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ABSTRACT

SEARCHING FOR THE ORIGINS OF FLUORINE: A MEASUREMENT OF
THE 19F(t,3He) REACTION

By

Amanda Margaret Prinke

The astrophysical process responsible for fluorine nucleosynthesis has been a matter of

significant debate. The β-decay of 19O∗ in core-collapse supernova has been previously sug-

gested as a possible avenue for fluorine nucleosynthesis. In hot astrophysical environments,

it is possible to thermally populate low-lying excited states of 19O, and the β-decay of these

excited states would enhance the overall β-decay rate into 19F.

To examine this theory from an experimental nuclear physics perspective, the 19F(t,3He)

reaction differential cross section at 345 MeV was measured. This measurement was per-

formed at the National Superconducting Cyclotron Laboratory using a secondary triton

beam impinged on a Teflon (CF2) target. The 3He ejectiles were momentum-analyzed in the

S800 spectrograph. A Gamow-Teller strength distribution was extracted from the reaction

cross sections. The Gamow-Teller strength for the transition between the ground state of

19F and the 0.096 MeV excited state of 19O was then used to find the 19O∗ β-decay rate to

the 19F ground state over a range of astrophysical temperatures.

The calculated β-decay rate for 19O∗(β−)19F with the new experimental measurement

taken into account did show a modest enhancement for high stellar temperatures. However,

the magnitude of this enhancement was much lower than prior theory calculations had pre-

dicted. The β-decay rate enhancement is not large enough to make a significant impact on

future fluorine nucleosynthesis simulations.
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Chapter 1

Astrophysics Motivation

1.1 Introduction

Experimental nuclear physics provides a unique opportunity to study the innermost work-

ings of stars in the laboratory. The underlying physics for a nuclear reaction in a star has

much in common with nuclear reactions that are produced with a particle accelerator at a

research facility. One specific area where experimental nuclear physics has made a signifi-

cant contribution to astrophysics is in the field of nucleosynthesis research. Nuclear reaction

rates measured in laboratories are incorporated into simulations that predict the elemental

abundances of stars.

This dissertation describes the measurement of a particular nuclear reaction, 19F(t,3He)

at 115 MeV/nucleon, to test a hypothesis on fluorine nucleosynthesis in core-collapse su-

pernovae. The rest of this chapter discusses the motivation for investigating fluorine nucle-

osynthesis in general as well as the specific reason for studying the 19F(t,3He) in particular.

Theoretical principals that are important to charge-exchange reactions and relevant to the

experiment’s data analysis are explained in Chapter 2. Chapter 3 describes the experiment

that was undertaken for this work. The data analysis of this experiment is explicated in

Chapter 4; the results of the data analysis and their astrophysical implications are discussed

in Chapter 5. A summary of the dissertation is provided in Chapter 6.
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1.2 Nucleosynthesis

The study of nucleosynthesis endeavors to answer one of the most fundamental questions

of science: where did we come from? We have a strong grasp on the origin of some elements

[1, 2, and references therein]. Hydrogen (both 1H and 2H) and most helium was produced

in the first moments of the universe during the Big Bang. A smaller fraction of helium is

generated by hydrogen-burning processes in stellar environments. Carbon is formed from

the triple-alpha process in helium-burning stars. Massive helium-burning stars also produce

16O and 18O. The slow neutron capture process, referred to as the s-process [3], explains the

solar abundances of many isotopes in the mass range above iron up to bismuth, including

krypton, xenon, barium, and lanthanum.

More complex astrophysical processes account for still more elements and for specific

isotopes. The s-process is typically characterized by (n, γ) reactions at a time scale that

is much slower than the intervening β-decays (over several thousand years) and is thought

to occur primarily in asymptotic giant branch (AGB) stars (see Section 1.5). The rapid

neutron capture process, referred to as the r-process [3], may explain many of the isotopes

with 70 ≤ A ≤ 209 (where A is the nucleon number). The r-process is typically characterized

by neutron captures on a very short time scale compared to the relevant β-decays (less than

10 seconds) and is thought to occur in core-collapse supernovae (see Section 1.3) or in merging

neutron stars. Specifically, the r-process accounts for several neutron-rich stable nuclei that

are beyond the reach of the s-process, such as 122Sn and 130Te (the s-process is essentially

blocked for these nuclei because there are intervening unstable nucleus in their isotopic chains,

121Sn and 129Te respectively, which will β-decay before more s-process neutrons are captured,

meaning that 122Sn and 130Te are only accessible via rapid neutron captures). The r-process
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may also account for naturally occurring thorium and uranium isotopes, which are too far

beyond the stable isotopes to be produced by the s-process. The neutrino nucleosynthesis

process occurs when supernovae release large amounts of neutrinos, and these neutrinos

interact with stellar material to produce low-abundance isotopes [4, 5]. The neutrino process

might account for the solar abundance of isotopes such as 138La and 180Ta, and it may

partially contribute to the solar abundance of 11B [6].

Several other astrophysical processes are also being explored as explanations for observed

astrophysical abundance patterns. These include carbon, neon, oxygen, or silicon burning in

massive stars, as well as proton capture (p-process) and rapid proton capture (rp-process).

The origin of fluorine, however, has been a persistent mystery despite significant research

efforts.

Fluorine nucleosynthesis is a challenging area of research. Theoretical efforts to model

fluorine production in stellar environments have frequently been stymied by inadequate nu-

clear reaction rate data. Recently, there have been significant experimental improvements

in many of the nuclear reaction rates tied to fluorine production; several recent measure-

ments will be discussed later in this chapter. Hopefully, these reaction rate improvements

(including the rate that is the subject of this dissertation) will pave the way for a more

definitive theoretical explanation for fluorine nucleosynthesis. However, the biggest obstacle

to creating a reliable model of fluorine production is arguably the “fragility” of the fluorine

nucleus, meaning that 19F is easily destroyed in stellar environments via neutron capture(
19F(n, γ)20F

)
, alpha capture

(
19F(α, p)22Ne

)
, or proton capture

(
19F(p, α)16O

)
. This

fragile nature leads to fluorine having a very low solar abundance relative to neighboring iso-

topes; it has the lowest abundance in the range of elements between carbon and calcium [7].

Efforts to explain fluorine production focus primarily on this problem and search for ways to

3



preserve significant quantities of fluorine from premature destruction. So far, no explanation

offered for fluorine production fully explains the measured astrophysical abundances.

Another major challenge in this field is the astrophysical observation of fluorine. The low

abundance of fluorine and its particular physical properties coalesce to make it very hard

to detect [8]. Most of our knowledge of galactic fluorine abundances comes from the stellar

absorption lines of HF molecules, which are found only in cool stars or in sunspots. Many

of the vibration-rotation absorption lines from HF overlap with lines from other common

molecules, like 12C14N [8, 9]. This makes the detection of a low-abundance element like

fluorine very difficult. It also leads to some model-dependence in fluorine abundance mea-

surements, where different predictions of contaminants can heavily influence the final fluorine

abundance determination. Absorption lines from elemental fluorine have been observed in

hotter stars, but such measurements are difficult because these absorption lines fall on the

edge of the visible spectrum near the ultraviolet region [10, 11] or in the far ultraviolet region

of the spectrum [12, 13].

In fact, the one and only measure to date of our own Sun’s fluorine abundance was per-

formed in 1969 by examining the spectral lines produced by the molecule HF in sunspots [14].

The molecule HF only forms in cool stars or in relatively cool locations like sunspots; most

fluorine in the Sun and similar stars is elemental. Hall and Noyes found a solar abundance1

of A(F) = 4.56 ± 0.33 in the Sun. The only other measure available for the solar system’s

fluorine abundance comes from abundance measurements performed on the CI group of car-

1Stellar abundances of elements are quantified using a common spectroscopic notation:

A(x) = log
N(x)

N(H)
+ 12.00 (1.2.1)

indicates how abundant an element x is compared to the hydrogen in the same star. The
scale is defined such that A(H) = 12.00.
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bonaceous chondrite meteorites [15], which found a value of A(F) = 4.46±0.06. At a glance,

the meteoric abundance seems like the best choice as a solar system standard for fluorine

abundance because of its lower uncertainty, but an earlier review of the meteoric data openly

questioned the quality of these measurements [16]. This suggests that the more conservative

sunspot measurement with a larger error may be the better option. Fortunately, the sunspot

and meteoric abundances are in agreement with each other, but the larger uncertainty of the

sunspot measurement can make it difficult to determine whether other stars are exhibiting

a significant overabundance of fluorine compared to our solar system.

Three astrophysical sites have been proposed for fluorine nucleosynthesis. All of these

sites were suggested because they offer an opportunity to preserve fragile 19F from the

capture processes that would otherwise destroy it. Core-collapse supernovae might pro-

duce fluorine through an unusual neutrino nucleosynthesis process and eject it prior to its

destruction into the interstellar medium through a supernova explosion (see Section 1.3).

Wolf-Rayet stars might produce fluorine via helium-burning and then eject it into the in-

terstellar medium in extreme solar winds, preserving it from destruction (see section 1.4).

Asymptotic giant branch (AGB) stars might produce fluorine via helium-burning and then

eject it into planetary nebulae (see Section 1.5).

1.3 Neutrino Nucleosynthesis of Fluorine

The first theory to attempt to tackle fluorine nucleosynthesis was proposed by Woosley

and Haxton [4]. They hypothesized that solar fluorine abundances could be produced in

the carbon and neon shells of core-collapse (Type II) supernovae due to interactions with

neutrinos (see Figure 1.1). Woosley and Haxton postulated that neutrinos produced in
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Figure 1.1: This is an artist’s impression of the remnants of the core-collapse supernova SN
1987A. Image credit: ESO/L. Calçada [17]. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this dissertation.

the supernova go through inelastic collisions with the abundant 20Ne found in the collaps-

ing star. These inelastic collisions excite the 20Ne nuclei, which can then emit a proton:

20Ne(ν, ν′p)19F. The cross section for inelastic neutrino collisions is very low: the average

cross section expected for a collision between a 20Ne nucleus and a neutrino from a core-

collapse supernova is less than one attobarn (10−18 barn) [18]. However, a core-collapse

supernova produces a large flux of neutrinos: roughly 1058 neutrinos are released in a core-

collapse supernova, accounting for about 1053 ergs of released energy [6, 18]. This large flux

of neutrinos counteracts the low reaction cross section, making neutrino nucleosynthesis a

potentially important method of production for certain low-abundance nuclides such as 19F,

138La, and 180Ta. Early core-collapse supernova simulations [18, 19] gave promising results

for fluorine production via neutrino nucleosynthesis, and a study by Renda et al. [20] em-
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ploying a galactic chemical evolution model indicated that solar fluorine abundances could

be explained fully by neutrino nucleosynthesis in core-collapse supernovae. Additionally,

several astrophysical observations of extrasolar fluorine abundances [21, 22] are consistent

with these early neutrino model predictions.

Despite this early success, more recent simulations and observations present a differ-

ent picture. Heger et al. [6] found that revised core-collapse supernovae simulations pre-

dicted significantly less fluorine production than prior efforts. Advances in the field of neu-

trino physics, especially an enhanced understanding of neutrino oscillations, drove this re-

vised study. Improved stellar models and nuclear reaction rates also impacted the newer

simulations. An experimental measurement of the Gamow-Teller strength distribution for

20Ne(p, n)20Na [23] was included in this recent simulation (see Section 2.1 for an explanation

of Gamow-Teller strength). This experimental measurement had a particularly large impact

on the simulated fluorine production, because the measured Gamow-Teller strength distri-

bution was found to be much lower than earlier shell-model calculations had predicted. The

full impact on predictions of core-collapse supernovae fluorine production was a reduction of

about 40% from the earlier estimates of Woosley et al. [6, 19]. An additional study by Austin

et al. on the sensitivity of neutrino nucleosynthesis to variations in certain poorly-known

reaction rates showed large fluctuations in fluorine production, suggesting that supernovae

account for 25% to 75% of the solar fluorine abundance. With the lower fluorine production

rates of Heger et al., one cannot attribute a solar fluorine abundance solely to core-collapse

supernovae. On the experimental front, Federman et al. [24] set out to measure ν-process

fluorine in stars that had formed in the remnants of known core-collapse supernovae, but they

did not see any evidence of enhanced fluorine abundances. The revised, significantly lower

theoretical predictions of fluorine abundance and the lack of direct experimental evidence for
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neutrino nucleosynthesis of fluorine indicate that different methods of fluorine production

should be considered.

The reaction investigated in this dissertation, 19F(t,3He)19O∗, is most relevant to su-

pernova environments. However, the method of fluorine production examined here differs

significantly from the traditional neutrino nucleosynthesis scenario described above. Instead,

this dissertation seeks to examine the possibility that fluorine is produced by neutron capture

on 18O to form 19O, followed by a β-decay to 19F:

18O(n, γ)19O(β−)19F. (1.3.1)

The isotope 18O is already produced primarily during helium-burning in the massive stars

that are the progenitors of core-collapse supernovae [5]. The neutrons needed for this process

could come from the supernova explosion itself. Core-collapse supernovae have the potential

to emit sufficient quantities of neutrons for r-process nucleosynthesis to occur [3, 5], so there

is potential for some 19O to form and decay to 19F during the supernova explosion.

Supernovae are particularly relevant to the 19F(t,3He)19O∗ reaction because of the high

temperatures achieved during the explosion. At these high temperatures, a significant por-

tion of 19O will achieve equilibrium in the very low-lying first excited state at 0.096 MeV,

making it possible to β-decay from this excited state in 19O∗ to 19F. This is interesting be-

cause β-decay between the ground state of 19O and the ground state of 19F is forbidden (the

spin-parity assignment of the 19O ground state is Jπ = 5
2

+
, while the spin-parity assignment

of the 19O ground state is Jπ = 1
2

+
[25]). However, the low-lying excited state in 19O at

0.096 MeV has a spin and parity of Jπ = 3
2

+
, which means that β-decay from this 0.096

MeV excited state in 19O to the ground state of 19F is allowed (see Figure 1.2).
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This opens the door for a significant increase in the β-decay rate for 19O in a supernova

compared to the β-decay rate that has been measured in laboratory conditions. The first

excited state of 19O decays to the ground state by γ-ray emission in roughly 1 ns, so it

isn’t viable to measure the excited state β-decay through a direct experiment. Chernyhk

et al. [26] performed a theoretical calculation to estimate the reaction rate increase that

occurs when the 0.096 MeV state in 19O is taken into account. Their calculations suggested

that the 19O(β−)19F β-decay rate might increase by a factor of three at high stellar temper-

atures, which indicates that this reaction is an excellent candidate for further experimental

investigation. In Section 4.3.3 of this dissertation, the strength of the transition from the

0.096 MeV state of 19O to the ground state of 19F is extracted experimentally through study

of the 19F(t,3He)19O∗ reaction.

1.4 Wolf-Rayet Star Production of Fluorine

A different astrophysical site proposed for fluorine nucleosynthesis is the Wolf-Rayet

star [27] (see Figure 1.3). A Wolf-Rayet star is a type of hot, giant star characterized by

powerful stellar winds. These stars typically have temperatures above 30,000 K and have 10

to 25 times the mass of the Sun (but they are occasionally much more massive) [28]. The

distinctive stellar winds of a Wolf-Rayet star are driven by photons transferring momentum

via absorption to material in the outer atmosphere of the star. This radiative pressure drives

very high winds that in turn remove large quantities of material from the star: winds of up to

6000 km
s have been measured, and calculations predict that the winds from Wolf-Rayet stars

eject material greater than the mass of the Earth in a year. This mass-loss mechanism makes

Wolf-Rayet stars ideal candidates for fluorine production; any fluorine that is produced by
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Figure 1.3: This image shows a Wolf-Rayet star, WR124. It is surrounded by a nebula, M1-
67, that was formed from material ejected by the Wolf-Rayet star’s powerful winds. Image
credit: ESO [17].

the star via helium-burning can be ejected into the interstellar medium by high stellar winds

before it is destroyed by α-capture.

In Wolf-Rayet stars, fluorine production occurs during early phase helium core burning [27].

In stars that are burning helium, fluorine is destroyed via the 19F(α, p)22Ne reaction, typi-

cally near the end of the helium-burning phase. However, the high stellar winds of a Wolf-

Rayet star preserve the fluorine by sweeping much of it out into the interstellar medium

before it can be destroyed in α-capture. In the early helium burn phase, fluorine production

is accomplished via the chains [27]:

14N(α, γ)18F(β+)18O(p, α)15N(α, γ)19F, (1.4.1)

14N(α, γ)18F(n, p)18O(p, α)15N(α, γ)19F, and (1.4.2)
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14N(α, γ)18F(n, α)15N(α, γ)19F (1.4.3)

with neutrons and protons produced in the reactions 13C(α, n)16O and 14N(n, p)14C, re-

spectively. The first chain, Equation 1.4.1, is the dominant fluorine-producing reaction in

Wolf-Rayet stars.

Simulations by Meynet and Arnould [27] supported the theory that Wolf-Rayet stars

could create a fluorine overabundance. In particular, Meynet and Arnould found that Wolf-

Rayet stars with masses ranging from 40 to 85 times the mass of the Sun and with metallicity

similar to the Sun would exhibit the highest fluorine yields. Lower metallicities lead to the

stars burning off the fluorine before stellar winds can carry it away. Higher metallicities

and higher masses lead to helium-burning cores that are too small to be uncovered by stellar

winds, so the fluorine cannot escape into the interstellar medium before it is destroyed. These

simulations indicated that Wolf-Rayet stars could potentially account for the solar abundance

of fluorine, and there were even some concerns expressed that the simulations could predict

too high of a solar fluorine abundance. The aforementioned galactic chemical evolution

model employed by Renda et al. [20] indicated that Wolf-Rayet stars were needed to match

experimentally observed overabundances of fluorine, along with neutrino nucleosynthesis and

AGB star production of fluorine.

Later, Palacios, Arnould, and Meynet revisited these Wolf-Rayet simulations of fluorine

abundance [29]. Updated models of Wolf-Rayet stars and updated nuclear reaction rates

triggered the re-examination. The updated stellar models indicated a significant reduction

in expected mass loss, meaning that more fluorine will be burned up in α-capture and less

will escape into the interstellar medium. Note that neutron densities in Wolf-Rayet stars are

considered negligible, so the reaction 19F(α, p)22Ne is considered the only significant source
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of fluorine destruction. These mass loss changes lead to a decrease in fluorine production

in Wolf-Rayet stars by as much as a factor of 30. The authors note, however, that these

simulations are very sensitive to the rate of 19F(α, p)22Ne and to mass loss rates that may

be underestimated in this model. If these simulations prove correct, Wolf-Rayet stars are

not a significant source of galactic fluorine production. However, the rate of 19F(α, p)22Ne

was recently measured by Ugalde et al. [30] and they recommend a rate that is an order

of magnitude lower than the rate used in Palacios et al., which would lead back to higher

fluorine abundances in Wolf-Rayet stars.

Observationally, there is no direct measurement of fluorine in the stellar winds of a Wolf-

Rayet star. However, there are some measurements that indirectly support the Wolf-Rayet

production of fluorine. Observations of red giants in the Large Magellanic Cloud and in the

globular cluster ω Centauri by Cunha et al. [21] show a link between fluorine abundance

and metallicity. This link is predicted by the Wolf-Rayet simulations and by neutrino nu-

cleosynthesis models of fluorine. Such a link between metallicity and fluorine abundance

is not predicted by the AGB star models of fluorine production that will be discussed in

greater detail later in this chapter. Later observations of red giants in the Galactic bulge,

also by Cunha et al. [22], supported Wolf-Rayet fluorine production over neutrino or AGB

production. These Galactic bulge red giants had a stronger link between metallicity and

fluorine abundance than could be explained through Heger et al.’s [6] neutrino nucleosyn-

thesis calculations, and had no overabundance of the s-process elements that are expected

from AGB star fluorine production. A study of fluorine abundances in planetary nebulae

by Zhang et al. [11] found one planetary nebula with both a Wolf-Rayet central star and

a high fluorine overabundance. This particular Wolf-Rayet star planetary nebula deviated

significantly from the trend of the other planetary nebulae observed in Zhang et al.’s study,
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in that it had a high abundance of fluorine and a high metallicity whereas the general trend

among the nebulae was a decrease in fluorine with higher metallicity. These observations

provide some qualitative support for Wolf-Rayet nucleosynthesis of fluorine, but lack a strong

quantitative argument.

