-
medlate states which can contribute must have two profons

in the 1g9/2(2p1/2) orbit and a third proton in the 2p1/2
(lg9/2) orbit--all coupled to a proton hole. These are
neglected, Similar contributions, corresponding to the

matrix elements
-.8<(1g, ,,)°L|T| (2p, ,.)%0>
' 9/2 1/2 *

rave been neglected in treating the other transitions in
Zr90.

The structure of the transition density for the L=0
transition is illustrated in Fig. 2. Shown at the top are
R0 (D) 01, F0°%(0)(p-51, FO0(1)=FO00 (5)+5°%0 (¢)[pep-71,

p p p p p
OOO(T)=FOOO(C)[n—ﬁ] for the (lg9/2)2 configuration.

and Fn n
Corresponding information for the (2pl/2)2 configuration is
shown in the middle. The complete valence transition
density [D], the complete proton transition density [P], and
the complete neutron transition density [N] are shown at

the bottom. Here [D] is the‘sum of the two curves labeled
[D] in the top two drawings, [P] is the sum of the curves
labeled [D+p-pl, and [N] is the sum of the curves labeled

[(n-n].
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As 1n the previous cases, neutron core excitation are
found to be more important than proton core excitations.
The complete proton transition density does not differ
appreclably from the complete valence transition density.

000

The interior minimum of Fp (D) has been increased, the

surface maximum has been decreased and shifted slightly
outward, and a longer tall appears as a result of FgOO(C).
The core transition densities are oscillatory and are not
too similar to the valence transition densitities. Only
partic1e4hole palrs with jp=jh contribute to the core
transition densities. As the available particle and hole
levels with the same total angular momentum do not have the
same principle guantum number, the oscillatory shape results.
The small core transition densitles for the (1g9/2)2
configuration is understood in terms of the poor overlap of

ulu(r)ulu(r) with u (r)un . (r) when np#nh. The overlap

pPp h™h

of u,,(r)u,.(r) with u (r)u
21 21 nplp nhkh

explains the larger core transition densities obtained for

(r)(np#nh) is better, which

the (2pl/2)2 configuration. In the latter case, the radial
integrals (see Section 3 of Appendix D) still have the sign
of the two-body force and the difference in sign between the
core transition densitles and the valence transition density
for large r is just the difference between u21(r)u21ﬂr) and

u g (r)un 2 (r)(np#nh) at large r. The net effect of core

PP h'h
polarization will be an enhancement of this transition,

although 1t occurs as a result of inhibition of the (2p1/2)2

contribution to the transition.
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All particle-hole pairs which contribute to this trans-
ition are listed in Table 4 with their energy denominators
and the amplitudes AG. AE is not given since 1t 1is equal to
AG for this case. Percentage contributions are not given
elther since differences in radial shape between the various
components do not allow such a comparison. Ground state
admixtures are given in brackets as before. These are gquite
small. Excitations involving excess core neutrons are indi-
cated with an asterik. They do not contribute to this trans-
ition via small energy denominators and thus do not play a
special role in this case,.

Microscopic Transition Density for Transition
to Q=-.908 MeV State of YOJ

The excitation of the Q=—.908 MeV level of YOJ

for
incident protons of 18.9, 24.5, and 61.2 MeV is considered.
In the ground state of this nucieus the valence proton 1s in
the 2p1/2 shell and for the excited state being considered
it is in the lg9/2 orbit. The triads (LSJ) which can contri-
bute to this transition are (314), (514), (505), and (515).
None of these are forbidden in the simple shell model inter-
pretation of this transition so there is no breaking of the
valence transition selection rules because of core polar-
ization. It is found that the contributions from (514) and
(515) are small enough to be neglected. The microscopilc
transition densities for the (314) and (505) triads have
been calculated by taking particle-hole pairs from the

following levels:
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TABLE 4.--Composition of core transition densities for
L=0 transition in 2zr90,

Zr90
L=0(1lg, ,,)° [< 5%
9/2 ~
Protons Neutrons
P h E(ph)[MeV] AG AG
2f7/2 1f7/2 17.0 .0008 .0120
3p3/2 2p3/2 18.0 .0004 .0007
2d5/2 1d5/2 16.5 -.0017 -.0298
351/2 231/2 18.0 -.0056 -.0146
2d3/2 1d3/2 17.0 -.0080 -.0238
2f5/2 lf5/2 17.0 . 0066 .00¢3
*3p1/2 2p1/2 17.5 .0005
*2g9/2 1g9/2 18.0 L0475
L=0(2p. ,.,)° [2.9%]
1/2 :
Protons Neutrons
p h E(ph){[MeV] AG AG
2f7/2 lf7/2 17.0 .0101 .0163
3p3/2 2p3/2 18.0 .0430 .1044
2d5/2 1d5/2 16.5 L0241 ,0486
351/2 251/2 18.0 .0218 .0610
2d3/2 ld3/2 17.0 .0060 .0409
2f5/2 1f5/2 17.0 .0005 . 0155
*3101/2 2pl/2 17.5 .0786
*239/2 1g9/2 18.0 .0265
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Particles: 2d, 1g7/2, 3s, 1h, 2f,3p, 1i13/2,2g9/2

Holes: 1°f, 2p3/2(and 2p1/2, 1g9/2 for neutrons only)

Note that this transition involves a change in parity--thus

the particle-hole pairs contributing to the core polarization
90

here are not the same as those involved in the Zr transitions

which have been considered. The orbits listed include all
the particle-hole pairs with energies up to roughly 1#iw with
the exception of the lg9/2—3h and 2p1/2—3h proton excita-
tions. By including the 2g9/2 and 1113/2 particle levels a
few 2hw excitations are brought in. The constant Aw has been

fixed at 9.1 MeV for this case--the same as for ngo.

314
p

FgOS(C) is given in Table 5. The format of this table is

The composition of F (cy, Fglu(c), FSOS(C), and

the same as that of Tables 2 and 3. AE is the amplitude of

the state |2p1/2(jp5h)J;9/2> in the |1g9/2> excited state

and A, is the amplitude of the state |1g9/2(3pjh)J;1/2> in

the l2p1/2> ground state. For the expression for calculating
these amplitudes see Egq. (D.33). The J=4 ground state admix-
tures are almost zero while the J=5 ground state admixtures

are just slightly smaller than the L=6 ground state admixtures

which were obtained for Zr9o,

F3114
p 4
N/P ratio of -.383. The minus sign indicates that Fgl (C)

(C) is larger than F21”<c) as is indicated by the

is opposite in sign to Fglu(D) while Filu(c) has the same

sign as Fglu(D). The sign difference is a result of the
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repulsive character of the "spin-flip" component of the p-p

force. The "spin-flip" component of the p-n force is weak

and attractive which explains the sign and size of Fglu(c).

These conclusions are based on the discussion of Section 3

of Appendix D. The contribution to the transition from the

triad (314) is reduced as a result of core polarization.

This 1is a well known result first used to explalin the slow

My y-decay of the Q=-.908 MeV level to the ground state.98’99
The results for FgOS(C) and FEOS(C) are similar to

those obtained for the core transition densities describing

the L=2-8 and L=2-6 transitions in ngo and Ti50, respectively.

505
P

in shape and have the same sign as FSOS(D). FEOS(C) is

(¢cy, FEOS(C), and their major components are similar

larger than Fg°5(c), but N/P=3.84 is considerably smaller

than the values obtained for Zr90 and TiBO core transition
denslties. The reason for this is the decreased importance

of exclitations involving the excess core neutrons. About

66% of FgOS(C) and about U46% of F205(C) is due to particle-
hole pairs which satisfy the coupling conditions given before.
Some fractionization occurs because the overlap of u21(r)ulu(r)

with u , (r)u , (r) is somewhat more ambiguous than in the

PD h'h
case of ngo and Tiso. Essentially the same results would be

obtained for all the core transition densities if an average
energy denominator of 11.1 MeV is used without exception.
This 1s slightly greater than 1w, the value appropriate

for negative parity transitions.
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Angular Distributions (ngo, Tiso, and Y89)

Figure 3 shows the angular distributions which have
been calculated for the L=2-8 transitions in ngo in the
(p,p') reaction at 18.8 MeV. The data shown is from Ref. 8.
The results for the L=2 and 4 transitions in Ti°° for the
(p,p') reaction at 17.5 and 40.0 MeV are compared with experi-
ment in Figure 4. The 17.5 MeV data was taken from the liter-

atureloo

and the 40.0 MeV data is the unpublished work of
B. Preedom. Theoretical differential cross sections obtalned
for the excitation of the Q=-.908 MeV level of Y89 for incident
protons of 18.9 MeV, 24.5 MeV, and 61.2 MeV are compared
with experiment in Figure 5. The data comes from Ref. 10,
Pef. 101, and Ref. 10z, respectively.

In Figure 3 and 4 the solid curves are the results of
the completely microscopic calculations and the dashed curves
are the results of the calculations which use the macroscopic
vibrational model to describe the core with the core para-
meters fixed from the bound state calculations. The solid
curves in Figure 5 are the complete differential cross sections
and the dashed curve represents the L=5 component of this
cross section. The L=3 component is shown only for the
61.2 MeV case where it appears as a center line. The optical
parameters used in these calculations are given and referenced
in Table 6. The notation is the same as used in Eq. (B.13)
and the same geometry is used for the volume and surface

imaginary terms.
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Two sets of parameters are given for TiBO. The first
set (1) was used for the completely microscopic calculations
and the second set (2) were used in the calculations using the
macroscoplc vibrational description of the core. Set (2)
give better fits to the elastic scattering data, but were
not available until the microscopic calculations were com-
pleted. As the differences between the two sets of para-
meters are not sufficiently large to alter the conclusions
of this work, the microscopic calculations were not repeated
with the improved parameters.

The overall agreement of the theoretical angular distribu-
tions with experiment is fairly good with the pdssible exception
of the L=8 transition in ngo. The general tendency is for the
theoretical results to underestimate the data slightly (by
factors less than two), but it appears as if at least a
rough account of the relative magnitude of the differential
cross sections of different multipolarity in ngo and TiSO
has been achieved. The results of the microscopic calcula-
tions are in good agreement with the results of the calcula-
tions which use the microscopic vibrational description of
the core.T This 1s expected as the latter are only intended
to display, more directly, the relation between the renormal-

ization of the force acting between bound nucleons and the

1~The agreement between the microscopic and macro-
scopic results for Ti50 is a 1little poorer than for zr90,
This 1s attributed mostly to the differences in the energy
denominators used in this work and in Ref. 25 which were
previously polnted out.
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renormalization of the force between a bound and an unbound
nucleon. The macroscoplc model gives angular distributions
with somewhat better shapes than the microscopic calculations.
This is particularly evident for the L=2 transitions.

It is interesting to note that the prescription for
calculating cross sections which is being followed here leads
to the conclusion that the L=3, abnormal parity component of
the Y89 cross section is appreciable. Other analyses have
assumed that the angular distribution is totally due to L=5

transfer.lo’101’102

The presence of the L=3 component of the
cross sectlon 1s supported by the data--particularly at
61.2 MeV where it broadens the forward peak in the angular
distribution. The apparent dip in this angular distribution
at about 25° is not reproduced by the calculation. In order
to reproduce this feature of the data both the relative magni-
tudes, widths, and peak positions of the L=3 and L=5 com-
ponents of the angular distribution would have to be given
precisely. The approximations and assumptions employed in
this work are too crude to give such fine details of angular
distributions.

For the sake of completeness the integrated cross
sections corresponding to the microscopic results of Fig. 3,
4, and 5 are decomposed into their direct and exchange com-

ponents in Table 7. The results in the table are consistent

with the observations of Chapter 5.
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TABLE 7.--Decomposition of integrated cross sections corres-
ponding to results shown in Fig. 3, 4, and 5 into direct and
exchange components. All cross sections are given in mb,

Target ELAB(MeV) | L O5ip Oox Om cex/cdir
2 .997 482 2.84 481
zp?0 18.8 b, 165 .156 627 945
6 .0207  .0550  .137  2.66
8 .00116 .0163 L0236 14.1
17.5 | 2 4.89 2.70  14.5 553
7120 L .6U3 911 2.94 1.42
40.0 2 3.93 .884  8.30 L2214
4,680 340 1.86 .500
18.9 |3 .okoz  .0303  .127 754
| 5 .0988 143 N 1.45
y89 2.5 3 .0496  .0329 .150 L6614
5 .124 .165 532 1.33
61.2 3 .0768  .00473  .116 L0616
5 .189 0330 .361 .175

Form Factors for L=2 Transitions
90 ang 1190

in Zr

The form factors for the microscopic calculations are
obtained by folding in the appropriate multipole coefficient
of the K-K force and exchange interaction with the complete
transitlion densities obtained by combining the valence and
core transition densities. The folding procedure is

defined in Eq. (2.59"). When the macroscopic vibrational
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description of the core is used the form factors are defined

by Eq. (D.13) where PFlSY

(r) denotes the valence form
factor.

The form factors given by the microscopiec and macro-
scopic models for the L=2 transition in zr ° at 18.8 MeV
and in T1°° at 17.5 and 40 MeV are compared in Fig. 6, 7,
and 8, respectively. The valence form factors are labeled
D and shown as a solid line in the figures. They are the
same in both the microscopic and macroscopic pictures. The
total form factors, which include the effect of core polar-
ization, as given by the macroscopic ﬁodel are repreSented
by dashed curves labeled D + C (Macro). These are complex
and both the real and imaginary components are shown in the
figures. The total microscopic form factors are represented
by center lines labeled D + C (Micro). These are real.
Strictly speaking one expects the projectile-target inter-
action to be complex which would lead to complex form factors
in the microscopic calculations also.

