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ABSTRACT

HIGH-PRECISION MASS MEASUREMENT OF
38Ca AND DEVELOPMENT OF THE LEBIT

9.4-T PENNING TRAP SYSTEM

By

Ryan Ringle

The Low-Energy Beam and Ion Trap facility, LEBIT, has been designed to facili-

tate a variety of experiments at low energies with rare isotopes produced by fast-beam

fragmentation. Gas stopping of the fast-fragment beams and modern ion manipula-

tion techniques are used. The first experiments to be performed are high-precision

mass measurements made possible with a 9.4 T Penning trap mass spectrometer.

LEBIT has been commissioned and first experiments on stable and unstable nuclides

have been performed. Here I present the results of a mass measurement on the un-

stable 38Ca isotope, measured with a precision of better than δm/m=1×10−8. 38Ca

was the first successful radioactive nuclide measured with LEBIT. It is of particular

interest as it is a 0+ → 0+ emitter, which makes it a possible test candidate for the

Conserved Vector Current (CVC) hypothesis [1].

Also presented are design and commissioning details of the 9.4 T Penning trap

system and mass measurements of the stable krypton isotopes, 83,84Kr, leading to

improved mass values. In the interest of pushing the current limits of Penning trap

mass spectrometry two new methods will be introduced. The first is a new excitation

scheme of the ion motion using an octupolar radiofrequency field. The second, using

the Lorentz steerer, is a fast preparation of ions previous to their capture in the

Penning trap. Both methods have the potential to reduce the necessary measurement

time, thus making high-precision measurements of shorter-lived species possible.
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CHAPTER 1

Introduction

High-precision mass measurements of short-lived, radioactive nuclides have an impact

on various branches of nuclear physics, such as nuclear structure studies, the study

of astrophysical nucleosynthesis, and the test of fundamental interactions.

One of the most important recent developments in mass spectrometry is the use

of Penning traps. Penning traps, used for many years in mass spectrometry of stable

charged particles, have proven themselves invaluable for their accuracy, efficiency

and reliability [4]. For the study of short-lived, rare isotopes several Penning trap

mass spectrometers have been installed at low-to-medium energy radioactive-beam

facilities around the world. The Low Energy Beam and Ion Trap facility (LEBIT)

at the National Superconducting Cyclotron Lab (NSCL) is the first to implement

Penning trap mass spectrometry at a high-energy, rare-isotope facility using projectile

fragmentation. In terms of reach far from the valley of stability this production

mechanism provides advantages over lower-energy techniques.

1.1 Significance of nuclear mass measurements

One of the most fundamental properties of an atomic nucleus is its mass. Since it

is simply defined as the sum of its constituent nucleons minus the binding energy,

1



measuring the mass of a nucleus essentially tells us how tightly the nucleons are

bound, i.e., it serves as a probe of the total Hamiltonian of the nucleus.

Nuclear structure effects can be explored by the systematic measurement of nu-

clear masses. Shell effects distinguish themselves as a break in the smooth trend of

nuclear binding energy as a function of the number of protons or neutrons. Near

the valley of stability these closures happen at very specific magic numbers. Mass

measurements provided the first evidence that nuclei outside of the valley show an

evolution of shell structure, such as shell quenching and the emergence of new magic

numbers. The first observance of such an effect was in 1975 in mass measurements

on neutron rich sodium isotopes [5], giving the first indication of the erosion of the

magicity at N = 20. This region of the nuclear chart is still of interest today.

As one moves toward the driplines on the chart of nuclides, the nuclei become

more weakly bound, resulting in diffuse or halo nuclei [6]. Halo nuclei consist of

a tightly-bound core and one or two loosely-bound valence nucleons whose wave

functions extend out much further than those of the core. Measurements of neutron-

rich lithium isotopes [5] provided the first experimental evidence of the loosely bound

nature of these systems. To date, several light, neutron-rich nuclei have been found

to possess halo ground states, such as 11Li, 14Be, and 6He . Although these halo

nuclei are short lived, the first two having half lives of T1/2 < 10 ms, they are not

beyond of the reach of precision mass spectrometry [7] and future Penning trap mass

measurements of these rare isotopes are planned.

Another interesting nuclear structure phenomenon that is currently under inves-

tigation is neutron-proton pairing, also associated with the so-called Wigner energy

[8]. Even-even and odd-odd nuclei near the N = Z line of the chart of nuclides exhibit

a cusp in the trend of binding energies. This effect is associated with an additional

binding energy in nuclei in which protons and neutrons occupy the same nuclear shell.

Some of the most recent LEBIT mass measurements in the N ≈ Z ≈ 33 [9] region
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will contribute to these studies.

Isospin is a key concept in nuclear physics. With respect to the strong nuclear

force, nuclear systems with the same isospin should have the same wavefunctions

and energies. The Isobaric Multiplet Mass Equation (IMME), first introduced by

Wigner [10] in 1957, predicts the mass excesses of each isobaric multiplet as a unique

isospin-dependent function. High-precision mass measurements have been performed

on multiplet isotopes to test the validity of this equation, and the improved 37Ca

mass value obtained with LEBIT [11] contributes to such tests.

High-precision mass measurements also play an important role in nuclear astro-

physics. Stellar nucleosynthesis beyond the iron region, Z = 26, is carried out via

neutron [12, 13] and proton [14] capture processes. The r process takes place on

the very-neutron-rich side of the nuclear chart and synthesizes a heavier element by

the capture of a neutron followed by a β− decay. Proton capture occurs via the rp

process and occurs on the proton-rich side of the nuclear chart. Here single protons

are captured and followed by a subsequent β+ decay, synthesizing a heavier isotope.

Modeling these processes require neutron and proton separation energies, obtained

from mass differences, as input parameters. Ideally the masses are obtained experi-

mentally. In particular, in the case of the r process, which involves nuclides far from

the valley of stability which beyond the reach of present-day facilities, mass predic-

tions are important. Mass models are employed to make mass predictions when the

nuclides of interest are beyond experimental reach.

Several mass models and semi-empirical mass formulas have been introduced. A

general feature of these models is a tendency to agree with one another in the region

of known masses. However, their predictions begin to diverge once you enter terra

incognita [15]. In order to test the predictive power of these models, and to help

to improve their accuracy, more mass measurements are required in these areas of

interest.
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High-precision mass measurements also play an important role in weak interaction

studies, such as the mass measurement of 38Ca, presented in this work. Nuclear beta

decay provides us with a convenient laboratory for exploration fundamental inter-

actions and symmetries. One example is the test of the Conserved Vector Current

(CVC) hypothesis which asserts that the vector part of the weak interaction is inde-

pendent of the nuclear interaction. This means that the β-decay strength, or ft value,

should be constant in super-allowed 0+→ 0+ transitions. In order to measure the ft

values of these decays, three experimental quantities are required: the half life of the

species, the branching ratio, and the QEC of the 0+→0+ decay. Certain corrections

to the ft value are also required as the decay takes place within the nucleus, yielding a

modified ft, or Ft, value which, according to the CVC hypothesis, should be constant.

To date there are 12 well-known CVC test candidates from which a mean Ft value

[1] is calculated, verifying the CVC hypothesis to a level of 3×10−4. Using the mean

Ft value the vector coupling constant Gv can be calculated. Gv can be used to cal-

culate the up-down quark matrix element, Vud, of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. Together with the other two elements, Vus and Vub, the unitarity

of the CKM matrix (required by the Standard Model) can be tested. In the interest

of increasing the precision of Gv, more CVC candidates are desirable. 38Ca, whose

mass was measured to sufficient precision in this work, is such a potential candidate.

1.2 Mass measurement techniques for rare iso-

topes

Today there are two different techniques for mass measurements of radioactive species.

The indirect technique involves reaction and decay measurements, whereas the direct

technique usually involves a time-of-flight measurement, cyclotron frequency deter-

mination, or both. The indirect technique is called as such because it yields mass
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differences, although direct mass measurements are not absolute and must be cali-

brated with some reference mass. This naming scheme is a long-standing convention

and will be preserved here.

1.2.1 Production methods

There are several production methods for rare isotopes. They all possess specific

advantages and complement one another. The isotope separation online (ISOL) tech-

nique uses a high-energy primary beam of light ions to bombard a thick target of

heavier elements to produce rare isotopes via spallation, fission, and fragmentation.

The targets are maintained at high temperatures so that the reaction products can

be diffused out and into an ion source, where they are ionized. Afterwards they are

accelerated to an energy of a few tens of keV, a beam energy well suited for Pen-

ning trap mass spectrometry. Very intense beams with excellent beam properties for

certain elements are available, but chemical selectivity and decay losses in the target

ultimately limit the range of secondary beams available [16].

Rare isotopes can also be produced by fusion or fusion-evaporation by bombarding

a thin target with a low-to-medium energy primary beam, typically with energies of

a few MeV/u. The heaviest elements are produced by fusion reactions. SHIP [17]

at GSI utilizes a thin target of heavy metal, Pb or Bi, to produce heavy elements

by fusion of the target and projectile. A primary beam, delivered by the UNILAC

facility, is impinged on the target where fusion products exit from the other side

at a few 100 keV/u. The ATLAS facility at Argonne National Lab produces rare

isotope beams by fusion evaporation and in-flight separation. The ion guide isotope

separation online (IGISOL) method [18] at JYFL produces rare isotopes by using

a primary beam to bombard a thin target located within a gas cell. The reaction

products exit the target and are thermalized in the buffer gas and extracted with

electric fields. The advantage over the ISOL method is that it is not chemically
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selective and the extraction times are in the sub-ms range, minimizing decay losses.

A powerful method of rare isotope production is the fragmentation of fast, heavy-

ion beams after impinging on a light, thin target, which are then mass separated

in flight. This is the method employed at the NSCL. The benefits of this method

are many fold. The process produces fragments lighter than the projectile with no

dependence on chemistry. Also, as there are no delay times associated with diffusion

out of a target, shorter-lived nuclei are available from the fragmentation technique

than from the ISOL technique. This method is very sensitive and can be used for the

detection of rare isotopes with production rates on the order of a few per day. The

resulting fragmentation beam still possesses a majority of the energy of the original

primary beam. High-energy, high-emittance beams are poorly suited for low-energy

experiments, but good for Coulomb excitation and reaction studies.

1.2.2 Indirect mass measurements

Indirect mass measurements involve the determination of Q values of nuclear reac-

tions or radioactive decays. Various types of reactions have been used to determine

masses both near and far from stability. With respect to the latter, reaction Q-value

measurements allow for the masses of unbound nuclei to be determined.

The Q-value of nuclear decays provide mass differences between parent and daugh-

ter nuclei. In order to arrive at a final mass value from a decay the unstable species

must be linked to a known mass. For isotopes far from stability the final mass de-

termination may involve long chains of decays which can lead to the accumulation of

error in the final mass value.

1.2.3 Direct mass measurements

The first direct mass measurements of rare isotopes were performed with magnetic

spectrographs and spectrometers [19, 20]. In 1996 the last facility with a rare-isotope
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mass measurement program based on deflection-voltage measurements, Chalk River,

was closed. Today, all direct mass measurements are made by employing some com-

bination of time of flight, frequency determination, and magnetic rigidity. Several

spectrographs and spectrometers exist around the world for making mass measure-

ments of rare nuclides at various precisions. SPEG [21], at GANIL, uses time of flight

and magnetic rigidity measurements to achieve a mass resolution of ≈ 10−4. The

time of flight is on the order of 1 µs, and although the resolving power is relatively

low, SPEG’s high sensitivity have allowed it to perform measurements far from the

valley of stability. TOFI [22] at LANL was designed to measure the masses of light,

neutron-rich nuclei. The S800 spectrograph [23] at the NSCL also uses time of flight

and magnetic rigidity for making mass measurements in a similar manner, and regime,

as SPEG. First mass measurements with the S800 in the 66Fe region have recently

been performed [24].

For a given time resolution the overall mass resolution is limited by the total time

of flight of the ions. In an effort to improve the mass resolving power two approaches

have been made. The first is to use cyclotrons to prolong the time of flight. In

the case of the CSS2 [25] cyclotron, at GANIL, projectile fragments are injected

into the cyclotron and radiofrequency fields are applied to accelerate species with a

certain mass-over-charge value. The arrival time of the ion at a detector inside of

the cyclotron is measured as a function of the phase of the radiofrequency, allowing

a mass determination to be made. A similar approach [26] was used with SARA at

Grenoble. The second approach is to use a storage ring, such as the Experimental

Storage Ring (ESR) at GSI. By operating in isochronous mode [27] the revolution

times of ions are recorded as they travel around the ESR, using a thin-foil detection

technique for the time-of-flight detection. Ions of different mass create different time-

of-flight spectra which can be compared to reference mass spectra to determine a mass

value. Mass resolving powers on the order of 105 can be achieved and the method
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has been employed to measure the masses of many short-lived, neutron-rich nuclides

[27].