The picture for fluorine production in Wolf-Rayet stars is thus anything but clear. There

is certainly room for Wolf-Rayet stars to play an important role in fluorine nucleosynthesis.

However, updated models for Wolf-Rayet fluorine production are needed in light of Ugalde

et al.’s measurement of the 19F(α, p)22Ne rate.

The measurements that are discussed in this dissertation are not expected to have an

impact on fluorine nucleosynthesis in Wolf-Rayet stars. The temperatures relevant to fluorine

production via helium-burning (T ≤ 0.2 GK) are too low for any significant amount of 19O

to occupy an excited state (see Sections 1.3 and 5.1 for more details). Additionally, the low

neutron densities of Wolf-Rayet stars mean that they are the least likely of the three major

sites proposed for fluorine production to undergo significant rates of the alternative fluorine

production process, 18O(n, γ)19O(β−)19F.

1.5 Fluorine Found in AGB Stars

Direct observational evidence of fluorine abundances greater than the solar abundance

was first recorded in asymptotic giant branch (AGB) stars by Jorissen et al. [8]. This

discovery spurred much of the activity in the field of fluorine nucleosynthesis in the last two

decades. AGB stars are cool, red giants that eject mass into the interstellar medium as they

burn (see Figure 1.4). Stars with a mass less than roughly 9 times the mass of the Sun will

go through an AGB phase as they near the end of their life. As an AGB star dies, the mass
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Figure 1.4: This image shows the planetary nebula NGC 5189. Planetary nebulae like this
one are formed when an asymptotic giant branch (AGB) star loses its outer layers. Many
such nebulae are roughly spherical, giving rise to images that look like giant planets (hence
the name “planetary” nebula). This one has a more complex shape that resembles a spiral.
Image credit: ESO [17].

emitted forms a planetary nebula, and the core that remains behind becomes a white dwarf.

AGB stars have an inert, electron-degenerate core comprised of carbon and oxygen. This core

is surrounded by a helium-burning shell, which in turn is surrounded by a hydrogen-burning

shell, and the outermost layer of the star forms a convective envelope [28, 30]. Fluorine

nucleosynthesis occurs in the helium-burning shell of the AGB star. The region between the

hydrogen- and helium-burning shells is referred to as the intershell. The two burning regions

are largely isolated from each other by the intershell, but the complicated stellar dynamics

of AGB stars allow for material from the hydrogen shell to occasionally be mixed into

the helium-burning region, introducing protons that play an important role in the fluorine

nucleosynthesis process [8]. Some protons in the helium shell are also generated by the
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Type Description

K Orange stars slightly cooler than the Sun.
M Cool, red stars.
MS Intermediate AGB star with more carbon than M stars and less than S

stars.
S AGB star rich in s-process elements, with more carbon than M stars and

less than C stars.
SC AGB star with more carbon than S stars. Abundance of carbon and

oxygen is nearly equal.
C Carbon-rich AGB stars.

J Carbon AGB stars with high 13C abundances.

Table 1.1: Brief descriptions of the stellar classifications that are relevant for a discussion of
asymptotic giant branch stars.

14N(n, p)14C reaction. The neutrons needed for the preceding reaction and other neutron

captures in AGB stars are generated through the 13C(α, n)16O reaction [8] and potentially

through the 22Ne(α, n)25Mg reaction [30, 31].

The study by Jorissen et al. [8] covered red giant stars of several different spectral

types. Please refer to Table 1.1 for a brief definition of each spectral type. In this study,

it was found that K and M stars have fluorine abundances consistent with the Sun. Slight

overabundances were found in some MS and S stars, and high excesses of fluorine were

observed in barium stars, SC stars, most C stars, some J stars, and a few MS or S stars.

The excess fluorine abundances ranged as high as 100 times the solar fluorine abundance

and frequently fell within the range of 3 to 30 times the solar fluorine abundance. However,

Abia et al. [9, 32] recently released two re-evaluations of the fluorine abundances in several

stars from the Jorissen et al. study. Abia et al.’s 2009 paper [9] looked at three C stars

from the Jorissen et al. study and found much lower fluorine abundances that are consistent

with solar fluorine abundance. Abia et al. examined in detail the differences between their

measurement and Jorissen et al., and found that the most likely culprit for the discrepancy
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is contaminants. Jorissen et al.’s fluorine abundance measurements relied heavily on two

specific spectral vibration-rotation absorption lines of the HF molecule that Jorissen et al.

state are mostly free of contamination, but the study by Abia et al. used a model that showed

significant contamination of these same lines in carbon-rich stars from 12C14N and 12C12C

molecules. Abia et al.’s abundance measurements relied instead on a different vibration-

rotation line of HF that their model indicated had no contamination [9].

Abia et al. released a 2010 paper [32] that covered a wider variety of AGB stars, including

several J-type, SC-type, and C-type stars (see Table 1.1 for a description of these stellar

classifications). This study also showed systematic reductions in the fluorine overabundances

as compared to Jorissen et al.’s work. The revised fluorine abundances found by Abia

et al. for J and C stars [32] are mostly consistent with the solar fluorine abundance [14].

However, Abia et al. still see a significant fluorine overabundance in SC stars. Both Jorissen

et al.’s paper [8] and Abia et al.’s paper [32] note that the SC stars are unique in that

they have a nearly equal amount of carbon and oxygen. This leads to nearly all the carbon

and oxygen being bound up as CO molecules. In turn, very slight variations in carbon

and oxygen abundances in SC star models result in large variations in the final molecular

makeup predicted by the models, meaning that there is a far greater uncertainty associated

with these SC star measurements than with other AGB stars. This casts considerable doubt

as to whether the high fluorine abundances measured in SC stars are due to systematic errors

or genuine enhancements.

Several other extrasolar abundance measurements of fluorine have been performed, but

they also present conflicting information on how significant AGB stars are for fluorine pro-

duction. In 2003, Cunha et al. [21] released a paper with fluorine abundance measurements

of red giants in the Large Magellanic Cloud and in the globular cluster ω Centauri. They
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found that the abundance of fluorine in the ω Centauri stars was well below the solar abun-

dance and many of the Large Magellanic Cloud star abundances were slightly below the solar

abundance. The ω Centauri stars are notable because they have high abundances of elements

produced in the s-process. Since AGB stars are thought to be the primary production site

for s-process elements, the high s-process abundance in ω Centauri stars implies that AGB

stars played a significant role in their chemical evolution. If this is the case, the low fluorine

abundances in ω Centauri stars suggests that AGB stars may not be strong contributors to

fluorine production. In another paper published in 2008, Cunha et al. [22] found fluorine

overabundances in red giants in the galactic bulge that had no s-process enrichment. Models

predict that, in AGB stars, fluorine production and s-process element production should be

correlated [33], so a lack of s-process enrichment suggests that the fluorine seen in the red

giants observed by Cunha et al. is not produced by AGB stars.

Conversely, measurements of fluorine abundances in planetary nebulae by Zhang and

Liu [11] show an enhancement of fluorine when compared with the solar fluorine abundance.

Planetary nebulae are composed of the material ejected into the interstellar medium by

AGB stars [1], so this measurement of fluorine overabundance provides evidence in favor

of AGB stars as a fluorine production site. Werner et al. [12] found very high fluorine

overabundances of up to 250 times the solar abundance in extremely hot, hydrogen-deficient

post-AGB stars, which also supports the hypothesis that AGB stars are a fluorine production

site. Pandey et al. [13] found high fluorine enhancements of about 100 times solar in a sample

of cool extreme helium stars (hydrogen-deficient supergiants), which may have previously

gone through an AGB star phase.

Jorissen et al. examined several different nuclear reaction paths that could produce 19F
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in an AGB star [8]. They concluded that the most likely path for fluorine production is:

14N(α, γ)18F(β+)18O(p, α)15N(α, γ)19F, (1.5.1)

where neutrons and protons are produced via the 13C(α, n)16O and 14N(n, p)14C reactions,

respectively (see Figure 1.5). This is the reaction path that is discussed in most literature on

fluorine production in AGB stars. However, Jorissen et al. also mention another potentially

viable path for fluorine nucleosynthesis:

14N(α, γ)18F(β+)18O(n, γ)19O(β−)19F, (1.5.2)

where neutrons are produced via the 13C(α, n)16O reaction, the 18O(α, n)21Ne reaction,

or the 22Ne(α, n)25Mg reaction [30, 31] (see Figure 1.5). At the time of publication of

Jorissen et al.’s paper, there were large uncertainties associated with the 18O(n, γ)19O rate.

Such a fluorine production path would also require a large initial 18O content in the AGB

star. This path is constrained by the competing 19F(n, γ)20F rate, which destroys the 19F.

Jorissen et al. expressed skepticism that the reactions 18O(n, γ)19O(β−)19F could play a

significant role in AGB star fluorine nucleosynthesis because the rate of neutron capture on

18O is orders of magnitude lower than neutron capture on 19F [8].

The specific measurements that are discussed in this dissertation are not expected to have

an impact on fluorine nucleosynthesis in AGB stars. The temperatures relevant to fluorine

production via helium-burning (T ≤ 0.2 GK) are too low for any significant amount of 19O

to occupy an excited state (see Sections 1.3 and 5.1 for more details). However, the broader

process of 19O(β−)19F (see Figure 1.5) as a potential source of fluorine in AGB stars has not
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Figure 1.5: Nuclear paths for fluorine nucleosynthesis in AGB stars. Grayed boxes indicate a
stable isotope in this slice of the chart of nuclides. The blue path in the top figure corresponds
to Jorissen et al.’s primary reaction path. The red path in the bottom figure is the alternative
path involving 19O(β−)19F discussed in the text.
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received attention in modern AGB nucleosynthesis calculations. Recent experimental devel-

opments suggest that this alternate reaction path deserves renewed scrutiny: a new measure-

ment of the 19F(n, γ)20F rate by Uberseder et al. [34] indicates a lower cross section than

prior estimates, a recalculation of the 22Ne(α, n)25Mg rate by Karakas et al. [31] reduces un-

certainties on this reaction, and a measurement of 19F(α, p)22Ne rate by Ugalde et al. [30]

indicates an order of magnitude lower cross section than prior measurements. These small

shifts all favor higher abundances of fluorine and better conditions for β-decay from 19O.

The 19O(β−)19F process should be included in future fluorine nucleosynthesis calculations

simply to determine its contribution (if any) to AGB star fluorine production.
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Chapter 2

Theory

The primary goal of this research is to measure the Gamow-Teller strength distribution

for transitions from 19F to 19O via the 19F(t,3He)19O∗ charge-exchange reaction. This

Gamow-Teller strength distribution will be used to calculate a weak decay rate for the

19O∗(β−)19F reaction for use in the astrophysics application discussed in Chapter 1. This

chapter explains the theoretical concepts that form the foundation of the 19F(t,3He)19O∗

measurement. In addition to covering relevant theoretical arguments, this chapter will also

discuss the computer programs used to perform theoretical physics calculations needed in

the data analysis for Chapter 4.

2.1 Gamow-Teller Strength

When a nucleus undergoes β−-decay, it converts one neutron into a proton and emits an

electron and antineutrino in the process [2]:

19
8 O11 →19

9 F10 + e− + ν̄e. (2.1.1)

A β-decay involves a unit change in isospin (∆T = 1); this isospin change is represented

by the isospin operator τ . For the case of β−-decay, this is specifically an isospin-lowering

process represented by the operator τ−. There are two separate classes of β-decay transitions:
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Gamow-Teller and Fermi. Gamow-Teller transitions occur when the ejected electron and

antineutrino have parallel spins. This means that the transition has a unit change in spin

(∆S = 1); such a spin transfer is represented by the spin operator σ, and the overall

Gamow-Teller transition is then represented by the operator στ . The corresponding β-decay

transitions where the ejected electron and antineutrino are antiparallel (∆S = 0) are called

Fermi transitions, which are represented simply by the operator τ .

Nuclear reactions that involve the exchange of a neutron for a proton, or vise versa, are

called change-exchange reactions. The simplest example is an (n, p) or (p, n) reaction, but

more complex probes such as (t,3He) and (7Li,7Be) can also be used. These reactions are

also isovector transitions (∆T = 1) like β-decays. In cases where there is a change in spin

but no change in orbital angular momentum (∆S = 1, ∆L = 0), these strong-force mediated

reactions can also be represented by the στ operator and connect the same states as allowed

transitions in the β-decay mediated by the weak force. Under the right circumstances,

the cross section of a nuclear charge-exchange reaction is proportional to the strength of

the Gamow-Teller transition. This allows for an extraordinary situation where transition

strengths associated with the weak force can be studied directly in reactions mediated by

the strong force. Therefore, charge-exchange reactions like (t,3He) can be used to study

Gamow-Teller β-decay transitions that are inaccessible to direct β-decay studies because of

Q-value limitations.

A significant amount of research has gone into establishing a firm relationship between

various charge-exchange reaction cross sections and Gamow-Teller strengths. Taddeucci

et al. [35] performed the first detailed investigation of the relationship between weak tran-

sition strengths and (p, n) cross sections at intermediate beam energies (120–200 MeV). In

Reference [35], they established a proportionality called a unit cross section (σ̂GT) between
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Gamow-Teller strengths and the (p, n) reaction cross section at zero momentum transfer in

the Eikonal approximation. This proportionality equation is written as:

dσ

dΩ
(q = 0) = KND|Jστ |2 (B[GT ]) = σ̂GT (B[GT ]) , (2.1.2)

where
dσ

dΩ
(q = 0) represents the reaction cross section at zero momentum transfer, B[GT]

denotes Gamow-Teller strength, and KND|Jστ |2 is the factorization of the unit cross section

(σ̂GT) proportionality coefficient under the Eikonal approximation. In that factorization, K

represents a kinematic factor (see also Figure 2.2). ND is a distortion factor that is defined

by the ratio of distorted-wave to plane-wave cross sections; it accounts for the distortion of

the incoming plane wave of the projectile and outgoing plane wave of the ejectile by the

mean field of the target and residual nuclei, respectively. |Jστ |2 is the volume integral of

the central στ component of the effective interaction between the nucleons in the target and

projectile nuclei. Note that Gamow-Teller strength is defined here such that B[GT] = 3 for

the decay of the free neutron.

This proportionality between Gamow-Teller strength and charge-exchange cross section

holds only under certain conditions. As already mentioned, the charge-exchange cross sec-

tion must be obtained for zero momentum transfer (q = 0), which requires that the cross

section be extracted for zero reaction Q-value (Q = 0) and at a scattering angle of zero

degrees (θcom = 0◦). A direct, single-step charge-exchange reaction mediated by pion ex-

change is needed with no multi-step contributions from knock-on interactions; this occurs

at intermediate beam energies above 100 MeV per nucleon [36, 37]. It has also been shown

that the proportionality of Equation 2.1.2 can break down if the transition strength is very

weak. This is likely caused by interference between the transition amplitudes mediated by
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the στ and Tτ (tensor-τ) components of the effective interaction, which is discussed in more

detail in Section 2.2. A more detailed discussion of the unit cross section is available in

References [35, 38, 39].

Further studies of charge-exchange reactions and Gamow-Teller strength proportionalities

have opened up additional experimental tools beyond the initial (p, n) probe. A similar

relationship has been established for probes such as (7Li,7Be) reactions [40, 41], (3He, t)

reactions [38], and (t,3He) reactions [42]. The significant similarities between (t,3He) and

(3He, t) reactions and the availability of high-quality data sets for both types of reactions

has permitted detailed examinations of the three factors (K, ND, and |Jστ |2) in the unit

cross section in Equation 2.1.2 [39].

To extract Gamow-Teller strengths from charge-exchange data, a value must be estab-

lished for the unit cross section (σ̂GT). There are two methods to accomplish this. In

the method that is most frequently used, σ̂GT is determined through a direct calibration.

A charge-exchange cross section is measured for a specific transition with a well-known

Gamow-Teller strength from direct β-decay studies. Alternatively, it is possible to interpo-

late the unit cross section from other measurements on targets with similar masses where

a unit cross section was established via the first method. This is useful when there is no

well-known Gamow-Teller β-decay measurement available (as is the case for the 19F→19O

transition). In Reference [38], a phenomenological relationship between the unit cross sec-

tion and nuclear mass (A) was established for (3He, t) reactions at 140 MeV/nucleon in the

region of 12 ≤ A ≤ 120 (see Figure 2.1):

σ̂ =
109

A0.65
. (2.1.3)
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Figure 2.1: This figure shows the nuclear mass dependence (A) of the measured unit cross
section (σ̂GT) for several different (3He, t) and (t,3He) reactions. The solid line is a phe-
nomenological fit to the (3He, t) data for masses of 12 ≤ A ≤ 120 that is discussed in detail
in Reference [38]. The deviation from this fit at low masses is an expected phenomenon,
dominated by the kinematic contribution (K) in Equation 2.1.2 (see also Figure 2.2). This
figure was taken from Reference [39].

This equation has also been found to work well for (t,3He) reactions at 115 MeV/nucleon [39]

and was used to calculate a unit cross section for the present measurement of 19F(t,3He)19O∗

2.2 Distorted Wave Born Approximation

The spectrum for a charge-exchange reaction measurement is not restricted to only

Gamow-Teller transitions. Several other transitions with different spin and angular momen-
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Figure 2.2: This figure shows the nuclear mass dependence (A) of the kinematic factor (K)
in Equation 2.1.2 for the unit cross section (σ̂GT) for several different (3He, t) and (t,3He)

reactions. The solid line is defined as K =
EiEfkf

(π~2c2)ki
, where Ei and Ef are the reduced

energies for the incoming and outgoing channel and ki and kf are the linear momentums of
the projectile and ejectile. Since this line trends toward zero for low masses, it causes masses
A < 12 to fall off the phenomonological fit described by Equation 2.1.3. The kinematic
factor and its impact on the unit cross section is discussed in more detail in Reference [39].
This figure was taken from Reference [39].
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tum transfers contribute as well. The allowed Gamow-Teller transitions (∆S = 1, ∆L = 0)

must be separated from these other contributions during the data analysis. As an example,

transitions with a total angular momentum transfer of 1 (∆L + ∆S = ∆J = 1) can occur

as Gamow-Teller (∆S = 1, ∆L = 0) transitions or as quadrupole (∆S = 1, ∆L = 2)

transitions. The only way to achieve this separation of the Gamow-Teller transition is to

use a reaction model; the reaction model can be used to predict the angular distributions

for contributions to the spectra associated with different transfers of orbital angular mo-

mentum. The measured differential cross sections for the charge-exchange reaction are then

decomposed on the basis of these theoretical calculations (see Section 4.3.1) so that the

∆L = 0 component can be isolated. Further, once the ∆L = 0 component of the measured

differential cross sections are extracted, they must be extrapolated to zero momentum trans-

fer (q = 0) so that the proportionality relationship in Equation 2.1.2 can be applied and

Gamow-Teller strengths can be extracted. This procedure also requires theoretical reaction

calculations, both to extrapolate from a finite reaction Q-value to Q = 0 and to quantify

the cross section at a scattering angle of zero (θcom = 0◦), which then fulfills the zero linear

momentum transfer condition.

As mentioned above, Tτ (tensor-τ) terms can further complicate matters for weak Gamow-

Teller transitions due to interference between the transition amplitudes mediated by the στ

and Tτ interactions. The angular distribution at forward scattering angles is not modified

by this interference, but the proportionality in Equation 2.1.2 becomes uncertain. The ef-

fect is strongest for weak excitations [42, 43], where the tensor contribution can become the

dominant term. The tensor contribution can be estimated through theory calculations.

The theoretical tool used for these reaction calculations was the three-part WSAW,

FOLD, and DWHI code package [44]. Angular distributions were calculated with this code
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package through a first order distorted wave Born approximation (DWBA) [45, 46, 47, 48].

In general, a reaction cross section can be expressed in terms of transition amplitudes (Tfi)

from a DWBA calculation as:

dσ

dΩ
=

(
µ

2π~2

)2(kf
ki

)
|Tfi|2, (2.2.1)

where µ is the reduced energy, ki is the incoming wave number, and kf is the outgoing wave

number [49]. The calculation of transition amplitudes requires several nuclear structure and

nuclear reaction inputs. The FOLD code is the core of this reaction model package; it com-

putes form factors, which contain information about the interaction between the projectile

and target as well as nuclear structure information about relevant transitions. The WSAW

code generates radial wave functions that are used in FOLD’s calculation of form factors.