The total microscopic form factors and the real part of
the total macroscopic form factors are similar in shape to the
direct form factors, although they both peak at slightly
larger radil. The total macroscopic form factors peak at
the largest radii in all cases shown. The better angular
distributions given by the macroscopic calculations is attri-
butable largely to the latter observation although the imag-
inary part of the macroscopic form factors does play some

part in the improved shapes.
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Enhancement Factors

In order to examine more carefully the role of core
polarization in these results, the square of the enhancement
factors obtained in these calculations are given in Table 8.
These are simply the ratio of the integrated cross section
obtalned with core polarization to the integrated cross
sectlon obtained without core polarization. They are
denoted by eg where the subscript p appears because the
valence nucleons are protons in all cases being consildered.
Except for the abnormal parity L=3 component of the Y89 Cross
section, the values of eg are of the order of 10. This
illustrates that core polarization plays an extremely
important role in the (p,p') reaction. Experimental values
of eg are given for thg transitions in Zr90 and TiSO. For
the L=2 and L=4 transitions in Zr°° these have been obtained
by normalizing the theoretical angular distribution for the
valence transition to the data at MOO. For the L=6 and L=8
transitions in ngo, 60o and 700 were used to compute eg
For T150 at 17.5 MeV, eg was determined by comparing the
theory and data at 40°, but at 40 MeV the hump at 51o in the
experimental L=2 angular distribution and the flat spot at
35° in experimental L=4 angular distribution were used for
the point of normalization.‘ In all cases good "eye" fits
to the data have been achieved. Experimental enhancement

factors have not been obtained for the Y89 transition because

the cross section contains two components.
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TABLE 8.--Theoretical and experimental values for the square
of the enhancement factors corresponding to the results of
Filg. 3, 4, and 5. For prescription used to calculate e (Exp)

see text.
Target ELAB(MeV)g L eg(Micro) eg(Macro) sg(Exp)
2 18.9 16.5 33.2
720 18.8 4 12.7 12.2 20.3
6 9.56 11.0 18.14
8 7.62 11.0 55.2
71°0 17.5 2 17.2 10.8 18.9
4 12.8 9.1 19.4
7120 40.0 2 19.8 13.7 19.8
14.9 12.7 18.2
91 1.9 3 629 - -
5 9.14 _ -
89 2.5 3 641 _ -
5 9.55 - -
89 61.2 3 617 _ _
5 10.3 _ _
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Beyond any uncertainties associated with normalizing
the theoretical results to the experimental data,‘the experi-
mental values of eg given in Table 8 are subject to any
errors contained in the approximate treatment of antisymmet-
rization used in this work. For example consider the results
of Love et all" which were discussed in the note added to
Chapter 5. Using the central part of H-J force for the
projectile-target interaction and treating antisymmetrization
exactly, for the L=2 valence transition in ngo they obtain

Oqip=-0412mb, o =.00415mb, and o,=.0689mb with o_ /0., =.1.

T

The results of this work are odir=.052bmb, oex=.0246mb, and

T=.150mb with oex/odir=.ﬁ70. The first set of results gives
90

Ei(Exp)=72.5 for the L=2 transition in zr20.

g

Taking for Odir the values obtained in this work for
the K-K force, using the Oex/odir ratios of Love et al
shown in Fig. (5.1'), and assuming maximum interference (see
Eq. (5.3)) suggests that a proper treatment of exchange
might lead to the following modifications of the ngo results
which have been shown.
(1) Values of €§(Exp)=5u.7, 33.8, 23.2, and 35.1
might result for L=2, 4, 6, and 8.
(2) The microscopic angular distributions for the
L=2, 4, and 6 transitions of Fig. 3 may be reduced
by factors of 1.65, 1.66, and 1.26, respectively,’

while the L=8 angular distribution may be increased

by 1.57. Here it has been assumed that the complete
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differential cross sections will be effected in
the same way as the differential cross section for
the valence transition. This is not strictly true
since neutron excitations contribute to the former
and the n-p and p-p forces do not have the same
radial shape.
(3) The macroscopic angular distributed of Fig. 3 may be
multiplied by factors of 1/1.12, 1/1.14, 1/1.07,
and 1.15 in the order L=2-8. These cross sections
are more stable than the microscopic ones since the
core contributions are not effected by the uncertain-
ties in question.
(4) Under the assumption of (2) the values of ag(Micro)
wlll not be changed.
(5) From (3) it follows that eg(Macro) will be 24,2,
17.8, 13.9, and 8.09 for L=2-8.
The main point here is that the results of this work might be‘
biased so as to improve the agreement of theory and experiment
for L=2-6 transfers.
The indicated modifications improve the consistency of
theory and experiment for L=2-8, but at the same time
result in somewhat poorer absolute agreement. With the modi-
fications the microscopic L#2 cross section is too low by a
factor of 2.9 while the L=8 cross section is a factor of 4.6
under the data. Inclusion of the L=7 non-normal transfer
in the 8% calculation might then remove most of the discrepancy

between the two results. PFinally observe that the agreement
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between the microscopic and macroscopic results is not strongly
effected by the uncertainties due to the exchange'approximation,
although the microscopic results for the L=2, 4, and 6 transi-
tions will be shifted downward 20% with respect ﬁo the macro-
scopic results while the L=8 results might be brought into
essentially complete agreement. The fact that the macroscopilc
cross sections may be larger than the microscopic cross
sectlions could reflect that a larger value of <kv> should be
used in these calculations.

The value of eg(Exp) for the L=2 and L=4 transitions
in Tiso are found to be about equal, roughly 19, and the
data provides no indication that this number varies with
energy. It would be useful to have results with exchange
treated exactly to check these points. Except for the magni-
tude of Eg it is expected that the observations will be up-
held. Guessing that the cross sections for these valence
transitions are being overestimated by the same amount as

90

for Zr leads to a modified value for eg(Exp) of about 31
at 17.5 MeV.

It is found that eg(Macro) for the L=2 transition is a
little larger than for the L=4 transition and both are too
small by about a factor of two at 17.5 MeV. They also
increase a little with energy. eS(Macro) for the L=2 transi-
tion at 17.5 MeV might be modified to a value of 13 which

is about 2.3 times smaller than the modified experimental

value. The fact that eg(MiCPO) are larger than eS(Macro)
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has already been explained. The values for eé(Micro) increase
slightly with energy as is expected since the shorter range
n-p force is a factor in the complete cross section while
only the p-p force is involved in the valence transition.
Calculations have been carried by Satchler gg_g;.67 for
the single particle transition in Y89 at 18.9 and 61.4 MeV,
The H-J force has been used and exchange has been treated
exactly. Comparing their results with the results of this
work indicates that the approximate treatment of exchange
1s not introducing any serious discrepancies here. This is
expected as the dominant multipole is L=5 in this case. The
comparison also indicates that somewhat smaller (less than
a factor of 2) cross sections would be obtained with the H-J
force. This is also true for the L=2 transition in Zr90 where
the K-K force gives the modified experimental value, eg=54.7,
while e§=72 1s obtained for the H-J force from Ref. 74. 1In
any event 1t appears as if the results obtained here for
this transition in Y89 are somewhat better than those

obtained for TiSO and Zr9o.

L=0 Transition in Zr9o

An experimental differential cross section is avallable
for the excitation of the 01(Q=-1.75 MeV) level of zr°C in
the (p,p') reaction at 12.7 MeV.105 Ref. 8 also gives an

upper limit for this cross section for incident protons of
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18.8 MeV. This is about 20 pb between 40° and 60°. A calcula-
tion of the differential cross section for the valence transi-
tion at 18.8 MeV gives a result which is in agreement with

this upper limit. The decomposition of the integrated cross

section for this case is o.. =.0453 mb, o

dir x=-0392 mb, 0T=.169 mb ,

e
and.oex/odir=.865. This ratio is much larger than oex/cdir=.22
which 1s obtained when it is assumed that only 1g9/2 protons
are involved in the L=0 transifion (see Fig. 5.1'). This
same effect was observed for Yukawa forces in the discussion
of Fig. 5.1. Core polarization gives eg=9.35 for this transi-
tion which destroys the agreement with experiment. Assuming
that Oex/odir is 10 times too large which is inferred from
Fig. 5.1' leads to result which is only about 4 times greater
than the upper limit.

A calculation with core polarization was made for compari-
son with the 12.7 MeV data. Optical parameters were taken
from Ref. 105. The direct and total (direct plus exchange)
differential cross sections are shown with the data in Fig. 9.
The shape of the theoretical cross sections are not in good
agreement with the data and it is seen that there is a large
exchange contribution. Again assuming that the effect of
exchange is being overestimated leads to a result which is not
very different than the diréct differential cross section
shown. This is in accord with the data insofar as overall
magnitude is concerned. Love et §£7M have indicated a value
of 10 is needed for eg based on their calculation of the

differential cross section for the valence transition using
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the K-B reaction matrix. This is roughly the value obtained
in this work.

Note that the data has a deep minimum at 60° - the
region where the upper limit of the 18.8 MeV cross section
was fixed - and observe that because of the poor shape agree-
ment this point 1s badly overestimated. It has been suggested
that the shape of the theoretical result can be improved by
damping the form factof in the nuclear interior.9’105 An
angular distribution with a better shape has been obtained
in Ref. 105 from a macroscopic form factor representing a

breathing mode.65

Effective Charges

Table 9 contains the effective charges for the electric
2L—pole component of the transition rates for the transitions
under conslderation. Experimental values are given for the
L=2 transitions. These have been extracted from transition
rates given in the indicated references on the basis of the
harmonic oscillator wave functions used in this work. Note
that there are two experimental values given for the quadru-
pole effective charge in Zr90. The two numbers do not agree
wlith each other and the larger number is the most recent
result.

The results for eeff(Micro) are simply the square
roots of the ratios of the B(EL) computed with the complete

LOL(T),

proton transition density, Fp to the B(EL) computed

LOL(

D). PFor the
p

with the valence transition density, F
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TABLE 9.--Effective charges for electric 2L—pole component
of transition amplitudes for the transitions under consider-
ation in Zr90, 7150, and Y99,

Nucleus§ L eeff(Micro) éeff eeff(Macro) eeff(Exp)

2 1.23 1.79 2.08 {2.3:.&15’106
7090 4 1.19 1.65 1.73 3.28.2

| 6 1.13 1.51 1.52 -

8 1.08 1.34 1.41 -
7120 2 1.19 1.67 1.92 1.8+.2107

4 1.15 1.54 1.64 -
89 5 1.18 1.46 - -

cefinition of B(EL) see Eq. (C.17) or Egq. (D.54). Eq. (D.23)
has been used to calculate eeff(Macro). In these calculations
it has been assumed that Rg/<rL>=l. Actual values of this
quantity based on reasonable finite well wave functions for
various orbitals in different nuclei vary from .6—1.5.15’16’108
The quantity éeff is obtained by taking FSOL(C) to be given
oy 3Ir2OM()+rEOM (01

The quadrupole effective charges given by the micro-
scopic model fall far short of the experimental values. The
macroscopic model gives reasonable agreement with experiment
if the smaller value for the L=2 effective charge in Zr90 is
assumed to be correct. The values of éeff are in better
agreement with eeff(Macro) and eeff(Exp) than are eeff(Micro).

The substitution used in calculating éeff is strictly valid
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only in the limit of iso-scalar-core excitation - a condition
which might be closer to reality than the microscopic calcu-
lations indicate because of the correlations between core
nucleons which are neglected in that picture. Note that the
values for eeff(Macro) are subject to a assumption similar to

the one made in calculating éeff’ i.e. only the overall effect

of core polarization is contained in the values of <kv>2eL

extracted from the Kuo-Brown matrix elements and an indepen-

dent assumption as to how this effect is divided up into

neutron and proton components is made in writing down Eq. (D.23).
It is concluded that the proton-neutron imbalance pre-

dicted by the microscopic calculations is not consistent with

experiment. Experiment appears to favor something more like

iso~-scalar core excitation. This point will be examined in

more detail in a short while. It should also be pointed out

that the inclusion of those proton-proton hole excitations

where the proton 1s in the valence orbital will not be

sufficient to remedy this situation.+

Finally, there is no
information indicating that these calculations are giving a
fair description of the relative variation of e pp 25 2
function of multipole. Additional experimental y-decay data

would prove useful in examining this point.

Coupling to Physical Core States

+
Collective model analysis of the first 2 excitation

in Sr88 which has been observed at 1.84 MeV in the (p,p')

JrSee note at end of this chapter.
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reaction at 18.9 MeV yields the value 82=.l3.10 Several

other low lying 2+ states are also observed. A U+ state 1is
belleved to exist at 4.05 MeV but it has not been resolved
experimentally. The first ot (Q=-3.82 MeV) and first

‘4t (Q=-6.33 MeV) levels in ca™®

have also been observed in
the (p,p') reaction at 25, 30, 35, and 40 MeV.109 Values of
B2~‘17 and Bu~.09 have been extracted from a collective model
analysis of this data. From Eq. (B.17) it follows that
C2=272 MeV for the Sr88 levels and C2=33O MeV and Cq=3516 MeV
for the Call8 levels. From the experimental data it is esti-

mated that first y* state in Sr88

has 84~.OU which gives

CM lOu. These values of 02 are comparable to those which
appear in Table 1 of this chapter. The values of CM given
here are roughly an order of magnitude larger than the corres-
ponding values appearing in that table.

The appearance of phonons in the core nuclei which have
strengths comparable to the effective core phonon associated
with the uncorrelated particle-hole model introduces serious
reservations concerning the use of this model. KXuo has
already made this point.go A case where such a core phonon
is dominant will be discussed in Section 3 of this chapter.
The general consistency of 82 values extracted from analysis
of the (p,p') reaction and (e,e') experiments indicates that
such phonons have comparable proton and neutron transition
densities; therefore, they will give a better account of the

charge and mass polarization effects in these L=2 transitions

than the particle-hole model does.
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The large CM values for the first M+ states in Cau8 and
Sr88 could be indicative that the particle-hole model might be
better for the states of higher multipolarity; however, the
results obtained for L=4 transitions do not compare more
favorably with experiment than those for L=2 transitions. No

88. The results obtained

strong 5 state has been observed in Sr
for the single particle transition in Y89 compare quite well
with experiment--better than those for Ti50 and Zr90. This
may suggest that there is something quite different about
negative parity and positive parity transitions; however, the
differences are not so large as to allow an unambiguous con-
clusion. Calculations with exchange treated exactly are
needed to see exactly how big these differences are. Also
the M4 y-transition rate must be calculated as a check on

the L=3 component of the cross section, although the shape

agreement between theory and experiment at 61.4 MeV suggests

that it is given fairly well.

