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ABSTRACT 

BEAM PHYSICS DEVELOPMENTS FOR THE RARE ISOTOPE ACCELERATOR  

By 

Mauricio Portillo 

 In support of a proposal for a Rare Isotope Accelerator facility, this thesis 

provides a preliminary analysis of a number of related subsystems.  An overview 

of the requirements for the driver accelerator, production stations, and beam puri-

fication systems is presented.  Some minor developments in the theory of beam 

transport and acceleration are presented in order to discuss a technique for isobar 

separation and multiple charge state selection.  Changes to the COSY INFINITY 

code for carrying out map-based calculations are described.  The results obtained 

by simulation are presented in detail for an isobar separator and a multiple charge 

state selection system.  The concept of beam stripping is discussed in order to 

characterize the components of the multiple charge state beams.  The production 

of rare isotopes via spallation of heavy targets using fast protons is discussed.  

Results obtained from experiments at an ISOL facility with direct and two-step 

target geometries are presented.  Implications of the results to the design of future 

targets for rare isotope production are included.  Some developments in beam 

diagnostic techniques are discussed along with the experimental results obtained 

from them. 
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Chapter 1 

INTRODUCTION 

1.1 The need for beams of rare isotopes 

 The concept of constructing a facility for carrying out advanced studies using 

energetic beams of rare isotopes has been of interest for at least a decade [ISL92].  

Interest has largely been aimed at developing a method that would provide beams of 

short-lived nuclei having sufficient energy to break the Coulomb barrier.  The beams 

could be directed at thin targets to induce Coulomb excitation (testing collective 

properties) and transfer reactions (testing single-particle aspects) of nuclei that have 

otherwise been too difficult to handle because of their short half-lives.  

 An ideal secondary beam would be one having a normalized transverse emittance 

≤0.3 mm-mr and a longitudinal emittance of ≤5 keV/u-ns at energies ranging from 0.1 to 

10 MeV/u.  These types of conditions make it possible to obtain very short pulses of 

beam with low transverse momentum spread to allow for adequate time-of-flight and 

rigidity resolutions in nuclear studies.  Current heavy ion accelerators are capable of 

providing these types of beams by extracting the rare isotopes as ions from a standing 

source.  In recent years, however, there have been a number of facilities that have 

extended the method to beams of rare isotopes [Nolen02a].  For the most part, such 

efforts have been rather limited to a limited number of relatively light rare isotopes.  

There is still much room left for improvement in terms of the yield, number of available 

species, and efficiency of transport and acceleration. 
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 Another technique that has been used to provide rare isotope beams is the in-flight 

method [Sherrill92].  It requires that very fast nuclei passing through a thin target get 

broken up by nuclear interactions at grazing incidence with light target nuclei.  The 

products essentially keep going with the same velocity as the incoming projectile and are 

then directed to a secondary target.  This requires that the secondary beam be purified 

from the primary beam and other unwanted products by way of rigidity selection through 

a fragment separator.  One major advantage is that the secondary beam does not need any 

further acceleration as it is delivered to the second target.  The main drawback, however, 

is that the secondary beam has a lot of transverse and longitudinal momentum spread 

from the reaction at the primary target.  To make the process efficient the fragment 

separator must have a very large momentum acceptance and extra characterization of the 

projectile before it reacts with the secondary target.  

 In recent years there have been on-going efforts to slow down the secondary beams 

with a degrader after rigidity selection.  The degrader is made of solid material and 

should remove enough momentum from the beam such that it can later be stopped with a 

gas filled trap [Savard99].  The trap, sometimes referred to as a gas (filled) catcher, 

actually transports the ions with a DC field across a region that has confining RFQ fields.  

During this transport process, the interacting with the gas cools them as ions until very 

little momentum spread is left in the products.  To keep the products ionized, the gas 

should be filled with a very pure noble gas, such as helium.  The cooled products are then 

extracted at the other end of the trap for use in experiments.   

 Such a process is to be extended to providing cooled beams of rare isotopes for 

subsequent acceleration in the RIA post accelerator.  It is a very attractive approach since 
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the release times are expected to be down to as low as a few milliseconds and the process 

is largely independent of the chemical properties of the products [Savard02].  Ion species 

of refractory elements, such as tungsten and rhenium, should become accessible through 

this technique. 

 The RIA facility will be based on the idea that the same driver accelerator that is used 

to provide beams for fragmentation can also be used to produce rare isotopes from within 

a stationary target [Savard01].  For the in-flight technique the beams usually consist of 

the heaviest projectiles (Zp≥18) to collide with targets of the lightest possible species 

(Zt≤18).  The target thicknesses must be relatively thin, such that nuclei traversing the 

medium without reacting (primary beam) will loose smaller percentage of momentum 

than the reaction products.  For incident energies of 400 – 500 MeV/u the range of 

thickness is expected to lie in the range of 1-10 g/cm2 [Jiang02].  The reactions that yield 

most of the products can be grouped in a number of categories and are as follows: 

o Fission reactions occur when the collision induces enough excitation energy on 

the projectile nucleus to cause it to de-excite by spontaneous fission.  Particles as 

light as a proton or deuteron at the target can induce these type of reactions. 

o Spallation occurs when a very direct impact between target and projectile occurs.  

The high level of excitation can produce a wide array of products that are usually 

not accessible through fission. 

o Fragmentation reaction occurs when two nuclei collides at low impact parameter 

with the target nucleus.  One usually describes it as having the target nucleus 

scrape off nuclear matter from the projectile as it passes. 
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The fragmentation process may be regarded as lying between the two extremes, 

spallation and fission.  At the extremes it is possible to distinguish the spallation and 

fission processes through their respective mass distribution of the products.  This point is 

explained in more detail in Chapter 4. The important thing to keep in mind is that 

fragmentation reactions are orchestrated through the combination of target and projectile 

used in the reaction to obtain favorable kinematics from the reaction. 

 A critical component of the RIA facility will be the fragment separator.  The 

momentum acceptance of the device must be about ±9% to deliver products at the gas 

catcher and about ±3% to deliver the products to secondary targets at the focal plane.  

The optics requires that a beam, such as of uranium, be delivered at a 1 mm diameter to 

the thin target.  The power density in the foil is expected to get as high as 1 MW/cm3 and 

has prompted the special development of windowless liquid lithium targets [Nolen02b]. 

 Other techniques that are incorporated into the RIA plan will require production at 

thick targets.  This can be though of as a kinematically reversed situation of the in-flight 

method since the beam will consist of light targets (Zp≤18) impinging on heavier ones 

(Zt≥52).  The typical thickness of the target is expected to lie between 10 to 100 g/cm2, 

such that the products are generated within the target matrix.  The energy of the primary 

beam per nucleon is usually higher since they are lighter species.  The expected energies 

lie between 500 to 1000 MeV/u.  Most of the energy of the primary beam will be dumped 

in the material, except for the last ~50 MeV/u, which produce a very small fraction of the 

entire yield.  The large fraction of energy that does react can produce a large flux of 

neutrons from spallation reactions.  A significant fraction of the neutrons have energies in 

the few MeV range and will cause fission reactions on heavy nuclei, such as 238U.  
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Although fragmentation reactions occur, they are generally not mentioned in applications 

with heavy targets since the products do not contribute beneficially as much as they for 

do in the in-flight method. 

 The thick target must be kept at high temperatures (~2000ºC) in order to enhance the 

diffusion of the products out of the material.  Target materials used must be refractory 

and able to release products rapidly to minimize losses by decay.  The exit port is 

strategically positioned at the container to minimize the path length to the ionization and 

extraction region.  The diagram in Fig. 1.1 depicts the transport process from the target 

matrix to the extraction region. 

 Notice that the figure indicates that the ionized products are extracted to a mass 

separator.  The process of purifying the products right after production has come to be 

referred to as Isotope Separation On-Line, since the production and mass separation 

occur continuously.  The ions from the gas catcher are also expected to be purified with 

the mass separator system.  In that case, however, there will be no need for an ionizer 

since the products remain ionized in the gas.  Both processes are expected to be 

complements of each other in the ISOL arrangement of the RIA facility as shown by the 

diagram in Fig. 1.2.  Both of these systems are to be able to provide beams of relatively 

low momentum spread.  Notice that the diagram indicates that the products from the in-

flight process are to be diverted to a direct experiment.  This pertains to the secondary 

target scenario where products of high momentum can react with a secondary target, as 

mentioned earlier.  Thus there are three techniques that are to become available with 

beams from the RIA driver accelerator, which should give it a wide range of flexibility 

for experiments with rare isotopes. 
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Figure 1.1 Diagram illustrating the production and transfer 
method in the on-line mass separation technique. 

 Here, we shall only directly address the ISOL method through the production in thick 

targets; hence, the ISOL method will always refer to the thick target scheme, unless 

otherwise specified.   

1.2 Technological aspect of the RIA driver accelerator 

 The productions that are necessary to sustain the RIA facility are at a level that 

demands a high level of performance from the driver accelerator.  The present design of 

the driver requires that there be a total of 1.3 GV of effective RF acceleration available 

for acceleration.   

 The beam power necessary is expected to be ~100 kW for the in-flight targets (high 

Zp) and ~400 kW to the thick targets (low Zp).  The accelerator is designed to be a linac 
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Figure 1.2 Scheme for the Rare Isotope Accelerator system 
at Argonne. The regions labeled with Exp represent points at 
which certain experiments can make use of the products. 

that relies almost exclusively on superconducting cavity structures [Shepard99].  To 

maximize the energy of the ions over the entire spectrum of elements (1≤Zp≤92) all 

cavities must be independently phased.  In the case of protons the expected final energy is 

about 800 MeV at an output of 400 kW, where the limiting factor is expected to be the 

amount of available RF power.  At the other end of the spectrum, it is expected that up to 

~100 kW of 400 MeV/u uranium ions can be delivered to in-flight targets.  The limiting 

factor here is the efficiency of charge stripping of uranium ions at the source and at least 

two stripper foils.  This problem has been addressed by implementing multiple charge 

state acceleration as described in Chapter 3. 
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1.3 Overview of contents 

 This thesis addresses some of the concepts needed for the RIA facility.  The pictorial 

representation of the concepts in Fig. 1.2 should be seen as a macroscopic view of only a 

handful of many challenging aspects of the facility.  There are a number of ways to 

approach the problem and studies continue to find which solutions are viable in terms of 

cost and technological requirements.  As seen by the diagram, a large part of the effort 

requires beam development; hence, a lot of the topics covered will deal with beams.  

Some knowledge related to topics in numerical simulation by ray tracing and mapping 

are helpful to the reader, and there are a variety of books and other manuscripts that may 

be used for reference.  Inevitably, there are some details that need some closer attention; 

therefore, a brief introduction related to beam theory is provided in the following sections 

of this chapter.  It serves as a reference for much of the notation and terminology that is 

to be used for the remainder of this dissertation. 

 The chapter that follows will begin by demonstrating that an implementation to the 

COSY INFINITY code system can allow for the simulation of beams that are accelerated 

by electrostatic potentials.  Under such conditions the energy of all the particles with 

equivalent charge may change by the same amount, and the effects on the transverse 

phase space must be simulated.  It will be shown that it is possible to use higher order 

maps to design a mass separator for the purification at the isobar mass level.  The 

separator is necessary for mass purification at the post-accelerator. 

 A chapter will also be devoted to the simulation of time-varying fields on beams with 

realistic radio frequency bunch structure.  The COSY INFINITY code system has been 

modified to permit simulation of radio frequency cavities using higher order maps.  A 

method of transport maps will be applied by applying some further modifications to the 
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COSY INFINITY code system.  It will be demonstrated that a bunched beam of multiple 

charge states can be transported through a system of magnets and RF devices in order to 

match the beam between sections of the driver linac. 

 The fourth chapter will be devoted to topics related to the production and release of 

rare isotopes using a conceptual target set up at an ISOL facility.  Although, the focus 

was initially intended for comparing the production of neutron rich isotopes by using 

either fast neutrons or relativistic protons, it is important to shed light on the aspects of 

release time, ionization efficiency, and detection.  It will be shown that all such topics 

play a vital role of optimizing ISOL targets for facilities such as RIA. 

 The remaining chapters will be devoted reporting results that were found in these 

studies that are relevant to the RIA facility.  A number of beam tests from a surface 

ionization source were carried out at a mass separator set up constructed at the 

Dynamitron facility at Argonne National Laboratory.  We report the emittance 

measurements and production rates that were observed and make recommendations for 

future studies.  Some focus will also be shed on instrumentation that has been designed 

for RIA applications, and has either been constructed and tested for the RIA facility or 

are still under development.  One of these instruments is used to image low intensity 

beams using multichannel-plate technology. 

1.4 Beam transport concepts and notation 

 In the study of beam transport, or beam optics, it is necessary to develop an approach 

for determining the orbit of charged particles in the presence of electromagnetic fields.  It 

is necessary to derive the equations of motion that take into account any interaction that 

will have a significant effect on the trajectory motion.  There are a number of approaches 
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that may be adopted in deriving the equations of motion under electromagnetic 

interactions.  For example, the Lagrangian or Hamiltonian techniques may offer a more 

direct window into the conservation laws by knowledge of the electromagnetic potential.  

There is also the more common approach in which the concept of a force is applied in 

deriving the equations of motion.  The Lorentz equation in vector form states that the 

electromagnetic force on a charged particle is given by 

     ,     (1.1) ( BEF ×+= vqe )

where q is the charge number and sign, while e is the unit of charge in SI units.  The 

particle moves with velocity, v, in the rest frame of a magnetic field, B, and electric field 

E.  Choosing a Cartesian frame of reference the form of the equations of motion can be 

expressed in relativistic from as follows: 

   FP =
dt
d ,  

2)/(1
/

mcP
m

dt
d

+
== PR v    (1.2) 

Here, m is the rest mass of the particle and P is its momentum.  Depending on the form of 

the electric and magnetic fields, much effort may be devoted to finding analytical forms 

of the solution or writing algorithms to solve the differential equations numerically, or a 

combination of both.  On the other hand, a large part of the effort may also go into 

determining the form of the electric and magnetic fields.  One needs to consider the 

amount of accuracy that is necessary for the application and detail about the geometry of 

the elements that induce the fields.  In some applications it is even necessary to account 

for the self-interaction of particles in the beam, which is sometimes referred to as the 

space charge effect.  Evaluating the field distribution becomes even more complex when 

considering the effects of time-varying fields.  The effect of time-varying fields is left to 
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the Chapter 3, and here we only consider beams transported through electrostatic and 

magnetostatic elements. 

1.4.1 The reference particle 

 Most structures used for optical elements in beam optics have very well characterized 

properties and are designed with the intent of having some type of symmetry about the 

motion of an ideal particle trajectory.  This ideal particle, commonly referred to as the 

reference particle, follows a particular trajectory path that is known from the properties of 

the fields.  For example, a homogeneous dipole is designed such that the reference 

particle enters at a certain point, follows a circular path, and exits at a predestined 

location. 

 In actuality, beams consist of particles that have trajectories close to those of the 

reference particle but deviate within some proximity.  Sources of charged particles are 

designed to produce particles with properties very close to those of the reference particle, 

but are limited to producing ensembles of particles whose coordinates are those of the 

ideal reference particle only on the average.  The deviation from this average is usually 

quantified as the emittance in phase space, which in effect specifies the amount of 

volume occupied by the ensemble of particles.  The design of any beam transport system 

should be tailored such that some specified acceptance is obtained and that the extent of 

any deleterious effects on the emittance by the applied fields is kept to a minimum.  Since 

the cost of an optical system tends to go up with the amount of acceptance, it is 

advantageous to select a particle source that produces beams of minimum emittance at 

the amount of particle flux that is necessary.  More on the beam phase space will be 

discussed later. 
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 The path and instantaneous momentum of the reference particle must be determined 

for any beam optics problem.  For most optical elements the path is well known.  

Otherwise, the path needs to be determined by solving equations (1.1) and (1.2) 

analytically or by numerical ray tracing methods within a stationary frame of reference. 

1.4.2 Equations of motion in relative particle coordinates 

 In a stationary reference frame, the location of any arbitrary particle in the beam can 

be specified in Cartesian coordinates as 

     ( )zyx pZpYpX ,,,,,=R ,    (1.3) 

in which each variable is a function of time.  If the position of the reference particle, 

     ( )zyx pZpYpX 000000 ,,,,,=0R ,   (1.4) 

 is known at any time, then we can define a relative coordinate system in which the 

position of an arbitrary particle may be expressed by the position vector 

           (1.5) 0RRr −=

In this moving frame of reference, the direction of the z-axis is parallel to the momentum 

vector of the reference particle.  These set of relative coordinates form a set of canonical 

conjugate pairs.  By canonical transformations a more convenient set of coordinates can 

be derived that can be used to describe the motion of beam particles.  The following set 

of canonically conjugate pairs is convenient to use in describing ensembles of particles 

[Berz90a]: 

      )

)

( 01 XXxr −== 002 /)( pppar xx −==

       ( 03 YYyr −== 004 /)( pppbr yy −==

  005 )( µttlr −−==    006 /)( KKKr K −== δ   (1.6) 
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Notice that the momentum variables in the transverse plane are now divided by the 

magnitude of the momentum of the reference particle, p0, to obtain the variables a and b 

in units of radians.  The relative position variables x and y have units of meters.  The 

variable l is proportional to the difference in the time-of-flight between the particle of 

interest and the reference particle by the time-position factor, )1/(v00 γγµ += .  γ is the 

total energy of the particle divided by mc2 and v0 is the velocity of the reference particle.  

From now on we treat m as the rest mass of any particle and m0 as the rest mass of the 

reference particle.   

 In Appendix A it is shown how the canonical transformation can be used to obtain s 

as the independent variable in place of the time, t.  Here, s is the position along the optic 

axis in the stationary frame.  The reference frame moves with the reference particle and is 

allowed to rotate such that the momentary direction of the s component points in the 

direction of motion of the momentum of the reference particle, p0.  The last variable has 

been replaced by δK, which is the fractional difference in kinetic energy relative to the 

reference particle and is a unitless quantity.  At times it is necessary to describe the 

motion of particles that have mass or charge that varies from that of the reference 

particle.  It is convenient to use the two variables, 

  007 /)( mmmr m −== δ   008 /)( qqqr q −== δ  ,   

to describe the fractional mass and charge difference, respectively.  In the context of 

beam optics, the system of coordinate system described above is sometimes referred to as 

particle optical coordinates and we shall use them in chapters to follow. 
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1.4.3 The transfer map and characteristic symmetries 

 The method of calculating the final coordinates of a particle that propagates through 

some region of space with a function acting on the initial coordinates is sometimes called 

the mapping method.  When working within the concept of maps it is more natural to use 

the position of the reference particle along the optic axis, s, as the independent variable 

instead of time.  The method is based on the concept of finding some function, M(s0,s), 

that will act on the components of the initial position vector of some particle, r0= r(s0), to 

yield the vector components of the particle at a later point along s.  We can express this 

action on the vector as, 

  ( )(),()( 00 ssss rr )M= ,    (1.7) 

This function is sometimes called the transfer function, or transfer map, and its action on 

the initial position vector is governed by the forces that the particle experiences relative 

to the reference particle while being transported from s0 to s.  A map can also act on 

another to yield the overall map of back-to-back transport systems.  If the particle 

encounters two regions whose map is known for s0 to s1 and s1 to sf, then the map of the 

system from s0 to sf is give by  

     ),(),(),( 1010 ssssss ff MMM o= .   (1.8) 

As long as the map is a continuous function along the region of s that is of interest, we 

can expand the action of the map as a power series about the reference particle position.  

This allows us to express the component, i, of the final position vector as, 

 ∑ ∑∑
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where the values of the map coefficients (ri,rk), (ri,rkrl), (ri,rkrlrm), ⋅⋅⋅  are generally 

functions of the independent variable s, but are evaluated at sf here.  The coefficients are 
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related to the initial and final coordinates by partial differentiation as in a Taylor 

expansion where 
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Since the system refers to an optical system, we can regard the linear terms (ri,rk) as the 

first order effect.  All higher order effects are aberrations, and we refer to (ri,rkrl) terms as 

second order aberrations, (ri,rkrlrm) as third order aberrations, and so on.  The terms in Eq. 

(1.9a) may collected in groups that share the same order to obtain the form, 
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Each term is may be referred to as a sum of monomial terms with aberrations of the same 

order.  In a realistic computation, expansion must be truncated at some order, Nm, and all 

higher terms neglected.  Eq. (1.9) may then be expressed in the more simplified form, 

    .   (1.10)  )()3()2()1(
,     m

m

N
iiiiNif rrrrr ++++= L

Depending on the complexity of the fields that lead to the solution of the map, the 

accuracy of the solution improves as the order, Nm, of the expansion is increased.  The 

subscript notation after the equal sign will hereby be neglected any time Nm=1, except 

when necessary. 

 In applying the map formalism one must be careful about the range in phase space in 

for which the series converges.  This is particularly important for higher Nm values where 

the forces need to be evaluated with higher precision. 

 When one considers only the linear terms of the expansion, the map may be 

represented in the form of a linear matrix.  For now, we will consider only the first six 
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components of the position vector.  In such a case, the action of the map on the vector can 

the be written as the matrix equation, 

 ,  (1.11) 
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where the matrix A represents the map.  The subscript for variable having the fractional 

kinetic energy has been left out, so that δ must be understood to represent δK.  If all three 

variables had been included such that there is an 8 dimensional position vector, then A 

would simply be an 8×8 matrix. 

 For any system made up of one or more optical elements, the first order map is of 

primary importance since it is used to identify the most critical optical qualities of the 

system.  The matrix also reflects upon many of the symmetries of the motion.  The most 

notable of them is referred to as horizontal midplane symmetry and it is a result of having 

only electromagnetic fields that are symmetric about the y=0 plane.  As a consequence, 

all cross terms between the horizontal and vertical plane will vanish such that the matrix 

in Eq. (1.11) becomes [Berz85] 

    =A .  (1.12) 
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Maps of devices, such as quadrupoles, higher order multipoles, and electromagnetic 

sectors where the motion of the reference particle is restricted to the y=0 plane, all fall 

into this category.   

 If there is no bending of the reference trajectory at all, i.e. no dipole fields, then a 

double midplane symmetry is obtained.  The result is that the terms located at the bottom-

left and top-right 4×4 sub-matrices of Eq. (1.12) vanish as well.  Since there is then no 

cross term relation between the x—a, y—b  and l—δ phase space planes, then three 

remaining subspaces,  
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
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may be treated separately. 

 Another common symmetry that occurs in optical systems is that of rotational, or 

axial, symmetry.  Unlike double midplane symmetry in which the two planes of 

symmetry, x—z and y—z, are offset by an angle, φ=90°, rotation about the z-axis, axially 

symmetric systems have symmetry about any arbitrary angle.  In this case, all the same 

terms vanish as in the double midplane symmetry, but additionally, all corresponding 

terms in the x—a  and y—b subspaces will be equivalent. 

 Maps of devices having no time-varying fields will have terms that in turn have no 

explicit dependence on time.  Hence, any terms in Eq. (1.9) with partial differentiation 

with respect to the time variable, l, will, therefore, vanish so that  except for 

(l,l). 

0),( =Ll

 Finally, there is the condition in which either there is no change in the energy of all 

particles in the beam or there is and equivalent change for all particles.  This assumes that 

all particles have the same charge as the reference particle, (q0e).  An example of such a 
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system would be a DC accelerating column in which a potential drop between the 

entrance and exit changes the energy of every particle by ∆K=-q0e(Vf-V0).  For this case, 

any terms in Eq. (1.9) with partial differentiation with respect to the energy variable, δ, 

will vanish such that ( 0), =Lδ  except for (δ,δ). 

 If midplane symmetry about y=0 is imposed, along with explicit time-independence 

and energy constancy, then the resulting form of the transfer matrix is 

    . (1.14) 
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 Since all six variables are canonical conjugates, then the symplectic condition applies  

as pointed out in Appendix A.  If we apply the symplectic condition to Eq. (1.14) we 

obtain the following relations between the first order map elements: 

        (1.15a) fppxaaxaaxx ,00,0 /),)(,(),)(,( =−

        (1.15b) fppybbybbyy ,00,0 /),)(,(),)(,( =−

    0,0,0 /),( µµ fll =       (1.15c) 

    fKK ,00,0 /),( =δδ       (1.15d) 

    ),(),)(,(),)(,(
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x
K

p
xlaxalxx =−    (1.15e) 
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p
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K
K
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f

=− δδ     (1.15h) 

Here, p0,0, K0,0, and µ0,0 are, respectively, the momentum, kinetic energy, and time-factor 

of the reference particle at the initial position, while the subscript f denotes the final 

position.  It is assumed that the change in energy, , is the same for any 

particle that is transported by the system.  This can happen when all the particles are 

accelerated over some common change in electrostatic potential.  Since the fields are 

static in time, we refer to this as DC acceleration.  Here, a deceleration is understood in 

the sense that the acceleration is negative, hence any change in energy is herby called 

acceleration regardless of its sign. 

)( 0,0,0 KK f −

 When there is no change in energy, Eqs. (1.15a) through (1.15d) will all go to unity.  

We note that this is a direct consequence of the invariance of phase space volume under 

canonical transformations, as stated by Liouville's theorem [Landau76b].  It implies that 

as long as the total energy of the system is a constant of the motion, then the action of the 

map is effectively a canonical transformation on the ensemble of particles. 

1.4.4 Focusing properties as determined from the first order map elements 

 Special focusing conditions are identifiable from vanishing terms in the map.  

Furthermore, other map elements may become meaningful when one or more particular 

elements vanish.  Some examples are introduced now for the case in which the system 

has  particles that all have the same mass, charge and energy, and the electromagnetic 

fields are time-invariant and symmetric at least about the y=0 plane. 
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 Consider the path of the trajectories as seen from a side profile of the beam along the 

x—z plane.  We are interested in the values of the first order subspace matrix Ax of a 

system with special optical qualities.  For example, if the rays enter the system parallel to 

each other and exit such that all rays cross at the same x—position then we have what is 

called a parallel-to-point condition, and the (x,x) term will vanish.  The diagram in Fig. 

1.3(a) illustrates a schematic representation of this condition.  This condition indicates 

that the exit plane, z=zf, is a focal plane.  If instead the focal plane is at z=z0, then we must 

have that (a,a)=0, and there exist a point-to-parallel focus as shown by Fig. 1.3(b). 

 Vanishing of the two off-diagonal terms in the x—a phase space are also of special 

importance.  The vanishing of the (x,a) term signifies that there is a point-to-point 

focusing condition as depicted in Fig. 1.3(c).  This gives an object-image relation 

between the entrance and exit plane of the transport system.  Any imaging device is 

characterized by a spatial magnification factor, Mx, which in this case has a value that is 

equivalent to the term (x,x). The term (a,x) vanishes whenever the rays undergo a 

parallel-to-parallel focus, as shown in Figure 1.3(d).  In this case, there is an angular 

magnification, Nx, in which the ratio of the exit to entrance angle of the rays is given by 

the term (a,a).  An optical system of this type is considered a telescope focused at 

infinity. 

 According to Eq. (1.15a), the determinant of Ax must be equivalent to the ratio of the 

incoming to outgoing momentum of the reference particle.  This means that only the first 

or second term of the equation is allowed to vanish simultaneously and restricts the 

combinations allowed between the four focusing conditions already discussed.  There are 

only two combinations allowed.  The combination in which (a,x)=(x,a)=0 is recognized 
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 with telescopic focus and having both spatial and angular magnifications, Mx and 
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Nx, respectively.  The (x,x)=(a,a)=0 combination simply implies that the z=z0 and z=zf are 

both focal planes.  The complexity that would arise from not having at least midplane 

symmetry is the terms (x,y), (x,b), (a,y), and (a,b) would also be required to vanish to 

obtain the focus conditions described above.  Otherwise, these same arguments apply to 

elements of the Ay subspace matrix if considering a beam profile along the y—z plane. 

 The (x,δ) term characterizes the separation along the horizontal plane of particles that 

differ in δ, whether its δK, δm, or δq.  Devices that impose a bend along the horizontal 

plane can cause the values of (x,δ) and (a,δ) to deviate from zero.  If the system is 

imaging, then we refer to the (x,δ) term as the dispersion.  More discussion on the 

meaning of these terms will be provided when sections related to sector-field 

spectrometers are encountered. 

 It should also be noted that the above conditions could also be extended to higher 

order aberrations by considering the higher order derivatives of Eq. (1.9).  This 

discussion is left to other sections where the concept of the phase space ellipse is 

introduced. 

1.5 Numerical approach to computing rays 

 Some of the beam optical systems to be presented later have been studied with by 

either ray trace computation or mapping.  In some cases a comparison is made between 

the results found by using both methods, thus a brief description of the numerical 

approach used by each is suitable. 

1.5.1 Ray trace method of computation 

 In the ray trace method the trajectory for every particle must be computed by 

numerical integration of the equations of motion.  This is usually carried out in a 
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Cartesian frame of reference with the set of six ordinary differential equations (ODEs) 

obtained from the components of [Reiser94a] 

      v=
dt
dR      (1.16a) 

and 

   ( )
m

cqe
m

c
dt
d

γγ

22 /)(/)( EBEFF ⋅−×+=⋅−= vvvvvv .  (1.16b) 

These are simply a rewritten form of Eq. (1.2) in which the electromagnetic force, F, is 

replaced with Eq. (1.1).  Notice that the last term in the numerator becomes negligible 

compared to the terms in F for the non-relativistic limit, . 1)/v1( 2/122 ≈−= −cγ

 The commercially available code system, SIMION 7, was utilized in some of the 

calculations.  It has the ability to determine electric and magnetic potentials along a 3D 

grid representing the region of space [Simion7].  The user enters the electrode and pole 

boundary conditions, which the code uses to apply a finite difference technique to solve 

Laplace's equation, ∇ 2Φ=0.  Since there are no expansions involved in describing the 

fields or trajectories, these computations are not truncated to a specific order as in the 

map-based approach.  SIMION solves trajectories by integration of the non-relativistic 

form of Eq. (1.16) by iteratively computing 

           (1.17a) ∫=∆ ft

t
dt

0

vR

and 

      ∫=∆ ft

t
dt

m 0

1 Fv .    (1.17b) 
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It uses a fourth order Runge-Kutta numerical integrator with adaptive control over its 

own progress.  Adaptive control allows frequent changes in the integration step to 

minimize computational effort while keeping some predetermined accuracy [Press92].   

 One advantage of solving by ray tracing is that it is straightforward to apply the 

electromagnetic fields directly to the equations of motion without the need for 

expansions.  This is especially advantageous when applying finite difference algorithms 

to determine the fields, which has made it possible to extend the technique for effectively 

solving Vlasov equations [Birdsall85].  The fields can also vary with time as the 

trajectories are being computed.  Overall, this technique allows more flexibility in 

treating the properties of the fields.  There are set backs to using this method, however. 

 The most notable difficulty with ray tracing is the large amount of computation that is 

necessary when there is a large number of elements over a long path and large number of 

ensembles.  Sector magnets, which are more suited for computer-based optimization, can 

be physically large and more tedious to handle with ray tracing.  Ensembles must be 

limited in size, which makes it difficult to obtain accuracy.  On the other hand, with 

mapping once the elements of the map are determined, calculating final positions of rays 

is simply a matter of evaluating polynomials.  One major advantage lies in the fact that 

the lower order coefficients tend to be of primary importance.  Thus, it is advantageous to 

optimize an optical problem by successive evaluations and including more accuracy each 

time by increasing, as well as increasing the level of electromagnetic field complexity if 

necessary. 
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1.5.2 Computation of maps 

 There have been a number of computer codes with algorithms for determining the 

coefficients of the Taylor expanded form of the map.  A well known example is the beam 

optics code TRANSPORT, which started off as being a second order code [Brown64] and 

was later extended to third order [Carey92].  While TRANSPORT was evolving to third 

order capability other codes, such as TRIO [Matsuo76] and GIOS [Wollnik87], also 

become available with third-order capabilities.  All these codes, however, relied on the 

development of  an analytical representation of formulas for the coefficients and were 

based on a select list of elements with known field characteristics.  With the advent of 

specially made custom formula manipulators, the code COSY 5.0 was even able to push 

the envelope even further by evaluating up to fifth-order terms [Berz87a].  These 

methods, however, become prohibitively complicated at higher orders. 

 The advent of differential algebraic (DA) techniques has made it possible to extend 

algorithms to higher orders and to more types of elements.  The DA approach stems from 

the transformation of crucial function space operations of addition, multiplication, and 

differentiation, to a suitable set of equivalence classes [Berz90b][Berz99a].  The 

implementation of these operations into the optics code, COSY INFINITY, allows 

calculation of maps to arbitrary order [Berz90a].  From here on we refer to this code 

simply as COSY, since it is used extensively in these studies. 

 To gain understanding of how COSY goes about evaluating elements of the map, we 

should revert back to Eq. (1.9).  Taking the derivative with respect to the independent 

variable, s, to obtain component i of a set of expanded first order differential equations 

(ODEs) given by, 
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If the equation is written in unexpanded form then we obtain that  

  ),,,,,,,,(),,,,,,,,( 87654321 slbyaxfsrrrrrrrrf
ds
dr

qmKii
i δδδ== ,  (1.19) 

where the coordinates of the function f may depend on s.  We restrict ourselves to the 

case in which δm and δq are independent of s, i.e. 0'' == qm δδ .  We want to show that the 

set of ODEs implied by Eq. (1.19) are related to the time dependent Hamiltonian, which 

are in turn obtained from the equations of motion.   

 To make this relation realizable we must carry out a Legendre of the type discussed in 

Appendix A to switch the independent variable from s to t.  In fact, the transformation 

would essentially be the reverse of the one in the appendix in which the equations were 

transformed from t to s dependence.  This type of transformation should yield a new set 

of ODEs, 

     ),,,,,,( tpspypxh
dt
dr

syxi
i = .    (1.20) 

where the coordinates are also regarded as functions of time.  We can compare the hi 

components with the system of Hamiltonian equations, 

    ,   (1.21) 
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where the dot notation stands for d/dt and the former independent variable, s, and its 

corresponding momentum, ps, have now been transformed into variables.  Although we 
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worked about it backwards, it has been shown that the Hamiltonian of the system can be 

transformed to give the ODEs of Eq. (1.19), which in turn may be expanded to the form 

of Eq. (1.18).  Integrating each term in Eq. (1.18) yields the corresponding terms in Eq. 

(1.9), and in effect, solves the expanded form of the equations of motion in map form. 

 The form of the Hamiltonian in ),,,,,,( slbyax Kδ  space and the corresponding 

equations of motion have been worked out by Makino and Berz in full 3D curvilinear 

coordinates [Kyoko98][Berz99b].  The equations are more involved in full curvilinear 

form, hence, we do not elaborate on them here.  For these studies, we restrict the 

discussion to the form of the equations of motion under midplane symmetry conditions 

about the y=0 plane.  The motion of the reference particle is restricted to this plane, and 

the instantaneous curvature of the motion is given by, h(s)=1/ρ(s), where ρ is the radius 

of curvature.  Under these condition the equations of motion are given by 
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where the prime still represents the derivative with respect to s and all parameters with 

subscript 0 are of the reference particle.  The quantity η is a measure of relativity as given 

by, 
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The quantities, 
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are the electric and magnetic rigidity, respectively, of the reference particle.  We can 

evaluate the momentum ratio that appears in each of Eqs. (1.22) by 
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Equation (1.22f) vanishes since we have assumed that there are no fields with explicit 

time dependence in the system.  This does not necessary mean that the kinetic energy of a 

particle cannot vary along the motion.  Indeed, if a particle enters a region in which the 

electric potential varies in space (not time), then it will experience a change in kinetic 

energy, ∆K.  This is reflected by the form of η in (1.23) where ∆K. Suppose we assume 

initially that there is explicit time dependence, then the change in kinetic energy will vary 

as, 

     .  (1.26) ( ) ( )∫ ⋅=∆
t

t
dqttK

0

  )(),(),( ττττ vRER

If we turn off the time dependence, then  and ∆K can be evaluated from V−∇=E

     ),,()1(),,( syxVqesyxK qδ+−=∆ .   (1.27) 
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This assumes that the potential has been expressed in the curvilinear coordinates and that 

the potential is specified relative to the entrance position such that V(x,y,0)=0. 

 At this point we can compare Eqs. (1.22) and (1.18) and observe that by expanding 

the components of the electric and magnetic fields on the right side of each equation in 

(1.22), one can form a relation between the s derivatives of the map elements and the 

equations of motion.  The code COSY uses a numerical ODE integrator and DA 

functions to determine each element of the map as described by Berz and Wollnik 

[Berz87b].  At its core this ODE integrator utilizes an eighth-order Runge-Kutta 

algorithm with adaptive control over its own progress, making frequent changes in its 

step size, similar to the fourth order integrator of SIMION. 

 The code has integrated features that allow it to algebraically determine elements of 

the map without numerical integration.  This can substantially reduce computational time; 

especially in the first stages of a problem where not a lot of accuracy is needed.  The 

method is based on an analytical solution in which it is assumed that the particle 

experiences no forces along its direction of the velocity and that the curvature remains 

constant along the motion.  This is true of a number of situations; the most obvious one 

being that of a drift along a field free region.  Another is the case in which fringing fields 

at the boundaries of a homogeneous magnet are ignored.  In this case the magnetic field 

is always parallel to the y—axis and the field changes abruptly at the dipole boundaries.  

This is very similar to the case of a light ray entering a glass medium with constant index 

of refraction, except there the curvature is h=0 and the velocity changes abruptly at the 

boundary.  Indeed, COSY also has features that calculate the maps of glass optical 
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systems [Berz99c].  For both glass optics and magnetic dipoles the exact shape of the 

boundary must be specified.   

 In any electromagnetic device there is always some level of fringing, and in fact, may 

depend exclusively on fringing for its focusing strength.  Any optical elements with fields 

varying along the optic axis require numerical integration of the ODEs along the s-axis . 

 Devices such as dipoles and multipoles tend to have extensive regions along the optic 

axis over which there is little variation along the s—axis.  This region depends on the size 

of the gap and any shunts, or clamps, that may be applied in the region just outside of the 

pole region [Wollnik87a][Hübner70].  The regions in which fringing is negligible are 

calculated using the efficient DA methods and the fringing regions may be treated in a 

number of ways.  For computational efficiency one may use a symplectic scaling option, 

and for accuracy and flexibility one may specify the coefficients of an Enge function to 

describe the field dependence on s [Höffstatter96].  The equation for this function is 

given by, 

    ( )6
621 )/()/(exp1

1)(
GsaGsaa

sF
++++

=
L

,  (1.28) 

where G is the gap width of the dipole, or diameter if it is a multipole.  The constants a1 

thru a6 are the Enge coefficients.  We use the available default values that derive from 

measurements taken of a family of unclamped multipoles at the PEP facility [Brown81] 

and plot the corresponding Enge function in Figure 1.4.  

 Before going on to the next section, a few things should be mentioned about the other 

possible beam interactions.  The effects of energy loss by emission of synchrotron 

radiation are not accounted for in the equations of motion in COSY, nor are the self-

interaction forces due to space charge.  These effects will not be important for our 
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applications, but can in principle be formulated into the equations [Vorobiev01] 

[Berz90a].  COSY currently accounts for the forces from electromagnetic field 

interaction with a particle's spin, but is a negligible effect here; therefore, it is left as a 

reference [Berz99d][Makino99]. 

 Generally, the COSY code system offers a variety of options that makes it 

advantageous to use over other applications with maps.  For one, the user interface is 

written as a high level language to let the user write custom programs.  One can readily 

create custom optical elements in this way.  There are also a variety of algorithms for 

optimization of optical system.  They allow one to specify any objective function that is 

to be minimized [Berz97]. 

1.6 The phase space of beams 

 If we neglect the rotational degrees of freedom, then the motion of any particle may 

be specified by its vector position and momentum.  In the case where there exists a large 

group of particles it is useful to apply the concept of phase space volume.  In this 

macroscopic description one specifies the phase space volume that an ensemble of 
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particles occupies.  The phase space can be fully described by some six-dimensional 

volume with the coordinate variables X, PX, Y, PY, Z, and PZ.  It is useful to apply other 

coordinate systems from beams, and it has already been demonstrated that by a canonical 

transformation the system may also be described by the variables x, a, y, b, l, and δK.  

From now on, these variables will be used to describe phase space, unless otherwise 

specified. 

 It is customary to describe the phase space by the amount of area that the beam 

occupies in each of the three subspaces, x—a, y—b, and l—δK.  The first of these two 

subspaces are said to lie along the transverse planes since the direction of motion in this 

plane is perpendicular to that of the reference particle’s.  The units are usually in m-rad, 

or mm-mr.  The direction lying tangent to the orbit of the reference particle is referred to 

the longitudinal direction and the phase space area along the l—δK plane is usually 

referred to as the longitudinal phase space.  The units are given in meters with an 

understood fractional quantity.  To obtain units of energy and time one needs to multiply 

quantity by the energy of the reference particle, K0, and divide by the factor, µ0.  The 

units commonly used are keV for energy and ns for time. 