The DWHI code uses the form factors computed by FOLD and optical potentials to calculate

transition amplitudes and differential cross sections on the basis of the DWBA formalism.

The WSAW code is used to compute a set of single-particle radial wave functions (φ) for

a two-body particle system, such as the target-recoil system. A potential with a Coulomb,

Woods-Saxon, and spin-orbit term is input into the code for each single-particle state. Then

radial wave functions for each single-particle state are determined by allowing the depth of

the Woods-Saxon potential to vary while fitting the radial wave function to the Schrödinger

equation such that it reproduces a set of input single-particle binding energies. The other

parameters in the potential are fixed in the WSAW input file at the following values: dif-

fuseness a0 = 0.65 fm, Coulomb radius rc = 1.25 fm, Woods-Saxon radius r0 = 1.25 fm,

spin-orbit potential depth coefficient VSO = 7.0 MeV. The single-particle binding energies

for the target-recoil system were calculated with the shell-model code OXBASH [50] us-
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Model Eb (MeV) Model Eb (MeV)
18O + p(0s1/2) -29.6 18O + n(0s1/2) -29.6
18O + p(0p3/2) -17.9 18O + n(0p3/2) -17.7
18O + p(0p1/2) -13.3 18O + n(0p1/2) -13.1

18O + p(0d5/2) -5.9 18O + n(0d5/2) -6.1
18O + p(0d3/2) -1.0 18O + n(0d3/2) -1.0
18O + p(1s1/2) -3.1 18O + n(1s1/2) -4.4

18O + p(0f7/2) -1.0 18O + n(0f7/2) -1.0
18O + p(0f5/2) -1.0 18O + n(0f5/2) -1.0
18O + p(1p3/2) -1.0 18O + n(1p3/2) -1.0
18O + p(1p1/2) -1.0 18O + n(1p1/2) -1.0
18O + p(0g9/2) -1.0 18O + n(0g9/2) -1.0

Table 2.1: This table lists the single-particle binding energies that were used as an input for
the WSAW radial wave form calculation. The model column indicates the core nucleus and
the added proton (left) or neutron (right) in the indicated single-particle level to form the
19F or 19O nucleus, respectively. These binding energies for the spsdpf model space were
calculated using the Skyrme SK20 interaction [51] with the shell-model code OXBASH [50].
When the calculated binding energies were greater than -1.0 MeV, a value of -1.0 MeV was
substituted to ensure that the generated wave functions were well-bound and the computa-
tions converged.

ing the Skyrme SK20 interaction [51]. The Skyrme SK20 interaction was selected for this

application because it is valid over a wide range nuclei and thus allows for comparisons

across a broad variety of charge-exchange reactions. The binding energies (Eb) used for the

WSAW calculation on the 19F–19O system are listed in Table 2.1. The t–3He system radial

wave functions were computed from Variational Monte Carlo results [52, 42] instead of with

WSAW.

The FOLD code produces form factors (F (~r)) by double-folding the effective nucleon-

nucleon interaction (Veff ) of Love and Franey [37, 53] at 140 MeV/nucleon over the one-body

transition densities of the projectile-ejectile and target-recoil systems. Form factors are a

function of the distance between the target and projectile (~r). These form factors account

for the composite nature of all the nuclei involved in the 19F(t,3He)19O∗ reaction when the
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DWBA is performed. The one-body transition densities describe the overlap between initial

and final states in the projectile-ejectile and target-recoil systems. A one-body transition

density serves as a weighting factor for each one-particle, one-hole transition, determined by

the overlap between the initial and final nuclear states. One-body transition densities for

the 19F–19O system were calculated in the spsdpf -shell model space with the WBP effective

interaction [54] using the shell-model code OXBASH [50]. FOLD generates form factors from

the radial wave functions generated in WSAW (φ), one-body transition densities, kinematic

data, and spin-coupling information. Form factors are calculated with the equation [49]:

F (~r) =
∑〈

ΦeΦr

∣∣∣a†ac†c∣∣∣ΦpΦt〉 〈φeφr∣∣Veff ∣∣φeφr〉, (2.2.2)

where the subscripts of t, p, e, and r indicate the wavefunctions of the target, projectile,

ejectile, and recoil particles respectively and the sum runs over all possible quantum numbers

for the system. The portion of the equation represented by
〈

ΦeΦr

∣∣∣a†ac†c∣∣∣ΦpΦt〉 contains

the one-body transition densities as well as spin-coupling terms and creation and annihilation

operators.

The DWHI code uses the form factors found with FOLD calculations to compute transi-

tion amplitudes (Tfi) and then angular distributions

(
dσ

dΩ

)
through a DWBA calculation.

Transition amplitudes for a specific transfer of spin (∆S), total angular momentum (∆J),

and orbital angular momentum (∆L) are calculated from the following equation [49]:

Tfi =
〈
χf ( ~kf , ~r)

∣∣∣F (~r)
∣∣∣χi(~ki, ~r)〉 , (2.2.3)

where χi(~ki, ~r) and χf ( ~kf , ~r) are the distorted waves for the initial and final states, respec-
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Real Imaginary
Channel Depth Radius Diffuseness Depth Radius Diffuseness

(MeV) (fm) (fm) (MeV) (fm) (fm)
19F + t -18.8 1.54 0.74 -36.3 0.89 0.96
19O+3He -22.1 1.54 0.74 -42.66 0.89 0.96

Table 2.2: This table lists the Woods-Saxon optical model potential parameters used
for the DWBA calculations. The parameters for the outgoing channel were measured in
Reference [55] for the incoming channel of the 16O(3He, t)16F reaction at 140 MeV/nucleon.
The parameters for the incoming channel were derived from the parameters of the outgoing
channel as described in Reference [56].

tively. An optical potential is used in this calculation to account for the distortion effects

of the nuclear mean field. Since there are no optical potentials available for the specific

beam energy and reaction channels of this experiment, a suitable published optical potential

from a similar reaction was used instead. The best optical model available for this purpose

was found in Reference [55], in which Fujita et al. studied the 16O(3He, t)16F reaction at

140 MeV/nucleon. As part of their analysis, Fujita et al. determined the optical potential

for the 16O+3He channel from elastic scattering data. The model chosen for this optical

potential consisted of real and imaginary Woods-Saxon terms, and any error due to the

choice of optical potential is expected to be negligible. The extracted parameters for the

16O+3He channel were used in the current analysis for the 19O+3He outgoing reaction chan-

nel. For the incoming channel of 19F + t, the real and imaginary Woods-Saxon potential

depths were scaled by a factor of 0.85, following the phenominological procedure described

in Reference [56]. The Woods-Saxon optical model potential parameters used for the DWHI

calculations are listed in Table 2.2. In addition to the optical model parameters, DWHI also

takes spin and kinematic information as inputs, including reaction Q-values. The calculated

transition amplitudes are then used to compute the desired differential cross section angular

distributions through Equation 2.2.1.

32



The differential cross section angular distributions produced by the WSAW/FOLD/DWHI

code package were used during the data analysis in a multipole decomposition analysis (see

Section 4.3.1). They were also used to extrapolate differential cross sections with finite linear

momentum transfer to zero linear momentum transfer (q = 0). This extrapolation meets the

necessary conditions for the determination of Gamow-Teller transition strengths using the

unit cross section proportionality described in Section 2.1.
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Chapter 3

Experiment

The goal of this dissertation is to extract the Gamow-Teller strength of the 19F(t,3He)19O∗

reaction (see Section 2.1 for a detailed explanation of Gamow-Teller strength). This chapter

will discuss the facility at which this experiment was performed and describe the experi-

mental devices used to collect the data for this dissertation. A beam of tritons was im-

pinged on a target that contained fluorine (CF2). The charge-exchange reaction of interest,

19F(t,3He)19O∗, was selected for by triggering on 3He ejectiles with a high-resolution spec-

trograph. The spectrograph recorded position, angles, timing, and energy loss data that are

used in Chapter 4 to construct differential cross sections for the reaction over the excitation

energy (Ex) range of 0 MeV ≤ Ex[19O] ≤ 16 MeV, and those differential cross sections are

then used to calculate Gamow-Teller strengths.

This experiment is not the first measurement of the 19F(t,3He) reaction. Earlier work

by Pinder et al. [57] measured the cross section of the ground and first excited state of

19O produced by a (t,3He) reaction with a 33 MeV beam of tritons. However, that data

set did not provide enough information to investigate the astrophysics application discussed

in Section 1.3. At the low beam energies used by Pinder et al., many two-step (indirect)

reactions occur; the proportionality relationship of Equation 2.1.2 discussed in Section 2.1

isn’t valid under such conditions.
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Figure 3.1: This is a schematic of the devices used in experiment e09053 at the NSCL. This
figure shows the Coupled Cyclotron Facility (red), the A1900 fragment separator (orange),
the transfer line between theA1900 and the S800 spectrograph (green), the S800 spectrograph
analysis line (blue), and the S800 spectrograph (purple). For more details, refer to the text.
Image taken from Reference [48].

3.1 Triton Beam Production

This experiment was performed at the Coupled Cyclotron Facility at the National Super-

conducting Cyclotron Laboratory (NSCL). The experiment was designated with the number

e09053 and ran in February 2010. See Figure 3.1 for a schematic layout of the NSCL appa-

ratuses used in this research.

The Coupled Cyclotron Facility [58, 59] consists of two superconducting cyclotrons (red

section of Figure 3.1): the K500 cyclotron and the K1200 cyclotron. In this experiment,

16O3+ ions from an Electron Cyclotron Resonance ion source were injected into the smaller

of the two cyclotrons, the K500. The 16O3+ ions underwent an initial acceleration to an
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energy of 13 MeV/nucleon in the K500 cyclotron and were then injected through a coupling

line into the larger K1200 cyclotron. Inside the K1200 cyclotron, the ions hit a thin carbon

stripper foil that removed the remaining electrons, producing 16O8+. This fully-ionized

oxygen was accelerated in the K1200 cyclotron to an energy of 150 MeV/nucleon. It was

then extracted from the K1200 and impinged on a beryllium production target to create a

secondary radioactive beam through projectile fragmentation. A 3526 mg/cm2 production

target of 9Be was used in this experiment to produce a 115 MeV/nucleon triton (3H+ or t)

secondary beam. Prior research by Hitt et al. [60, 47] found that this method produces

the highest triton beam rate at an energy appropriate for charge-exchange experiments

(> 100 MeV/nucleon) at the NSCL.

A wide variety of fragments are produced when primary beam impinges on the beryllium

production target. To separate the desired secondary beam from all other fragments and

from the remaining primary beam, the secondary beam is sent through the A1900 fragment

separator [61, 62] (see Figure 3.2 for the layout of the A1900 fragment separator, which is

also pictured in the orange section of Figure 3.1). The A1900 separator consists of four

dipole magnets and eight quadrupole triplets and separates fragments by momentum. It

has high momentum and angular acceptance (∆p/p = 5% and ∆Ω = 8 msr, respectively).

It operates in an achromatic ion-optical mode, meaning that the final positions and angles

of the output beam particles are independent of momentum. The first half of the A1900

fragment separator selects fragments with a specific magnetic rigidity: Bρ = γmv/q [62],

where Bρ is magnetic rigidity, γ is the Lorentz factor, m is mass, v is velocity, and q is

charge. Further separation of fragments occurs when the beam passes through an energy

degrader, often referred to as a wedge [61]. Fragments that enter the wedge with a fixed

magnetic rigidity will emerge with magnetic rigidity that varies by atomic number due to
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Figure 3.2: This figure shows a schematic of the A1900 fragment separator. This device
separates the desired secondary beam isotope from other fragments. See the text for a
detailed description of the separation process. Image taken from Reference [62].

differences in energy loss in the wedge. After the wedge, the A1900 fragment separator

disperses the fragments at its focal plane, and slits are used to remove the contaminants by

blocking particles with a momentum that varies too much from the desired isotope.

In this experiment, a 195 mg/cm2 aluminum wedge was used in the A1900 fragment

separator to remove the primary contaminants of the triton beam, 6He and 9Li. This method

of purifying the triton beam with a wedge was first tested in experiment 06032 by C. J. Guess

et al. [48]. Without this wedge, the triton beam had a purity of about 85%, and the 6He

contamination created a background at the S800 spectrograph focal plane by breaking up

into 3He + 3n at the reaction target. With the wedge inserted, all background from these

6He events was eliminated. The slits that purify the triton beam after the wedge were set to

restrict the momentum acceptance to ∆p/p = 0.5%. The final purified triton secondary beam

was directed through a transfer line (green section of Figure 3.1) toward the experimental

station.

There are two beam monitors of note near the cyclotrons and the A1900 that were used
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in the data analysis for this experiment. These beam monitors did not intercept the triton

beam, but they produced signals that were proportional to the triton beam intensity. The

first probe, labeled Z001I-C, was a non-intercepting current probe located immediately after

the K1200 cyclotron that measured the primary beam intensity. The second probe, labeled

Z026R-C, was a copper bar located in the first dipole magnet of the A1900. It acted as a

Faraday cup to measure the current of the unreacted primary beam that passed through the

beryllium production target; the secondary triton beam was steered away from this probe by

the dipole magnet. These beam current measurements, along with other data, were used to

provide a relative scale for the secondary beam intensity on different reaction targets. This

information was needed because there was no direct measurement of the secondary beam

intensity available throughout the experiment. An estimate of the average absolute triton

beam intensity from the well-known 12C(t,3He) cross section gave a rate of roughly 7× 106

particles per second. This rate was 30% lower than in experiment 06032 due to problems

with the triton beam tuning.

3.2 Targets

Four different reaction targets were used in the course of this experiment at the pivot point

of the S800 spectrograph. The reaction target of primary interest for this dissertation was an

11.2 mg/cm2 thick piece of CF2, commonly known as Teflon. The goal of using this target

was to study the 19F(t,3He)19O∗ reaction. CF2 was selected as the fluorine target material

because it has a high fluorine content and is easy to obtain. No notable contamination of

the CF2 target was detected. A separate CH2 reaction target with a thickness of 10 mg/cm2

was used to provide both calibration data and information on the 12C background events
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produced by the carbon in the CF2 target. The third target, a piece of aluminum coated

with ZnS (which fluoresces when hit by beam), was used as a viewer to verify that the beam

spot was properly aligned on the target at the pivot point. The fourth reaction target was

a foil of isotopically purified 56Fe. Data taken on the 56Fe target was analyzed in detail in

a separate study by Y. Shimbara et al. [63], and is only used in this dissertation for a few

calibrations.

In prior charge-exchange measurements at the NSCL, a large vacuum chamber with a

remote-controllable target ladder was used to implement easy transitions between different

reaction targets. The large vacuum chamber was not available for this experiment, so all

reaction target changes were done manually instead. Since manual target changes are time-

consuming, this means that there were limited opportunities to perform calibration checks

with the CH2 target and to inspect the beam spot at the S800 pivot point. However, enough

calibration runs were performed that this restriction did not add any significant error to the

data taken on the CF2 reaction target.

3.3 S800 Spectrograph

The experimental station used for this research was the S800 spectrograph [64, 65]. The

S800 spectrograph is a high resolution and high acceptance device that uses superconducting

magnets to measure the momentum of charged particles. It has two sections: the analysis

line (light blue area in Figure 3.1), and the high acceptance spectrograph with focal plane

detectors (purple area in Figure 3.1). The S800 spectrograph focal plane detectors provide

timing, position, and energy loss data for the reaction ejectile. This information is used to

reconstruct the events at the reaction target.
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Figure 3.3: This figure shows the layout of the S800 spectrograph and its analysis line.
The triton beam entered the S800 analysis line at the object position and was momentum-
dispersed as it traveled through the analysis line so that it was fully dispersed at the reaction
target. When the desired (t,3He) reaction occurs in the target, the 3He ejectiles are bent
through the S800 spectrograph and then measured by detectors at the focal plane. Image
adapted from a figure in Reference [65].

The analysis line of the S800 spectrograph (see Figure 3.3) is composed of four dipole

magnets and five quadrupole triplet magnets. Two distinct operating modes are available

for the device. In focused mode, the analysis line is achromatic, which produces a chromatic

image at the focal plane. Focused mode provides high momentum acceptance of beam

particles at the expense of energy resolution in the measured ejectiles. In dispersion matching

mode, the entire system of analysis line and spectrograph is achromatic, meaning that the

momentum spread of the beam at the beginning of the analysis line is ideally cancelled out

at the focal plane. Thus the momentum variation that is measured at the focal plane is only

due to the momentum transfer that took place in the reaction target. This mode provides

better energy resolution for the ejectiles at the cost of lower momentum acceptance. The

reduced momentum acceptance in dispersion matching mode occurs because the beam is
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momentum-dispersed on the reaction target at the S800 spectrograph pivot point, and the

S800 spectrograph dispersion is about 11 cm per 1% momentum spread. The layout of the

analysis line and the S800 spectrograph cannot fully accommodate a very large beam spot,

so in dispersion matching mode the momentum needs to be restricted to ∆p/p = 0.5% to

provide a manageable beam spot size (this corresponds to a beam spot roughly 5.5 cm tall)

whereas focused mode can support a momentum spread of up to ∆p/p = 3%. Dispersion

matching mode was used for this experiment because the high energy resolution was critical

to reconstructing the reaction on an event-by-event basis. The magnetic rigidity (Bρ) of the

analysis line was set to 4.8 Tm for this experiment.

The spectrograph itself (see Figure 3.3) consists of two quadrupole magnets and two

dipole magnets that focus the reaction ejectiles onto a set of detectors at the focal plane. The

magnetic rigidity set for the S800 spectrograph during this experiment was Bρ = 2.3293 Tm.

The focal plane detectors suite contains two Cathode Readout Drift Chambers (CRDCs), an

ion chamber, and a set of plastic scintillators [65]. At the time of this experiment, the focal

plane detectors were undergoing an upgrade. As a result, the ion chamber was offline and

the four plastic scintillators that are normally in the focal plane were replaced; both CRDCs

were fully functional. This did not adversely affect the experiment. The ion chamber is not

used for (t,3He) experiments because the 3He ejectile has a low proton number (Z = 2),

so it doesn’t lose enough energy in the ion chamber fill gas to produce a useful signal [47].

The four plastic scintillators were in the process of being replaced with a more sophisticated

hodoscope detector made of 32 crystal CsI(Na) scintillators [66] and a single new thin plastic

scintillator. The new thin plastic scintillator had been fully installed when this experiment

ran and provided sufficient timing and energy loss data to replace the old scintillators.

The two Cathode Readout Drift Chambers (CRDCs) measure the dispersive and non-
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dispersive positions of particles [64]. They are separated by a distance of 1.073 meters along

the beam path so that the two sets of position measurements can be used to reconstruct the

flight path angle of particles. Each CRDC acts as single wire drift detector [64, 67]. The

drift chamber is filled with a gas mixture of 80% CF4 and 20% C4H10. This gas mixture

has low aging characteristics, high drift velocity, and low avalanche spread. A set of 225

cathode pads are arrayed along the dispersive direction and a single anode wire runs parallel

to them (see Figure 3.4). When an ejectile enters the CRDC, the gas is ionized, creating

electron - ion pairs. The electrons drift quickly along the electric field toward the anode

wire. As the electrons reach the anode wire, they induce a signal on both the anode and the

nearby cathode pads [67]. The amount of signal induced on each cathode pad will vary with

the distance from the ejectile dispersive position, so the CRDC determines the dispersive

position by performing a Gaussian fit to the current measured on each pad (see inset on

Figure 3.4). The non-dispersive position is determined by the drift time of electrons; the

detector measures the time difference between the data acquisition trigger (a signal from the

plastic scintillator) and the collection of electrons on the anode wire.