Microscopic Empirical Formula

For a normal parity transition the microscopic empirical
formula of Atkinson and Madsen, Eq. (D.63), provides a rela-
tionship between the enhancement due to core polarization,
€, of a valence transition in the (p,p') reaction and the
nature of the effective charge. For a transition involving

valence protons Eq. (D.63) is conveniently rewritten as
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where fp=ep, 1s the observed effective charge, which is given
by the ratio of the total proton transition density to the
valence proton transition density; fn is the ratio of the‘
neutron core transition density to the valence proton transi-
tion density; and o is the ratio of the strength of the n-p
force to the p-p force. For the K-K force o is about 2.5.
The effective charge gives a measure of the enhancement of
a y-transition rate due to coré polarization. It is clear
that the corresponding enhancement factor for the (p,p') reac-
tion should be much larger than the effective charge if fn
is comparable to ep. This is simply a result of the fact that
the K-K force gives more weight to neutron excitations than
proton excitations in the (p,p') reaction.

When the valence particles are neutrons Eq. (D.63)

can be written

e, = fn + fp/a.

Now fp=en’ is the effective charge, which is given by the ratio
of the proton core transition density to the valence neutron
transition density and fn is the ratio of the total neutron
transition density to the valence neutron transition density.
The fact that proton excitations are given 2.5 times less
weight than neutron excitations in the (p,p') reaction is

again clearly displayed in the formula. For fixed fp and fn
the enhancement factors for the case of valence will be much
smaller than for the case of valence protons. This occurs

because a large weight has been assigned to the valence

transition when the valence particles are neutrons.
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The smaller enhancement factors for neutron valence particles,
as compared to proton valence particles, do not imply smaller
core polarization effects.

The 1so-scalar and iso-vector effective charges are

related to fp and fn by:

ey = f_+f for proton valence particles
y Poon
1

ey = fntfp for neutron valence particles

An 1so-scalar transition corresponds to the condition fp=fn

which 1s equivalent to e.=0. Transitions with iso-scalar

1
core excitation are defined by fp = fn+1 which is the same
OIS
as e1=1. For proton valence particles and fixed ep, the

iso-scalar condition implies larger values of sp than does
the condition of iso-scalar core excitation, i.e. a larger
neutron core transition density is implied by the first
condlition. For neutron valence particles and fixed e s

the condition of iso-scalar core excitation implies a larger
neutron core transition density and a larger € than does

the iso-scalar condition. Both of these conditions imply
strong correlations between protons and neutrons when core
polarization is large. Whenever there is a great deal of
core polarization the differences between the conditions will

not be very significant.
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The experimental relationship between ep(en) and ep(en)
for the lowest quadrupole transitions in ngo(A), TiSO(B),
N158(C), and Pb207(D) is shown in Fig. 10. Values of ep(en)
and ep(en) which lie within the boxes drawn in the figure
are consistent with the experimental data. The experimental
data for Zr9O and TiSO has been discussed previously. The
lower 1limit on ep for these two transitions are the results
of this work, i.e. they have been obtained from the K-K
force with exchange treated approximately. The upper limit

on €_ for Zr90

p
and collaborators67’7u for the H-J force with exchange

90

is obtained from the results of Love, Satchler,

treated exactly. The intermediate value of ep for Zr
(indicated by the horizontal line through the middle of the
box) are the results for the K-K force, modified to correct
for the deficiencies in the approximate treatment of exchange.
' This was also discussed previously. The upper and inter-
mediate values of ep for TiSO are estlimates based on the

g0

results.
207

corresponding Zr

N158 and Pb are two other nuclei which have been

considered in the course of this investigation. They have

207

not been discussed in this paper. The Pb results have

been reported elsewhere.117 N158 has been discussed by
88

Zamick and Federman. Both of these nuclei have valence

neutrons. The transition in N158 is from the O+ ground state
to the 2% state at 1.33 MeV and the transition in Pb207 ig

the 3pl/2—2f'5/2 (Q=-.570 MeV) neutron-hole transition. The

58 207

and Pb come from Ref. 88 and

effective charges for Ni
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Figure 10.-~Experimental relationshlp between ¢ ée ) and 8

e (ey) for quadrupole transitions in Zr90(A), % O?B), Ni58(c),
agd Pb207(D). Results of theoretlical calculations are also
shown. .
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Ref. 94, respectively. The experimental (p,p') cross sections
for Pb207 comes from Ref. 107 while that for N158 comes from
Ref. 5. The lower 1limits on €, are again the results of

this work and the upper and intermediate wvalues on En for

Pb207

are based on the results of Ref. 67. The upper and
intermediate values of en for N158 are only estimates.

Also shown in Fig. 10 are 1lines corresponding to the
1so-scalar condition and the condition of iso-scalar core
excltation. The solid lines are for valence protons and the
dashed lines are for valence neutrons. Observe that above
the iso-scalar line you have more neutron excitation than
proton excltation in the transition. Below the iso-scalar
line this situation is reversed.

The experimental data is not terribly definitive, but
the boxes definitely tend to stay somewhere in the vicinity
of the iso-scalar and the iso-scalar core lines, 1.e. the
data implies that there are strong correlations between pro-
ton and neutron excitations in these transitions. For ngo,
Tiso, and Ni58 the data says that the total proton transition
density is equal to or greater than the total neutron transi-
tion density. This is consistent with the findings of

Schaeffer118 who has studied the (p,p') data and the y-decay

88

data for the first 2+ and 3; excitations in Sr™ 7, Zr90, and

the Ni 1isotopes. For Pb207

the data implies more neutron
excitation than proton excitation. It should also be pointed
out that the results shown here are not inconsistent with

proton and neutron excitation in the ratio Z/N which has been
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suggested from comparitive studies of the (o,a') data and

M9 wor 2099, 1459 ang N158 the z/n

y-transition rates.
condition is not too different from the iso-scalar condition
and for Pb207 it implies quite a bit. more neutron excitation
than proton excitation.

The data favors the iso-scalar condition for Ni58 and
the condition of iso-scalar core excitation for Pb207. For
zr90 anda T1%0 1t 1s difficult to distinguish between the two
conditions from the data. The lower limits on ep imply that
iso-scalar core excitation is required. The upper limits
on e favor the iso-scalar condition. In reaching this

p
conclusion the higher value of ep for Zr90

has been con-
sidered suspicious. This is admittedly arbitrary. Recent
experimental data on quadrupole y-transition rates in Cau2
and TiSO indicates that iso-scalar core excitation is favored
in the lf7/2 shell.120 The results presented here are
consistent with this finding, but they do not substantiate it.
In conjunction with Fig. 10, experimental values of
fp and fn for these transitions are presented in Table 10.
Two sets of values are given for each transition--one for
the upper limits on ep and En and one for the lower limits.
They are labeled €, and €. » respectively.
The results of the parﬁicle—hole calculations for

2090, 1150 N158  ng pp207

are also given in Fig. 10 and
Table 10. 1In the figure these results are indicated by the

points A, B, C, and D, respectively. For zr %, T1°°, and
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TABLE 10.--Experimental and theoretical values for the
normalized proton and neutron transition densits?s for quad-
rupole transitions in Zr99, 7150 Ni59, anq P07,

_ Experiment
Nucleus € € Theory
£ F_ £ F_ £ -
720 2.30  2.30 2.30  1.30 1,41 1.348
2.55  2.11P
7120 1.80 1.80 1.80  0.80 1.22  1.142
1.81  1.61°
N8 1.90  1.90 1.90  1.90 1.20  1.402
pp207 2.13 1.13 2.13  1.13 1.30  0.452

aResults obtained from particle-hole calculation.

bResults obtained with renormalized force.

N158 the results for the particle-hole model fall very'near

207

the iso-scalar lines. For Pb the particle-hole model

gives a result near the iso-scalar core line.+ In all cases

+The reader is warned not to attach too much significance
to this particular result. For Zr90 and Ti50 the particle-
hole model predicts much larger negtron core excitation than
proton core excitation and for Ni®° there is much more proton
core excitation then neutron core excitation, i.e. valence
protons couple more strongly to core neutrons and valence
neutrons couple more strongly to core protons. The small
ratio of proton core excitations to neutron core exclitations
for Pb207 is a result of the fact that the same harmonioc
osclllator well was used for neutron and proton single particle
orbitals. This is tantamount to assuming there 1is neutron skin
for which there is no experimental evidence., The proton and
neutron wells probably should be adjusted so that the low lying
proton particle and hole orbitals have radii comparable to the
valence neutron orbitals. This will improve the overlap
between the low lying proton orbitals and the valence neutron
orbitals and a larger contribution from proton core excilta-
tions will result.
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the particle-hole model underestimates both the enhancement
factor and the effective charge. From Table 10 it is clear
that the particle-hole model does not dd too badly for the
neutron core transition density when the valence particiles
are protons, but it tends to underestimate the proton core
transition density by a fairly large factor. For the case
of valence neutrons the model does fairly well for the proton
core transition density and tends to underestimate the neu-
tron core transition by a substantial factor. This simply
bears out what was said earlier, i.e. the neutron-proton
imbalance in the core transition densities, which is pre-
dicted by the particle-hole model, is not consistent with
experiment.

It is not'too bothersome that the particle-hole calcula~
tions do note produce perfect agreement with the experimental
transition rates. It definitely gives a good qualitative
estimate of the overall effect of core polarization. It has
already been pointed out that it doesn't do a perfect Jjob
for the spectrum, and that the question of fairly strong, low
lying core phonons cannot be ignored. Further, the coupling
between the valence particles and the core is a little too
strong (e.g. see amplitudes in Tables 2, 3 and 5 of this
chapter) to allow one to také first order perturbation theory
too seriously. The results of Kirson and Barretlzl do, in
fact, demonstrate that the perturbation series for the‘

spectrum converges only slowly, if at all.
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It 1s interesting to follow up on a suggestion due to

Harvey122

to see if the results of the particle-hole calcula-
tion can be improved in a simple way. He points out that
Horie and Arima57 did not use the "bare" force (the K-K force
in this work) in calculating quadrupole moments within the
framework of the particle-hole model. Instead they used a
two-body force which was fit to the experimental spectrum,
i.e. a renormalized force in our language. He argues that
this procedure might give a much better estimate of effec-
tive transition operators than does the first order pertur-
bative calculation using the "bare" force. Just how good
this new estimate is depends on just how well the actual
renormalized force, which is a complicated operator, can
be represented by a two-body force determined from the
spectrum.

A calculation using this approach was made for the

L=2-8 transitions in ngo and the L=2-6 transitions in Tiso.

The renormalized force was taken to be of the form

T=ve+o, ..

where V denotes the K-X force and G3p—1h was taken to be

separable, i.e.

* A ~
= e | . t
G3p—1h kv(r)kv(r )dTl EGLYL(r) YL(r ).

The eL are given in Table 1 of this chapter. The additional

assumption is made that G 1h only acts in T=1 states.

3p~
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Spectra typically require large renormalizations of the bare

force only in T=1 states.zo’27

The results obtained for the quadrupole transition rates

90 50

in Zr and Ti are shown in Fig. 10. They are labeled A'

and B', respectively. The corresponding values of fp and fn
are compared with the experimental values in Table 10.

Table 11 gives a breakdown of the results for all the multi-

90 50

poles in Zr and Ti

and comparison is made with the results
of the perturbative calculation. Theoretical enhancement

factors are also compared with the experimental values.

TABLE 1l.--Normalized proton and neutron transition densities
as given by the particle-hole model and particle—hols model
with renormalized force for L=2-8 transitions in ZrJ3Y and for
L=2-6 transitions in Ti50, Theoretical and experimental
enhancement factors are also shown. For Zr99 the experimental
€, values are from Ref. 67. The 7150 €, values are estimates.

Nucleus L p~h Model Renorm. Force Experiment
fp fn ep fp fn ep € €,

2 1.41 1.34% 4.35 2.55 2.11 7.83 8.51 5.80

zr°% 4 1.25 1.06 3.56 1.62 1.37 5.05 7.45 4.52

6 1.14 0.84 3.09 1.30 0.95 3.68 6.19 4.52

8 1.08 0.60 2.58 1.16 0.61 2.69 6.30 7.48

1.22 1.14 4.24 1.81 1.61 5.84 6.35 4.36

1”0 4 1,16 0.92 3.74 1.40 1.11 4.18 6.26 4.32

6 1.07 0.63 2.65 1.18 0.70 2.93 -—- --
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The agreement between theory and experimental for the
L=2 transitions 1s quite good. Both the proton and neutron
core transition densities have been increased as compared
to the perturbative results. The proton transition densities
have gone throﬁgh the largest relative change. Differences
between the perturbative results and the results of the
calculations with the renormalized force decrease with
increasing multipole. The renormalized force gives a fairly
hefty boost to €5 for the L=4 transitions and it produces
a sizeable increase in the polarization charge for all
multipoles. It is difficult to discuss the multipole depen-
dence of ep because of the fairly large uncertainties in
the experimental values, i.e. €, and e, bracket a fairly
large range of values. It would be useful to have (e,e')
data for these transitions as it would provide information
on the multipole dependence of the effective charge. In
any event this procedure would appear to have some merit,
The calculation reported here is quite rough and a more

careful investigation of this approach is planned.



209

3. Single ?rotogoéh9/2—lil3/2 (Q==1.61 MeV)
Transition in Bi

The nucleus B1209 has one proton outside a Pb208 core.,
The valence proton is in the 1h9/2 orbit for the ground
state of this nucleus. The first excited state (Q=-1.609 MeV)
has the valence proton in the 1113/2 level. Twenty triaas
(LSJ) contribute to the transition between these two levels.
The two most important ones are expected to be (112) and
(303). This is similar to the situation for the single
proton transition in Y89 which has just been treated. One
might expect these two states té be connected by an M2
Yy-transition. In exciting the 1113/2 level in the (p,p')
reaction one might expect to observe a differential cross
section which is composed of (112) and (303) components in
analogy with Y89.