1.6.1 The concept of the phase space ellipse  

 Since beams tend to exhibit bell shaped distributions along any of the phase space 

variables, contour plots along any subspace will generally exhibit a family of ellipse-

shaped boundaries.  The contour lines indicate the level of beam intensity and the 

integrated intensity as one goes to a lower and lower intensity level is sometimes used as 

a figure of merit in beam applications.  Further discussion about this topic is left to 

another section below.   
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 We restrict the following discussion to the x—a subspace noting that it also applies to 

the other two subspaces in the same manner as treated here.  The equation of the ellipse 

representing the phase space boundary may be expressed by the equation, 

     ,    (1.29a) xxxx axax εβαγ =++ 22 2

or in matrix form, 
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Here, xxx βαγ  and , , are known as the Twiss, or Courant-Snyder, parameters and in order 

to have only one unique solution for some given εx we demand that the determinant of the 

sigma matrix, σ, be unity; i.e.  

      .    (1.30) 12 =− xxx αγβ

The area bounded by the ellipse will be referred to here as the emittance area and is 

given by πεx, where εx will simply be called the emittance.  One should be aware that 

other references might refer to the area as the emittance. 

 It is useful to solve for a and x from (1.29a) to obtain the two quadratic solutions, 

   
x

xxx xx
a

β
εβα 2−±−

=        and       
x

xxx aa
x

γ
εγα 2−±−

= . (1.31) 

The factors inside the square root must remain positive to be within the region bounded 

by the points of extremum at xm and am as illustrated by the Fig. 1.5.  The extrema are 

solved for by setting the quadratic terms to zero and applying condition (1.30) to obtain, 

   xxmx εβ=   and  xxma εγ= .   (1.32) 

By inserting each of these into equation (1.29a) we obtain the other two terms shown in 

the same figure, 
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   xxxea βεα /−=  and  xxxex γεα /−= .  (1.33) 

Hence, the width along the x— and a—axes of the ellipse are determined by the 

parameters βx and γx, respectively.  The parameter αx quantifies the tilt of the ellipse in 

the sense that the ellipse in Figure 1.5 has a value αx<0. 

1.6.2 The normalized emittance 

 Take the situation where we have an ensemble particles forming an upright ellipse at 

s=s0 in the x—a phase space with emittance, 0,0,0, mmx ax=ε , and reference particle 

momentum, p0,0.  The ensemble is transported through a telescopic focusing system that 

applies DC acceleration to obtain the final momentum, p0,f, as it exits at s=sf.  As long as 

there exists at least midplane symmetry, then equation (1.15a) applies and we must have 

that ( .  Since (x,x) and (a,a) are the magnification along the x— and 

a—axes, respectively, we must have that 

fppaaxx ,00,0 /),)(, =

    
f

xmmfmfmfx p
p

aaaxxxax
,0

0,0
0,0,0,,,, ),(),( εε =⋅== .  (1.35) 

This result implies that the emittance changes by a factor proportional to the ratio of the 

initial to final momentum.  If there is a positive acceleration then the emittance will be 

(xe,am)
a

x

(xm,ae)

 

 

Figure 1.5   Diagram illustrating 
the points of extremum in the 
phase space ellipse along the x—
a plane.  The tilt is such that 
αx<0. 
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reduced by this factor, and vice-a-versa for negative acceleration, or deceleration.  Note 

that we assumed a telescopic system with upright ellipses for simplicity.  This result, 

however, applies to any system of time-independent fields. 

 There is an invariant quantity that becomes apparent if both sides of Eq. (1.35) are 

multiplied by the final momentum.  We define this invariant quantity, εx,n, as the 

normalized emittance such that, 

     0,0,,0, mmffxxn axpmc == εε ,    (1.36) 

where the constant mc may be divided out to obtain the same units as the standard 

emittance.  Since there is invariance along s, then the subscript for position may be 

dropped and we can  simply write the normalized emittance as  

      00 βγεε xxn = .     (1.37) 

The normalized emittance is essentially the phase space occupied by the beam in the rest 

frame of the reference particle.  As long as there are only conservative forces acting on 

the system of particles and there is no self-interaction or interaction with any other 

external medium, then this quantity will remain constant.  Non-conservative interactions 

can be caused by a number of things.  For example, there are collisions with walls, foils, 

or residual gas particles that generally tend to cause an increase in the normalized 

emittance.  The emanation of synchrotron radiation will generally cause a decrease, 

although negligible in most cases.  It is most prominent in the case of highly relativistic 

light particles, such as electrons.  Finally, external forces that originate from time-varying 

potentials will generally cause some increase in the normalized emittance. 
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1.6.3 The transformation of the sigma matrix 

 The concept of the phase space ellipse is used to describe the effects caused by of 

optical elements on the beam's phase space.  It is mainly restricted to first order 

transformations since higher order effects will distort the boundary to shapes that deviate 

from the equation of an ellipse.  A number of examples of this effect will be given later, 

but for now we accept the restriction in order to discuss the effect on the sigma matrix 

under such linear transformations. 

 As follows from (1.29b), the equation of the ellipse for any subspace at some initial 

s=s0 can be written in terms of its respective sigma matrix, σ0, by the equation 

      .    (1.38) 000
T

0 )( ε=rr σ

We suppose that in going from s0 to sf the particles in the beam experiences DC 

acceleration and that map of the system is given by A such that, 

      ,     (1.39a) frr =0A 

and its inverse defined in the sense that,  

      .     (1.39b) 0
1 rr =−

fA

If we assume midplane symmetry and restrict our attention to only the x—a subspace, 

then as suggested from (1.13), 

          (1.40)  
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We should like to determine the inverse of A such that A-1A=I, where I is the unity 

matrix.  First, note that  
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where the ratio of the initial and final momentum outside of the unity matrix results from 

Eq. (1.15a).  The matrix on the left is similar to the inverse matrix if we divide it by this 

factor to obtain, 

      
),(   ),(
),(),(   

0,0

,01
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xxxa
axaa

p
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The equation of the ellipse at sf  may be expressed by, 

     0
,0

0,0T)( εε
f

ffff p
p

==rr σ ,    (1.43) 

where the results from Eq. (1.35) has been applied.  If we use (1.39b) to express Eq. 

(1.38) as, 

     ( )( ) 0
1

0
T1T)( ε=−−

ff rr AA σ ,    (1.44) 

then a direct comparison with (1.43) implies that sigma matrix at sf may be evaluated 

from the initial sigma matrix through the transformation, 
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Writing this equation out explicitly for the x—a subspace, we obtain that 
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Carrying out the matrix multiplication to obtain the elements of the final sigma matrix in 

terms of the elements of the map, we obtain the following set of equations: 

   [ ]2
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fx βαγγ +−=   (1.47a) 
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 The simplest example of an evolving ellipse under transformations is that of a system 

where there are no fields, i.e. a drift.  If the reference particle undergoes a shift along the 

optic axis of length, L0, then the map is simply given by, 

      .    (1.48)  
10
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
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The spatial envelope within which the beam is bounded is given by xm.  As a function of 

the drift length, and according to Eq. (1.32) it must take the form 

     ( )0,00,
2

00,0,0 )(2)()( xxxxm LLLx βαγε +−= . (1.49) 

Also, inserting the matrix values into Eq. (1.47a) will show that the term, γx,f , remains 

constant.  An example of this is depicted in Fig. 1.6 where an initially upright ellipse 

propagates through two drifts of the same length.  Notice that the ellipse expands along 

the x but remains constant along a. 

 To illustrate the effects that focusing and defocusing elements have on the phase 

space ellipse a rather complex system of electric quadrupoles is depicted in Fig. 1.7.  The 

optical system extends over a total length, L, and has mirror symmetry about the center 
Figure 1.6   The evolution of 
 

the x—a phase ellipse through 
two equivalent drifts. 
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position, s=L/2.  Each triplet is also symmetric about its center position, and the fringe 

field effect for each quad has been accounted for in calculating the maps with COSY. 

 The beam is assumed to be made of ions of 100 keV with charge state q=+1.  The 

 
Figure 1.7    Sextet system of total length L made up of electric quadrupoles as described in 
the text.  Plots of the ray trajectories along the x—s and y—s planes are shown in the top 
two plots, while snap shots of the x—a phase space ellipse are shown for both a first order 
(line) and a fifth order calculation (dots).  Other setting are as follows:  quad apertures 
radius = 2.5 cm, quad length = 15 cm, L1 = 30 cm, L2 = 20 cm. 
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trajectory path of the ions along the x—s and y—s planes are shown in the top two plots 

of the figure for quad strengths Q1=–0.74 kV and Q2=1.3 kV, where positive polarity 

implies a focus along the x—plane.  A fitting algorithm had been used to find Q1 and Q2 

such that the sextet has telescopic focusing in both the x—a and y—b planes at the exit.  

This can be seen by the way each ray coming in parallel at the entrance comes out 

parallel again at the exit where (a,x)=0.  Also, rays that are diverting at the entrance 

converge at the exit, since (x,a) also vanishes there. 

 Only the phase space ellipse of the x—a plane has been illustrated in the bottom plot.  

Snap shots of the x—a phase space ellipse are shown for both a first order (line) and a 

fifth order calculation (dots) at positions labeled 1 through 7.  At s=0 the particles all lie 

along the boundary of the upright ellipse with xm=4 mm and am=2.5 mr.  The higher 

order aberrations cause projections of filaments to form as the particles diverge away 

from the boundary of first order.  This is seen more clearly at positions 4 and 7 in the 

form of an asymmetric filamentation.  This is caused by third and fifth order geometric 

aberrations, such as (x,xxx), (x,aaa), (x,xxxxx), and so on, which as expected results from 

elements focusing with electric fields [Wollnik87b].  The effects of the aberrations have 

been exaggerated by a factor of 20 for illustration purposes. 

 Some last details in the first order ellipse that are important to notice are the focusing 

and defocusing effects.  The elongation of the ellipse in going from point 2 to point 3 is 

caused by defocusing of the first quad.  The second quad focuses in such a way that the 

ellipse is "flipped" and the particles are converging afterward.  The combination of 

defocusing and focusing causes the ellipse to become upright at the midpoint of the 

system (point 4).   The final ellipses show some distortion at the extremes.  At times 
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there is some confusion as to whether these types of geometric distortions also cause the 

bounded phase space area to change.  The answer is no, since according to Liouville's 

theorem the volume of phase space remains constant even though the shape generally 

will not [Reiser94ab].  Hence, the boundaries of both the first and fifth order calculations 

remain constant since p0,0/p0,f=1, which is a consequence of Liouville's theorem that was 

pointed out in Appendix A. 

1.6.4 The rms emittace and higher order effects 

 Beam calculations based on phase space dynamics must be carried out using particle 

ensembles of finite size.  An ensemble of particles represents a sample taken from the 

volume occupied in phase space.  To analyze a sample it is necessary to use statistical 

methods for evaluating the effects from fields.  A simple statistical method for evaluating 

first order properties of the ellipse from rms values is introduced in this section.  It is 

based on the concept of evaluating the rms emittance, ε~ .  Here, it shall be applied only to 

the x—a subspace, xε~ , but it is easily extendable to the y—b and l—δ subspaces. 

 The first step in evaluating the properties of the rms emittance is to calculate the 

following rms values given that there are N particles in the ensemble: 
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The three quantities are considered to be the second moments, while <x> and <a> are the 

average values, or the first moments along the x— and a—axes, respectively.  The 

corresponding rms emittance is related to the second moments by,  

    2222  ~ ><−>><=< xaaxxε .   (1.51) 

This quantity is invariant under linear transformations where there is no acceleration.  In 

cases where there is DC acceleration but the transformation is still linear, the final rms 

emittance is proportional to the initial by the factor, .  This is similar to the case 

of the initial and final emittance as shown by (1.35).  In fact, the emittance and the rms 

emittance are linearly proportional to each other and remain so as long as there are only 

linear transformations acting on the particles.   

fpp ,00,0 /

 The constant of proportionality between xε~  and xε  depends on the type of density 

distribution in phase space that is assumed.  To demonstrate how the rms emittance varies 

with the type of distribution three plots have been generated with differing density 

distributions and illustrated in Fig. 1.8.  Each distribution has an equivalent rms 

emittance, and an ellipse whose emittance is equivalent to the value of the rms emittance 

has been drawn for each of the three.   

 The leftmost distribution is called a boundary type since the particles are randomly 

distributed along the boundary of an ellipse.  It may be generated using the method of 

spheres in 2 dimensions [Muller59].  The rms emittance value turns out to be one half of 

the emittance of the ellipse whose boundary is being populated.  This is shown by the 

ellipse, labeled xx εε ~2= , in the first plot.  A waterbag-type distribution, generated by 

using the method of spheres [Lewis75], is shown at center and has only about 22% within 

the ellipse of rms emittance, while the Gaussian-type, on the right, has 68%.  Both 
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waterbag and Gaussian distributions contain 95% of the particles within an ellipse of 

xx εε ~4= . 

 
 
Figure 1.8  Plots of three differing phase space distributions with equivalent rms 
emittance.  The type of distribution is labeled above each plot and at the left side of 
each plot is the percentage of particles lying within the corresponding ellipse of 
emittance εx. 

 The boundary-type distribution is useful for looking closely at higher order effects 

since it samples the extremities of the phase space.  Such use was demonstrated above 

with the x—a phase space plots at the bottom of Fig. 1.7.  The waterbag-type distribution, 

which is just an extension of the method of spheres to 6D, is an almost uniform 

distribution.  Although, it does tend to form a low-density pocket towards the center of 

the ellipse, the ease in generating the waterbag distribution makes it an attractive option 

for many applications.  The Gaussian-type distribution is one that best describes many 

experimentally observed beams and is ideal to use for more precise calculations.  A 

method prescribed by Box is used to generate the random distribution of this type 

[Box58]. 

 Once the rms emittance has been evaluated, the rms emittance may be divided out of 

each of the values in (1.50) to evaluate the Twiss parameters by the following: 
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Solving for <x2>, < a2> and < xa> from the above equations and inserting the results into 

(1.51) proves that this results is true.  The negative sign in (1.52c) keeps the tilt 

orientation consistent with Fig. 1.5. 

 Something that that should be kept in mind when applying higher order effects is that 

the rms emittance may grow even though the actual emittance remains constant.  This is 

due to the fact that the rms values are very sensitive to particles that may form outside the 

first order ellipse boundary.  This can become especially troublesome for repetitive 

systems, such as storage rings, where very low-density halos may form around a high 

density region.  Despite this fact, the rms method remains an invaluable tool for 

evaluating beam systems.  It offers reliable first order knowledge of the ellipse 

orientation, which is useful in matching one optical system to another. 
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Chapter 2 

DESIGN OF AN ISOBAR SEPARATOR USING AXIALLY SYMMETRIC 

ELEMENTS WITH ACCELERATION 

 In this chapter we describe the design of a high resolution mass separator that uses 

accelerating axially symmetric elements so that the system is an achromat.  The RIA 

facility will need exceptionally high mass resolution to separate masses at the level of 

isobar mass differences.  A brief description of other types of mass separators will be 

given along with reasons for choosing a spectrometer with a decelerating column, which 

we call a dual-potential spectrometer.  Much of the chapter will be devoted to details of 

this spectrometer along with the factors that affect its performance. 

2.1 Isobaric purity and mass separators 

 Much of the success of future rare isotope facilities depends not only on the intensity 

of the isobar of interest, but also on the purity of the beam.  Isobars have very small mass 

differences, and beams coming from ISOL targets will be susceptible to cross 

contamination by other ions of similar mass to charge ratio or ions of some energy that 

may cause a contaminant to cross over into the region of others.  Furthermore, for isobars 

far from the line of stability there will be tails from other more intense ion species that 

will also cross over.  To make matters more complicated, the mass window will have to 

be large enough such that transmission of the wanted ions species is maximized.   Under 

these stringent conditions one is many times forced to speak of mass separator devices in 

terms of the level of purification from contaminants, as we shall do so in a later section.   
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 We shall explore the feasibility of high mass resolution separators with high 

transmission for the RIA facility.  High transmission with a resolution of m/∆m=20,000 is 

the base line goal for the present study.  This resolution corresponds to a mass excess 

difference of 5 MeV at mass A=100. 

 Other methods exist as possible alternatives to the scheme that will be presented in 

the next section and a brief discussion should be devoted to them.  For many chemical 

elements for which the ionization potential is low enough, there is the possibility of using 

laser resonance ionization techniques to obtain high chemical selectivity [Alkhazov89] 

[Koester02].  This is an ideal way to suppress isobars that have differing chemical 

properties from the species of interest.  The efficiency is usually between 1 and 7% and is 

mostly limited to elements with of ionization potentials <7 eV.  Alternatively, using 

surface ionization can be almost 100% efficient for ionization potentials of less than 

~5eV.  This method is limited to about one tenth of the entire spectrum of elements 

[HagebØ92].  A combination of these techniques and other more general ionization 

techniques having less selective ionization have to be employed to extend the amount of 

available beams.  Consequently, it is helpful to shift the mass selectivity to devices lying 

beyond the ionization region. 

 Magnetic sectors provide spatial separation between masses and have been the heart 

of most isotope separators for several decades [Smythe34].  One limitation stems from 

increasing higher order aberration effects in going to larger acceptance sector magnets.  

Other limitations stem from the fact that all ion sources impose some level of energy 

spread on the beam and also from instabilities of the power supplies.  The effects, which 

appear as smearing and chaotic shifts of the spectrum, will be magnified along with the 

 46



resolution.  The most fundamental problems, however, are still the energy dispersion and 

geometric aberrations.  Reducing geometric aberrations will require strategic 

superposition of multipole fields, and energy dispersion must be eliminated designing a 

spectrometer that is achromatic. 

 Cyclotrons carry some degree of achromicity by using RF electric fields and have 

been used for mass selection.  By extending the number of turns before extraction, they 

have been known to give a mass resolution of as high as ~104 [Huyse95] [Chartier97].  

One of the drawbacks is that the transmission efficiencies turn out to be rather low (3 to 

5%).  Furthermore, the output energy range of cyclotrons is limited and some 

experiments may require that ions arrive at the slowest velocities possible, such some in 

nuclear astrophysics. 

 Another type of RF device that offers a similar type of mass dispersion but without 

the longitudinal acceleration is the quadrupole mass separator (QMS).  They are 

especially appealing since they do not require magnetostatic fields, which allows over all 

system dimensions relatively minute in comparison.  Unfortunately, some of the best 

QMS designs to date have been know to achieve resolutions of no better than about 300 

under DC beam operation.  Studies that focus on improving QMS performance seem to 

indicate that the distorted fringing fields at from the ends of the rods introduce 

aberrations that effectively increase both the transverse and longitudinal emittance of the 

beam [Takebe95].    Such effects also cause the overall acceptance and transmission to 

suffer.  Some of these distortions may be eliminated by refining the rod design and 

alignment; however, a recent study shows that the rod design requires at least a 1 µm 

position accuracy to approach a mass resolution of ~2000 [Yoshinari95].  Despite such 
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improvements much work still remains to improve the acceptance, thus such devices 

remain impractical for isobar separation. 

 Considering such technical dilemmas with the other types of devices, the use of 

single-pass magnetic bends remains the best alternative.  By coupling magnetic dipole 

systems with DC electric field devices, it is possible to compensate for energy spread 

effects.  There will still exist a multitude of technical barriers to eliminate in going with 

magnetic sectors.  For example, the uniformity of the fields has to be maintained to a high 

level.  We shall explore this problem with the use of a Poisson solver to determine the 

fields that should be expected from some of the sector designs.  Issues concerning control 

and stability must also be addressed, since the object and image sizes are necessarily 

small. 

 The design goal of the isobar separator described below are a mass resolving power 

of at least 20,000 given a transverse emittance of 10π mm-mr for ions at 100 keV/250 

amu (1 mm entrance slit width and ±20 mr maximum divergence) and a ±10 eV energy 

spread. 

2.2 Achromatic mass separators 

 As mentioned in the previous section, when considering mass separators at the level 

of isobar mass differences it is necessary to include the effect of the beam energy spread 

from the ion source.  It is possible to obtain some energy spread due to the ripple of the 

ion source power supplies; however, the voltage ripple from modern power supplies can 

be suppressed to about the 10-5 level.  Instabilities of the source platform potential have 

been known to be caused by the driver beam as it is injected in the form of intense pulses 

into the target, but this should not be a problem with the RIA driver since it functions 
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essentially in continuous wave (cw) mode.  The most probable cause of energy spread is 

the thermal energy spread associated with plasma type ion sources.  Many low charge 

state plasma sources can impose energy spreads that are on the order of ~10 eV.  Thus, 

considering a spread in the energy at the 10-4 level will be necessary.  Magnetic sectors 

disperse the ions according to magnetic rigidity, χM=p/qe, thus the mass and energy 

dispersion are equivalent; i.e.  

    (x,δm)=(x,δK)      (2.1). 

Because of this additional dispersion in energy the resolution of the spectrometer will 

suffer unless the (x,δK) can be eliminated.  

 The principle of an achromatic mass separator can be understood in terms of the first 

order transport map in matrix form.  Consider the position variable in the horizontal 

plane, x and a, in a subspace that also includes the mass and energy variables, δm and δK, 

respectively.  If we consider the position vector (x,a,δm,δK), then the transfer map can be 

expressed as, 
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which yields the final position vector when we take its product with the initial position 

vector.  This subspace is sufficient to consider as long as mid-plane symmetry is 

preserved.  Formally, an achromatic system should have no energy effects whatsoever; 

however, here we are only considering a first order achromat in which (x,δK) vanishes.  

Higher order achromats require that higher order aberrations with δK dependence also 

vanish.  Also, note that if the term (a,δK) does not vanish, then particles gain angular 
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divergence from the energy differences.  This is not acceptable if the particles are to 

continue on through further beam system, such as the post accelerator.  A fully 

achromatic system must have both terms vanishing. 

2.2.1 Double-focusing spectrometer 

 We look first at the properties of a double-focusing mass separator [Yavor97a] like 

the one illustrated in Fig. 2.1.  Note that there are other ways to arrange the magnetic and 

electric fields to obtain the similar properties of this system [Nolen84]; however, we use 

this particular one for its simplicity.  With this system we can evaluate the map of the 

magnetic and electric fields, AB and AE, respectively, in separate form.  The product of 

the two, 

      A = AE . AB,     (2.3) 

yields the map of the total system.  Imposing point-to-point horizontal focusing at B and 

C results in the energy dispersion term 

    EKBKEK xxxxx ),(),(),(),( δδδ +=     (2.4). 

Requiring that this term vanish implies that rays of different energy will get refocused at 

C as illustrated by the figure.   

Note that for the system shown in the figure the term (a,δK) does not vanish, and rays 

of different energy are converging as they approach the focal plane and will diverge right 

E-section

A

B-section

B

C

Figure 2.1  Double-focusing spectrometer 
with rays of multiple divergence as well 
as multiple energies.  Rays are focused in 
the horizontal plane but split by varying 
energy at point B. 
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after.  This is only a simple illustration of an achromat, but there actually exist solutions 

in which systems with magnetic and electric sectors in tandem form a fully achromatic 

mass separator.  One such design has been previously introduced for the RIA system as a 

possible candidate for an isobar separator [Davids94].  Studies of the performance of 

previously constructed designs using large dipoles but at lower resolution has been 

discussed elsewhere [Davids89] [Davids92]. 

 Although such designs are conceptually sound, there are some technical difficulties 

with very large electric sectors.  Small mutual vertical inclinations along the surfaces of 

any pair of electrodes tend to misalign the beam from the mid-plane and will give so 

called “parallelogram-type” defocusing [Yavor97b].  This effect has been known to cause 

severe losses in the resolving power [Matsuda77].  In principle, small corrections can be 

made on the electrodes to obtain a more uniform field without misalignments; however, 

there are inherent technical difficulties when working with electrodes at high potential. 

2.2.2 Dual-potential spectrometer 

 To avoid the effects of electrostatic condensers another method of energy focusing 

was devised which uses at least two stages of magnetic separation at different potentials 

[Ciavola97].  So-called dual-potential spectrometers have been used in the past for the 

purpose of eliminating unwanted scattered particles, but they were not achromatic 

[Wollnik95].  The present design is a dual–potential achromat with a layout illustrated in 

Fig. 2.2. 

 The system is broken down into four sections.  The beam enters section H (points A-

C) at KH=100 keV and thereafter is decelerated through an immersion lens system at 

section I (from C to D).  The third stage (points D-F) lies at a 90 kV potential on an 
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isolated platform so that the beam drops in energy to KL=10 keV.  The potential may vary 

as long as the ratio of the initial to final kinetic energies remains constant at KH/KL=10.  

The radius of the magnetic sectors in section H (labeled DH) are RH=2.5 m, while those 

of section L (labeled DL) are just 10/HR .  This scales with the rigidity to keep all the 

pole tip field strengths at the same value.  All sectors bend through an angle of 60º.  The 

DH sectors have positive entrance and exit edge angles of 24º.  Those of the DL sectors 

are slightly lower at 23º for both entrance and exit.  Finally, the last section is simply the 

reverse of section I and accelerates the beam back to KH as the beam exits the isolated 

platform. 

 
Figure 2.2.  Layout of dual-potential spectrometer.  The spectrometer is broken down 
into 4 sections as described in the text [Portillo01a].  Overall footprint is 20m x 30 m. 
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 Magnetic multipole fields are imposed at the midpoint of both sections H and L (MH 

and  ML3, respectively).  The multipole MH provides quadrupole, hexapole, octupole, 

decapole, and duodecapole fields for correcting geometric and fringing field induced 

aberrations at section H to 5th order.  Multipole ML3 also contains up to duodecapole 

fields in order to correct the aberrations of section L, as well as the aberrations imposed 

by the immersion lenses.  The remaining multipoles at section L (ML1, ML2, and ML4) 

are imposed for correcting higher order chromatic aberrations up to 5th order.  The effects 

of the higher order multipoles are explained in the next section. 

 First order calculations of the map were used to obtain telescopic focusing at points 

C, D, F, and G..  Thus, the terms (x,a), (a,x), (y,b), and (b,y) all vanish simultaneously for 

the map at these points.  Fringe field effects are always accounted for since they have an 

effect on the value of these terms.  

 The first order transfer maps for the first three sections can be evaluated and their 

matrix product, 

A = AL . AI . AH,     (2.5) 

gives the transfer map from point A to point F.  The resulting energy and mass dispersion 

terms are then 

 HKIIKKLKK xxxxx ),(),(),(),(),( δδδδδ −=    (2.6) 

and 

HmILmm xxxxx ),(),(),(),( δδδ −= ,    (2.7) 

respectively.  In arriving at these results we have used (x,x)H =(x,x)L=-1 for the 

magnification of the mirror symmetric bend sections.  The first-order result of the layout 

gives the net energy dispersion (x,δK)=0.  After optimization the symmetry and telescopic 

focus of both Section H and L causes (a,δK) to vanish at each, and therefore, in the entire 
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system to obtain a full achromat.  The telescopic focus tends to make the envelope sizes 

very insensitive to the detail of the initial beam ellipse.   

 The rest of the optics may be understood if Eq. (2.1) is applied to Eq. (2.6) to obtain 

that  

IHm

Lm
IKK
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L

xxx
x

K
K

),(),(
),(

),/(1
δ

δδδ == .  (2.8) 

Combining this with Eq. (2.7) we can obtain a value for the expected ratio between the 

separation at point C to that of point F, 

H

L

Hm
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K
K

xxx
xxx

−=1
),)(,(

),(),(
δ
δ

.    (2.9) 

This factor implies that there is a loss in separation as KL becomes approaches KH.  If 

KL=KH then there is no net separation due to mass at the exit of the spectrometer.  In 

principal as long as KL is much smaller than KH, then only a small amount of mass 

separation is actually lost.   

 As shown by Eq. (1.35), the emittance will grow as KL is lowered which sets limits on 

the acceptance of section L.  Also, there are limits on how high a potential can be 

imposed on the ion source platform, thus limiting the kinetic energy, KH.  The parameters 

adopted for this system imply that we should expect about a 10% loss in mass separation.  

This loss, however, is outweighed by the gain in resolution that results from getting rid of 

the energy spread effect.  Fig. 2.3 illustrates this point, where a series of x—a phase space 

distribution plots is shown.  Three sets of ensembles with masses m-∆m, m, and m+∆m 

enter the spectrometer with the same boundary-types phase space distributions.  The 

respective masses in terms of the relative particle coordinate, δm, are –∆, 0, and +∆, 

where ∆ =1/20,700.  We have assumed that the beam enters the spectrometer with an 
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aspect ratio of ym/xm=8 so that the beam has a 1 mm full width along the x—axis and 

divergence lying between the limits of am=±20 mr.  In the y—phase space the initial beam 

has ±4 mm by ±2.5 mr.  Such beams are obtainable by the use of quadrupole multiplets 

prior to the object slits as described in the literature [Wollnik91]. 

 
Figure 2.3  Mass spectra in x—a phase space for three masses of similar boundary-
type initial distributions.  Going from the top-left to top-right plot shows the effect on 
the mass spectrum at the end of section H when adding a random energy spread that 
lies between δK=-∆ and +∆.  The dual-potential separation results in the spectrum 
taken at the end of section L, which shows the effect of the achromatic correction. 
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 The two adjacent plots at the top of Fig. 2.3 are snap shots of the phase space at the 

exit of section H.  In the top-left plot all particles have the same energy; i.e. δK=0 for each 

particle.  In the top-right plot there has been a random distribution of energies imposed on 

all particles, such that energies lie between δK=-∆ and +∆.  The mass and energy 

dispersion at the end of section H are (x,δK)H=(x,δm)H=23,000 mm, and it is obvious that 

the energy distribution of the particles has a destructive effect on the resolution.  The 

particles of one mass will overlap the adjacent one by a maximum of 0.65 mm. 

 The plot at the bottom-left is a snap shot of the distribution at the exit of section L.  

The particles still have the energy distribution imposed; however, the achromatic 

condition that results by the dual-potential scheme has eliminated the energy dispersion.  

Comparing this plot with the plot right above it, we see that the separation is smaller by 

10%, such that the resulting mass resolution is m/∆m=20,700. 

 To determine the size of the apertures for all the elements along the beam transport 

line it is helpful to plot the beam envelope, or the maximum extent of the beam along the 

transverse plane.   A series of these plots are illustrated in Fig. 2.4 in which the s-axis is 

projected as a straight line.  Fig. 2.4(a) is a plot of the rays along the s—y plane.  The rays 

are defined such that their initial positions start from the limits of the y—b phase space.  

This is also done for rays along the s—x plane in Fig. 2.4(b); however, for this plot it 

seems that there are only rays of divergence from a point source.  This is because the rays 

that extend over position cannot be seen on the scale of the huge beam projections along 

x resulting from the divergence of the beam.  The elements are represented by the size of 

the aperture of the corresponding elements.  In the case of the sector magnets the ends 

represent the gap between the pole tips. 
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 There are some features with special significance that should be pointed out.  The 

 
Figure 2.4.  Beam envelopes for the dual-potential spectrometer in the horizontal and 
vertical planes.  Plots are illustrated for the s—y (a) and s—x (b) planes for the effects 
of the transverse phase space on the rays.  The last plot illustrates the effect of energy 
dispersion along x. 

 57



integrated area under the x versus s curve within the dipole region is proportional to the 

mass resolution [Wollnik71]; hence, the x envelope is maximized in the dipole regions.   

 The y envelope has been kept to a minimum throughout, which is the reason for 

choosing an initial beam aspect ratio of ym/xm=8.  Part of the reason for having this is to 

minimize the gap each dipoles to a minimum.  Also, the cross term aberrations between 

the x—a and y—b planes at the multipole regions are reduced by a factor proportional to 

the ratio between of x over y. These terms will cause a correction in one plane to cause a 

distortion in the other [Yavor97a], thus it is critical that this ratio be sufficiently large.  

The ratio has been kept at xm/ym=86 between at multiple MH and is 9.2 at multipole 

ML3.  A combination of an increase in emittance in section L and the smaller x envelope 

is what cause this ratio at ML3 to be almost an order of magnitude lower than at MH.   

 The  plot in Fig. 2.4(c) represents the energy dispersion.  Both divergence and 

dispersion along the s—x plane are plotted for rays of varying divergence and energies 

starting from a point source at A.  Notice that the rays of different energies converge back 

to the same position and direction as they exit the second dipole DL, showing that the 

overall system is fully achromatic.  From this plot we can estimate the maximum extent 

of each ray of energy varying from that of the reference particle.  The energy differences 

are actually exaggerated by a factor of 10 for illustration purposes.  

2.3 Correcting higher order aberrations 

 A considerable amount of effort has gone into determining higher order aberrations 

and suppressing them with multipole fields.  For determining the effects of higher order 

aberrations the COSY INFINITY code system was employed to calculate maps of up to 

5th order.   
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 The fact that one can evaluate maps to arbitrary order is only one of the reasons for 

choosing COSY.  The code also allows the user to implement custom algorithms that 

simulate other optical elements that are not in its own library.  For this study it was 

necessary to implement algorithms that calculate maps of some axially symmetric 

structures that impose DC acceleration, such as those of immersion lenses.  In the case of 

an immersion lens, we simulate the potential for a simple gap lying between two tubes of 

equal radii and of differing potentials [Geraci02].  Going to arbitrary order is particularly 

important in the case of axially symmetric lenses, since their focusing strength comes 

solely from fringing fields and, in the case of immersion lenses, the emittance can change 

according to (1.35).  The effects of higher order aberrations are potentially high and 

having access to arbitrary order evaluations is useful in obtaining an accurate analysis of 

a spectrometer that requires exceptional detail.  Using map-based optics enables more 

rapid system optimization 

2.3.1 Aberrations at magnetic sector sections 

 Any optical system has geometric aberrations even when fringe field effects are not 

considered [Wollnik87c].  For a magnetic sector of large radius and large beam entrance 

 
Figure 2.5   Effect of applying each successive multipole field on the x—a phase space 
plot calculated to 5th order at the end of section H.  The effects from the y—phase space 
are included. 
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angle of inclination aberrations can be especially large if not corrected.  The plot of the 

x—a phase space at the very left of Fig. 2.5, illustrates this.  The snap shots for all the 

plots in the figure are taken at the end of section H under successive application of 

magnetic multipole fields at MH (see Fig. 2.2).  These are all 5th order calculations.   

 The second order aberration clearly dominates before it is suppressed by a magnetic 

hexapole field, as is done for the plot labeled as hexapole from above. For each 

successive nth multipole that is turned on, the (n+1) order aberration appears to dominate 

and requires that the next order multipole field be applied.   

 The field strength used for each multipole is approximately proportional to the 

maximum extent of the distortion along the x—axis, starting with a 10 G/cm field 

strength for the hexapole.  We have assumed that the field comes from a circular 

multipole having an aperture with 60 cm radius.  In practice, a rectangular multipole that 

more closely matches the beam envelope at position B will be used. 

 Besides the use of discrete multipoles, it is also possible to correct higher order 

aberrations by shaping the edges of the dipole magnet.  We have already imposed an edge 

angle for first order focusing, but in addition the edges could be rounded relative to this 

edge as is shown for the sector illustrated in Fig. 2.6.  The first shape to notice is the 

sector with no edge angles or curvature, labeled as simple sector.  Then equivalent 

positive edge angles are imposed at both the entrance and exit sides.  Finally, a circular 

curved shape is carved out from the exit side relative to the tilted edge.  The rounded 

edge should be at the side where the beam is largest in the horizontal plane.  According to 

Fig. 2.2 this has to be at the inside edges of the mirror symmetric dipole pairs.  In order to 

correct the second order geometric aberration of (x,aa)=-134 m/rad2 at section H requires 
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a round curvature with radius of 37 m.  This curvature is barely visible from Fig. 2.2.  On 

the other hand, Section L requires one with a radius of 9.6 m to correct its second order 

aberration. 

 
 

Figure 2.6   Top view of a 
magnetic sector in which 
positive edge angles have 
been imposed at both 
entrance and exit 
positions.  In addition, a 
round curvature shape 
(small dashes) has been 
cut out at the exit to 
correct the second order 
aberration.  The simple 
sector (thin line) is that of 
the sector before edge 
angles and curved edges 
are imposed. 

 The rounding of the edges tends to also correct other higher order terms.  COSY 

allows the user to specify any edge shape.  In principle, this option can be used to search 

for a shape that will suppress all higher order aberrations; however, the effects due to 

fringing at the edges should probably be looked at in more detail before assuming that 

this scheme will work in the real situation.  This is because the effects on field uniformity 

due to magnetic saturation may cause additional aberration effects for such a wide pole 

tip.  This topic is addressed in the next subsection. 

 Before going on, we should make some mention of the effect of the multipole fields 

on other aberration terms.  The on and off condition that the correcting hexapole field has 

on the y—b phase space is shown by the two plots in Fig. 2.7.  The smearing seen at the 

boundaries is caused by the cross term (y,ab), which is suppressed by the hexapole field.  
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On the other hand, the cross term (x,bb) actually by about 0.3% aberration, which is not 

very noticeable from the plots.  Compared to the (x,aa), (x,aaa), and (x,aaaa) aberrations 

most other aberrations are negligible in comparison and the corrective action on the 

resolution of such terms evidently outweighs any growth of other terms.  In the section 

that follows, however, we will show that the combination of all aberrations set a limit on 

how fine the resolution can actually become. 

 

Figure 2.7  Effect of 
turning on the hexapole 
field correction on the y—b 
phase space at the end of 
section H. 

 

2.3.2 Obtaining homogeneous sector fields 

 Up until now we have assumed that the fields of any dipole are perfectly 

homogeneous.  This would seem to be somewhat of a reasonable assumption considering 

that the required flux density at the pole tip at each sector magnet is only 3 kGauss; 

however, perfectly homogeneous fields cannot be achieved in practice.  Preliminary 

magnet design calculations have been done to illustrate the sensitivity of the resolving 

power to the field shapes.  We have chosen to use the POISSON code system to 

determine the field distribution along the x—y plane based on a multipole harmonic 

analysis [Warren87].  An algorithm in COSY that allows the user to specify the field 

distribution then calculated the map. 

 A preliminary cross section of the DH dipoles is assumed.  Results of the 2D 

calculations using POISSON are shown in Fig 2.8 in the form of field distributions.  The 

figure contains a diagram of the first quadrant of two H-type magnets along with the 
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fields predicted by the calculation.  The permeability tables used are those that are listed 

in the code for a type 1010 steel.  A fit was used to determine the amount of current 

necessary to obtain 3 kGauss at the center point.  It is based on the assumption of a 

uniform electrical current flowing through cross section of the coil region.  The area 

occupied by the coil is constant for all simulations as its horizontal width is decreased 

and the height is increased.  The pole half-gap stays constant at 5 cm, but the groove in 

which the coil is set into varies in depth from 0 (Fig. 2.8(a)) to 4 cm (Fig. 2.8(a)).  The 

thickness in steel between the top of the coil and the top of the magnet is kept constant to 

keep flux in that region constant.  Hence, any depth in the coil groove will require a 

thickening of the top portion of the magnet, which increases the total weight of the sector.  

For example, for zero depth the 60º sector will require 7900 kilograms of steel, while at a 

 
Figure 2.8   Diagram showing the lines of magnetic flux for the design of the DH 
sector of section H.  The beam occupies a region that extends up to 43 cm in the 
horizontal. 
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4 cm depth the amount of steel gets up to 10,100 kilograms at 4 cm. 

 The purpose of this exercise is to attempt to reduce the increase in field strength as we 

reach the region of the coil.  Fig. 2.9 illustrates this point where we have plotted the field 

strength of the y-component of the B-field as a function of the distance from the center of 

the dipole.  For the dipole with no groove we observe that the field rises continuously 

until we reach the coil.  As we make the groove deeper we see that the field is suppressed 

sooner as we go out in x. This operation will also reduce the maximum field strength to a 

value that is about 2% larger than at the center where xm=48 cm.  According to Fig. 2.4 

the beam is only expected to reach as far as xm=43 cm.  At that position there is 

comparatively little improvement by making any kind of adjustment at the coil. 

 The next step is to determine the effects on the aberrations resulting at the map if we 
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Figure 2.9   Plots of the y—component of the B-field versus the x—position from 
the center of the DH sector.  The shape H-magnet is varied in depth in an attempt 
to make the distribution more uniform. 

 64



apply the distribution for the dipole having the 4 cm groove.  With all multipoles at MH 

turned off, we calculate the map to 5th order at the exit of section H and evaluate the 

phase space.  The results may be compared against those of the homogeneous dipole by 

observing the plot of the x—a phase space in Fig. 2.10.  The inhomogeneous sector ends 

up having all aberrations being almost 4 times stronger than those of the homogeneous 

sector.  This implies that even very small deviations from a homogeneous condition will 

cause larger higher order effects. Henceforth, will be necessary to apply field corrections 

by surface coils along the top and bottom poles.  These types of corrections have been 

used for various applications in the past with and show promising results [Wollnik72] 

[Wollnik87e].  Since correction coils are more effective at imposing uniformity, there is 

no need to go with the 4 cm groove H-magnet.  This also serves to reduce the cost of the 

magnets according to the scheme used above. 

 What is important at this point is that at least we have an idea of what type of field 

distribution to expect and the effects on the mass resolution.  The challenge will be in 

providing a field that will have an integral uniformity with deviations in the field of 

 
Figure 2.10   Plot of the x—a for a 5th order calculation of a magnetic sector with 
homogeneous field distribution and another with the field distribution predicted by 
POISSON. 
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∆B/B≤10-5.  Also, it may be very useful to use types of steel that have higher 

permeability in the range of field strengths needed for more uniformity.  The quality of 

the steel must be high to minimize fine structure in the field as well as the global effects 

discussed above. 