The CRDCs give a position resolution of approximately 0.5 mm in both directions, which

corresponds to an ideal scattering angle resolution of 2 mrad. In dispersion matching mode,

the ideal energy resolution of the S800 spectrograph for reconstructed events is 1 part in

10,000 [65]. In practice, experiments performed with the S800 spectrograph and radioactive

beams usually obtain a scattering angle resolution of 10 mrad and an energy resolution of up

to 1 part in 2,000. The difference between the ideal and actual resolution is due to factors

external to the S800 spectrograph, such as beam spot size and reaction target thickness. See

Sections 4.1.2, 4.1.3, and 4.1.4 for a detailed description of the extraction of reaction data

from CRDC measurements and a discussion of the resolutions obtained in this experiment.
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Figure 3.4: This diagram illustrates how the CRDCs in the focal plane of the S800 spectro-
graph work. The CRDCs are used to measure the transverse positions of an event at two
different locations along the beam axis of the focal plane. This information can then be used
to reconstruct the dispersive and non-dispersive angles of the event’s trajectory. The red line
is an example of an event, and the thin black line shows the central axis of the S800 spec-
trograph focal plane. The bar-chart insert shows an example of an integrated image charge
as measured by the CRDCs. The integrated image charge is fitted with a Gaussian line to
obtain a specific dispersive position. The original CRDC image is taken from Reference [64]
and was adapted by G. W. Hitt in Reference [47].

43



Name Voltage Applied (V)
CRDC 1 Anode 1150
CRDC 1 Drift 800
CRDC 2 Anode 1150
CRDC 2 Drift 800
Grid 25
Upper Scintillator PMT 1790
Lower Scintillator PMT 1760

Table 3.1: This table lists the voltages that were applied to the S800 spectrograph focal
plane detectors for this experiment.

Table 3.1 lists the voltages that were applied to the CRDCs during this experiment.

The plastic scintillator that was present in the S800 for this experiment was used to

measure relative energy loss and to provide a timing signal. This scintillator was a 1 mm thick

piece of C9H10 plastic with photomultiplier tubes (PMT) attached to both ends. Ejectiles

that pass through the scintillator deposit energy proportional to their proton number squared

(Z2) and dependent on their velocity. Some of that energy will excite electrons in the plastic.

As these electrons de-excite, they release photons that are detected in the PMTs. A timing

signal generated by the scintillator serves as a trigger for the data acquisition system and

as the start of a time-of-flight measurement. The cyclotron RF provides a corresponding

stop signal for the time-of-flight measurement. Energy loss and time-of-flight information

were used to make a particle identification (see Section 4.1.1 for more details) to ensure

measurement of the desired reaction channel and to exclude background events. Table 3.1

lists the voltages that were applied to the PMTs during this experiment.
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Chapter 4

Data Analysis

This chapter will explain the data analysis process used for this dissertation. The data

collected with the S800 spectrograph (see Section 3.3 for details) from the 19F(t,3He)19O∗

reaction at 115 MeV/nucleon was used to obtain excitation energy spectra for the 19O∗ recoil

nucleus in Section 4.1. The excitation energy spectra were converted into differential cross

sections, up to 16 MeV in the excitation energy of the 19O recoil nucleus, in Section 4.2. A

multipole decomposition analysis was performed to extract the ∆L = 0 contributions to the

differential cross sections as a function of excitation energy. In Section 4.3, the Gamow-Teller

strength distribution for the 19F(t,3He)19O∗ reaction was extracted using the proportion-

ality relationship between the ∆L = 0 component of the differential cross section at zero

momentum transfer and the Gamow-Teller strength (see Equation 4.3.1 and Section 2.1).

Finally, the Gamow-Teller strength associated with the excitation of the 0.096 MeV state in

19O was used to calculate the corresponding β-decay rate of 19O∗(β−)19F in Section 5.1, be-

cause this specific low-lying state was important for the astrophysical application discussed

in Chapter 1.

4.1 Extracting Excitation Energy Spectra

Data extracted from the S800 spectrograph focal plane detectors were used to reconstruct

the excitation energy spectra and to determine the differential cross sections. The ejectile
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Name Description
tof time of flight of the ejectile: the difference between an initial timing

signal from a thin scintillator in the focal plane and a stop timing signal
from the radiofrequency of the K1200 cyclotron, in arbitrary units

de1u energy loss signal from the upper photomultiplier tube on the thin scin-
tillator, in arbitrary units

de1d energy loss signal from the lower photomultiplier tube on the thin scin-
tillator, in arbitrary units

de1 derived energy loss in the thin scintillator, in arbitrary units:
de1 =

√
(de1u)(de1d)

xg1 position in the dispersive plane recorded by CRDC 1, in terms of a pad
number

xg2 position in the dispersive plane recorded by CRDC 2, in terms of a pad
number

tac1 drift time recorded by CRDC 1, in nanoseconds; used to determine the
position in the non-dispersive plane

tac2 drift time recorded by CRDC 2, in nanoseconds; used to determine the
position in the non-dispersive plane

Table 4.1: A description of the ejectile parameters that were measured with the S800 spec-
trograph focal plane.

parameters measured by the S800 spectrograph at the focal plane are listed in Table 4.1.

The extracted energy loss and timing information was used to uniquely identify and sep-

arate the desired 3He2+ ejectiles from other possible reaction products and background

events (described in Section 4.1.1). The position parameters that were measured at the S800

spectrograph focal plane were also calibrated (discussed in Section 4.1.2) and used to recon-

struct the ejectile’s properties at the secondary target position (explained in Section 4.1.3).

Table 4.2 provides a summary of the reconstructed ejectile parameters at both the focal plane

and the secondary target position. These parameters are referred to and used in calculations

throughout this chapter. When a parameter is corrected or calibrated, a subscript “c” is

used to differentiate the corrected parameter from the original data.

The properties of the ejectile at the secondary target position were used to calculate

the excitation energy of the recoil nucleus through a missing mass calculation (described in

46



Name Description
afp angle in the dispersive plane at the focal plane, in radians
bfp angle in the non-dispersive plane at the focal plane, in radians
xfp position in the dispersive plane at the focal plane, in microns
yfp position in the non-dispersive plane at the focal plane, in microns
ata angle in the dispersive plane at the target, in radians
bta angle in the non-dispersive plane at the target, in radians
dta fractional energy, closely related to the ejectile’s kinetic energy
yta position in the non-dispersive plane at the target, in meters

Table 4.2: A description of the ejectile parameters that were calculated from the measure-
ments taken with the S800 spectrograph.

Section 4.1.4). Some corrections were applied to improve energy resolution (explained in

Section 4.1.5). The excitation energy spectra obtained through this method were used to

construct differential cross sections in Section 4.2.

4.1.1 Particle Identification

The S800 spectrograph detects particles with a magnetic rigidity within a narrow range.

In this experiment, a central magnetic rigidity setting of Bρ = 2.32930 Tm (±0.5% due to

momentum acceptance restrictions) was selected to correspond with the rigidity of the 3He2+

ejectiles that are produced in the (t,3He) reaction at a triton beam energy of 115 MeV/nucleon

in the excitation energy region of interest. The limited momentum acceptance of the S800

spectrograph prevented most ejectiles from alternative reaction channels in the secondary

target from entering the S800 spectrograph focal plane. However, there were still some

background events that needed to be separated from the desired (t,3He) reaction channel

ejectiles. Many of these background events were due to unreacted tritons scattering off the

S800 spectrograph dipole magnets or ejectiles from triton reactions such as (t, d) or (t, p)

with the aforementioned magnets. A particle identification gate was necessary to select out
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Figure 4.1: These figures show particle identification spectra. The z-axis is on a logarithmic
scale. Two cycles of the cyclotron RF are shown here, so two blobs in each figure correspond
to the desired 3He2+ ejectiles. Figure A (left) shows the particle identification spectrum
before any corrections were applied. The white circles identify the 3He2+ events. Figure B
(right) shows the improved separation of the 3He2+ from the background after corrections
were applied. The white boxes illustrate the 3He2+ gating used in the data analysis.

only the relevant 3He2+ events from background events.

A particle identification spectrum was generated from data recorded at the thin scintilla-

tor in the S800 spectrograph focal plane. In this spectrum, the time of flight (tof ) is plotted

versus the energy loss (de1 ) as shown in Figure 4.1. This type of particle identification spec-

trum can be used to separate the ejectiles from different reaction channels in the secondary

target. The energy loss (de1 ) is proportional to the ejectile proton number squared (Z2) as

determined with the Bethe-Bloch equation; energy loss allows for the selection of the desired

ejectile isotope (in this experiment, 3He). The time of flight (tof ) is proportional to M
q ,

where M is ejectile mass and q is ejectile charge; the time of flight allows for the selection of

the desired reaction channel (in this experiment, (t,3He) reactions at the secondary target

position are the desired reaction channel).

48



Events corresponding to the (t,3He) reaction were easily determined in the particle identi-

fication spectrum. Data was taken on a target with a well-known excitation energy spectrum.

Then, each blob in the particle identification spectrum was gated on individually until the

expected excitation energy spectrum was found. In this case, a target of CH2 was selected

for this purpose because the excitation energy spectrum of the 12C(t,3He)12B∗ reaction has

been studied previously and was easily identifiable. The blobs corresponding to 3He ejectiles

are marked in Figure 4.1. In theory, if the other blobs were due to interactions in the reaction

target from an alternative reaction channel, that reaction channel could potentially be identi-

fied by closely examining the excitation energy spectrum and comparing it to known excited

states. However, the other blobs in the particle identification spectrum for this experiment

did not correspond to reactions in the secondary target. When these background blobs were

gated on, the measured trajectories exhibited unusual angular distributions, which strongly

implied that they were background events that did not originate at the secondary target, as

discussed above.

To clean up the particle identification spectrum so that the 3He ejectiles were easily sep-

arated from background events, linear corrections were applied to the time of flight (tof )

and energy loss (de1 ). For a given ejectile isotope, the time of flight corrections removed the

dependence on momentum and path length, while the energy loss corrections removed the

dependence of energy loss on path length. The corrected parameters are referred to as tofc

and de1c. The specific corrections used in this experiment were determined phenomenologi-

cally and are listed in Table 4.3. The effect of these corrections is illustrated in Figure 4.1 B.

The gate for the 3He ejectiles was chosen from this corrected particle identification spectrum

and used during further data analysis (the gate ranges used are also listed in Table 4.3).
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Particle Identification corrections
tofc = tof + (1.95)(xg2− xg1) + (0.169)(xg2) + (0.008)(xg1)
de1uc = de1u+ (0.84)(xg2− xg1)
de1dc = de1d− (1.07)(xg2− xg1)

de1c =
√

(de1uc)(de1dc)

Boundaries for the 3He gate
de1 c range tofc range

432 < de1c < 720 −830 < tofc < −751
432 < de1c < 720 −420 < tofc < −350

Table 4.3: This table lists the formulas used to make corrections to the time of flight (tof )
and energy loss (de1 ) to obtain a clean gate on 3He in the particle identification spectrum.
The 3He gate boundaries are also listed.

4.1.2 Cathode Readout Drift Chamber Calibration

The cathode readout drift chamber (CRDC) position measurements (xg1, xg2, tac1, tac2 )

were recorded in terms of pad numbers (in the dispersive plane) and electron drift time (in

the non-dispersive plane). To convert these parameters into physical distances, a mask cali-

bration was performed. A tungsten plate with a distinct set of holes and slits (see Figure 4.2)

was inserted upstream of each CRDC sequentially. The distances between the holes and slits

in these masks were well-known. Ideally, the mask blocks all particles except those that pass

through the holes and slits, and thus the pattern of dots and lines observed in a masked

CRDC run can be used to determine the conversion between the position parameters and

actual distances with a linear parameterization.

However, the 3He ejectile has a low proton number of Z = 2. The masks are not thick

enough to stop fast ejectiles with such a low Z, so the 3He ejectiles passed through the

mask without stopping. This made it difficult to isolate the slit-hole pattern to calibrate

the CRDC positions. However, the 3He ejectiles lost some energy as they passed through

the mask, causing the ejectiles to slow down slightly if they did not pass through a hole or
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Figure 4.2: A schematic of the tungsten mask used for position calibrations of the CRDCs.
This figure was taken from [40].

slit. Then, when the 3He ejectiles interacted with the thin scintillator in the focal plane, the

slower particles that had passed through the mask deposited more energy than the faster

particles that had passed through slits or holes. Thus, through careful gating on energy loss

(de1 ), ejectiles that had passed through the mask were separated from ejectiles that had

passed through a hole, so the slit-hole pattern was recovered and used for calibration.

The CH2 target was used during the mask calibration runs because it had the highest

rate of 3He ejectiles, and thus produced the best statistics of any of the available target

options. However, the statistics for the mask calibration runs were relatively poor, so only

a few mask holes were visible in the calibration runs (the slits were still easily visible, see

Figure 4.3). To compensate for the difficulty of detecting the holes, information from a

prior S800 spectrograph experiment was used to establish an initial calibration. This prior

experiment, NSCL experiment number 08017, detailed in Reference [40], had higher statistics

for its mask calibration runs. This initial calibration from experiment 08017 made it possible

to identify a few holes and ensure that they were assigned correctly. The data from the mask
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Mask Spectrum for CRDC 2

Figure 4.3: Position measurements for the mask calibration of CRDC 2. The slits from the
mask were easily visible, but the holes were more difficult to distinguish.

runs in the present experiment were then used to refine and finalize the position calibration.

Since it is possible to fine-tune the mask calibrations by applying kinematical constraints

to the data sets, further mask calibration runs were unnecessary (see Section 4.1.5). The

calibration was a simple linear relationship with parameters of slope (M) and intercept (B):

calibrated CRDC position = M(CRDC data) +B. (4.1.1)

The values that were found for the parameters of the four calibrations are listed in

Table 4.4. The origin of the coordinates corresponds to the vertex of the L-shape seen in the

mask (see Figure 4.2), which is also the central trajectory through the S800 spectrograph

for particles with the appropriate magnetic rigidity (Bρ). The calibration in the dispersive

plane is stable over the duration of an experiment [47]. However, the slope in the non-

dispersive plane is dependent on the electron drift velocity in the CRDCs and is sensitive
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Name CRDC Plane M B

xg1c CRDC 1 Dispersive 2.54 mm/pad -278.88 mm
xg2c CRDC 2 Dispersive 2.54 mm/pad -278.99 mm
tac1c CRDC 1 Non-dispersive -0.068 mm/ns 132.34 mm
tac2c CRDC 2 Non-dispersive 0.071 mm/ns -147.35 mm

Table 4.4: Parameters used to calibrate CRDC data to a physical position, in millimeters.
The values for M in the dispersive plane are fixed to the width of each pad at 2.54 mm.

to subtle changes in experimental conditions, so it tends to change slowly over the course

of an experiment. It was not practical to take multiple CRDC calibration runs during this

experiment, so these corrections were instead done on a run-by-run basis by examining the

data as discussed in Section 4.1.5.

By using these calibrated position parameters (xg1c, xg2c, tac1c, and tac2c), angles and

positions at the focal plane (afp, bfp, xfp, and yfp) were calculated in the format needed for

the next step in the data analysis. The equations for the parameter transformations in the

dispersive and non-dispersive planes for the angles (afp and bfp, respectively) and positions

(xfp and yfp, respectively) are:

afp = arctan
(xg2c − xg1c

1073

)
, (4.1.2)

bfp = arctan
(tac2c − tac1c

1073

)
, (4.1.3)

xfp =
xg1c
1000

, and (4.1.4)

yfp =
tac1c
1000

. (4.1.5)

The factor of 1073 present in the calculations of afp and bfp comes from the distance between

the two CRDCs, which is 1.073 meters. The units chosen for these parameters were selected
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for compatibility with the inverse transfer map matrix calculation detailed in Section 4.1.3.

4.1.3 Ejectile Parameters at the Secondary Target

Data on the position and the trajectory angle of the ejectile at the S800 spectrograph

focal plane can be converted into information on the ejectile’s properties as it leaves the

secondary target. Since the goal of this data analysis is to study the excitation energy

spectrum of the recoil particle, this conversion is a necessary step towards reconstructing

reaction cross sections. This parameter conversion was accomplished via an inverse transfer

map matrix. The inverse transfer map matrix transformed the positions (xfp, yfp) and angles

(afp, bfp) at the focal plane into the position in the non-dispersive plane (yta), angles in the

dispersive and non-dispersive planes (ata, bta), and fractional energy (dta) at the reaction

target position [65].

The inverse transfer map matrix was generated using a COSY INFINITY [68, 69] calcu-

lation. Inputs for this calculation include magnetic field maps of the S800 spectrograph as

well as experiment-specific magnetic rigidity settings and current settings. These experiment-

specific settings were determined by the magnetic rigidity (Bρ) of the ejectile nucleus to be

measured, which dictated the current that was needed in the S800 spectrograph dipole and

quadrupole magnets. The values used for this experiment are listed in Table 4.5. Currently,

the COSY INFINITY program used to determine the inverse transfer map matrix for the

S800 spectrograph is accessible online at http://maps.nscl.msu.edu/~s800maps/ and uses

a fifth order calculation to generate the map matrix. The exact formula for the transform

can be found in Reference [65] and additional details on this calculation are available in

Reference [40].

The distance between the target and pivot point (d1) was nonzero mainly due to imper-
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Parameter Value Description
I256QA -38.499 Amps current in a quadrupole magnet
I258QB 35.342 Amps current in a quadrupole magnet
I265DS 157.501 Amps current in a dipole magnet
I269DS 157.519 Amps current in a dipole magnet
Bρ 2.32930 Tm magnetic rigidity of the S800 spectrograph
A 3 ejectile mass number
Z 2 ejectile proton number
d1 -0.08 m distance between target and pivot point
d2 0.0 focal plane shift

Table 4.5: These settings for the S800 spectrograph were taken from a run midway through
the experiment. This information was used in the COSY INFINITY calculation of the inverse
transfer map matrix.

fections in the COSY INFINITY calculation of the inverse transfer map matrix, though some

of the shift was likely due to minor uncertainty in the placement of the secondary target. It

was possible to experimentally determine this pivot point shift through examination of the

data. An unaccounted-for shift from the pivot point results in a noticeable rotation between

the angle in the non-dispersive plane (btac) and the position in the non-dispersive plane

(ytac). When the shift is corrected for, this rotation vanishes. The 56Fe target had a thick

frame that illustrated this effect clearly (see Figure 4.4). A thick metal frame held the 56Fe

target on both edges in the non-dispersive plane, and was thus expected to occupy a small,

fixed span of ytac on both sides of the target. Since the frame was much thicker than the

target, many background reactions occurred when the frame was hit by the beam, so events

in the frame were clearly distinguishable from 56Fe target events in the spectra as shown

in Figure 4.4. When the pivot point shift was not corrected for in the COSY INFINITY

calculation (d1 = 0 cm), the two frame edges appeared diagonally in a btac vs. ytac plot.

When the shift from the focal plane was correctly accounted for (d1 = −8 cm), the frame po-

sition in the non-dispersive plane (ytac) was independent of the angle in the non-dispersive

plane (btac). The value of d1 found for the present experiment was similar to the pivot
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Figure 4.4: These figures demonstrate how the pivot point shift (d1) was corrected. The
thick frame around the edges of the 56Fe target created many background events (circled)
that were used to determine the pivot point shift. Figure A (left) shows the rotation between
ytac and btac that occurs when the pivot point shift was not accounted for. Figure B (right)
shows that, when this shift was corrected, the frame position in the non-dispersive plane was
independent of the angle in the non-dispersive plane.

point shift seen in a prior S800 spectrograph experiment and to prior simulation results by

G. W. Hitt [47].

The parameter for fractional energy (dta) is closely related to kinetic energy (Te). Frac-

tional energy (dta) is a measure of the ejectile’s energy relative to the energy of an ejectile

traveling along the central trajectory (E0) through the S800 spectrograph with the selected

magnetic rigidity. The central kinetic energy of a 3He ejectile with Bρ = 2.32930 Tm was

calculated to be E0 = 327.995 MeV. The formula used to determine the ejectile’s kinetic

energy (Te) from the fractional energy parameter (dta) is:

Te = (1 + dta)E0. (4.1.6)
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A laboratory reference frame scattering angle was needed to construct differential cross

sections. This scattering angle (θlab) was determined from the angle in the dispersive plane

(ata) and the angle in the non-dispersive plane (bta) at the target location through:

θlab = arctan

(√
tan2 (ata) + tan2 (bta)

)
. (4.1.7)

The laboratory scattering angles (θlab) were converted to the center-of-mass reference

frame (θcom). At forward scattering angles, this transformation can be approximated with

a linear scaling factor (S) with negligible error, as in Equation 4.1.8. The values used for

the scaling factor were S = 1.281 for the 12C target nuclei and S = 1.176 for the 19F target

nuclei with the kinematics of this experiment.