Contrary to these expectations, the 1.609 MeV is
observed to decay to the ground state by an E3 y-transition
with B(E3)=(1.3—2.0)x10—2e2b3.110’111 The core nucleus,
Pb208, has a highly collective 3~ state at 2.614 MeV. This
phonon is quite stable as a closely spaced septet of states

209

are observed in Bi at roughly 2.6 MeV. The septet results

from the coupling of the 1h9/2 proton to the 3~ phonon of

Pb208

. Another septet, formed by coupling a 1113/2 proton
to this same state, is expected at about M.Z MeV., This 1is
to be contrasted with the situation in Y89 where no strong
5  state is observed in the spectrum of the core nucleus,

Sr88.
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208 112

The Pb (He3,d)Bi209 experiment has been performed
and some (He3,d) strength 1s observed in the 13/2+ member of
the septet at 2.602 MeV. Using the particle-vibration coupl-
ing model Mottleson113 has estimated the mixing of the first

209. The admixture of the 2.602 MeV

two 13/2" states in Bi
state into the 1.609 MeV state is e°=4.8x1072. 1In this
calculation the coupling matrix element was obtained from
the y-decay of the 3~ state of Pb208. The mixing of the
states accounts for the observed (He3,d) strengths.

The 1.609 MeV state of Bi®°? has been excited in the
(p,p') reaction at 39.5 MeV and a differential cross section

114 Following Xuo's suggestiongo that the

is available.
particle-hole treatment of core polarizatioh may not be
adequate when there is the possibility of contributions from
highly collective phonons of the core (which appears to be

the case for this transition) the cross section is calculated
in two ways: (1) including only 2p-1lh components in the wave
functions, and (2) replacing the components with p-h coupled to
angular momentum Jc=3 by components which contain the 3~

208Pb. In the latter calculation the macro-

core state of
scopic vibrational model is used to describe the core. The
wave functions corresponding to calculation (1) will be
designated Set I while those corresponding to calculations
(2) will be called Set II.

Particle-hole pairs are formed from the shells shown

In Table 12. Harmonic-oscillator wave functions have been

used, and the energy denominators were taken in part from
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TABLE 12 .--Particle and hole orbitals used in microscopic
calculation. The absence of total angular-momentum subscript
indicates that both j=2+1/2 orbits are included.

Particles Holes

Protons Neutrons Protons Neutrons
g2 49,0 14 if

2t 2g 2s 2p

3p 3d if lg

11 : bs 2p : 2d

2g 13 1g 3s

3d 2h v 24 1h

4

s 3f7/2 3s 2f
Y15/2 Ty, 3p

2hy1 /2 1372
experiment115 and in part from the Nilsson scheme at zero

deformation. The size parameter hw is 6.8 MeV.

Ref. 113 gives <kv>=60 MeV and C,=649 MeV. Analysis

3
208 208

of the reaction Po(p,p') Pb gives B,~0.13 for this

77,85,116

3
which is the only state with a large value of

1/2

state

208Pb.

B in implies

_o1/2 4
The relation 63—7 @hw2/2C3)

C,=543 MeV which is smaller than the value from Ref. 113 and

3
corresponds to an admixture s:2=5.5x10—2 of the 2.602-MeV,
;%i state in the 1.609-MeV, l%i state. The smaller value of

C3 is used in this work.
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In these calculations, as a matter of convenlence, a
pseudo-potential has been used for the projectile-target
interaction. This pseudo-potential is known to give results
consistent with those obtained using the K-X force and
treating antisymmetrization approximately. The 2p-1h compo-
_nents of the cross section have been included only in the
S=0 terms in the cross section because it 1s only in these
components‘that they add coherently. 1In using wave function
Set II the components of the wave functions containing the
core phonon contribute only to the (LSJ)=(303) component
of the cross section. The remaining 19 components are the
same in Sets I and II.

Figure 11 shows the total differential cross sections
obtained with wave function Set I and Set II. The (303)
components are also shown for both cases. The differential
cross section (II) gives a good fit to the experimental data.
The (303) (II) compohent is dominant as forward angles.

The enhancement due to core polarization, of (303) (II) is
about 200. Because of this large enhancement the valence
contribution to (303) (II) is small. Considering only this
component and neglecting the valence contribution, the data

21071, wWave function Set II gives

places an upper limit on ¢
B(E3)-2.4x10"%e%p3 which is slightly larger than the experi-
mental values.

The particle-hole model fails to reproduce the effect

of the 3" phonon of 208Pb. The enhancement of (303) (I) is
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Figure 11.,--The experimental data compared with the theoretical
results obtained with both sets of wave functions. The total
differential cross sections and the (303) component are shown
for both cases.
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about 13 which is an order of magnitude smaller than the
value obtained for (303) (II). This model predicts that
many components make important contributions to the total
differential cross section. In particular, (303) (I) is
comparable in magnitude with (112) which involves the low-
est allowed L and J transfers. As the lowest J transfer

is highly favored in Y-transitions, the particle-hole model

13+
2

ground state predominantly by an M2 transition which is in

predicts that the 1.609 MeV, state will decay to the
contradiction to experiment.

It is concluded that highly collective core phonons
can play an extremely important part in the core polariza-
tion process. This is another indication that care must
be exercised in applying the uncorrelated particle-hole

model for core polarization.

NOTE added in proof: A calculation was performed

to estimate the effect of exciting proton particles from
the core into the valence orbitals in Zr90 and Ti50.

These excitations were treated the same as pfoton exclita-
tions into orbitals outside the valence space, but ampli-
tudes of configurations with three particles in the same
orbit were multiplied by (n-2)/n (where n=2j+l) to account
for violations of the Paull principle. Experimentally
observed single particle energy denominators were used

in the calculation. With these excitations included

eupp=1.41, 1.26, 1.14, and 1.08 for L=2-8 in zr°° ang
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egpp=1.22, 1.16, and 1.07 for L=2-6 in T1°°. These are not
much different than the results shown in Table 9 of this
chapter. The result for the L=2 transition in Zr90 shows
the biggest change. Here quite a large contribution was
obtained from the 2p1/2-2p3/2 proton particle-hole pair.
These changes will not effect the (p,p') cross sections very
much as they are primarily sensitive to the neutron excita-
tions.

Note that the values for eeff(Macro) are somewhat
larger than those for éeff even if the effect of the above
excitations are included. The assumption of the collective
model 1s that the charge transition density is Z/A times
the mass transition density. Thus one expects that éeff
should be slightly larger than eeff(Macro). Coupling this
to the fact that Ref. 15 gives R§/<r2>>1 for Zr90 again
suggests that a larger value of <kv> than 50 MeV should be

used 1n these calculations.



CHAPTER 8
SUMMARY AND CONCLUSIONS

It 1s felt that the results of this work, which ape
admittedly rough, clearly demonstrate the feasibility of using
"realistic interactions" in describing the inelastic scatter-
Ing of 15-70 MeV nucleons from nuclei in a microscopic picture.
The use of such interactions requires a fairly detailed
description of the target nuclei and it is necessary to
treat antisymmetrization. These two requirements are not
objectionable as the former is precisely the motivating
factor for the microscopic approach while the latter should
yleld useful information about the interaction as'well as
the nuclear wave functions.

Three interaction models have been considered in this
work and the majority of the calculations which have been
performed provide information only about the strong central
components of these forces. The results obtained are sensi-
tive to the gross features of the force, i.e. strength and
range, and the impulse approximation pseudo-potential and
the K-K force appear to be somewhat better than the Yukawa
effective range force. The first two contain information
about the high momentum components of the free two nucleon
force while the third does not. In work on the optical

potentia1,3l’32 it was shown that the impulse approximation
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pseudo-potential does not have the correct phase--a property
which is not examined in the inelastic scattering calculations--
and that the K-K force was better than the Yukawa effective'
range force,.

A convenient approximate treatment of antisymmetriza-
tion has been developed and used in this work. This approxi-
mation has been shown to be qualitatively correct in general
and gives good quantitive results for Yukawa forces of 1F
range at incidént energies in excess of 40 MeV. For Yukawa
forces of longer range and at lower energies the approxi-
mation is still fair, but it appears to be cdnsiderably
poorer for the K-K force. Although the K-K force is favored
theoretically, uncertainties due to this approximation make
it difficult to say that it is better than the Yukawa
effective range force solely on the basis of the inelastic
scattering datsa.

Finally it has been shown that a simple perturbative
treatment of the effects due to core polarization does
quite well in explaining the observed differential cross
sections for the excitation of low lying levels in several
nuclel with one or two protons outside of a closed shell.
Related effects sﬁch as the effective charge and the pair-
ing contribution to the ground energy of such nucleli have
also been considered. The models used in this work are
found not to be correct in detail, but the results obtained
are very encouraging and the use of inelastic nucleon-
nucleus scattering as a tool for studying these effects

should prove to be informative.
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APPENDIX A

APPROXIMATE SERIES FOR EXCHANGE COMPONENT
OF D.W.A. TRANSITION AMPLITUDE

Expanding tE(]Ei—E2D in Eq. (2.51) in a Taylor series
about Ag keeping only the first two terms and then trans-

forming back to a coordinate representation gives

Iex=_fxé->*(zo>¢;(;l>{} 8(Fg) 0, (Fp)xs ") (B adradr,

(A.1)
=2 02-802) (12 022)
01
(1),,2, .
where A (AO) is defined in Eq. (2.57) and
(1)

B(A§)=dA 5 (A.2)

a(r®)|,2_,2

.

In Eq. (A.1) the ye operator acts only on the é6-function.
The double integral (A.l) can be reduced to a single integral

in two ways. One is to transform to an integral over d3r d3r

01
and integrate over d3r01. The other is to transform to an

0

integral over d3r01d3rl and again integrate over d3r01. The
results obtained can be used to write the single integral in

the following symmetric form.
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Iex=—fxé—)*(§l)¢r(;l){}¢p(r1)xé+)(;l)d3r1

{}=A(l)(Ag)—B(Ag)(V2+A (A.3)

2)
0'sym

« ->

(v2+Ag)sym= SL(V24A2) + (V24221

Some algebra, which involves performing the V2 operations in
the integrand of Eq. (A.3), making use of the one body
Schrodinger equations which generate the x's and ¢'s, and
performing a partial integration over one half of the resulting
term which contains gradient operators, gives the following
result for the exchange integral.

Iex=-fxé—)*<Pl)¢;<?1>A<A§;rl>¢r<?l)xé+)(91)d3r1

B fxg ™ (B ver () ve (5 )x{ T (73, (A.4)

_ %B(Ag)fj(p,r)-flb,a)d3rl

In Eq. (A.4)

2

A(Aogrl

=2 03)-02-12ed)18002)

(A.5)

2

< =k2 2

-2 u(r.)

ﬁ2 1

where U(rl) is the optical potential and
- % _ % . -

I(o,8)=x 3" (B W E DTV E D e ()
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The first integral ih Eq. (A.4) contains a dependence
on the magnitude of the local momentum of the projectile and
the second integral expresses dependence on the magnitude
of the local mpmentum of the bound particle. These two |
integrals can be arranged to display the dependence on the
momenta of the projectile. and bound particle in a symmetric
way; however, the form which is given is mére convenient as
it does not explicitly refer to the binding energy and
potential of the bound particle. Both of these integrals:
can be easily handled in the local D.W.A.

The third integral in Eq. (A.4) cannot be incorporated
conveniently in the local D.W.A. Contributions to non-normal
transfer come from this term which essentially takes into
account the fact that locally the projectile and bound
particle are moving in different directions. The integral
averages over these directions and the contributions for
normal transfers are expected to be small. In the plane
wave 1limit it can be shown that the integral vanishes for
normal transfers when ¢p and ¢r are the same.

Neglecting the last term in Eq. (A.4) it follows that

~LSJ

~LSJ _~LSJ 6
E (ro)-E1 (r0)+E2 (ro) (A.6)
~1SJ ) ‘ ’ )
where El (rO) i1s given by Egq. (2.55) or Eq. (2.56) with the

: ~LSJ
replacement A(l)(kg)*A(Ag;ro). E2 (ro) contains the

contribution from the second integral in Eq. (A.4). For the

case of good i-spin
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~LSJ
Ey7 (rg)

Y s 1 1
ij- 2T<TATMTA’MTB—MTAlTBMTB><2TTb’Ta_TbI2Ta>
ll"

2T S 11

/55LSJTX(j’jJ;2’2L,§ 58)8(JyJpd 3T, TpT335 ")

x(un)‘1/2BST(x§)‘¥ (A.7)

and when i-spin is ignored

~1SJ _
By (rg)=

AAANAN l

L /3ilte-2 /2ILSIX(573358°9L35

45 %S)S(JAJBJ;jj”TT”)

x<uu)‘1/2ssﬂ,(x§)‘§‘. (A.8)

In these equations

)

) . A A
T 0RO n B el o) )

“2 ng "0
xW(L()QL?)Q’;lL)<L})L()%> : (A.9)
0 0 0 ’
where <§g§>is a 3-j symbol,>® L™ )=t ¥1, L 4y=t¥1, and
IO IS

ul?)(r) = (1) 2o - Lyu (r)



231

Therevare four terms in the above sum and 7 is a phase

+-
which is positive for the (+)(+) and (-)(-) terms and
negative for the (-)(+) and (+)(-) terms.

The net effect of including these additional terms in
ELSJ(rO) is to damp out contributions to exchange scattering
which come from the nuclear interior. This is reasonable
as the momenta of the projectile and bound particle are
much larger in this region than they are outside the nucleus.
The exchange scattering here should sample momentum components

of the interaction much larger than Ag— a value determined

by considering the assymptotic conditions.