Even greater mass resolving powers can be obtained through frequency determi-

nation. Using the ESR it is possible to use cold electrons to cool the rare isotopes as

they travel around the ESR and employ the Schottky method to detect the revolution

frequency of the ions [28]. This method increases the resolving power to ≈ 106 and

requires a few thousand ions, yet the lengthy cooling times limit the half lives to T1/2

> 5 s.

The RF spectrometer MISTRAL, at ISOLDE, accepts the 60 keV ISOLDE beam,

imposing a two-turn helicoidal trajectory through a homogenous magnetic field. Using

MISTRAL one determines the cyclotron frequency, νc = qB/(2πm), of the nuclide

of interest by the application of a radiofrequency signal applied to electrodes located

at the one-half and three-half turn position within the magnetic field. If the phase

difference in the applied RF signals is correct then ions experience an equal but

opposite deflection when passing through the second electrode structure. An incorrect

phase difference will result in a net deflection and the ions will not pass through an

exit slit, which allows resolving powers of greater than 105 to be reached.

Today, Penning trap mass spectrometry is the most precise method available for

measuring stable and unstable nuclides. Relative mass precisions of δm/m < 10−10

[4] for stable species and δm/m < 10−8 [29] for unstable species have been observed.

Penning trap mass spectrometry of unstable nuclides with half lives down to 10 ms

are considered to be possible, and the shortest-lived isotope studied so far is 74Rb

[30] which has a half life of T1/2 = 65 ms.

Penning trap mass spectrometers have been installed at radioactive beam facili-

ties around the world. The first Penning trap mass spectrometer for rare isotopes,

ISOLTRAP [31], was installed at the ISOLDE facility at CERN. The low-energy,

low-emittance ISOL beams are ideal for precision experiments, such as Penning trap
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mass spectrometry. Following ISOLTRAP’s success, several Penning trap spectrom-

eters were installed at other facilities: JYFLTRAP [32] at Jyväskylä, CPT [33] at

Argonne National Lab, and SHIPTRAP [34] at GSI. Although CPT and SHIPTRAP

are installed at facilities which produce low-to-mid energy rare isotope beams, an

additional step is required to thermalize the beam before it can be used for Penning

trap mass spectrometry. Thermalization of the rare isotope beam is accomplished by

stopping the beam in a gas cell and extracting it at low energies.

1.2.4 LEBIT - the first Penning trap mass measurements on

rare isotopes produced by projectile fragmentation

LEBIT is the first facility designed to thermalize high-energy, rare-nuclide beams

produced by relativistic in-flight separation for precision experiments. Utilizing gas

stopping of the high-energy secondary beam, it has been shown that fragmentation

beams can be made amenable to precision low-energy experiments, such as Penning

trap mass spectrometry. This demonstration also opens the door to future ISOL-type

experiments, such as laser spectroscopy, in-trap decay studies, and experiments with

post acceleration of nuclei unavailable at lower-energy facilities. The first experiment

on a thermalized secondary beam was the Penning trap mass measurement of 38Ca,

discussed in this work, and of 37Ca [11]. In order to take full advantage of the short-

lived isotopes produced by produced by projectile fragmentation, new techniques must

be developed to reduce the measurement time necessary to achieve a given relative

mass uncertainty. In this work two such techniques are introduced. A new device,

called a Lorentz steerer, is used for a fast preparation of the ion motion necessary for

a cyclotron frequency determination. A new RF excitation scheme at twice the ion’s

cyclotron frequency, leading to an increase in resolving power, is studied in detail.
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1.3 Outline of the dissertation

Due to the scale of the LEBIT project, many people were involved in bringing LEBIT

from conception all the way to the first successful radioactive mass measurement of

38Ca. In this document I will first provide an overview of the NSCL and LEBIT

followed by more in depth discussion of the aspects that I was primarily responsible

for. These topics include the design, construction and commissioning of the 9.4 T

Penning trap system, stable Kr isotope measurements and the exploration of a new

excitation scheme. Finally, I will present the results of the 38Ca mass measurement,

introducing 38Ca as a test candidate of the CVC hypothesis.
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CHAPTER 2

LEBIT Overview

2.1 The Coupled Cyclotron Facility

[Academic use only] ...\facility\facility_2006.dgn  11/07/2006 11:12:55 AM

Figure 2.1. Layout of the Coupled Cyclotron Facility (CCF) at the NSCL.

The Coupled Cyclotron Facility (CCF) at the NSCL on the campus of Michigan

State University is the premier rare isotope beam facility in the US. Fig. 2.1 presents

an overview of the CCF. One of two Electron Cyclotron Resonance (ECR) ion sources

is used to produce a primary ion beam of highly charged stable isotopes which is in-

jected into the smaller K500 cyclotron. The K500 accelerates the beam to about 14
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MeV/u. The extracted beam is injected into the larger K1200 cyclotron, where their

remaining electrons are removed by a stripper foil. The K1200 then accelerates the

beam to energies on the order of 140 MeV/u. The fast primary beam is extracted

from the K1200 and focused on the production target, to produce rare isotopes by

fragmentation reactions. The secondary beam is then injected into the A1900 frag-

ment separator [35], where the beam is purified and a small range of fragments is

selected by a two-stage separation. This secondary beam of rare isotopes can be de-

livered to the different experimental vaults (N2-N6, S1-S3). LEBIT is located in the

N4 and N5 vaults. The gas stopping station is located in the shielded N4 vault as due

to the high-energy beam. The rest of the LEBIT facility is located in the N5 vault

as the beam has been thermalized, with an energy of only a few keV.

The layout of the LEBIT facility is shown in Fig. 2.2. There are four main compo-

nents that are connected via an electrostatic beam transport system [11]. Six beam

observation boxes (BOBs) are located along the beam line and are equipped with

various detector systems, such as Faraday cups, microchannel plate (MCP) detectors

and silicon detectors. The first component is a gas stopping station consisting of a

gas cell and mass filtering radiofrequency quadrupole (RFQ) ion guides [9]. Here the

fast secondary beam of rare isotopes delivered by the A1900 is stopped and and a

low energy beam is produced. After the wall in the N5 vault is another RFQ sys-

tem [11] for cooling and bunching the DC beam delivered by the gas cell/ion guide

system. There is also a plasma test beam ion source that provides stable beams for

offline testing, system optimization, and for providing reference ions for magnetic

field calibration. Finally, at the end of the LEBIT beam line is a 9.4 T Penning trap

mass spectrometer designed to make high-precision mass measurements on short-lived

radioactive species.
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Figure 2.2. Layout of the LEBIT facility at the NSCL. BOB denotes beam observation

boxes equipped with various detector systems. The two figures are (a) the schematic

layout and (b) design drawing of the LEBIT system.

2.2 The gas stopping and ion guides station

Fig. 2.3 schematically shows the gas cell and ion guide system together with pictures

of selected components. In order to stop the fast rare isotope beam from the A1900, it

passes through a system of adjustable glass degraders where it loses most of its energy

before passing through an aluminum wedge degrader which drastically reduces the

momentum spread of the fragment beam. It then passes through a thin beryllium

window into a 51 cm-long gas cell [36] filled with 1 bar of ultra-pure helium gas,

where the ions ultimately come to rest. Helium is used because it has the highest
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first ionization energy of any ion. As highly charged ions are delivered to the gas cell

by the A1900 the ions are stopped by collisions with the gas. By charge exchange

reactions with the helium gas they lower their charge state until they are, at least, in

the Q = +1 state. Inside of the gas cell a system of ring electrodes (Fig. 2.3(b)) is used

to create a DC gradient which pulls the ions through the gas towards an extraction

nozzle. A series of electrodes (2.3(c)) near the nozzle focus them into a region where

gas flow provides the dominant force and sweeps the ions through the nozzle, out of

the gas cell, and into an RFQ ion guide system. This ion guide system is contained in

three vacuum chambers and divided into sections by a small RFQ (µRFQ) (2.3(d)),

which facilitates differential pumping and better beam transmission between the first

and second chambers, and a diaphragm. The pressure in the first ion guide can reach

as high as 0.2 mbar, while the pressure in the final chamber is on the order of 10−6

mbar. The mass-selective ion guides span the last two chambers. They allow filtering

by mass-to-charge ratio, A/Q, and have been designed to achieve a resolving power of

≈ 50 with no loss in efficiency. A biased needle electrode can be inserted into the beam

for collection and retracted to measure the collected activity on a nearby β detector.

This method is used to measure the rate at which rare isotopes are extracted from

the gas cell. When used in conjunction with the mass filter, the A/Q values of the

radioactive atomic or molecular ions extracted out of the gas cell can be determined.

2.3 The test beam ion source

Beams from the test beam ion source are used extensively in system tuning and

optimization, and also to provide reference masses during mass measurements of rare

nuclides. Fig. 2.4 shows a photograph of the plasma ion source presently used. Gas is

introduced through a needle valve into a gas inlet tube. Noble gases like Ar, Kr and

Ne are typically used. To ionize these gasses, a tungsten filament is heated so that it
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Figure 2.3. The gas stopping station. (a) schematic diagram of the gas cell and ion

guides system. (b) gas cell ring structure for creating a DC gradient inside of the gas

cell. (c) gas cell ”flower” electrode for creating focusing potential. (d) partial section

of the RFQ ion guides connected to the µRFQ.

produces electrons and is biased at around 100 V to produce a discharge. By changing

the polarity of this bias alkali metals can also be produced via surface ionization

present as impurities in the filament of the ion source. The test ion source is located

perpendicular to the main LEBIT beam line. An electrostatic quadrupole deflector

is employed to send the beam downstream to the cooler/buncher and Penning trap

or upstream towards the gas cell.
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Figure 2.4. The test beam ion source.

2.4 The ion cooler/buncher system

The LEBIT ion accumulator and buncher accepts the 5 keV·Q continuous ion beam

from the gas cell and converts it into a low-energy, low-emittance ion pulses. This

device is a linear RFQ ion trap filled with a buffer gas at low pressure for ion cooling

[11, 37, 38]. It features two separate vacuum sections (2.5(a)), one for beam pre-

cooling and one for final cooling, trapping and beam bunching. The first section

(2.5(b)) is typically operated with helium or neon at a pressure of ≈ 10−2 mbar.

Neon can be used to increase the efficiency of Collision Induced Dissociation (CID)

for the break up of molecular ions delivered from the gas cell. Before entering the

system, the ions are electrostatically decelerated to a few tens of eV. Here the ions are

transversely cooled and slowed down before they pass through a miniature RFQ ion

guide (an efficient differential pumping barrier) into the trap section. The linear trap

(2.5(c)) is operated with helium at a pressure 1-2 orders of magnitude lower than that

in the first section to minimize beam heating during the pulsed-beam extraction. The

ions are typically stored for 20-30 ms for their final cooling before they are extracted

as a sub-µs ion pulse.
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Figure 2.5. The LEBIT beam cooler and buncher. (a) design drawing of the LEBIT

cooler and buncher. (b) Photograph of the ion guide cooler section together with the

µRFQ. (c) Photograph of the RFQ ion trap for accumulation and bunching.

Both the pre-cooler and the trap sections have been built as cryogenic devices and

can be cooled with LN2 provided from a stationary cryogenic line, reducing the kinetic

energy of the buffer gas. This increases the efficiency of the system by reducing the

diameter of the beam in the cooler, making the transport between the two sections

via the miniature RFQ more efficient. The low buffer gas temperature also decreases

the cooling time and has the potential to reduce the emittance of the resulting pulse

which would increase the efficiency of injection into the Penning trap. Cooling the

system also results in the significant reduction of residual pressures of gases other

than the noble gases used for beam cooling.
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In contrast to standard RFQ ion coolers [39] used elsewhere the LEBIT system

uses a wedged-electrode design which allows the electric drag potential in the cooling

section to be created without the need for segmented rods. The LEBIT beam cooler

and buncher has been extensively tested and its properties were found to be in very

good agreement with beam simulations [40] involving realistic ion-atom interactions.

In pulsed-mode operation the overall efficiency was found to exceed 50%, while in

continuous mode operation values of up to 80% were observed.