 The design of the DL  sectors has been considered as well.  In Fig. 2.11 we show the 

cross section of a dipole having a 6 cm gap and a horizontal region that extends between 

+/-50 cm for the beam.  The beam extends a maximum of about 16 cm  in the horizontal 

and less than 3 cm in vertically.  There are non-uniformities visible by the lines of flux in 

the region close to the coils.  Imposing a greater degree of uniformity will require the 

application of surface coils as in the case of the DH sectors. 

 Before going on, it should be mentioned that there are other methods used to obtain 

wide homogeneous fields.  For example, the so-called Purcell filter [Purcell55] requires a 

separation between a pole tip and the magnet yoke obtain more uniformity.  Another 

 
 
Figure 2.11   Diagram showing the lines of magnetic flux for the design of the DL 
sector of section L.  The beam is expected to occupy a region that extends up to 
about 16 cm in the horizontal. 
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method suggested by Halback is to introduce vertical slots in the steel to improve the 

field uniformity [Nolen87].  Although these other methods may be used, surface coils 

may still be implemented to permit fine tuning.  Furthermore, surface coils can make up 

for field strength dependent effects that other methods lack in. 

2.3.3 The deceleration column 

 Some of the dynamics that are predicted by the calculations for the deceleration 

column in Section I are explained here.  For the map it is essential to determine terms 

such as (δK, δK) and (x,x)I in Eqs. (2.6) and (2.7).  The derivation of those equations relies 

on the assumption that (x,a)I =0, and must be a condition that is imposed in the 

optimization of the parameters.  For good beam stability we also require telescopic 

focusing of this section, such that (a,x)I vanishes simultaneously.  Since potentially large 

sources of higher order geometric aberrations may actually derive from the deceleration 

column, then we examine the magnitude of the higher order terms. 

 It will be shown that it is possible to determine some aberration terms from the results 

of ray tracing.  This will be done from the initial and final positions given by the ray 

trance result.  We do this for the purpose of comparing the ray trance and map results 

with some amount of detail, keeping in mind that it is more efficient to determining the 

aberrations from the map-based approach.  Modifications to the COSY code have been 

implemented in order to calculate the map elements of single or multiple gap structures of 

axial symmetry.  COSY uses the potential, V(r,s), to determine the matrix elements via 

integration of the equations of motions as described in Chapter 1. 

 Two methods exist for determining the potential.  The first method relies on the fact 

that a system with axial symmetry allows the potential distribution, V(r,s), to be 
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determined from the derivatives of the potential distribution along the s—axis (r=0) 

[Reiser94b].  An analytical form of on-axis potential may be obtained from models based 

on measurements as described in the literature [Hsi-men86].  One disadvantage is that the 

analytical expression of V(0,s) is usually an approximation whose errors become 

amplified as one evaluates higher and higher derivatives.  Hence, one has to be extra 

careful in calculating the higher order aberrations from approximate on-axis functions.  

Another problem is that the parameters that can be specified with approximations are 

limited in number and range of validity.  This is true of gap models, such as the 

IMMCAV1 subroutine in Appendix B, where only the gap width and tube radius may be 

specified as geometrical parameters. 

 The second method that is used to determine the potential off-axis is a more physical 

model that approximates the system by representing the electrodes as a sum of discrete 

charged rings.  A Poisson solver determines the charge on each ring that is necessary to 

satisfy the equivalent boundary conditions, usually the electric potential of the electrodes 

[Geraci02].  Since the method is more accurate in determining the potential even close to 

the walls of the structure, evaluating off-axis fields are more immune to errors at the 

higher derivatives.  Also, the method permits a realistic representation of the electrodes 

by including effects such as the edge curvature of the tubes (see Appendix B).  Once the 

electric fields are expressed as the sum of the fields of charged rings, the field or potential 

on-axis is represented as a sum of analytic functions.  DA methods can then be used in 

COSY to evaluate off axis fields to arbitrary order. 

  As an example, we start with the model for a single gap structure, or immersion lens, 

as shown in Fig. 2.12.  Ion trajectories come in parallel from left to right as they pass 
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through the fringing fields at the region of the gap shown by the lines of equipotential.  

Notice that right as the beam passes the gap region, its envelope grows in size even as the 

rays are getting diverted from the optic axis.  This occurs because the first half of the gap 

is diverging, while the second half is converging. 

 
Figure 2.12   Immersion lens structure with ions coming in with parallel trajectories 
from left to right.  The lines of potential along the center illustrate the fringing 
obtained in the gap region.  

 The results in Fig. 2.12 are obtained from a simulation using Simion 7.  The values of 

the initial and final radial positions, rf and ri, respectively, are plotted in Fig. 2.13.  From 

them we can extract the value of the aberrations by applying a 5th order polynomial fit.  

A comparison is made with the results obtained for the equivalent structure implemented 

in COSY.  We have used the immersion lens structure called ONEGAP in COSY, which 

uses the method of charged rings to determine the potentials.  The aberration coefficients 

are listed in Table 2.1 in columns two and three, for COSY and Simion, respectively.  

Notice that the amount of error in the coefficient gets larger for higher and higher order 

terms.  Notice, that if we apply ri=0.5 mm the accumulated error at rf between the two is 

actually only 5.6%.  The errors are mostly attributed to the fact that the curvature of the 

tube at the gap regions is specified with an accuracy limited by the use of 5 mesh points.  

The results, however, agree reasonably well in order to apply them to the map of the 

spectrometer. 
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Figure 2.13   Plot of the 
final versus initial radial 
positions, rf and ri, 
respectively, of the 
simulation in Figure 2.12.  
A 5th order polynomial 
fit is used to extract the 
aberration coefficients 
from Simion 7 results.  
The curve obtained from 
applying the aberrations 
according to COSY are 
plotted for comparison.  
The coefficients are listed 
in Table 2.1. 

 
Table 2.1   List of coefficients determined by numerical simulations. 
 

order of coefficient 
                    [units] 

COSY 
coefficients 

SIMION 7 
fit coefficients 

error 
[%] 

1   (x,x)        [m/m] 0.1663 0.1736 5.9 

3   (x,xxx)     [m/m3] -364.4 -281.9 23 

5   (x,xxxxx) [m/m5] -139900 -293100 110 
Before going on, we should make note of the fact that these structures can be 

rranged back-to-back to simulate multi-gap acceleration columns.  There are some 

strictions, however, since the fields of separate structures are not allowed to overlap if 

ey are to be evaluated as individual maps.  If two gaps of equivalent potential 

ifference are moved close to each other the superposition of the fringing fields will 

ffectively weaken the focusing power of the combined system.  This effect will not be 

flected in the map if calculated under similar conditions.  As a general rule of thumb, 

e gaps should be separated by at least three tube radii in order to avoid an overlap 

etween the fields of each gap.  Otherwise, the boundary conditions need to be redefined 

 avoid errors. 
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 The boundary conditions for multi-gap acceleration columns can actually be specified 

with two of the subroutines added to COSY as part of this study.  The subroutines 

CUSCOL1 and STDCOL1 allow the user to specify the boundary conditions for multiple 

column structures in conjunction with the subroutine ACCELCOL1, which calculates the 

map.  The use of these structures is described in more detail in Appendix B.  These 

accelerating columns are commonly used for boosting the energy of ions after extraction 

from a region of ionization.  They are also common to Tandem, Van DeGraff, and other 

similar DC acceleration devices. 

 The accelerating column of the dual-potential spectrometer did not require 

overlapping gap structures.  Consequently, its map is calculated using two immersion 

lenses of the type shown in Fig. 2.12.  The simulation was also done with Simion 7, not 

only for comparison, but also to obtain the beam envelope.  Some development efforts 

are still needed to make such graphical representations available in the COSY code 

system.   

 The diagram of section I is shown in Fig. 2.14 as a cross section along the x—s plane.  

The gaps are 1 cm in width and the radius along the column is kept constant at 5 cm.  The 

beam enters from the left at 100 keV and is decelerated to 29.9 keV in the first gap.  The 

map of the first gap is generated in COSY from the entrance of section I to the dotted 

line, where it has parallel-to-point focus. 

 The map of the second gap goes from the dotted line on to the end of section I to 

obtain point-to-parallel focus.  The full map of this system gives telescopic focus with a 

magnification of (x,x)I=-2.135, and at (δK, δK)=10 as the beam exits at 10 keV.  A 1% 

value of δK before deceleration becomes 10% after.  By symmetry the column also 
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imposes telescopic focusing in the y—s plane.  The beam envelopes along both x and y 

are plotted under the same scale in Fig. 2.15. 

 Finally, we compare the results of the phase space distributions obtained from Simion 

 
Figure 2.14   Cross section of the deceleration column along the x—s plane of section I.  
The beam comes in from the left at 100 keV then gets decelerated to 29.9 keV in the first 
gap and to 10 keV in the second.  

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

16

gap 2 (19.9 kV)gap 1 (70.1 kV)

bo
un

da
ry

 (m
m

)

z (mm)

 xm
 ym

 
Figure 2.15   Plot of beam envelopes along x and y.  The dotted line represents the center 
position of the gap for the labeled amount of deceleration. 
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7 and COSY in Fig. 2.16.  At least in the x—a phase space plot, the effects of the 3rd and 

5th order aberrations are very clearly seen from the boundary-type distributions.  The 

distorted ellipse given by COSY has a more pronounced "S-shape" due to the stronger 

3rd order aberration from that of Simion.  It also may seem that there is an effect from 

extra drift in the COSY ellipse orientation; however, this is actually a result from the 

difference between the calculated first order terms. 
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Figure 2.16   Phase space distributions in the x—a and y—b phase space given by 
Simion and COSY. 

2.4 Purity according to the enhancement factor 

 In an earlier section we characterized the spectrometer based on its first order 

spectrum and demonstrated its effectiveness at separating isobars at a mass resolution of 

20,700, the results of which are presented in Fig. 2.3.  Now we should like to characterize 

the spectrometer in more detail by using a recommended standard.  
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 We shall now introduce some concepts that are useful in characterizing the 

performance of a spectrometer and apply it to the one calculated earlier.  First the 

following terms must be defined: 

 w  -  denotes wanted particles of mass m 

 u  -  denotes unwanted particles of mass m+∆m 

 i  -  denotes beam before the separator  

 f  -  denotes beam after the separator 

 N - number of particles w or u particles accepted 

 C - concentration of accepted w or u particles 

We assume that only unwanted species of mass m+∆m make up the impurity.  The initial 

and final purity ratios are defined by,  

uiwii NNr /=       (2.10a) 

and 

ufwff NNr /=  .     (2.10b) 

Usually one is interested in the concentration of wanted species after mass separation 

defined by 

1)/11( −+=
+

= f
ufwf

wf
wf r

NN
N

C .    (2.11) 

But, rf is a function of ri and the mass resolution and may be determined from, 

if rrEF /= .      (2.12) 

where EF is the enhancement factor [Camplan81], which is a function of the mass 

resolution, Rm=m/∆m.  This enhancement factor varies with the emittance of the beam 

and the shape of the distribution.  If we know this enhancement factor then we can 

always determine the concentration, Cwf, for some ri.  We will adopt the Gaussian 
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distribution as the one which best describes the phase space density and define the 

emittance such that 95% of the particles lie within 4 times the rms width (see Fig. 1.8) 

under the phase space parameters defined at the end of Section 2.1. 

 The first thing that we shall like to determine is the maximum order that is necessary 

in determining the effects on the performance.  Again, one must be careful that errors are 

not being amplified and making it seem as if we need more accuracy.  In Fig. 2.17 we 

plot the results of the transmission and EF as a function of the order of the calculation.  

We have assumed that vertically aligned slits have been set at the exit of section L to 

suppress unwanted beam, w.  Notice that the transmission tends to level out after 

applying higher than 3rd order aberrations.  The effects caused by the aberrations that are 

left after applying the multipole fields seem to have negligible effects after this point.  It 

seems that the best transmission expected for Rm=20,000 will be about 93%. 

 The enhancement factor improves as higher order terms are corrected.  The 

enhancement tends to level out to a point where further improvements become minute 
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Figure 2.17   The transmission and enhancement factor as resolution of Rm=20,000 
as a function of the order of the calculation. 
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after 3rd order.  The effects of aberrations past 5th order seem to have little effect on the 

spectrum and further corrections offer no improvement.  The simulations are therefore 

sufficient accurate at 5th order. 

 We also need to vary the separation between two masses in order to determine the 

dependence of EF on Rm.  Note that we take Rm as being 1/δm here.  Again, this result is 

dependent on the initial density distribution, which we have assumed to be Gaussian.  

The results are illustrated in the two plots in Fig. 2.18.  Plot (a) is that of the final wanted 

and unwanted concentrations as a function of Rm assuming that the initial concentrations, 

Cwi and Cui, are equivalent.  Plot (b) is the enhancement factor as a function of Rm.  Two 

inset plots have been included to show the mass separations corresponding to both Rm= 

2,000 and 50,000. 

 By applying a phase space of zero width in the horizontal we are able to test the 

contribution of aberrations to the final line width.  Evidently, the resolution calculated 

here seems to be very close to some fundamental limit.  Right after turning on the 2nd 

order aberrations the "line" spectrum looks no different that those with finite emittance of 

the Gaussians distributions.  The only conceivable way to go beyond this limit is to 

further reduce the cross terms that arise from correcting the x—a phase space aberrations. 

 One dominant cross term that limits any further enhancement is the (x,aδK) 

aberration.  It grows with the 2nd order correction imposed by the hexapoles at MH and 

ML3.  Whenever the energy spread gets beyond ±25 eV, the enhancement factor suffers 

significantly due to this term.  There were attempts to suppress this type of chromatic 

aberration by applying multipole fields at ML1, ML2, and ML4 and fitting on the 

reduction of the second moment along horizontal, <x2>.  Although there was a slight 
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reduction to the second moment, a negligible improvement was seen on the part of the 

enhancement factor.  The only way to gain in the enhancement may be to reduce δK from 

the source.  This is one of the advantages of using the ion cooling system that follows the 
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Figure 2.18  (a) Concentrations of wanted and unwanted species after separation as a 
function of resolving power.  (b) EF as a function of resolving power.  Inset plot 
shows the separation of two masses according to Rm. 
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gas catcher described in Chapter 1.  We do not quote any numbers here for the 

improvements that are expected, since gas catchers are a relatively new development and 

are still under much research. 

 We summarize this section with a set of plots which show the expected mass lines of 

the spectrometer system after all the corrections have been optimized for suppression of 

hither order terms.  The full emittance in the x— and y—planes are imposed to obtain the 

mass spectra from lines of m/∆m=20,000 as shown in Fig. 2.19.  Plot (c) is that of a snap 

shot at the end of Section L.  We can compare this plot with two plots above this one 

taken for Section H.  In plot (a) we have removed the energy spread in the beam, while in 

plot (b) we have imposed the energy spread to show the effect of the energy dispersion 

from Section H.  Without the energy spread imposed on the Gaussian distributions we get 

very close to what is expected from the 1st order calculation.  The achromat condition 

after Section L clearly improves the resolution of the system significantly. 

 Unfortunately, this may not be the end of the story when it comes to factors that affect 

the mass resolution.  We have not accounted for the possibility of formation of tails that 

result from beam scattering with residual gases.  This effect causes the formation of tails 

that will also cause the enhancement factor to drop [Menat42].  The tails usually drop off 

slowly as exponential as a function of momentum and can migrate far across the 

spectrum.  The dual-potential spectrometer, however, eliminates much of this effect 

already.  Since the effect grow in proportion to the vacuum of the system, it may also be 

important to go with ultra-high vacuum systems.  Also, it may be necessary to make some 

studies on the effect of misalignments of any of the components.  At this point we have 

only seen the properties of an ideal spectrometer where everything is perfectly aligned.  
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Figure 2.19   Mass spectra at two sections of the mass separator for m/∆m=20,000.  The 
top most figure (a) illustrates the spectrum for a beam with no energy spread at the 
focal plane of the first section of the separation.  The next plot (b) shows what a 
Gaussian distribution in energy with 95% of particles having energy between 
∆K/K=±5x10-5 (±5 eV at 100 keV).  The last plot (c) demonstrates how the achromatic 
character added by the section after deceleration can improve the resolution. 

Furthermore, one also has to keep in mind that ripples and other power supply 

instabilities will be magnified by a factor proportional to Rm and providing feedbacks 

systems for stability will be an important part of the overall system design. 

2.5 Issues related to beam matching and the pre-separator 

 This chapter shall end with a discussion related to sections of the rare isotope 

accelerator that lie before and after the isobar separator.  This is relevant since those 

sections affect some aspects in the design of the separator.  We shall also point out how 

possible alternatives to the pre- and post-separator sections will affect the design. 
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2.5.1 Obtaining the required aspect ratio 

 Mass separator performance will always trace back to the beam characteristics of the 

emitting ion source.  We have assumed that the extraction has axial symmetry and that 

the x—a and y—b emittance are equivalent.  A beam of 10π mm-mr emittance area for a 

100 keV/250 amu implies that there is a 0.0093 mm-mr normalized emittance.  Although 

this is a reasonable assumption for most common ISOL ion sources, beams extracted 

from electron cyclotron resonance (ECR) type sources must be considered as a possible 

option.  Such sources are good for providing higher charge state; however, they tend to 

have emittances that are higher by at least a factor of 3.  Since the separator is designed to 

accept a maximum divergence of am=±20 mr, the beam aspect ratio would have to shifted 

to ym/xm=8/3 for a beam width of 3 mm in x.  Consequently, the mass resolution would 

suffer by at least factor of 3 if the transmission were to be conserved.  In order to obtain 

different aspect ratios, however, there will be the need to design a beam optical system 

that can vary the output ym/xm.  Beam matching with the separator will require that it also 

yields upright ellipses (αx= αy=0), βy=1.6, and a value of βx that varies from 0.025 to 

0.075. 

 One possible design solution is shown in Fig. 2.20.  This sextet system is reminiscent 

of the one in Fig. 1.7.  It has the same overall length, but the triplets have been shifted 

away from the center by 11.5 cm.  This sextet is different in that it has magnifications of 

Mx=-1/ 8  and My=-1.  The plots of the initial and final ellipse show the effect on the 

x— and y—phase space.  We have assumed that the beam is circular at the entrance with 

βx=βy=1.6 and αx= αy=0, and its telescopic properties insure that the ellipses will be 

upright at the exit.  This system has had to lose the symmetry in the excitation of the 
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quads compared to those of the sextet in Fig. 1.7; however, the values of the excitation 

differ by less than 20% from the symmetric case.  We have listed the excitation values in 

Table 2.2 for direct comparison.  We should note that it is possible to shorten the outside 

quads and lengthen the middle quad a bit for each triplet value is similar in magnitude. 

s
x

s
y

Q6Q5Q4Q3Q2Q1

Q6Q5Q4Q3Q2Q1

 
 
Figure 2.20   Sextet with magnifications of Mx =-1/ 8  and My=-1.  Dimensions are 
similar to those of the sextet in Fig. 1.7, except that the triplets have been shifted 
outwards from center by 11.5 cm. 
 
Table 2.2  List of electric quad excitation voltage values in kilovolts. 
 

quad Fig. 1.7 Fig. 2.20 

Q1 -0.7415 -0.7576 

Q2 1.309 1.152 

Q3 -0.7415 -0.6578 

Q4 -0.7415 -0.8918 

Q5 1.309 1.502 

Q6 -0.7415 -0.6484 
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 In order to obtain an aspect ratio of ym/xm=8 it necessary to use two similar optical 

systems in tandem to obtain Mx=(-1/ 8 )(-1/ 8 )=1/8 and My= (-1) (-1)=1.  Finding the 

solution of a single sextet that obtains Mx=-1/8 has not been possible using the 

dimensions of the quads shown; however, further studies might yield such a solution.  

The advantage of using a tandem system is that it allows some manipulation of the aspect 

ratio while still retaining telescopic focusing.  This ultimately gives the system more 

options in tuning the system in order to match the beam to the separator. 

 One other important thing to keep in mind is that after the mass separation, it will be 

necessary to bring the beam back to an aspect ratio of ym/xm=1 under upright ellipse 

focus.  Otherwise, the rest of the rare isotope accelerator must be designed to accept 

aspect ratios different from unity, which may not be very practical.  The ideal thing to do 

is to place a similar matching system but in reverse right after re-acceleration to 100 keV. 

2.5.2 Choosing the scheme of separation 

 The solution for the dual-potential spectrometer as introduced above depends on a 

deceleration from 100 keV to 10 keV between the two magnetic separations.  The system, 

however, can just as well be operated in reverse, in which case the beam must come in at  

10 keV from the side of the source, be separated in momentum by section L, and then be 

accelerated to 100 keV for the energy correction from section H (see Fig. 2.2).  The 

diagram in Fig. 2.21(b) depicts this situation.  The diagram in Fig. 2.21(a) depicts the 

current design scheme.  A third situation is depicted in Fig. 2.21(c) in which the beam 

comes in at 10 keV, is accelerated to 100 keV to go through the same system in (a) 

followed by a deceleration back to 10 keV.  The differences lie in how other essential 

sections are floated at high voltage (HV) on top of an isolated platform, or HV Deck.   
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Figure 2.21   Various schemes of source extraction, separation, and post-
acceleration.  Preseparation and beam matching have been left out for simplicity. 
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Every section that requires isolation has been labeled and encompassed by a dashed line.  

It is assumed that there exists a DC acceleration column at each boundary where the 

beam crosses the dashed line.  For simplicity, we do not show the beam matching 

systems discussed in the previous subsection. 

 It is also necessary to consider the first stage of RF acceleration that follows right 

after the mass separator.  That section will consist of a buncher and a radio frequency 

quadrupole (RFQ) accelerator that accepts beams of velocity 0.0015c.  Since ions of 

different mass will have different velocities coming off of the separator, it will be 

necessary to apply DC acceleration before the ions enter the RF accelerator.  This 

requires that the RF accelerator system be isolated at high voltage.  Below the boundary 

that depicts the HV deck of the RF accelerator we show the necessary range for the 

potential on the platform considering a mass range between 6 to 240 amu.   

 A preliminary evaluation has been made to assess which scheme is the most practical.  

For each scheme we factor in some of the technical difficulties and cost.  The following 

factors favor the use of scheme (a) in Fig. 2.21: 

1. Sect L is physically smaller, (see Fig. 2.2).  More floor space is available if 

section L is isolated instead of Sect H. 

2. An additional 90 kV would be necessary if using scheme (b) or (c) to match the 

accepted RFQ velocity.  Considering that the RFQ system may require power 

levels on the order of 50 kW favors using lower isolated potentials. 

3. The distance between source and separator is expected to be at least 20 meters 

long, which makes it necessary to consider effects during transport.  The cross 
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section for scattering with residual gases is proportional to the inverse of the 

velocity, making such events at least 3 times less probable with 100 keV ions.  

Also, the higher emittance at 10 keV would make the beam more susceptible to 

aberrations from focusing elements. 

4. Fluctuations of the voltage at the ion source on top of 100 kV are less noticeable 

than at 10 kV.  This can be important if there is any energy resolving devices.  For 

example, to resolve a ±5 eV energy spread at 10 keV requires 10 times less 

resolving power that for a 100 keV beam. 

Whatever scheme is ultimately adopted will affect the isolation of both the source and RF 

acceleration.  There are still some development efforts that may go into the final 

determination. 

2.5.3 Considering some aspects of the pre-separator 

 Before concluding this chapter we should consider some minor aspects of the pre-

separator.  The current layout of the RIA facility has the production targets several meters 

below ground level [Savard01].  The isobar separator will be at ground level along with 

the rest of the post accelerator system.  This requires that the beam be bent upward and 

then horizontally again as shown by the scheme in Fig. 2.22.  This section makes up what 

is called the preseparator system.   

 The scheme shown in the figure assumes that there will be no horizontal bends 

imposing momentum dispersion.  This entails using electrostatic deflection plates as the 

one shown for the bend that sends the beam up towards ground level.   This bend may be 

used to limit the maximum energy spread of the beam.  This will be important in 

eliminating energy tails that form at the extraction region of the source where vacuum 
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tends to be poor [Camplan81].  An energy resolution of K/∆K>1000 would suffice the 

best here (i.e. accepting a ±50 eV energy window). 

 The first dipole magnet should bring the beam back to the horizontal plane.  It will 

allow the option of sending of beams containing other isotopes of interest to alternate 

channels where they may be directly studied or collected for medical and other 

applications.  A resolution of about Rm=1000 may be sufficient for this purpose.  The 

bend should avoid adding any dispersion that will interfere with that of the isobar 

separator.  This separator should only impose (y,δm) and (y,δK) dispersions to the beam 

 
 
Figure 2.22   Conceptual design of preseparator for the RIA facility.  The beam must be 
transported from below ground level to the isobar separator and rare isotope accelerator 
above ground. 
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and avoid any dispersion in the x—plane.  This will avoid any chromatic interference 

with the isobar separator and allow the beam to keep a more definite structure in the 

horizontal plane.  The rest of the beam transport in the horizontal plane should either be 

electrostatic or achromatic. 
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Chapter 3 

APPLICATIONS WITH ACCELERATING RF DEVICES OF AXIAL SYMMETRY 

 In this chapter we shall focus on aspects related to the RIA driver accelerator, 

although some are applicable to the rare isotope post-accelerator as well.  The first 

section of this chapter will discuss the implementation of axially symmetric electrostatic 

devices with time-varying fields into the COSY code system.  Such devices are necessary 

not only for acceleration, but also for preserving longitudinal properties of beams with 

bunch structure.  Some numerical examples are provided that may serve as a reference 

for calculating maps of such structures.  The next section will discuss the application that 

requires the optimization tools and higher order capability of COSY for the design and 

simulation of multiple charge state beam transport systems in the RIA driver.  It will also 

cover some background about the design of the driver system and reasoning behind the 

use of multiple charge state beams.  Finally, we shall give an overview of the charge 

stripping calculations, since they provide the basis for the design. 

3.1 Axially symmetric devices with time-varying fields 

 Electrostatic devices having axial symmetry play a vital role in acceleration systems.  

In fact, axial symmetry is used almost exclusively in all accelerating structures.  There 

are some exceptions, such as in the case of RFQ accelerators, which have midplane 

symmetry.  This type of accelerator, however, is mainly applicable at low β 

(approximately β=0.001 to 0.05) where the electrostatic quadrupole strength is most 

effective for very heavy ions of large mass to charge ratio, m/q.  On the other hand, 
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structures with axial symmetry having static or time-varying fields are used throughout 

the spectrum of velocities. 

 The previous chapter covered axially symmetric structures with DC acceleration and 

demonstrated that maps of such structures could be calculated to arbitrary order with 

COSY.  This chapter will discuss how the same can be done with structures having time-

varying fields.  The power of using map optics for optimizing the design of a system will 

be demonstrated with a particular application at the driver linac system.  We shall use the 

term RF structure or device at times since the velocity of heavy ions and the practical 

dimensions of accelerating structures demand that the fields vary at RF frequencies 

(approximately between 1 MHz and 1 GHz).   

3.1.1 Time-varying fields in COSY 

 The algorithms in COSY are very well suited for applications in beam dynamics in 

which energy conservation applies.  This is especially useful in repetitive systems, such 

as in storage rings.  As pointed out through (1.22f), however, much of this capability 

stems from the assumption that the variable, δK, is a constant of the motion, which tends 

to limit the way maps for RF structures are evaluated.  The only known subroutine that 

calculates maps of structures with time-varying fields in COSY is one called 'RF', for RF 

cavity.  It allows the approximation of a cavity by applying a kick in the electromagnetic 

potential over some infinitesimal section of s.  It also allows the kick to be variable along 

the x—y plane.  Unfortunately, it is not straightforward with such a model to make a 

correlation between the simulation and the geometry of a realistic RF device.  To go 

beyond this limitation the program needs to be able to evaluate systems that take up a 

finite amount of space along s and account for the geometrical dimensions of the 
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structure in some detail.  In particular, one should have the option to specify the time-

dependent field distribution of the system.  This requires that the equations of motion 

have an s dependent form of δK' as was demonstrated by Geraci and others by the 

derivation of the equation [Geraci02], 
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is the so-called relativistic factor.  Here, ps is the longitudinal component of the 

momentum vector, p=( px, py, ps), for any arbitrary particles in phase space.  K0 and p0 are 

the reference particle momentary kinetic energy and magnitude of the momentum, 

respectively.  The rest of the constants and variables are the same as those defined in 

section 1.5.  Eq. (3.1) is incorporated into a modified version of COSY such that it 

replaces Eq. (1.22f).  It is important to keep in mind that in deriving Eq. (3.1) only the 

time dependent interaction of the electric field is accounted for and time-varying 

magnetic fields are neglected.  This is generally a reasonable assumption, considering 

that axially symmetric induced magnetic fields are very weak in comparison to those of 

the electric.  In realistic situations there are some stray electric and magnetic fields that 

are induced.  Some of them stem from the electrical flow through the supports inside the 

structure [Ostroumov01].  Current RIA based studies have demonstrated that some of 

these fields carry a dipole component that steer the beam, especially for quarter-wave 

resonators at frequencies as low as 115 MHz.  Such effects are, however, mainly 

perturbative in comparison to the effect of the axially symmetric fields.  They are beyond 
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the scope of these studies, and shall be neglected here so that we may concentrate more 

on the details that are of primary importance in the dynamics of the beam. 

 The added capabilities in COSY allow the user to simulate effects from axially 

symmetric one-, two-, three-, and four-gap structures, as described in Appendix B.  A 

sinusoidal time dependence on the field has been assumed for any structure, although the 

user can program other functions if necessary.  The one-gap model is conceptually just an 

immersion lens with the potential drop between the tubes varying sinusoidally.  The field 

distribution for calculating the map of this structure may be evaluated through either the 

method of evaluating derivatives of the approximate on-axis potentials [Reiser94b] or by 

using the more accurate method of charged rings [Geraci02].  This also applies for the 

two-gap structure.  For all other structures only the method of charged rings is applicable.  

Aside from being able to specify the maximum potential and phase of the accelerating 

tubes, it is also possible to specify other parameters.  Some of these parameters include 

the gap widths, spacing between gaps, radii of apertures, and dimensions of outer cavity 

walls.  The parameters may be varied to optimize beam properties along the x—a, y—b, 

and l—δK subspaces as will be discussed next. 

3.1.2 Properties of the longitudinal phase space 

 A brief overview of is given here of the expected values for the longitudinal subspace 

map.  Also included is a review of some of the relevant quantities that are useful and any 

units of conversion that apply to the longitudinal phase space.  Since the effects of the 

longitudinal phase space on its respective ellipse are slightly different than those of the 

transverse phase space, it is helpful to start with some discussion of the Twiss parameters. 
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 It is usually more common to find longitudinal phase space expressed in terms of time 

and energy difference, relative to the reference particle.  In COSY the choice of units are 

those of l and δK, which are proportional to time and energy spread as pointed out in 

(1.6).  With the use of these coordinates one still needs to define some ellipse shaped 

boundary that is based on the beam distribution in longitudinal phase space.  The Twiss 

parameters of this ellipse are related by the relation, 

12 =− lll αγβ ,    (3.2) 

and the maximum extent of the boundary along the l—δK plane (see Fig. 1.5) are given 

by, 

llml εβ=   and  llmK εγδ = .   (3.3) 

Here, εl is the longitudinal emittance in the l—δK plane and has units of meters.  In these 

units one often refers to the total bunch width as the quantity 2lm and the total energy 

spread as 2δKm.  A quick review of some useful conversions to obtain these results in 

different units is now in order. 

     All quantities are specified relative to those of the reference particle, such that ∆t is 

the difference in time-of-flight, ∆s is the difference in length along the optic axis, ∆β is 

the difference in velocity over c, ∆p is the difference in momentum, and ∆K is the 

difference in energy between some particle and the reference particle. According to the 

definition of the canonical variable, l, in Eqs. (1.6) the relation, 
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may be used to convert between units of the first coordinate in the plane.  For the other 

coordinate we can use the relativistic forms of momentum and kinetic energy to arrive at 

the relation, 

 92



0
2

00000

1
)1(

1
p
p

K
K ∆=∆

+
=∆

γγγβ
β .   (3.5) 

Thus for example, to convert εl into units of time-of-flight and energy one needs to 

multiply by the factor K0/µ0.  A typical longitudinal emittance is expressed in ns-keV/u 

which would further require that this quantity be divided by the unit mass, A.   

 Instead of using units of time, one can also use units that correspond to the RF phase 

shift, ∆ϕ, for some frequency, ν.  This phase shift can be calculated by t∆⋅=∆ ωϕ , 

where ω =2πν is the angular frequency in units of radians.  The bunch width may then be 

specified as 2lm, 2∆tm, 2∆sm, or 2∆ϕm, while the relation in (3.5) can be used to obtain 

velocity, energy, or momentum spread in the other variable.  With this bit of useful 

knowledge we return the discussion to the longitudinal subspace. 

 One distinct feature that is different from the transverse plane derives from the 

transformation of the sigma matrix.  Since the longitudinal phase space is not dependent 

on the energy of the reference particle, the inverse transformation no longer requires the 

application of some scaling factor, such as p0,0/p0,f in the transverse subspace.  The final 

Twiss parameters are evaluated from the initial ones by the following equations resulting 

from the transformation of the sigma matrix of the type shown in Section 1.6: 

2
0,0,

2
0,, ),(),)(,(2),( ll KlKKKlKKlfl δβδδδαδδγγ +−=     (3.6a) 

   ( ) ),)(,(),)(,(),)(,(),)(,( 0,0,0,, llllllll KlKKKKlKKKlfl δβδδδδαδδδγα −++−=    (3.6b) 

      (3.6c) 2
0,0,

2
0,, ),(),)(,(2),( llllll lKlKlfl βδαδγβ +−=

 We shall now like to consider the first order matrix elements under the action of a 

drift of length, L0.  To begin with, a particle will not experience any change in energy so 

that (δK,δK)=1, (l,l)=1 and (δK,l)=0.  The relative shift depends solely on the velocity of 

the particle relative to that of the reference particle by, 
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and with the use of (3.5) yields the form, 
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Hence, the longitudinal submatrix for the drift simplifies to,  
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The values of the matrix can then be substituted into (3.6c) and we obtain from the first 

equation in (3.3) that the half-bunch width varies with the initial twiss parameters 

according to the relation, 
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This function defines the envelope within which the bunch resides in throughout 

propagation along the drift.  The equation inside the square root is that of a parabola 

which opens upward.  The minimum is always greater than zero and occurs at 

 to give 0,
2

00,0 /)1( llL γγα += 0,/ llml γε= .  The minimum may occur at a positive or 

negative value of L0 depending on the sign of 0,lα . 

 It should be noted that for the subspace in the longitudinal plane a drift does not 

imply that there is a field free region.  It only means that there is no time dependent fields 

and that the Eqs. derived in (1.15) under the arguments of symplecticity still apply.  As 

far as the topic of map elements under time-varying fields is concerned, we shall only 

study those having axially symmetric properties.  Monomials containing l or δK will not 

necessarily vanish; therefore, the transformation of the type described in Appendix A 
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would no longer give the same symplectic relations.  Although we do not go into the 

details of the canonical transformation, it is important to mention that such relations can 

be useful in checking the validity of some map elements.  Although one can use the 

symplectic approach to check accuray, there is little hope that it will lead to better 

performance in evaluating all the coefficients of the map. 

3.1.3 Map calculations with RF devices 

 This section will illustrate the numerical results from a simple model with time-

dependent fields.  The model consists of only one two-gap structure that is set at the 

center of two equivalent drifts at either side.  Between the starting point and the midpoint 

of the first encountered gap is a distance, L.  As shown in Fig. 3.1, the system is 

symmetric about the center point of the tube that has a potential varying as, 

)cos(0 ϕω += tVV      (3.10) 

where V0 is the maximum potential.  The tube is centered inside a grounded cavity 

structure that also has axial symmetry.  The voltage characteristics and dimensions of the 

system are specified through the input parameters of a subroutine, called TWOGAP 

described in Appendix B.  The parameters used in this example are listed in Table 3.1, 

where the parameters V0, ϕ, and L are vary. 

 The gap-to-gap distance has been evaluated based on the velocity of the reference 
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Figure 3.1   Two-gap structure system symmetric about the center. 



particle and the frequency of the cavity.  For this application we need the particle to 

experience the same polarity and magnitude of the field at both gaps.  This implies that 

the cavity must undergo a (n+1/2)π shift in ϕ as the particle travels from one gap to the 

other, where n is an integer.  If we assume that the velocity does not vary appreciably 

after the first gap then the gap-to-gap distance is simply given approximately by, 

Table 3.1   Parameters used for TWOGAP cavity in Fig. 3.1. 
 

Frequency (ν) 350 MHz 
V0 (varies) 
ϕ (varies) 
Gap-to-gap distance 17.1 cm 

Width of both gaps 2.1 cm 

Inner radius of tube (RI) 2.5 cm 

Outer tube radius (RO) 5.0 cm 

Aperture radii (RI) 2.5 cm 

Radii of curvature (RE=RD) 0.5 cm 

Cavity radius (RRES) 7.1 cm 

 

β0λ(n+1/2)      (3.11) 

where λν=c.  The gap width has been taken to be one eighth of this distance.   

 The parameters assumed for the incoming beam are listed in Table 3.2.  These are 

required of the application to be discussed in a later section.  Notice that we have 

assumed that the longitudinal ellipse is initially upright; thus, according to (3.9) the 

bunch is expanding with s as it approaches the cavity.  Since the transverse phase space 

effects will be neglected for now, we assume that εx=εy~0 for these calculations. 
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Table 3.2   Properties of the incoming beam for the model described by Fig. 3.1. 
 

reference particle energy/A 85.3 MeV/u 
unit mass (A) 238 

charge state (q0) +90 

εl 
14.7 µm 

(20 keV-ns/u) 
αl 0 
2lm 4 mm 
The effects that the oscillating field will have on the bunch are heavily dependent on 

 phase of the cavity.   To show this dependence we take the case of L=13.2 m and 

=2.2 MeV being constant as the phase varies from –180º to 180º.  The plots in Fig. 3.2 

ow four different quantities as the phase is varied relative to the phase ϕ= ϕb.  The 

ase ϕb is defined as the point where a minimum in (δK,l) occurs, which is at –53.4º 

own by the upper plot.  Notice in the same plot that (l,δK) also goes through a minimum 

this phase.  This is characteristic of system with symmetry along s. 

or 2∆ϕm 8º 

The bottom plot shows the fractional energy gain of the reference particle.  The 

ximum energy gain occurs at ∆ϕ=90º, and signifies that at this phase the tube takes on 

 maximum negative potential as the particle is in the region of the first gap.  

nversely, maximum energy loss occurs at ∆ϕ=–90º.  Although not obvious by the 

ts, what is happening between ∆ϕ=–90º and 90º is that the particles at the front of the 

nch are losing energy relative to the ones at back.  This is referred to as bunching in the 

se that particles in the front had a higher energy than the reference particle, and 

refore, arrived earlier.  The rate of expansion of the bunch is either decreased, or if V0 

high enough, the bunch will actually begin to contract.  Going from expansion to 

ntraction is equivalent to stating that αl changes sign from negative to positive.  
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Outside of this phase region the opposite effect occurs and we call it debunching.  Note 

that (δK,l) remains negative at the bunching region of the phase.  Since this is a general 

property, it is useful to impose the conditions (δK,l)<0 and (K0,f-K0,0)/ K0,0=0 when 

searching for ϕb.  It should be also be pointed out that the "bunching strength" of the 

system is actually proportional to this quantity, and we shall refer to -(δK,l) as the 

"bunching strength" of the cavity. 

 One interesting aspect of axially symmetric devices in DC mode is that they always 

yield a positive refractive power, 1/f, regardless of the polarity of the field [Reiser94c].  

This property, however, does not translate over for the case of oscillating fields.  As seen 

by the second plot in Fig. 3.2, the refractive power actually varies with the phase of the 

cavity.  What we actually get is a refractive power that is proportional to (δK,l), and 

consequently, there is maximum defocus at maximum debunching.  This is an 

unfortunate quality, since a transport system requires bunching throughout in order to 

preserve beam stability in longitudinal phase space.  The ideal situation is to get both 

focusing and bunching, simultaneously, as in the case of a well tuned RFQ.  From the 

plots we can conclude that for a linac with axial structures it is more ideal to approach 

∆ϕ=90º from ∆ϕ=0 without losing too much bunching strength.  Unfortunately, there is a 

trade off and one must settle for something in between that preserves the beam stability.  

Furthermore, there will be a need for refocusing structures to offset the defocusing effect.  

Applications related to beam stability of more complex systems, such as extended 

sections of linear accelerators, would be ideal for this type of implementation in COSY.  

Instead, we shall redirect the discussion to aspects that are related to higher order effects 

with cavities. 
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 The most straightforward method of showing higher order effects in longitudinal 

phase space is to extend the bunch throughout the RF cycle.  We shall define the length, 

∆l(2π), as the distance that the full bunch occupies throughout one period of the RF 

cycle, which is given approximately by 
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Figure 3.2   Relative phase dependence of the quantities (l,δK), (δK,l), 1/f, and (K0,f-
K0,0)/ K0,0. 
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This assumes that we initially have an upright ellipse, and that after a sufficient interval 

of time lm≈le.  Here,  

lllel γεα /−=      (3.14) 

in analogy with the subscript convention used for the x—a phase space in Fig. 1.5.  This 

approximation applies well within a few percent for the ellipse defined in Table 3.2, and 

we adopt those parameters for our initial conditions in this example. 