APPENDIX B
TRANSITION DENSITIES AND FORM FACTORS

1. Harmonic Oscillator Wave Functions

Throughout this work, the single particle bound state
wave functions used are those for a particle bound in a
harmonic oscillator potential. This is a necessity because
a complex description of the target nuclei is being attempted.

The radial part of these wave functions are given by60

n+2+1 , 2. 2
-1/4.2 (n—l)!]1/2a2+3/2rle—a r=/2 p

()= = sy ng(v)  (B.1)

g

where the principle gquantum number runs from 1 to and

n-1
- K-n+1 k (2n+2g-1)!! 2.2,k .
P = - . B.2
ne () kzo2 D7 TR (et () (B.2)
The size parameter, o, is given in F =+ by
w=[512 = (B2 o 15602 (B.3)

L/ﬁz
where fiw 1s the energy separating the major shells of the
potential expressed in MeV. Eq. (B.1l) and Eq.(B.2) are some-
what more convenient than the more commonly encountered rela-
tions which give unz(r) in terms of'the associated Laguerre
polynomials. The first few Pnl(r) are
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Plz(r) = ]
(r)=g&%i - ap? ‘ (B.4)

Py, (r) = %{(22+33(2“+5) ~ (2845)alr4a ety

From Eq. (2.58), Eq. (2.59), Eq. (2.46"'), and
Eq. (2.47"') 1t follows that the transition densities can

be written

LST,T 1y = 2 yLST,T

F 35~ (3J )unéz,(r)unl(r) (B.5)
LSJ LSJ
Lz = Z»MTT'(JJ Yy g - (P)u (2) (8.6)
where
vLST,T 1 1
(J3i™ —/‘T<TATMT M, =My, [TMy ><5 Trb,ra-rb|51a>
A B A B
XS(J,3.337, 77535 )M (yny"1/2 5 ShrsTT
A"BY’>*A"B
11

x<L200|270>X(J"JT;%72L; 35 ES) , (B.5")

LSJ(J *) = VES(3,TgT55 wr )t Y umy"Y2 5 53185

X<L200|£70>K(J "3 7;07°2L;3 £s). (B.6")

Inspection of the above relations leads to the conclusion that

the transition density can always be written in the following

form when harmonic oscillator wave functions are used.



234

N
0 2.2
pLST 1y - ) cLST N+3 N _~ar
N_ N
a
N, =(a+27) (B.7)

Nb =(2+27+2n+2n -u)max

In writing this equation reference to T or Tt has been
dropped for convenience. Na or Nb is determined by the contri-
buting U oY, g which yield the minimum or maximum values, res-
pectively, of the bracketed quantities. Note also that the
transition density is an even or odd function of r as the
parity change in the transition is plus or minus, i.e. only
even or odd values of N are included in summing from Na to
No'
2. Macroscopic Vibrational Model

Considerable success has attended the use of the macro-
scopic vibrational model in describing inelastic scattering.
There are numerous references to this approach in the liter-
ature - Ref. 61 and 62 are but two of these. As there must
be a rough correspondence between the microscopic picture and
this macroscopic picture it is useful to review this model.
A modification of this model is used in the treatment of core
polarization which is discussed in Chapter 7 and Appendix D.
The following discussion is restricted to even target nuclei

which have ground state spin equal to zero.
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In this model the nucleus is likened to a quantized
drop of an incompressible, non-viscous fluid. The primary.
excitations of this system are small surface oscillations
(phonons) about spherical equilibrium. The surface of the

drop 1is given by

“odla 1% (B.8)

R(6,¢) = RO{1+L%QLMY2M(6’¢)_(uﬁ) L&

which conserves volume to second order in aLM’ the deformation

parameter. The Hamiltonlian for the system is

1 2 1 2
IVI{szl“lexl + 50 lapyl 7} (B.9)

H = T
where DL is the mass parameter for excitations of angular
momentum L and parity (—l)L, Cp, is the corresponding stiff-
ness parameter, and T M is the momentum conjugate to aLM.

In terms of the operators which create and annihilate phonons,

N :
LM and CrM> the Hamiltonian is written

) + 1
H = LMﬁwL(CLMCLM+2) (B.10)

where Wy = (CL/DL)l/2 is the frequency of the phonon
designated by L.
+ .
The .M and CLM obey boson commutation relations.
If the hydrodynamic description of the system is adhered to
strictly, relations for DL and CL are easlily obtained.

In practice it is necessary to treat them as free parameters.

+
The TIM? o e CiM> and Crm are related as follows
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AHw
_ L\1/2. + L+M
AC
_ | Ly1/2 L+M _+
Ty = —ili] (55;) {e - (-1) °p,-m} (B.11)
Sty = TN GE 2 0 a5
LM Ay o‘LM"ch LM

where [i] is 1 for L even and 1 for L odd. Equations (B.11)
are subject to the conditions that the phonon states transform
under rotations and time reversal in the same manner as the
single particle wave functions ¢$2(P) which were defined in
Chapter 2 and that R(0,¢) has appropriate matrix elements

in such a representation.63 Note that these equations are
consistent with the classical reality condition QEM = (—1)Mx
L,-M,

It is then assumed that the interaction between a
projectile and this liquid drop is only a function of the
distance between the projectile and the surface of the drop,
i.e. (r-R). Since only small vibrations are being considered

it is reasonable to make a Taylor series expansion of the

interaction about R=RO. To first order in O M this expansion

is
Z % ~
U(r-R) = U(r—RO) - k(r)[MaIMYIM(r) (B.l2)‘

where k(r) = ROdU(r—RO)/dr. U(r-RO) is identified as the
optical potential which is spherical and describes the elastic
scattering. Assuming the usual Woods-Saxon form this potential

is written



- - —_— 1 —
U=-V(e®+1) " toiw(e® +1) 1+uiwD %EV,(eX'+1) 1

. |
+Gﬁ/mnc92VSr_l %;(e $0,1y-1r.5 (B.13)

where x = (r—rOAl/3)/a,x’= (f—rOAl/3)/a , etec. and to which
is added the Coulomb potential of a uniformly charged sphere
of radius rCA1/3. The potential contains a real volume term,
volume and surface imaginary terms, and a real volume spin-

orbit term. The diffuseness parameters are a,'a', v oe e

_ 1/3 - ~21/3
0 = TohT 7, Ry =rph

Neglecting the Coulomb and spin orbit terms in the potential

and the radii are identified as R =r 2 ¢ .

leads to the following expression for k(r)

k(l")=(VRO/a) e 2&:}_(‘/\]36/3’)_—_"'8 5 Lli(WDRa’/a”)e (%je—: ) (B.14)
(1+e) (1+e7) (1+e” ")~
where e=exp(r—Ro/a),. « « . Before completing this discussion

by defining the form factor for inelastic scattering

gbLJ(r), it should be noted that the prescription (B.12) for

treating the deformation is not the only one which appears

in the 1iterature6l’6u

s although it is the one used most

frequently. Futher Eq. (B.12) only provides for the

treatment of (L,0,L) triads for normal parity transitions.
In this model the form factor for the excitation of

a single phonon is

FLOL(r)

= -il/z k(r)<L|]a, |]0> . | | (B.15)
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Using Eq. (B.11) gives

L A
= -17[1]v/2k(r)(

~

w
FLOL(r) L\1/2

TA s (Bol6)
ZCL

thus inelastic scattering experiments provide a measure of
the stiffness parameter. It is common practice to tabulate
the root mean square deformation in the ground state due

to zero point oscillations

Aw
BE = <Ol1§I!°‘LM!2,O> = (2L+1)(§6—% (B.17)
which gives
~ B
FFO (r) = —ilfi3vok(r) L | (B.18)
L

In this discussion only the matter distribution in
the drop has been considered. This fact and the restric-
tlon to lowest order is why the description applies only to
normal parity transitions. 1In addition the 1liquid drop
described here can only have excitations of quadrupole order
or higher. By introducing other variables, i.e. compressi-
bility, spin, and charge, the model can be generalized to
encompass a larger class of vibrations.63’65 AIn Appendix C
electromagnetic transitions are considered and the model
is extended with the assumption of a uniform distribution

of charge throughout the volume of the drop.
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3. Reduced Matrix Elements and Transition Densities
for Varlous Transitions

In order to calculate the transition densities 1t
is necessary to evaluate the reduced matrix elements of
the one body operators which appear in Eq. (2.58') and
Eq. (2.59'). 1In the occupation number representation a

one body operator is written
D) +
0= Yo = 0‘B<oc|oi8>ama8 (B.19)

where a+ and a are the fermion creation and annihilation
operators which were introduced in Chapter 2. They satisfy
anticommutation relations. When using i-spin the operator

of interest is

N N
§(r-r,)
oLSILT o 4 AT gLST 4y Teyy o L LST.Tsy (B, 20)
i=1 r2 i=1
and when not using 1-spin it is
- 8(r-r,) -
LSJ _ ) i’/ LSJ _ ) LsJ
OTT, = f r2 T (1) = {fo (1). (B.21)
In the form of Eq. (B.19) these become
LSI,T _ )  _se - ., LSJ,T + -
0¥ = jmr SITmT ™" 2 lJmT>aj’m’T’ajmt (B.207)
J)m’T’
4
LSJ Z A, LSJ + -~
OTT’ ,jm <J m Io ‘Jm>aJ»mAT&ajmT (B°2l )
J’m’
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In the discussion which follows R”Y will be used for

LSJ

<B} |0 ||A> and a single subscript will be used on

+
a and a to represent the quantum numbers Jjmt.

Single Particle Transition

This 1s a trivial case and there is no need to
introduce i-spin. The initial and final states are
|A>=a;|C> and ]B>=aI|C>, respectively, where |C> denotes

a filled shell state. The following result is easily

obtained.
LSJ _ . LSJ, . '
2°1
The § . is used with Table 2 of Chapter 2 to determine
TT ,T,Ty

the force component which is needed. For example, consider

a single neutron transition in the (p,p”) reaction. Then
Tl=T2=—% and the transition goes through the proton-neutron
force. For the (p,n) reactioﬁ T must equal -t°= —% in

order for the transition to be allowed; thérefore, the single
particle must initially be a neutron and a single proton

will be left in the final state.

Single Hole Transition

For this case the initial and final states are

Jomm, Jp-my
|A>=(-1) a,|C> and |B>=(-1) a,|C>, respectively.
The purpose of the phase was mentioned previously. It

follows immediately that
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J+Jl_j +1A ~

5w I e mes
Using the conjugation relation

<S8 g ppmeny U S 168y s
gives for Eq. (B.23)

RLSY = —(—l)S<J1||oLSJI|j2>6TT,,TlT2. (B.25)

This relation shows that a neutron single hole transition
in the (p,p”) reaction is the same as a neutron single
particle transition except for the phase factor (—1)S which
may have some effect when interferences is important. In
the (p,n) reaction the initial state must be a proton hole
and the flnal state is a neutron hole. This indicates the
significance of the interchange of Ty and T, in Eq. (B.25)

as compared to the ordering in Eq. (B.23).

Transitions to Particle-~Hole States

The simplest excitations of closed shell nuclei are
particle-hole pairs. In light nuclei witn equal neutron-
proton number i-spin is usually assumed to be a good
quantum number and a particle-hole state 1s written

J.T
B™B
|B>=|J _M_T_M_, >= ) C
BB'BT m
B Mo Jpjh
TpTh
Ipdn

11
m_-m [ Mo><5 5T —TthBMT>

< —_—
Jo9n P 'h B 22p B



J -m +1/2-1
x(-1)'h b hata |os. (B.26)

States of this form are obtained by diagonalizing a shell
model Hamiltonian in the space of particle-hole pairs.
This procedure is referred to as the Tamm-Dancoff Approxi-
mation (T.D.A.) and it assumes that the ground state of
such a nucleus is a filled shell |A> =tC>.l’2 The reduced
matrix element describing transitions from the ground
state to the states (B.26) is

J T ~

LSJ,T_ ) B'B -1, 1,,.L8J,T;,, 1
R = o3 Cy o V2 Iy [T B] <Jp2lio [IJh2>. (B.27)

Since the ground state is a filled shell the only allowed

values of J7T are J NB

For heavier nuclei with unequal neutron-proton
number 1-spin is usually ignored and particle-hole states

bf the following form are obtained

JBT jh—mh + | ( 8)
B>=|Jg M >= C. <j m-m |J_M_>(-1) a_a |C> B.2
| | JpJ Jpjh p hI B'B ( » P'h

h

h
m
h

Ce
r-l'U"OM
[

where 1 distinguishes between proton-proton holes and

neutron-neutron holes. In this case the reduced matrix

elements
RLSI_ 1 UBT 55 1<3 o215, > (B.29)
LIE I AR I N IpIB In

P"h %p
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are used. The subscript on R has 1=1” since the initial
and final states considered here are states of the same
nucleus. Note that the form factor has explicit proton

and neutron components when i-spin is not used.

Random Phase Approximation Vectors

The R.P.A. goes a step beyond the T.D.A. in treating
closed-shell nuclei. It takes into account in an approxi-
mate way that the ground state may have 2p-2h, Up-Uh, etc,
and that the excited states may have 3p-3h, 5p-5h, etc.

1,2 The excitations

components in addition to lp-1lh components.
in the ground state are referred to as gound state correla-
tions (G.S.C.) The inclusion of these higher excitations
has an important effect on transition rates as they allow
the exclted state to be reached by destroying a particle-

hole pair as well as by creating one.