θcom = Sθlab. (4.1.8)

4.1.4 Missing Mass Calculation

Once the motion of the ejectile at the secondary target position was well-defined by ata,

bta, yta, and dta, a kinematic missing-mass calculation was used to recreate the excitation

energy (Ex) of the recoil nucleus. The 4-momentum of the incoming projectile and the out-

going ejectile system (the target nucleus is immobile) were defined as follows.
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Incoming projectile 4-momentum:

Tp =340 MeV, (4.1.9)

pp1c =0, (4.1.10)

pp2c =0, and (4.1.11)

pp3c = pp4c =
√

(Tp +Mpc2)2 − (Mpc2)2, (4.1.12)

where ppi was the projectile momentum i-component, Tp was the projectile kinetic energy,

Mp was the projectile mass, and c was the speed of light. In this experiment, the exact

projectile kinetic energy (Tp) was determined from calibration runs using a CH2 target. The

value of Tp was varied until the ground state excitation energy for the 12C(t,3He) reaction

corresponded to zero, which means that it was assumed that there was no systematic error

in the S800 spectrograph energy measurements. Additionally, setting pp1 and pp2 to zero

was an approximation; in practice, the incoming beam had distributions of momentum in

the transverse plane. This approximation decreased the experiment’s angular and energy

resolution.

Outgoing ejectile 4-momentum:

Te = (1 + dta)E0, (4.1.13)

pe1c = (pe4c) sin (ata), (4.1.14)

pe2c = (pe4c) sin (bta), (4.1.15)

pe3c = (pe4c) cos (θlab), and (4.1.16)

pe4c =
√

(Te +Mec2)2 − (Mec2)2, (4.1.17)
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where pei was the ejectile momentum i-component, Te was the ejectile kinetic energy, and

Me was the ejectile mass.

The missing energy (Emis) was found from:

Emis = (Te +Mec
2)− (Tp +Mpc

2 +Mtc
2), (4.1.18)

where Mt was the mass of the target nucleus. The missing momentum (pmis) was:

pmis =
√
p2
e1 + p2

e2 + (pe3 − pp3)2. (4.1.19)

This gave the missing mass (Mmis) and the recoil excitation energy (Ex) as:

Mmisc
2 =

√
E2
mis − (pmisc)2 and (4.1.20)

Ex = Mmisc
2 −Mrc

2, (4.1.21)

where Mr was the mass of the recoil in its ground state. All of the masses relevant for this

data analysis were taken from Reference [70] and are listed in the form of a mass excess1 in

Table 4.6.

4.1.5 Excitation Energy Corrections

The excitation energy of the recoil nucleus (Ex) is independent of the scattering angle

(θlab). In practice, small corrections to ata and bta are needed to achieve this. The kine-

1The mass of atom, M , is found with the formula M = A
(931.494 MeV/c2

1 amu

)
+ ME ,

where A is the atomic mass number and ME is the mass excess.

59



Mass Excess Mass Excess

Nucleus (MeV/c2) Nucleus (MeV/c2)

3H 14.9498060 12C 0.0
3He 14.9312148 12B 13.3689
1H 7.28897050 19F -1.48739

n 8.0713171 19O 3.3349

Table 4.6: This table lists the mass excesses that were relevant for this data analysis, as
taken from Reference [70].

atac = ata(0.987) + 0.00042
btac = bta(1.03)− (1.005)yta+ 0.00325

afpc = (0.95) arctan
(xg2c − xg1c

1073

)
yfpc = (0.95)

(tac1c
1000

)
Table 4.7: This table contains the kinematic corrections that were applied to the angle in
the dispersive plane (ata) and to the angle in the non-dispersive plane (bta) at the target
position. Similarly, a factor of 0.95 was applied earlier in the data analysis process to correct
the angle in the dispersive plane (afp) and position in the non-dispersive plane (yfp at the
S800 spectrograph focal plane).

matic line from p(t,3 He)n reactions in the CH2 calibration target were used to perform this

correction, because recoil energy is more strongly correlated to θlab in light nuclei than in

heavy nuclei. The first-order corrections that were required to ensure that the excitation

energy (Ex) was independent of the scattering angle (θlab) are listed in Table 4.7.

In addition, afp and yfp were scaled by a factor of 0.95 (see Table 4.7) to improve the

reconstruction of the excitation energy (Ex). These corrections were likely related to minor

inaccuracies in the calculation of the inverse transfer map matrix that was discussed in

Section 4.1.3.

Some minor run-by-run corrections were required to obtain the optimal energy resolution.

These small shifts ensured that the excitation energy was independent of scattering angle

across the entire duration of the experiment, and that the scale for the excitation energy of

the recoil was consistent. These run-by-run corrections compensated for gradual changes in
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Run exa shift ata shift yta shift Run exa shift ata shift yta shift
1012 -0.016 0.8 0.0100 1019 -0.02 -0.17 0.0114
1013 -0.018 1.7 0.0116 1064 0.017 0.12 0.0050
1014 -0.015 -0.07 0.0113 1067 -0.08 1.3 0.0057
1015 -0.01 -0.3 0.0108 1068 -0.08 3.6 0.0052
1016 -0.005 0.4 0.0107 1069 -0.06 0.04 0.0051
1017 0.011 1.8 0.0105 1099 -0.079 -0.7 0.0018
1018 0.014 -0.4 0.0107

Table 4.8: This table lists all run-specific corrections. These corrections compensated for
small changes that occurred during the experiment, such as small shifts in the beam align-
ment or changes in the gas of the CRDCs.

the CRDCs that caused variations in the calibration of the position in the non-dispersive

plane. Run-by-run corrections also compensated for minor changes over time in the triton

beam, such as shifts in the beam angular distribution. A run-by-run shift on yta was used to

center the distribution of the position in the non-dispersive plane on zero, which simplified

the acceptance corrections in Section 4.2.1.

The run-by-run corrections were linear and took the form of:

ytac = yta− yta shift and (4.1.22)

Exc = Ex − (atac)(ata shift)− exa shift, (4.1.23)

where the parameters yta shift, ata shift, and exa shift are the measured corrections for each

run.

With these corrections in place, initial excitation energy spectra for recoil nuclei were

obtained. Figure 4.5 shows examples of the excitation energy spectra for the CF2 target,

with kinematics set for the 19F(t,3He)19O∗ reaction (note that the excited states of 12B due

to 12C target nuclei were also visible in these spectra). Gamow-Teller transitions (∆L = 0)

are characterized by angular distributions that peak at forward angles. Thus, restricting
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Figure 4.5: These figures show excitation energy spectra for (t,3He) reactions on a CH2
target. Figure A shows the excitation energy spectrum over all scattering angles. Figure B
shows the corresponding spectrum for a scattering angle of 0–1 degrees in the center-of-
mass frame, which gives the first indication of what the Gamow-Teller strength distribution
will be. Three strong Gamow-Teller states are visible in this figure; the first two are from
reactions on 19F and the strongest state is from reactions with 12C to the ground state of
12B.

the center-of-mass frame scattering angle (θcom) to a range of 0–1 degrees gave an initial

indication of where Gamow-Teller strength was located (see Figure 4.5 B). Much of the

higher-lying strength seen in Figure 4.5 A is dominated by dipole transitions (which peak at

higher scattering angles), and thus vanishes in Figure 4.5 B where Gamow-Teller strength is

dominant.

4.2 Differential Cross Sections

Differential cross sections are the next information needed to extract a Gamow-Teller

strength distribution for the 19F(t,3He)19O∗ reaction. Since absolute beam intensities were

not measured in this experiment, relative differential cross sections were calculated in Section 4.2.1
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from the excitation energy spectra found in Section 4.1. Data on the 12C(t,3He)12B∗ reac-

tion from a prior experiment were then used to scale relative differential cross sections to

absolute differential cross sections in Section 4.2.2. In Section 4.2.3, the carbon background

was subtracted from the absolute differential cross sections for the CF2 target data, which

produced the absolute differential cross sections for only the 19F(t,3He)19O∗ reaction. This

final set of differential cross sections were then used in Section 4.3 to obtain a Gamow-Teller

strength distribution.

4.2.1 Relative Cross Sections

Relative differential cross sections were extracted from the measured excitation energy

spectra. First, corrections were made to account for the detector’s solid angle coverage and

acceptance limitations. Those corrections produced uncalibrated relative cross sections. The

uncalibrated relative cross sections were converted to absolute cross sections by establishing

a proportionality between the 19F(t,3He) reaction event rate and the 12C(t,3He) reaction

event rate while data was taken on the CF2 target.

To create differential cross sections, the excitation energy spectra were divided into an-

gular bins with a scattering angle width of θlab = 10 mrad in the laboratory reference frame.

Eight bins covered an angular range of 0–80 mrad. The solid angle for an angular bin ranging

from θ1 to θ2 (see Figure 4.6) was calculated with the following equation:

dΩ(θ1 ≤ θlab ≤ θ2) =

∫ 2π

0
dφ

∫ θ2

θ1

dθ sin (θ) = 2π cos (θ1)− 2π cos (θ2). (4.2.1)

An acceptance correction was necessary to compensate for incomplete coverage of events

with large scattering angles in the S800 spectrograph. The S800 spectrograph coverage is
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Figure 4.6: This figure illustrates the solid angle coverage as a function of scattering angle
(θlab). The red surface area covers a range of 0 to 10 mrad, the orange surface area covers
a range of 10 to 20 mrad, and the yellow surface area covers a range of 20 to 30 mrad.
The solid angle is proportional to these areas and to the number of events (in an isotropic
distribution).
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Boundaries for ata Boundaries for bta
atac < (2.73244)dta+ 0.1453 btac > (−33.4018)ytac − 0.33949
atac < (−0.2269)dta+ 0.0626 btac < (7.546039)ytac + 0.099082
atac > (400.6571)dta− 12.3447 btac < (−5.3610)ytac + 0.1124
atac > (−0.0115)dta− 0.0562 btac < (−182.2980)ytac + 1.5828
atac > (−0.9405)dta− 0.0817 btac > (6.1234)ytac − 0.0772
atac < (21.8486)dta+ 1.1976 btac > (−0.6744)ytac − 0.0702

Table 4.9: This table lists the boundary equations used to constrain the angles ata and bta
in the Monte-Carlo acceptance correction simulation.

complete for ejectiles at scattering angles of θlab < 3.5◦ for the excitation energies studied in

this experiment. However, for scattering angles θlab ≥ 3.5◦, some ejectiles were obstructed by

dipole magnets or fell outside of the range of the focal plane detectors. Instead of disregarding

angles with azimuthal coverage less than 2π, a Monte-Carlo simulation was performed to

model and correct for the partial loss of events. This procedure allowed for the extraction

of differential cross sections up to θlab = 5◦ [48].

The Monte-Carlo simulation produced an isotropic distribution of events over the angles,

positions, and energy ranges relevant to this data analysis. It compared the ideal distri-

bution of events to a distribution of events with certain constraints on the angles in the

dispersive and non-dispersive planes to determine the probability, Pacceptance, of a valid

event successfully reaching the S800 spectrograph focal plane as a function of dta, yta, and

θlab. The angular constraints used for this simulation were established experimentally. These

constraints are represented by the white boundary lines in Figure 4.7 and the equations for

the constraints are available in Table 4.9. In the dispersive direction (ata), the angular

acceptance depends on the momentum of the particles (dta) as seen in Figure 4.7 A. In

the non-dispersive direction (bta), the angular acceptance depends on the non-dispersive

position of the particles (yta) as seen in Figure 4.7 B.

Once the solid angle (dΩ) and the acceptance correction (Pacceptance) were established,
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Figure 4.7: These spectra show the boundaries used in the Monte-Carlo simulation that
determined the acceptance correction. These figures use data from the CF2 target.

the unscaled relative differential cross sections were determined from the excitation energy

spectra. Each count (N) in a given excitation energy spectrum was divided by the solid

angle and acceptance correction:

dσ

dΩ
(arbitrary units) =

N(θlab, dtac, ytac)

dΩ(θlab) · Pacceptance(θlab, dtac, ytac)
. (4.2.2)

These differential cross sections, when compared to measured excitation energy spectra,

showed a significant enhancement at small scattering angles from the solid angle and a

moderate enhancement at large angles from the acceptance correction. See Figure 4.8 for

an example of the transformation from excitation energy spectra to differential cross section

for one particular transition.
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Figure 4.8: These spectra illustrate the transformation from excitation energy spectra to
differential cross section for one specific excited state of 19O. The top figure shows the
measured excitation energy spectrum for the 0.096 MeV excited state of 19O. The bottom
figure shows the relative cross section for the same excited state after the solid angle and the
acceptance correction were applied. The solid angle enhances the contribution of the first
several angular bins, while the acceptance correction has the strongest effect on the three
data points with θcom > 3.5◦.
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4.2.2 Absolute Cross Sections

So far, the differential cross sections are in arbitrary units. They can be normalized

to an absolute scale by taking advantage of the carbon in both the CF2 and CH2 targets

and information from a prior experiment. In experiment 06032, performed at the NSCL

by C. J. Guess et al. [48, 71], an absolute cross section was measured for the reaction

12C(t,3He)12Bg.s.. This reaction was also observed in the current experiment with both the

CH2 and the CF2 targets. The data from the 12B ground state in the current experiment

was scaled to the data from experiment 06032 to find absolute differential cross sections.

While it would have been ideal to compare the 12B ground state data from experiment

06032 directly to the 12B ground state data from the CF2 target in the current experiment

this was not possible due to background events from reactions on 19F nuclei. Instead, the

12B ground state data from experiment 06032 was scaled to the CH2 data taken in the

current experiment with the scaling factor of εabs. After that, an additional factor of εprop

was used to scale the data taken on the CH2 target to the data taken on the CF2 target.

The 12B ground state in the CH2 target data was well-separated from other 12B states and

from events due to the hydrogen content of the target, so there were no notable background

events to contend with. Figure 4.9 shows a comparison of the absolute differential cross

section for 12B ground state data from experiment 06032 with the distribution that was

extracted during this experiment. A scaling factor of εabs = 0.048 ± 0.001 mb was found

from a linear fit between the two differential cross sections. This factor of εabs provided

an absolute differential cross section for the data taken on the CH2 target in the current

experiment.

A relationship between the CH2 and CF2 data sets (εprop) was established by taking

68



0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

0 1 2 3 4 5 6 7
θ

c.m.
 (deg)

d
σ

/d
Ω

 (
m

b
/s

r) 12
C(t,

3
He)

12
B(g.s.)

∆L=0

∆L=2

∆L=0+2

NSCL 06032

CH
2
 target, carbon
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εabs was applied. The angular distribution for this experiment was in excellent agreement
with the results from experiment 06032. The ratio between the two results was used to
establish an absolute cross section for the data collected in the current experiment, because
the absolute cross section was carefully normalized in experiment 06032.

.
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into account the differences in integrated beam intensities, data acquisition live times, and

target thicknesses. A direct measurement of the triton beam rate at the target position

was not available for this experiment, so three different indirect measurements of the beam

rate were used instead. Two of these beam rate measurements came from the primary beam

current probes that were described in Section 3.1, the Z001I-C probe and the Z026R-C probe.

These primary beam current measurements were expected to be directly proportional to the

secondary triton beam intensity. The third indirect measurement of the triton beam intensity

was made at the S800 spectrograph focal plane. As mentioned earlier, there are a significant

number of events seen in the S800 spectrograph particle identification spectra that are not

due to reactions in the experimental targets (see Figure 4.1). These background events

appeared to be unreacted triton particles that were scattered into the focal plane detectors,

and thus also proportional to the triton beam intensity. The background events were used

in aggregate to produce a beam rate ratio between the two different data sets for the CH2

and CF2 targets.

The beam rate ratios (ε1 =
CH2

CF2
) found were 0.35, 0.33, and 0.36 for the Z001I-C

probe, the Z026R-C probe, and the unreacted beam in the S800 spectrograph focal plane,

respectively. The beam was fairly stable over the entire experiment, with a run time of

3 hours for the CH2 target and 9.5 hours for the CF2 target. The average of these three

measurements was taken as the final value of the beam rate ratio, and a conservative error

of two standard deviations was used to reflect that these are indirect measurements, for a

final value of ε1 = 0.35± 0.03.

The data sets taken with the two different reaction targets had notable differences in

overall detector count rates due to composition, which led to differences in data acquisition

live times. The CH2 target, which had a higher measured count rate due to the large reaction
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cross section of triton on hydrogen, had an electronics dead time of 8.7%; the CF2 target

had a dead time of 3.7%. This gave a ratio of ε2 = 0.9634 between the CH2 data set and the

CF2 data set related to data acquisition live time differences. The error in this dead time

measurement was neglected because it was much smaller than other sources of experimental

error.

Differences in target thickness and composition also needed to be taken into account to

establish a proportionality between the CH2 data set and the CF2 data set. The CH2 target

had a thickness of 10.0 mg/cm2, while the CF2 target had a thickness of 11.2 mg/cm2.

Fluctuations in target thicknesses were negligible sources of error because the beam spot

covered a large area of the target foils. The target composition differences were taken into

account by calculating the proportion of the molar mass of each target due only to carbon,

which was

(
12.0108

14.0266

)
for the CH2 target and

(
12.0108

50.0076

)
for the CF2 target. Combined,

this gave a target thickness scaling ratio between the CH2 data set and the CF2 data set

of ε3 = 3.183. This scaling factor was only applicable to the differential cross section for

reactions on carbon in the targets. In order to scale the cross section due to reactions on

fluorine nuclei in the CF2 target, an additional factor of 1
2 was needed to account for there

being twice as many fluorine nuclei as carbon nuclei. Combining the three aforementioned

scaling factors gave εprop = ε1ε2ε3 = 1.06 ± 0.09 as an overall proportionality factor to

scale the carbon-target events in the CF2 data set from the CH2 data set. The error on this

proportionality factor was treated as a systematic error. It was not included in the statistical

error bars on differential cross section plots.
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Figure 4.10: This figure shows the scaled absolute cross section for 19O events from the CF2
target. Note that the 12B events are not subtracted, and are incorrectly scaled by a factor
of two in this graph due to the difference in the number of carbon nuclei to fluorine nuclei
in the target. This spectrum covers the full angular range of the experiment. Prominent
features of the spectrum are marked, including the 12B ground state and two low-lying 19O
states.
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4.2.3 Isolating the 19F Cross Section

After the proportionality factors εabs and εprop were established to scale the data set

from the CF2 target to an absolute cross section for either target nucleus, final differential

cross sections for the 19F(t,3He)19O∗ reaction were obtained through subtraction of events

due to the carbon nuclei in the CF2 target. This background subtraction was unnecessary

over a significant energy range due to the large difference in ground state Q-values for the

two reactions. The 19F(t,3He)19Og.s. reaction has a Q-value of −4.802 MeV, while the

12C(t,3He)12Bg.s. reaction has a Q-value of −13.350 MeV. This placed the ground state

of 12B at 8.5 MeV above the ground state of 19O on an energy excitation spectrum (see

Figure 4.10 for an illustration). Since the experimental resolution was 480 keV, carbon

background subtraction was not needed before Ex
[
19O

]
= 8 MeV. No notable hydrogen

contamination was visible in the CF2 data set, but any events related to hydrogen contam-

ination would have sat 4 MeV below the ground state of 19O and so were not a significant

concern (the p(t,3He)n reaction has a Q-value of −0.764 MeV).