 It is also helpful to have an idea of how far the bunch can propagate before the full 

bunch width becomes the size of ∆l(2π).  Applying Eq. (3.7) this distance is found to be 

2
)2()1(

)2(
2

0 π
δ

γπ lL
Km

∆+
= .    (3.15) 

Furthermore, we define the ratio, 

)2(/2 πllr ml ∆= ,    (3.12) 

which gives the fraction of the RF cycle occupied by the bunch width.  For the ellipse 

here we find that L(2π) is 53 meters for rl≈0.5. 

 The symmetry of the system in Fig. 3.1 makes it possible to reorient the phase space 

ellipse with the cavity so that it makes a complete flip by the time the bunch reaches the 

exit of the system.  It requires that the relative phase be set at ∆ϕ=0º in order to bunch 

without any gain in energy by the reference particle, and that the value of V0 be set so that 

the energy and time variable magnifications, (δK,δK) and (l,l), respectively, yield a value 

of –1.  This rebunching action is synonymous with telescopic focusing in transverse 

phase space as it has that (δK,l)=(l,δK)=0.  We solve for the value of V0 for a series of L 

values and plot the results in Fig. 3.3.  Notice that as the size of the incident bunch at the 
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cavity grows, while the amount of cavity potential necessary for rebunching goes down 

exponentially.  Clearly there is much to gain in terms of reducing the required RF power 

for rebunching.  On the down side, we see from Fig. 3.4 that the there is a price to pay for 

allowing the bunch to increase.  The phase space plots in this figure have been evaluated 

to fifth order from the values in Fig. 3.3.  Notice that the aberration effects grow with 

bunch width.  The aberrations effectively increase the longitudinal phase space and may 

ultimately result in halo formation as the filamented phase space propagates.  

 Clearly, there are a number of trade-off factors to be considered in rebunching and 

acceleration.  The distortions in the phase space ellipse, whether transverse or 

longitudinal, translate into emittance growth.  At this point we have not even considered 

the effects of changing geometrical factors of the cavity or the linearity of the time-

dependence of the field.  Such factors are restricted by certain technical aspects of 

constructing RF devices and are beyond the scope of this study.  Instead, the discussion 
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Figure 3.3   Cavity potential V0 necessary to obtain upright ellipse at exit of system 
given length L before the first gap.  
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below concentrates on a particular application in which cavities are used for bunching a 

beam of multiple charge states. 

 
Figure 3.4   Resulting phase space plots for each corresponding rl as evaluated to 
5th order by COSY. 

3.2 Applications with multi-q beams 

 The RIA driver linac is to be designed with the capability of delivering high power 

beams of ions from the complete spectrum of masses from the periodic table.  Except for 

a few room temperature RFQ accelerators at the low energy section, the entire linac is 

based on current state-of-the-art superconducting (SC) elements.  With over 400 

independently phased SC cavities ranging in frequency from 58 MHz to 800 MHz, the 

driver is expected to deliver up to 1.3 GV of RF potential [Shepard99].  This translates 

into ~900 MeV protons and ~400 MeV/u uranium ions, when considering independent 

phasing for variation of the velocity profile at each mass.  The maximum energy per 

nucleon becomes limited at lower values for elements of higher Z due to the increasing 

difficulty in stripping electrons away.  A diagram illustrating a simplified diagram of the 

driver is shown in Fig. 3.5 for the acceleration scheme for uranium. 

 A number of factors affect the decision to use SC technology, most of which stem 

from the high power requirement of the linac.  The ultimate goal is to deliver up to ~400 

kW in CW to multiple targets.  SC cavities are ideal for CW operation, and their 
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relatively short, high-gradient designs provide very strong longitudinal focus and high 

transverse acceptance.  This will ultimately lead to reduction in halo formation from 

higher order aberration effects.  Furthermore, CW beam minimizes transient effects in the 

target that would otherwise occur when using pulsed beams, such as from synchrotron 

based schemes or room temperature linacs in pulse mode. 

 Probably the most unique feature of the linac is that it will accelerate multiple charge 

states (multi-q) beams.  This feature allows charge states that would otherwise be 

diverted to a beam dump, to be accepted by the linac for acceleration.  It also reduces 

unwanted radiation at parts of the facility that would otherwise require a considerable 

amount of shielding.  It is estimated that the losses from not accepting multi-q beams 

would have to be made up by requiring a factor of 16 or more output from either ECR or 

other sources that produce high charge states.  To date the best known performance has 

been from the AECR-U source, which can produce about 0.8 pµA of q=30 uranium 

[Lyneis98] [Lyneis02].  Since the present linac design requires two stages of stripping for 

Figure 3.5   Simplified layout of RIA driver linac under the acceleration scheme of 
uranium.  SRF signifies array of superconducting cavity structures. 
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uranium, only a few kilowatts of power would result from this type of source if only one 

charge state is kept from the ECR or after any stripper. 

 The entire linac is designed for transporting multi-q beams throughout, beginning 

with extraction from the ECR source.  We shall not go into detail related to aspects of the 

acceleration of multi-q beams, but instead cite the following references in which relevant 

details are covered: 

o Bunching of a two-charge state (q=28 and 29) DC beam of uranium emitted from 

an ECR source followed by multi-q acceleration through an RFQ and low β SRF 

linac [Ostroumov00a]. 

o Acceleration of a five-charge state beam (q=73 to 77) of uranium through a 

medium β SRF linac after stripping at ~10 MeV/u [Ostroumov00b]. 

o Acceleration of a four-charge state beam (q=88 to 91) of uranium through a high 

β SRF linac after stripping at 85.3 MeV/u [Ostroumov99][Ostroumov00b]. 

The work on the topics listed above is ongoing and these references are not necessarily 

the most recent.  They do, however, offer a good overview of the overall plan for the RIA 

driver linac. 

 The focus here will be on the aspects related to filtering out the unwanted charge 

states and matching of multi-q beams to accelerating structures.  These occur at the bends 

shown in the diagram in Fig. 3.5.  Since the beam has bunch structure after each of the 

two foil strippers, there will be a requirement for rebunching and matching the 

longitudinal phase space back into the next linac section.  The bend sections must 

incorporate achromat and isopath optical qualities in which the matrix approach is 

valuable to the design.  Since the higher order effects of the full system are of special 
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interest, it is necessary to apply higher order map calculations for the bunching and 

focusing.  Applying the newly developed COSY RF structures is useful for these 

systems, and we shall show some examples of this. 

 The filtering of DC multi-q beams from the ECR does not require bunch structure 

enhancements until after q-state filtering.  As we shall show later, the filtering requires a 

simplified version of the systems required at the stripping sections and RF calculations 

are not necessary.  We shall focus on the required systems for filtering and rebunching 

beams after the stripping stages and end the chapter with some detail about the stripping 

process itself. 

3.2.1 The conditions for an isopath 

 The term isopath is interpreted here as meaning equal path lengths for particles that 

start at the same point but can vary in rigidity.  According to (1.24) particles that differ in 

rigidity from the reference particle must have one or more of either δK, δq, or δm differing 

from zero.  At first we shall only regard the δK variable and then explain why it should 

extend to the other two variables.  We shall only consider reference particle motion in the 

horizontal plane here, although the theory can be extended to motion beyond midplane 

symmetry.  

 To develop an understanding of an isopath in terms of the transfer map, we should 

first quantify the path difference.  Suppose the reference particle travels from si to sf sot 

that it travels a distance, L0, while some other particle of δK≠0 travel the distance, L, over 

the same time interval of the motion.  As long as each of their respective velocities 

remain constant throughout then the path difference may be obtained from, 
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where we have applied Eq. (3.5) and the definition of l from Eq. (1.6).  Since we shall 

only consider the approximation in which l<<L0, then we can drop the second term in the 

large parenthesis and treat the results as exact.  If we now substitute the relation for l in 

terms of the initial position vector, 

KKii laalxxll δδ ),(),(),( ++= ,   (3.14) 

then the final form of (3.13) can be expressed as, 
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From this relation we see that in order to obtain an isopath (l,x) and (l,a) must vanish, and 

that  
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must also be satisfied.  According to the symplectic relations (1.15g) and (1.15h), if (l,x) 

and (l,a) vanish then (x,δK) and (a,δK) must vanish as well.  Notice that the relations 

(1.15e) and (1.15f) also imply the same conditions.  We infer that under these conditions, 

having a system that is an isopath in δK must imply that the system is also fully 

achromatic. 

 The diagram in Fig. 3.6 sums up the situation discussed up to now.  Notice that two 

particles starting at the same position and direction will exit at the same point and 

direction if the system is fully achromatic.  In addition, if the system is also an isopath 

then both particles would have traveled the same distance, L=L0.  We now consider the x 

displacement away from the reference orbit, 
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KKxsx δδ ),()( = ,    (3.17) 

anywhere along s.  To first order the momentary radius is given by R(1+hx), where the 

variable h(s)=1/R(s) as defined in Chapter 1, and the derivative of the length, L, is given 

by, 

)1( hx
ds
dL += .     (3.18) 

Furthermore, since for the reference particle x=0 over all s, the derivative of the path 

difference must simplify to the relation, 

hxL
ds
dLL

ds
d =∆=− )( 0 .   (3.19) 

Finally, if we integrate (3.19) over the entire path and substitute x(s) from (3.17) into this 

equation, then we obtain the integral relation, 

∫=∆ f

i

S

S KK dsxshL ),)(( δδ .   (3.20) 

To obtain an isopath system over the motion this integral must vanish.  It should be noted 

at this point that, since we have assumed that there is no change allowed in the velocity in 

obtaining (3.13), then there can be no acceleration in the direction of motion.  Bending or 

accelerating with electrostatic fields will not allow this condition to be satisfied; 

therefore, the system should consist of only magnetic fields. 

 We can make some inferences about the type of magnetic field arrangement that will 

Figure 3.6   Path of the 
reference particle and some 
arbitrary particle of length 
L0 and L, respectively. 
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allow the integral in Eq. (3.20) to vanish and yield and an isopath.  It is helpful to look at 

the sets of paired plots in Fig. 3.7.  They show two of the simplest schemes for obtaining 

an achromat.  The first achromat, shown by the diagram in Fig. 3.7 (a1), consists of a 

mirror-symmetric dipole pair with an x-focus quadrupole at the center.  The plot of its 

dispersion function in Fig. 3.7 (a2) demonstrates how there is no way to make the integral 

in Eq. (3.20) vanish.  In this case because both the dispersion and h cannot chage sign 

throughout.   

 The other type of achromat is shown in Fig. 3.7 (b1) and is constructed of four 

dipoles, in which h>0 for the two outside ones and h<0 for the inner ones.  Four dipole 

systems have the possibility of having the integral vanish given the right combination of 
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Figure 3.7    Simplest possible pure magnetic achromatic systems. The possibility of 
obtaining an isopath by the mirror symmetric system (a1) and four dipole system 
(b1)  is determinable from their respective dispersion functions, (a2) and (b2), as 
described in the text. 
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bends.  For simplicity we show the reference trajectory as coming in and exiting along 

the same line; however, the actual arrangement would require an overall bend and/or shift 

as we shall show later on. 

 As pointed in Chapter 2 the achromat feature is certainly necessary to avoid 

horizontal dispersion from the beam energy spread.  Since the achromat feature depends 

only on rigidity, then an achromat in δK is also achromatic in δq, and δm; hence, (x,δK), 

(x,δm), and (x,δq) vanish simultaneously.  The same arguments that have been outlined for 

δK here also extend over to systems that are isopath with respect to variables δq and δm.  

Isopaths with respect to these two paramters have other unique features that may be 

understood from the diagram in Fig. 3.6.  Suppose that the two particles have the same 

velocity but different charge.  If the path lengths are equivalent, then so will the time of 

arrival.  This implies that the isopath condition with respect δq will occur whenever (l,δq) 

vanishes.  The same applies when particles vary in mass, where an isopath exist for 

(l,δm)=0.  Keep in mind that systems having (l,δK)=0 are often referred to as being 

isochronous in the sense that the particles are not relativistic (β<<1).  This condition does 

not imply equal path length unless β ≈ 1.   

 All three filtering sections of the RIA driver will certainly require that they be fully 

achromatic.  The first one, which filters DC beams from the ECR, need only be of the 

mirror-symmetric type in Fig. 3.7 (a1), since there is no need for bunch preservation.  

The filter systems following the two strippers; however, will require rebunching and 

longitudinal phase space matching for the sections of linac that follow them.  Only 

systems that have the isopath property, such as the system in Fig. 3.7 (b1), are 

appropriate for this. 
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3.2.2 Transporting and filtering of multiple q-charge state beams 

 As shown by Fig. 3.5 the RIA driver accelerator system requires two stages of charge 

stripping and filtering of unwanted q-states for ions of 238U.  The details about the 

stripping and the effects that it has on the beam are left for the next section.  In this 

section we shall only focus on the design of systems that provide filtering as they match 

and transport the accepted q-states to the section of linac that follows.  The minimum 

requirements of such a system are as follows: 

o The system provides dispersion region(s) for expunging unwanted q-states and 

allows the accepted q-states to be transported with minimal emitttance growth. 

o It must rebunch the beam such that the longitudinal phase space characteristics 

match with the next linac with for maximum acceptance. 

o At least at the rebuncher and exit regions, the system should also retain 

achromatic character for minimum horizontal dispersion. 

o Maintains isopath characteristics at the rebunching and exit regions. 

The last requirement is presently the subject of some controversy.  It is obvious that there 

is the need for some control over the arrival time of bunches with different q; however, it 

is not clear whether there may be some advantage gained at the proceeding linac by 

manipulating the arrival time at the rebuncher.  The study of the dynamics of multi-q 

state beams along each section of the linac remains a topic that is open to exploring other 

techniques.  Such techniques may increase the acceptance when applying a shift in 

energy and/or arrival time between q-states before the beam that enters the next linac 

[Ostroumov00b].  In this study, we shall assume that the conditions required by the next 

linac are such that each bunch arrives at the same time and energy.  Thus, the phase of the 
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rebuncher shall be set such that ∆ϕ=0º according to Fig. 3.2 so that there is no shift in 

time or energy between each q-state bunch.   

 To begin with, a detailed analysis of a 180º bend rebunching q-state filter at 85.3 

MeV/u will be given, and then a description of a simpler alternative follows.  After this 

there will be a description of the solution for the bunching q-state filter after the 9.43 

MeV/u stripper.  That one will consist of a shift that leaves the linac sections offset, i.e. a 

"dog-leg" illustrated in the diagram in Fig. 3.7. 

3.2.2.1 The 180º bend rebunching q-state filter 

 The beam conditions for the system at 85.3 MeV/u have changed since initial stages 

of the study. The filter has remained an 180º bend system since that allows the overall 

length of the accelerator system to be shortened; however, it was initially intended to be a 

system that accepts q-states 89, 90, and 91 of 238U.  Since then there has been some 

speculation as to whether stripping at this energy will actually yield maximum q-states 

distribution at q=90 and whether the foil thickness predicted by the codes are accurate 

(see next section).  We shall stick with the initial predictions here, which state that the 

beam shall have the longitudinal phase space parameters specified in Table 3.2 after 

going through the stripper.  The transverse phase space emittance has an area of 1.5π 

mm-mr in both the x— and y—planes.  The bounding ellipses have an upright position 

and the beam has a circular shape with a diameter of 4 mm.  The entire transport system 

should deliver the beam to the entrance of the next linac with the same parameters and 

having as few higher order effects as possible.  Any changes in the design are expected to 

be relatively small with little or no change in the dynamics of the system. 

 The initial design had assumed that a 350 MHz linac preceded the stripper section and 

that the beam should be matched to a 700 MHz linac after the rebunching q-state filter.  
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Since a 350 MHz structure offers more acceptance with fewer longitudinal aberrations, it 

is chosen for the rebunching cavities located at the midpoint of the system.  We assumed 

that there are two side-by-side two-gap structures located symmetrically about this 

midpoint, which is labeled as 5 on the diagram shown in Fig. 3.8.  The two-gap structures 

have the parameters that are listed in Table 3.1.  The parameters used for the elements 

shown in the diagram of Fig. 3.8 are listed in Table 3.3.  The dynamics that take place 

can be broken down by the discussion that follows.   

 Without the RF cavities, the section between points 3 and 5 is that of a mirror-

symmetric dipole-pair achromat having 45º bends.  The focus is telescopic from entrance 

to exit in both the x— and y—planes.  The horizontal focus is shown by the solid lines 

representing rays of varying divergence.  An x—focusing quad (Q5) sits at either side of 

point 4 with enough room left between the two to allow the selection of dispersed charge 

states with 88≤q≤92.  Two trajectories of particles having q lower and higher than the 

reference particle are shown by the dotted line.  The largest separation between them 

exists at point 4, where there is a charge dispersion of (x,δq)=-0.53 cm/%q.  With this 

dispersion the maximum separation between beams varying by one charge unit is ~6 mm 

as shown by the x—y plot in Fig. 3.9.  In the figure we have assumed Gaussian 

distributions that will encompass 95.5% of the beam that lies within these phase space 

boundaries.  In this case, the boundaries will be circular with 3 mm radius and yields a 

charge resolving power of Rq≈200.  

 Since the higher q-states have a smaller radius at the dipoles, they end up traveling a 

shorter path.  The arrival time difference can be evaluated from (-∆t,δq), which is 

evaluated by dividing (l,δq) by µ0 to obtain units of time.  A value of 4.68 ps/%q is 
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obtained this way and yields that a q=91 ion arrives 5.2 ps faster (∆ϕ=0.7º in terms of the 

RF cycle) than a q=90 at the end of the mirror symmetric system.  In order to offset this 

effect, a chicane is placed before the 90º bend.  Notice that the reference trajector enters 

 
Figure 3.8   Diagram illustrating the 180º bend rebunching q-state filter.  The system is 
mirror symmetric about point 7.  The first order longitudinal phase space ellipses are 
shown for two q-states, one of which has charge q0 and the other q0+∆q.  The details of 
the beam dynamics are described in the text. 
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and exits along the same line, similar to the four dipole system depicted in Fig. 3.7 (b1).  

By tuning this system such that the four D1 dipoles are at 4.47 T we can cancel out the 

arrival time difference right after the second D2 dipole.  The first order ellipses in the 

longitudinal phase space are shown along the inner part of the diagram of Fig. 3.8 at each 

point labeled from 1 through 9.  Notice that the chicane causes the higher charge state 

(+∆q) to arrive at position 3 later, in such a way that the bunches of varying q all arrive at 

the RF cavities at the same time.  We also estimate that since (-∆t,δK)=0.58 ns/%K, a ±5% 

fluctuation in the phase of the cavity can impose a time spread of about 1.4 ps.  This type 

Table 3.3  Parameters used for the elements in Fig. 3.8. 
 

Bend Bend
Dipole radius (cm) angle (°) strength (T)

D1 80.3 21.9 4.47
D2 71.8 45 5.0

                                                                                          
Quad Strenght (T/m)                               

Q1 -24.09                                
Q2 24.09                                
Q3 18.70                                
Q4 -18.70                                
Q5 17.08                                
Q6 -17.49                                
Q7 17.83                                

                                                                                           
Cavity parameters                         (see Appendix B)
frequency 350 MHz ∆ϕ       0º
Max. Potential 949.2 kV                                       
RI 2 cm RLRES 21.43 cm
RO 4 cm RRES 8.29 cm
RLDT1 12.86 cm RE 0.5 cm
RD 0.5 cm Cavity Length 20.72 cm
                                                                                            
•  3 cm aperture radius for all quadrupoles.                            
•  Effective length of all quadrupoles is 30 cm.                          
•  All dipole pole gaps are taken to be 5 cm.                                
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of information is useful when considering the level of phase and frequency stability 

needed at the RF structures.  

 
Figure 3.9   Plot of beam distribution for position 5 in Fig. 3.8. 

 We make note of the fact that the chicane is also a mirror symmetric achromat about 

its center position (point 2).  To first order, the multi-q beam is telescopically focused 

from point 1 to 3 with magnifications of Mx=My=1; therefore, the transverse phase space 

should remain the same as it started at point 1.  The orientation of the longitudinal phase 

space evolves as shown by the phase space plots.  Notice that the orientation of the 

longitudinal is the same as it started at point 1 due to the symmetry of the system about 

point 5.  In the second half of the sytem, the dynamics of the transverse plane evolve in a 

similar way as in the first but in reverse. 

3.2.2.2 Phase space calculations 

 The higher order effects on the multi-q beam are of major importance.  Here, we will 

demonstrate the effects of 2nd and 3rd aberrations from elements in the transport.  It is 

intuitively clear that particles of higher charge state will obtain stronger focusing in both 

the transverse planes and the longitudinal plane (see next section).  However, such effects 

are not apparent until one goes to at least 2nd order as expected from magnetic fields of 

mid-plane or double mid-plane symmetry [Wollnik87f].  Here, the focus will be 
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exclusively on the effects that are expected from systems having only dipoles, 

quadrupoles, and axially symmetric RF cavities. 

 The initial phase space distributions considered here are of the ellipse boundary-type 

described in the first chapter.  There are three boundary distributions of charge states 

q=89, 90, and 91 that overlap each other initially.  A similar approach was shown earlier 

by Fig. 3.8 by a two q-state system in longitudinal phase space; however, only first order 

effects were considered there.  Here, we demonstrate the higher order effects on the phase 

space, starting with the transverse phase space plots in Fig. 3.10.  We show the phase 

space that results right after the chicane at point 3 of Fig. 3.8.  Only the results of the 2nd 

order calculation are plotted since the 3rd order results are exactly the same for both x— 

and y—phase space planes.  First order results will show all ellipses overlapping with that 

of the first order result for the δq=0 phase space.  Effects from 1st or 3rd order 

aberrations are not evident, since there are now axially symmetric devices.  For the x—a 

plot on the left the chromatic dispersion along the boundary for ellipses of different q is 

attributed to the (x,xδK), (x,aδK), (a,xδK), and (a,aδK) terms.  The aspect ratio between 

 
Figure 3.10   Transverse phase space plots at point 3 in Fig. 3.8.  Calculated with 
COSY to 2nd order. 
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each q-ellipse also vary due the (x,δKδK) and (a,δKδK) terms.  Similar effects are present 

in the y—b phase space from the (y,yδK), (y,bδK), (b,yδK), (b,bδK), (y,δKδK) and (b,δKδK)  

terms.  As shown by the y—b plot at right, these effects are not nearly as strong as they 

are in the x—a plane.  There is somewhat of a different situation once the 90º bend 

sections are included. 

 The plots in Fig. 3.11 are calculated for position 9, where the effects of the entire 

system are included for the 2nd order (top pair of plots) and 3rd order (bottom pair of 

plots) phase space calculations.  From the y—b phase space plots it is evident that there 

are now much stronger (y,δKδK) and (b,δKδK) effects present.  These are attributed mostly 

to the two 90º bend sections, and some minor contributions from each section of chicane. 

 The effects at 3rd order are attributed to achromatic focusing effects by the RF cavity.  

Terms such as (y,yyδK) and (x,xxδK) contribute to the blurring of the boundaries at each 

 
Figure 3.11   Transverse phase space plots at point 3 in Fig. 3.8.  Calculated with 
COSY to 2nd order (top pair) and 3rd order (bottom pair). 
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respective phase space plane.  An estimate is made of the emittance growth in the 3rd 

order plots based on the amount of extra space that the particles occupy outside of the 

boundary for the q=90 ellipse.  There is ~50% growth in emittance in the x—a phase 

space, while the y—b plane grows by ~30%.  Most of the contributions to the emittance 

growth in the x—a plane result from the elongation of the q=89 ellipse. 

 Finally, we show the effects on the longitudinal phase space plot in Fig. 3.12 as 

calculated at the exit of the system at point 9 of Fig. 3.8.  We have used the variable –∆t 

instead of l for the horizontal axis.  The maximum extent of the horizontal axis is also 

shown in units of degrees of the RF phase and is 19º, which is equivalent to 150 ps in 

terms of the period.  Very weak achromatic effects are evident, and for the most part the 

q-ellipses overlap with little relative shift at their boundaries. What does seem to be a 

rather large effect is the 3rd order aberration, (l,δKδKδK), of the buncher.  The effect is due 

to the large amount of drift space that is imposed by adding the chicane system on either 

side.  In order to reduce this effect we would need to switch to a lower harmonic 

 
Figure 3.12   Longitudinal phase space ellipse at exit of 180º bend system.  
Calculated to 3rd order with COSY.  Boundary of all q-states overlap.  Dashed 
boundary ellipse contains 50% more area than the bounded phase space area. 
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frequency or come up with a more compact version of the isopath solution, as will be 

shown later.  A dotted line has been drawn which bounds the phase space in such a way 

that a new emittance ellipse and orientation can be discerned.  It sets the maximum limit 

of the emittance growth under 3rd order conditions, which under these conditions the 

boundary has ~50% more area than the area bounded by the initial ellipse.  Notice that 

the distortion on the ellipse makes the phase space seem as if it has a tilt much different 

than the expected first order results.  A more objective way to go about determining the 

new ellipse characteristics for both the transverse and longitudinal phase spaces is to 

evaluate the rms emittance and Twiss parameters by the statistical methods suggested at 

the end of chapter 1.  This requires a more realistic initial distribution, such as a Gaussian 

or water-bag model, and a distribution of particles at each q-state according to the q-state 

fractions described by the methods of the next section. 

 Based on these initial calculations it is certain that suppression of higher order 

chromatic aberrations will be necessary.  It was shown in the previous section that there 

is sufficient dispersion at points 4 and 6 from Fig. 3.8 to separate the different charge 

states.  Any of these two regions is ideal for inserting higher order multipole fields, such 

as hexapoles and octupoles, for suppressing the chromatic aberrations discussed above.  It 

was shown in the previous chapter how COSY can be used to find the best location and 

field strengths necessary from the higher order multipoles to suppress geometrical 

aberrations.  Since the mirror-symmetric dipoles in the mass separator could not separate 

the masses far enough in the multipole region, very little could be done about chromatic 

aberrations there.  In the case of the multi-q system here, there seems to be a negligible 

amount of geometric aberrations in comparison with the chromatic aberrations.  It is clear 
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that further studies with the q-filtering systems will be necessary to resolve such issues 

for the final RIA design. 

3.2.2.3 Other isopath systems under consideration 

 The 180º isopath described above serves mainly as a proof of principle.  Further 

studies have allowed us to find other practical solutions in terms of shortening the path 

length and reducing the number of necessary elements.  A scheme that would replace the 

function of the 180º isopath described earlier is shown in Fig. 3.13.  The system is 

essentially a hybrid between the mirror-symmetric 90º achromatic bend in Fig. 3.7(a1) 

and the four-dipole chicane of Fig. 3.7(a2).  The inside dipole bends beyond what an 

ordinary chicane would in order to provide an overall bend by the entire system.  With 

the appropriate tune, the switch in polarity of the dispersion function will lead to a 

vanishing of the integral in Eq. (3.20).  Implementing this scheme into a 180º isopath 

results in the system shown in Fig.  3.14.  The first dipole (B1) bends the beam outward 

by 10º, while the next one (B2) bends inward by 55º before the beam reaches the halfway 
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Figure 3.13   Diagram of an alternative scheme of obtaining an isopath system 
with four dipoles and without the use of a chicane as in the system in Fig. 3.8 
does (left).  Plot of the dispersion function along the optic axis (right). 
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point of the achromat. The system is mirror symmetric about the midpoint of Q3 only if 

the rebunching cavities are off.  The entire system is mirror symmetric about the center 

point of the cavity array even with the fields from the RF cavity.  We do not go into the 

full details of this system, but instead refer to the literature where the work has been 

reported [Portillo01]. 

 
Figure 3.14   180º Bend scheme. 

 Lastly, we mention two other systems that are being considered for the design of the 

RIA driver accelerator.  The dog-leg system shown in Fig. 3.15 will be the rebunching q-

state filter following the first stripping stage of uranium at 9.43 MeV/u.  It bends outward 

at B1 then back inward at B2 and takes on an anti-symmetric geometry at the center point 

of the expected superconducting RF (labeled as SRF) cavities.  This system is unique in 

that it is not truly a full achromat at the center point since (a,δK) does not vanish.  Since 

the region of the cavity array is expected to be short (~1 m), then the horizontal 

dispersion at positions away from the center should be negligible.   
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 The advantage of the dog-leg scheme is that it leaves room for a branching out beam 

line that makes use of beam that would otherwise be diverted to a dump.  Instead it can 

be diverted to a medium energy experimental area.  It is expected that ~70% of the beam 

would be accepted as a five charge state beam with reference charge q0≈70.  Since the q-

state fractional distribution is very symmetric, then about 15% of the unaccepted beam 

can be diverted to the experiments and the other half is diverted to a beam dump.  Notice 

that we have not actually discussed how the unwanted multi-q states will be diverted 

away from the accepted q-states.  Future studies will need to incorporate septum magnets 

for this purpose. 

 The last scheme, which is depicted in Fig. 3.16  is an option that had originally been 

considered in an alternative design.  It assumes that there are three stripping stages with 

this one being the first one.  It would strip a uranium beam of ~4 MeV/u at initial mean 

charge state of q ≈28.5 up to  q ≈54.  This system is actually not an isopath or full 

achromat at the center and is designed such that there are minimal effects from the time 

of arrival differences of each different q-bunch.  It functions much like a chicane but with 

rebunching at the center position.  At present, this option has been ruled out due to 

consideration of the extra beam losses in a relatively small cost section of the linac.  

 There are still issues that need to be resolved with the q-state filters.  The higher order 

effects for all these systems are still expected to be a problem if not corrected.  Studies 

are ongoing in this matter to finalize the designs.  At this point, however, it has been 

shown that the principles of the isopath transport can allow us to determine design 

solutions that are practical for the RIA facility. 
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re 3.15   Dog-leg scheme.  The SRF stands location for superconducting 

cavities. 

 
re 3.16   Chicane scheme. 
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3.3 Determining the distribution of q-states 

3.3.1 Importance of maximizing q 

 Maximizing the charge state of heavy ions in an accelerator system plays a critical 

role in the design.  One advantage of going to higher q is that lower field strengths for 

bending and focusing of the beam are necessary.  Note that the maximum energy that 

may be bent by a magnet of rigidity, χm, is given by the equation, 

2
2
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where the units are in MeV/u if the atomic mass unit, u=931.5 MeV/c2, and rigidity is in 

Tesla-meter.  K/A depends on the square of the charge of the particle.  For example, at 

q/A=90/238  and χm= 5 Tesla×0.72 meter the maximum beam energy is 90 MeV/u.  This 

factor is especially important for cyclotrons, where χm is already set at the technological 

limit of the magnet(s) and the only gain may come from increasing q. 

 Going to higher q will require fewer accelerating structures for attaining the final 

energy of interest.  In this case, the effect of increasing energy gain is linear with q/A.  

This can be readily understood by expressing the energy gain per accelerating structure in 

the form [Ostroumov00b], 

sGcGGs LTEe
A
qK ϕββββ cos)(),()( ⋅⋅⋅=∆   (3.22) 

Here, sE (βG) is taken to be the average electric field over the effective gap length, 

LG(βG), that is experienced by some particle traveling at a constant velocity, cβG.  The 

length LG(βG) is approximated to be the length of region in which the magnitude of the 

field is above ~95% of maximum.  In determining sE (βG) it is assumed that the center 

point between each gap is separated by some integral distance of the RF wavelength, 
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βG λ(n+1/2) (see derivation of Eq. (3.11)), and also that the cavity phase is set to the 

phase angle, ϕm, where the βG particle gains maximum ∆K.  The cosine term in the 

equation accounts for the use of sinusoidal fields in the cavity at phase angle, ϕs, relative 

to ϕm.  ϕs is often referred to as the synchronous phase, since it usually is chosen such 

that there is optimum stability in the oscillations of the bunch.  Finally, the term, T(β,βG), 

is called the transit time factor and accounts for the fact that particles of velocity differing 

from cβG will obtain less than optimal acceleration.  Thus, it will always be less than 

unity, except when β=βG.  Notice that, except for T(β,βG) and ϕs, all terms may be 

determined directly from the on-axis field, Es(s).  The transit time factor may be 

determined by evaluating ∆K at ϕs=0 for every β.  Although not demonstrated here, this 

is an ideal application for the new COSY elements described in section 3.1.   

 Modeling arrays of structures in the form of Eq. (3.22) is the method used in 

evaluating the final energy of the full driver linac.  Accurate results will depend on how 

well the process of stripping of electrons at foils is understood.  As we shall demonstrate 

below, the distribution of charge states depends on the incident energy of the particle.  As 

a result, there are many combinations of locations along the linac at which the beam can 

be stripped, and each one will yield different charge distribution and final mean charge 

state, q .  Knowing the q-state distribution is also necessary to determine the 

requirements for handling of the q-states to be accepted or dumped at q-filter systems of 

the type described in the previous section.   

 The most challenging species of ions to strip and accelerate are those of 238U.  At 

any energy, it will yield the lowest q/A of any other stable ion and require energies above 

~500 MeV/u to approach the fully stripped state (q/A=92/238=0.387).  For the RIA 
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design it was necessary optimize for lowest cost by strategically determining the best 

places along the linac to strip.  As shown in Fig. 3.5 the two strippers are at ~10 and 85 

MeV/u for the uranium beam.  As we shall demonstrate below, the two energy regimes 

are quite different and require their own respective analysis.  A brief survey of the 

available methods for determining q-states at each energy regime is given below. 

3.3.2 The charge state evolution process 

 Before describing the techniques for evaluating q-states, it is instructive to look at the 

underlying process.  Consider that the particle may be at some charge state, q, and 

additionally, in some electronic excited state.  Neglecting nuclear excitation effects, the 

collisions that the particle undergoes while traveling through some dense region of 

material cause the following types of processes: 

o Excitation of the most loosely bound electron, or active electron, of a q-state ion 

to higher excited states.  In the energy level diagrams shown in Fig 3.17, this 

would mean a jump to any state above the ground state within the left diagram. 

o Ionization from charge state q to q+1.  The simplest case being that in which the 

electron receives enough momentum from the collision to overcome the ground 

state ionization potential, Vi,N=0(q) and go to the ground state of the q+1 ion.  The 

arrow that goes from left to right between the diagrams illustrates this.  The ion 

can also undergo multiple excitations through multiple collisions before climbing 

above the full Vi,N=0(q) potential. 

o If a more tightly bound electron is extracted from an ion at q, then the q+1 will be 

left in an excited state (levels above ground on the right diagram).  If there is 

enough potential energy remaining, then the q+1 ion may then de-excite by 
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emitting another electron (Auger process) and/or photon(s).  This type of de-

excitation processes is associated with some lifetime and can occur even after 

passing the material. 

o The q-state ion can also capture an electron from the atoms/ions in the material 

that it collides with.  As such, the captured electron will go into either the ground 

state of q-1 or into one of its excited states.  Radiative electron capture (REC) 

occurs whenever there is an ejection of a photon as the electron is captured, which 

is the inverse of the photoelectric effect.  A non-radiative capture (NRC) occurs 

when the electron is transferred from a bound state of a target electron to the 

bound state of the active electron of the projectile. 

Note that N is some integer that has been treated as a quantum number to represent the 

state of the ion.  Although a more detailed set of quantum numbers may be used, we 

adopt this notation for simplification in which the ground state is at N=0 and all N>0 are 

excited states. 

 
Figure 3.17   Hypothetical quantum state level diagrams showing a simplified 
transition from a q to q+1 ionization state. 
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 Every possible process should be associated with some cross section that specifies the 

probability of occurrence with respect to the independent variable.  Instead of using time 

for the independent variable, it is usually more convenient to use the displacement, z, of 

the particle along the direction of impact.  The elapsed time may be extracted from the 

average instantaneous velocity of the particles.  Here, we shall interpret σ(q,N;q',N') as 

the probability per unit depth of some ion at charge and quantum states, q and N, 

respectively, going to states q' and N' through either a collision event or spontaneous 

process.  We call Yq,N the fraction of particles in the (q,N) state, such that the sum of the 

fractions over all possible states are conserved through 

1, =∑∑
q N

NqY .     (3.23) 

The derivative with respect to z of all the fractions form a system of linear coupled 

differential equations in the form of [Betz72], 
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As long as all the particles have the same mass then it is possible to separate them with 

respect to their beam rigidity and measure the total yield at some q-state, 

J
J

YY q

N
Nqq ==∑ , .     (3.23) 

The rigidity spectrometer cannot resolve excited states with a given q; thus, all N are 

lumped together in flux, Jq.  Here, J is the total flux of all possible q-states.  This equation 

establishes the relationship between measurable and evaluated quantities. 

 In order to model the evolution of charge states, stopping powers, and kinematic 

momentum transfer one must determine the cross sections for the most dominant 

interactions.  The cross sections will vary along the depth of the gas or solid as the 
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velocity of the projectile, vp, drops and the population of excited and ionization states 

evolve.  Due to the effect from screening of the nuclear charge many of these cross 

sections tend to depend strongly on the velocity of the most loosely bound electron, or the 

active electron, of the projectile.  This velocity is approximately given by [Betz72], 

3/1
0vv −= pe qZ ,    (3.24) 

for an ion of charge state, q, that is in the ground state.  Here, Zp is the atomic number of 

the projectile, Zt is the atomic number of target atoms, and v0=e2/ħ=2.188×x106 m/s is 

taken to be 1 a.u. (velocity in atomic units).  This approximation is valid as long as (Zp-

q)≥3 and Zp≥36.  In terms of the screening effect there are three distinct velocity regimes 

described as follows: 

o In the low velocity regime  (Zp
.vp << ve

.Zt) the electron capture cross section 

dominates and a few interacting molecular states can be used to determine the 

state of the ion. 

o In the high velocity regime (Zp
.vp >> ve

.Zt) the excitation and ionization cross 

sections dominate such that perturbative two-atomic state models determine the 

state with sufficient accuracy. 

o In the intermediate velocity regime (Zp
.vp ~ ve

.Zt) the capture cross sections are 

comparable in magnitude to the excitation and ionization cross sections.  Thus, 

developing models that reproduce experimental results is especially crucial in this 

regime [Vernhet96]. 

 Since there are a large number of possible excited states within each q-state, there are 

necessarily quite a large number of cross sections to reference or evaluate.  The number 

of differential equations may also become so large that it becomes almost impossible to 
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achieve good accuracy and consistency.  Thus, it is necessary to make as many 

simplifications by grouping together any states that are similar and applying any available 

scaling laws to reduce the amount of cross section data that needs to be stored and 

referenced.  We shall describe some codes that have been developed under this principle 

and demonstrate some of the results that they yield.   

 Before going into details about the models, we should mention the concept of the 

equilibrium charge state distribution.  In order to demonstrate this concept results taken 

from the ETACHA [Rozet96] code system and illustrated in Fig. 3.18.  The plots are of 

Yq in units of percent versus the depth into the target material, which we label as 

thickness.  The calculation assumes an ion beam of 238U incident at 24.1 MeV/u on 

aluminum (Zp
.vp/ve

.Zt=0.09) at 2.7 g/cm3.  The details of the calculations will be given 

later, but for now we should like to point out the effects that occur after a sufficient 

amount of interaction with the target has occurred.  Notice that the fractions tend to level 

off after a thickness of about 1 mg/cm2 as if to reach some equilibrium.  The plot on the 

top accounts for the average energy loss as the particle goes through the material.  In this 

particular case, the ion will lose about 1.4% of energy at 1 mg/cm2, and over 10 times 

that amount by the time it gets to 10 mg/cm2.  The energy loss has been evaluated 

through numerical integration of the stopping powers, S(K)=dK/dz, which may be 

obtained from the SRIM code system [SRIM98].  The plot at the bottom is for the yields 

in which the cross sections are not corrected for the energy loss in the target.  If the plot 

were not logarithmic along the horizontal axis, then the two plots would look almost 

identical.   
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 Realistically, the corrected values will not completely reach some equilibrium 

because the velocity of the particle is constantly being reduced by interactions with the 

target material.  The uncorrected plot, is merely a hypothetical process that is assumed to 

occur in many measurements of equilibrium charge state distributions.  For many 

practical situations, such as this one, it is a reasonable approximation since for all Yq,N, 
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Figure 3.18   Charge state evolution of 238U on Al foil according to ETACHA.  A 
comparison is made between a calculation using cross sections that are corrected for 
energy loss (top) and one without corrections (bottom). 
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0, →
dz

dY Nq ,     (3.24) 

after some depth.  Whenever this type of equilibrium of fractions exist, or may be 

assumed to exist, we shall refer to the equilibrium distribution of the fractions, Yq, as 

F(q).  We shall first discuss some methods used to determine the equilibrium charge state 

distribution through empirical parameterizations and then discuss other methods that 

numerically integrate the set of ODEs in Eq. (3.24). 