Disregarding i-spin an R.P.A. state vector 1s given

by
|B>= |7y >=a] y o>
B B (B.30)
J T J g7 J =M
Bo .t BB (3. 3.1}
A h
Q3 My Jh X33y TeMy Gpdp™)-Yy jh( -1 My P

where |C> 1s the generalized ground state and

(J J T)= ) J
J M h mpmh<jp

Jh"h.}.
My m —mhlJBMB>(-1) a2y . (B.31)

n
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The second term in Eq. (B.30) represents the G.S.C. The
necessary reduced matrix elements are obtained by following

the procedure
<B|O|A>=<C[QO]C> =<C|[Q,O]|C>Z<C|[Q,O]|C> (B.32)

where the fact Q|C>=0 is used in introducing the commu-
tator in the third step. It is easy to show that Eq. (B.29)
applies with the condition

J. T J.T J_T
cJB. = XJBJ +(-1)5y B, | (B.33)
th p’h Jth

Correspondingly for good i-spin Eg. (B.27) prevails with
J,T J_T J_T
BB _ 4 BB, (_)S*Ty BB

C. . N Y, (B.34)
Jth Jth Jpjh

X and Y are generally in phase and they add in non-spin
flip amplitudes (for iso-scalar amplitudes if Eq. (B.34) is
being considered) and the enhancement due to G.S.C. is
apparent if it is noted that the vectors (B.30) satisfy
the normalization condition J(X°-¥%)=1 instead or JC2=1.

Llke the macroscopic vibrational model, the T.D.A. and R.P.A.
are schemes directed towards the explanation of low lying
vibrational states in nuclei. The states (B.26), (B.28),

and (B.30) may be called phonons.

Transitions Between States of j2 Conflgurations

Forgetting about i-spin the wave function for two

nucleons of the same type in the j2 configuration is
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IA>-|JAMAT> /5m1m2<33m1m2IJAMA>a1a2IC> (B.35)

where T again differentiates between protons and neutrons.

This wave function is normalized and vanishes unless J

A
is even. For a transition between two states of this type
LSJ_, \J+1,737% . LSJ
RI7=(-1) 2JJA@ J I <3 o™ | |s> (B.36)
where {} is a 6-j symb0158 and 1=1” because of the restric-

tion to like nucleons. The single particle reduced
matrix element vanishes unless L 1s even and when J=L and

S=1; therefore transitions starting at the state J,=0 do

A
not proceed by spin-flip.

Transitions from lp to 2p-1lh States

In treating core polarization as presented in Chapter 7
and Appendlx D transitions from a one particle to a two
particle-one hole state are encountered. A two particle-

one hole state is written

- Ty T Ms= L )
|B>-|J1(Jpjh)Jc,JBMB>—mpmh<Jthmp mp |3 M ><313 mM | TpM>

M
c

my

3y -
x(-1) h mha;a;ah|0> (B.37)

where 1-spin is not being used. The above wave function is
not normalized when p=l. This i1s not important at the

present time and will be discussed in Appendlix D. The
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reduced matrix element for the transition from a single-

particle state, lA>=aZ\C>, to the state (B.37) 1is

LSJ

R™7.=6, . 8 §__ . T 2-1 LSJ
TT JlTl>J2T2 Jch T ,71 TpJpJ <jp||0 lljh>—
G435 +I+T

{63 t 3.1 % 7T (-1°t 7 03 3 Jsdyd

pTp2daTy TTHTRTy J1)l29n’e

3,957

. LSJ .

x<3y 1™ ]3>0} (B.38)

‘An allowed transition is subject to the condition that
3212=J111 and/or jpr as expected. When j1T1=j2T2#Jpr only
the first term in Eq. (B.38) contributes and the reduced
matrix element is the same as that for exciting a particle-
hole pair. This is seen by comparing with Eq. (B.29) and
noting thatt =1” in Eq. (B.38) when Tp=Th which 1is the
condition for a transition between states in the same nucleus.
The second term in Eq. (B.38) differs from the first by

recoupling factors which appear simply because the role

of the active and spectator particle have been interchanged.

Transitions from 2p to 3p-lh States

A general expression for a transition from a 2p state
to a 3p-1lh state is somewhat cumbersome to write down and
tedious to derive. Further fractional percentage must be
considered when the three particles are alike and in the
same orbit. For the core polarization discussion in Appendix

D only a particular result is needed and this is all that
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will be given here. This result is for the case when the 2p
state 1is that of two like nucleons in a 32 configuration.
Eq. (B.35) gives the wave function for such a state. The
3p-1h states which are connected to the states (B.35) by a
one body operator can only have one particle in an orbit

other than j. These parﬁicuiar 3p-1h states can be written

-1} .
- /3 m1m2<3jmlm2lJVMV><Jpjhmp—mhlJcMc><JVJchMcIJBMB>
mpmh
M M
vie
J -m -
_v'P Th_+_+_+
x(-1) alagapah[C> (B.39)

which is normalized as long as jptp#jr which i1s to be assumed.
This state vanishes unless JV is even.

The necessary reduced matrix element is

LSJ T -1 LSJ
2=4 8 S_._ .- j.d <3 llo
TT JV,JA J,Jc TT ,Tth o} o}

R |13y> (B.40)
where again it is seen that the result is the same as for
exciting a particle-hole pair with the 2p state playing the
role of a spectator. Also 1=t~ when Tp=Th which hols for

fransition between states of the same nucleus.

k. Note on Phases
In all of the formulas presented in this paper the

phases of the bound state wave functions have been fixed by
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demanding that they be invariant under time reversal and
rotation of 180° about the y~axis.63 When iso-spln is
involved an extended time reversal operation is defined

and a rotation of 180° about the y—-axis in iso-space

must be included. Fixing the phases in this way is one,

but not the only way, of guaranteeing the reality of

the bound state matrix elements of many operators. This
phase convention explains the appearance for the 12 in the
definition of the single particle bound state wave functions
given in Chapter 2. Further it plays a role in the conjuga-
tion property of a matrix, e.g. Eq. (B.24).

Many workers do not use the i2 in their single particle
wave functions which is also a satisfactory phase convent:ion.
Since the wave functions of various people have been used in
obtaining the results of this paper the phase convention of
the formulas was not strictly adhered to in the calculations.
Of course none of the physical results have been effected.

It 1s generally quite easy to convert from one phase con-
vention to the other. This note serves simply as a reminder
that some of the tabulated results which appear will not be

consistent with the formulas as far as phases are concerned.

5. Multipole Coefficients

For Yukawa interactions and Gaussian interactions
closed forms exist for the multipole coefficients. These
coefficients are defined in Eq. (2.43) and Eq. (2.44) and

appear as tSTL(rO;rl) and t (rO;rl) in Eq. (2.46),

Stt°L
Eq. (2.47), and later equations. For the Yukawa interaction
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-mr

)=Ve Ol/

f( mrg,

To1
, (B.41)

fL(rO;rl)=un1VjL(imr<)h£+)(imr>)

and for the Gaussian interaction

2.2
“mUroy

f(rOl)=Ve (B'uz)

2 2 2
2 —m-(rptry) e

. - L. ,_
fL(rO,rl)-MnVi JL( 2im rorl)e

In Eq. (B.41) h£+) denotes the spherical Hankel function
and r. and r, denote the lesser and the greater of Ty and ry.
A general force requires that Eq. (2.44) be handled

numerically. A reasonably fast routine has been written for

the calculation of form factors for the case of an interaction

of general radial form.



APPENDIX C

INELASTIC ELECTRON-NUCLEUS SCATTERING

The electromagnetic interaction betweeﬁ an electron
and a nucleus can be decomposed into longiﬁudinal Coulomb,
transverse electric, and transverse magnetic multipoles.

The excitation of collective states 1n normal parity transi-
tions in the (e,e”) reaction proceeds predominately through
the Coulomb multipoles. Restricting consideration to these

cases the differential cross section, in Born Approximation,

is written55’56
a(8) = o, (8)|F(a(e))|? (c.1)
where OM(S) i1s the Mott cross section, i.e;
ou(0) = h(ze®shc)?(k2/q" (0))cos?(0/2), (c.2)

© is the scattering angle, g(6) is the magnitude of the
momentum transfer §=Ei—ﬁf, and Ei and Ef are the initial and
final momentum of the electron. The Mott cross section
describes the elastic scattering of a high energy electron
by a point charge. Most of the kinematics is containgd in

thls term. F(q(g)) is the inelastic electron scattering form

factor which contains all of the nuclear structure information.
It 1s defined by

250
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|F(a) | = JXZMEMAlzéfeiq'r<Blp(F)IA>d3r|2- (c.3)

Eq. (C.3) contains a nuclear matrix element of the

charge density operator which is written as follows

N

o(7) = & LT (1)s(E-5,) (C.4)
T

p(r) = eg §(r-r,) J (C.5)

when i-spin is or is not used, respectively. The sum on i

in Eq. (C.5) runs only over target protons while % ZTE serves
as a proton counter when i-spin is used. A little zlgebra
leads to the following expressions for Eq. (C.3) for the
cases defined in Eq. (C.4) and Eq. (C.5).

2J_+1 o
IF()|? = §3§II Ll 257h 0 (a0 3P erlar? (o.n)

LOL _  1.LOL,T
() = Lt (r)
2J_+1
2 _ "B -7 1/2,-1 LOL 2,12 .
IF(q)[ = §FXIT Ll(2ﬂ) yA fojL(qr)Fp (r)r drI (c.57%)
In these equations F;SL’T(r) and FgOL(r) are the transition

densitles defined in Eq. (2.58”) and Eq. (2.597), respectively.
The transltion density defined in Eq. (2.587) 1is reaction
dependent becausz of the Clebsch-Gordan coefficient which

contains the i-spin projection quantum numbers of the
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projectile. The subscript pp on FLOL’T

(r) in Eq. (C.47)
serves to specify the transition density for the (p,p”)
reaction, i.e. T =1 =%. In Eq. (C.57) the subscript p on
FLOL(r) defines the proton transition density, T=T’=%.

It should be pointed out that for the transitions
under consideration only the lowest allowed L-transfer
will be important. For transitions where more than one
L-transfer is likely to be important the treatment will
usually have to include the transverse mulﬁipoles as well
as the longitudinal ones. In such cases the relationship
between the (e,e”) and (p,p”) reaction is not as direct as
that seen by comparing Eq. (C. 4°) and Eq. (C.57) with
4q. (2.58") and Eq. (2.59"). For this case the inelastic
electron scattering form factor is related to the Bessel
transform of the proton transition density while the inelastic
nucleon scattering form factor is obtained by transforming
the proton and neutron transition densities with the
appropriate multipole coefficient of the two-body inter-
action.

In practice it 1s necessary to include two corrections

in Eq. (C.47) and Eq. (C.57). This is accomplished by

multiplying these relations by f2(q) where55

r(q) = exp[—qz(ag—l/a2A)/u]. S (C.6)

/
This serves to correct for the finite size o;”the proton

(first term) and for center of mass motion (second term)
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whlch is necessary because the shell modei wave functions
are referred to the center of the oscillator well. The
parameter ag fixes the size of the proton distribution
which has been taken to be Gaussian, o is the harmonic
osclllator constant, and A is the target mass. In the
calculations of this work ag=.U3F2 is used. 1In principle
center of mass corrections should be included in the
(p,p”) calculations also.. This is difficult because the
D.W.A. 1s being used and this small correction is ignored
as a matter of convenience.

A closed expression for the inelastic electron
scattering form factor can be obtained when harmonic
oscillator wave functions are used by inserting Eq. (B.7)
into Eq. (C.47) or Eq. (C.5”) and using the following
integration formula

2 5 2 1.2
[Fem% T Jv(qr)r“‘ldr=r[%(u+v)J(q/2a)v[2a“P(1+€ﬂ_le_q /he

, (c.7)
xF(%(v—u)+llv+llq2/4a2)

where I'() denotes the T'-function, F(||) is the confluent

hypergeometric function, and Jv is the ordinary Bessel

function. The confluent hypergeometric function is defined

by

o

) (X)nzn
Flrlel2) = 20 15y a1

Ap=13A =A(A+1)...(A+n-1) nz1l . (C.8)

po=1;pn=o(p+l)...(p+n—1> nx1
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and 1s a finite polynomial when A is an integer less than
or equal to zero. The spherical Bessel function and

orginary Bessel function are related by
jplar) = /qu Ir41/0(ar). (c.9)

For a definite value of L it can be shown that

2J _+1 2

lF<q>|2=ngiﬁ @ x LD 112 ()exp(-a7/20%)
N (C.10)

{z LOL(L+N+1)"2—(L+N+2)/2F(%(L—N)|L+3/2|q2/ua2)}2

where n=1/4 when i-spin is being used and n=1 when it is
not used. The correction factor fz(q) is defined in Eq.
(C.6).

The macroscopic vibrational model might also be
applied to inelastic electron scattering. The treatment
1s the same as that for inelastic nucleon scattering
which was outlined in Section 2 of Appendix B, but.deforma—
tion of the charge density is considered in place of the
deformation of the potential for nucleon scattering. The

charge density expanded to first order in the %1 M is

de(r-Rj) ) %
p(r“R)=p(r—RO)—RO——E;———— LMaLMYLM (C.11)

where p(r—RO) 1s the spherical ground state charge distri-

bution. Assuming a Woods-Saxon form
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r-R
a

p(r—Ro) = pgll+exp( 0yy-1 (5.12)

and p, 1s fixed by the condition fpd3r=Ze. In this model
the inelastic electron scattering form factor for the

excltation of a single phonon of order L is

UWB2
|F(q) 2. L °°J (qr)h(r)r2dr e
| (Ze)gl{ L |
. (C.13)
dp(r-Ro)
h(r) = Ro—ar——

A normal parity y-transition involving a collective
state will proceed predominately through a single trans-
verse electric multipole. The long wave-length approxi-
nation 1s valid for y-transitions and in this particular
Instance the inverse electromagnetic lifetime is given

by56

2
w_=8mcs— (L+1) k

Y C prors1y1172

2L+1

B(EL)

(C.14)
B(EL)=M%B[%erYLM(r)<B[p(?)|A>d3r|2

where L gives the multipolarity of the radiation, k is its
wavenumber, and B(EL) is the reduced transition probability.
Note that the latter quantity is directional in that

2JB+1 :
B(EL;JA'*JB) = —2J_A"'_—1— B(EL;JB*JA). (C.15)
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From Eq. (C.4) and Eq. (C.5) it follows that

2d_+1

B(EL) = §3§;T §|£’rL+3FLOL<r>dr|2 (C.16)
2Jd _+1

B(EL) = 2Ji+1 Tae: L+2 LOL( Ydr |2 (C.17)

for the case when i-spin is and is not used. For the
excitation of a single phonon in the macroscopic vibra-

Tional picture it follows that

B(EL;0-L)

8
(—%)2!f0 rI+on (r)ar|? (C.18)

which reduces to

B(EL;0+L) (C.19)

for the uniform charge distribution. These relations show
that electric y-transitions provide information about the
proton transition density, however, this information is
not as valuable as that obtained in inelastic electron
scattering experiments since the integrals in Eq. (C.16)
Eq. (C.17) are most sensitive to the tail of the density
whereas the Bessel transform of the transition density

samples different regions of the density as q 1s varied.