In its normal mode of operation, continuous or pulsed ion beams from the gas

cell or the test ion source are cooled and accumulated in the cooler/buncher and

released as short ion bunches for capture in the precision trap of the LEBIT Penning

trap mass spectrometer. For diagnostic purposes and buncher optimization time-of-

flight distributions are routinely measured with a MCP detector downstream of the

buncher. More details of the design of the buncher system can be found in the Ph.D.

thesis of Tao Sun [11].
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2.5 The 9.4 T Penning trap mass spectrometer

beamline from

buncher
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superconducting

magnet
MCP (Daly) and 

Si detectors

Figure 2.6. Photograph of the LEBIT Penning trap mass spectrometer.

The LEBIT Penning trap mass spectrometer, shown in Fig. 2.6, features a 9.4

T superconducting magnet. Housed within the bore of the magnet is the Penning

trap system which was designed to make high-precision mass measurements of rare

isotopes. Ion bunches are delivered from the buncher and trapped in the Penning

trap. While trapped, the ion’s motion can be driven with applied RF fields. The ion’s

response to the driving RF fields can be measured and used to determine its mass via

a cyclotron resonance time-of-flight detection technique. Detailed information of the

LEBIT Penning trap mass spectrometer will be presented in Chapter 3.

19



2.6 Overview of the performance of the LEBIT

system

The efficiency of extracting rare nuclides which were stopped in the gas cell was

measured to be about 5% for an implantation rate of ≈ 40 pps for a mixed 38Ca/37K

beam [36]. The total efficiency of the transport of rare isotopes from the gas cell to

final detector in BOB6 is estimated to be about 15 %.

After careful tuning of the potentials of the Penning trap and optimization of

parameters for beam transport, ion capture and ejection, excellent line shapes and

high resolving powers have been obtained with the LEBIT Penning trap mass spec-

trometer. The highest resolving power observed thus far is about 3 million for an

excitation time Trf = 1 s of 40Ar+ ions.

In order to study the achievable precision and accuracy a large number of test

measurements have been performed with stable ions, in particular 23Na+, 39K+,

40Ar+, 40Ar2+, and AKr+. From these tests we conclude that LEBIT has the po-

tential to achieve a very high accuracy. For example, the measured frequency ratio of

stable 40Ar2+ and 23Na+, both known with sub-ppb precision, is in full agreement

with the expected ratio obtained from literature mass values [2], showing an insignif-

icant deviation of only 3(5) × 10−9. This example corresponds to a close-doublet

situation. The results obtained for a AKr+ -39K+ mass comparison, discussed in

Chapter 6, shows excellent agreement even for large mass differences, indicating that

mass-dependent systematic uncertainties are small.

In the period from May of 2005 through November of 2006 LEBIT has made high-

precision mass measurements of 26 rare nuclides: 37,38Ca, 64,65,66Ge, 40,41,42,43,44S,

66,67,68,80As, 29,34P, 63,64Ga, 68,69,70,81m,81gSe, 33Si, 70m,71Br. The mass mea-

surement of the super-allowed 0+ → 0+ emitter 38Ca, presented in this work, with a

relative mass precision δm/m = 8×10−9 illustrates the precision to which the mass of
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rare nuclides can be measured with the LEBIT system. LEBIT’s sensitivity is demon-

strated by the mass measurement of 37Ca [37] where cyclotron resonance curves were

obtained with a total of ≈ 50 detected ions. The mass measurement of 66As, with

T1/2 = 96 ms, indicates the short time scales necessary for the performance of high-

precision mass measurements.
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CHAPTER 3

The LEBIT High-Precision

Penning Trap

Over the years a large amount of effort has been expended to optimize both the

precision and accuracy of Penning trap systems [3, 41, 42]. Today they are the

most precise instruments for making mass measurements on both stable and unstable

species. In this chapter I will explore some basic Penning trap concepts dealing with

ideal traps and RF excitations, and then move on to properties of realistic traps and

discuss the design of the LEBIT Penning trap system.

3.1 Basic Penning trap concepts

Three-dimensional ion confinement in a Penning trap is achieved by superimposing

an axial, electric quadrupole field in a homogenous, axial magnetic field, as illustrated

in Fig. 3.1. The electric quadrupole field is generated by two hyperbolic endcap elec-

trodes and one hyperbolic ring electrode. Hyperbolic electrodes are used to minimize

higher-order electric field contributions. Other configurations also exist [43], but are

not relevant to this discussion.

This electric field confines the ions in the axial direction. By placing this electrode
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Figure 6.1: Basic electrode configuration of a Penning Trap.

magnetic field lines has an eigen frequency of

ωz =

√
qVDC

md2 (6.1)

where m/q is the mass-to-charge ratio of the ion, d=
√

ρ2
0/4 + z2

0/2 is the character-

istic trap dimension, and VDC is the voltage applied between the ring and endcap

electrodes. Due to the existence of both the Lorentz force and the electric force in

the plane perpendicular to the magnetic field, the radial motion is a superposition of

two independent motions, which are called reduced cyclotron motion and magnetron

motion. The oscillating frequencies of these two motions are

ω± = ωc/2±
√

ω2
c/4− ω2

z/2 (6.2)

with ωc = qB/m being the cyclotron frequency of the ion in a pure magnetic field.

Basic relations between the frequencies of these three eigen motions and the cyclotron

frequency are

ωc = ω+ + ω (6.3)

ω2
c = ω2

+ + ω2 + ω2
z (6.4)

142

Figure 3.1. Cartoon illustrating the basic Penning trap concept. An axial electric

quadrupole field is generated by a hyperbolic electrode configuration and embedded

in a homogenous magnetic field oriented in the axial direction.

system in an axial magnetic field full three-dimensional confinement is achieved. The

electric quadrupole potential created by the electrode configuration can be described

in cylindrical coordinates (r,θ,φ) by

φ2 =
a2
2

(2z2 − r2) (3.1)

This potential can be realized by two hyperboloids of revolution given by

z2 − r2

2
= ±z2

o (3.2)

where zo is half the distance between the two endcap electrodes, as seen in Fig. 3.1.

If we specify the quantity Uo as the potential difference between the endcap and ring

electrodes, then the coefficient of the quadrupole expansion can be written as

a2 =
Uo

2d2 (3.3)

where d is a characteristic trap parameter given by d =
√

ρ2
o/4 + z2

o/2. This

yields the trapping potential
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φ2 =
Uo

4d2 (2z2 − r2) (3.4)

and leads to the quadrupole trapping field

Er = Uor
2d2

Ez = −Uoz
d2

(3.5)

3.1.1 Ion motion in a Penning trap

Charged particles in a magnetic field execute a circular cyclotron motion around the

field lines with frequency

ωc =
q

m
B, (3.6)

where q is the charge of the particle, B is the strength of the magnetic field and m is

mass of the particle. Superimposing an azimuthal, electric quadrupole field within a

uniform magnetic field and using them to trap a charged particle causes the particle to

execute three independent eigenmotions. The electric quadrupole field is responsible

for an axial oscillation with a frequency ωz . The remaining two eigenmotions are in

the radial plane: a slow magnetron motion with frequency ω− due to the E×B drift

motion of the particle, and a cyclotron motion with a modified frequency ω+. Fig. 3.2

illustrates the three eigenmotions. In a pure electric quadrupole field the frequencies

of the two radial eigenmotions are given by

ω± =
ωc

2
±

√
ω2

c

4
− ω2

z

2
, (3.7)

where the axial oscillation frequency is given by

ωz =

√
qUo

md2 . (3.8)
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In the general case of a strong magnetic field and a comparatively weak elec-

tric field ω+ � ωz � ω−. Two other important relationships between the three

eigenmotions are

ω+ + ω− = ωc (3.9)

and

ω+ω− =
ω2

z
2

(3.10)

and in the case of a strong magnetic field and a weak electrostatic field

ω+ , ωz , ω . (6.5)

Figure 6.2: The three eigen motions of an ion stored inside a Penning trap.

(a) (b)

Figure 6.3: Electrode configurations to generate RF field for ion motion excitation.
(a) quadrupole excitation; (b) dipole excitation.

For the mass determination of the stored ions or the removal of unwanted ions it

is necessary to drive the ion motion with an external RF field. The most important

excitation schemes are dipole and quadrupole excitations of the radial motion. The

required electrode configurations are shown in Fig. 6.3. The ring electrode is separated

into four symmetric segments in both cases. A pair of electrodes marked with the same

color are connected to one of two RF voltages, which have same amplitude Vrf and

frequency ωrf but opposite polarities.

143

Figure 3.2. Cartoon illustrating the three independent eigenmotions executed by an

ion in a Penning trap. The two radial eigenmotions are the cyclotron and magnetron

motion, while the third motion is the axial oscillation.

The mass of an ion can be determined from Eq. 3.6, if we know the charge state

of the trapped ion and the strength of the magnetic field. This can be determined by

a calibration measurement of a well-known stable species.

3.1.2 Ion capture in a Penning trap

There are two methods used to capture ions in a Penning trap: a dynamic and a

static method. In the static method the Penning trap electrodes are used to create

a static potential well within a buffer gas. Ions are injected into the Penning trap,

losing enough energy via collisions with the buffer gas such that they cannot escape
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the trapping potential. The static method is not compatible with high-precision mass

measurements due to subsequent interaction of the ion of interest with the buffer gas

during the measurement. The dynamic method involves fast switching of voltages

applied to the Penning trap electrodes. An ion is ejected from the cooler/buncher

and drifts into the Penning trap system. When the trap is open the injection endcap

voltage is low while the ejection endcap voltage is kept high. When the ions have

drifted into the trap the voltage on the entrance endcap is raised and the ions are

trapped. The process is illustrated in Fig. 3.3. In a perfect capture the ion comes to

rest at the trap center when the voltage on the entrance endcap is raised which results

in an ion with no axial energy. This is achieved by adjusting the slope of the injection

potential such that the ion comes to rest at the trap center and immediately switching

to the trapping potential. When multiple ions are captured a perfect capture results

in the mean axial position of the ion bunch remaining at the trap center with the

individual ions oscillating about the axis with some amount of axial energy. To remove

ions from the trap the voltage on the ejection endcap is lowered, allowing ions to drift

out.

3.1.3 Excitation of ion motion

Once the ion is trapped its motion can be excited through the application of multi-

polar RF fields. For the mass measurement technique used in LEBIT, RF excitation

with multipolar, azimuthal RF fields is important. The most common method of in-

troducing such a field is by segmenting the ring electrode and applying RF voltages to

the ring segments for different multipolarities. An RF dipole field can be created by

applying two RF signals with the same amplitude which are 180◦ out of phase to two

diametrically opposite ring segments. The RF dipole field can drive one eigenmotion.

By applying an azimuthal RF dipole field at frequency ν+ or ν− it is possible to drive

either the cyclotron or magnetron motion of a trapped ion, increasing the amplitude,
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Figure 3.3. Cartoon illustrating the process of capturing an ion in a Penning trap.

Shown is the potential along the axis of trap between the endcaps.

ρ+ or ρ−, of the eigenmotion. An azimuthal RF quadrupole field couples both radial

eigenmotions. An azimuthal RF quadrupole field is created by applying two RF sig-

nals with the same amplitude which are 180◦ out of phase to a pair of diametrically

opposite ring segments. With LEBIT the most important frequency driven with an

azimuthal quadrupole field is ν+ + ν− = νc. The application of a quadrupole RF

field at frequency νc causes a periodic beating between the magnetron and cyclotron

motions of an ion in a Penning trap, illustrated in Fig. 3.4, and is used to pump energy

into the system which is detected and used to make a mass determination. The ion

must initially be executing some radial motion to make this conversion. Traditionally

this is achieved by first applying an azimuthal RF dipole field to drive the ion off

axis. The figure on the left represents an ion beginning in a state of pure magnetron

motion, ρo = ρ−, as illustrated by the circle. When the quadrupole RF field is turned

on, the cyclotron amplitude begins to grow and the magnetron amplitude begins to

shrink. The figure on the right skips forward in time until the magnetron amplitude
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has decreased to ρ− = 0 and ρ+ = ρo. Since ν+ � ν− the conversion of ρ− to ρ+

is accompanied by a drastic increase in radial energy of the stored ion. A π-pulse at

frequency νrf = νc is defined as the product of the length of time for which the RF

excitation is applied, Trf , and RF amplitude, Urf , such that the initial magnetron

motion is completely converted into cyclotron motion.