3.3.3 Empirical methods for determining F(q) 

 Target and particle systems in which q-state equilibrium regions have been observed 

have been extensively studied and documented in the past [Reynolds55] [Baron88] 

[Shima92] [Baron93] [Leon98].  With  experimental data it has been possible to develop 

methods of calculating equilibrium charge state distributions using semi-empirical 

formulations.  We shall provide the formulations prescribed by both [Baron93] and 

[Leon98], since they are complementary to each other in terms of the range of species 

that they cover.  The following is a summary of the conditions upon which the 

formulations are based on: 

o The formulation in [Baron93] is based on extrapolations from experimental 

results for ions species within 18 ≤ Zp ≤ 92 and energy range of 0.2 ≤ K/A ≤ 10.6 

MeV/u. 

o The formulation in [Leon98] is an extension of the work in [Baron93] with 

additional data for species within 36 ≤ Zp ≤ 92 and energy range of 18 ≤ K/A ≤ 44 

MeV/u. 

The formulations are based on the assumption that the equilibrium q-state distribution is 

symmetric about some value, eq , as long as the distribution does not extend to the region 
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of (Zp-q)<3.  Although shell effects are observable in some studies [Shima92], they are 

generally negligible for these approximations.  For systems in which very few electrons 

are left, the distribution is non-symmetric and the shell effects become pronounced 

enough so that they may no longer be neglected, especially for helium like ions.  The 

form of the symmetric distribution is represented best by a Gaussian that is of the form, 

)]2/)(exp[
2

1)( 22 dqq
d

qF e−−=
π

,  (3.25) 

where by definition of F(q) we should have that the mean is given by, 

∑ ×=
q

e qFqq )( .    (3.26) 

and square of the deviation by, 

∑ ×−=
q

e qFqqd )()( 22 .   (3.27) 

The mean equilibrium charge is evaluated from the semi-empirical formulation given by, 

)(),v,(),( ppptppe ZgZZhZfZq ⋅⋅⋅= β ,  (3.28) 

where the first of the three function carries the dependence on the projectile velocity, 

vp=βc, by 
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The formulation of Baron requires that 
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for best results.  The target Zt dependence is embedded in the function, 
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Leon adopts the same form of the function, g, as given by Baron in the form, 

)])(00122.0)(2124.0905.12exp(1[)( 2
PPP ZZZg −+−−=   (3.32) 

The form of the standard deviation is evaluated by the functions, 
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The two models give about the same deviation within a few percent; however, they differ 

in eq .  The Baron model tends to give a higher eq  by up to 10% at the low energy limit 

for Zp~90.  The difference diminishes with Zp until it is ~1% higher for Zp~30.  The 

difference becomes less at the higher energies until is only a fraction of a percent at ~40 

MeV/u.  At the high energy end, both models overestimate the mean charge state 

compared to the available data in [Leon98] and agree with the data best at ~30 MeV/u. 

 The results given by the semi-empirical formulae are useful for approximating the 

equilibrium charge state; however, they offer no information about the variation of the 

distribution or of the thickness required for equilibrium.  The studies done in [Leon98] do 

not attempt to characterize the thickness, but merely mentions that for all their 

measurements the thickness of the foils varied from 1 µg/cm2 to several mg/cm2.  On the 

other hand, Baron offers the following formula for determining the equilibrium thickness 

in µg/cm2 given that K/A is in units of MeV/u [Baron79]: 

      (3.34) 22 )/(13.1)/(4.229.5]/[ AKAKcmgDm −+=µ
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In his equation, there is no attempt to put any Zt or Zp dependence.  Much of the reason 

for the lack of characterization with target thickness has to do with the erratic uniformity 

found in most available thin foils.  This applies especially for carbon foils, which are the 

most commonly used.  Measurements usually only provide an average value of the 

thickness in the region of the beam; however, the actual thickness is very non-uniform 

and it is not uncommon for it to deviate by as much as a by a factor of two from the 

average value.  This makes it difficult to correlate the thickness with the charge 

distribution, and consequently, with the atomic numbers of projectile and target as well.  

To obtain data that is associated with less uncertainty more stringent requirements will be 

needed of the foil uniformity.  The other alternative is to rely on accurately known cross 

sections to extrapolate the thickness as explained below. 

 The work of Dmitriev focused on determining the equilibrium target thickness from 

capture and stripping cross sections [Dmitriev82].  He takes the cross section of losing 

the final electron before obtaining a fully stripped ion, σl(Zp-1,Zp), and the capture,   

σc(Zp, Zp-1), to the hydrogen-like ground state and applies it to the equation, 

    [ )()(exp)()0( clqqe qDYYq σσρε +−∞−= ] .   (3.35) 

Here, the factor ρ=At/NA converts D into units of atoms/cm2, where At is the atomic mass 

of the target and NA is Avogadro's number.  Yq(0) and Yq(∝ ) are the initial and 

equilibrium fractional yields for q= q .  Solving for D( q ) will, therefore, yield the 

thickness necessary to obtain mean charge state q  at equilibrium.  The factor ε is a 

scaling factor that he determines should be about 0.01 to fit the data from empirically 

determined cross sections at energies below 100 MeV/u [Dmitriev79].  For energies 

above this limit he adopts the cross sections from a Born approximation for electron loss 
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[Senashenko70].  The results for stripping of uranium are shown in the plot of Fig. 3.19, 

along with those of the linear formula from Baron in (3.34).   

 Also plotted are some values that have either been reported as a measured quantity or 

have been determined by charge evolution codes.  The following explains the data points 

labeled 1 to 3: 

1. Experimentally measured equilibrium thickness values from [Scheidenberger98]. 

2. Experimentally measured equilibrium thickness values from [Leon98]. 

3. Evaluated using the codes GLOBAL and ETACHA. 

There is little experimental work available in the literature about the stripping of uranium 

at the region between ~40 and 100 MeV/u, thus we have resorted to the results of some 

available codes that will be described later.  The point at 45 MeV/u is at 21 mg/cm2 as 

deduced from the results shown in Fig. 3.20 for an ETACHA calculation of U ions on a C 
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Figure 3.19   Equilibrium thickness for uranium beams according to 
formulation by Baron and Dmitriev as explained in the text.  Also shown are 
values determined as explained in the text. 
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foil.  The point at 150 MeV/u is taken from a calculation from the code GLOBAL, which 

indicates that equilibrium sets in at about 45 mg/cm2.   

 The formulation of Baron gets within 10% of the experimental value at 1.4 MeV/u 

and within 30% for the data at 11.5 MeV/u.  Beyond this point the approximation seems 

to be no longer valid.  The thickness evaluated by the model of Dmitriev seems to be in 

agreement with the available codes for high energy, where the ions are fully stripped, but 

fails to agree with the experimentally determined values at the lower energies.  Neither of 

the two models seems to predict the experimentally determined value at 24.1 MeV/u.  

There is, however, some agreement at this point between the calculations shown in Fig. 

3.18 (corrected) from ETACHA for stripping with aluminum foils.  The point at which 

the fraction for charge state 83 is a maximum occurs at ~4 mg/cm2 and it is also the point 

at which there is maximum mean charge state.  If this were to be interpreted as being the 

point of equilibrium then there is good agreement with the experimentally determined 
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Figure 3.20   Evolution of charge states for K/A=45 MeV/u ions of U according to 
the ETACHA code.  The maximum mean charge occurs at ~21 mg/cm2 at which 
point q =52.5 and q~ =0.69. 
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value of 4.7 mg/cm2 at point 2 in Fig. 3.19.  For this measured value, [Leon98] provides 

tabulated data of charge state distributions versus the thickness of the foil.  Unfortunately, 

this is not true of the values taken from [Scheidenberger98]; however, the author assures 

the reader that the results are obtained from measurements taken at equilibrium.  

3.3.4 Codes available for determining charge state evolution 

 Up to this point we have not described codes that take the approach of solving the 

form of Eq. (3.24) numerically.  In principle, it is possible to apply this type of solution to 

particles having energies within the range of the empirical formulations; however, the 

number of electrons and excited states that the code must account for becomes too large 

to be practical for heavy ions, such as uranium.  Fortunately, the charge screening effects 

cause most of the shell effects to be small enough that the empirical formulas can be 

scaled with the available data to provide a reasonable prediction of the charge state 

distribution. 

 At energies where the ions become almost fully stripped scaling laws tend to be less 

reliable and it becomes necessary to account for quantum shell effects.  Typically, the 

excitation, ionization, NRC and REC capture cross sections need to be specified for each 

Zp and Zt combination as a function of vp and the physical characteristics of the target, 

such as the density.  We provide a brief summary of two codes that can be used for 

evaluating the evolution of charge states as a function of thickness. 

3.3.4.1 ETACHA 

 The ETACHA code system has been tailored around experiments from the GANIL 

cyclotron facility for ion energies ranging from 10 to 80 MeV/u for Ar, Ca, Fe, and Kr 

(18 ≥ Zp ≤ 36) on targets that range from Zt=1 to 54 [Rozet96].  The code solves the 

system of first order differential equations through numerical methods by accounting for 
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up to 28 electrons (minimum charge state of q=Zp-28) distributed over the n=1, 2, and 3 

subshells.  It assumes that the first Born approximation, or plane-wave Born 

approximation (PWBA) is valid as long as the ratio (ve/vp)(Zt/Zp)<0.35; i.e. Kproton>200 

keV for p→H collisions.  As such, it evaluates excitation and ionization cross sections 

from the PWBA using screened hydrogenic wave functions.  For excitation and de-

excitation the code also allows interaction with the n=4 subshell by applying a 1/n3 

scaling law in evaluating the cross sections.  In evaluating partial and total radiative 

Auger decays, the code uses a method prescribed by  [Larkins81]. 

 For electron capture the code applies the Bethe-Salpeter formula [Bethe57], which 

derives from an Eikonal approximation for evaluating NRC cross sections [Meyerhof85].  

These approximations are best suited for the energy region in which (ve/vp)(Zt/Zp) stays 

below ~1.  Beyond this limit, the code allows the user to apply a more accurate method in 

which NRC cross sections are evaluated through the continuum distorted wave (CDW) 

approximation at the expense of more computing time [Belkié84].  The code also allows a 

similar CDW approximation to be applied for evaluating the ionization cross sections 

when (ve/vp)(Zt/Zp) is above unity. 

 In order to minimize the number of differential equations the calculation neglects any 

spin orbital coupling effects.  This allows the code to treat each electron within each of 

the 1s, 2s, 2p, 3s, 3p, and 3d shells as being the same, and a scaling law is used to average 

over the transition rates between the n=1 to 4 subshells and the orbital states within each 

them. 

 To test the results from the ETACHA model we have compared the mean charge 

states with those of tabulated experimental results for 24.1 MeV/u [Leon98].  The foils 
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are of aluminum and vary in thickness from 0.2 to 13.5 mg/cm2.  The results are plotted 

in Fig. 3.21.  The mean charge appears to be at a maximum at q =76.5 for 1.5 mg/cm2.  

According to the results from the ETACHA calculation, at this same thickness q  levels 

off to a maximum of 82.3 (8% higher). The crossing lines indicate the thickness given by 

Eq. (3.32) and the value of eq  predicted by the empirical model of ref. [Leon98].  The 

values are 0.7 mg/cm2 for the thickness and eq =77.3.  It seems that the ETACHA 

calculations agree reasonably well with the data in terms of the onset of equilibrium but 

not for the resulting mean charge state. 
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Figure 3.21  Mean charge states evaluated from charge state evolutions of 24.1 
MeV/u 238U from experimentally measured values [Leon98] and from the code 
ETACHA.  The lines that intersect mark equilibrium thickness (0.7 mg/cm2) and 
mean charge ( q =76.6) according to the analytical models. 

3.3.4.2 GLOBAL 

 Another code that evaluates the evolution of charge states is called GLOBAL 

[Scheidenberger98].  It was developed after the ETACHA code and also takes into account 

up to 28 electrons for the n=1 to 3 subshells.  The scale factors that it uses are based on 
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data obtained for ions of energies ranging from 80 to 1000 MeV/u at the BEVALAC 

accelerator at Lawrence Berkeley Laboratory [Alonso82] and the SIS synchrotron at GSI 

in Darmstadt.  The cross sections used for excitation and ionization are similar to the 

PWBA used in the ETACHA code but has in addition a relativistic factor included.  The 

code is recommended for use with projectiles of Xe to U (54 ≥ Zp ≤ 92) impinging on 

solid or gaseous targets of Be to U (4 ≥ Zt ≤ 92).  The work of Sheidenberger and others 

makes comparisons between compiled experimental results and the predictions of the 

ETACHA code and finds that there is reasonable agreement up to ~30 MeV/u.  They 

concede that the results of GLOBAL are not very accurate below ~100 MeV/u and that 

there is no technique available to make good predictions in the range of 30 MeV/u to 100 

MeV/u.  Unfortunately, this is in the regime at which the second stripper for the RIA 

driver linac intends to strip.  We shall discuss some of the results predicted by the codes 

at both the first and second stripper and how they apply to RIA. 

3.3.5 Estimating q-state distributions for the RIA driver 

 Some of the results from the ETACHA and GLOBAL codes that are used as 

examples in the discussions leading up to here are actually results relevant to the RIA 

driver linac.  In particular, the results plotted in Figs. 3.18 and 3.20 (corrected) deserve 

further discussion.  Notice in going from 24.1 MeV/u to 45 MeV/u that the region that 

could be considered equilibrium becomes narrower.  In other words, the flat region that 

appeared before is no longer there, and it is not obvious that any such equilibrium 

condition even exists.  It seems that right at the point at which the ion begins to approach 

equilibrium it begins to slow down considerably to the point where a reverse process 

begins to take effect, as shown by the drop in charge state.  Clearly, the models indicate 
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that the stopping powers become a very important factor as the ion approaches the H- and 

He-like states.  For the 45 MeV/u case, the highest mean charge, mq , and lowest standard 

deviation in charge occur at about 21 mg/cm2.  In arriving at the equilibrium thickness 

values plotted in Fig. 3.19 and labeled as 3, we assumed that me q≈q .  Furthermore, 

calculations from GLOBAL at 45 MeV/u yield a similar thickness and mean charge 

within a fraction of a percent of those of ETACHA.  This should not be surprising, since 

the cross sections of GLOBAL are similar to those of ETACHA when relativistic effects 

become negligible. 

 At the high energy end of the spectrum, GLOBAL seems to indicate that the 

equilibrium-type behavior becomes pronounced once again.  This can be seen from the 

plot shown in Fig. 3.22, where the evolution has been plotted for 150 MeV/u 238U ions 

on carbon.  This result had been used for choosing the other equilibrium thickness labeled 

as 3 in the plot of Fig. 3.19.  Evidently, the equilibrium behavior seems to be less 

prominent after an energy of ~40 MeV/u and reappears gradually after ~100 MeV/u.  The 
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Figure 3.22   Evolution of charge states at the high energy range of uranium on 
carbon as calculated by GLOBAL. 
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work of Gould and others [Gould84] at the Bevalac reports the equilibrium at the higher 

energy regime for stripping of uranium.  There they have stripped at energies as high as 

962 MeV/u where they obtained 85% of the beam stripped to q=92 starting from q=68.  

The minimum foil thickness needed to reach the plateau region of equilibrium was 150 

mg/cm2 with Cu and 85 mg/cm2 with Ta.  At 437 MeV/u they needed 90 mg/cm2 Cu to 

obtain 50% of the beam in the q=92 state.  The same group later reported the results from 

200 MeV/u uranium ions on foils of Mylar (Zt≈6.6), aluminum, copper, and silver 

[Gould85].  Equilibriums are observed there as well, unfortunately, they do not report the 

minimum thickness needed from each material.  The authors make some attempt to 

characterize the highest mean charge, mq , possible using different Zt from scaling done 

with capture and ionization cross sections.  They claim that higher mq  are obtained with 

high Zt at the high energies, and that there is a gradual trend so that at the lower energies 

lower Zt give higher mq .  Their lower energies imply <200 MeV/u, which would apply 

more to our studies at >80 MeV/u.  From stripping at energies of ~500 MeV/u they find 

that some intermediate Zt gives the higher mq . 

 Clearly, there is experimental evidence of an extended plateau that indicates there is 

some equilibrium condition reached at the lower and higher energies.  The plateau region 

is convenient for selecting a minimum thickness for the foil.  Unfortunately, the codes 

have not shown this type of plateau region to exist for the intermediate energy region, and 

in some cases even the low energy region.  The latest design of the RIA driver linac 

requires that there be stripping and filtering of charge states at a low and intermediate 

energy.  We recall from Fig. 3.5 that that the current values are at 9.43 MeV/u and 85.3 

MeV/u for low and intermediate energy, respectively.  We have been forced to chose the 
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thickness needed at the point where mq  occurs, as for the 45 MeV/u example discussed 

above.  One problem with this is that there is quite a large amount of energy loss for the 

corresponding thickness.  In the case of 45 MeV/u uranium, we expect to lose ~15% of 

the energy compared to only a ~1.5% loss for the predictions of eq  at 24.1 MeV/u.  For 

the 150 MeV/u case of GLOBAL, there is about a 5% energy loss expected for a 

eq =89.8 at 45 mg/cm2.  When the energy loss in the stripper foils is so large, the trade-

offs of the loss versus the increased energy gain from the higher charge states has to be 

carefully evaluated.  The effects on the beam emittance due to additional energy spread 

and angular divergence must also be taken into consideration.  For a high particle flux, 

one also needs to consider the power density resulting from higher losses and the effects 

on the lifetime of the stripper foils, as will be demonstrated later. 

 A number of results have been generated from the ETACHA and GLOBAL codes to 

make some analysis on the effects of stripping by different Zt for varying thickness.  Foils 

of Li, Be, C, and Al have been considered for the case of 9.43 MeV/u 238U as shown by 

the plots in Fig. 3.23 generated from the results of ETACHA.  At this point we will 

assume that the codes are reliable and make some analysis based on the results that they 

yield.  The thickest line in the plot is for q=81 and we choose the thickness of the foil to 

be at the point where this curve takes on a maximum.  For the case of Al we take the 

thickness where the curve slopes off to a plateau.  We do this only to establish some 

consistency as to where to select the foil thickness, since there is no plateau region 

observed for the cases of Li, Be, and C as there is for Al.  A listing of average q values 

obtained at the equilibrium thickness for the ETACHA code and empirical calculations is 

given in Table 3.4.  The empirical calculations predict q ~70, whereas the ETACHA  
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Figure 3.23   Charge state evolution according to ETACHA for 238U going through 
various types of foils.  Cross sections corrected for energy loss. 
 
 
Table 3.4   List of values that compare the results from the ETACHA code and 
analytical codes for stripping at 9.43 MeV/u.  Thickness, D, is in mg/cm2. 
 

[Leon98]     ETACHA    

Zt D q  q~   Zt D q  q~  

3 0.12 70.6 2.45  3 0.78 81.1 0.95 

4 0.12 69.8 2.45  4 0.57 80.9 1.03 

6 0.12 68.3 2.50  6 0.35 81.0 1.05 

13 0.12 64.7 2.56  13 0.30 80.0 1.43 
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values are ~81 and even larger at a higher thickness.  It is seems quite possible that at 

least one or more of the cross sections scales away from realistic values, such that higher 

q-states are predicted.  The fact that the ETACHA code overestimates the mean charge 

by 10 to 15 charge units for Zt =3 to 13 supports this argument.  If we believe the 

empirical models, then either the cross sections from the code must have the electron loss 

too high or the capture too small.  Clearly, it would be very useful to investigate the 

details of the cross sections and other assumptions in ETACHA to improve its accuracy 

for uranium in this energy regime. 

 Only foils of Li and C are considered for stripping at 85.3 MeV/u as shown by the 

plots in Fig. 3.24 evaluated by both ETACHA and GLOBAL.  Unfortunately, the 

ETACHA stopping powers are only scaled up to 40 MeV/u in the version available, thus 

the ETACHA results in Fig. 3.24 have not been corrected for any energy loss in the 

target.  Despite this fact, the results of ETACHA and GLOBAL agree well up to about 

the point where the q=89 fraction starts to level off at a maximum.  Any discussion will 

be based on the region below this point. 

 The empirical formulations of both [Leon98] and [Baron93] both predict that lower Zt 

materials will yield higher equilibrium charge states at all energies within their applicable 

range.  This effect is also evident from the ETACHA calculations at 9.43 MeV/u.  Notice, 

however, that at 85.3 MeV/u it is the higher Zt that yields the higher charge states.  This 

may imply that for the fully stripped states it is the higher Zt material that gives the 

highest charge states, and vice-a-versa at the lower q-state region.  The other factor that 

will play a part in choosing Zt is the foil thickness needed and the amount of energy loss.  

The results from Gould seem to indicate that there are no clearly defined trends and that 
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ultimately, experimental tests with different Zt materials may be necessary to make the 

best selection. 
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Figure 3.24   Charge state evolutions according to ETACHA and GLOBAL 
calculations of uranium under Li and C foils.  No corrections for energy loss 
done for the ETACHA results. 

 Using low Zt materials may be advantageous if the liquid Li films being developed 

for RIA [Nolen02b] can be made to be thin enough to use as strippers.  On the other 

hand, being able to use high Zt materials such as Ta may be advantageous since it is 

refractory metal that can be machined into a very uniform thickness.  Any solid target 

 147



would likely need to be set up on a device such at a rotating target wheel to extend the 

life of the target [Roa96]. 

 At this point it would probably be pointless to dig at the results given by the empirical 

formulas and the codes.  There is very little if any data to make any conclusions about 

them.  It is clear, however, that further experimental and theoretical studies would be 

beneficial for these types of studies and the design of future heavy ion accelerators. 

3.3.6 A final word about target survival and beam quality 

 Since the beam can affect the physical properties of the foil and the foil can have an 

effect on the phase space properties of the beam, it is necessary to look for some method 

of making reasonable estimates.  Some discussion is offered here regarding available 

tools that have been found in the literature along with some useful estimates.   

 One beam parameter that must be kept to a minimum is the spread in energy of the 

bunch, δKm.  One way to determine growth in this variable is to take a semi-empirical 

formulation suggested by Baron and Ricaud [Baron88].  The results are based on 

experimental results for beams on carbon foils at energies ranging from 3.2 to 6.5 MeV/u 

for heavy ions up to Ta.  Taking δKm to be the half-width fractional energy spread, then 

the following formula may be applied: 
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The thickness of the foil, D, must be given in units of µg/cm2.  For comparison the Monte 

Carlo code, SRIM, was applied.  If we assume an upper limit on the foil thickness at 85.3 

MeV/u to be 20 mg/cm2, we find that δKm=0.018 according to (3.36) and δKm=0.0008 

according to SRIM.  The results from Eq. (3.36) seem to overestimate the value from 
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SRIM by a factor of ~23.  Note that the empirical values include effects such as non-

uniformities of practical foil, while the SRIM calculations assume a uniform foil. 

 Some values of the transverse emittance growth were also estimated with the SRIM 

code.  It is found that the base-to-base full width of the divergence imposed by scattering 

of the projectile ions through the target will vary between 0.5 to 1 mr depending on the 

projectile.  In the case of 238U at 85.3 MeV/u, a half width of 0.6 mr at the boundary 

containing 95% of the total beam must be superimposed on the incoming transverse 

emittance of the beam.  Focusing the beam to a small spot size at the stripper can 

minimize the effect that this multi-scattering has on the emittance.  This is also true of the 

longitudinal emittance, where it is best to minimize the bunch width in time. 

 Another factor that should be taken into account is the lifetime of the carbon foil.  

The maximum temperature of the foil can be modeled by considering a Gaussian spatial 

beam distribution in the transverse plane as described by [Catalan96].  The form of the 

peak temperature may then be evaluated approximately by the formula, 
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where ∆K .I is the total power dissipated in the target determined by the energy loss and 

beam current.  The dimensions of the beam are expressed by the rms width values, x~  and 

y~ , while the two constants, εT and σSB, are the total emissivity of the foil and the 

Stephan-Boltzmann constant, respectively.  Typical values of the emissivity for 

amorphous carbon are found in the tables to be about 0.81 at 1500 K.  Taking, for 

example, the case of a circular beam with a 3mm rms radius and a beam current of 0.6 

pµA for the 238U beam, we get a maximum temperature of about 3000°C.  Although this 
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is still well below the sublimation temperature of carbon (~4100 K), care must be taken 

to ensure that the beam radius does not go much lower.  Furthermore, about 20% of the 

power is dissipated through conduction considering that the radius of the holder is about 

three times larger that of the foil.  Good thermal conductivity to the target holder may be 

a factor in keeping the temperature as low as possible.  Since small beam spots are 

desired, a dynamic target may be necessary to keep the peak temperature low.  This type 

of analysis has been done in the past from foils rotating on a wheel [Roa96].  Flowing 

liquids that form thin regions have also been studied and are found to be much more 

immune to these types of problems [Nolen02b]. 

 For rotating and still targets Baron was also able to characterize the lifetime of the 

stripper in terms of the displacement of atoms within the foil [Baron79].  SRIM 

calculations suggest that over 800 vacancies may be generated per 238U ion on a 20 

mg/cm2 carbon foil.  On average, about 6 of these atoms will escape the foil.  The 

elevated temperature of the foil should re-order much of the lattice of the foil.  With these 

assumptions, the theory of Seitz [Seitz56] predicts that the lifetime of the foil may be 

estimated by, 

jdZ
AKC
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d ⋅⋅

= 2

)/(τ      (3.38) 

Here, d  is the average number of atoms displaced from the bulk, j is the beam current 

density within the rms boundaries of the beam, and C is a constant determined from 

experimentally observed lifetimes.  Baron finds that a value of  

C=3.6×104 h-pµA-cm-2(MeV/u)-1    (3.39) 

fits his observed results best.  We adopt a value of ≈d 6 here from estimates with the 

SRIM code.  We obtain from Eq. (3.38) that for 0.6 pµA of uranium of 3 mm diameter 
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beam spot, the foil should last about 28 hours.  For a rotating target we simply need to 

multiply by the circumference traced by the beam on the target and divide by the 

diameter of the beam spot. 
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Chapter 4 

PRODUCTION OF NEUTRON-RICH ISOTOPES BY A TWO-STEP PROCESS 

  The development of devices that can provide sufficient quantities of rare isotopes will 

be an on-going task for any rare isotope production system.  The chemical properties and 

decay lifetimes vary considerably throughout the spectrum of nuclei away from stability.  

Although a particular device may turn out to be best for some group of species, it will not 

necessarily be competitive for others.  We look at an example here in which even the way 

the primary beam is directed at the target system makes a difference in the performance 

in production. 

 Some of the most important properties to be studied for any target system are the 

efficiency of production, release, and ionization.  An experiment was conducted at the 

Petersburg Nuclear Institute of Physics (PNPI) to evaluate these properties for the 

production of Rb and Cs isotopes within a UCx filled target.  Also, we evaluate the two-

step process in an ISOL configuration as a possible alternative for the production of 

neutron-rich nuclei. 

4.1 Motivation and applied approach 

 Of the many species of rare isotopes that can be made available at a facility like the 

proposed Rare Isotope Accelerator system, neutron-rich species are presently a very high 

priority for the nuclear physics community.  In general, neutron-rich nuclei are less 

understood than their neutron-deficient partners at the same distance from the valley of 

stability.  Moreover, there are more neutron-rich nuclei that are expected to be bound 
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than are neutron-deficient ones.  At large neutron excess, a variety of phenomena are 

predicted, such as the existence of neutron halos, or skins, and vanishing of standard 

magic numbers.  Searching for methods that would make neutron-rich nuclei available in 

sufficient amounts for acceleration is essential. Two methods of production will be 

studied here to assess some of the possible target configurations by a direct comparison.  

 It will be shown that the two-step reaction process for the production of rare isotopes 

in thick targets for ISOL offers some advantages over the one-step configuration.  In the 

one-step, a primary beam of high energy particles, such as protons, directly impinges on 

the target.  Most, if not all, of the power is then dissipated directly in the target.  

Estimates on the amount of production necessary for intense beams of rare isotopes 

require that that at least 100 µA of protons at energies ranging from 0.5 to 1 GeV be 

directed on target. [ISL92].  Studies in the past have predicted that most conventional 

targets will not be able to sustain the type of power densities imposed under these 

conditions.  Issues pertaining to target lifetime and reliability require that alternative 

methods of production be considered since it has been found that the power density in the 

target may cause temperatures to become too extreme [Talbert97] [Eaton79]. 

 The Monte Carlo models that have been utilized here suggest that isotopes lying at 

the neutron rich side of the valley of stability are most readily produced via neutron 

induced fission of heavy elements.  In the case of 238U, the region of the neutron 

spectrum that contributes the most lies between 1 to 5 MeV, and is commonly referred to 

as the "fast neutron" region [Gomes98] [Nolen93].   

 Facilities that produce isotopes for on-line research very often use high energy 

protons, which generate fast neutrons.  There is a tendency to associate most of the 
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production with the direct interaction of the protons with the target nuclei.  This study 

will show that the secondary neutrons induced by the protons actually contribute to the 

production and tend to be the dominant process for very neutron-rich production.  We 

shall demonstrate the use of a technique that gives direct evidence of this.  This requires 

that some efficient production of fast neutrons at some separate primary target be used to 

produce a sufficient amount of neutron flux.  Since the neutrons are generated at a 

separate target, we call this the two-step method of production.  With an optimized 

secondary target arrangement this technique can be used as alternative method for future 

ISOL targets.  The one-step, or direct, method refers to the technique in which protons 

impinge on the production target directly.  The two competing methods are compared 

using the measured and calculated yields of isotopes with mass at the Rb and Cs region. 

 The experiment was conducted at the IRIS facility [Novikov98] at the Petersburg 

Nuclear Physics Institute.  The apparatus used there allows an immediate switch over 

between a one-step and two-step configuration.  The Monte Carlo calculations were 

conducted at Argonne National Laboratory and are compared with the experimental 

results.  To arrive at the production yields the simulation relies on a wide array of nuclear 

cascade events.  Release curves are measured in order to characterize the efficiency of the 

particular IRIS target/ion source used [Barzakh00].  The efficiencies are used to unfold 

the data and obtain absolute yields with a UCx target [Panteleev00].  Other factors that 

affect the efficiency of transport throughout the mass separator system are also accounted 

for as discussed in the sections that follow. 

 154



4.2 Applying isotope production models 

 Modeling of reaction processes is a useful tool in the optimization of production and 

release of present and future ISOL targets.  The production mechanism has to be 

considered along with several other factors, such as the expected beam power, 

temperature, and release times for various elements.  Optimum diffusion and release is 

dictated by the physical and chemical properties of the target and modeling is necessary 

to gain a concise understanding of a particular configuration.  We construct a model of 

the production via the primary beam to simulate the production in the experiment.  

  The scheme used for simulating the reaction processes requires two separate 

codes to handle the "low" and "high" particle energy regimes.  The Monte Carlo code, 

LAHET, tracks all charged particles and neutrons above 20 MeV [Prael89].  Below this 

threshold limit LAHET will cease to track a particle, but will save the space and 

momentum coordinates to be used by another application.  The MCNP code is then 

applied to continue the tracking of neutrons below 20 MeV until they either escape the 

target or induce a fission reaction [Briesmeister86].  A code by Gomes then applies the 

fission branches for neutrons of <20 MeV to obtain the final yields [Gomes98].  It is 

evident that neutrons of energy lying in the range of 2 to 10 MeV generate a significant 

portion of the fission events leading to neutron rich isotopes from 238U. 

 In this experiment, the objective was to verify that the results of the simulations agree 

with those of the measurements.  Furthermore, we have tested the performance of the 

target material and will show some of the results.  The experiment took place with a 

conventional ISOL setup constructed by the IRIS group at the PNPI facility.  We measure 

the yield and release-time of rubidium and cesium isotopes diffusing out of the target and 

ionizing on a hot surface.  A porous form of a refractory uranium carbide (UCx) material 
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is taken up to a temperature of 2500ºC to obtain fast release.  In this experiment, the 

target endured more than 3 days under such conditions.  A 0.1 µA beam of 1 GeV 

protons from the synchrocyclotron was directed at either of two side-by-side targets using 

magnetic steering upstream from the target region. 

4.3 Target and extraction system 

 The IRIS facility is ideal for these measurements.  First of all, the production rate via 

protons tends to level off to little growth after ~1 GeV and the protons from the 

synchrocyclotron are at this energy.  Also, the beam line allows steering between targets 

that are 3 to 5 cm apart and eliminates having to reconfigure the target.  This is important 

considering that many of the conditions of the ion source and mass separator are not 

easily reproducible after any tampering of the set up.  A joint collaborative effort within 

the facility made it possible to produce the necessary target material as well as the 

refractory parts necessary to construct the target/source.  Some details of the process used 

to make the carbide material are mentioned below. 

4.3.1 Production of UCx materials 

 A variety of refractory carbide materials have been studied in the past for properties 

of release and lifetime under extreme temperature conditions.  Preliminary studies on 

these materials primarily focused on producing solid rods with large grain structures for 

use in reactors─the goal usually being to obtain a high density carbide with low diffusion 

rates to minimize the amount of activity released into the atmosphere.  For ISOL targets, 

one strives for the opposite effect since optimizing for fast release is necessary.  In both 

applications, however, it is desirable to retain the refractory properties inherent from the 

carbide while retaining the highest possible concentration of uranium. 
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 An extensive review has been detailed about the properties of the carbides formed 

under various conditions with uranium by Frost [Frost63].  For 0x>2 the carbide tends to 

exhibit the refractory properties of graphite.  As x approaches unity, the material exhibits 

more of the properties of UC and tends to break down and evaporate at temperatures 

below 2500°C.  The properties of graphite are best suited for fast release; hence, it is 

necessary to obtain x>2 at the end of the reaction.  Exact details of the processes used in 

obtaining the different forms of the carbide are described further in the literature 

[Martin74] [ Matthews94] [Gutierrez81]. 

 For the particular sample used here we start with a mixture of powders, such that 

there is 10.7 g of U3O8 and 2.8 g of graphite powder.  The temperature of the sample is 

ramped up slowly until there was about a 21% loss in mass, which implies that there is 

about a value of x=3.4.  The resulting form is a mix of graphite powder and UCx, which 

in this case has grains with an average radius of 3 µm (1 to 5 µm).  The resulting overall 

density of the sample is 3.1 g/cm3 once inside the target.  In the past, similar forms of 

highly porous carbides have exhibited fast release of noble gases, alkalis, and other 

elements [Carraz79]. 

4.3.2 Target layout 

 Fig. 4.1 illustrates a side view of the target/source configuration. The compressed 

UCx compressed powder is encased in a 1 mm thick graphite container to avoid any 

temperature induced corrosive interactions with the walls of the container.  The inner 

diameter of the cylindrical container is about 6.5 mm and has a height of 36 mm.  After 

packing the powder to a density of 3.1 g/cm3, the total amount of uranium in the 

container is about 3.2 g.  A tube was rolled from a 50 µm thick tungsten foil for encasing 
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the graphite container along with tantalum plugs, which are shown at each end.  The 

tungsten wall had an effective thickness of 0.2 mm, while the walls of the tantalum plugs 

have a thickness of ~1 mm.  A DC potential forces currents as high as 600 amperes 

through the sample for ohmic heating of the target material.  The ionizer is heated 

independently with a separate DC power source.  A combined power of about 2.1 kW is 

capable of taking the target and ionizer to temperatures exceeding 2500°C, as verified by 

optical pyrometer measurements.  The target thickness in the direction of the incoming 

3cm length tungsten ionizer tube

tungsten

36mm length

secondaries

Proton Beam

(direct)

(indirect)

UCx grains
graphite 

tantalum

extraction

1 mm thick tantalum plugs

 
Figure 4.1.  Cross sectional top view of the target/source used for rare isotope 
production.  All objects are cylindrical except for the Ta block, which has a square 
cross section in the beam direction and rectangular as viewed from the top.  Secondary 
neutrons produced by the 1 GeV proton beam on the Ta target react with the 238U in 
the target to produce the isotopes of interest. 
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beam is low enough such that only a fraction of the proton energy is dissipated at the 

target (~0.1 kW), thus having a negligible effect on the temperature. 

 The intensity distribution of the proton beam and the exact point of impact were 

measured at the beginning of the experiment.  A photographic plate was placed at the 

front of the UCx and tantalum block targets to determining the beam positions.  The 

images on the photographic plates verified the reproducibility of the beam positions and 

are used to make estimates of the parameters for a 2D Gaussian function to model the 

spatial distribution.  The beam profile formed an upright ellipse with an rms width of 3 

mm in the horizontal direction and 3.75 mm in the vertical.  This was the case whether 

the beam was steered towards the UCx target or the Ta block. 

 The outer encapsulation layers of tungsten and tantalum confine the products as they 

migrate to the tube extraction region shown at the right side of the diagram.  Direct 

production is induced by steering the proton beam towards the UCx target (one-step 

production).  Indirect production yields were obtained by impinging the proton beam on 

the tantalum block to induce the neutron flux (two-step production).  Both configurations 

are simulated by the Monte Carlo models used with Gaussian distributed beam 

distribution are used to determine the expected production. 

 Isotopes undergo diffusion out of the UCx powder then through the walls of the 

graphite container.  Effusion occurs throughout the remaining vacuum regions of the 

target and ionizer tube.  The transition between the regions of diffusion and effusion are 

not clearly distinguishable due to the porous nature of the target and the graphite casing.  

The usual convention is that effusion begins right after the particle leaves the individual 

grains.  Even within the surface ionization tube, which has an inner diameter of ~1.5 mm, 
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there is not necessarily pure random effusion occurring since the potential drop across in 

the ionizer tends to drive the ions towards the extraction region.  The combined effects of 

the transport processes will be characterized by the measured release curves as explained 

later. 

 Once extracted from the ionizer tube, the ions form the beam that is then focused 

through an electromagnetic mass separator.  The magnetic rigidity is varied to be able to 

scan a mass range that spanned between the limits of 90 to 96 amu and 141 to 148 amu.  

Extracted yields at any mass could be measured for both the direct and indirect target 

configurations. 

4.4 Isotope transport and detection 

 A brief introduction of the release analysis is given here to describe the transport from 

a target to the extraction region.  The region of extraction is where isotopes can migrate 

out of the target container and either get ionized and extracted or lost as neutrals to the 

outside vacuum.  The flux of particles leaving the target through this channel is denoted 

by F(t) and can be in units of atoms per second.  Inevitably, there will be losses to other 

traps surrounding the target, such as leaks in the container and diffusion through the 

container material itself.  They would have to be accounted for with a separate term, say 

Fi(t), since their release mechanism is not necessarily similar in form to F(t).  The 

containment of the target used here is secure enough to ensure that such losses are 

negligible. 

 For these experiments the release flux, F, was measured for a selected mass region of 

interest by using an electromagnetic isotope separator to purify the beam.  The beam is 

extracted at 10 kV and then accelerated up to 30 kV through electrostatic tube apertures 
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that simultaneously focus the beam through the magnetic sector.  Finally, the beam is 

steered and refocused through a beam line equipped with a Faraday cup, an ion counting 

system, and a tape transport system that allows detection of decay radiation at suppressed 

background levels. 

4.4.1 Measuring the transported products 

 The actual measurable quantity is the accumulated rate, R(t), at any of the detectors 

and is directly proportional to F(t) by 

)()( tFtR DTi εεε=      (4.1). 

The three leading constants of proportionality are the ionization efficiency, the transport 

efficiency, and the detection efficiency, respectively.  The transport efficiency accounts 

for any losses that occur while the ions are accelerated and focused through the mass 

separator system.  Most of the losses occur in front of the detection system, where 

vertical jaw slits at the image of the beam transport enhance the resolution of the mass 

separator.  Based on the estimated production of 89Rb and ionization efficiency, it was 

determined that the transport efficiency is about 25.0=Tε  when making comparisons 

with the measured current at the Faraday cup at mass 89. 

 The extracted ion detection efficiency,  εD, varied depending on the detector being 

utilized.  Fig. 4.2 illustrates the arrangement of the detection systems used.  The Faraday 

cup and the electron multiplier were utilized when counting ion flux directly.  The 

electron multiplier could tolerate no more than about 104 particles per second (pps), while 

the Faraday cup required at least 106 pps to register above the background of the 

picoammeter. 
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 The solid-state detector of the tape transport system (labeled 2 in Fig. 4.2) offered a 

very low background environment and was used in measuring the ion flux after issuing a 

short pulse of proton beam.  Particles accumulated on the tape could be transported 

within 1.3 seconds to a position near to the detector lying 5 mm away from the tape.  In 

this geometry the detection efficiency is about εD =0.02 for β─ particles of >20 keV.  

Corrections for the dead time of the detector and background subtractions were applied 

for the data obtained from β─ detection. 

 The surface ionization probability, εis, can be estimated under thermal equilibrium 

using an equation given by the Langmuir-Saha model [Langmuir25], 
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Figure 4.2.  Diagram describing the tape transport system used for collection isotopes 
as ions focused through the slit at the image plane.  Two solid-state detectors were 
used for detection of nuclear decay while a Faraday cup and electron multiplier setup 
is used to measure ions directly. 
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statistical weights for ions or atoms, Vi the ionization potential of the ion, and Vs the work 

function of the surface. 

 Some consideration has been given to the formation of a hot cavity plasma within the 

ionizer tube in accordance with a formalism introduced by Kirchner [Kirchner78].  The 

parameterization prescribed by Kirchner in reference [Kirchner81a] for determining the 

thermal ionization efficiency, εiT, is applied and the results are compared with the surface 

ionization efficiency in Fig. 4.3.  The details of the formulation for arriving at the thermal 

ionization values are left to Appendix C.   