APPENDIX D
CORE POLARIZATION

l. Introduction

In the opening paragraphs of Chapter 7, several
approaches were mentioned for estimating the effect of core
polarization on the properties of the low lying states of
nuclei with a few nucleons outside of a closed shell.
There 1s one essential point in all of these methods—~-
the basic configurations needed to describe the low
lying states of these nuclei are not those of the simple
shell model IAn>, which c¢onsist of valence nucleons dis-
tributed about a filled shell, but the configurations

given by first order perturbation theory

a - Z - "'l -
|An>_[An>+Cn(EAn Ecn) <Cn|V [An>|cn> (D.1)

which contain admixtures of core excited states, [Cn>. In

Eq. (D.1) E and E are the unperturbed energies of the

A C
n n
states lAn> and [Cn>, respectively, and V° is the inter-
action coupling the valence nucleons to'the core,
In general, when there are more than one valence

nucleons, the complete wave function for a particular state

257
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in the nucleus is given by a linear combination of the

configurations (D.1), i.e.

N
IA>=n£f4ﬁlAn> (D.2)

where theu4ﬁ are obtained by diagonalizing an effective
Hamiltonian for the nucleus in the basis {]An>;n=1, N}.
Matrix elements of the effective two-body interaction

between valence nucleons are defined by

-1

: B 7 =
<Anl?éfflAn’>-<AnIV'An'>+C ECn

] <A |vile ><c |V7[A_.> (D.3)

The first term on the right in Eq. (D.3) is the usual shell

model matrix element where V is the two-body force between
valence nucleons, and the second term contains the effect of

the coupling of the valence nucleons to the core. The latter
term is similar, but not equivalent, to the energy correc-

tlon dictated by second order perturbation theory. EC is
n

an energy characteristic of the core excitation in the
state ICn>. It can only be approximately fixed in a state
independent manner.

No attempt has been made at being complete in writing
down ﬁhese formulas as they are discussed in detail in the
references cited in Chapter 7. In the language of Kuo
and Br~own,'Vef.f is the renormalized G-matrix and there is
no distinction between V and V’/ which is identified as the
"bare" G-matrix. In applying Eq. (D.3) to systems with

two valence nucleons Kuo and Brown use an average energy
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denominator for EC =E where E=-2fw for positive parity
n

states and -hw for negative parity states.

Eq. (D.1) and Eq. (D.3) can be written somewhat more
compactly as

)—l

|An>=[l+(EA —HO

PV-]|A > (D.17)
n n

P ‘ .
<An|12ff|An>=<An]{V+V gv }|An,> | (D.37)

where HO is the unperturbed Hamiltonian and

P = g lc><c | . (D.4)

n y
4

Matrix elements of one body operators between states of

the form (D.17) are given by

N N . )
= 3\ -
<Bn|T[An>—<Bn|{T+T(EA ~Hy) "PV+V’P(E; -H

)’1T}lAn>. (D.5)
n n

0
The first term in Eq. (D.5) is simply the direct action of T
on the valence nucleons while the last two terms account for
the possibility of the transition being affected through the
intermediary of the core. This is analagous to Eg. (D.3)
where the shell model matrix element contains the effect of
the valence nucleons interacting through their mutual force
and the second term allows them to interact through the
core.

The necessary formulae for the specific models used

in this work will now be develbped. The macroscopic treat-
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ment of core polarization will be considered first as the
basic results are displayed in a somewhat more revealing

form than they are in the microscopic treatment.

2. Macroscopic Treatment of Core Polarization
When the macroscopic vibrational model is used to

describe the core V” is given by

(D.6)

) ) e
Vim-gk, (r ) o Yom Ty )

where the sum on i1 runs over the valence nucleons, kv(ri)=

—RodU’(ri—RO)/dri, and U’(ri—Ro) is the shell model potential

seen by the ith valence nucleon. The non-spherical component

of the interaction nf a projectile with such a system,

Eq. (B.12), has the same form except the optical potential

appears in place of the shell model potential. The one

body operator appearing in Eq. (D.5) has two components,
T=TV+Tc (D.7)

where Tv is the valence component and TC i1s the core

component. For inelastic proton-nucleus scattering TV is

the force between the valence nucleons and the proton

projeétiles and TC is the second term in Eq. (B.12). Iso-

spin 1is not considered in the treatment and the force in

TV is taken to include the exchange interaction. For

normal parity electromagnetic transitions Tv is the

density operator of Eq. (C.5) with the sum on i running

over valence protons and Tc is the second term in Eq. (C.11).
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Introducing explicit reference to the core, the
states IAn> and IBn> in Eq. (D.5) are written IAnO> and

IBnO>, respectively, and the projection operator is

) : ) |
P~Lcn|CnL,JMJ><CnL,JMJI—LMICnLM><CnLM| (D.8)
JM c
J n

where Cn now refers only to the valence configuration
and LM designates a one phonon state. The first form of
P on the right in Eq. (D.8) contains states with good
total angular momentum while in the second form the

uncoupled representation is used. Also note that Ho takes

the form
_z o —
HO-iU (ri RO)+HC (D.9)

where Hc, the core Hamiltonian, is defined in Eq. (B.10).

The probability amplitude for the componentICnL;JMJ> in
the wave function (D.1°) is (E, -E. -Aw )_l times
An Cn L
Jcn'JAn Yo Mu 1/2
<CnL;JIV IAn>=6JJ (13(-1) ~ (Ea—) <kv>
A JA L
n n
D. 1"
x<C_[lY 1A >. (D.1")

A little algebra gives the following result for Eq. (D.5)
<B_|T|A >=<B_|T_|A_>+L [2fw [Q°-Chw. )21 L. /2C.)
n n n‘* " v''n LM L L L L

xf(r)[i_LY;M(;)]<Bn|gkv(ri)iLYLM(;i)|An>} (D.10)
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where Q=EA —EB and f(r) is either k(r) (Eq. B.12) or
n n
h(r)(Eq. C.11). This is the same as the result of Love and
Satchler.15 Further it is easy to show that the second term
on the right in Eq. (D3) becomes
AP P _z— "—l Z -L ~

<A |V = V7[A >=¢ B (th/ch)<An|ikv(ri)1 YLM(ri)]Cn>

C

n

N ~L,¥ 0
x<Cn]ikV(ri)1 YLM(ri)lAn,> (D.11)

where it must be remembers that the states [Cn> are

simply shell model states. Using closure Eq. (D.11l) becomes

<a_|v-Ey|a L>=
n E n

(D.12)

Z =—1,. | 2 {A % A .
pmB /20 )<h T gk (g e ()Y (g )Yy (2 ) (A 2>

where the self energy terms i=j have been excluded as
their effect is assumed to be incorporated into the shell
model potential.

Eq. (D.10) and Eg. (D.12) are the essential relations
for the macroscopic treatment of core.polarization. Note
that the collective model Hamiltonian has only one single
phonon state for each value of LM. As was pointed out in
Section 1 of Chapter 7, this does not have any physical
significance with respect to the actual core nucleus. The
model is used here as a vehicle for parameterizing the
core polarization effects. 1In some calculations,ﬁwL and

Cvaill characterize a physical core state and in others



263

they define an "effective" core phonon. In discussing the
macroscoplc vibrational model in Appendix B it was pointed
out that only vibrations of quadrupole order or higher
fell within the framework of the model. This restriction
is ignored here with the note that generalizations required
to bring in other vibrations may not preserve the form of
kv, k, and nb5 which have been given previously.

The inelastic proton-nucleus scattering form factor

corresponding to the transition matrix element (D.10) is

©o

%LSJ( y=n LSJ(r) ~8g00. k() L )) fo (r ) FLOL (r")r24r”
GﬁwL) 1.1 2.2 :13)
VT 2T o e
Y Q -(/lﬁwL) L L

where the superscript n indicates that only a transition
between basic shell model configurations is being consid-
ered. The sum on 11” 1is necessary in general since the
form factor may have neutron and proton components even
when the initial and final states are simple shell model
configurations. For example, think of a transition between
states formed from a proton and a neutron in the same
orbital. The fact that the subscript tt” does not appear
on kv(r’) amounts to neglecting any differences between
neutron and proton wells for the.same orbital. From Eq.

(B.6) it follows that Egq. (D.13) can be written

PLST (1 Z‘MLSJ( ){Iz z

F (r) S <k >k(r)} (D.14)

SO L
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where

ISTT,L(r)—{ w%hT,L(r,r )un,g,(r )ung(r Yr cdr (D.15)
as in Eq. (2.477) and

<k > fokv(r Ju - -(rMu  (r7)r “ar”. (D.16)

In Eq. (D.14) the contribution due to core polarization
appears as a modification of the radial form factor. This
modification is scaled by the factor 6

272
stTT L

L<kv> which has sign

opposite to that of I -(r) at large r. Since k(r) is posi-
tive it leads to enhancement of the transition. Further in

this model the modification only appears in S=0 amplitﬁdes.
veforming the spin-orbit term in the optical potential would
bring in the possibility of core polarization contributions

in "spin-flip"amplitudes. Note that the form factor is

%E{(n) which is the geometrical factor

proportional to M
characteristic of the transition from the shell model state
IAn> to the state an>. As the selection rules for the
transition are contained in this factor, it is clear that
they have not been effected by these considerations.

For normal parity eléctromagnétic transitions,

inelastic electron-nucleus scattering, or y-transitions,
F;OL (r) in Eq. (C.57) or Eq. (C.17) becomes

FLOL(r)=T§,MLOI:(n){5T

. 1
b o ,2,(r)un2(r) e6L<kv>h(r)}.

1 1%n
2 2
(D.17)
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For the (e,e”) reaction the correction factor (C.6) would
only be applied to the first term on the right in Eq. (D.17).
For a uniform charge distribution the expression for B(EL),

Eq. (0117), is

2J_+1 37
BT 1 2 LOL c ;Lyq2.2
BEL) =57 5 [,5-M 2(n) (<rk>s_ rrooy 10T Ry 1 e
7 2 ,
(D.18)
where the subscript ¢ denotes core and
L. e L 2
<r >—f0r un,z,(r)ung(r)r dr. . (D.19)

These relations are completely analagous to those for the

(p,p”) reaction and it is seen that there is a core contribution
even when the valence nucleons are neutrons. The transitions
are enhanced as 8L<kv> has the same sign as <r
u Z(P) at large r and h(r) is negative.

> or un,z,(r)
Results D.(14) and D.(17) can be obtained by restrict-

ing consideration entirely to the valence configurations and

assuming the interaction between the proton projegtile and

the 1th valence nucleon to have the form

V(r—r ):V(r—r ) - k(r)k (r )Z

oL LM(P)YLM(;i) (D.20)

or that the density operator for the ith valence nucleon is

(D.21)

p(T)=e, 6(F-F,)-h(r)k (ri)EMeLY;M(r)YLM(;i)

with ei=0 or 1 as the ith valence nucleon is a neutron or a

proton, respectively. Further Eq. (D.18) can be written
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2T +1
"B " 1. ) ,LOL L 2

where €rc” is the effective charge defined by

3 L <kv>
e _.=ef + Z eR 9., : (D.23)
TT TT,,% I “c~ % <rL> L

=

The above relations clearly display the renormalization

of transition operators due to core polarization. The
renormalization is dependent on the valence configuration.
This dependence appears in kv or <kv>, <rL>, and in the

BL. From Eq. (D.3) and Eq. (D.12) it also follows that the

renormalized force between the ith énd Jjth valence nucleons

is
Wéff(ii—Ej)=V(Fi—PJ)+kv(ri)kv(rj)gME_lcﬁwL/CL)YEM(;i)YLM(;j)
(D.24)

which has the same form as Eq. (D.20) which gives the force
between an unbound proton and a valence nucleon.

So far the question of configuration mixing has been
ignored. This effect is contained in Eq. (D.2) and can be
included by multiplying the right hand side of Eq. (D.1l)
and Eq. (D.17) byj4ﬁf¥§ and summing over n. There is some
difficulty in using this approach when there is a great deal
of configuration mixing as ambiguities may result in speci-
fying the state dependent parameters which were mentioned

above.
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When considering the coupling of the valence nucleons

to a physical state of the core the 6. is well defined as

L
CL andaﬁwL can be determined from the transition in the

core nucleus whiéh starts at the ground state and ends at

the state in question. The (p,p”) reaction, the (e, e”)
reaction, or y-transitions can be used for this determination.

15,16

Love and Satchler assume 0. characterizes an effective

L

core phonon with th>>Q so that 6L=l/CL. They consider
transitions in the (p,p”) reaction and OL is fixed from an
analysls of corresponding y-transitions. Another method
which is used in this work is to determine the eL from the
spectrum,

For example, consider a nucleus with two 1like valence
nucleons and assume that these nucleons are restricted to
the (§)° configuration. The low lying states of this

+ .o
,ees(2j-1) and their energies

nucleus will have J=O+, 2
will be related to the matrix elements <(j)2JI7;ff](j)2J>.

From Eq. (D.24) it follows that

<2V, el (1)%552<() 23| V] () 205 <k > 2L 0 1) (D.25)

L

M=(-1)773520(3555,00)<5 ] 1Y, | 1952 (D.26)

where E—lbﬁwL/CL)=—l/CL=—6L~consistent with the assumption
discussed above in regard to the transition matrix elements.
Examination of the behavior with L and J of the Racah coef-
ficient in Eq. (D.26) shows that the second term in Eq.