In addition to the excitation of ion motion via the application of azimuthal dipole

and quadrupole RF fields an octupole RF field can be used drive the radial eigen-

motions at a frequency νrf = 2ν+ + 2ν− = 2νc. This excitation requires eight ring

segments and offers an increase in resolving power over the standard quadrupolar

excitation. The octupolar excitation will be discussed in detail in Chapter 4

Figure 3.4. (a) Ion begins in a state of pure magnetron motion, until quadrupolar RF

field is turned on and the reduced cyclotron radius begins to grow. (b) full conversion

of magnetron to reduced cyclotron motion.

3.1.4 Time-of-flight cyclotron resonance detection scheme

After the application of a quadrupolar excitation at frequency νrf , the trapped ion

may have gained some amount of radial energy if νrf ≈ νc. In LEBIT, and in other

Penning trap experiments, this energy is detected with a time-of-flight resonance

detection technique [3, 44, 45]. In order to detect a change in the radial energy of an
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Figure 3.5. Cartoon illustrating the time-of-flight detection principle. The ion ex-

periences a force in the axial direction due to the magnetic field gradient and gains

axial energy. Er is the radial energy of the ion and Bo is the initial magnetic field

strength.

ion the voltage on the ejection endcap is lowered, as described in Sec. 3.1.2, and the

ion drifts along the magnetic field to a detector where the time of flight is measured.

As the ion travels through the ejection optics the strength of the magnetic field begins

fall off. Since the ion is executing cyclotron motion it has a magnetic moment, and

the ion experiences a force in the axial direction due to the gradient in the magnetic

field. This process is illustrated in Fig. 3.5. Here Er is the radial energy of the ion and

Bo is the initial magnetic field strength. When the ion has left the magnetic field all

of the energy gained during the excitation has been converted into axial energy and

a reduced time of flight is measured at the end of the system with an MCP detector.

The total time of flight of the ion can be calculated by

T (ωrf ) =

∫ z1

zo

(
m

2[Eo − q · V (z)− µ(ωrf ) ·B(z)]

)1
2

dz, (3.11)

where Eo is the total initial energy of the ion, q is the charge of the ion, V (z) is the

electric potential along the ion’s path, and B(z) is the magnetic field strength along

the ion’s path. A theoretical description of the ion motion during a quadrupolar
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excitation [3] can be used in conjunction with Eq. 3.11 to determine the initial radial

eigenmotion amplitudes, ρ+,o and ρ−,o, if V (z) and B(z) are known. This has

been used extensively in the study of the octupolar excitation (Chapter 4) and in

characterizing the Lorentz steerer (Chapter 5).

3.1.5 Mass measurement procedure using the LEBIT Pen-

ning trap mass spectrometer

choose scan range 

!rf = !center - "!/2

eject ions 

from buncher

capture ions

in Penning 

trap

perform RF 

excitations

eject ions and

measure TOF

increment !rf

and repeat

until 

!rf = !center + "!/2

Frequency Scan

x N = Measurement

Figure 3.6. Chart illustrating the mass measurement cycle used with the LEBIT

Penning trap mass spectrometer.

A cyclotron resonance curve measured with the time-of-flight technique outlined in

the previous section is obtained in the following manner. First, a frequency scan range,

∆ν is chosen depending on the mass uncertainty of the ion being measured. Next,

an ion bunch is delivered from the buncher and trapped in the Penning trap. After

purification of the ion bunch by the application of a mass-selective dipolar excitation,

a quadrupolar excitation at frequency νrf = νcenter−∆ν/2 is applied. The ions are

ejected from the trap and their time of flight to the MCP is recorded. This process,
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called a frequency scan, is repeated, incrementing νrf until νrf = νcenter + ∆ν/2.

A measurement consists of one or more frequency scans and is outlined in Fig. 3.6.

A sample cyclotron resonance curve for 82Kr+ ions is shown in Fig. 3.7. For an

excitation time of Trf = 200 ms a line width of ∆ν = 5 Hz is obtained for N ≈

1000 detected ions, resulting in a resolving power of R = ν/∆ν ≈ 450,000. Perfect

agreement is observed between the data points and the theoretical fit to the data [3].

Figure 3.7. Cyclotron resonance curve of 82Kr+ ions with an excitation time of Trf
= 200 ms with N ≈ 1000 detected ions. Solid line is a theoretical fit [3] to the data.

In order to make a Penning trap mass measurement the magnetic field must

be known very precisely in order to determine the mass via a determination of the

cyclotron frequency, νc = qB/(2πm). This is accomplished by making a measurement

of a nuclide, usually stable, with a very well-known mass. The mass of the ion of

interest can then be determined by M = (νc,ref/νc)·Mref where M is the mass of the

ion of interest, Mref is the mass of the reference ion, νc is the cyclotron frequency

of the ion of interest, and νc,ref is the cyclotron frequency of the reference ion. In

order to determine the atomic mass of the ion of interest the electron mass and
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electron binding energy are required. Isotopic shifts in the electron binding energies

are negligible, and the electron binding energies of stable isotopes can be used.

With any real persistent superconducting magnet the field decays over time, and

multiple reference measurements are required to determine the magnetic field as a

function of time. In order to determine the strength of the magnetic field during a

real mass measurement a reference measurement is taken before and after the mea-

surement of the ion of interest. The cyclotron frequency of the reference ion is then

linearly interpolated to the time at which the ion of interest was measured, as is

illustrated in Fig. 3.8.
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measurement
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3.2 The LEBIT Penning trap mass spectrometer

Fig. 3.9 shows the schematic layout of the experimental setup of the LEBIT Penning

trap mass spectrometer. The magnetic field is provided by an actively shielded, per-

sistent, solenoidal, superconducting 9.4 Tesla magnet system built by Cryomagnetics,

Inc. with a room-temperature, horizontal bore. The magnet system has been up-
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Figure 3.9. Schematic drawing of the LEBIT Penning trap mass spectrometer.

graded by the addition of external-field compensation coils [46] to reduce the effect

of external field changes that may occur in an accelerator environment. The employ-

ment of a 9.4T field, as compared to ≈ 6 T which is typical of current systems, has

the advantage that a given precision can be achieved in about half the measurement

time. The primary magnet specifications are listed in Table 3.2.

A precisely machined vacuum tube, mounted inside of the room-temperature bore

of the magnet, serves as an ion optical bench for the trap electrode system. Since

bore of the magnet may not be exactly parallel with the magnetic field axis the ends

of the bore tube are secured to the magnet using translational mounts. To align the

bore tube with the magnetic field an electron gun was used. The electron gun was

placed in the center of the bore tube with two detection electrodes separated into

quadrants on either side. The electron current on each quadrant can be read while

the the position of the bore tube is adjusted with the translational mounts. When

the currents on each quadrant are roughly identical the bore tube was declared to be

aligned to the magnetic field axis.

The magnet rests on a translational mount which allows it to be moved so that

the injection and ejection optics systems can be easily removed from the bore tube.

On either side of the cryostat are two 300 L/s turbo pumps. After several months of

pumping the pressure in the two chambers is on the order of 10−9 mbar. An MCP
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Table 3.1. Specifications of the LEBIT 9.4 T magnet

Parameter Value

central field homogeneity
± 10 ppm over a cylindrical

volume 5.1 cm diameter × 10.2 cm length

persistent mode field decay (dB/B)/dt ≈ -1×10−8

bore diameter 12.8 cm

cryostat diameter 116.8 cm

cryostat length 101.6 cm

LHe capacity 325 L

LHe refill rate ≈ 3 months (250 L)

LN2 capacity 150 L

LN2 refill rate ≈ 2 weeks (140 L)

detector in a Daly [47] configuration is placed in BOB6.

Several improvements to the magnet system have also been added. The pressure of

the helium bath is stabilized by an electric valve operated on a PID loop to eliminate

non-linear magnetic field effects, on top of the natural magnetic field decay, due

to variations in the helium boil-off rate. The Penning trap and nearby ion optical

elements can be cryogenically cooled, reducing residual gas pressure which can cause

frequency shifts while performing a measurement. A pair of insulated copper wires

wound around the tube allow for either baking or compensation of the natural decay

of the main magnetic field during measurements.

The Penning trap and associated injection and ejection optics have been optimized

to avoid introducing large uncertainties in the measurements or losses in efficiencies.

The electrode structure of the LEBIT Penning trap has been designed such that

higher-order contributions to the electric trapping field have been minimized. The

materials used to construct the trap have also been distributed such that the magnetic

field in the center region of the trap remains homogenous. The injection optics have

34



been designed to minimize transverse energy pickup as the ions are injected into the

magnetic field. The ejection optics must transport the ions out of the magnetic field

and efficiently focus them onto the MCP detector at the end of the system. Details

on the design of these systems will be covered in the following sections.

3.2.1 High-precision electrode system

Figure 3.10. The LEBIT high-precision Penning trap with one endcap electrode

removed. Note the hole in the endcap for ion injection/ejection.

The final design drawing of the LEBIT high-precision Penning trap is shown in

Fig. 3.11. In addition to the ring and endcap electrodes there are two sets of correction

electrodes. In order to generate a perfect electric quadrupole field the hyperbolic

electrodes would need to extend to infinity. In a real Penning trap the electrodes

are truncated, which introduces higher-order field contributions. These higher-order

terms can be minimized by adding correction ring electrodes to compensate for the

finite nature of the ring and endcap electrodes. The holes in the endcap electrodes

also introduce higher-order field contributions and are partially compensated by the

addition of correction tube electrodes.

The LEBIT Penning trap’s electrodes are constructed of high-conductivity copper

and plated with gold to reduce possible patch effects for the creation of a homoge-
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nous electric field. The shape and dimensions of the electrodes have been optimized

to achieve close-to-ideal electric and magnetic fields within the trap, and will be dis-

cussed in detail in the following sections. The insulators are made of Alumina. The

ring electrode has an eight-fold segmentation. This allows not only for the creation

of a quadrupole RF field, as required for the excitation of the ion motion at the

ion’s cyclotron frequency νc [42], but also the application of an octupole RF field,

which makes ion motion excitation at 2 νc possible, which is discussed in Chapter 4.

Fig. 3.10 shows a photograph of the LEBIT high-precision Penning trap with on

endcap removed. The electrodes are gold and the Alumina insulators are white.

[Academic use only] ...\dgn\Misc\RR_Penning trap.dgn  11/07/2006 11:30:00 AM

Correction

Tube

Endcap

Segmented

Ring

Correction

Ring

Figure 3.11. Design drawing of the LEBIT high-precision Penning trap. Color version:

black-hashed elements are insulator and color-hashed elements are electrodes.
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Minimizing the effects of electric field imperfections

As part of the design of the electrode system detailed simulations have been carried

out. The trap geometry is symmetric azimuthally and about the z = 0 plane so the

electric potential generated by the electrodes can be written as the expansion

φ =
∑
l

rlPl(cos θ), (3.12)

where Pl are the normal Legendre polynomials and l = 2n for n = {0,1,2,...}. As in

[42] we can write the coefficients of the higher order terms as

al =
Uo

2dl
Cl, (3.13)

where, again, Uo is the voltage applied to the endcap electrodes relative to the

ring electrode potential. The dimensionless coefficients, Cl, then represent a degree

of deviation from the pure quadrupole field where C2 = 1 and all others are zero.

The potential along the z-axis can be written in cylindrical coordinates as the

polynomial expansion

V (z) =
Vo

2

(
Co +

C2
d2 z2 +

C4
d4 z4 +

C6
d6 .z6 + · · ·

)
(3.14)

The ion-optics simulation package SIMION was used to analyze the trap configura-

tion in an attempt to reduce the higher-order terms. SIMION uses the finite dif-

ference method to calculate potentials of systems of user-defined electrodes. Several

configurations were investigated and the final geometry is shown in Fig. 3.12. The

characteristic trap parameters which apply both to the physical trap and the SIMION

geometry are given in Table 3.2.1.

The geometry is grouped into 4 pairs of electrode systems: the pair of endcap

electrodes, the ring electrode, the pair of correction rings, and the pair of correction

tubes. The potentials for each pair of electrode systems can be extracted from the

SIMION data files and used to determine the optimal voltages which need to be
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Figure 3.12. LEBIT Penning trap geometry used for electric potential calculations

with SIMION. The geometry corresponds to the final design of the LEBIT Penning

trap.

applied to the electrodes by a fitting routine described in Appendix D. Using the

fit method described in Appendix D, I choose a conservative range of ±9 mm along

the trap axis to fit the data. The physical extent of the ion cloud is expected to be

considerably smaller. The optimum electrode voltages along with the resulting Cl

values from Eq. 3.14 are presented in Table 3.3.