 In a later test we observed a strontium component in the beam, where the target 

temperature was similar but the ionizer tube temperature had gone beyond 3000°C.  The 

mass lines, however, did not appear when the ionizer temperature was kept at 2500°C, 

which led us to conclude that the thermal plasma effect plays a negligible effect in the 
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Figure 4.3.  Ionization efficiencies for a tungsten tube at 2800 K according to the 
surface ionization (εis) and hot cavity thermal ionization (εiT) models. 
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ionization.  This does not mean that there is no plasma formation, but merely that it is 

likely that its boundary cut off is too deep from the extraction region to have an effect on 

final extracted ionized species.  Particles ionized by the plasma will likely collide with 

the hot tungsten walls at the exit side of the ionizer tube.  Equation (4.2) is adopted in 

evaluating the ionization efficiency from equation (4.1), since it is most consistent with 

the observed results. 

4.4.2 Product release from target 

 Of particular interest in this study is determining the production rate occurring inside 

the target.  This rate is denoted as P and is the probability of producing an isotope, 

denoted by (Z,A), per incident proton.  The Monte Carlo simulations provide these 

quantities and they may be compared with the values predicted by the experimental 

results after unfolding the relevant efficiency values from the measurements.  The 

efficiencies for the ion transport and detection, along with those attributed to the time 

dependent processes such as decay, diffusion, and effusion are all taken into account for 

obtaining the flux out of the target, F, from the detected rates, R, as described below. 

 A set of first order differential equations could be constructed for balancing the 

production, decay, and extracted flux of an isotope.  The production can be expressed as 

J×P, where J is the incident flux of protons and F is the probability of yielding a 

particular isotope (Z,A).  This is a simplified expression since there is actually a detailed 

spatial dependence affecting the production.  The Monte Carlo models account for such 

geometrical effects.  We let N be the total number of (Z,A) in the target.  The time rate of 

change of its population should vary as 
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nn NNFPJN λλ +−−×=&     (4.3). 

The decay rate, λ, of (Z,A) must include all probable channels that lead to another distinct 

isotope___the most common being that of β-decay.  The final term, λnNn, represents the 

sum of all decay channels that feed the population of (Z,A) isotopes, such as the decay of 

the (Z-1,A) by β─.  Beta delayed neutron decay can also be significant, such as in the case 

of 147Cs, where 43% of its decay feeds into the 146Ba channel.  In general, there will be 

a system of differential equations of the form (4.3) to account for all such possible cross 

terms in a system of equations and each isotope species will have its own corresponding 

extracted flux. 

 The form of the time release flux, F, is usually a complex function of the target 

geometry and depends on the diffusion and effusion coefficients. Especially for the target 

configuration used here, the transport of atoms through the target can be quite a complex 

system to model if one is to apply Fick's laws of mass transport [Crank75].  The form of 

the effusion coefficients by themselves can be a subject of much speculation since the 

electric fields induced by the resistive heating can affect the migration of isotopes that are 

easily ionized on surfaces. 

 The use of equation (4.3) can be simplified by selecting an isotope where the decay 

terms are negligible and the production takes place at a very small interval of time.  In 

some studies, the target is moved to a counting station where the decay of (Z,A) is 

measured as a function of time [Carraz79].  This requires that the half-life of the isotope 

be relatively long compared with the diffusion.  Furthermore, the ramping of the target 

temperature must be short compared with the diffusion time.  In this study a set of 

isotopes with a wide range of half-lives must be measured, so that it is more proficient to 
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determine the form of F from on-line measurements.  Most of the terms in the rate 

equations have some effect on the results obtained in the analysis, thus it is instructive to 

elaborate on their effects.  Appendix D describes a simplified method of arriving at 

analytical solutions under common limit conditions.  It also introduces the concept of the 

release curve, p(t), and its relation to the release flux, F(t).  When feeding from decay is 

negligible (λn=0) the release coefficient is given by 

∫
∞

−= o dttpt )()exp()( λλη .    (4.4) 

We can consider the quantity η×P as forming the figure of merit for a release target for 

some given (Z,A).  Setting aside the production, the delay function carries much of the 

information that is useful when characterizing the performance of a given target.  

Essentially two distinct processes affect the form of the delay function. One is the 

diffusion of the particles out of the target matrix, while the other is the effusion of the 

particles throughout any remaining open spaces whereby the particle may migrate by 

hopping from surface to surface.  The physical and chemical properties of the given 

isotope affect these processes, since the diffusion coefficients and surface sticking times 

should vary for different Z. 

 It is useful to select an isotope of a given element with negligible decay rates 

compared to the flux term in equation (4.3).  Under such conditions, models of diffusion 

and effusion may be directly applied to measuring the rate of release.  Such studies form 

the basis for selecting adequate target materials and optimizing target geometry.  For this 

study it was sufficient to consider 88Rb and 139Cs, in which case the lifetimes are long 

enough to measure p(t) with negligible effects from decay. 
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4.5 Models of the delay function 

 As explained in Section 4.3 above, the delay time is affected by the physical 

characteristics of the target.  Models for the delay function at the limit where λnNn<< λN 

are introduced here and applied to the release curves of 88Rb (T1/2=17.8 min) and 139Cs 

(T1/2=9.27 min).  Cases for which decay feeds into (Z,A) are more complex since they 

require knowledge of the diffusion of mother nuclei whose release properties are not 

necessarily similar.  The half-lives of these two species are also ideal since they are long 

compared to the diffusion time. 

 The diffusion and effusion processes by themselves tend to exhibit unique delay time 

distributions, pD(t) and pE(t), respectively.  We can combine the two different functions as 

a convolution in time by assuming that particles effuse after release from the bulk 

material and never diffuse back into the bulk after.  The diffusion takes place between the 

time interval [0,τ] and effusion between [τ,t].  Under these conditions the following 

integral equation applies [Kirchner92]: 

∫ −=
t

ED dtpptp
0

)()()( τττ     (4.5) 

Two different models are utilized here and applied for comparison with the measured 

delay curves and are discussed below. 

4.5.1 Diffusion-Effusion based release model 

 For the diffusion of atoms from uniform spherical grains, Ravn and others [Carraz79] 

offer a form of the delay function given by 
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where γ is the diffusion parameter and is a function of the radius of the spheres, r. The 

diffusion coefficient, D, is determined by γ=π2D/r2.  The temperature affects the diffusion 

according to D=Doexp(-Va/kT), where Do is the diffusion constant and Va is the activation 

energy of inter lattice position exchange.  The release efficiency that this delay function 

yields is obtained by integrating equation (4.4).  The result is a form given by an infinite 

sum that converges rapidly,  
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∞
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γλη      (4.7). 

 For effusion, we apply the same form of the release for the evacuation through an 

orifice from a container described in the appendix [Kirchner81b].  In the form, 

)exp()( ttpE νν −=       (4.8) 

the factor ν is inversely proportional to the average number of surface sticking events, ns, 

that a particle undergoes before exiting from the volume.  It is common practice to 

express the mean delay time as τd=1/ν= ns(τs+ τf), where τs and τf are the average sticking 

and flight times, respectively.  Solving for the release coefficient gives that 

λν
νλη
+

=)(E       (4.9). 

The convolution of the two delay functions results in the final form, 

∑
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νγ
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π
γν

   (4.10). 

This time integral yielding η results in a similar summation that converges to a 

hyperbolic cotangent form expressed in final form as, 
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A chi-square minimization with respect to the measured delay curves is applied to the 

release curves of 88Rb and 139Cs to extract γ and ν.  The normalized delay function is 

plotted as the dashed curves in Fig. 4.4(a) and (b) with the resulting values listed in Table 

4.1.  The diffusion parameter is estimated by taking the average radius of the grains to be 

3 µm. 

Table 4.1  Parameters that give the best fit to the delay release curves 
plotted in Fig. 4.4. 

 γ[s-1] ν[s-1] D[cm2/s] 
88Rb 0.039 0.26 3.6 ×10-14 
139Cs 0.025 0.20 3.6 ×10-14 

 

 The time scales indicate that overall Rb is released faster than Cs.  The results of the 

best fit to the date indicate that the Rb effuses over 1.5 times faster than Cs from the UCx 

particles, while the diffusion coefficients turn out to be about the same for both species.  

The diffusion rates found here are about two orders of magnitude smaller than the 

diffusion rates measured for noble gases penetrating through similar bulk materials where 

a D of 4×10-12 cm2/s for 133Xe and 85Kr is found [Frost63].  This discrepancy is 

probably due in part to the inert character of noble gases; however, the model applied for 

that other study does not account for effusion through the pores in the material.  This 

would tend to make the diffusion through the true bulk material seem faster since the 

effusion is incorporated into the diffusion parameter.  What is more important to point 

out here is that the two species have similar diffusion coefficients, and the significance of 

the overall magnitude is less relevant since the distribution of grain size can vary by more 

than a factor of two from the average value taken here.  
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 The difference in the effusion coefficients found by the fit may be interpreted by 

application of the model.  If we assume that the sticking time is negligible with respect to 

the drift time then the system is very similar to a gas effusing through network of 

evacuated capillaries.  Since the Cs and Rb atoms travel the same average length we can 
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Figure 4.4.  Time dependent release of (a) 88Rb and (b) 139Cs isotopes from the 
target/source after issuing a pulse to the target in direct production mode.  The 
average temperature of the target is about 2500°C.  Two models are applied for 
comparison by way of a chi-square minimization algorithm to arrive at the relevant 
parameters that yield the best fit.  The curves are labeled for the diffusion/effusion 
model (D+E) and the analytical (an) equation model described in the text. 
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make a relative comparison of the average time elapsed between wall collisions between 

the two elements.  From the kinetic theory of gases the average energy is given by 

2/3kTE = , thus we expect the ratio between the hopping events to be given by 

RbCsRbCs mm // =νν .  This relation holds to within 3% from the values listed in the table. 

 The physical interpretations seem reasonable; however, some difference remains 

between data and model.  A poor fit is seen at about the 8 s mark of the release curve for 

the 88Rb curve, and also for the 139Cs a poor fit is seen for all t>100 s.  In the case of 

Cs, it seems likely that contamination by the slower diffusing 139Ba (T1/2=83 min) 

contributes to the extended tail for large t.  In the case of Rb, the corresponding 88Kr 

(T1/2=2.84 h) is long lived enough to rule out this effect.  It appears that there should be a 

faster component of diffusion superimposed to obtain a better fit to the data.  Typically, 

this target has been observed to have a 200 K temperature difference between the 

outlying plugs and the center, which would make the diffusion significantly slower at the 

colder regions.  There are quite a number of uncertainties that could contribute to such 

small details, but for the most part it can be concluded that the model fits the data 

reasonably well to make some assessment about migration processes taking place in the 

target.  Another model is adopted in the next section that gives a better fit to the data and 

allows us to interpret the data from a standpoint of the release efficiencies. 

 Other more elaborate codes have been developed recently for modeling of the 

diffusion and effusion model [Mustapha01].  We do not resort to them here since they 

involve Monte Carlo  random walk simulation of the effusion, which are more difficult to 

arrive at a fit to the data.  The models used here are easier to apply and are adequate for 

the analysis that is need on the measurements. 
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4.5.2 Simplified analytical model of release 

 In the interest of obtaining a release coefficient from curves that fit the observed data 

more closely, we adopt an analytical form of p(t).  This form is given by the equation, 

( ) 





 −−−= −−− ttt sfr eBBeeAtp λλλ )1(1)(    (4.12), 

where A is the normalization constant.  The migration process is composed of a 

superposition of a fast and slow release components, where λf and λs characterize the fast 

and slow release rates, respectively.  The parameter B weighs in the amount of each of 

these two components.  The first term in parenthesis determines the rise time of the delay 

curve by the rate term, λr.  We note that no distinction is made between diffusion and 

effusion by this model, and overall, these parameters have less direct physical meaning 

than those of the model described in the previous section.  A previous study, however, 

does suggest that the rate parameters should scale as Arrhenius like relations with 

temperature and have offered some experimental evidence this is the case [Novikov98].  

We do not attempt to make such arguments here for lack of temperature dependence data; 

however, the model is utilized since it offers a closer fit to the data, which is attributable 

to a higher number of parameters. 

 Solving for the release coefficient using this model is straightforward and gives that 
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Fitting this model to the measured release curves yields the resulting curves illustrated 

within Figs. 4.4(a) and (b), labeled as the simplified analytical model.  The agreement 

between model curves and data show an improvement throughout most of the time 

spectrum compared to the previous model used. 

 172



 Fig. 4.5 illustrates the resulting release coefficient curves for Rb and Cs as a function 

of τ=1/λ.  The curves approach unity for very long lived isotopes since we have assumed 

that λn≈0.  The Rb curves from the both models overlap each other despite the fact that 

their respective release curves vary significantly at the region about the peak of the delay 

function.  On the other hand, the release curves of Cs behave very similar in this same 

region, yet the two coefficient curves exhibit well-marked differences.  The dominant 

effect seems to stem from the behavior of the delay curves at the region well beyond the 

point where the peak occurs.  The diffusion/effusion release curve drops off more rapidly 

in this region than those of the simplified analytical model.  The result is an enhancement 
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Figure 4.5.  Release coefficients obtained from applying the diffusion/effusion model 
(D+E) and the simplified analytical (an) form of the release curves.  The release 
curves of Rb exhibit a faster, more efficient release process than the curves of Cs.  
The Rb curves given by the two models overlap with each other, while the Cs curves 
have a well difference. 
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of the release coefficient curve of Cs exhibited for the diffusion/effusion model.  This 

effect is rather a dramatic one, considering that the release curve has dropped by over a 

factor of 20 from its maximum value before the difference between the two becomes 

apparent.  The rate at which the curve converges to zero at the far region of time will 

weigh a substantial effect on the probability of release due to the fact that an ample 

fraction of the total area lies beyond the region of the plots.  It is easy to see how 

determining the exact background level can become a critical factor.  This is task is rather 

non trivial since the mass separator can introduce high levels of background coming from 

transmitted isotopes of dissimilar (Z,A) [Menat42]. 

 Another likely cause of this tail may be from feeding of 139Cs via the 139Xe 

(T1/2=39.7 s), 139I (T1/2=2.3 s), and 140I (T1/2=0.86 s, β-n 9.3%).  Isobaric contamination 

by 139Ba (T1/2=83 min) and its respective feeding channels was pointed out earlier.  If it 

is contamination at the mass separator level, then the presence of longer-lived 

background isotopes can also explain the discrepancy.  Whatever the case may be, the 

discrepancies are significant enough to reconsider using the analytical model at all.  

Adopting the efficiency from the diffusion/effusion model as being the most accurate 

seems reasonable, despite the fact that the fits may be in less agreement with the observed 

results. 

 Before moving on to the next discussion we show the results of the production as 

calculated by the Monte Carlo models.  The plots in Figs. 4.6(a) and (b) illustrate the 

mass distributions predicted by the simulation for Rb and Cs isotopes for both the direct 

and indirect setup.  The contribution to the production by the high and low energy 

spectrum of particles has been plotted separately, along with their sums.  The lower 
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energy neutrons cause a Gaussian like mass distribution and seem to be the dominant 

component at the neutron rich side of the mass spectrum.  The characteristics of 

production by fast neutrons or high energy protons have been detailed previously 

[Crouch77].  The neutron production exhibits peak production of isotopes at about mass 

100 and 135 forming an asymmetric distribution about mass 118.  It is characteristic of 

238U nuclei to fission into unequal parts under the excitation of fast neutrons.  On the 
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Figure 4.6. (a) Mass yield distribution of the Rb isotopes in the indirect target 
configuration when striking the neutron generator with 1 GeV protons.  A curve is 
given for the yields given by the LAHET code for E>20 MeV particles as well as 
those resulting from the production by neutrons of E<20 MeV.  (b) Similar mass 
distribution for the Cs isotopes. 
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other hand, collisions by high energy protons tend to cause a high level of excitation, 

which leads to spallation or the fission of highly excited nuclei.  Consequently, for the 

production by fast particles yields a mass distribution that is predominantly symmetric 

about the mid region of the initial total mass of the target nucleus. 

4.6 Comparison of the two production methods 

 The results of the Monte Carlo calculations are provided in the form of mass 

distributions.  The code tracks the events initiated by 1 GeV protons striking the target 

and registers the creation of every possible isotope product.  For protons directed at the 

UCx target, the simulation records the production for a total of 6×105 incident protons.  In 

the case of protons striking the tantalum block, a factor of 10 more protons were used 

since only about 23% of the neutrons generated at the block actually penetrate the UCx 

target. 

 Measurements of the accumulated yields, R, are recorded for each isotope mass 

region to obtain the production rate in both the direct and indirect setup.  Having 

subtracted out the background signal at the detector, we then take the ratio of the direct to 

indirect accumulation for each species of interest.  The experimental conditions remain 

the same for both measurements, since only the position of the beam on target is varied.  

Thus, the ratio only carries the effects of the production, P, of each isotope observed.  

Past experience has shown that the diffusion rate can be enhanced by the vacancies that 

the proton beam leaves behind [HagebØ92].  Comparing the release curves between both 

configurations would be one way to measure any difference in diffusion times; however, 

the effect seems to be negligible according to the results obtained here.   
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 The ratios are plotted in Fig. 4.7(a) and (b) for Rb and Cs, respectively, for the 

neutron-rich mass region.  The measurements are obtained primarily from the tape 

transport and beta detection system.  At the less neutron-rich side the production is 

sufficient to measure electrical current with the Faraday cup.  When possible, a 

comparison between both methods of measurement serves to verifying that the results are 
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Figure 4.7. (a) Plot of the ratios for the measured yields in the direct and 
indirect configuration in the neutron rich Rb mass region.  Plotted also are 
the predicted ratios given by the Monte Carlo calculations.  (b) Similar plot 
for the neutron rich Cs mass region. 
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consistent with each other.  For the case of mass 90 and 91, the error bars are associated 

with the systematic error in the picoammeter read out.  The error bars in the rest of the 

data come directly from counting statistics.  The ratios are in agreement with the trend 

predicted by the Monte Carlo calculations in both mass regions.  The results of the 

comparison instill confidence in utilizing the models for simulating production yields. 

4.7 Purity of beams 

 Up to this point, we have not taken full advantage of the measured release efficiencies 

calculated in Section 4.4.  In this section we will use the efficiency values predicted by 

the analytical model, as well as any other relevant efficiencies, to obtain the absolute 

yields, P, from experimental measurements.  The results can be compared to the absolute 

yield values predicted by the Monte Carlo calculations and an assessment can be made 

about the purity of the mass separated beams. 

 When making mass measurements in regions where adjacent mass peaks are at least 

an order of magnitude larger, there is always some amount of contamination that crosses 

over into the accepted window at the mass of interest.  This effect generally occurs when 

other masses are scattered by residual gas atoms or chamber walls, such that they end up 

at the detection region.  Another source of contamination stems from isobars, i.e. isotopes 

of the same mass number.  Being that the mass separator system used has a resolving 

power ≤800, it is not possible to separate isobars, such as those of Ba or Sr.  We depend a 

great deal on the chemical selectivity of the ionizer, and to some extent, of the diffusion 

process, to yield mostly Cs and Rb; however, it is almost inevitable to have some level of 

contamination.  We attempt to look at the magnitude of this effect and how it may affect 

the final results.  
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4.7.1 Time dependent decay measurements 

 The mass separated beams are collected on tape right in front of the detector (det-1 

Fig. 4.2) as the proton beam is directed at the UCx target.  The Faraday cup is used to 

detain or release the ion products to record the decay activity versus time.  The results 

obtained for the Cs mass region between A=144 and 148 are plotted in Fig. 4.8.  The ions 

were collected throughout a series of one minute intervals as the activity from the chain 

of decay was recorded at 1 second intervals.  The curves plotted with the data are 

calculated from the corresponding rate equations for decay of each respective Cs isotope.  

For example, in the case of A=147, we assume that the curve labeled "0" is that of only 

the 147Cs→147Ba decay channel.  The next curve, labeled "0,1", sums the 

147Ba→147La decay to the previous one by assuming equal probability of detection.  

Each consecutive decay in the scheme is added to the previous one in this manner until a 

stable isotope occurs, or one of negligible decay rate.  In the case of 146Cs, 147Cs and 

148Cs there is a beta-delayed neutron decay channel that is probable which must be 

accounted for.  This was especially important in the case of 147Cs where 43% of them 

will decay through 146Ba→146La→146Ce→146Pr by β− decay.  The curve that 

includes this chain is labeled as "0,...,4,bn(43%)".  The rate of isotope accumulation, R, is 

chosen such that final results minimize chi-squared relative to the measured count rate. 

 Quite a remarkable fit is obtained for the case of A=144 and 145 giving a reasonable 

amount of confidence that the collected isotopes are mostly of Cs.  For higher mass the 

statistics become worse and the fit to the data becomes poor.  The fact that we assume 

equal probability of detection for each daughter may have something to do with it, but it 

seems more likely that some amount of contamination might be causing the shape of the 

curve to deviate due to differing decay rates by contaminants. 
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Figure 4.8.  Measured activity as a function of time at the solid state 
detector (det-1 on Fig. 4.2) at various mass regions.  The various line 
graphs result from simulation as described in the text. 
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4.7.2 Absolute yields 

 During the irradiation of the sample the production and release are approximately at 

equilibrium, thus the accumulation rate, R, is related to the absolute yield by 

( PJR DTi ×≈ )ηεεε      (4.14). 

Applying this relation to the data gives the values plotted in Fig. 4.9 along with their 

respective absolute yield values predicted by the Monte Carlo calculations.    If we trust 

that the calculations are correct, then we should expect that the experimentally 

determined yields should drop more rapidly for increasing neutron number.  Since this is 

not the case, then there is a possibility that contaminants are present that make the 

measured count rate higher than expected. 

 It is instructive to do some estimates based on the calculated production yields by 
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Figure 4.9.  Experimentally measured values of the absolute yield at 
the target obtained by correcting the values of R for release, 
ionization, and transport efficiency.  The production for Cs isotopes as 
given by the Monte Carlo models is shown for comparison. 
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applying the above equation to predict R for any isobars that are possible.  Generally, we 

would need to determine the release efficiency of the isobars, since they generally have 

different chemical properties that vary the rate of diffusion.  For the sake of simplicity, 

we just assume that the release coefficient of each element is the same.  This assumption 

may be reasonable for the Rb/Sr and the Cs/Ba isobaric combinations; however, it is 

likely that La, Ce and Pr have significantly different chemical properties than Cs. 

 The factor that sets the elements apart the most is the ionization efficiency, where the 

values plotted for surface ionization from Fig. 4.3 have been adopted.  Again, we treat the 

detection efficiencies for β− decay as equal for each decay.  The percentage of R expected 

from each isobar is evaluated at each isotope mass of Rb (a) and Cs (b) and has been 

listed in Table 4.2.  Isobars whose contamination level falls below the 1% level are 

omitted. 

 The predictions suggest that only a small amount of contamination should be 

expected at the Rb, except for 96Rb where the 96Sr production is significant.  This is 

consistent with the observed results of the Rb data.  On the other hand, there is a 

significant amount of Ba and La isobaric contamination predicted for Cs isotopes.  Thus, 

it is quite possible that the discrepancies in the decay data for the Cs are associated with 

isobaric contamination. 

 There are more direct methods of looking for contaminants, for example by using 

gamma ray detection.  Such techniques may be useful in verifying some of the results.  It 

is quite probable that cross contamination by beam scattering contributes, but the extent 

to which it does may require an enhanced detection system.  Such information is useful in 

evaluating the performance of the ionization and mass separation technique and could 

 182



lead to 

surface i

 

 Desp

compari

shows th

contamin

compare

should e

A=143 to

as much

percenta
Table 4.2  Estimated fractional contamination for Rb(a) and Cs(b). 

Mass Components 

92 95% Rb, 5% Sr 

93 96% Rb, 4% Sr 

94 99% Rb, 1% Sr 

95 99% Rb, 1% Sr 

96 83% Rb, 17% Sr 

Mass Components 

143 90% Cs, 10% Ba 

144 73% Cs, 27% Ba 

145 54% Cs, 44% Ba, 2% La 

146 18% Cs, 75% Ba, 6% La, 1% Ce 

147                58% Ba, 24% La, 17% Ce 

148 1% Cs, 26%, Ba, 16% La, 44% Ce, 2% Pr 
improvements by changing some of the experimental conditions, such as the 

onizer temperature, or by modifications to the design of the separator. 

ite the lack of means for direct identification, there is still another level of 

son that gives value to the production ratios of Fig. 4.7.  The plot in Fig. 4.10 

e values calculated for the direct to indirect yield ratios for each possible isobar 

ant of Cs.  The values for Cs are the same ones appearing in Fig. 4.7, where we 

 with the experimentally measured values.  The calculations show that one 

xpect the ratios of Cs and its corresponding Ba isobars to be very similar at 

 148.  The La isobars deviate by as much as a factor of two in this range, but not 

 as expected for the Ce isobars.  Superposing the Ce ratios according to the 

ges evaluated for Table 4.2 would cause the data to look significantly different, 
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since the production of these isotopes by the direct setup is expected to be exceptionally 

high.  There is little indication that the effect of a Ce contaminant is present, which may 

indicate that its release may be negligible compared to Cs and Ba.  In fact, there is little 

evidence in the literature to suggest that La and Ce leave UCx targets rapidly compared to 

Cs and Ba [HagebØ92].  Carraz and others even claim to have used a carbide of Ce for 

fast release, which implies that Ce forms at least a semi-stable compound with carbon 

even at these high temperatures [Carraz79].  Evidently, if there is any contamination, it is 

very likely that most of it comes from Ba, and the agreement between the experimental 
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Figure 4.10.  Direct to indirect production ratios as calculated by the Monte Carlo 
models for Cs, Ba, La, and Ce.  Relative to Cs, the Ba ratios are very similar but a 
significant difference is observed; especially for Ce. 
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and calculated ratios arguably remain sound. 

4.8 Mixture targets 

 From the mass yield distributions plotted in Fig. 4.6 (a) and (b) it is apparent that 

many of the neutron-rich isotopes are produced mainly by fission initiated from fast 

neutrons.  Using the results given by the Monte Carlo production models an example of a 

mixture target is given here to determine if it is possible to enhance production by 

introducing a neutron generator, or material that produces more neutrons per occupied 

volume. 

 Consider a species of isotope whose yield results exclusively from neutron induced 

fission of the direct target nuclei, 238U, with all other interactions having a negligible 

contribution.  We treat each UCx molecule as a direct target particle giving ςd neutrons 

per incoming 1 GeV proton per molecule (n/p), while only one fission is allowed for each 

of the Nd molecules.  Blended within the mixture are a total of Ng generator atoms, in 

which each yields ςg neutrons per proton.  The generator is assumed to be tungsten since 

it has a high density and provides a neutron energy spectrum that is similar to that of the 

UCx direct target.  Using the geometry of the container of Fig. 4.1, the Monte Carlo 

calculations yield that for a pure tungsten mixture of 19.3 g/cm3, ςg =4.3×10-23 n/p.  For a 

pure UCx target it gives that ςd =7.6×10-23 n/p.  The attenuation of the protons is stronger 

with the tungsten generator but the effect has a negligible effect on the neutron flux 

generated by each of the targets in the mixture, thus the materials behave essentially the 

same as a mixture. 

 The total volume occupied by the mixture is a constant and is given by, 
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gd VVV +=      (4.15), 

where Vd is the volume occupied by the direct target and Vg for the generator.  The total 

rate of neutron production is then 

ggddn NNpn ζζζ +=]/[     (4.16). 

If χ is the atomic density, then the number of target particles can be evaluated for each 

target by N=V.χ.  The rate of neutron-induced fission can then be expressed as, 

)(][ 1
gggdddddndnn VVVNpY χζχζχσζσ +==−   (4.17), 

where σn is the fission cross section.  By applying equation (4.15) and taking the 

derivative with respect to Vd to find an extremum, it is found that a maximum occurs at  

ggdd
dm

VV
ζχζχ /1

2/
−

=     (4.18) 

as long as  

ggdd ξχξχ <      (4.19). 

For a mixture of UCx and tungsten, it is found that the optimum rate of fission can be 

obtained from a mixture in which Vd/V=0.62.  The plot in Fig. 4.11 shows how the fission 

rate varies with the fractional volume of the direct target.  Since it is assumed that only 

fission by uranium yields the product of interest, the rate vanishes as only tungsten 

occupies the entire target.  Having pure UCx (Vd/V=1) gives almost 60% less fission yield 

than the maximum expected when using the mixture (Vd/V=0.62). 

 The tungsten generator was used here mainly to illustrate the effects of using a 

mixture where the generator material has no chance of contributing to the production of 

isotopes from fission.  In principle, it is possible to use a high density form of UCx mixed 

in with the fast releasing powder form.  In this approximation, the overall fission rate will 

rise as the square of the density of UCx.  Although the release may be slower than from 
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the powder material, some amount of enhancement to the production should still  be 

expected, especially for the longer lived species.  
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Figure 4.11.  Fast neutron induce fission rate as a function of the occupied volume 
of the neutron generator.  The neutron generator here is taken to be tungsten mixed 
with the UCx fission target of 3.1 g/cm3.  Using a mixture with 62% UCx powder 
gives an enhanced fission rate by ~60% relative to the rate at pure UCx (Vd/V=1). 

4.9 Summary 

 The analysis of the experimental results indicates that the two-step production process 

is a useful mechanism for providing isotopes at the neutron rich side of the valley of 

stability.  Since the power from the primary beam does not necessarily have to be 

dissipated directly onto the target, it has the potential to surpass production levels that are 

far from reach with direct targets when considering the extent of the damage and lifetime 

of the source.  The Monte Carlo production models suggest that by setting up a geometry 

in which the UCx surrounds a secondary neutron production target, the production rate 
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for some isotopes will surpass that of the direct target geometries.  Since the two-step 

process produces very few proton rich isotopes, this method is also useful in reducing 

isobaric contamination in studies of isotopes.  

 Comparisons of the data with results obtained from the Monte Carlo simulations have 

verified the vital role of fast neutron interactions for a target enriched with natural 

uranium.  Before these experiments, there had been little direct experimental evidence of 

the importance of the two-step process.  The models predict that for a wide variety of 

neutron-rich isotopes, the two-step process is solely responsible for their production even 

in direct proton irradiations. 

 Dense neutron generator materials, such as tungsten, are ideally suited for extreme 

primary target conditions and should be considered in the design of future two-step 

targets.  The required beam energy for two-step targets need not be as high, since neutron 

containing particles, such as deuterons or alphas, can impinge at energies of about ~100 

MeV/u to yield an adequate spectrum of neutron energies.  For current targets in which 

high energy protons are utilized, it may also be possible to optimize released yield by 

either using more dense target material, or by mixing the fast releasing porous kinds with 

those that generate high neutron fluxes. 

 The production and release processes combined must form the figure of merit for 

ISOL targets.  Measuring these properties while the target is exposed to extreme 

temperature and irradiation conditions is essential for developing target/source design for 

future rare isotope facilities 
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Chapter 5 

DEVELOPMENTS IN BEAM DIAGNOSTICS 

 In this chapter we describe a number of beam diagnostic techniques that were 

developed and tested for future RIA beams.  The main focus will be on a beam imaging 

monitor (BIM) that is intended for low beam intensities.  Prior to the development of the 

BIM device there had also been a wire/slit emittance scanning device and a low 

background ion counting detector developed for other measurements.  Since these other 

two devices were used in obtaining reference measurements for the BIM, we have 

incorporated them into this chapter and describe each of them. 

5.1 Design features of the BIM 

 A layout of the BIM is illustrated in Fig. 5.1.  The beam comes in from the left and 

passes through any necessary slits or apertures, such as a pepper pot plate (a pepper pot is 

a plate with an array of small holes).  Particles strike a flat aluminum surface that is 

oriented at 45° relative to the beam direction.  The plate serves as a dynode since the ion 

signal is converted to a burst of secondary electrons (SE).  These secondaries are 

promptly accelerated by a 5-15 kV potential imposed by a grid lying parallel to and 5 mm 

from the surface. Motion feed-throughs are used to insert the aluminum foil dynode and a 

dual-slit plate upstream.  A diagram illustrating a Simion 7 [Simion7] simulation of this 

process is shown in Fig. 5.2.  We note that the beam cross section in the horizontal plane 

will appear √2 times large due to the 45º tilt relative to the beam coordinate system of the 

beam, which is also shown in the diagram. 
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 A position sensitive microchannel plate (MCP) is excited by the SEs and further 

amplifies the signal induced by the secondaries.  The MCP is parallel to the conversion 

surface as well and lies 47 mm after the grid.  The accelerating potential is distributed 

evenly enough such that the electrons are accelerated perpendicular to the conversion 

surface; thus the system may be used to map the ion beam intensity along the transverse 

planes.   

 
Figure 5.1   Diagram of the BIM. 

 The actual detection of the signal is done with the combination of a phosphor screen 

and a light sensitive detector.  A monochromatic CCD (charge coupled device) would be 

sufficient for detecting the light signal; however, we chose a CID (charge integrating 

device) since it has less cross sensor-induced noise as well as less thermal induced noise.   
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A dual MCP detection system was actually used here to obtain high gain.  The second 

MCP lies 0.5 mm behind the first, such that the channel holes align.  Both MCPs are 

identical at 41 mm in diameter and can sustain a maximum bias of 1000 VDC each.  A 

resistive circuit was constructed to allow both MCPs to have equal biases and run off of a 

single power supply.  The dual MCP system has a combined maximum gain of 4×107.   

 
Figure 5.2   Diagram SE collection region of BIM.  Trajectories of electrons exiting 
the surface at angles ranging from -60° to 60° with a kinetic energy of 25eV are 
simulated with Simon using a 330 µm spaced grid.  Bias potential used for each 
element is shown along the bottom.  The beam coordinate system is oriented such that 
the z-axis points in the direction that the beam travels. 

 About 0.5 mm behind the second MCP there is a type P-20 phosphor plate.  It is 

biased at 3 kV relative to the MCP output to convert the accelerated electron’s energy 

into photons of predominantly 560 nm wavelength.  The quantum efficiency is estimated 

to be about 0.063 photons/eV/electron in this wavelength region [Forand90]. 
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 The image is demagnified by a factor of 3 and transmitted to the CID sensor via a 

fiber optic transport system.  The demagnifying element is a fused, tapered fiber optic 

bundle that goes from 41 mm to 13.7 mm in diameter.  Between the end of the tapered 

rod and the phosphor screen is a 13.7 mm diameter fiber optic rod in direct contact, such 

that loss of light is minimized.  The fiber optic rods are both made of fused glass, optical 

fiber rods with polished faces.  The combined optical system has about 15% total 

transmission efficiency for most of the visible spectrum of light.  The spatial resolution 

for a single particle exciting the MCP surface directly is better than 0.15 mm according to 

the manufacturer’s specifications [Colutron] and the reported results of Shapira and 

others [Shapira00]. 

 The CID sensors accumulate a charge that is directly proportional to the total photon 

flux absorbed at each respective location.  The charge is integrated over a 33 ms period 

and each sensor is discharged after each reading.  The thermal noise of the CID sensor 

array limits the integration period and the amplification gain; however, cooling the sensor 

and electronics to about -10°C is expected to improve the performance over room 

temperature operation.  We chose to test the performance of this system at room 

temperature in this study. 

 The electronics within the camera allow the CID sensors to be read out in the RS-170 

image rastering standard.  The signal is amplified and then fed into a PCI-1408 frame 

grabber circuit board.  The board features its own amplification with programmable gain 

to processes the signal before it is delivered to an 8-bit flash ADC.  This ADC is capable 

of sampling at up to 16.5 MHz; however, it only needs to function at 12.3 MHz in the 

RS-170 raster mode.  The images may be digitally processed in real time with the use of 
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National Instruments IMAQ software [NI] and may be stored for later reference or 

processing.  The signal from the image may also be split to be monitored simultaneously 

with a TV monitor.  The beam imaging system including MCP, phosphor screen, fiber 

optic rod and CID camera was purchased commercially from the Colutron Research 

Corporation [Colutron]. 

 The PC also has a stepper motor control board and encoder reference input.  This 

allows us to control and monitor the position of the linear feed through devices that 

introduce the conversion surface and the upstream slit pattern.    The conversion surface 

may be removed to allow the beam to pass when detection is no longer necessary.  The 

position of the slit and conversion surface is monitored with differential encoders. 

 A group at the Leuven facility has reported the performance of a similar device 

[Krublov00].  The most notable feature of their set-up is the use of microsphere plates 

(MSP) instead of a dual MCP as used here.  Although its known to sustain higher 

pressure conditions than the MCP, the MSP generally exhibits artificial structure 

resulting in poorer resolution.  The Leuven device has a limited grid potential of 5 kV 

and little is referenced about the effects that the grid spacing has on the image resolution.  

In contrast, for the BIM device here we can apply up to a 15 kV potential with little 

thermionic emission and breakdown at pressures better than 10-6 Torr.  Furthermore, the 

Leuven set up uses a CCD lens camera for detection from the phosphor screen as 

opposed to the CID sensor and fiber optics utilized here.  Other systems based on SE 

emission imaging have been tested or are underway for the measurement of ion beam 

transverse and longitudinal profiles [Feschenko96]. 
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 In another study conducted by Shapira and others, a detection system similar to the 

one constructed here was used with thin foils of carbon or aluminized Mylar instead of a 

polished aluminum surface [Shapira00].  They utilized a similar MCP detection system to 

study fast timing and position resolution with the use of a Position-Sensitive Timing 

Detector.  Their results support some of the conclusions found in this study. 

5.2 Low-background ion counting system 

 Part of the interest with the BIM lies in knowing what minimum ion flux can be 

discernable when acquiring beam images.  For this analysis an ion counting detection 

system that had been developed for some earlier studies is employed.  The ion counting 

system is similar to the BIM system in that it relies on SEs from a conversion surface to 

amplify the signal from colliding ions.  Instead of an MCP, however, this system uses a 

channeltron for amplification of the SE signals as shown in Fig. 5.3.   

 A number of features have been implemented for making this system ideal for 

counting of heavy ion beams.  At the heart of the system is a channeltron with a gain 

about 106 and dark current of less than  10-12 amps at a 2 kV bias.  The mouth of the 

detector is 25 mm in diameter with a copper mesh that sits 25 mm away to allow an even 

field distribution with the conversion surface.  The mesh is made of thin copper wires 

spaced evenly in squares of 0.33 mm sides to give a transmission ~90%.  The conversion 

surface is made of a thin coating of BeO with stainless steel backing.  The surface normal 

is oriented at an angle of 70º relative to the direction of the incoming beam to maximize 

the SE yield [Dietz75].  Measurements show that an average of 8.7 electrons are released 

with low energy Cs1+ beams of 10 keV.  The pulse width of the ion signal is about 2 ns at 

half width and is amplified with a fast timing amplifier.  Using a constant fraction 
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discriminator it was possible to obtain as little as 0.3 counts/s background without ions.  

The system has almost 100% detection efficiency at count rates of <103 and >50% for 

count rates as high as 6×106 counts/s as shown by the plot in Fig. 5.4. 

 
Figure 5.3   Ion counting detection system based on a channeltron electron multiplier 
and a BeO conversion surface.  Resistance is in units of Ohms. 

 The detector was installed 20 cm upstream from the slit of the BIM at the "8°+27° 

West" beam line at the Argonne Dynamitron accelerator facility.  A focused DC beam of 

84Kr+1 with energies ranging from 300 keV to 1.5 MeV is used.  Two dipoles bending in 

the same direction are used to select the isotope of interest over a 15 m long transport line 

and a quadrupole doublet refocuses the beam as it is delivered to the target region as 

shown by Fig. 5.5. 
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 The plasma source of the accelerator typically delivers beams at the tens of 

microamperes for steady operation; thus, a beam attenuation system outside of the 

accelerator is needed.  Two grid attenuators of know transmission are used for reducing 

the beam intensity down to the level of hundreds of ions per second.  Both are located 

 
Fig. 5.5  Layout of the 8°+27° West beam line at Dynamitron where the BIM was tested. 
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Figure 5.4   Detection efficiency for counting ions of 133Cs+1. 
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about 1.5 m apart with the 27° bend dipole between them.  Four-jaw slits are used for 

lowering the intensity even further and can be used for locating the exact beam position 

before the BIM.  We are able to suppressed beams down to the 102 pps level for an 

84Kr+1 beam at 12 keV/u and still visibly detect the ions striking the conversion surface 

of the BIM within a 2 mm by 2 mm surface area. 

5.3 Beam emittance measurements with wire scanner 

 Another measurement system developed for emittance scanning was incorporated 

with the BIM system during tests.  It is designed to scan the emittance in only one plane 

and must be rotated after breaking vacuum to measure the other plane.  In this case it 

scans the y-plane.  

 The main features of this device are best described by referring to the diagram in Fig. 

5.6.  Stepper motors are used to drive the linear feedthroughs, while the differential 

encoders are used to reference the exact position.  The details about the slit plate are 

described in the later sections since it has been especially designed to function with the 

BIM.  For now we just mention that slit that lies in the same direction as the wire that is 

used for the emittance scan in this system.  The wire is made of tungsten and is 0.25 mm 

wide.  The beam flux that hits the wire is measured at with a picoammeter in series with a 

battery that imposes a bias voltage of –45 V on the wire.  The bias allows the SEs leaving 

the wire to amplify the current by ~3 and suppress any stray electrons generated 

elsewhere in the system, such as on the slit plate.  With this emittance scanning system 

we are able to obtain very highly resolved scans of the emittance used to compare with 

those of the BIM described in Section 5.6. 
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Figure 5.6   Diagram illustrating the slit/wire emittance scanning system. 