For excitation energies of Ex
[
19O

]
< 8 MeV, the following formula was used to obtain

the absolute differential cross sections for 19O∗ events:

dσ

dΩ

[
19O∗

]
=

(
N [CF2]

dΩ · Pacceptance

)
εprop

(
1

2

)
εabs. (4.2.3)

For excitation energies of Ex
[
19O

]
≥ 8 MeV, where carbon background subtraction was

necessary, this formula was used instead:

dσ

dΩ

[
19O∗

]
=

[(
N [CF2]

dΩ · Pacceptance

)
εprop −

(
N [CH2]

dΩ ∗ Pacceptance

)](
1

2

)
εabs. (4.2.4)
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Differential cross sections as a function of scattering angle were created to calculate

Gamow-Teller transition strengths. Most of the states in 19O couldn’t be clearly separated

from each other, so separate angular distributions were generated for different excitation

energy bin ranges. For excitation energies of 3.5 MeV ≤ Ex
[
19O

]
≤ 16 MeV, data was

divided in 0.5 MeV wide bins, with the bin width roughly reflecting the experimental energy

resolution of 480 keV. The two low-lying states of 19O beneath Ex
[
19O

]
= 3.5 MeV were

well-separated from other spectrum features, so they were treated differently. For the 0.096

MeV (first excited) state, an energy bin ranging from -0.52 MeV to 0.68 MeV was used; for

the 1.471 MeV (second excited) state, a bin range of 0.86 MeV to 2.1 MeV was used. For

angular distributions of differential cross sections, binning of the scattering angle was done

in increments of 10 mrad in the laboratory frame from 0 mrad to 80 mrad; 10 mrad bins

were chosen to reflect the angular resolution achieved in this experiment. Figure 4.11 shows

an example of an angular distribution for a differential cross section after carbon background

subtraction.

4.3 Calculating Gamow-Teller Strengths

Gamow-Teller transition strengths are extracted from charge-exchange differential cross

sections at zero momentum transfer through a well-established proportionality coefficient

that is referred to as the unit cross section, shown in Equation 4.3.1 (see also Section 2.1).

In this proportionality equation, σ̂GT is the unit cross section, B[GT] is the Gamow-Teller

strength, and
dσ

dΩ
(q = 0) is the charge-exchange differential cross section at zero momentum

transfer (q = 0).

dσ

dΩ
(q = 0) = σ̂GT (B[GT]) . (4.3.1)
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Figure 4.11: This figure displays an angular distribution of the differential cross section for
the 0.096 MeV excited state of 19O. This is an example of what the differential cross sections
look like after all scalings and corrections were performed and after carbon subtraction was
completed.

The differential cross sections extracted in Section 4.2 occurred at a nonzero momentum

transfer. Three factors must be taken into account to extract a zero momentum transfer

cross section
( dσ
dΩ

(q = 0)
)

from the experimentally determined cross sections with finite

momentum transfer so that Equation 4.3.1 can be used to determine the Gamow-Teller

strength distribution of the 19F(t,3He)19O∗ reaction. First, the measured (t,3He) reactions

can occur at a variety of angular momentum transfers (∆L), but the Gamow-Teller states

only correspond to zero angular momentum transfer (∆L = 0). A multipole decomposition

analysis (MDA) was used to extract the portion of the differential cross section due to only

zero angular momentum transfer. Second, the extracted differential cross sections cover a

range of scattering angles, but the cross section at a scattering angle of zero (θcom = 0◦) is

required for the extraction of Gamow-Teller strengths, so this differential cross section value
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Figure 4.12: These figures show the absolute differential cross sections for the 19F(t,3He)
reaction over an excitation energy range in 19O of -0.5 MeV to 16 MeV. Each spectrum
covers a different scattering angle range, as listed in the figure. Strong Gamow-Teller states
are most visible in the first spectrum, which covers the most forward scattering angles of
0 mrad ≤ θlab ≤ 10 mrad. The figures continue onto the next page.
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Figure 4.13: These figures are continued from the prior page. They show the absolute
differential cross sections for the 19F(t,3He) reaction over an excitation energy range in 19O
of -0.5 MeV to 16 MeV. Each spectrum covers a different scattering angle range, as listed in
the figure. Strong Gamow-Teller states are most visible in the first spectrum, which covers
the most forward scattering angles of 0 mrad ≤ θlab ≤ 10 mrad.
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must be extrapolated. The differential cross section angular distributions were extrapolated

to θcom = 0◦. Third, the measured reactions took place at a nonzero Q-value (−4.802 MeV ≤

Q ≤ −20.802 MeV), so the extracted differential cross section angular distributions were

projected to Q = 0 to satisfy the zero momentum transfer condition. After these three

factors were taken into account to obtain dσ
dΩ(Q = 0, 0◦), as described in Section 4.3.1, the

final Gamow-Teller strength distribution was calculated in Section 4.3.3.

4.3.1 Multipole Decomposition Analysis

A multipole decomposition analysis (MDA) [40, 48, 71] was used to extract the ∆L = 0

component of the measured differential cross sections. As discussed in Section 2.2, theoretical

angular distributions with orbital angular momentum of 0 ≤ L ≤ 3 were calculated for

transitions in the 19F(t,3He)19O∗ reaction at selected Q-values. The MDA was performed

by fitting a linear combination of the theoretical angular distributions that were generated

with a distorted wave Born approximation calculation (see Section 2.2) to the differential

cross sections obtained in Section 4.2.2 (see Figure 4.11).

Initial testing of the MDA fit procedure used fits with four variable parameters, one for

each possible value of ∆L:

( dσ
dΩ

)
exp

= A
( dσ
dΩ

)
∆L=0

+B
( dσ
dΩ

)
∆L=1

+ C
( dσ
dΩ

)
∆L=2

+D
( dσ
dΩ

)
∆L=3

, (4.3.2)

where
( dσ
dΩ

)
exp

are the experimentally determined differential cross section data points; the

letters A, B, C, and D are variable parameters in the fit, and
( dσ
dΩ

)
∆L=i

is one of the

possible theoretical angular distributions with an angular momentum of ∆L = i, for i within

the range 0–3. Since there are only eight data points available, the fit was restricted to a

78



maximum of one component per ∆L to preserve some degrees of freedom (ν). The MDA

fit procedure was limited to components with ∆L ≤ 3 because excitations associated with

∆L > 3 are not expected to be highly populated for low momentum transfers and because

their angular distributions peak outside of the angular range of this experiment. However,

it was found that in these four-parameter fits, the best fit always had at least one parameter

scaled to zero, so the process was expanded to consider several alternative combinations

of angular momentum with only two or three varying parameters. Using several different

models for the MDA fitting procedure gave insight into the systematic error due to choice

of the model.

The best fit (chosen by the χ2/ν fit parameter) from this MDA process was used as the

final set of angular distributions for each differential cross section energy bin. To estimate the

systematic error in the MDA procedure, the most extreme fits that still had a probability of

being a valid ≥ 5% were used. Here, “extreme fits” refers to the fits that gave the highest and

lowest possible values of the ∆L = 0 angular distribution at θcom = 0◦, which corresponded

to the maximum and minimum possible values of Gamow-Teller strength. These maximum

and minimum possible Gamow-Teller strengths were then used as the upper and lower limits

of the systematic uncertainty.

Note that this MDA procedure was applied to differential cross sections for excitation

energy bins of width 0.5 MeV, ranging from 3.5 MeV to 16 MeV in the excitation energy

of 19O. The systematic errors from the choice of the MDA fit model for these excitation

energy bins were found to be very large. The possibility of there being no Gamow-Teller

strength could not be excluded over this excitation energy range. Despite this, the results

of the MDA procedure for these excitation energy bins can be used to provide upper limits

on the Gamow-Teller strength distribution.
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The two low-lying excited states of 19O at 0.096 MeV and 1.471 MeV are well-separated

in the spectra from other transitions, and no transitions with odd values of orbital angular

momentum are expected for Ex < 3 MeV. The systematic error due to choice of the fit

model in these two particular MDA procedures was very small. However, an additional

source of systematic error affects the first and second excited states of 19O. Interference

between the transition amplitudes due to the στ and Tτ (tensor-τ) components of the

effective interaction creates a systematic error that cannot be accounted for with only the

MDA procedure. This systematic error was estimated with a comparison of theoretical

calculations with and without the Tτ interaction by following the procedure described in

Reference [42]. The systematic error from the tensor-τ term was found to be 3.4% (0.002)

for the first excited state of 19O at 0.096 MeV and 2.0% (0.001) for the second excited state

of 19O at 1.471 MeV. Since the systematic error from the MDA is so large for the other

extracted Gamow-Teller states, error from the tensor term was ignored as negligible in the

reported values for error in Table 4.11 for Gamow-Teller strengths with Ex ≥ 3.5 MeV.

4.3.2 Extrapolating the Cross Section to Q = 0

Once a best fit for the theoretical angular distributions was determined, the differential

cross section of the ∆L = 0 component at θcom = 0◦ was extracted:
dσ

dΩ
(Qexp, 0

◦)experiment.

The equation used to further extrapolate to Q = 0 [39] is:

dσ

dΩ
(Q = 0, 0◦) =

[
dσ
dΩ(Q = 0, 0◦)
dσ
dΩ(Qexp, 0◦)

]
theory

·

[
dσ

dΩ
(Qexp, 0

◦)

]
experiment

. (4.3.3)

In this equation, the ratio between the theoretical angular distributions at Q = 0 and

Q = Qexp was used as the basis of the extrapolation. The values calculated for the ratio
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Ex(19O) (MeV) Ratio Ex(19O) (MeV) Ratio Ex(19O) (MeV) Ratio
0.096 1.043 ‡ 7.5–8.0 1.281 12.5–13.0 1.476
1.471 1.113 ‡ 8.0–8.5 1.300 13.0–13.5 1.496
3.5–4.0 1.124 8.5–9.0 1.320 13.5–14.0 1.515
4.0–4.5 1.144 9.0–9.5 1.340 14.0–14.5 1.535
4.5–5.0 1.164 9.5-10.0 1.359 14.5–15.0 1.554
5.0–5.5 1.183 10.0–10.5 1.378 15.0–15.5 1.574
5.5–6.0 1.203 10.5–11.0 1.398 15.5–16.0 1.593
6.0–6.5 1.222 11.0–11.5 1.417
6.5–7.0 1.242 11.5–12.0 1.437
7.0–7.5 1.261 12.0-12.5 1.456

Table 4.10: This table lists the ratios that were calculated to extrapolate the differential
cross section at a finite reaction Q-value to Q = 0 in order to fulfill the condition of zero
momentum transfer in Equation 4.3.1 and calculate Gamow-Teller transition strengths, as
discussed in the text. The ‡ indicates that, for the first two excited states of 19O, the precise
calculated ratio was used instead of a value interpolated from the fit.

of

[
dσ
dΩ(Q = 0, 0◦)
dσ
dΩ(Qexp, 0◦)

]
theory

for each Gamow-Teller transition were then used to construct a

linear fit so that values of this ratio could be obtained for an arbitrary energy bin. The

values used for this ratio in the calculation of the Gamow-Teller strength distribution are

listed in Table 4.10. For the first two excited states of 19O, the precise calculated ratio was

used instead of a value interpolated from the fit.

4.3.3 Gamow-Teller Strength Distribution

With an extracted value for
dσ

dΩ
(Q = 0, 0◦), the only variable needed in Equation 4.3.1 to

find the Gamow-Teller strength is the unit cross section (σ̂GT). The unit cross section was

calculated from a global fit of σ̂GT as a function of nuclear mass (A) that was performed in

Reference [38]:

σ̂GT =
109

A0.65
, (4.3.4)
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where A is the mass number of the target nuclei. This fit has an error of 5% [38]. This

equation gives σ̂GT = 16.1 ± 0.8 mb/sr for the 19F(t,3He) reaction. The error in the unit

cross section was treated as a systematic error.

Gamow-Teller strengths were then calculated with equation 4.3.1. The Gamow-Teller

strength distribution for the 19F(t,3He)19O∗ reaction at 115 MeV (and associated errors) are

listed in Table 4.11. The transition from the ground state of 19F to the first excited state of

19O at 0.096 MeV was found to have a Gamow-Teller strength of B[GT] = 0.068+0.011
−0.009. The

error in this figure is discussed in greater detail in Section 5.3 and this result for Gamow-Teller

strength is further discussed in Section 5.1 in the context of its application to fluorine nucle-

osynthesis. The transition from the ground state of 19F to the second excited state of 19O at

1.471 MeV was found to have a Gamow-Teller strength of B[GT] = 0.057+0.011
−0.010. The results

of the MDA fitting process for these two low-lying states are shown in Figures 4.14 A and B,

respectively. A Gamow-Teller strength distribution was extracted for higher lying strength

for 3.5 MeV ≤ Ex ≤ 16 MeV in 19O as well. However, the systematic error on these

Gamow-Teller strengths is large enough that B[GT] = 0 cannot be excluded. Addition-

ally, the statistical error for the Gamow-Teller strengths in the excitation energy bins with

8.0 MeV ≤ Ex ≤ 16 MeV in 19O are significantly larger than those with Ex < 8.0 MeV

because of the carbon background subtraction process discussed in Section 4.2.3.

The Gamow-Teller strength distribution was also compared to theoretical calculations of

Gamow-Teller strength. These theoretical Gamow-Teller strength distributions were calcu-

lated using the shell-model code OXBASH [50] in the sd model space with the USDB [72]

interaction and in the spsdpf model space with the WBP [54] interaction. The calculated

Gamow-Teller strengths from OXBASH are listed in Table 4.12. Figures 4.15 A and B

show comparisons between these two different theoretical Gamow-Teller strength distribu-
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Figure 4.14: These figures show the results of the multipole decomposition analysis for the
first two excited states of 19O. The blue circles are data points with statistical error bars.
Figure A shows the decomposition of the 0.096 MeV first excited state of 19 and Figure B
shows the decomposition of the 1.471 MeV second excited state. The red lines are ∆L = 0
components of the angular distribution, used for determining the Gamow-Teller strength
of each state. The green lines are ∆L = 2 components of the angular distribution from
quadrupole transitions. The blue lines are sums of the separate components.
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tions and the distribution extracted in this work. When comparing theoretical Gamow-

Teller strengths to experimental Gamow-Teller strengths, it is expected that the theoretical

Gamow-Teller strengths will need to be quenched by a factor of (0.77)2, as discussed in

References [42, 73, 74, 75]. This factor accounts for the degrees of freedom not considered

in the shell model calculations. When quenching is applied, the WBP interaction comes

closest to reproducing the experimentally determined Gamow-Teller strength of the first

excited state in 19O at 0.096 MeV; the quenched strength of the WBP interaction is 1.1

standard deviations from experiment, while the quenched strength of the USDB interaction

is 2.1 standard deviations from the Gamow-Teller strength found experimentally. Both in-

teractions do a poor job of reproducing the Gamow-Teller strength of the second excited

state in 19O at 1.471 MeV; their quenched strengths are 4.1 (for the WBP interaction) and

4.4 standard deviations (for the USDB interaction) from the Gamow-Teller strength found

experimentally.

84



Comparison to USDBHAL

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

Ex of 19O HMeVL

B
@G

T
D

Comparison to WBPHBL

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

Ex of 19O HMeVL

B
@G

T
D

Figure 4.15: These figures show comparisons between theoretical and experimentally ex-
tracted Gamow-Teller strength distributions. Figure A compares the Gamow-Teller strengths
extracted in this experiment (blue points) with the strength distribution produced with the
USDB [72] interaction (yellow bars) in the sd model space. Figure B compares the Gamow-
Teller strengths extracted in this experiment (blue points) with the strength distribution
produced with the WBP [54] interaction (green bars) in the spsdpf model space. Both
theoretical strength distributions were calculated with OXBASH [50]. In both cases, the
theoretical Gamow-Teller strengths are quenched by a factor of (0.77)2 as discussed in the
text.
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Ex
[
19O

]
B[GT] B[GT] B[GT]

(MeV) Error (+) Error (−)

0.096 0.068 0.011 0.009

1.471 0.057 0.011 0.010

3.5–4.0 0 0.018 0

4.0–4.5 0 0.013 0

4.5–5.0 0 0.038 0

5.0–5.5 0 0.052 0

5.5–6.0 0.022 0.036 0.028

6.0–6.5 0.011 0.032 0.017

6.5–7.0 0.049 0.030 0.058

7.0–7.5 0 0.027 0

7.5–8.0 0.037 0.032 0.045

8.0–8.5 0.111 0.091 0.132

8.5–9.0 0.146 0.076 0.172

9.0–9.5 0.046 0.054 0.059

9.5-10.0 0.068 0.036 0.080

10.0–10.5 0.085 0.047 0.096

10.5–11.0 0.041 0.043 0.053

11.0–11.5 0.011 0.055 0.025

11.5–12.0 0 0.070 0

12.0-12.5 0.096 0.079 0.111

12.5–13.0 0.037 0.111 0.058

13.0–13.5 0 0.151 0

13.5–14.0 0.099 0.092 0.118

14.0–14.5 0 0.156 0

14.5–15.0 0.007 0.034 0.026

15.0–15.5 0 0.169 0

15.5–16.0 0 0.149 0

Table 4.11: This table lists the calculated Gamow-Teller strengths for the 19F(t,3He)19O∗

reaction at 115 MeV. Associated errors are also listed.

86



WBP USDB

Jπ E (MeV) B[GT] E (MeV) B[GT]

3

2

+
0.29 0.0979 0.12 0.0835

1

2

+
1.47 0.0286 1.57 0.0234

3

2

+
3.75 0.0017 3.80 0.0018

3

2

+
5.53 0.0096 6.08 0.0155

1

2

+
7.13 0.1445 7.86 0.2036

3

2

+
8.22 0.0328 8.84 0.0282

3

2

+
9.48 0.0025 10.36 0.0036

3

2

+
10.49 0.0070 11.28 0.0003

1

2

+
10.72 0.0114 11.24 0.0058

3

2

+
12.71 0.0006 12.58 0.0000

1

2

+
15.34 0.0018 16.06 0.0045

1

2

+
16.02 0.0001 16.71 0.0001

Table 4.12: This table lists the predicted Gamow-Teller strengths for transitions in the
19F(t,3He)19O∗ reaction for two different interactions, USDB [72] and WBP [54], along with
the predicted energy level for each transition. These calculations were both performed with
the shell-model code OXBASH [50] in the sd model space. These values are all unquenched;
when used in calculations, a quenching factor of (0.77)2 should be applied as described in
the text.
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Chapter 5

Results

5.1 β-decay Rate Calculation

As discussed in Section 1.3, the Gamow-Teller strengths of the 19F(t,3He)19O∗ reaction

have an application in fluorine nucleosynthesis. In hot stellar environments, it is possible to

thermally populate low-lying excited states of 19O∗. These excited states are not accessible

to a traditional β-decay experiment because they de-excite by γ-ray emission in nanoseconds,

whereas the β-decays of interest take place on a time scale of several seconds. As discussed

in Reference [26] and in Section 1.3, the lowest-lying excited state of 19O at 0.096 MeV

potentially makes a significant impact on the total β-decay rate of stellar 19O. This particular

excited state at 0.096 MeV is allowed to β-decay to the ground state of 19F directly, whereas

the 19O ground state to 19F ground state is a second forbidden (∆π = 0, ∆L = 2) β-decay

by spin-parity considerations (see Figure 1.2 for the relevant level scheme).

In Section 4.3.3, the extracted Gamow-Teller strength of the transition from the ground

state of 19F to the 0.096 MeV first excited state of 19O was found to be B[GT] = 0.0676+0.011
−0.009.

This Gamow-Teller strength can be used to determine the weak interaction rate for the

transition from the 0.096 MeV state in 19O to the ground state of 19F. To account for the

fact that this measured Gamow-Teller strength is for the 19F→19O (A→ B) direction while

the weak decay proceeds in the opposite 19O →19F (B → A) direction, the Gamow-Teller
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strength must be scaled by a factor of:

F =
(2JA + 1)

(2JB + 1)
, (5.1.1)

where JA = 1
2 for the total angular momentum of the transition state in the fluorine nucleus,

JB = 3
2 for the total angular momentum of the transition state in the oxygen nucleus, for a

scaling factor of F = 0.5. It is possible to decay to other states in 19F from the 0.096 MeV

state in 19O, but those transitions were not accessible via the experiment performed in this

dissertation. There are five total energy levels in 19F with an allowed spin-parity for β-decay

reactions and within the permitted Q-value range of such a β-decay; these 19F energy levels

are listed in Table 5.1.