In order to use the Cl’s to calculate expected frequency shifts due to higher-

order electric field contributions it is easiest to use the method which is presented in

[41]. First order perturbation theory can be used to evaluate the effects of the trap

imperfections [42]. Applying the results found in [42], the frequency shifts due to the

two lowest-order imperfection terms are

∆ωc =
3

4

C4
z2
o

ω2
z

(ω+ − ω−)
(ρ2

+ − ρ2
−), for C4 (3.15)

and

∆ωc =
15

8

C6
z4
o

ω2
z

(ω+ − ω−)
[3z2(ρ2

− − ρ2
+) + (ρ4

+ − ρ4
−)], for C6 (3.16)
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Table 3.2. Parameters of LEBIT Penning trap.

Parameter Value

ρo 13 mm

zo 11.18 mm

α 54.74◦

2r+ 21.6 mm

2z+ 33.6 mm

do 4 mm

d 10.23 mm

Table 3.3. Optimum electrode voltages (relative to the ring voltage) and the asso-

ciated Cl’s calculated using the LEBIT Penning trap SIMION geometry described

above.

Parameter Value

Endcaps 1.67235 V

Ring 0 V

Correction Rings 0.61227 V

Correction Tubes 2.87919 V

C0 0.80590

C2 1.00187

C4 0.00207

C6 -0.00442

C8 0.00294
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Table 3.4. Frequency shifts, ∆νc, associated with the octupole and dodecapole com-

ponents of the electric field using the optimum electrode voltages.

l ∆νc [Hz]

4 -0.05

6 -0.06

where z is the amplitude of the axial oscillation of the ions in the trap.

We can now calculate values for the frequency shifts due to two lowest order terms

due to trap imperfections. The values obtained will represent a worst-case scenario as

during the quadrupolar excitation process an ion initially executing pure magnetron

motion will spend the same amount of time with a magnetron amplitude greater than

the cyclotron amplitude as with the reverse [42] and the effect will cancel.

We will assume that ρ+ = 0 mm and ρ− = 1 mm. This assumption is justified

by theoretical fits to experimental resonance curves obtained with LEBIT. There is a

small amount of radial energy pickup during the injection process, but the initial ρ+ is

typically two orders of magnitude less than the initial ρ−, and is therefore negligible.

Injection simulations have estimated the average axial oscillation amplitude to be ρz

≈ 3 mm. The trap is typically operated with Uo = 25 V and the magnetic field is

about 9.4 T. The frequency shift terms are mass dependent, but very weakly. In any

case, we will choose a mass with A = 40. Table 3.2.1 shows the maximum frequency

shifts, ∆νc, associated with the octupole and dodecapole electric field components.

Now we can consider to what extent these frequency shifts will affect mass mea-

surements. As mentioned in Sec. 3.1.3, the experimental quantity which one measures

in a Penning trap mass measurement is the ratio, R = νc/(νc)ref of cyclotron fre-
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quencies. Assuming that ∆νc = (∆νc)ref = ∆ν the relative ratio shift will be

∆R

R
≈ 1−

νc,ref

νc

νc + ∆ν

νc,ref + ∆ν
(3.17)

≈ ∆ν

νc

(
Aref − A

A

)
(3.18)

where ∆ν = (∆ν)C4 + (∆ν)C6 , Aref is the mass number of the reference ion, and

A is the mass number of the ion of interest. Using the parameters outlined above the

relative deviation from R for an ion with a mass number A = 51 as a function of the

difference between the masses of the ion of interest and the reference ion is linear,

passing through zero at ∆A = 0, with a slope of ≈ 8×10−10 ∆A−1.

3.3 Minimizing effects due to magnetic field im-

perfections

Frequency shifts associated with the magnetic field occur when the magnetic field is

not homogenous. There are two primary causes of inhomogeneity in the magnetic

field: external field contributions, and the introduction of foreign material into the

magnetic field. As mentioned in Sec. 3.2 the LEBIT 9.4 T magnet is equipped with

active-shielding coils which minimize the effect of variable, external magnetic fields.

In the interest of keeping the magnetic field within the trapping region of the Penning

trap as homogenous as possible two factors are important: the material which con-

stitutes the trap must be minimized, and the effect of each type of material must be

minimized by appropriate design. The LEBIT Penning trap is constructed from two

materials, oxygen-free copper for the electrodes and Alumina for the insulators. It

is important to make the induced magnetic field from each type of material constant

in the trapping region. It is not a good idea to try to compensate for deviations

caused by the electrodes by adjusting the insulators, or vice versa. This is because

the magnetic susceptibilities are not precisely known and are temperature dependent.
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Constant offsets in the magnetic field induced by the two materials are not a primary

concern as they do not introduce amplitude-dependent frequency shifts.

Figure 3.13. SUSZI geometry of the LEBIT Penning trap. (color version) Different

colors represent the different electrodes and insulator components. Lighter shades are

materials with a density less than 1 to simulate pumping holes or support legs.

To determine the induced magnetic fields I used SUSZI [48], a code developed

by Stefan Schwarz. SUSZI allows you to define a trap geometry, see Fig. 3.13, by

specifying equations which describe individual trap components in 2D. The program

calculates the induced magnetic field on the axis of the trap by creating a grid over

the model and calculating the contribution to the total induced magnetic field due to

each grid unit. In my simulations I used a grid size of 0.01 mm2. Reducing the grid

size further did not change the results. The individual components can be assigned a

magnetic susceptibility. I used -6.0×10−6 for the Alumina pieces and -3.8×10−7 for

the copper pieces.

Fig. 3.14 displays the results of the SUSZI calculation, plotting the induced mag-

netic field contribution, ∆B/B, as a function of axial displacement for the copper
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Figure 3.14. Induced magnetic field contribution, ∆B/B as a function of axial posi-

tion, z. The individual contribution from the electrodes (copper) and the insulators

(Alumina) are plotted together with their sum.

electrodes, the insulators, and their sum. Note that the copper and Alumina curves

are constant in the middle of the trap.

Since the magnetic field imperfections are symmetric about the z = 0 plane the

lowest order component of the magnetic field deviation will be the quadrupole term,

which is expressed as

Bz = Bo

[
1 + β2

(
z2 − r2

2

)]
(3.19)

where Bo is the base magnetic field strength. Then, according to [42] the cyclotron

frequency shift is given by

∆ωc = β2ωc

[
z2 −

ρ2
+
2

(
1− ωc

ω+ − ω−

)
−

ρ2
−
2

(
1 +

ωc

ω+ − ω−

)]
. (3.20)

If we use the approximation ω+ − ω− ≈ ωc, then

∆ωc = β2ωc(z
2 − ρ2

−). (3.21)

By taking the sum data shown in Fig. 3.14 and performing a least-squares fit to

a second order polynomial it is possible to extract the β2 term. Fig. 3.15 shows the
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Figure 3.15. Fit to sum data from Fig. 3.14 from z = 0 mm to z = 3.5 mm. The fit

yields a β2 = 1.3×10−10 mm−2.

sum data from z = 0 mm to z = 3.5 mm and least-squares fit, which yields β2 =

1.3×10−10 mm−2. An overall relative shift of the magnetic field of ≈ 9×10−8 is

observed. Fig. 3.16 plots ∆νc/νc as a function of the axial oscillation amplitude for

four different values of ρ−. The maximum ρ− allowed by the entrance and exit holes

of the LEBIT Penning trap is 2 mm. If we assume a ρ− of 2 mm then the maximum

relative frequency shift is ∆νc/νc ≈ ± 1×10−9.

The relative deviation of the measured frequency ratio due to magnetic field im-

perfections is found to be

∆R

R
≈ β2(∆z −∆ρ−), (3.22)

where ∆z = z2ref - z2 and ∆ρ− = ρ2
−,ref - ρ2

−. The relative deviation of R is zero in

the case that amplitudes of the axial and magnetron motions are the same for both

ion species.

Experimentally it is not difficult to ensure that the difference between ρ−,ref and

ρ− is small, and a 10% difference is a conservative estimate. Similarly, the difference

in the axial oscillation amplitude should not be very great as it depends on a well-

controlled timing sequence. For 10% differences in amplitudes not exceeding 2 mm
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Figure 3.16. ∆νc/νc as a function of the axial oscillation amplitude, z, for four

different values of ρ− for β2 = 1.3×10−10 mm−2.

the relative shifts will be below 10−10.

3.4 Penning trap injection/ejection optics

Fig. 3.17 shows a photograph of the complete Penning trap injection/ejection optics

system, including the Penning trap (see also Fig. 3.10). These ion optical systems

are inserted into the bore of the magnet. The injection optics is composed of eight

drift tube sections and a field termination plate located just before the trap. They

are used to decelerate the ion bunch delivered from the cooler/buncher with a kinetic

energy of K ≈ 2 keV·Q to K ≈ a few eV when entering the Penning trap. One

element of the injection optics is the ”Lorentz” steerer, which is a new technique used

to prepare the ion bunch for a quadrupolar excitation during the injection process

and is described in Chapter 5. Detailed SIMION simulations have been performed to

optimize the voltages applied to the individual ion optical elements such that a space

focus is created at the trap center.

The ejection optics consists of five drift tubes and their purpose is to guide the
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Figure 3.17. Photograph of the complete injection/ejection optics system with Pen-

ning trap.

ion bunch out of the Penning trap, through the magnetic field to the MCP detector

located at the end of the system. The ions typically travel through the first drift

tube with an axial kinetic energy of K ≈ 30 eV·Q. By the time the ions have reached

the end of the ejection optics they have an axial kinetic energy of K ≈ 1.8 keV·Q,

plus whatever energy they gained as a result of an RF excitation in the Penning trap.

SIMION simulations have been performed to optimize the location of the beam spot

on the MCP, and to increase the the time-of-flight separation between ions that have

gained radial energy during the quadrupolar excitation and the baseline. Fig. 3.18

shows a schematic drawing of the injection and ejection ion optics with typical voltages

listed.
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Figure 3.18. Schematic drawing of the injection/ejection ion optical elements with

typical voltages.
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CHAPTER 4

Study of the classical quadrupolar

and new octupolar excitation

schemes

4.1 Introduction

Within this work detailed aspects of the quadrupolar excitation as presently used for

mass determination were investigated. In particular, the phase dependence of the

quadrupolar excitation was studied, which has never been studied in detail. In addi-

tion, ion motion excitation using an octupole RF field was investigated and demon-

strated for the first time. An octupolar excitation in a Penning trap is achieved by

applying a octupole RF field at frequency 2νc, instead of a quadrupole field at νc,

and requires an eight-fold segmentation of the electrode to which the RF is applied.

Using this new excitation scheme it may be possible to increase the resolving power

of Penning trap mass measurements.
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4.2 The quadrupolar excitation revisited

In order to provide some background for the discussion of both quadrupolar and oc-

tupolar excitations the major steps leading to the equations of motion for a quadrupo-

lar excitation, as derived in [3], will be briefly reviewed.

4.2.1 Equations of motion

Begin by introducing the vectors
−→
V + and

−→
V − [41] such that

−→
V ± = −̇→ρ − ω∓ · −→ρ × êz , (4.1)

where −→ρ is the ion’s position vector. Additionally,

x = −
V +
y −V−y

ω+−ω−

y =
V +
x −V−x

ω+−ω− ,

(4.2)

where x and y are the ion’s position in Cartesian coordinates. Eq. 4.1 successfully

decouples the equations of motion of an ion confined in a Penning trap. Using this

coordinate transformation and applying the rotating wave approximation the equa-

tions of motion can be solved [3] for an ion subjected to an applied quadrupolar RF

field. The solution is

ρ±(t) = [ρ±,o cos(ωBt)∓ 1
2

ρ±,o[i(ωrf−ωc)]+ρ∓,ok±o
ωB

× sin(ωBt)]e
i
2(ωrf−ωc)t,

(4.3)

where ρ±(t) are the magnitudes of the cyclotron and magnetron radii as a function

of time and ρ±,o are the initial cyclotron and magnetron radii. Additionally,

ωB =
1

2

√
(ωrf − ωc)2 + k2

o (4.4)

and k±o = koe±i∆φ where ko =
Urf

2a2
q
m

1
ω+−ω− . Here, q is the ionic charge, m is

the ionic mass, Urf is the applied RF amplitude, a is the radius at which the RF is
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applied and

∆φ = φrf − (φ+ + φ−). (4.5)

φrf is the phase of the applied RF and φ± are the cyclotron and magnetron phases.