5.4 Properties of secondary electrons and effects on detector 

 A significant amount of signal amplification of the BIM is attributable to the collision 

of the ion with the aluminum dynode.  The excitations from the colliding projectile at the 

dynode result in the ejection of other ions, neutrals, photons, and electrons.  The energy 

and angle distributions of ejected SEs have been studied by Rothard and others 

[Rothard90].  They find that the angular distribution of the ejected electrons tends to obey 

a cosθ distribution, but indicate that there is no dependence on the angle of incidence of 

the projectile.  When surface roughness is appreciable the intensity seems to drop off 

more rapidly when sampling away from the surface normal. 

 The energy distribution of secondaries tends to exhibit a feature that is predominantly 

independent of the combination of projectile and target used.  The distributions tend to 
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exhibit a sharp peak at 2.1±0.3 eV that contains ~85% of the total distribution.  The rest 

of the distribution lies along a decaying exponential like curve with some structure 

present as a result of Auger and kinematic effects [Rothard90].  The average number of 

SEs ejected per ion event, γ, depends on many characteristics of the projectile/surface 

combination.  We provide some arguments that support the fact it is actually excitations 

very close to the surface that generate most of the SE flux.   

 The range even for 0.3 keV/u 84Kr is about 200 Å and most of the energy is 

deposited evenly along the path of the collision cascade.  The mean free path of electrons 

with energies even at 20-100 eV is 3-5 Å [Bauer72]; therefore, it is conceivable that only 

the energy deposited within first few Å from the surface contribute to the SE flux.  To 

support these arguments it has also been shown that the average number of ejected 

electrons is actually proportional to the electronic stopping power dE/dx of the 

projectile/target combination [Albert92].  As mention previously, the energy deposited 

close to the surface increases with the angle of incidence, and studies have shown that the 

distribution of SE flux along the angle relative to the surface normal, θ, varies in close 

proportionality with secθ [Dietz73]. 

 The number of SEs ejected per ion event can be characterized by a Polya, or negative 

binomial, distribution as shown by Dietz and Shefield [Dietz73] [Dietz75].  Binary 

collisions between atoms are generally described best by a Poisson distribution; however, 

the effects of the bulk surface on the escaping electrons results in a broadening that 

depends much on the ion/target species as well as other surface properties.  The result is 

an overall growth in the variance, σ, for the distribution.  For example, it had been 

observed that a 30 keV Cs+1 beam impinging on an oxygen treated Cu-2%Be surface 

 199



gives ~10% larger σ than expected form a Poisson distribution at the measured 

γ [Dietz75].  The broadening affects the efficiency of detection and makes it impractical 

to apply any technique that would allow discriminating between particles, say of different 

mass, striking the surface. 

 In this study we measure the overall electron flux by applying a potential to the 

dynode to suppress the electrons and subtract the ion current.  At an incident angle of 45° 

we obtain ~12 e-/ion for 1.5 MeV 84Kr+1 on the untreated aluminum surface.  Building 

up an oxide layer at the surface and using materials such as Cu-2%Be can increase γ; 

however, we use an untreated surface since it is less susceptible to surface degradation 

over long exposures to heavy ions.  We should note that similar measurements were used 

to measure γ for the low-background ion detector described in Section 5.2.  There we 

obtain a lower γ since we were using Cs ions at 10 keV. 

 Trajectory simulations were carried out using Simion 7 to determine the broadening 

effects caused by the overall drift and microlensing at the grid.  Monte Carlo techniques 

were applied to simulate the energy and angular distribution of the secondaries.  The 

distribution of initial angles from the surface is taken to be proportional to cosθ.  A 

combination of two Gaussians and a Maxwellian function is utilized to form a probability 

density that best fits the data of Rothard [Rothard90] for the energy distribution.  The 

function is expressed by 
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where the parameters used are listed in Fig. 5.7 along with a plot of the simulated 

distribution.    The initial positions of all trajectories are distributed evenly along the grid 

over 8 grid spaces.  This was necessary since the focusing action of the grid depends on 

this initial position.  The relative displacements were recorded for each trajectory to 

evaluate the rms displacement, σe.  The results obtained when sampling σe, along with 

the rms transverse velocity, δv, are shown in the double axis plot of Fig. 5.8(a).  The grid 

potential is Vg=13 kV.   

 We also consider the case where the perpendicular component of the velocity, v⊥ , is 

non-relativistic and the transverse component is small compared to v⊥ .  Also, we assume 

that the acceleration takes place in a region that is negligibly short compared to the drift 

that follows.  Under such conditions we can apply the relation, 
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Fig. 5.7   Simulation of energy distribution (bar graph) compared to the experimental 
data of Rothard as explained in the text.  The parameters used with the probability 
density function are listed. 
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where L is the distance between the dynode and MCP surface, me/e is the mass to charge 

ratio of the electron, and Vg is the acceleration potential.  The term in the square root of 

Eq. (5.2) is approximately constant; hence σe scales very linearly with δv.  The transverse 

velocities are amplified by the grid potentials as the grid spacing becomes 

larger especially beyond 0.5 mm.  A 0.33 mm spaced copper grid with ~90% 

transmission was used for this apparatus just as it was for the low-background ion 

detector. 

 We then turn our attention the broadening dependence on the grid accelerating 

potential.  For a 0.33 mm grid spacing, Vg is varied over some range, and the broadening 

is better understood if we rewrite Eq. (5.2) as 

     )( g
g

e Vw
V

vw ξδσ ⋅=⋅≈ ,    (5.3) 

where w is a constant obtained by comparing with Eq. (5.2) and the dependence on Vg is 

absorbed into the function, ξ(Vg).  A comparison is made between this equation and the 

results of the Simion simulation in the graph shown in Fig. 5.8(b).  The σe (left axis) and 

δv (right axis) values are plotted for 0<Vg<20 kV.  The rms transverse velocity seems to 

increase linearly with accelerating potential, however, only by ~10% throughout this 

range.  The solid line is obtained by Eq. (5.3) under similar conditions.   

 Since the rms velocity remains approximately constant, it is possible to decrease the 

divergence by increasing the grid potential.  Going from 5 kV to 13 kV decreases σe by 

almost 40%.  The rate at which σe decreases lessens appreciable for higher potentials and 
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will eventually shift to an increases with Vg as δv will eventually begin to dominate.  The 

actual limit obtained with our detector seems to be at about 15 kV, at which point the 

thermionic emission produces considerable noise to the detector. 
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Figure 5.8   (a) Broadening of the secondaries as they are transported to the MCP for 
detection as calculated by Simion 7.  The rms of the transverse velocity, δv, 
component increases with mesh size, which causes σe to increase almost 
proportionately.  (b) Results of simulation showing the σe (left axis) and δv (right 
axis) dependence on grid potential for a 0.33 mm grid.  The solid line is evaluated 
from an equation that explains what the physical significance of the process where δv
is taken to be a linear function of the grid potential. 
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 The dependence on Vg was measured experimentally with a beam spot centered on 

the dynode surface.  The weighed rms moments along the horizontal axis, Hrms, were 

measured for a grid potential varying from 2 kV to 11 kV.  A constant factor, δh0, is 

summed in quadrature to σe to account for both the finite beam size and broadening due 

to the electron and photon optics at the MCP.  This results is expressed as follows: 

          (5.4) 2
0

22 hH erms δσ +=

Fitting this equation with the measured Hrms values yields that δh0=0.87 mm if σe is 

evaluated by Eq. (5.2) and δv values are taken from a linear fit of the simulation.  We 

solve for σe and plot the values in Fig. 5.8(b). The effect of the grid potential on the 

broadening seems to be well understood by this result. 

5.5 Measuring transverse density distributions 

 The tests with 84Kr+1 ions at the Dynamitron showed that beam of 3.6 keV/u and 18 

keV/u can be well imaged with an intensity as low as 4×102 pps.  The maximum intensity 

that it could take may be higher than ~200 nA; however, of the grid and MCP detector 

lifetime will suffer.  In this study there were no observable deleterious effects even when 

running up at up to 1012 pps at 1.5 MeV for several hours.  

 Bitmap images of snap shots taken of two different beams are illustrated in Fig. 5.9.  

Fig. 5.9(a) is that of 18 keV/u krypton ions at rate of 4×102 pps.  Each resolvable spot 

represents at least one ion collision event.  We point out that the voltage across the MCP 

system need only be high enough to obtain a detectable light intensity when keeping the 

phosphor system at peak sensitivity.  This is necessary to extend the lifetime of the MCP.  
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 Since the MCP plates are highly insensitive to gamma radiation (and to a lesser 

extent, beta radiation), this detection system is sufficiently immune to radioactive decay 

of a wide range of implanted particles.  From a recent experiment we obtained the results 

illustrated in Fig. 5.9(b), where a momentum selected, mixed beam of 17F+9 (67 MeV), 

16O+8 (56 MeV), and 16O+7 (43 MeV) is striking the conversion surface.  The 17F+9 

component constituted 68% of the 2.5×105 pps resulting from an inverse kinematics in-

flight production technique used at the ATLAS to produce a variety of radioactive 

species at energies at or below the coulomb barrier [Pardo98]. 

(a) (b) 
 

Figure 5.9   Beam images of a) low intensity ~4×102 pps 18 keV/u krypton beam, 
area size is 5.1 mm × 6.5 mm; b) Total intensity of 2.5 ×105 pps of a radioactive 
beam line.  Area covered in coordinate system of the beam is ~17.0 mm×18.2 mm. 

 At the high intensity limit, the vertical profile of 1 MeV Kr+1 beam with an intensity 

~200 nA was measured with both the BIM/slit combination and a 0.25 mm scanned wire. 

The resulting beam profiles are shown in Fig. 5.10.  The two scans coincide well, which 

demonstrates that the BIM system is useful for scanning profiles.  This served as an 

initial test for the emittance measurements to be discussed next. 
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Figure 5.10   Beam profiles in the y-direction measured by both the wire scanner 
and BIM systems when the grid accelerating potential is 13 kV. 

5.6 Emittance profile measurements with BIM 

 The previous section demonstrated that profiles in the transverse plane could be 

measured over a wide dynamic range.  This section looks at the performance of such a 

device when used to measure the transverse phase space character of a beam.  In Chapters 

2 and 3 we discussed the importance of knowing the phase space properties of a beam.  

With enough spatial and angular resolution, emittance-scanning devices can even offer 

details about higher order aberration effects and the orientation of the ellipse.  We test the 

performance of the BIM as an emittance-scanning device. 

 A schematic diagram of the dual slit plate used for these measurements is shown in 

Fig. 5.11.  Each slit is 0.2 mm wide and about 45 mm in length.  The beam is aligned and 

focused within a region bounded by a circle of ~30 mm diameter such that each of the 

two slits scans both the x– and y–profiles along separated intervals.  The plate is located a 

distance L=30.5 cm upstream from the center of the dynode surface and a linear feed 

 206



through that is driven by a step motor is used to scan the plate across the beam in the 

transverse plane. 

horizontal slit

vertical slit

beam coming

linear motion

 out of page

x

y

 
Figure 5.11   Double slit plate used to scan both the x- and y-profiles.  The orientation 
is such that the beam is coming out of the page and the relative beam coordinate axes 
are labeled on the bottom left. 

 At any position of the slit plate, a snap shot can be acquired of the image and 

recorded at the CID sensor array.  An average from multiple snap shots may be processed 

in order to reduce white noise in cases where the noise to signal level is high.  The image 

is then stored in memory as a 2D array of 8-bit integers whose intensity is denoted as Mij.  

The subscripts i and j denote horizontal and vertical position, respectively, of each pixel 

along the plane of the sensor array.  Each snap shot yields a distribution of the beam 

divergence along the length of the slit.  For example, when the beam is in the vertical slit 

position (see Fig. 5.11), the intensity will be proportional to the distribution of divergence 

values, a, along the slit that runs along the y-axis of the beam coordinate system.  Any 
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constants of proportionality derive from a transformation that converts the position values 

at the sensor array to those of the beam coordinate system (compare Figs. 5.2 and 5.11). 

 The emittance distribution in the x─a plane is obtained from a series of profiles, 

Mij(x), measured for all x-values with the vertical slit.  Similarly, the y─b distribution is 

obtained from a series of profiles, Mij(y), in which the horizontal slit is in the region of 

the beam.  Notice from Fig. 5.11 that if the linear feed moves by ∆r in the direction 

shown, then there is a corresponding movement of ∆x=∆r/√2 by the vertical slit and ∆y=-

∆r/√2 by the horizontal.  Depending on which slit is in the beam region, a statistical 

average of the profile is taken by summing values along the orientation of the slit.  For 

example, for every Mij(x) profile we take the sum over the index j, 

     ,      (5.5) ∑=
j

iji xMxH )()(

to obtain the 1D array with values that represent the average beam intensity along the 

horizontal direction at the aluminum surface, which is tilted 45º relative to the beam 

coordinate system.  Similarly, a profile along the vertical axis is obtained by 

     .      (5.6) ∑=
i

ijj yMyG )()(

Of interest is the rate at which the beam disperses out as it drifts from the slit to the 

aluminum plate, i.e. the divergence of the beam. 

 To determine the divergence at a given position of the slit we must transform the 

units of position as referenced at the CID sensor to those of the beam coordinate system.  

The displacements must be evaluated relative to the slit position by applying the 

following transformations: 

     2⋅−⋅= xkih xi  (vertical slit)   (5.7) 
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and       (horizontal slit)  (5.8). ykjg yj −⋅=

Here, hi represents the corresponding horizontal position at the aluminum plate at pixel 

row, i, and gj represents the vertical at column, j.  The constants kx and ky are the scale 

factors that account for the magnification of the tapered fiber optic rod and the distance 

between each pixel in the horizontal and vertical directions, respectively.  Both are taken 

to be 40.5±0.3 µm per pixel in this setup.  The √2 factor in Eq. (5.7) accounts for the 45° 

tilt of the aluminum plate along the horizontal plane 

 From these arrays we can then evaluate the first and second statistical moments at 

each position.  In the horizontal plane, the second moment, hrms, is evaluated about the 

first moment, hm, at each x-position by taking the square root of 

     2

0

2 )(1)( mi
i

irms hhH
H

xh −= ∑     (5.9) 

where H0 is the integrated profile intensity.  Similarly, grms values are evaluated for each 

y─position.  Furthermore, we assume that broadening due to the transport of electrons 

and photons through the detection system, hd, can be accounted for by a deconvolution of 

Gaussian functions.  The convolution theorem dictates that the final rms values of 

convoluted normal distributions yields another normal distribution with rms value equal 

to the quadrature sum of each rms component [Parzen60]. 

 Suppose we are interested in rms broadening, hb, caused solely by the divergence of 

the ion beam, then broadening contributed by any other factors, σd, must first be 

determined before a deconvolution may be applied in obtaining the true broadening 

caused from the divergence.  The dominant component of σd here is the broadening of 

secondaries, σe; however, there is some contribution, σOP, gained due to the limited 
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resolution of the MCP and photon optics.  For now, we make the assumption that  σOP  is 

negligible. 

 As long as it is valid to model the measured rms value of the data as a convolution of 

distributions with rms values of σe and hb, then we must have that 
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Figure 5.12   Emittance profiles extracted from the divergence profiles as described 
in the text.  The ellipse drawn fits the phase space area given by εx and εy.  If the 
distributions were truly Gaussian in form then 90% of the total beam intensity 
would lie within this boundary.  The Twiss parameters and rms emittance were 
evaluated by a statistical analysis. 
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      hrms
2 = hb

2 + σe
2    (5.10). 

The corrected profile, , can be extracted by applying the product of the function, 

A

c
iH

i(x), with Hi to deconvolute two Gaussian distributions at each x position.  This function 

is obtained from  

      [ ]2
02/)(exp)( hhhxA mii −−=    (5.11), 

where     ( )[ ]1222
0 −= ermsrms hhh σ    (5.12). 

The results along the y-axis are obtained in the same way.  The resulting profiles,  and 

,should represent the distribution of ion current density in the coordinate system of the 

conversion surface.  The b─axis coincides with the vertical axis directly but the a─axis 

does not because of the 45º tilt; therefore, the transformations for finding divergence 

along each respective axis must be given by 

c
iH

c
iG

     and  0/ dgb jj ≈ 02/ dha ii ≈    (5.13), 

expressed in units of radians, where d0 is the distance from the slit to the midpoint of the 

conversion surface.  The deconvoluted emittance profiles obtained by these 

transformations are shown in Figure 5.12(a) and (b) for the y─ and x─profiles, 

respectively.  The method of statistical analysis described in Chapter 1 to extract the rms 

values of the phase space ellipse are applied here to obtain the Twiss parameters and the 

rms emittance, xε~ .  The y─profile emittance seems to be over predicted largely due to an 

aberration that appears at the +y─side of the profile.  The aberration seemed to be caused 

by a misalignment between the beam axis and the quadrupole doublet.  The same 

structure also appears on the y─profile taken with the wire scanner described in Section 

5.3.  The profile from this device is shown in Fig. 5.13. 
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 A comparison between the y─profiles taken with the BIM and wire scanner indicates 

that the measurements of the BIM overestimate the emittance by a factor of ~1.8.  This is 

largely due to the fact that the divergence is very small for the allotted drift from the slit 

(L=30.5 cm).  The scans already obtained, however, already give a good indication of the 

resolving limits of the BIM.  From the wire emittance scan we estimate that the rms 

spatial width due to divergence was no greater than ~0.12 mm in these measurements.  

To obtain a resolvable emittance scan with measurable divergence, the optical set up 

should allow the rms width to be at least 0.5 mm.  The present set-up made it to difficult 

to do this without having to make major modifications to the beam line used for these 

tests.   
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Figure 5.13   Phase space profile measured with wire system. 

5.7 Summary 

 The current developments in beam diagnostic hardware provide useful information.  

The ion counting and wire scanning systems were very useful in providing reference 
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measurements to test the dynamic range and resolution of the device.  From the analysis 

we have made some conclusions of the expected performance and how to make 

improvements where possible.  Efforts are ongoing in the development of beam 

diagnostic devices for RIA accelerator systems. 
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Chapter 6 

DEVELOPING EXPERIMENTAL TECHNIQUES FOR RIA 

 As pointed out in Chapter 4 the RIA facility will require advanced production target 

techniques that require research and development.  Some work was done at the 

Dynamitron accelerator facility to address some of the issues related to the thick target 

ISOL technique and a brief summary of some of the activities is given in this chapter. 

6.1 Adapting the Dynamitron accelerator facility for RIA developments 

6.1.1 About the accelerator 

 The 4MV-Dynamitron-Tandem accelerator at Argonne National Laboratory is an RF 

power driven DC machine that has been operational since the mid 1970s.  It accelerates 

positive ions of any species along a 3.7 meter long column of axially symmetric 

apertures.  The last known modification to the accelerator column was documented in 

early 1983 as shown in the scanned diagram from the HV end, Fig. 6.1 (a), and the 

grounded extraction end, Fig. 6.1 (b) [Ruthenberg83].  A series of 1.5 inch (3.8 cm) 

diameter apertures (darkened in the diagram) were installed along the column in order to 

suppress the back streaming electrons.  There are 11 of them in all and are 12 inches 

apart.  The rest of the apertures remain at the original 3.3 inches (8.4 cm).  The 

modification is intended for "higher quality" beams as well as to prevent electron 

collisions with beams of molecular species for the Coulomb explosion experiments 

described in the literature [Gemmell80] [Koenig85] [Zaifman92]. 
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 A calculation is carried out to demonstrate the beam dynamics within the accelerating 

(a) 

 
 
 
(b) 

 
Figure 6.1   Scanned diagrams of original figures documented for the last modifications 
made to the column of the Dynamitron accelerator.  (a) is at the HV end by the ion 
source and (b) is at the extraction end section.  Notice the 1.5 inch apertures that had 
been installed. 
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column.  We have used the accelerating gap structures described in Chapter 1 with gap 

dimensions that are very similar to the acceleration column of the Dynamitron.  The 

beam envelopes are calculated to first order for a 5, 10, 15 and 20 kV potential between 

each gap and are plotted in Fig. 6.2.  The inset plot shows the rays calculated for 20 

kV/gap.  For every calculation we have assumed a beam of m/q=2/1.  The beam initially 

has a kinetic energy of 20 keV, a normalized emittance area of 0.01π mm-mr, and a 2.6 

mm diameter with αx=αy=0 ellipse orientation. 
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Figure 6.2   Simulated beam envelopes for an accelerating column under different 
accelerating gradients.  The inset plot has the same horizontal scale and shows the 
rays calculated for the 20 kV/gap case. 

 The most notable feature is the oscillation that occurs at the first stages of the 

acceleration.  The oscillation becomes sharper at higher accelerating gradients since the 

over-focusing effect is stronger.  As the beam gains energy the focusing becomes weaker 
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and there are no further oscillations.  The results indicate that the sharpness of the initial 

oscillation determines the maximum size of the beam envelope occurring at the 

remaining sections of the acceleration.   In particular, for higher terminal voltages the 

beam will expand more and run the risk of striking the apertures in the column; however, 

it is possible to reduce the effect by extracting the beam from the source at higher 

energies and applying a focus to minimize the width of the beam at the entrance of the 

column.  The Dynamitron allows the extraction potential to be as high as 60 kV and has a 

maximum allowable potential of 30 kV for the lens following the extractor.   

 The plasma ion source at the terminal is of the type described by [Witteveen79].  

Beams of protons, deuterons, krypton, and xenon were readily available from the source 

through an automated manifold system.  Beams from solid material can be produced by 

placing a sheet of the material against the probe next to the plasma.   

 The accelerating column is isolated in an SF6 environment to suppress voltage 

breakdown.  For these studies the pressure in the tank remained between 38 and 43 

pounds per square inch (p.s.i.).  A recycling system is used to move the gas to a reserve 

tank every time the accelerator needed to be opened for maintenance or modifications.  

Since small leaks in the recycler system cause the system to lose some gas every time the 

source had to be serviced, the gas pressure decays somewhat (~0.4 p.s.i. between 

servicing). 

6.1.2 Experimental beam lines 

 There are two major beam lines at the Dynamitron that have been set up for RIA 

studies.  Both are shown in Fig. 6.3, where we denote each line by the direction of 

bending at the switching magnet.  The beam exits the accelerator in the direction north 
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and is either bent to the 8ºW or 8ºE direction at a 2.93 m radius by a switching magnet.  

The bend yields a mass dispersion of about 0.05 cm/%m/q in either direction, and at 

normal beam tuning conditions there is a mass resolving power of m/∆m~3.  The second 

bend at each of the two lines (27ºW for the 8ºW beam and 25ºW for the 8ºE beam line) 

 
 

Figure 6.3   RFQ and target/source layout at the Dynamitron accelerator facility.  
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provides an extra amount of resolving power to obtain a total of m/∆m~50 on target.  A 

water-cooled copper block is positioned along the manifold of the switching magnet with 

2.5 cm diameter apertures to let the selected beam through and stop beams outside the 

selected mass widow.  

 The two beam lines have different beam requirements.  The 8ºW line is used to 

provide Xe beams to an RFQ accelerator test bench, as well as beam diagnostic systems, 

such as the beam-imaging monitor described in the previous chapter.  The energies and 

intensities are generally very low (<<1 µA at <1 MeV).  The 8ºE beam line is used for 

providing proton or deuteron beams for radioisotope production at the highest energy and 

currents possible (>5 µA at 3-5 MeV).  The beam is steered into a heavily shielded 

2×2×3 ft hollow region, or cave, with a minimum shield thickness of 13 inches of steel 

and ~2 feet of concrete.  The shielding is designed to suppress neutron radiation, which is 

typically generated by deuterons on beryllium, by a factor of 104.  Two sides of the walls 

are on a rolling cart in order to remove them to gain access into the cave. 

 Another beam line exits at 90ºE relative to the direction of the primary beam from the 

cave.  An isolation transformer rated at 20 kV was installed close by to provide up to 5 

kW of ion source power within the cave.  The extracted beam could be mass separated 

with a commercially available sector magnet [DANFYSIK].  The dipole bends the beam 

by 55º at a 1.5 m radius and has a 35º exit edge angle for stigmatic-focus downstream.  

Similar dipoles have been described in the literature and have been rated with a mass 

resolving power of as high as ~1500 [Dumont78].  Since the resolving power depends on 

ion source and other optical settings, some measurements were carried out to characterize 

this particular system. 
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6.2 Source development 

 In order to address issues related to target production and release at Argonne some 

ion source and target developments were started.  The design required that we consider 

efficient heating and heat shielding, a large target volume, efficient ionization, and 

isolating components for high voltage. 

 A diagram that illustrates the major components of the ion source is shown in Fig. 

6.4.  Starting from the bottom and going up we identify the following parts and 

characteristics: 

o Three copper leads from high voltage isolated feedthroughs provide DC power to 

the ionizer and heating elements.  They are all identical and rated for 20 kV 

isolation at <15 amps. 

o A cylindrical BN block is used for support of the components.  This insulator is 

well suited for high voltage isolation at high temperature. 

o Molybdenum leads are used for directing the DC current to the ionizer and 

heating element. 

o A tantalum cup that is supported from the BN block holds the target material.  It 

has an inner diameter of 23 mm and overall length of 50 mm. 

o An outer tube made of titanium supports the oven components and front part of 

the target.  This material was chosen for its low thermal conductivity and 

minimizes heat losses to the BN support. 

o A dimpled Ta sheet is rolled around at the outer diameter of the target and heating 

elements for heat shielding. 

o A graphite filament was selected for the heating elements.  It was machined from 

a single piece with up and down windings to increase the path length, and hence, 
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the resistance.  Graphite is ideal since it has a high resistance and does not sag at 

high temperatures.  Not shown in the diagram is an yttrium oxide (Y2O3) coating 

that covers the graphite filament and the tantalum surfaces that are close to it.  

The oxide has a melting point of 2415ºC and is highly inert.  It was applied as a 

water-based paint mixture that was obtained from a commercial vendor [ZYP]. 

 
Figure 6.4   Diagram of surface ionization source for production target. 

o The ionizer is placed at the extraction region.  In doing these studies we went 

through a series of ionizer designs.  The first one was a 3 mm tube made of 

platinum for its high work function (φW>7  eV) and relied on heating by the oven.  

This seemed to work well for the ionization of Cs, Rb, and K, but was very poor 
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for the ionization of Na.  We eventually changed to a coiled filament that is made 

from a commercially available W26%Re alloy [OMEGA].  The ionization of Na 

is compared to that of K with a current versus filament temperature plot shown in 

Fig. 6.5.  The temperature characteristics of the filament had been calibrated with 

an optical pyrometer.  Notice that Na (Vi=5.14 eV) requires higher temperatures 

compared to K (Vi=4.34 eV) to ionize.  

o The front and backside of the oven had been shielded with dimpled Ta sheets as 

well, but we conducted a study that found better insulation if using a porous form 

of a refractory oxide.  The porous oxide is made of an yttria stabilized zirconia 

material, otherwise known as Zirconia type FBD by the commercial vendor 

[ZircarZ].  It has a very low thermal conductivity even at very high temperatures.  

We conducted a set of measurements in which only Ta shields were used.  A 

thermocouple was placed in thermal contact with the bottom of the Ta target cup 

to measure the amount of power necessary to achieve a given equilibrium 
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temperature in the cavity.  The results are plotted in Fig. 6.6 with a curve labeled 

as 1).  We did a similar test with the front Ta shielding replaced with the oxide 

and did a similar measurement and found the results along curve 2).  The back 

end was then replaced to yield curve 3).  Both pieces were obtained in the form of 

a disk that is easy to machine.  The measurements clearly show an improvement 

in the oven efficiency when using the porous oxide.  The curve was fitted with the 

polynomial temperature dependence shown in the figure to predict the 

temperature when the oven is being used. 
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Figure 6.6   Filament power used to get cavity temperature under the following 
conditions: 1) Graphite at front, Ta shields in back 2) Zirconia type FBD at 
front, Ta shields at front 3) Zirconia type FBD at front and back. 

o An ion extraction channel made of graphite is positioned right in front of the 

ionizer and has a cone angle of 18º. 
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 The overall performance of the oven and ionizer was found to be reasonable for 

experiments requiring temperatures below about 1500ºC.  Above this temperature the rate 

of yttria reduction on the graphite filament destroys the layer of insulation and causes the 

filament to short out on the target or heat shields.  We tried using a layer of hafnia, which 

is also a refractory oxide, but found that it reduced even faster than yttria under the same 

conditions.   

 From the resistivity curve of the graphite versus power it seems that the filament is 

reaching temperatures that may exceed ~2000ºC to obtain about 1500ºC at the target cup.  

This may be due to the fact that the electrical insulation is also a good heat insulator and 

does not allow the target cup to reach temperatures closer to that of the filament.  With 

enough shielding this could be avoided, but the target supports tend to act as a heat sink, 

which lowers the temperature of the target cup.  There is, however, an enhancement by 

the ionizer, since it introduces about 50 to 100 W of power right inside the target cup.  It 

is not clear whether using some other material, such as a Ta or a W alloy, will alleviate 

the chemical breakdown problem with the oxide.  Since the initial experiments would not 

require any higher temperature than ~1200ºC, we did not pursue such issues any further.  

Further studies with the refractory oxides, however, are still ongoing with high 

temperature ovens at the ECR ion sources of the ATLAS accelerator facility. 

6.3 Mass separator and ion source performance 

 A number of diagnostics were carried out on the ion source and mass separator 

system in order to characterize their performance.  The source was installed with no 

target material for these tests.  It was never necessary to introduce any material into the 

ion source to produce beams of alkali elements, since there are always measurable 
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residual quantities present.  A typical mass scan of the extracted beam is shown in Fig. 

6.7, where the magnetic field is varied and measured with a Gaussmeter.  The 

accelerating potential is always 10 kV unless otherwise noted. 

0.6 0.8 1.0 1.2 1.4 1.6
0

2x10-8

4x10-8

6x10-8

8x10-8

1x10-7

Ionizer:  Power 110W  @  3.5Ω
               =>  ~2315 ±  25 K
Graphite filament off

Cs
9.2%

Rb
18.5%

K
56.1%

Na
16.2%

I (
A

)

Gaussmeter (V)  
Figure 6.7   Total current at each mass obtained with only power at the W%26Re 
ionizer filament. 

 The peaks that are easily discerned from the spectrum are from Na, K, Rb, and Cs.  

The beam current is measured with a picoammeter that is in series with a Faraday cup 

positioned behind a 1 mm slit at the focal plane.  The percentage of current from each 

element is evaluated by numerical integration along the spectrum and is labeled next to 

each of them.  The Gaussmeter was found to be linear to within 3% across the entire mass 

spectrum shown and could be calibrated with peaks from 23Na, 39K, 41K, 85Rb, 87Rb, 

and 133Cs.  Notice that no heating from the graphite filament was necessary since the 

ionizer provided 110 W of heating power in this case.    When there is power to the 

graphite filament the components vary slightly, with the Na and K peaks increasing more 

than those of Rb or Cs. 
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6.3.1 Emittance of source 

 The emittance of the beam was measured before the mass separator with the wire 

scanner and slit system.  Two einzel lenses were used to focus the beam at the slit of the 

wire scanning device described in the previous chapter.  The slit and wire are aligned 

vertically and move horizontally.  The resulting profile from a typical scan is shown in 

Fig. 6.8 (bottom).  The top plot is that of the emittance area within each contour level 

having a given percentage of the total beam current.  At the 90% integrated intensity 

contour there is about an area of 11.9 π mm-mr area.  The emittance varied slightly 
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Figure 6.8   Emittance area (top) evaluated from the emittance profile 
(bottom) measured right before the entrance of the mass separator dipole. 
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according to the power on the ionizer filament and the one measured here represents one 

of the larger ones since the ionizer power is high (~110 W).    

 Depending on the power to the ionizer and oven we were able to go above a 10 kV 

accelerating potential.  Raising the energy of the beam did not improve the emittance as 

would be expected from Eq. (1.35).  This is due to the fact that the beam got its full 

accelerating potential from the extractor.  Hence, raising the extraction potential will pull 

ions out that would otherwise have transverse velocity components that are too high to 

make it through the exit.  To avoid this an accelerating column that is independent of the 

extraction potential would need to be used to vary the acceleration.  The extraction 

potential could go as high as 15 kV at low source power, but would cause a significant 

amount of breakdown when running a the high temperatures.  The source was very stable 

at 10 kV, which is the reason we stuck with this potential for most of our runs. 

6.3.2 Mass separation characteristics 

 The performance of the mass separator is characterized in greater detail by observing 

the ion flux between mass peaks.  The first measurements are obtained from measuring 

current at the Faraday cup behind the focal plane of the magnet.  The vertically aligned 

jaw slits were opened up to 0.2 mm to obtain the spectrum shown in Fig. 6.9.  The natural 

abundances have been labeled next to the corresponding isotope peaks of Na and K.  

Notice that each of the peaks has very similar structure at the tails.  We observe very 

broad exponential drop offs at the sides that are mainly attributable to elastic scattering 

with residual gas atoms in the vacuum [Menat64] [Ruedenauer70] [Camplan81].  The 

vacuum in the region of the mass separator is about 10-7 Torr while in front of the ion 

source the vacuum would typically be as high as 4×10-5 Torr.  The effect should reduce 
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proportionately with the vacuum; however, we did not have enough pumping speed to do 

this for these experiments.  The hump to the left side of each peak may be caused by a 

second order aberration of the dipole, but may also be structure from the ionization 

region.  For example, there may be some ionization that is occurring at the exit cone or 

walls of the target cup. 
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Figure 6.9   Detailed mass spectrum between mass 22 and 42.  The natural 
abundances have been labeled next to the corresponding isotope peaks of Na and K. 

 It is possible to do some analysis with the mass lines of potassium isotopes, since they 

are so close together.  About 55 % of the intensity at m/q=40 is made up of 40K, while 

~37% consists of 39K and ~8% 41K.  From these estimates we are able to estimate the 

enhancement factor described in Section 2.4.  For 90% transmission through the jaw slits 

at the focal plane we obtain that EF=1.1×x104. 
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 We looked into the spectrum at an even deeper level by counting ions in the same 

mass region and found that there is some other structures that seemed to not be related to 

any known ion species.  The peak structures seemed to move up and down along the 

spectrum slightly which seemed to indicate that a scattering process, such as with a 

chamber wall, may be occurring.  In order to test for this we installed an energy 

suppressor that consists of a 2 cm tube that is gridded at the end.  The tube is floated at a 

high potential to stop any ions having energy below a certain threshold.  A diagram 

illustrating a Simion [Simion7] simulation of this device is shown in Fig. 6.10.  Ions of 

q=1 come in from the left with an energy of 10 keV, while the grid is at 10.3 kV 

potential.  The effective resolution in energy is not much better than about 3% if we 

consider the device to be a high pass filter, which sufficient for our purposes. 

 The ion detector was positioned after the exit aperture at the right side of the figure.  

A typical spectrum that is observed between mass 24 and 38 is shown in the top plot of 

Fig. 6.11.  Although the beam is accelerated with an 8.5 kV potential here, a similar 

spectrum appears even for 10 kV acceleration.  A broad structure appears that peaks at 
Figure 6.10   Simulation of beam 

energy suppressor.  The 2 cm 
diameter tube is gridded at the end 
go provide a uniform potential for 
suppressing particles of energy 
below the applied potential. 
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about mass 32 that is ~10-4 times the size of the 39K beam.  Most of the peak disappears 

when the suppression gets to at least 7.8 kV and disappears completely by 8 kV.  The 

peak at m/q=27 remains unperturbed, and it is very likely that of 27Al, which has an 

ionization potential of Vi=5.99 eV.  The broad peak was of more concern, however, since 

it would tend to broaden and cause background at other regions depending on what the 

tune of the system was. 

 Finally, we did some mass resolution studies by measuring the FWHM of the mass 23 

peak.  The mass resolving power varies with the tune of the lenses before the separator as 

shown by Fig. 6.12, where we vary the first lens and optimize the second lens to obtain 

the smallest waist at the focal plane.  The trend agrees with a 1st order calculations 
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Figure 6.11   Mass region between Na and K detected with ion counting system for
a beam accelerated with an 8.5 kV potential.  Peak appearing at mass 27 is likely 
that of Al1+ (Vi=5.99 eV).  The broad peak at about mass 32 totally disappears 
when the suppressor is above 8 kV. 
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carried out with COSY assuming a 10π mm-mr emittance area.  The initial orientation of 

the ellipse was extracted from the emittance profile measurements depicted in Fig. 6.8. 
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Figure 6.12   Calculated 1st order resolving power as a function of the potential 
at the first lens.  A mass dispersion of 1.4 cm/%m/q is estimated.  The actual 
measurements indicate a resolving power greater than the calculations by ~22%.  
The limit occurs at about ∆m/m~600, at which point the acceptance begins to 
suffer.  

 The experimentally measured resolving power seems to level off below a certain lens 

voltage and the transmission through the magnet starts to drop off.  This occurs because 

the size of the beam becomes too large to fit through the apertures before the magnet.  

The tune at about 5.7 kV at the first lens seems to be the most efficient for the highest 

obtainable mass resolving power of ~600.  The calculation predicted a lower resolution 

by about 22% since the width had been selected at the 95.5% level instead of the 90% 

level that is taken for the experimental measurements. 

 231



6.4 Isotope production with neutrons 

 The primary mechanism for radioisotope production at the Dynamitron is that of 

neutron-induced reactions on a secondary target, i.e. a two-step mechanism.  Instead of 

relying on spallation neutron production as in Chapter 4; however, these experiments rely 

on the reactions of deuterons on a primary target for the production of secondary 

neutrons.  The low energies provided by the Dynamitron accelerator necessarily means 

that we should use light targets that are able to withstand high beam power. 

6.4.1 Z dependence of neutron production 

 The fact that light targets can generate more neutrons was demonstrated by a 

simplified n detection experiment.  A target ladder containing a variety of targets was 

situated 1 m away from a standard n detector that is filled with a Xylene scintillator liquid 

coupled to a photomultiplier tube.  A diagram of the experimental set-up is shown in Fig. 

6.13.  The detector spans a surface area of 120 cm2 in the plane perpendicular to the 

 
 

Figure 6.13   Diagram of target ladder set-up for neutron flux measurements of 
various targets. 
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target, which translates into a ~0.001 fraction of the surface of a sphere of 1 m radius.  

Since the neutron flux is very isotropic; i.e. has a weak dependence on the angle ϕ, this 

fraction is approximately the probability that n will cross the detector.  The thickness of 

the detector is 10 cm in the direction parallel to the incoming d-beam.  The components 

are situated inside the shielded cave and the deuteron is steered through a Ta beam 

collimator that is aligned with the target being irradiated. 

 These measurements were carried out in order to obtain relative detector sensitivities 

important to the commissioning of the accelerator for using high power deuteron beams.  

The n detector used here contains the same scintillator material used in the safety 

monitors around the area for detecting levels of neutrons [ES&H].  Knowing the neutron 

flux at the detector used here closely reflects the detected yields at the safety monitors.  

We are interested in the n yields emitted by materials that are used in many of the 

components in the beam line.  Some of these components are beam measuring devices, 

apertures, beam stops, and accelerating column apertures.   

 Properties of the materials tested are listed in Table 6.1.  Some of these materials are 

 
Table 6.1   List of materials expected to be exposed to d beams. 
 

Target Z Range at 3.5 
MeV 

Target 
thickness 

VC 

  [µm] [µm] [MeV] 
Be 4 80.5 500 2.3 
C 6 63 2150 3.1 

C2.1H2 1,  6 210 ~1000 3.1, 1.2 
Al 13 84 260 5.2 
Cu 29 31 3420 8.7 

S.S.* 24,  26,  28 31 850 7.7,  8.2,  8.6 
Ta  73 28 3400 15.5 

* Stainless steel comprised of a Cr8Fe74Ni18 alloy. 
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compounds of differing Z elements, which are listed in the second column.  The average 

range of the deuterons at the maximum beam energy is calculated with TRIM and listed 

in the third column, while the fourth column lists the actual thickness of the material 

used.  The last column is an estimate of the Coulomb potential barrier for a deuteron 

colliding with a Z atom of mass number A, where we have taken the nuclear radius of the 

target to be approximately given by 1.2A1/3 fm [Wong90].  Notice that for hydrogen 

nuclei we have estimated VC=2.3 MeV, and at the high Z extreme we have VC=15.5 MeV 

for tantalum. 

 The results obtained from our measurements are plotted in Fig. 6.14.  The detected 

neutron flux is normalized to the beam current and has been corrected for dead time and 

background count rate when the beam was not present.  Notice that the Be target yields a 

detected flux that is anywhere from 5000 to 7000 times weaker than that from the Ta 
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Figure 6.14   Count rate at neutron detector generated by deuteron beams colliding 
with various materials at kinetic energy, Kd. 
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target.  The detected fluxes from the rest of the materials fall somewhere in between this 

range.  Beryllium is one of the target materials used for n production and is chosen for 

this reason.  Beryllium is not used anywhere else in the beam line.   