Theoretical shell-model calculations are used to determine the Gamow-Teller strengths for

decay transitions that go from the 0.096 MeV state in 19O to an excited state i in 19F (listed in

Table 5.1). These theoretical Gamow-Teller strengths allow for an estimate of the branching

ratios (Ii) for each allowed transition. The shell-model calculations to obtain theoretical

Gamow-Teller strengths were performed in the sd -model space with the USDB interaction

[72] with the code OXBASH [50]. It is difficult to assign an error to the theoretical Gamow-

Teller strengths. Fortunately, the main role of the theoretical Gamow-Teller strengths in this

calculation is only to determine a branching ratio for the possible β-decay transitions, and

that branching ratio is dominated (Iexp = 86%) by the measured transition. Several different

assumptions for the error on the theoretical Gamow-Teller strengths were tested ranging up

to 100% error, and it was found to have only a small influence on the error of the final

β-decay rate calculation. Ultimately, the theoretical Gamow-Teller strengths were assigned

an error of 36% because that corresponds to the variation found between the Gamow-Teller
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19F Energy Level Jπ Q-value B[GT] Quenched
(MeV) (MeV) USDB B[GT] USDB

0.000
1

2

+
4.918 0.04177 ‡ 0.0248 ‡

0.197
5

2

+
4.721 0.00064 0.0004

1.554
3

2

+
3.364 0.04538 0.0269

3.908
3

2

+
1.010 0.39516 0.2343

4.550
5

2

+
0.368 0.49186 0.2916

Table 5.1: This table lists the energy levels and associated spin-parity assignments of the
states in 19F that are relevant for weak reaction rate calculations for the β-decay of the

0.096 MeV excited state in 19O (Jπ = 3
2

+
). Q-values for β-decays from the 0.096 MeV state

in 19O are listed in the third column. Gamow-Teller theoretical strengths (quenched by a
factor of (0.77)2 [73, 74, 75, 42], discussed in Section 4.3.3) are listed as well. The 19F energy
levels and spin-parity assignments were taken from Reference [25]. The ‡ denotes that this
theoretical Gamow-Teller strength is not actually used in further calculations, because it is
replaced with the measured value B[GT] = 0.034+0.006

−0.004 (with F = 0.5 as discussed in the
text) for this transition from Section 4.3.3.
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strength measured in this experiment and its corresponding (quenched; see Section 4.3.3)

theoretical value from the USDB interaction. The USDB interaction was chosen for this

purpose because it is generally regarded as a better model for sd-shell isotopes, even though

in this case it performed worse than the WBP interaction (see Section 4.3.3). In practice,

the choice of interaction in this calculation had no significant effect on the outcome.

Gamow-Teller strengths can be related to ft-values via the equation:

ft =

(
K
g2
v

)
B[GT]

(
ga
gv

)2
, (5.1.2)

where
K

g2
v

= 6143 ± 2 s and ga
gv

= −1.2694 ± 0.0028 [39]. Once an ft-value is calculated

for specific transition to a final state i, it can be related to the partial half-life (ti) and the

partial decay rate λi via the equations [2, 76]:

ti = 10

[
log (ft)i−log (f)i

]
and (5.1.3)

λi =
ln (2)

ti
, (5.1.4)

where log (f)i is a calculated value based on the Q-value of the β-decay reaction, the type of

β-decay (a β+ reaction vs. a β− reaction, and whether the decay is allowed or forbidden),

and the proton number (Z) of the daughter nucleus. The log (f)i values used in these weak

reaction rate calculations were interpolated from tables in Reference [76], and any error in

them was considered to be negligible.

For the set λi of β-decay transitions from a single specific state a in 19O to the set i of
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allowed states in 19F, the branching ratio to each state i (Ii) is [76]:

Ii =
λi∑
i
λi
, (5.1.5)

and the overall half-life (T1/2,a) and weak decay rate (λa) for all decays from the state a are

found from [2]:

T1/2,a = Ii ∗ ti for any state i and (5.1.6)

λa =
λi
Ii

for any state i . (5.1.7)

From these equations, the final β− decay rate from the 0.096 MeV first excited state

in 19O was found to be λx = 0.038+0.011
−0.008 s−1 (which corresponds to T1/2 = 18+5

−4 s). See

Table 5.2 for the intermediate calculation values. The errors in this calculation were handled

through standard error propagation formula and are discussed in greater detail in Section 5.3,

especially Section 5.3.4. Errors in the log (f)i values were negligible.

The Boltzmann distribution gives the probability Pj for a nucleus in a stellar environment

with temperature T to be in an excited state j with spin Jj and excitation energy Ej as [2]:

Pj =
(2Jj + 1) e

(−Ej
kT

)

∑
j

(2Jj + 1) e

(−Ej
kT

) , (5.1.8)

where k is the Boltzmann constant, which has a value of k = 8.6173 × 10−2 MeV/T9 [2].

The temperature notation T9 is used frequently in astrophysics in place of GK; 1.0 T9 is

equivalent to 109 kelvin. The fluctuation in the population of the ground and 0.096 MeV

first excited state of 19O is pictured in Figure 5.1. As expected, at low temperatures around
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Ef
[
19F
]

Jπ B[GT] Error in log(ft) log(f) λ I

(MeV) B[GT] (s−1) (%)

0.000
1

2

+
0.034 ‡ +0.006

−0.004 5.05 3.73 0.033 86.0

0.197
5

2

+
0.0004 0.0001 7.00 3.65 0.00032 0.8

1.554
3

2

+
0.027 0.007 5.15 2.99 0.0048 12.5

3.908
3

2

+
0.23 0.06 4.21 0.77 0.00025 0.7

4.550
5

2

+
0.29 0.08 4.12 -0.87 7.2E-6 0.02

Table 5.2: This table shows intermediate calculation stages used to determine a β− decay
rate (λx) for the 0.096 MeV first excited state of 19O. The first column lists the energy level
of a possible final state for this β-decay in 19F. ‡: This particular Gamow-Teller strength
was extracted from the experiment performed for this dissertation. The other B[GT] values
in this column were determined from shell-model calculations as described in the text. The
log(f) values were interpolated from tables in Reference [76].

T9 = 0.1, no significant amount of 19O is in the first excited state. At T9 = 0.4, the excited

state starts to account for Px = 4% of the total 19O population. At T9 = 1.6, the excited

state accounts for a more noticeable Px = 25% of the total 19O population, and it levels off

near Px = 36% over the rest of the relevant stellar temperature range. For this calculation,

higher excited states of 19O are ignored. Their impact was examined separately, and they

have only a minor impact on the excited state populations; the second excited state at

1.471 MeV only makes up 3% of the 19O population at T9 = 10.0.

Looking at only the ground state (subscript g.s.) and first excited state (subscript x)

β-decay of 19O, the total decay rate λtot as a function of temperature (T ) is [2]:

λtot =
∑
j

Pjλj = Pg.s.(T )λg.s. + Px(T )λx (5.1.9)
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Population of the 0.096 MeV excited state of 19O
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Figure 5.1: This figure shows the population of the ground state and first excited state of 19O
over a stellar temperature range. The red line indicates the percentage of 19O in the ground
state at temperature T . The blue line indicates the percentage of 19O in the first excited
state at 0.096 MeV for a given temperature. The first excited state is rapidly populated
around T9 = 1.6 and levels off near 36% for T9 > 2.
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The β-decay rate for the ground state of 19O is known from direct β-decay measurements

to be λg.s. = 0.02571 ± 0.00007 s−1, which equates to T1/2 = 26.96 ± 0.07 s [25] (see also

Table 5.3).

5.2 Conclusions

As Figure 5.2 illustrates, the increase in the total β-decay rate (λtot) over a range of

astrophysical temperatures is modest. At the top of the temperature range, this new rate

(λtot) increases 18% beyond the ground state reaction rate (λg.s). This small rate increase

is unlikely to have a significant influence on astrophysical simulations of fluorine production.

It is worthwhile to note that the 19O(β−)19F reaction is neglected entirely in many fluorine

nucleosynthesis simulations. Inclusion of this fluorine production mechanism has the poten-

tial to increase simulated fluorine yields, even though the rate enhancement examined in this

work was found to be relatively small.

Recall from Section 1.3 that a theoretical calculation of this same rate by Chernykh

et al. [26] yielded an increase of up to a factor of three. The large discrepancy between

the calculation in Reference [26] and those presented here results deserves scrutiny. The

measured Gamow-Teller strength of the 19O[0.096 MeV](β
−)19Fg.s. transition was found to

be B[GT] = 0.034+0.006
−0.004. In Figure 4.15 and Section 4.3.3, the experimentally determined

Gamow-Teller strength was compared to OXBASH [50] calculations in the USDB [72] and

WBP [54] interaction, which gave quenched (unquenched) values of 0.0248 (0.0418) and

0.0289 (0.0490) respectively in the 19O →19 F direction. This means that the experimen-

tally determined Gamow-Teller strength is 2.0 standard deviations from the Gamow-Teller

strength predicted with the USDB [72] interaction and 1.1 standard deviations from the
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Ei Ii log ft B[GT]
(MeV) (%) (estimated)
0.000 ≤ 4 ≥ 6.5 ≤ 0.0012
0.197 45.4 5.384 0.0157
1.554 54.4 4.625 0.0904

Table 5.3: This table shows experimental β-decay information for 19Og.s.(β
−)19F∗. The

decay to the ground state of 19F is forbidden; the branching ratios listed here were calculated
without considering forbidden states. These values were taken from Reference [25].

PtotΛtot
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Figure 5.2: This graph shows the temperature dependence of the β-decay rate for
19O(β−)19F. The green dotted line indicates the β-decay rate for 19O in the ground state,
which was known from prior experiments [25]. The solid black line shows λtot, the new rate
determined in this work for β-decays from either the ground or first excited state of 19O. The
black dashed lines indicate the error in this new decay rate. The red and blue lines indicate
the contribution to the new rate from the ground and first excited state, respectively. The
black line is the sum of the red and blue lines. As the blue line indicates, the first excited
state doesn’t contribute much to the new decay rate at low temperatures because the excited
state isn’t heavily populated. At higher temperatures, the excited state contributes nearly
as much as the ground state to the total β-decay rate.
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Gamow-Teller strength predicted with the WBP [54] interaction. Theoretical calculations

of B[GT] values in Chernykh et al.’s work used different interactions: CW, HBUMSD, and

HBUSD [75] with Gamow-Teller strengths of 0.0290, 0.0456, and 0.0333 respectively. These

Gamow-Teller strengths are also fairly close to the experimentally determined value. No

quenching factor was taken into account in Chernykh et al.’s work, which inflates the β-decay

rate (λtot) by 70%, but does not account for the overall discrepancies between the decay

rates. Another slight difference between the decay rate in this work and Reference [26] is

that this work uses the experimentally determined value of λg.s. while Chernykh et al. use

a theoretical calculation of λg.s., but the effect of this difference in approach is small.

Since the discrepancy between decay rates for this work and Chernykh et al.’s work does

not arise from a conflict between experimental measurement and theoretical predictions of

Gamow-Teller strength, it is difficult to determine exactly where it comes from. A close

examination of the calculations available in Reference [26] suggests that there was an error

in Chernykh et al.’s calculation of the Boltzmann distribution (Equation 5.1.8).

The new experimentally determined rate (λtot) presented in this work is available for

future studies of fluorine nucleosynthesis that involve the 19O(β−)19F reaction. Additionally,

the Gamow-Teller strength distribution presented in 4.3.3 provides boundaries to guide future

studies of 19Fg.s. to 19O∗ transitions and to constrain shell-model calculations.

5.3 Discussion of Error Sources

There are many potential sources of error in a complex experiment like this one. Brief

notes have been included throughout this dissertation to address sources of error as they

appear. However, it is helpful to have a comprehensive review of how all known error
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sources are handled. This section discusses all errors associated with the factors used in the

data analysis of Chapter 4 and in the calculation of the β-decay rate for the transition from

the 0.096 MeV first excited state in 19O to the ground state of 19F in Section 5.1.

5.3.1 Experimental Errors

There are many possible sources of experimental error. This section examines potential

errors in any part of the experiment or data analysis up to the conversion from experimental

count rates to differential cross sections (Chapter 3 and Section 4.1).

Ultimately, only the statistical error of the measurement was considered a significant

source of error in this portion of the data analysis. Other errors were disregarded as neg-

ligible because it was possible to verify the results of the data analysis for Section 4.1 by

looking at data taken on the CH2 calibration target. The cross section that was produced

for the 12C(t,3He)12B∗ reaction was compared to a prior measurement of this same reaction

in experiment 06032 (see Section 4.2.2) and the results were in good agreement. This indi-

cated that any uncertainties in Section 4.1 of the data analysis procedure must be relatively

minor. This validation process also indicated that there were no significant problems with

the experimental apparatus that was described in Chapter 3.

Resolutions were the only other significant factor in the experiment. The scattering angle

resolution of the S800 spectrograph was 10 mrad in the laboratory frame; this was dominated

by the large beam spot size and thickness of the target. The energy resolution of the S800

spectrograph was found to be 480 keV for this experiment by examining the width of the

peak for the 12Cg.s.(t,
3He)12Bg.s. transition. This energy resolution was lower than normal

for similar experiments due to problems with beam tuning.

98



5.3.2 Theoretical Cross Section Errors

Theoretical DWBA calculations of differential cross section angular distributions from the

WSAW/FOLD/DWHI code package were used in two different aspects of the data analysis.

They were used in the multipole decomposition analysis described in Section 4.3.1 to provide

line shapes for the MDA fit procedure. They were also used to perform an extrapolation

from the experimental cross section with a finite Q-value to a cross section with Q = 0 using

Equation 4.3.3 that was discussed in Section 4.3.2. This extrapolation was necessary to fulfill

the condition of zero linear momentum transfer (q = 0) required to calculate Gamow-Teller

strengths with Equation 4.3.1. The only difference between these two theory calculations

was the input Q-value, so the potential sources of error within the calculations themselves

were essentially identical. Thus, treatment of the error associated with these two different

calculated quantities varied only slightly.

When used in the MDA fit procedure, the magnitudes of angular distributions were

treated as fitted parameters. This means that errors of absolute magnitude in the DWBA

were not very relevant; variations in the line shapes of the angular distributions were much

more important. This insensitivity to absolute magnitudes means that errors in the DWBA

calculations were considered negligible in comparison to other sources of experimental error.

Error resulting from line-shape choices in the MDA procedure was much more critical, and

this is discussed in more detail in the next section (Section 5.3.3).

In the extrapolation to zero linear momentum transfer (q = 0) from Equation 4.3.3, the

two different calculated angular distribution values for Q = Qexp and Q = 0 at θ = 0◦

were divided by each other to form a ratio. Since only the ratio of the two values matters,

neither absolute magnitudes nor line shapes were relevant; as a result, this quantity was very
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insensitive to errors in the DWBA calculation. In the final error calculation, any error in

this quantity was considered to be negligible.

The WSAW/FOLD/DWHI code package itself has been vetted by comparing its calcu-

lation results to numerous data sets. Any errors from uncertainties in the code are expected

to be negligible compared to other sources of experimental error. Similarly, the error asso-

ciated with the various code inputs was treated as negligible, but these inputs are listed for

completeness.

WSAW inputs:

• Binding energies calculated in OXBASH

• A single-particle potential: Diffuseness, Coulomb radius, Woods-Saxon radius, and

Spin-orbit potential depth

• Quantum numbers: spin, total angular momentum, orbital angular momentum, and

charge

FOLD inputs:

• Kinetic energy of the beam particles

• Quantum numbers: total angular momentum, parity, isospin, isospin projection

• Effective nucleon-nucleon interaction (Love-Franey interaction)

• One-body transition densities from OXBASH calculations

DWHI inputs:

• Quantum numbers: total angular momentum, charge
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• Kinetic energy of the beam particles

• Optical potential parameters

• Coulomb radii

• Q-value

5.3.3 Gamow-Teller Strength Errors

Gamow-Teller strength was calculated with Equation 4.3.1 as discussed in Section 4.3.

This required fitting the theoretical angular distributions to experimentally determined dif-

ferential cross sections in a multipole decomposition analysis, as discussed in Section 4.3.1.

Four different factors contributed to the error of the Gamow-Teller strength measurements.

Statistical error arose from the number of events counted in the course of the experiment.

Systematic errors came from the multipole decomposition analysis (MDA) procedure that

was discussed in Section 4.3.1. More systematic errors (not related to the MDA) arose from

the conversion of experimental event counts into an absolute cross section. The tensor term

of the effective interaction also contributed a small systematic error.

5.3.3.1 Statistical Error

The statistical error was derived from the number of counts (N) measured during the

experiment. These counts were separated into bins by scattering angle (θ) and excitation

energy in 19O (Ex
[
19O

]
). The relative statistical error for each of these bins was found with

the formula

√
N

N
, where

√
N was the error of a bin with N counts in it. For the first excited

state at 0.096 MeV in 19O, this error was 7.9%. For the second excited state at 1.471 MeV
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in 19O, this error was 13.6%. The statistical errors of the measurements for Ex
[
19O

]
> 3.5

MeV varied greatly and were generally large.

In Gamow-Teller strength calculations with Ex
[
19O

]
> 8.0 MeV, the carbon background

subtraction procedure that was described in Section 4.2.3 increased the statistical error. This

was handled through error propagation formulas derived from Equation 4.2.4. The higher

statistical error from carbon background subtraction contributed significantly to the larger

final errors in computed Gamow-Teller strengths in this region.

This statistical error was incorporated into the calculation of Gamow-Teller strength

through the multipole decomposition analysis fit. The fit parameters had a calculated error,

which came from the statistical error for each point in the fit (shown with error bars in

Figure 4.11 and Figure 4.14).

5.3.3.2 Systematic Error in the Multipole Decomposition Analysis

In order to account for the error in the MDA procedure due to line shape choices that

was mentioned in Section 5.3.2, many different line shapes from sets of angular distributions

were tested. The best-fitting set of line shapes was used to calculate Gamow-Teller strengths.

However, to account for the error in this procedure, all sets of angular distributions with

at least a 5% chance of being accurate according to a chi-squared goodness of fit test were

considered valid. From this expanded set of valid fits, the two fits that provided the highest

and lowest Gamow-Teller strengths were used to establish the systematic error bounds due

to the MDA procedure.

For the two low-lying states at 0.096 MeV and 1.471 MeV in the excitation energy of 19O,

the error from the MDA process was negligible. At these energies, the level density is still

very low, so there are very few possible choices of line shapes for the multipole decomposition
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analysis; additionally, the line shape options that are present do not vary much from each

other. The state at 0.096 MeV is well-separated from all but the ground state of 19O.

Fortunately, this ground state contribution was expected to have only a ∆L = 2 component,

which did not strongly alter the ∆L = 0 component that determined the Gamow-Teller

strength. The state at 1.471 MeV is well-separated from all other states in 19O.

At higher energies, the systematic error from the multipole decomposition analysis be-

came much more important. This systematic error was large enough that no Gamow-Teller

strength could be conclusively detected for Ex[19O] > 3.5 MeV. Individual states could not

be isolated in the data set at these energies due to relatively low energy resolution and to

lack of statistics. Additionally, many of the known states in 19O with Ex[19O] > 3.5 MeV

do not have firm total angular momentum or parity assignments. Some known states do not

match up well with shell-model level predictions from OXBASH calculations. All of these

factors increased the uncertainty associated with the MDA fits due to line shape choices.

The errors from the MDA procedure are listed for each measured Gamow-Teller strength in

Table 5.4. The contribution of the MDA error to the final error of a Gamow-Teller strength

measurement varied considerably, but averaged 80% and ranged from 30% to 100% for mea-

surements with Ex[19O] > 3.5 MeV. It was the dominant error factor for all but one of these

measurements (the one exception had extremely high statistical error).