As stated above, radial energy gained during the excitation process is detected via a

reduced time of flight of ions ejected from the trap to the detector. Under normal

conditions ω+ � ω−, so we can write the radial energy as Er(t) ≈ 1
2mω2

+ρ2
+(t).
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U
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Figure 4.1. (a) surface plot of ρ2
+ as a function of Urf and νrf for a given excitation

time Trf . (b) cut from plot (a) at Urf = Uo. Full conversion from magnetron to

cyclotron motion is achieved at ∆νc = νrf - νc = 0. (c) slice from plot (a) at ∆ν =

0 illustrating the beating of ρ2
+ as a function of Urf .

Fig. 4.1(a) shows a 3D plot of the calculated values of ρ2
+, which is proportional
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to the gained energy, as a function of Urf and frequency detuning for a given Trf for

a single ion initially executing pure magnetron motion, ρ+,o = 0. Fig. 4.1(b) shows

a cut at Urf = Uo, which is the excitation amplitude at which a full conversion of

magnetron to cyclotron motion has occurred for νrf = νc. The width of the resonance

curve is given by theory as ∆νFWHM ≈ 0.8/Trf . Such a response is reflected in the

experimental resonance curve shown in Fig. 4.2. Fig. 4.1(c) is a cut along ∆ν = νrf

- νc = 0 illustrating the change of ρ2
+ as a function of Urf for a constant excitation

time.

Calculating the energy gain from the excitation and accounting for the ejection

optics and magnetic field it is possible to calculate the theoretical line shape [3]

expected for the time-of-flight measurement. This shape has been used to fit the

experimental data shown in Fig. 4.2. Due to a nonlinear conversion between radial

energy and time of flight, the full width of the time-of-flight curve is 0.9/Trf for

LEBIT.
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Figure 4.2. TOF line shape obtained from a quadrupolar excitation of 40Ar+ with

excitation time Trf = 200 ms. The solid line is a fit [3] of the theoretical line shape

to the data.
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4.2.2 Phase dependence of the quadrupolar excitation

The solution to the equations of motion as derived in [3] contains a phase dependence,

the consequence of which has not been previously investigated. The phase dependence

appears in Eq. 4.3 through the k±o term. We algebraically expand

ρ+(t)ρ+(t)∗ =
4ρ2

+,oω2
B cos2(ωBt)

4ω2
B

+
k2
oρ2
−,o+ρ2

+,o(ωrf−ωc)2

4ω2
B

sin2(ωBt)

−
koρ−,oρ+,o(ωrf−ωc) sin(∆φ)

4ω2
B

sin2(ωBt)

−
2koρ−,oρ+,oωB cos(∆φ)

4ω2
B

sin(2ωBt).

(4.6)

The phase dependence of the radial energy change is located in the third and fourth

terms of Eq. 4.6. Both terms scale with the product of ρ+,o and ρ−,o, which means

if the ions begin in a state of pure cyclotron or magnetron motion at the beginning

of the excitation the effect will not be present.

Fig. 4.3 presents the results of simulations of quadrupolar resonances for single

39K+ ions with Trf = 1 s. Both simulations were performed with ρ−,o = 1 mm and

φ+,o = φ−,o = 0◦. An initial cyclotron radius of ρ+,o = 0.1 mm was used on the left

and ρ+,o = 0.4 mm was used on the right. In each case the value of Urf was adjusted

such that in resonance and for φrf = 0◦ the radial energy was maximized. Looking

closely at the contour plot on the left one can see a distortion of the central peak and

a shift in the position of the side bands as ∆φ changes. Resonance profiles for which

∆φ = 90◦ and 270◦ become asymmetric and the position of the minimum time of

flight has shifted slightly. Increasing the value of ρ+,o to 0.4 mm only exacerbates

the situation. The most obvious implication of these phase-dependent effects involve

low-statistics measurements where ∆φ is allowed to vary. If the measurement samples

any particular phase range more frequently and the resonance is fit with a line shape

with a symmetric center then the analysis will include an additional error.
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Figure 4.3. Simulations of quadrupolar resonances for single 39K+ ions with Trf =

1 s. The two plots in the top row are contour plots of the resonances as a function of

∆φ and ∆ν. Below are cuts at given values of ∆φ. Both simulations were performed

with ρ−,o = 1 mm and φ+,o = φ−,o = 0◦. An initial cyclotron radius of ρ+,o = 0.1

mm was used on the left and ρ+,o = 0.4 mm was used on the right.

In order to see the phase dependence in the radial energy change of the quadrupo-

lar excitation, two conditions must be met. The first is that the RF voltage must

have a defined phase relation to initial ion motion. ∆φ must not be random which

means, according to Eq. 4.5, that all individual phases must be well defined. If this

is not the case then the final line shape will be an average over the line shapes of

random ∆φ’s. The second condition is that the ion ensemble cannot begin in a pure

state of cyclotron or magnetron motion.

For the test of this phase dependence 39K+ ions were injected into the Penning

trap, and an initial magnetron motion was introduced with the Lorentz steerer. The
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Figure 4.4. Three 39K+ quadrupolar resonances for Trf = 500 ms measured for

different values of φrf . The solid line is the fit of the theoretical line shape.

excitation RF was phase locked to the time of ion capture in the trap, which defines

the initial phase of the ion motion. Several resonances with Trf = 500 ms were

taken with varied values of φrf . Fig. 4.4 illustrates the effect of varying φrf on the

resonance shape. Here we see experimentally how the sidebands change shape as the

value of ∆φ is changed. When ∆φ is allowed to be a free parameter a good agreement

is obtained between the experimental data and the fit. All three fits yield consistent

values for ρ−,o = 0.91(2) mm and ρ+,o = 0.11(1) mm. For each resonance φrf was

incremented by 100◦. Within 20% this phase dependence was reproduced in the fit

parameter ∆φ.
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As discussed earlier, only the third and fourth terms of Eq. 4.6 contain a ∆φ term

and contain the product of ρ+,o and ρ−,o. While ρ−,o is introduced deliberately, a

finite ρ+,o must be the result of an asymmetric injection of ions into the magnetic

field of the Penning trap which leads to a pickup of cyclotron motion. If the amount

of radial energy gained during the injection process can be reduced, then ρ+,o will be

reduced, thus reducing the phase-dependent effect. This could be useful in fine-tuning

the injection of ions into a Penning trap.

4.3 Octupolar excitation

Excitation of ion motion in a Penning trap by application of an octupolar RF field at

frequencies near 2νc have been studied experimentally and in simulations. Single-ion

simulations were used to explore the resonant response of ρ2
+ for a variety of initial

conditions. Simulations utilizing realistic distributions of multiple ions were used to

predict resonance profiles under realistic conditions. Two independent codes were

developed and used in these studies: a fourth-order Runge-Kutta routine written in

Fortran and compiled on a Microsoft Windows operating system, and a fourth-order

Runge-Kutta routine with adaptive step size control written in C++ and compiled

on an OSX operating system.

Experimental results together with those from simulation are used to make esti-

mates of the distribution for initial conditions. In many cases 2D simulation results

have been presented to illustrate the scope of the simulations performed. In prac-

tice, though, the agreement between experimental and simulation data is more clearly

observed by presenting projections of the data.
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4.3.1 The octupolar field

Since much of what we learn from the octupole excitation will be based on simulation

it is important to adequately outline the methods employed should anyone care to

reproduce the results given here. Bearing this in mind I will present the formulation

of the octupole field orientation which I used and the associated equations of motion

which can be solved numerically (using a Runge-Kutta routine [49] in the present

work). The expansion for the charge distribution, φ◦, is

φo = ax4 + bx3y + cx2y2 + dxy3 + ey4. (4.7)

Since the space is charge free it must satisfy the Laplace Equation,52φ = 0. Applying

this condition to Eq. 4.7 yields the following conditions:

6a + c = 0

b + d = 0

c + 6e = 0

(4.8)

X

Y

Figure 4.5. Octuoplar RF field configuration used in simulations shown at t =

(2n+1)π/(2ωrf ). Nodes are located at (2n+1)π/8. Generated with b = -d = 1

and a = c = e = 0 in Eq. 4.8.

Choosing a nontrivial set of parameters which satisfy Eq. 4.8 yields an equation

describing a valid octupole field. Different parameters correspond to a rotation of the
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field’s orientation in space. For illustration we will choose a=c=e=0 and b=-d=1.

This is the orientation used in all of the calculations, and is shown in Fig. 4.5.

Calculating the electric field produced by a time-varying octupolar field produced

by a set of electrodes at a radius a from the trap center yields the following field

components:

Ex =
Urf

a4 sin(ωrf t + φrf )(y3 − 3x2y)

Ey = −
Urf

a4 sin(ωrf t + φrf )(x3 − 3xy2).

(4.9)

Writing out the full equations of motion of an ion in a Penning trap subjected to an

octupolar RF field using the transformation given in Eq. 4.2 yields

V̇ ±x = −ω±V ±y − k
(V +

x −V−x )2[(V +
x −V−x )2−3(V +

y −V−y )2]
(ω+−ω−)3

V̇ ±y = ω±V ±x + k
(V +

y −V−y )2[(V +
y −V−y )2−3(V +

x −V−x )2]
(ω+−ω−)3

(4.10)

where

k =
Urf

a4
q

m
sin(ωrf t + φrf ). (4.11)

Unfortunately, the transformation does not decouple the equations of motion.

The ansatz presented in [3],
−→
V ± =

−→
A±(t)e±i(ω±+φ±), where A± is an amplitude,

does not simplify the problem. In the case of the quadrupolar excitation after the

ansatz is inserted the high-frequency components can be neglected and the solution

remains a physical description of the system. Following the same procedure in the case

of the octupolar excitation yields a non-physical description of the system. Unless a

suitable coordinate transformation is found an analytical solution may not be possible.

At present, numerical solutions to the equations of motion have to be used. By

calculating the vectors
−→
V ± and using Eq. 4.1 it is possible to extract ρ+ and ρ− as

a function of time. Since Er ∝ ρ2
+, the radial energy pickup due to the application

of an octupolar RF field is directly accessible.
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4.3.2 Single-ion octupolar simulations

Octupolar excitation of the motion of a single ion will be used to illustrate the simi-

larities and differences between the octupolar and quadrupolar excitation schemes.

Motional beating of single ions with νRF = 2νc

ρ +2  [a
rb

. u
ni

ts
]

0

0.2
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0 0.2 0.4 0.6 0.8 1

Trf [arb. units]

Octupolar

Figure 4.6. ρ2
+ of an ion confined in a Penning trap and subjected to an azimuthal

octupolar RF field at frequency 2νc.

Fig. 4.6 shows the variations of ρ2
+ of an ion as a function of time subjected to

an azimuthal octupolar RF field. The ion is initially in a state of pure magnetron

motion. A periodic beat pattern is observed. Compared to the quadrupolar case

(Fig. 4.1c) the beating is no longer harmonic but begins to approach a square wave

in shape.

According to Eq. 4.4, the beat frequency of an ion induced by a quadrupolar RF

field with νrf = νc is proportional to Urf , and independent of the initial ion motion.

This is not the case with the octupolar excitation. Fig. 4.7 displays the ρ2
+ of a single

ion, subjected to an octupolar field with νrf = 2νc, for different initial magnetron

radii, ρ−,o, and applied RF amplitudes, Urf . The panels on the left side display the
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Figure 4.7. The left hand panels show ρ2
+ as a function of Trf for an ion with

an initial ρ−,o = ρo and ρ+,o = 0 with applied RF amplitudes of Urf and 2Urf ,

respectively. The right hand panels ρ2
+ for an ion with an initial ρ−,o =

√
2

2 ρo and

applied RF amplitudes of 2Urf and 4Urf , respectively.

beat patterns for an ion with an initial magnetron radius of ρo. Doubling Urf results

in an increase in the beat frequency. The panels on the right side illustrate that

doubling Urf and scaling the initial magnetron radius by
√

2/2 preserves the original

beat frequency. In the case of octupolar excitation the beat frequency depends not

only on the excitation amplitude, but also on the initial motion of the ion in the trap.