 Some of these materials of can be found along the beam line.  Compounds of carbon 

are of special concern since vacuum pumps tend to introduce them into the vacuum and 

cause them to collect at surfaces that can be exposed to the beam.  The other material that 

is of concern is Cu, since the beam dump at the manifold is made of this material.  We 

find that the ion source provides beams of d+ and d2+, where each d nucleus of the d2+ 

molecule has half the energy of the d+ beam.  We find that ~60% of the deuteron beam 

current is d+ and the rest is d2+.  Accounting for the two atoms in the molecule implies 

that ~43% of the deuterons are at 3.5 MeV and ~57% are striking the manifold beam 

dump at 1.75 MeV.  Although, the neutron detector gives ~1500 times less count rate  

with 1.75 MeV deuterons on Be than with the 3.5 MeV, the manifold is very poorly 

shielded and causes a high count rate at the safety monitors.   

 To reduce the flux from the molecular component a Ta shield was introduced at the 

region of the Cu block where the molecular beam collides.  Unfortunately, we actually 

only obtained a factor of eight times less flux with this modification, as apposed to a 

factor of ~14 expected from Fig. 6.14.  Part of the reason was that some of the beam 

might have been hitting a steel mount for the Ta plate.  Also, there is some flux generated 

by the halo component of the 3.5 MeV d+ beam striking the 2.5 cm Cu block aperture.  

Although, making more precise modifications to the Cu block could reduce these effects, 

there are technical difficulties involved in accessing the components.  The decision was 
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made by the Dynamitron technical staff to manage with the neutron flux emitted at the 

manifold. 

 These measurements demonstrate the effect that Z has on the neutron production.  

The results are useful in making any modifications that may be necessary for obtaining 

higher beam performance and reducing neutron flux levels to avoid hazardous beam 

conditions. 

6.4.2 Estimating the production by analytical models 

 In Chapter 4 we discussed the results of production calculations using elaborate 

Monte Carlo techniques.  In this section we shall show how it is possible to make some 

approximations of the production based on analytical formulations.  These calculations 

will be used to predict the production of isotopes with neutrons generated from low 

energy deuteron beams. 

 There are a number of properties of the system that make it possible to use analytical 

equations.  First of all, the neutron flux is generated in a small region of the target surface 

as shown by Table 6.1 for a number of solid targets irradiated with 3.5 MeV deuterons.  

Also, the energy of the deuterons is low enough that cascading events may be neglected.  

Finally, there is a wealth of reported information on the neutron production, especially 

for deuterons on Be. 

 To calculate the production we must know the properties of the neutron yield at the 

primary target and the neutron reaction cross sections on the secondary target.  Here, we 

have a target that is cylindrical with a 2.5 cm diameter and 3 cm height for a total volume 

of about 14.7 cm3.  The centroid of the secondary target lies about 27 mm in front of the 

primary target.  The neutron yield actually does drop off slightly with the azimuthal 
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angle, ϕ (see Fig. 6.13), but only by about 20% for the region spanned by the target here.  

We adopt the values of the yield distribution, Yn(Kn,Kd), reported by [Meadows89] for 

measurements at ϕ =0º and assume that they remain the same up to the maximum extent 

of the target, ϕ ~25º.  The yield distribution as a function of neutron energy, Kn, 

generated by deuterons of kinetic energy, Kd=3.4 MeV, is shown in Fig. 6.15 for the left 

axis of the plot.  Notice that after Kn=2.5 MeV the distribution drops off significantly and 

becomes negligible after ~8 MeV.  For the right axis we plot some examples of the 

reaction cross section, dσ/dKn, for producing 27Al(n,α)24Na, 27Al(n,p)27Mg, and 

9Be(n,α)6He reactions.  From these types of cross section curves the rate of production 

can be evaluated in terms of the beam current from 

    ∫ ∫
∞

=
V

ndnn
n

A
n dKKKY

dK
ddrr

dq
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0

3 ),()( σρ r ,   (6.1) 

where ρΑ is the atomic density of the target within the volume of the container, V.  Since 

we assume no ϕ dependence in Yn, the two integrals are decoupled and can be evaluated 

independently.  We also make the assumption that ρA is uniform within the volume, V, so 

that the volume of the integral falls outside as a constant to obtain the form, 

    ∫
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where G is a geometric factor determined from volume integral, 

     .     (6.3) ∫ Ω=
V

drrdG 2

For the geometry of the target here, we obtain that G=0.11 sr/cm2. 

 There are quite a variety of targets that need to be assessed for use in rare isotope 

beam production.  Some of the most important compounds are those of uranium, such as 
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the UCx refractory powders described in Chapter 4.  We have avoided using these 

compounds, at least for the initial stages of the program, due to the complications that 

arise from uranium contamination in the vacuum system.  Instead, we opted to use 

refractory oxides, such as magnesia (MgO) and alumina (Al2O3), which can be used for 

the production of Na isotopes.  For example, the reaction cross sections for 

27Al(n,α)24Na are plotted in Fig. 6.15.  The reaction yields are comparable to those that 

result from fission of 238U, which makes them an ideal test case.  A material that was of 

particular interest was a fiberous form of alumina with average fiber diameter of 3 µm 

[ZircarA].  The material was stable in the target within a graphite crucible up to ~1100ºC, 
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Figure 6.15   Neutron yield, Yn, from 3.4 MeV deuterons on a Be target (left axis) and 
reaction cross sections by neutron of energy Kn for the reactions listed in the legend 
(right axis). 
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after which the vacuum pressure exceeded 10-4 Torr.  Pure alumina actually able to 

withstand higher temperatures; however, a 3% SiO2 component is used in fabricating the 

material and makes it less stable.  We were able to pack about 1.6 g of the material into 

the target holder and calculate the production as a function of deuteron beam energy as 

plotted in Fig. 6.16.  Also shown in the plot is the production of 24Na from a MgO 

powder target, 6He from a Be foil target, and 136Cs from a La2O3 powder.  We include 

6He in the estimates since it had been considered for effusion out of the target area into 

atom trap experiments. 

 We have made some off-line measurements of the production of 24Na from magnesia 
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Figure 6.16   Production of certain isotopes versus the deuteron beam energy on a Be 
target. 
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and alumina samples with currents of up to 2.5 µA on the primary target for up to 3.5 

MeV deuterons.  The measured yields were found to be ~40% less than predicted.  This 

may be due in part to the fall of in production with ϕ, as well as to the attenuation of 

neutrons by the material lying between the primary target and the oxide material.  We 

measured a production of about 5×105 atoms/µC, which would be an excellent release 

candidate if it were not for its relatively high ionization potential (Vi=7.65 eV).  We also 

used a 11B target as a primary target to test if there would be an enhancement to the 

production of 24Na.  Notice from Fig. 6.15 that the cross sections require relatively high 

neutron energies to obtain significant production from 27Al.  The 11B(d,n)12C reaction 

gives higher neutron energies since it has a reaction Q value of 13.2 MeV, compared to 

that of 9Be(d,n)10B, which is only about 3.84 MeV.  We found that there was actually a 

factor of 30% less production of 24Na.  This is due to a lower flux of neutrons from a 

heightened Coulomb barrier with boron nuclei. 

 Some attempts were made to try to measure ionized and extracted 24Na atoms from 

the material.  At first we tried using the low-background ion counting system to detect the 

ions; however, the measurement was unsuccessful due to the high 23Na background 

signal that fall onto the mass 24 region.  A typical mass spectrum is shown in Fig. 6.17, 

where a 4.5 µA deuteron beam of 3.5 MeV impinges on the 11B primary target.  Even if 

the ionization and extraction efficiency were 100%, there would still be less than 800 

atoms/s of 24Na on a background that is over 104 atoms/sec.  Going to a 9Be target 

would have helped very little.  We also tried using a 3% efficient plastic scintillator, but 

the neutron background from the primary beam was too high to measure the 15 hour half-

life decay of 24Na.  The same issue was true when using a germanium or NaI detector.  
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Clearly, there would have to be more elaborate methods of detection to measure above 

background, whether we are doing direct ion or decay counting.   

 Obviously, there is a lot to gain from going to higher deuteron energies and higher 

currents, but there were some technical difficulties with this as will be explained in the 

next section.  At this point further experiments were halted to assess the operation for 

further enhancements that will improve the measurements to the point where release 

measurements could be done.  Of course, any signal above background at all would have 

been useful for a measurement of the ionization and extraction efficiency of the source. 
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Figure 6.17   Mass spectrum at the mass 24 region with a 4.5 µA deuteron beam at 3.5 
MeV on a 11B target. 
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6.5 Recommendations for future studies 

6.5.1 Enhancements to the accelerator 

 The work done with Dynamitron production experiments have given us some 

experience with a number of issues related to RIA.  In order to continue these studies, 

however, there will be a need to improve the accelerator performance and implement 

improved separator techniques. 

 The greatest improvement may come from an enhancement of the Dynamitron 

performance.  During beam developments we found that the accelerator will not stabilize 

at higher terminal voltages with beams over ~4 µA.  At one time a break down of the 

terminal voltage from 4 MeV caused serious damage to the plasma ion source RF supply.  

The minimum improvement that should be done here is to fill the SF6 isolation tank to its 

nominal pressure of about 60 p.s.i.  Throughout this development an improvement to the 

stability of the accelerator was observed in just going from 37 p.s.i. to 41 p.s.i.

 Improvements could also be done at the plasma ion source.  Since the accelerator 

break down is dependent on the amount of beam current in the column, it would be 

advisable to put a pre-mass separator at the terminal voltage side of the accelerator.  This 

would eliminate a 30% beam component from deriving from H20, N2, CO2, and other 

residual molecules.  More importantly, it would eliminate the d2+ component.  It was 

found that this component hitting on the block of the manifold causes a significant 

amount of background radiation that it will eventually cause the allowed radiation safety 

limit to be exceeded.  The radiation at the shielded cave performed exceptionally well, 

and does not seem to need any further improvements. 
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 An issue of concern is also the apertures that were installed in the acceleration 

column as discussed in the first section.  We found that break down was very sensitive to 

focusing beams at higher energy with the extraction and lens potentials at the terminal 

side.  Typically, we would increase the focusing strength, which would in turn increase 

the transmission.  The transmission would start to improve when increasing the focusing 

strength at the source focus before the accelerating column; however, this too would 

eventually lead to break down of the accelerator potential.  The maximum achieved 

transmission during these test did not exceed 5% at ~4 µA and 3.5 MeV.  This could be 

an effect of the over-focusing effect described in the first section and shown be Fig. 6.2.  

It may be beneficial to remove the apertures that were installed in the column to suppress 

back streaming electrons.  Removing the apertures requires dismantling the entire 

acceleration column, which would be a time-consuming task. 

 Performance improvements to this type of accelerator are common.  From previous 

studies with similar accelerator systems it seems that improvements can really enhance 

the performance.  For example, in a late article by a group at Ruhr-Universitat Bochum, a 

4 MV Dynamitron accelerator was enhanced to give up to 8 MeV acceleration of 100 µA 

of deuterons [Baumann86]. 

6.5.2 Enhancements to source and detection performance 

 The experience gained with the ion source, oven, and mass separator has also pointed 

out some possible enhancements that may improve the system.  We shall discuss some of 

the difficulties encountered and the improvements that would help eliminate them.  First 

of all, we expect stable residual beams to always be present from the source, and any 

production of alkali isotopes will necessarily mean that we would need to measure them 
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in the presence of the stable isotopes as shown in Fig. 6.17 for the Na mass range.  This 

problem is more relevant in direct ion counting, which has the best detection efficiency.    

 The ideal thing to do to eliminate this is to bake out the source to reduce the amount 

of residual stable beams; however, after days of running at the highest temperatures 

(~1500ºC) we did not observe a reduction in any of the components, except for a very 

small amount for Rb and Cs.  The estimated lifetime of the oxide insulation at the 

graphite filament is less than ~400 hours under these conditions, and there was no 

indication that any significant reduction would be achieved in this time.  The slow decay 

of the residuals seems to be a result of having very well thermally insulated walls around 

the oven.  The shielding acts as a reservoir of material that is being feed at an extremely 

small rate.   

 A way to eliminate this problem would be to introduce the components into a clean 

off-line oven in which to the unwanted material can be driven out.  The components 

should be left exposed with as few obstructions as possible to speed up the rate of 

evaporation from the material.  Unfortunately, this type of environment has not been 

constructed yet, but will be necessary for future RIA source developments. 

 Of course, detecting only the decay radiation as was done for the experiments 

described in Chapter 4 can easily eliminate the problem with the stable residues.  

Although, we have tried to make some radiation detection measurements here, they 

would require additional pulse discrimination to eliminate the background radiation from 

neutrons.  Adding shielding around the detection region can eliminate this problem.  

The best improvements will be to increase the production rates.  Although increasing the 

deuteron beam current and energy on the target is necessary, it would also be helpful to 
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use as many of the neutrons as possible.  To do this there will need to be a major redesign 

of the target geometry so that the target material can intercept more of the neutrons.  We 

show an annular design scheme in the diagram of Fig. 6.18 that would be able to do this.  

A water-cooled probe would be inserted into the target and positioned so that maximum 

production efficiency is obtained.   

 The target is shifted slightly towards the beam since the stronger flux of neutrons is at 

the direction of the beam.  One critical issue with this scheme will be the heating coil 

arrangement that surrounds the target.  It actually may be better to go with an outside 

wall of Ta with a high current running directly through it to heat the target.  Otherwise, it 

will be necessary to use the yttria insulations described earlier to isolate the target 

electrically from the target.  Using fiberous oxides for heat insulation will play a key role 

in the design, since it will conserve the amount of power needed to heat the oven, and 

 
Figure 6.18   Annular target configuration for increasing production efficiency at 
Dynamitron. 
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therefore, conserve the lifetime of the heating elements.  It is recommended that graphite 

be avoided if possible for the heating element unless it is supported so as to not touch any 

of the other components.  There are other alloys, such as those of W and Re, which are 

more inert at extreme temperatures and may last longer in contact with refractory oxides.

 The annular target geometry is being considered for the RIA target designs.  There 

are prototypes being constructed that will be tested at the ISAC facility in TRIUMF  in 

the near future.  Designing and building prototypes that are durable under high 

temperature and beam power will be a critical part of the program.  Measuring the release 

from the target region and testing different target materials will also be important.  Also, 

it would be advantageous to conduct these types of tests at the Dynamitron accelerator 

facility, since it is available and close to commissioning as a ISOL facility. 
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Chapter 7 

SUMMARY 

 A number of topics related to the RIA proposal have been covered.  The facility will 

offer many new opportunities in nuclear physics and possibly other areas of science.  The 

technological challenges that come with such a facility go well beyond the nuclear 

physics scope. 

 In Chapter 2 it was demonstrated how implementing DC acceleration into map-based 

optics can be used in the design of an isobar separator.  The separator design that was 

discussed must be an integral part of the RIA facility, since it will need to purify beams at 

very high mass resolution.  It was shown that axially symmetric accelerating devices 

could be used in making a dual-potential spectrometer fully achromatic to first order.  

The COSY INFINITY code system has been modified to allow this feature to be used 

with map methods.  A fifth order analysis was carried out in order to determine the 

necessary multipole fields necessary to correct higher order geometric aberrations.  The 

challenges ahead in sector magnet and multipole design were discussed. 

 The focus was then shifted to the driver accelerator in Chapter 3, where the problem 

of filtering and transporting of multiple charge state beams was addressed.  Such optical 

systems require map-based methods as well; however, there was the need to implement 

axially symmetric time-dependent fields for rebunching the beam.  It was demonstrated 

that this could be done with the COSY INFINITY code system by modifications to the 

equations of motion and implementing algorithms that evaluate RF field effects in the 

map.  The properties of the beam phase space and charge state distribution are very 
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important to the design of these systems and the accelerator; hence, it was necessary to 

explore models and existing measurements that will aid in this area.  A brief survey of the 

most recent studies on this topic is covered and the most relevant results are presented.  

The results indicate that there are critical issues that need to be studied further with actual 

measurements that pertain to the stripping of particles such as uranium. 

 In Chapter 4 there were some important issues in target design that are addressed.  

Since the heart of any rare isotope facility is the production target, target development 

will be an ongoing process during the operation of the machine.  It was demonstrated by 

simulation and experiment that the two-step process is a technique that will need to be 

used to extend the lifetime of targets to a level that is essential for obtaining intense 

beams of neutron rich nuclei.  The analysis of the ion source and ISOL system was 

necessary to unfold the absolute yields and compare with Monte Carlo calculations.  This 

includes the measurement and modeling of the release curves, verifying the products 

from decay curves, and obtaining the efficiency of the transport system.  The evidence 

found in the results supports the models that suggest that the two-step method is essential 

for very neutron rich nuclei production.  Some suggestions for future target design were 

included. 

 Chapter 5 and 6 are mainly concerned with experimental techniques that must be 

developed for RIA applications.  A number of devices for ion counting and beam 

imaging were constructed and tested at the Dynamitron facility.  The results of the 

performance of each device are discussed as well as the application that it can serve in 

RIA.  The techniques are used to test the performance of an ion source and mass 

separator system, as well as beams from the Dynamitron accelerator.  Chapter 6 is 
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concluded with some recommendations that may help in enhancing the performance of 

the production of rare isotopes at the Dynamitron.  The difficulties that were encountered 

reflect on the types of challenges that the RIA facility will offer.  The final section offers 

a diagram of an ion source design based on an annular target surrounding a neutron 

generator.  The Monte Carlo production models described in Chapter 4 verify that this 

type of design is the most efficient production mechanism. 

 The production of intense beams for acceleration offers a wide variety of problems in 

beam and target applications.  This study offers some solutions to future and present 

designs and suggestions for future studies. 
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APPENDIX A 

CANONICAL TRANSFORMATIONS AND THE SYMPLECTIC CONDITION 

 This appendix demonstrates how to exploit the symmetries present in an optical 

system by applying a symplectic approach.  The concept of a canonical transformation in 

the matrix approach is introduced in order to ultimately obtain some relations between 

first order elements of the map.   

 In order to obtain the differential equations of motion in terms of another independent 

variable requires that a transformation be applied that will preserve any symmetry present 

in the system.  We will begin with the set of differential equation expressed in terms of 

the Hamiltonian of the system where time t is the independent variable.  The time 

derivatives of the generalized coordinates and momenta are then simply given by the six-

paired equations, 

    ,   (A1a) 
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ss

yy

xx

∂−∂=∂∂=
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where the dot signifies the time derivative, d/dt.  If the Hamiltonian has an explicit time 

dependence, then the condition, 

      dEH = ,    (A1b) tHdt ∂∂= //&

must also be accounted for, where E is the total energy in the system.  Expressing the 

form of Eq. (A1a) in the form of a matrix that is acting on a vector, we get that 
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where the vector r=(x, px, y, py, s, ps) consists of the canonically conjugate coordinates 

and J represents the antisymmetric matrix.  A similar form will be obtained for the 

system once it has been transformed for a relative comparison.  

 The equations will be transformed such that the position variable, s, which lies along 

the optic axis, becomes the independent variable instead of the variable t.  The new 

coordinates to be used are listed as follows: 

       (A3) 
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δµ

The variable δ is the fractional difference between the kinetic energy of an arbitrary 

particle, K, and that of the reference particle, K0.  Notice that a change in kinetic energy is 

equivalent to a change in the total energy of the system, thus dE=dK.  The variable l is 

equal to the position along the optic axis of an arbitrary particle, relative to the reference 

particle in the lab frame of reference.  It is proportional to the difference in time of flight 

between an arbitrary particle and the reference particle, where the constant of 

proportionality is )1/(v00 += γγµ .   

 The passage from one set of independent variables to another can be effected by 

means of a Legendre transformation [Landau76a].  The transformation is carried here by 

means of taking the total differential of two functions that describe the entire system but 

have slightly different variables, 
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Solving for dps in Eq. (A6) and comparing terms with Eq. (A7), we obtain the three 

resulting pairs of differential equations, 
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where the prime notation denotes the derivative with respect to the new independent 

variable, s.  The switch to the s variable in the derivatives result from terms, such as 

' , which appear after substituting the Eq. (A1) into Eq. (A6).  Finally, the 

variables defined by Eq. (A3) are used to determine the constants outside of the 

differential. 

/ xsx =&&

 Notice that the variables x, a⋅p0, y, b⋅p0, -l/µ, and δ⋅K0 are canonically conjugate, and 

F is the corresponding Hamiltonian with units of momentum.  In a matrix notation, a new 

form of the matrix J is obtained such that we can write the equation, 
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 Now we consider the transformation of the coordinates by way of the transfer map of 

an optical system.  Recall that the final coordinates are related to the coefficients of the 

map by,  
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from position s0 to sf, along the optic axis.  The general relation,  
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for i∈ {1,2,3,4,5,6} can be written in matrix notation as 
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in which the matrix A is identified as the Jacobi matrix.  The terms in the Jacobi matrix 

are the elements in the map as shown by the equation, 
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Assuming that the optical system has midplane symmetry, no explicit time-dependent 

fields, and at most some constant energy gain, then the Jacobi should take the form of 
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Notice that when we speak of an overall energy gain, we assume that all particles in the 

beam have the same charge as the reference particle, (q0e).  An example of such a system 

would be an accelerating column in which a potential drop between the entrance and exit 

changes the energy of every particle by .  A similar differential is 

taken on the Hamiltonian of the system, but with respect to the initial coordinates, to give 

the equation, 

)( 00 VVeqK f −−=∆

∑
= ∂

∂
∂
∂=

∂
∂ 6

1 ,0

,

,,0 k i

kf

kfi r
r

r
F

r
F ,     (A12a) 

which can then be expressed in the matrix form, 
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where AT is the transpose of the Jacobi.  We also write the differential in Eq. (A7) such 

that it is evaluated at s=s0 to obtain  
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 and at s=sf to get  
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for s=sf.  The terms in the J matrices at s0 and sf would then take the forms, 
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Substituting both Eq. (A12) and Eq. (A13) into Eq. (A9) we obtain that, 
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which implies that 

T
0AAJJ =f .     (A16) 

This matrix equation expresses the condition of symplecticity and can be used to predict  

properties of the map [Berz85].  This is a particularly powerful technique to use in 

situations where special conditions, such as midplane symmetry, are present in the optical 

system.  If we apply the Jacobi at Eq. (A11) to (A14a) and (A14b), we obtain the 

following relations: 
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When there is no change in energy of the particles from s0 to sf, Eqs. (A17a) through 

(A17d) will all go to unity.  This is a direct effect of the invariance of phase space 

volume under canonical transformations, as stated by Liouville's theorem [Landau76b].  

It implies that as long as the total energy of the system is a constant of the motion, then 

the map acts as a canonical transformation on the system. 
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APPENDIX B 

SPECIAL VERSION OF  COSY  INFINITY  8 

 This appendix is intended as an addendum to the COSY INFINTY reference manual 

for the use of a modified version of the code system.  Descriptions about the elements 

that have been implemented and instructions on how to apply them are provided.  

Calculating the maps of these elements change the reference particles energy, hence it is 

necessary to inform the user on how to handle certain variables in the code.  Some of the 

terminology should be referenced from the COSY INFINITY manual [Berz97]. 

B.1   Changing reference particle energy 

 When using the procedures listed below or other elements that involve changing the 

reference particle energy, it is important to note that the reference particle energy is kept 

track of in the global COSY variable CONS(E0) in units of MeV.  A map calculated for 

the transport of a reference particle energy K0 cannot be used for the transport of another 

of different K0.  There may be some scaling methods used to extrapolate a map to 

different kinetic energies as described in the COSY manual, although we will not discuss 

that here.  This is important in cases where one stores the map to a variable or a file.  

Restoring the map, such as with function AM, will not change CONS(E0), since this 

variable changes only as the ODE integrator is calculating the map.  The function AM 

simply restores the elements of the map, which does not keep any record of the absolute 

energy of the reference particle or any changes thereof.  The user must keep track of what 

the energy should be and apply the RP command when it is appropriate. 

 One should also note that the function PM writes elements of the map for (x,…), 

(a,…), (y,…), (b,…), and (l,…), but not for (δK,…).  For DC fields one needs to only be 
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concerned with the (δK,δK) and higher order terms such as (δK,δK
n), when n is some 

integer.  When time varying fields are involved it is necessary to consider other (δK,…) 

elements.  One should take extra measures to view these elements as described in the 

original COSY INFINITY manual. 

B.2   Particle optical elements 

B2.1   Analytical function generated models 

    IMMCAV2  < V>  <D>  < L>  < C >  < ω >  < φ >; 

This procedure is for a two-gap RF cavity with the on-axis potential taken from  

procedure CEL but with added time dependence of the form V(t) = V cos(ωt+φ).  V is the 

peak voltage on the middle tube, D is the tube radius, C is the gap distance, ω is the 

angular frequency in rad/s, and φ is the phase in radians. L is the length of the center tube 

as shown in Fig. B1.  The numerical integration begins at position s=-L/2-C-5D and ends 

at a distance s=L/2+C+5D where s=0 at the center of the structure.  This ensures that the 

fields fall-off sufficiently from the peak value.  The map is calculated in such a way that 

the cavity takes up no space in s making it effectively a thin lens.  The user must account 

for this length and avoid having any other optical elements overlapping the region that 

the lens should span.  The time and phase are defined such that φ=0 and t=0 when the 

particle enters at position s=-L/2-C-5D. 

    IMMCAV1  < V>  <D>  < C >  < ω >  < φ >; 

This procedure is for a one-gap RF cavity with the on-axis potential approximated by 
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where κ is a scaling constant and is 1.315 [Hsi-men86]. The time dependence is similarly 

V(t) = V cos(ωt+φ) as in the previous subroutine just described.  V is the peak voltage on 

the middle tube, D is the tube radius, C is the gap distance, ω  is the angular frequency in 

rad/s, and φ is the phase in radians. The position s=0 is taken to be the center of the gap 

and integration begins at position s=-C/2-5D and ends at s= C/2+5D.  The thin lens 

treatment also applies for IMMCAV2.  The time and phase are defined such that φ=0 and 

t=0 when the particle enters at position s=-C/2-5D.  We note that when both ω and φ are 

set to zero the result is an immersion lens that can apply a static potential for DC 

acceleration or deceleration, depending on the sign.  Note that it is not recommended to 

use this procedure for higher order calculations.  This is because the derivatives of the 

approximate on-axis function gives errors that increase with order.  It is, however, easy to 

use and reasonable to use to third order. 

B2.2   Modeling structures with charged  multi-rings 

 In the two preceding examples, an approximate form for the potential on axis was 

used for simulating electric structures.  This approximation is valid as long as the 

particles remain far from the surface of the structure (typically no closer than 1/2 the 

radius of the tube).  For situations where more accuracy is needed, a number of 

subroutines have been devised that calculate the potential from a set of charged rings that 

lie on the electrodes of the structure.  The method is described in the literature and is 

more immune to the type of errors that are associated with the approximations of the on-

axis functions [Geraci02].  Furthermore, there is more flexibility in being able to 

distribute the rings that emulate the geometry of the structure.  The subroutines allow the 
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user to simulate more details than the analytical approximations, such as radii of 

curvatures and relative position of tubes. 

 The first such subroutine of this type is one that emulates a two-gap cavity geometry.  

A tube is positioned with a cavity that has an entrance and exit aperture for the beam to 

pass as shown in Figure B2.  The subroutine that calculates the map of this structure, 

   TWOGAP  <SS1>  <SS2>  <SCL>  < ω >  < φ >  < RIEST >; 

has six parameters to be specified.  Notice that when the frequency and phase are set to 

zero, this structure simulates an electrostatic lens.  The coordinate system is devised such 

that s=0 at the center of the cavity.  The parameters ω  and φ are in units of radians/s and 

radians, respectively.  The electric potential if the tube is determined by, V(t)= 

SCL*cos(ωt+φ), where SCL is the magnitude of the electric potential in kV.  The 

parameters SS1 and SS2 are the start and endpoints of along the optic axis.  The 

parameter RIEST is a user-supplied estimate of the radius of the cavity that is used to set 

the scale for range of integration step-size.  It will define the nominal step size for the 

numerical ODE integration along s, and should usually be set to the inner tube radius.  

For more accuracy it may be set as small as desired, but it should generally not exceed a 

value of twice the radius.  Care should be taken so that the start and endpoint of 

integration lie far enough to give the fields space to drop off sufficiently.  Depending on 

the amount of accuracy needed, a length equivalent to about one radius is minimum, but 

applying about two or three radii is nominal.  Before calculating the map with TWOGAP, 

it is necessary to execute a procedure that specifies the geometrical layout of the cavity.  

The procedure 

 GAPSTR1 <RI>  <RO>  <RE>  <RD>  <RLRES>  <RRES>  <RLDT1>  <ZDT1>; 
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sets the parameters in units of meters for the parameters as depicted in Fig. B2.  The 

charge on each ring is determined for a positive potential on tube.  This procedure will 

save the charge, Q, and (r,s) coordinates of each ring to the following structure files: 

    KEN I.dat  (calculated charge of the ring) 

    KEN II.dat (z coordinate value of the ring) 

    KEN III.dat  (r coordinate value of the ring) 

It will use unit 11 in the process, so it is important to avoid using this unit number during 

execution of this subroutine.  The data stored in these files serves as later input when 

TWOGAP is called.  The files are in ASCII character format and may be used to make 

scatter plots, such as one that shows the location of each ring in (r,s) space, by using any 

graphical software of choice.  Note that the number of entries in any of the files is the 

total number of rings used.  There is only one set of line feed deliminated values in each 

file and there is no index on the ring number; however, the ordering is the same in each 

file. 

 The data stored in the files is used to determine the on-axis potential via a sum of the 

analytic expressions for rings.  DA is then used to determine the fields off-axis. GAPSTR 

does not have to be repeated for successive runs of TWOGAP as long as the geometrical 

parameters remain constant.  When using the TWOGAP procedure, it is recommended 

that the local Cartesian coordinates be set such that time t = 0 when the particle starts its 

motion at SS1.  This is done by the following command sequence, 

   LOCSET  <0>  <SS1>  <0>  <SS1>  <0>  <0>  <0> ; 

   TWOGAP   <SS1>  <SS2>  <SCL>  < ω >  < φ >  < RIEST > ; 
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where the LOCSET command resets the local coordinates of the reference particle at the 

entrance point of the cavity as described further in the reference [Berz97].  By doing this 

the time and phase are defined such that φ=0 and t=0 when the particle enters at position 

s=SS1. 

B2.3   Other procedures with and without time varying fields 

 There two other procedures that have been added to the COSY code system that work 

similar to the TWOGAP subroutine for determining maps of a two- and three-tube 

structures.  These are, respectively, the THREEGAP and FOURGAP procedures (see 

Fig. B3 and B4, respectively).  A parameter allows one to set even or odd parity between 

the two tubes in the THREGAP structure, as described in the diagram in Fig. B3.  Under 

even parity both tubes have the same potential at any time, while in the case of odd parity 

the potential on each is off by 180º with respect to time.  For the four gap structure the 

two outer tubes are 180º out of phase, while the middle tube is grounded.  If unsure about 

the phase on each tube, the user can observe the sign of the charge on the rings of each 

corresponding tube.  The values are listed in the same KEN I.dat file, which had been 

discussed for the TWOGAP subroutine.  The subroutines that evaluate the charge on each 

ring are described in the figures containing their respective diagrams. 

           There is also a one-gap accelerating gap that can be used with RF, for example as 

a buncher. The procedure is 

    GAP1  <RA>  <GAP>  <RI>  <RRES> ; 

Here <RA> is the aperture radius, <GAP> is the gap length, <RI> is the radius of 

curvature, and <RRES> is the depth of the gap.  The parameter <RRES> can be set to be 
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several radii to simulate an isolated accelerating gap.  Typically, one should set this 

parameter to at least 5 times <RA>  to minimize the effects at the boundary. 

In order to calculate the map, the procedure  

   ONEGAP <SS1> <SS2> <SCL> <W> <PHI> <RIEST> ; 

needs to be called, where these variables are described above in TWOGAP.  Setting the 

frequency and phase to zero simulates a DC accelerating gap. 

It is recommended that the user select a reasonable set of values for the parameters and 

plot the (r,s) positions in the structure files to be sure that the geometry makes physical 

sense.  Be sure to issue the LOCSET command before calculating the map and keep track 

of CONS(E0) whenever these types of maps are calculated more than once during 

execution. 

B2.4   Accelerating columns 

 

 STDCOL1 <RA> <RI> <RE> <RLRES> <RRES> <RO> <RAO><RLDT1>  

   <GAPP> <NRNG> <OFF> ; 

This procedure describes an accelerating column, with the voltage varying linearly with 

ring number k as shown in Fig. B5.  The parameter <NRNG> specifies the number of 

tubes.  <RLRES> is the total length between the entrance and exit apertures.  <RLDT1> 

is the length of each tube, which is set the same for all.  The gap spacing between tubes is 

given by <GAPP>.  <RA> is inner radius of the tubes and <RAO> is the radius of the 

entrance and exit apertures.  <RI> and <RE> are the radii of curvatures as shown in the 

figure. <RO> is the outer tube radius, while <RRES> is the radius of the outer enclosure.  

<OFF> allows for a shift along the s-axis of the entire array of tubes with respect to the 

center position as shown in Fig. B5.  The potential of tube k is determined by, 
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Vk=k/(NRNG+1), where the potential of the entrance aperture is Vi=0 and that of the exit 

aperture will be normalized to 1.  The potential of the system is then scalable within the 

procedure ACCELCOL1.   The user should take care so that the parameters for 

<RLRES>, <NRNG>, <GAPP> and <RLDT1> correspond to a physical structure and 

that boundaries do not overlap.   Also, note that along with the other procedures that 

generate the geometry of a structure, calling this procedure does NOT make the element 

act within a particle optical system.  The ACCELCOL1 routine must be used in 

succession to allow the element to act. 

 CUSCOL1  <RA>  <RI>  <RE>  <RLRES>  <RRES>  <RO>  <RAO> 

                        <RLDT1>  <ZARR>  <NRNG>  <VARR> ; 

This procedure produces a similar structure to STDCOL1, but allows for a more general 

distribution of the array of tubes within the housing.  Fig. B6 illustrates the geometrical 

parameters for user input.  The array <ZARR> should have NRNG elements, specifying 

the z-coordinate of the center of each tube.  The outer housing is centered at z=0 by 

default.  Also, it allows one to specify each individual tube potential.  The array 

<VARR> must have  <NRNG>+1 elements such that element VARR(N+1) specifies the 

potential of the exit aperture.  The potential on tube k is specified by element VARR(k) 

for k=1,...,N, and the potentials on the tubes and exit aperture should be normalized so 

that the highest voltage is 1.  The potential of the system is then scalable within the 

procedure ACCELCOL1. 

   ACCELCOL1 <SS1> <SS2><SCL> <RIEST> <NRNG> ;  

This procedure will calculate the map of either the STDCOL1 or CUSCOL1 structures.  

The start and endpoints of integration are <SS1> and <SS2>.   Caution: In order to ensure 
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consistent boundary conditions, it is not recommended to let the start and endpoints of 

integration exceed about 3 radii beyond the endpoints of the exterior housing at  

±RLRES/2.  At this point the electric field on axis should return to zero within a fraction 

of a percent, and the potential on axis thus becomes flat.  Going below 3 radii will result 

in unphysical electric fields due to the boundary conditions employed for the field solver.  

<RIEST> should be set to <RA> or smaller, depending on the accuracy of the integration 

step that is desired.  <NRNG> must be specified again here and must be the same value 

as that used in STDCOL1 or CUSCOL1.   

 The LOCSET command should be issued before ACCELCOL1 is executed to reset 

the local coordinates.  In order to use the accelerating columns, first the geometry must 

be specified by using STDCOL1 or CUSCOL1 The geometry and charge density profile 

for each cavity is then stored in data files KEN_I.dat, KEN_II.dat, and KEN_III.dat, 

which are the same files used for the TWOGAP, THREEGAP, and FOURGAP routines.  

These files are overwritten each time one of these geometry producing procedures is 

called.  To save some computing time it may be useful to store these files in another 

directory in case they need to be recalled for a common structure. 

 

 
Figure B1.  Diagram illustrating the parameters used in IMMCAV2. 

 

 266



 

 

 
Figure B2.    Diagram illustrating the parameters of subroutine TWOGAP.
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Figure B3.    Diagram illustrating the parameters of subroutine THREEGAP.
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Figure B4.    Diagram illustrating the parameters of subroutine FOURGAP.
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Figure B5.    Diagram illustrating the parameters of subroutines ACCELCOL1 and 
STDCOL1.

 270



 
 

 
Figure B6.    Diagram illustrating the parameters of subroutines ACCELCOL1 and 
CUSCOL1.
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APPENDIX C 

OBTAINING VALUES FOR THERMAL IONIZATION EFFICIENCY 

 Some consideration is given to the formation of a hot cavity plasma within a 1.5 mm 

diameter ionizer tube in accordance with a formalism introduced by Kirchner  

[Kirchner78].  For such an enclosure of tungsten walls at 3000 K we should expect the 

formation of an electron plasma whose density may be determined by Richardson's law.  

It states that 

( ) )/exp(/22 2/32 kTVhkTn se −= π      (C1) 

where the temperature of the electron plasma is determined by the potential drop across 

the resistive ionizer tube and may be approximately taken as kTe=10 eV.  At this 

temperature the Debye-length is less than 0.01mm, ensuring the existence of quasi-

neutrality within the volume of the tube.  Under such conditions it is expected that the 

electron density must be about ne =2 × 1013cm-3. 

 Considering that the vapor pressure of tungsten at such a temperature is nop =2 × 

109cm-3 and adopting Kirchner's assumption that about 1% of these atoms are ionized, 

then we obtain that the plasma sheath has a potential of about -2.3 V where the walls are 

taken to be at ground potential.  Kirchner expects that such a thermal plasma should 

enhance ionization to a degree determined by the ionization potential from ground the 

state.  The thermal ionization efficiency is expressed by the formula, 

)]1/([ TTiT γγε +=      (C2) 

where the term, 
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)/exp()()/2)(/2( 2/512/32
0 kTVkTPhm iiT −= −πξξγ   (C3). 

The pressure is given by P=( nop+ ni + ne)kT where ni =2 × 1012cm-3 is taken as the 

density of ionized atoms in the plasma.  Note that this model applies to an infinitely long 

tube and does not account for losses at ends. 
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APPENDIX D 

FORM OF SOLUTION OF THE TIME RELEASE RATE EQUATION 

 The rate equation for the population of a given isotope within the target is given by, 

nn NNFPJN λλ +−−×=&      (D1), 

The rate constant rate, λ, must include all probable decay channels that lead to another 

distinct isotope.  The final term, λnNn, represents the sum of all decay channels that feed 

the population of (Z,A) isotopes.  In general, there will be a system of differential 

equations of the form (D1) to account for all such possible cross terms in the equations. 

 The release flux term, F, will generally follow closely to the number of isotopes in 

the target.  Thus, it is possible to express this term as 

)()()( tNtgtF ×=     (D2) 

where g is a function that is imposed for characterizing the deviation of the function F 

away from N.  Under steady state conditions we can expect g to be a constant. 

 Substituting Eq. (D2) into (D1) and solving for the instantaneous number of (Z,A) 

isotopes yields the integral equation, 

( 







+×+= ∫ −−−−

t

nn
tt dNPJeketN

0

)()()( τλτµλτµλ )    (D3) 

where k is a constant determined by the initial conditions and 

∫=
t

dgt
0

)()( ττµ      (D4). 

 We consider the special case in which a very short pulse of protons is delivered to the 

target.  The flux term may be approximated by the use of a delta function, J(t)≈Jo ∆t δ(t), 

so that 
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where No gives the total number of atoms produced during the pulse.  The condition 

N(0)= No requires that k=0 and results in the general solution 
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The quantity of interest is the fraction of No, which gets released from the target.  This 

fraction of released product is denoted by the release efficiency 

∫
∞

=
0

)(1),( dttF
N o

nλλη     (D7) 

which gives the ratio of the extracted amount of (Z,A) isotopes to the total amount 

produced at the time of the pulse.  It is useful to express Eq. (D7) as 

∫
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where the function p(t) is defined by 
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and is commonly referred to as the delay function, or release probability; i.e. the 

probability that particle (Z,A) created at time t=0 will be released at time t from the target.  

The second term inside parentheses in Eq. (D9) carries the effect of the feeding term and 

allows for the possibility of having a release efficiency greater than unity.  For this 

reason, η is referred to as the release coefficient rather than a value of the efficiency.  Eq. 

(D9) is usually expressed in the literature for the special case where λn=0, in whereby the 

λ dependence drops out as well.  The exponential term outside of the parentheses follows 

only due to the assumption made in Eq. (D2).   
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 If we let λn=0 and treat g as constant, it follows that p(t)=g exp(-gt).  This is simply 

the solution to the delay function for the evacuation of a gas through an orifice from a 

container and 1/g is the time constant [Kirchner81a].  Solving for the release coefficient, 

η=g/(g+λ), yields unity for vanishing λ.   

 For the case of λn>0 and λ >0, η>1 since the integral in the second term inside 

parentheses in Eq. (D9) is always positive.  Generally, obtaining a form for g(t) in Eq. 

(D9) is not trivial, since it forms a transcendental relation.  The form of g must be 

assumed initially then tested against the measured delay curves.  The emphasis of the 

exercise, however, is mostly to illustrate the effect of having λ>0 on the release 

efficiency. 
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