5.3.3.3 Systematic Error in the B[GT] Calculation

Several potential systematic errors (not related to the MDA) arose from the conversion

of experimental event counts into an absolute cross section. Three of these errors were

large enough to be included in the error analysis calculation. The rest were considered to

be negligible. These systematic errors come from the portion of the data analysis that is
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Ex (19O) B[GT] MDA MDA

(MeV) Error (+) Error (-)

0.096 0.068 N/A N/A

1.471 0.057 N/A N/A

3.5–4.0 0 0.018 0

4.0–4.5 0 0.013 0

4.5–5.0 0 0.038 0

5.0–5.5 0 0.052 0

5.5–6.0 0.022 0.029 0.022

6.0–6.5 0.011 0.026 0.011

6.5–7.0 0.049 0.020 0.049

7.0–7.5 0 0.027 0

7.5–8.0 0.037 0.024 0.037

8.0–8.5 0.111 0.070 0.111

8.5–9.0 0.146 0.051 0.146

9.0–9.5 0.046 0.042 0.011

9.5-10.0 0.068 0.025 0.068

10.0–10.5 0.085 0.036 0.085

10.5–11.0 0.041 0.031 0.041

11.0–11.5 0.011 0.042 0.011

11.5–12.0 0 0.070 0

12.0-12.5 0.096 0.065 0.096

12.5–13.0 0.037 0.090 0.037

13.0–13.5 0 0.151 0

13.5–14.0 0.099 0.072 0.099

14.0–14.5 0 0.156 0

14.5–15.0 0.007 0.009 0.002

15.0–15.5 0 0.169 0

15.5–16.0 0 0.149 0

Table 5.4: This table lists the calculated Gamow-Teller strengths for the 19F(t,3He)19O∗

reaction at 115 MeV along with the errors due only to the multipole decomposition analysis
(MDA). These errors from the MDA procedure dominated the total errors for Gamow-Teller
strengths above 3.5 MeV in 19O. On average, they accounted for 80% of the total error for
a measurement, ranging from a minimum of 30% to a maximum of 100%.
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described in Section 4.2.

The solid angle angle calculation (dΩ) in Equation 4.2.1 of Section 4.2.1 had no signifi-

cant error, as it was a straightforward geometrical calculation. There was an error associated

with the calculation of the acceptance correction (Pacceptance) via a Monte Carlo simulation.

However, the error in this Monte Carlo simulation can be reduced by simulating a large

number of events, so 1 billion events were simulated. This reduced the expected errors for

the simulation to a point where they were negligible compared to other sources of error.

Any uncertainties in the simulation code itself were determined to be negligible compared

to statistical uncertainties by examining the calibration data taken on a CH2 target to vali-

date the data analysis procedure, as was discussed in Section 5.3.1. The cross section that

was produced for the 12C(t,3He)12B∗ reaction using the Monte Carlo acceptance correc-

tion was compared to a prior measurement of this same reaction in experiment 06032 (see

Section 4.2.2) and the results were in good agreement. This indicated that any uncertainties

in the data analysis procedure up to the relative cross section calculation must be minor.

The conversion from a relative cross section to an absolute cross section involved four

scaling factors (εabs, ε1, ε2, and ε3) that were discussed in detail in Section 4.2.2. The

scaling factor of εabs = 0.048 mb was determined by a fit between the 12C(t,3He)12Bg.s.

reaction cross section that was measured in the current experiment and a prior measurement

during experiment 06032 (see Figure 4.9). The error in this factor (±0.001 mb, 2.2%) was

determined from the error in the fit. This error in εabs was treated as a systematic error.

The scaling factor for beam rate ratios (ε1 = 0.35) was determined by taking the average

of the beam rate measurements from three different detectors (see Section 4.2.2); the error

in this term (±0.03, 8.8%) was determined by taking twice the standard deviation of this

average. This very conservative error was chosen (instead of a single standard deviation)
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because these beam rate measurements were all indirect measurements and there was no

direct comparison to the actual beam rate available; it was treated as a systematic error.

The scaling factor for differences in data acquisition live time (ε2 = 0.9634) was consid-

ered to have negligible error; this decision was based past experience with the same data

acquisition system in similar experiments.

The scaling factor for target composition differences (ε3 = 3.183) was also considered to

have negligible error. The calculation of the scaling factor ε3 involves two different sources of

potential error: the molar mass of the chemical compounds in the targets and the thickness

of the targets. The masses of all the isotopes present in the target were known to a high

precision, so this part of the error was negligible. The target thickness was not trivial to

measure accurately, but could be considered negligible for this experiment because the beam

spot was large. The large beam spot sampled the target thickness across a large area, so any

variations in thickness over a small area were deemed irrelevant.

To calculate a Gamow-Teller strength using Equation 4.3.1, the experimental cross sec-

tions must first be projected to Q = 0 to fulfill the requirement of zero linear momen-

tum transfer (q = 0), as discussed in Section 4.3.2. This was accomplished with the ratio[
dσ
dΩ(Q = 0, 0◦)
dσ
dΩ(Qexp, 0◦)

]
theory

from Equation 4.3.3. As discussed previously in Section 5.3.2, this

ratio was computed from theoretical angular distributions that were calculated with the

WSAW/FOLD/DWHI code package. Thus, any errors in this ratio were considered negligi-

ble compared to experimental errors.

In the proportionality relationship described by Equation 4.3.1, there was a significant

error associated with obtaining the unit cross section (σ̂GT) from the phenomenological

global fit of Equation 4.3.4. The error associated with this unit cross section was 5%; the fit

and its error are discussed in Reference [38]. This error was treated as a systematic error.
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5.3.3.4 Systematic Error from the Tensor Interaction

As mentioned briefly at the end of Section 4.3.1, the tensor interaction causes systematic

errors in Gamow-Teller strength measurements. Interference between the transition ampli-

tudes due to the στ and Tτ (tensor-τ) components of the effective interaction creates a

systematic error that cannot be accounted for with an MDA procedure. The error due to

the tensor component of the interaction is stronger for weak Gamow-Teller states because

of this interference dynamic (see Reference [42] for details). This systematic error was esti-

mated by calculating theoretical angular distributions for a transition twice: once with the

full interaction (including the tensor interaction term), and once without the tensor inter-

action. The difference between these two results provided an estimate for the systematic

error. The procedure for examining error from the tensor interaction is outlined fully in

Reference [42], which discusses error from the tensor interaction in Gamow-Teller strength

measurements in greater detail. The error due to the tensor term was found to be +0.0026

for the first excited state at 0.096 MeV in 19O (an error of 4%) and +0.0011 for the second

excited state at 1.471 MeV in 19O (an error of 2%). In both cases, this error happened to

cause an underestimation of the Gamow-Teller strength, so it is applied only to the positive

error value; more generally, this error could be positive or negative.

Error from the tensor term in the effective interaction was ignored for the higher-lying

strength. Error from the MDA procedure dominated these measurements, as was discussed

earlier. Since it was not possible to definitively identify any Gamow-Teller strength above the

1.471 MeV state of 19O in this data analysis, any additional error from the tensor interaction

was negligible compared to the MDA error contributions. If Gamow-Teller strengths could

be definitively established in a future experiment, then it would be necessary to examine the
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tensor contributions to the errors.

5.3.3.5 Summary of Errors Related to Gamow-Teller Strengths

In summary, there were four types of error considered in the calculation of Gamow-Teller

strengths. These four error categories were: statistical error, systematic MDA error, sys-

tematic (non-MDA) errors, and tensor interaction systematic error. For the first two excited

states at 0.096 MeV and 1.471 MeV in 19O, statistical errors were the dominant source of

error, followed by systematic (non-MDA) errors and then by tensor interaction systematic

error, with systematic MDA error considered negligible. In the higher-lying Gamow-Teller

strength measurements with Ex[19O] > 3.5 MeV, the total error was dominated by sys-

tematic MDA error, followed by statistical error, followed by systematic (non-MDA) errors;

tensor interaction systematic errors were considered negligible.
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The transition from the ground state of 19F to the first excited state of 19O at 0.096 MeV

was found to have a Gamow-Teller strength of B[GT] = 0.068+0.011
−0.009, which corresponded to

relative errors of +16%
−11%

. The transition from the ground state of 19F to the second excited

state of 19O at 1.471 MeV was found to have a Gamow-Teller strength of B[GT] = 0.057+0.011
−0.010,

which corresponded to relative errors of +19%
−18%

.

5.3.4 β-decay Rate Errors

Calculation of the β-decay rate for the first excited state at 0.096 MeV in 19O was a

multi-step process with several possible sources of error. Ultimately, only one factor added

significant error to the decay rate, beyond the error in the computed Gamow-Teller strength

that was discussed in detail in Section 5.3.3. This important factor was the choice of theo-

retical Gamow-Teller strengths and an associated error for the determination of branching

ratios (Equation 5.1.5). Other possible but negligible sources of error are discussed in this

section for completeness.

Equation 5.1.2 converted Gamow-Teller strengths (B[GT]) into ft-values. Equations 5.1.3

and 5.1.4 converted the ft-values into partial decay rates (λi). Beyond the error of the exper-

imentally determined Gamow-Teller strength, possible sources of error included the factors

K

g2
v

and
ga
gv

in Equation 5.1.2; these had relative errors of 0.2% and 0.03% respectively, which

were both negligible compared to the error in B[GT]. The log (f) values determined from

Reference [76] had a relative error of 0.01%, which was also negligible.

Equation 5.1.5 determined branching ratios for the β-decay from the 0.096 MeV state

in 19O to five possible states in 19F. These branching ratio (Ii) calculations used the exper-

imentally determined Gamow-Teller strength to find the partial decay rate to the ground

state of 19F and theoretical Gamow-Teller strengths to find the partial decay rates to four
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excited states of 19F (see Table 5.2). Then the final β-decay rate (λx) for the first excited

state at 0.096 MeV in 19O was calculated with Equation 5.1.7. To perform this calculation of

the branching ratios, theoretical Gamow-Teller strengths and associated errors were chosen

for transitions from the 0.096 MeV excited state in 19O to four excited states in 19F. The

theoretical Gamow-Teller strengths were calculated with the USDB interaction [72] using

OXBASH [50]. The final calculation of λx was not sensitive to the choice of interaction;

Gamow-Teller strengths computed using the WBP interaction [54] gave the same result.

The USDB interaction was chosen over the WBP interaction because it is generally a better

choice for sd-shell nuclei, and thus likely to be of interest to a wider audience, even though

it did not outperform the WBP interaction for the transition measured in this experiment.

A relative error of 36% was assigned to the theoretical Gamow-Teller strengths to reflect

the error in the USDB’s prediction of the Gamow-Teller strength for the experimentally

measured transition from the 0.096 MeV excited state of 19O to the ground state of 19F.

This was a somewhat arbitrary assignment of error, but it turns out that the calculation of

λx was not very sensitive to this error assignment, though it is still significant. The reason

for this can be seen in the branching ratios listed in Table 5.2. The measured transition

accounted for the large majority (86%) of the branching ratio. Only one other transition

(from the 0.096 MeV excited state of 19O to the 1.554 MeV state of 19F) had a significant

branching ratio (12.5%), and thus a significant effect on the calculation of λx.

The population of the first excited state at 0.096 MeV in 19O in a stellar temperature

range was computed with Equation 5.1.8. Equation 5.1.9 determined the temperature de-

pendence of the total β-decay rate for a stellar population of 19O. The variables involved in

computing the Boltzmann distribution for Pj were the spins and energy levels of the ground

and first excited states, which were well-known, and the Boltzmann constant, which was also
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well-known; thus, the Boltzmann distribution computation was not a significant source of

error. The β-decay rate for the ground state of 19O (λg.s.) was a potential source of error in

Equation 5.1.9, but it had a negligible error of 0.3% [25].

The final value of the β-decay rate for the 0.096 MeV excited state of 19O was found

to be λx = 0.038+0.011
−0.008 s−1, which corresponded to a relative error of +29%

−21%
. This error

was dominated by the error in the Gamow-Teller strength measurement for the transition

from the 0.096 MeV first excited state of 19O to the ground state of 19F, but error from the

determination of the branching ratio with theoretical Gamow-Teller strengths also influenced

the final error significantly.
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Chapter 6

Summary

6.1 Summary

This dissertation described the measurement of the charge-exchange reaction 19F(t,3He)

at 115 MeV/nucleon. The experiment was performed at the Coupled Cyclotron Facility

at the National Superconducting Cyclotron Laboratory (NSCL). A beam of tritons from

the Coupled Cyclotron Facility was impinged on a target that contained fluorine (CF2).

The 3He ejectiles were momentum-analyzed in the S800 spectrograph. An overview of the

experimental apparatuses that were used in this measurement is available in Chapter 3 and

Figure 3.1. A more detailed explanation of the S800 spectrograph in particular was given in

Section 3.3.

This specific reaction was measured to test a hypothesis on fluorine nucleosynthesis in

core-collapse supernovae. As discussed in Chapter 1, there are several different theories re-

garding where and how the element fluorine is produced. There is currently no consensus

between these different theories of fluorine nucleosynthesis and available astrophysical obser-

vations. The β-decay of 19O∗ in core-collapse supernova has been previously suggested [26]

as a possible avenue for fluorine nucleosynthesis. In hot astrophysical environments (such

as supernovae), it is possible to thermally populate low-lying excited states of 19O, and the

β-decay of these excited states would enhance the overall β-decay rate into 19F.
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At the high temperatures of a core-collapse supernova, a significant portion of 19O will

achieve equilibrium in the very low-lying first excited state at 0.096 MeV, making it possible

to β-decay from this excited state in 19O∗ to 19F. As was discussed in Section 1.3, this

is interesting because β-decay between the ground state of 19O and the ground state of

19F is forbidden. However, β-decay from the low-lying excited state in 19O at 0.096 MeV

excited state in 19O to the ground state of 19F is allowed (see Figure 1.2). This creates an

opportunity for a significant increase in the β-decay rate for 19O in a supernova compared

to the β-decay rate that has been measured directly for the 19O ground state in laboratory

conditions. Chernykh et al. [26] performed a theoretical calculation to estimate the reaction

rate increase that occurs when the 0.096 MeV state in 19O is taken into account. Their

calculations suggested that the β-decay rate for 19O(β−)19F might increase by a factor of

three at high stellar temperatures.

To examine this theory, the 19F(t,3He)19O∗ reaction at 345 MeV was measured. The

differential cross section of this charge-exchange reaction can be used to extract the Gamow-

Teller strength distribution for (∆L = 0, ∆S = 1) transitions between 19F and 19O using

Equation 2.1.2, as discussed in Chapter 2. The procedure discussed in Section 2.1, when

applied to data from the 19F(t,3He)19O∗ reaction, allowed for the extraction of the Gamow-

Teller strength of the beta decay from the 0.096 MeV state in 19O to the ground state of

19F. This particular Gamow-Teller strength was then used to calculate the same β−-decay

rate for 19O(β−)19F (λtot) that was discussed in by Chernykh et al. in Reference [26].

The procedure for extracting differential cross sections from data taken with the S800

spectrograph was described in Sections 4.1 and 4.2. The differential cross sections were used

to compute Gamow-Teller strengths in Section 4.3. For the transition from the ground state

of 19F to the 0.096 MeV state of 19O, a Gamow-Teller strength of B[GT] = 0.068+0.011
−0.009 was
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found. This corresponds to B[GT] = 0.034+0.006
−0.004 for transitions in the 19O→19 F direction

(see also Figure 4.14 A). Gamow-Teller strengths for transitions from the ground state of

19F for excitation energies in 19O of 0 MeV to 16 MeV are listed in Table 4.11 and plotted

in Figure 4.15.

The Gamow-Teller strength for the transition from the first excited state of 19O at

0.096 MeV to the ground state of 19F was used to calculate a weak decay rate in Section 5.1

to compare with the theoretical calculation of Chernykh et al. in Reference [26]. For the

transition from the 0.096 MeV excited state alone, this β−-decay rate was found to be

λx = 0.038+0.011
−0.008 s−1 (which corresponds to T1/2 = 18+5

−4 s). A total β−-decay rate over

stellar temperatures (T ) for 19O in either the first excited or ground state was found with

Equation 5.1.9 and plotted in Figure 5.2.

As discussed in Section 5.2 and shown in Figure 5.2, the increase in the total β-decay rate

(λtot) over a range of astrophysical temperatures is modest. At the top of the temperature

range, this new rate (λtot) increases 18% above the ground state reaction rate (λg.s.). This

small rate increase is unlikely to have a significant influence on astrophysical simulations

of fluorine production, but a full fluorine nucleosynthesis simulation would be needed to

confirm that. This result contradicts the theoretical results put forth by Chernykh et al. in

Reference [26]; the discrepancy might stem from a calculation error in Reference [26] in the

Boltzmann distribution. A detailed discussion of the error analysis for all values calculated

in this dissertation was provided in Section 5.3.

The new experimentally determined rate (λtot) presented in this work is available for

future studies of fluorine nucleosynthesis that involve the 19O(β−)19F reaction. Additionally,

the Gamow-Teller strength distribution presented in Figure 4.15 provides boundaries to guide

future studies of 19Fg.s. to 19O∗ transitions and to constrain shell-model calculations.
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6.2 Outlook

6.2.1 Fluorine Nucleosynthesis

As stated earlier, this new measurement of the β-decay rate of the first excited state of

19O to the ground state of 19F is not expected to significantly influence fluorine production

in core-collapse supernovae. This cannot be definitively concluded until the new decay rate

is tested in astrophysical simulations, but it is clear that any increase from such decays will

be modest. However, as mentioned in Section 1.5, there has been little effort to simulate the

fluorine production from 19O(β−)19F at all in any astrophysical environment. This path of

fluorine production has not received much attention because, as Jorissen et al. observed in

Reference [8], production of 19O via neutron capture on 18O inevitably competes with the

much stronger rate of neutron capture on 19F. This leads to the assumption that neutron

capture processes are a net loss for fluorine abundance.

While it is quite possible, even probable, that neutron capture processes are strictly a

net loss for fluorine abundance, that hypothesis should be examined in detailed astrophysical

simulations. Fluorine abundance predictions from simulations would provide stronger guid-

ance as to whether the 19O(β−)19F process is a viable alternative for fluorine production.

Prior research into fluorine nucleosynthesis has shown that it is an unusual nucleosynthesis

process which depends closely on the stellar dynamics that govern the ejection of matter from

the star, so simple rate comparisons can be misleading. Simulated abundance predictions

would give clearer guidance as to whether this nucleosynthesis path merits further research.

Further progress in understanding fluorine nucleosynthesis will rely heavily upon astro-

physical observations and astrophysical simulations. Asymptotic giant branch (AGB) stars

are currently the best understood sources of fluorine production. It is not yet clear if Wolf-
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Rayet stars or core-collapse supernovae produce significant amounts of fluorine, so more

study is needed for both of these stellar environments. A study of galactic fluorine with a

chemical evolution model is needed to update the work of Renda et al. [20] with the progress

made in the field of fluorine nucleosynthesis in the past decade.

Another opportunity for improvement in fluorine nucleosynthesis measurements lies in

the study of our solar system’s fluorine abundance. Currently, the only solar measurement

of fluorine abundance available comes from a study of sunspot composition from a paper by

Hall et al. published in 1969 [14], and it has a fairly large uncertainty: A(F) = 4.56± 0.33

dex (see also Section 1.2). It should be possible to take advantage of improvements in the

understanding of solar physics from the past four decades to perform an improved version

of Hall et al.’s sunspot study of HF molecules. Improvements in technology might allow

for a modern study of solar fluorine abundances to be done with a UV-capable satellite

telescope that could view elemental fluorine. It might be possible to improve upon the solar

system fluorine abundance measured with carbonaceous chondrite meteorites [15], which has

a higher accuracy of 15% that still leaves room for improvement.

6.2.2 Nuclear Structure

The experiment described in this dissertation did not allow for a detailed study of the

nuclear structure of the 19Fg.s. to 19O∗ transitions, but it did suggest a potential future ex-

periment to that end. The state predicted by shell-model calculations to have the strongest

Gamow-Teller strength (B[GT] ≈ 0.1) in the 19F(t,3He)19O∗ reaction occurs at approxi-

mately 7.5 MeV in the excitation energy of 19O (see Table 4.12). In the present experiment,

that state happens to fall very close to the peak for the 12C(t,3He)12Bg.s. transition at

Ex
[
19O

]
= 8.5 MeV generated by the carbon nuclei in the CF2 target. If another experi-
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ment were performed with a different target choice, it would likely be possible to measure the

Gamow-Teller strength and excitation energy of this strong state. Current results hint that

a strong Gamow-Teller state might exist near Ex
[
19O

]
= 8.5 MeV (see Figure 4.15), but

the high error precludes a firm measurement of B[GT]. An experiment with higher statistics

might also allow for a quantitative measurement of the Gamow-Teller strength distribution

for states with Ex
[
19O

]
> 3.5 MeV. Possible target options for such an experiment include

fluorspar (CaF2), a mineral, or hydrofluoric acid (HF+(H2O)n), a weak acid, among other

fluorine compounds.
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