Fig. 4.8 shows the beat frequency as a function of the initial ρ−,o for three different

initial magnetron phases, φ−,o. The figure reveals that the beat frequency depends

not only on ρ−,o, but also on φ−,o. The dip in the φ−,o = 0◦ curve is not a numerical

artifact, but has been verified by two independent simulations. By changing the phase

one can change the position of this dip, but it quickly moves to a larger value of ρ−,o

as one moves away from φ−,o = 0◦. With φrf = 0◦ the dip occurs at ρ− ≈ 2.1
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Figure 4.8. Beat frequency between magnetron and cyclotron motions as a function

of ρ−,o for constant Urf and for three initial magnetron phases, φ−,o = 0◦, 22.5◦

and 45◦.

and νbeat/ν− ≈ 0.26. Fig. 4.7 might lead one to believe that νbeat ∝ ρ2
−,o · Urf ,

yet taking Fig. 4.8 into account the relation would need to be amended to νbeat ∝

f(φ−) ·ρ2
−,o ·Urf . The effect of holding Urf and φ−,o constant and plotting the beat

frequency as a function of φ−,o can be seen in Fig. 4.9. The beat frequency seems

to sample the octupolar RF field’s spatial orientation, and is at a minimum at the

anti-nodes, and maximum at the nodes, of the field.

According to Eq. 4.4 the beat frequency in the case of νrf = νc due to a quadrupo-

lar excitaton is linear with respect to Urf and is phase independent. Again, this is

different in the case of octupolar excitation. The beat frequency is not linear with

respect to Urf , and is dependent upon the φ−,o, as is illustrated in Fig. 4.10 which

shows the beat frequency as a function of Urf . As the beat frequency nears ν− the

beat pattern begins to lose its periodic nature. Zooming in to low frequencies and
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Figure 4.9. Beat frequency as a function of φ−,o for a constant Urf .

excitation amplitudes the φ−,o = 0◦ and φ−,o = 45◦ curves become indistinguish-

able, while the φ−,o = 22.5◦ curve remains distinct. Again, similar to Fig. 4.8, a dip

is observed in the φ−,o = 0◦ case, again located at νbeat/ν− ≈ 0.26.

We are now in a position to investigate a possible invariant of the motion. Fig. 4.11

shows the beat frequency when changing ρ−,o, while at the same time keeping the

product Urf · ρ2
−,o constant. It can be seen that the beat frequency is constant

for a given initial phase, φ−,o. This was found to be true for ions in a state of

pure magnetron motion, and for mixed initial motions, ρo =
√

ρ2
+,o + ρ2

−,o, as well.

Therefore, we arrive at a general relationship νbeat ∝ α(ρ±,o, φ±,o, φrf ) · ρ2
o · Urf ,

where α is a scaling factor which depends on all four of the initial ρ’s and φ’s.
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Figure 4.10. Beat frequency as a function of Urf for three initial φ−,o’s. The insert

zooms in to low beating frequencies and amplitudes.

Invariant phase relation of the octupolar excitation

According to Eq. 4.5, ∆φ = φrf − (φ+ + φ−) is a constant of the motion for a

quadrupolar excitation. We investigate if a similar phase relation holds for the oc-

tupolar excitation.

Fig. 4.12 shows scans of ρ2
+ as a function of φ+,o and time for a given φ−,o with

φrf = 0◦ in all cases. By comparing the patterns it is easy to conclude that the time

dependence of ρ2
+ is the same if φ+,o + φ−,o = const. It was verified that this also

holds true if φrf is changed.

Fig. 4.13 is similar to Fig. 4.12, except φ+,o is held constant at 0◦ and the individ-

ual panels show ρ2
+ as a function of φ−,o and time. Here we verified that for φ+,o =

0◦, 1
2φrf - φ−,o = const. the same time dependence of ρ2

+ is observed. Testing this

condition for many values of φ+,o yields the same results and leads us to conclude

that the invariant phase in the case of octupolar excitation is ∆φ = 1
2φrf - (φ+ +
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Figure 4.11. Beat frequency due to an octupolar excitation as a function of ρ−,o

holding ρ2
−,o · Urf constant for several values of φ−,o.

φ−). This differs from the quadrupolar phase relation, Eq. 4.5, only in the factor

of 1/2 multiplying the φrf term. This appears plausible as the octupolar field has

twice the number of nodes and anti-nodes as the quadrupolar field. The factor of 1/2

reflects that the ions do begin their motion at the same position with respect to the

field orientation.

Single-ion resonance curves

At first, we will examine octupolar resonances of single ions initially in a state where

ρo = ρ−,o. The general observation is a periodic change of ρ2
+ as a function of

Urf . Along the line νrf = 2νc a resonant effect is observed. Fig. 4.14 illustrates
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Figure 4.12. 2D simulations of ρ2
+ as a function of time and φ+,o for a given φ−,o

with φrf = 0◦. The grey scale is proportional to ρ2
+.

the dependence of ρ2
+ on frequency detuning, ∆ν = νrf - 2νc, and Urf for various

values of φ−,o. At φ−,o = 13.5◦ a secondary resonant effect becomes visible which

sweeps through the primary resonant structure as the value of φ−,o is changed. This

effect lies on a line with an origin at Urf = 0 and ∆ν = 0 which rotates clockwise for

increasing values of φ−,o. At φ−,o = 18.0◦ the structure can be seen across all three

sections of the primary resonant structure. At φ−,o = 22.5◦ the secondary structure

lies on the ∆ν = 0 line.

A close look at the resonances reveals a narrowing of the resonance profiles at ∆ν
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Figure 4.13. 2D simulations of ρ2
+ as a function of time and φ−,o for a given φrf

with φ+,o = 0◦. The grey scale is proportional to ρ2
+.

= 0 for certain values of Urf . Fig. 4.15 plots 2D cuts from the φ−,o = 0◦ (left) and

φ−,o = 22.5◦ (right) cases shown in Fig. 4.14. Moving from the top panels to the

bottom steps through the first conversion of magnetron to cyclotron motion. The

φ−,o = 0◦ case exhibits a larger width in the radial energy distribution at the lower

values of Urf ·Trf as in φ−,o = 22.5◦ case. The central peak narrows for larger

values of Urf ·Trf and at Urf ·Trf = 2.90 V·s the radial energy gained during the

excitation begins to drop. The top three panels of the φ−,o = 22.5◦ case show a

suppression of radial energy at ∆ν ≈ 2νc. The three bottom panels no longer exhibit
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Figure 4.14. Simulation of ρ2
+ for a single ion with ρ−,o = 1 mm and ρ+,o = 0 mm

as a function of frequency detuning, ∆ν = νrf - 2νc, and Urf for different values of

φ−,o. The grey scale is proportional to ρ2
+.

this behavior, but the central peak continues to narrow. In both cases ∆νFWHM

falls below 1/(100·Trf ), which corresponds to a factor of ≈ 200 increase in resolving

power over the quadrupolar excitation for the same excitation time! It remains to

be seen how well the ions can be prepared to reproduce these results under realistic

conditions.

4.3.3 Realistic multi-ion simulations

Simulations involving multiple ions representing a cloud are required to study the ion

behavior in the case of an octupolar excitation under realistic conditions. First we

will examine the radial energy gain as a function of Urf , with νrf = 2νc. Gaussian
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Figure 4.15. 2D cuts from the φ−,o− = 0◦ and φo,−− = 22.5◦ 3D profiles in Fig. 4.14

for six different values of Urf ·Trf .

distributions were used in generating values for the initial ion cloud. Fig. 4.16 shows

the results of three simulations for three different values of σρ−,o with ρ−,o = 0.55

mm. ρ+,o = 0.050(5) mm was used, being a conservative estimate from simulated

radial energy gain during injection into the Penning trap. This value also agrees with

those obtained from fits to quadrupolar resonances obtained under similar conditions.

Widths of the φ distributions seem to have a small effect on the multi-ion response

curves, and φ− = 0(5)◦ and φ+ = 0(50)◦ were used. For the largest value of σρ−,o

shown in Fig. 4.16 the curve seems to mimic the behavior of a damped oscillator,
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converging to some average asymptotical value of radial energy. This is the result

of the beat frequency being dependent on ρo, as discussed in Sec. 4.3.2. The larger

the spread in ρo, the larger the range of beat frequencies. The distribution of beat

frequencies determines how quickly the average beat pattern is damped.
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Figure 4.16. Simulated radial energy gain for three different values of σρ−,o as a

function of Urf for νrf = 2νc and ρ− = 0.55 mm.

Fig. 4.17 shows the results from two octupolar simulations of 23Na+ with Trf =

50 ms. Both simulations were performed with identical phase and ρ+ distributions as

the simulations shown in Fig. 4.16. ρ− was also held constant, but the widths of the

distributions were changed. The simulation shown in the first column was performed

with ρ−,o = 0.80(3) mm and in the second with ρ−,o = 0.80(13) mm. Instead of ρ2
+

the calculated time of flight was plotted for easier comparison to experimental results
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covered in the next chapter. The first row shows the dependence of the time of flight

as a function of Urf and ∆ν. The grey scale indicates smaller values of time of flight.

The remaining rows are cuts through the data at different voltages.

Note the resemblance of the top left plot to the single-ion case shown in Fig. 4.14.

For the larger σρ−,o , shown on the right, only one conversion is seen in the grey-scale

plot before settling down to an average value. This is also reflected in Fig. 4.16. The

2D profiles also reveal that there is a greater separation in time of flight between the

baseline and the minimum for the profiles on the left. In both cases as one proceeds

from smaller to larger values of Urf the resonance narrows. On the right-hand side

the narrow peak begins to develop on top of a broader resonant structure, while on

the left the time of flight baseline doesn’t change. At Urf = 44.5 V the resonance

curve on the left has achieved a maximum change in time of flight and a minimal

width of ≈ 0.14/Trf , corresponding to a gain of a factor of 13 in resolving power

over the quadrupolar excitation.

4.3.4 Experimental procedure and results

Fig. 4.18 presents a schematic drawing of the electronic setup which was used to

produce an azimuthal octupolar RF field in the LEBIT Penning trap. An arbitrary

function generator (AFG) prodived a signal to a broadband RF amplifier with 65

dB gain. The signal from the amplifier was fed into a phase-splitting coil. The two

output signals, Urf,1 and Urf,2, which are 180◦ out of phase, were then fed into the

ring electrode segments. The amplitudes of the two phases agree to within ≈ 15-20

%. From now on, their average will be quoted as the excitation amplitude, Urf .

In the experiments 23Na+ ions were used. Ion bunches from the cooler/buncher

were injected off-axis, via the Lorentz steerer, described in detail in Chapter 5, and

trapped in the LEBIT high-precision Penning trap.
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Figure 4.17. (Left): multi-ion simulation of TOF as a function of Urf and ∆ν with

three cuts at different RF voltages. (Right): same as the left only the width of the

ρ−,o distribution has been increased by a factor of 4.

Experimental octupolar studies in resonance

23Na+ ions were excited with an octupolar excitation with νrf = 2νc for Trf = 50

ms and their time of flight was measured as a function of Urf . The result is shown

in Fig. 4.19 together with a simulated curve. The simulated curve corresponds to the

σρ−,o = 0.13 mm case from Fig. 4.16. In order to get a good agreement between

experimental data and the simulation results it was necessary to divide RF voltage

values measured at the output of the circuit by a factor of 0.7. Such a factor makes

sense as it accounts for RF attenuation and partial shielding due to the geometry

of the trap. Using experimental data like that shown in Fig. 4.19 and comparing
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Figure 4.18. Schematic drawing of experimental setup used to produce a azimuthal

octupolar RF field in the LEBIT Penning trap.

to the corresponding simulation results allows the values of ρ−,o and σρ−,o to be

determined. The minimum time-of-flight value achieved is a function, primarily, of

ρ−,o, and the damping of the curve is determined by the ratio of σρ−,o and ρ−,o.

In the case of quadrupolar excitation, the beat frequency of ρ2
+(t) is proportional

to the product Urf ·Trf (see Eq. 4.4). We will experimentally explore if this holds

true for the octupolar excitation, as well. Fig. 4.20 shows the time of flight of ions as

a function of Urf for five different excitation times. As expected, the minimum time

of flight is reached at a lower value of Urf for longer excitation times. The value of

Urf where the TOF curve reaches its minimum will be labeled Uo. Fig. 4.21 displays

the product Uo·Trf for the fives cases shown in Fig. 4.20, along with simulated data

using our best-fit parameters determined by the comparison shown in Fig. 4.19. Both

the experimental and simulated data agree and are constant within 5%. This value

will not be constant for all circumstances, and depends on initial conditions.

By adjusting the Lorentz steerer we can control ρ−,o. The displacement of the ions

as a function of the applied voltage is linear. Fig. 4.22 shows six different octupolar

scans of TOF as function of Urf in the case of νrf = 2νc for six different voltages,

VL, applied to the Lorentz steerer. The first minimum in the curves represent the
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Figure 4.19. Time of flight as a function of Urf for a octupolar excitation of 23Na+

with Trf = 50 ms at νrf = 2νc. The solid line shows the results of a simulation.

necessary Urf to, on average, bring the ions to a state of maximum radial energy.