(D.25) will give a strong attractive contribution to the
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J=0 matrix element and will give a repulsive contribution

to matrix elements for higher J provided the 6. fall off

L
sufficiently slowly with increasing L. This is the effect

20-25

required to reproduce the observed spectrum which in

turn can be used to fix the GL's.

Note that in computing the renormalization of the
bound state matrix elements by this prescription that no
contributions from abnormal parity states of the core are
included. This is a direct result of the form assumed for
the valence core interaction, Eq. (D.6). In the microscopic

calculations of XKuo and Br'ownzo_25

these contributions are
shown to be small and repulsive. Nevertheless, the values
of GL corresponding to normal parity core excitations deler-
mined from the spectrum will be somewhat too small because
repulsive terms are neglected. In this work this difficulty

is circumvented by determining the 6. from the decomposition

L
of the G 1h contributions to the J=0 matrix elements

3p-
calculated by Kuo and Brownzo'zs

Deficiencies in their
matrix elements should show up as corresponding deficiencies
in the results of this work.

This procedure can be extended to more complicated
cases. The essential criterion for its applicabllity is
that there are no more-GL‘s‘to determine than there are
matrix elements defined by the spectrum. In a more general
case the SL'S which are determined may show some configuration
dependence which 1is, of course, expected. The inverse of
this process has been used to renormalize bound state matrix

206 94

elements in the Pb calculations by True and Ford.
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3. Milcroscopic Treatment of Core Polarization

In the completely microscopic calculations the
quantities to be determined are the proton and neutron
transition densities; therefore, interest isbin the reduced
matrix elements of the operator defined in Eq. (B.21) and
Eq. (B.217). |

One Nucleon Outside of a Closed Shell

For a nucleus with one nucleon outside of closed shell
the unperturbed valence configurations are the single particle
states defined in Section 3 of Appendix B. The necessary

reduced matrix element corresponding to the first term in

Eq. (D.5) is given by Eq. (B.22) and will be called R%iq(D)

where D refers to direct. The reduced matrix element corres-

ponding to second and third term in Eq. (D.5) will be called
LSJ

RTT,(C) where C refers to core,.
In calculating R%E{(C), V” is the "bare" G-matrix or

an approximatlion to it such as the K-K force and P projects

onto 2p~1lh states.

- - -1
P=P ) p1n= (14855 )

E . - . -~ -~ I bl . P -~
J°M~
M (D.27)

J
J

. . T_A’_Z . o - P B
1(33,)3,3,39°M >—mmp <JmemplJVMv><JVJhMV,mh|J M”>

'j' -
x(-1)"P mha*a;ah[c> (D.28)
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For convenience reference tovthé quantum numbers_T,Tp, and
Th has been suppressed. In Eq. (D.27) only distinct pairs
(ij) are included in the sum, i.e. (1,2) is not different

from (2,1) and only even values of JV are allowed when J=

jp. It is not hard to show that
: _pl 2
Pop-10=F2p-1n*F2p-1n (D.29)
where P%p-lh includes only the terms in Eq. (D.27) with
j=j _ and
J Jp n
p2 =, ) c1IIT )T 3 IMNT><i (3T )T 30 M7 | (D.30)
2p-1lh ijh p‘h’"c? p*h’"¢c?
JCJ'M"

with the prime indicating that terms with j=jp are excluded.

The state vectors appearing in Eq. (D.30) are defined
in Eq. (B.37). Contributions from ng_
the calculations of this work. In the work reported in

1n are excluded in

Ref. 20-25 and Ref. 88 a quasi-boson assumption is made and
intermediate states with a valence nucleon and like core
nucleon in the same orbital are allowed. This assumption

amounts tO»including‘ferms with j=Jp in Eq. (D.30) instead

1
2p-1h’

are only two extra-core nucleons in the intermediate states

of' the manner presdribed by P In this case there
and it is not difficultvto carry out the complete calculation
while maintaining consistency with the Pauli principle;

‘however,ithis is not true when the intermediate states have
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more than two extra-core nucleons. In any event the neglected
contributions are 1likely to give only a small percentage of
the total effect.

In order to illustrate the derivation of the formulas
used in the microscopic calculations note that the third

term in Eq. (D.5) takes the form

2 -1,LSJ

P "1 — . '3
<Bn|VvP(EBn_HO) TlAn>—<JlmlIVP2p—1h(E31_HO) OTT’|J2m2>
) (D.31)
) -1_, o N R LSJ
= JpjhE(pm < 1V13,003,)09337><0,033,0953ymy [0 13 5mp>
Tp’lh

where E(ph)=Ep-Eh+Ej2:Ep-Eh and o and Ty have been intro-
troduced explicitly. In writing Eq. (D.31) use is made cf
Eq. (B.38) which shows that j must equal j,or jp and Jc
must equal J. Since the sum of jjp in Eq. (D.30) includes
distinct pairs and j#jp one 1s free to choose j=j2 and

sum over jp#Jz. Further, the matrix element of V vanishes
unless jlml=J’M’. In the occupation number representation
V is written

V ) <0L8|V|Y(S>:=1+a:13.y<'5.(S . (D.32)

=1
2 oByS B

where <aB|V|yé> is an unsymmetrized two-body matrix element.
Using Eq. (D.32) it can be shown that bound state matrix

element in Eq. (D.31) is given by
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+J7 A pnn_

. 5 43
<3y 1V13,03,3, 0353 =k -7 P 727 54255 {J Jpjhk‘vulah,jgjp,J

J73,3;

(D.33)
where 'L (31,3039 )=D(1+8; 5 )(1+sy Ip )32
1'n 2

xV(J 3d “T=1)

(Tl=rh;12=1p)
(D.34)

1 s T eme s s s s L Teme .
XE{V(Jth,J2Jp:J T—0)+V(Jth,J2Jp,J T=1)} (Tl#rh,r2#rp)

with V(jljh,j2jp;J’T) designating a two-body matrix element

between antisymmetrized two-particle states coupled to total

angular momentum J”~ and iso-spin T. In deriving this result
using Eq. (D.32) contractions leading to one-body potential
terms in Eq. (D.33) are neglected. For the (p,p”) reaction

and electromagnetic transition t.,=1, and Tp=Th. When the

1 2

valence nucleon and excited core nucleon are of the same type

only the T=1 part of the particle-core interaction is

effective, whereas both the T=0 and T=1 parts of this inter-

actlon are effective when these nucleons are different. The
product of the matrix elemen: (D.33) and —E(ph)—l is the
probability amplitude for the (ph) component in the final

state wave function.

Combining Eq. (D.33) and £g. {(B.38) gives the following

expression for the reduced matrix element corresponding to

Eq. (D.31)

LSJ ) I R : ;
A(Cy)=-, pJnéTT"T Tvu(gu, -1, J Jpdy

pn

J”

-
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X%J Ip3n (V1315353539 0<a, 1 1M 15, 5. (D.35)
CAPETP

A similar expression can be obtailned for the reduced matrix
element corresponding to the second term in Eq. (D.5). This
is called R%EQ(Cl) and differs from Eq. (D.35) by a phase

and the interchange of j1 and j2. The sum of the two contri-

butions from core polarization to the transition density is

P

LS, y_pLSJ LSJ ) T . LSJ
RTT’(C)_RTT'(Cl)+RTT'(CZ)_—jpjh E(ph) A(J1j2phJ)<Jj!'O [|jp>
TpTh
T 43 431 ann A
) _ ptd1 ror ~ g

x[ Jpth'}1f<5pjl,jh52;J‘>+<—1>S+J I3 WL 553p3139 )]
353137 13277

-

where the double prime on the sum over jpjh Indicates that

the first term in [] is not included when jprp=jlrl

second term in [] is omitted when Jpr=J2T2.

It was pointed out previously that there is no breaking

and the

of the valence transition selection rules when the macro-
scoplc treatment of core polarization is used. Consider the
transition where the valence nucleon goes from an 31/2 orbit

to the d orbit. Without core polarization this transition

5/2
can only go with L-transfer equal to 2. From Eq. (D.36) it

can be seen that L=4 is also allowed, i.e. assume |C> con-

tains a filled p-shell and consider a f 1 particle-

7/2"P3/2
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hole pailr which gives a contribution for L;u. This point
is probably academic as the L=4 contribution to the transi-
tion is not 1likely to be as important as that from L=2,

but 1t does indicate that core polarization can effect the

valence transition selection rules.

Two Nucleons Outside of a Closed Shell

For two nucleons outside of a closed shell the only
transitions considered are between states where the valence
conflgurations are the allowed couplings of two like
nucleons in the same orbit. The wave functions for these

configurations were defined in Eq. (B.35) and Eq. (B.36)

gives RLSJ(D) For this case

P=P%p_lh ngh[(JJ)J (Jpjh)JC]J‘M’>4ij)Jv(jpjh)Jc]J’M'l(D.37).
jvjc
J M-

where reference to T,Tp, and T is again suppressed and the
sum excludes terms with j=jp and odd values of JV. The
state vectors appearing in the projection operator were

defined in Eq. (B.39). Using the notation of the last section

R (¢, )=- I meom e “IIVIT(39)9,(3,3, )37,
Tipdn
TpTh

LSJI

x<[(J9)7,(3.3,)9295 11022511 ()27 > (D.38)

where Eq. (B.40) has been used along with the properties

of V to eliminate some of the summation.
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The matrix element of V appearing in Eq. (D.38) is

(D2IIVILET,(3,5,)3195>=

J+J-j —J N A - r
2b.(-1) hoog,337° §J ij‘(?j §(V,3,3,9597).(D.39)
L3 71078 a

Multiplying result (D.39) by -E(ph)—l gives the probability
amplitude for the (ph) component in the final state wave
function. Inserting the result of Eq. (B.40) and Eq. (D.39)

into Eq. (D.38) leads to

_ J+J—j —J‘A ~ ~
LS{(C )--2JzJ 6 - - - E(ph)71(-1) h VJAJ'sz
p“h >’h'p '
TpTh
2
SJ JpJ \Jd 3 ]
s . . ' .‘ - . LSJ .
P J(JhJ,JpJSJ )<Jpl!o [|Jh>. (D.40)

Combining this result with the corresponding result for

LS‘Z(C ) gives the following result.

RESI(c)= ij E(ph) " A(5phI) <y, || o LSJIlJp>
p h
p h (D.41)
TH4I=3 =3 pn n o
A(gpha)=2d.(-1)" " P72 Ipdplit DSl JpJf?ifj i S
Jdd
Wpd J B°A

XY (335358397



278

P(r3d,4, 37L83)=(-1) 1 3 ubS (J,37)u_(r)u, (r)
3J1d0dpdp L8I)=(~ Jq T,y ad g (P uy (r

-

x - (-1055005 5,5 5, 03757, 1850) (D7)

and

L vy and, 91t 1a7

S . . IR .
XLZS’(—l) D(JlJzJth,J,L S7,L3;Q) (D.48)
where

A ~ ] hj P rd
i 4 s s T.rcac ra.aven—3/2020-2 PJqRI5 1oy

LSJ
xM (3.3 )™
Tth h”p

L°S"J

s . LSJ
RMC PR (D.49)

TZTI(JEJI)

With these relations Eq. (D.36) can be written

LSJ vy yLSJ _— -1
R 7-(C) MT2Tl(j2Jl)jpjthT‘,TpThE(ph) up(r)uh(r)
Tp'l.‘h
S+S~ . . o .

The sum on S can be removed as only the term S°=S gives a

nonvanishing contribution. This glives

LSJ LSJ . , -1
R--.(C)=-M (J~d-)2.6. 6 . E(ph) “u_(r)u_(r)
TT T5Tq 2¥1 Jth T ,TpTh P h
TpTh
Xf-D(J 3,059y 593L75,18;Q). (D.51)
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A similar result is obtained for the RE52(c) obtained by

using Eq. (D.42) in Eq. (D.41)., This is

JOJ , oy 2, JOJ ) -1
RTT’(C)—_S?MTT (JJ)Z jpthTT;TpT E(ph) up(r)uh(r)
‘l‘p'[h
xD(Jjjpjh,J;JO,JO;Q). (D.52)

There is no sum on L” in Eq. (D.52) as the transition being
considered here is of normal parity and has only one allowed
value of J. Similarly in Eq. (D.51) only L~°=J contributes
to the triad (LSJ)=(J0J).

Eq. (D.51) and Eg. (D.52) have the form needed to see
the effect of core polarization, as treated in this micro-
scopic picture, on transitions. In both equations the
negative of the geometrical factor for the valence transition
appears as an overall multiplicative factor. This does not
mean that violations of the valence transition selection rules
are not possible since this geometrical factor also appears
in the denominator of D. Only triads allowed in the valence
transitions will be considered here.

To see the phase it is only necessary to consider
particle-hole pairs whose radial wave functions are similar

to those of the active valence nucleon. The largest values

pJ,hd,
of IS’L’Q will occur in these instances and this radial
integral will have the sign of the S'Q component of the two

body force. Inspection of Eq. (D.49) shows that
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radial form or that "equivalent" components with the same

radial form can be defined. The 1F range "equivalent" impulse

approximation pseudo-potential given in Chapter 3 can be

used in this context. The local approximation to the exchange

component of the D.W.A. transition amplitude is an implicit

uncertainty in the second assumption.

The total proton transition density can be written

Lig (s 1 -
Fp(T)=5{F (T)+F (T) H5{F_(T)-F, (T)} (D.56)

where Fn(T) has been introduced so that Fp(T) is expressed
in terms of iso-scalar and iso-vector components. An iso-
Scalar transition is defined by the condition Fp(T)=Fn(T).
In terms of the iso-scalar and iso-vector effective charges,

F_(T)xF _(T)
=P N (D.57)
{g Fp<D)_En(D>

e

Eq. (D. 56) becomes

1 1 _
Fp(T)-EeO{Fp(D)+Fn(D)}+—2—el{Fp(D) Fn(D)}
=epr(D)+enFn(D) (D.58)
where the proton and neutron effective charges are

21
?P_g(eoiel) | (D.59)
n .

Correspondingly,