Fig. 4.23 contains the beat frequencies observed in Fig. 4.22 as a function of

ρ−,o. Two of the curves are simulation results and one is experimental data. The

experimental observation does not seem to confirm the nonlinear response illustrated

in Fig. 4.8. However, the σρ−,o = 0.13 mm curve represents our best-fit simulation

scenario, and matches the data quite well. The third curve reduces the best-fit value

of σρ−,o by a factor of four to 0.0325 mm. Now the curve begins to recover the

nonlinear shape shown in the single ion simulations. Again the variation of individual

beating frequencies of ions in the cloud play a dominant role in determining the overall

response of the system.
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Figure 4.20. Octupolar TOF curves of 23Na+ as a function of Urf with νrf = 2νc

for several excitation times.

Experimental octupolar resonances

Fig. 4.24 displays several octupolar resonances of 23Na+ produced with Trf = 50

ms for various values of Urf . Included in the figures are simulated resonances which

were produced using the same initial conditions as the simulation in the right column

of Fig. 4.17. For Urf ≤ 40 V the width of the resonances are between 1.3/Trf and

0.9/Trf . Proceeding towards larger amplitudes reduces this width. At Urf = 72.9

V a narrow resonant peak with a width of ≈ 0.2/Trf forms atop a broader resonant

structure.
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Figure 4.21. Product of Uo and Trf , where Trf is the duration of the octupolar

excitation and Uo is the amplitude of applied octupolar RF field at which the TOF

curve reaches its minimum.

Mass measurements with octupolar excitation

To verify that octupolar resonances can be used for precision mass measurements, a

mass measurement of 41K+, using 39K+ as a reference, was performed. An excitation

time of Trf = 200 ms was used in each individual measurement. Urf was chosen

such that the resonances were Gaussian. Fig. 4.25 shows the results of this mass

measurement. As there is no theoretical line shape all resonances were fit with a

Gaussian profile. The difference of the mean mass value extracted from the octupolar

measurements from the accepted literature values (Atomic Mass Evaluation [2]) is

shown. The dashed lines represent the uncertainty in the mean of the experimental

results. The solid lines represent the uncertainty in the AME values. As can be seen,

there is excellent agreement within the uncertainty.

74



9

12.5

16

9

12.5

16

9

12.5

16

9

12.5

16

9

12.5

16

9

12.5

16

0 100 200 300 400 500

Urf [V]

TO
F 

[µ
s]

VL = -400 V

VL = -350 V

VL = -300 V

VL = -250 V

VL = -200 V

VL = -150 V

Figure 4.22. Time of flight as a function of Urf with ∆ν = 0 using 23Na+ with

Trf = 50 ms octupolar excitation for six different Lorentz steerer voltages, VL. The

greater the magnitude of applied voltage, the larger the initial average displacement

of the ions from the center of the trap.

4.4 Summary and conclusions

Although an analytical solution to the octupolar excitation has yet to be found, nu-

merical simulations combined with experimental results have offered significant insight

into this complicated problem. The most important observations can be summarized

as:

• The beat frequency of an ion subjected to an octupolar RF excitation applied

at νRF = 2ν+ + 2ν− = 2νc is dependent upon the initial conditions of the ion

motion. This is in contrast to the quadrupolar excitation at νc where such a
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Figure 4.23. Beat frequency as a function of ρ−,o. The experimental curve is extracted

from data shown in Fig. 4.22. The σρ−,o = 0.13 mm curve is a simulation based on the

parameters extracted from the simulation shown in Fig. 4.19. The second simulated

curve was generated using identical parameters, except σρ−,o = 0.0325 mm.

dependence does not exist as long as ρ+,o = 0.

• The octupolar resonance profiles have a radically different shape than their

quadrupolar counterparts.

• For certain initial conditions it is possible to reduce the width of octupolar res-

onances by a factor of 10 or more beyond what is achievable with a comparable

quadrupolar resonance performed with the same excitation time.

We have verified a factor of 9 gain in resolving power over the standard quadrupolar

excitation scheme. According to the simulation results presented in Fig. 4.17, a factor

of four reduction in ρ−,o would yield a factor of 13 gain without the broad resonant

structure observed in Fig. 4.24. We have also shown that the initial conditions of the

ion cloud determines the ultimate resolving power that can be achieved. Simulations

show even higher resolving powers are possible, provided that the ions can be prepared
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Figure 4.24. Several octupolar resonance profiles of 23Na+ with Trf = 50 ms for

various values of Urf (data points) compared with simulated results (solid lines).

appropriately. Although more work is required to assess the absolute accuracy of

mass measurements performed with octupolar excitations, a promising first step has

been taken towards the implementation of octupolar resonances in high-precision

mass measurements. Motivated by the phase dependence exhibited by the octupolar

excitation, we have also revisited the quadrupolar excitation and confirmed a phase

dependence of resonance line shapes.
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CHAPTER 5

Development and detailed study of

the Lorentz steerer

+

.

!E!B

..

.

.

.

Figure 5.1. Cartoon illustrating a positively-charged ion passing through a region

of perpendicular electric and magnetic fields, resulting in an off-axis capture in a

Penning trap.

As mentioned in Sec. 3.1.3, before the application of a quadrupolar (or octupolar)

field it is necessary for a trapped ion to be executing some initial motion. Normally

this is achieved by first applying a dipole RF field at frequency ν+ to drive the ion’s

magnetron motion. After the ion has been driven out to some radius the quadrupolar

excitation will drive a beating between the magnetron and cyclotron motions. This
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dipolar excitation requires some finite amount of time, on the order of 10 ms, to

perform. Additionally, the RF excitation must be phase locked to the time of ion

capture to ensure that for each individual measurement that the value of ρ−, previous

to the application of the quadrupolar RF field, is the same.

Since every millisecond is precious when making mass measurements on short-

lived species, a method that could prepare the ions in-flight would be very desirable.

The Lorentz steerer accomplishes this by creating an electric dipole field before the

Penning trap, but well within the strong magnetic field region. The ions experience

a net force in the E×B direction which results in an off-axis capture in the Penning

trap, resulting in an initial magnetron motion and eliminating the need for an initial

dipolar excitation. This process is illustrated schematically in Fig. 5.1

5.1 Charged particle motion in a region of perpen-

dicular electric and magnetic fields

To begin we will consider the motion of a particle as it travels through a region of

perpendicular electric and magnetic fields. Let ~B = Bẑ and ~E = Eŷ. The equations

of motion in the radial plane which must be solved are

~̈r =
q

m
(Eŷ + ~̇r ×Bẑ). (5.1)

Consider a particle initially at the origin traveling in the ~z direction with no initial

radial energy. The velocity in the radial plane and the radial displacement is then

ṙ(t) =

√
2E

B

√
1− cos(ωct) (5.2)

r(t) =
E

B2q

√
2m2[1− cos(ωct)] + [Bqt]2 + 2mBqt sin(ωct), (5.3)
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where E is the strength of the electric field, q is the ionic charge, m is the mass, B is

the strength of the magnetic field and ωc = (q/m)B. For large values of t,

lim
t→∞

r(t) =
E

B
· t = v̄drift · t, (5.4)

where v̄drift is the average drift velocity of the ions. The displacement after traveling

a distance L is proportional to t = L/vz ∝
√

m.

For example, Fig. 5.2 shows the radial displacement as a function of time for

an A = 40, singly-charged particle as it travels through a region of perpendicular,

uniform electric, E = 28.6 V/m, and magnetic, B = 9.4 T, fields. This displacement

is accompanied by a pickup of cyclotron motion which leads to the observed non-

linearity. Fig. 5.3 shows the square of the radial velocity, which is proportional to
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Figure 5.2. Radial displacement as a function of time for a charged particle passing

through a region of uniform, perpendicular electric and magnetic fields.

the radial energy, of a particle as a function of ωct. From Eq. 5.2 it can be seen

that the radial velocity as a function of time scales as 1-cos(ωct). If we consider the

particle to enter and exit the electric field suddenly, then upon exit it would have

a radial velocity between 0 and
√

2E/B, depending upon the time of exit. Having

left the electric-field region the ion performs a cyclotron motion with a radius that
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depends on the time of exit. For the example parameters used here the maximum

radial velocity is Vr = 4300 m/s, which corresponds to a radial energy Kr = 5 eV

and a radius of the cyclotron motion of ρ+,o = 0.17 mm.
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Figure 5.3. Square of the radial velocity as a function of ωct of a charged particle

after it has travelled through a region of uniform, perpendicular electric and magnetic

fields.

5.2 Lorentz steerer design

[Academic use only] C:\pf\Ringle.dgn  10/30/2006 04:12:26 PM
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Field
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Figure 5.4. Isometric section of the Lorentz steerer and nearby optics elements. The

dashed line is the axis. Typical operating voltages are listed.
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The design of the Lorentz steerer is remarkably simple, being four segments of

a cylinder quartered in the radial plane. Fig. 5.4 shows a design drawing of the

injection optics of the LEBIT Penning trap mass spectrometer which contains the

Lorentz steerer. The Lorentz steerer is located just upstream of a field termination

plate, and after a series of drift tubes. The steerer electrode system is 16.5 mm in

length and 28 mm in diameter with 3 mm gaps between the four segments. Typical

operating voltages are listed. These voltages were also used in SIMION simulations

discussed later.

x

y

-U1

+U1-U2

+U2

Figure 5.5. Schematic layout of the Lorentz steerer’s electrode configuration. Each

pair of diametrically opposing electrodes can be used to create an electric dipole field.

Both pairs can be used simultaneously to orient the dipole field in space.

Fig. 5.5 shows a simple sketch of the electrode layout of the Lorentz steerer. Each

pair of diametrically opposing electrodes can be used to generate an electric field

with a dominant dipolar component. Changing the values of U1 and U2 such that√
U2

1 + U2
2 remains constant results in a constant magnitude of the dipole field, but

changes its orientation in space. This imparts a constant radial displacement with an
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adjustable angle to ions passing through the steerer.

5.3 Lorentz steerer beam calculations

5.3.1 Ion cloud deflection simulations
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Figure 5.6. Contour plots of the potential at the mid-plane of the Lorentz steerer

given by a.) the analytical solution and b.) the SIMION calculation for U1 = 0 V

and U2 = 1 V (see Fig. 5.5). Within a circle of radius of 6 mm the relative difference

of the potentials obtained by both methods is less than 4×10−3.

The ion deflection in the Lorentz steerer has been calculated both analytically and

numerically. While the magnetic field is assumed to be homogeneous, the electric field

inside the steerer is required. One method is to use SIMION [50] to numerically solve

the Laplace equation in a geometry based on the design drawing shown in Fig. 5.4

and to trace the ions through the electric and magnetic fields. Another method to

obtain the electric field is to analytically solve the electric potential for an infinite

quartered cylinder. This potential is given by

U(r, φ) =
U1
π

[
arctan

(
2Rr sin(φ)

R2−r2

)
− arctan

(
2Rr cos(φ)

R2−r2

)]
+

U2
π

[
arctan

(
2Rr sin(φ)

R2−r2

)
+ arctan

(
2Rr cos(φ)

R2−r2

)]
,

(5.5)
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where R is the radius of the cylinder and U1 and U2 are the applied voltages. In

order to account for the finite length of the Lorentz steerer the analytic potential

given by this equation can be multiplied by a function f(z). From a comparison with

the potential obtained with SIMION a function f(z) = e(−z/α)4 with α = 1×10−2

m was found to fit the potential along the axis well. Fig 5.6 plots the mid-plane

potentials obtained from the SIMION calculation and the analytical solution for U2

= 1 V and U1 = 0 V. Within a 6 mm radius from the center of the steerer the

potentials agree within <4×10−3.

A series of simulations was performed, using both the analytical and the SIMION

potentials, to study the properties of the actual Lorentz steerer. In the case of the

SIMION simulations the geometry and potentials as shown in Fig. 5.4 were used. The

initial ion distribution contained 500 ions and was centered on the axis of the Lorentz

steerer. The width of the initial distribution in the radial direction was 0.1 mm. The

ions started their flight in Tube 1, shown in Fig. 5.4, with an axial energy of 2 keV

and no radial energy. After passing through the Lorentz steerer their radial positions

were recorded at the location of the field plate.

Fig. 5.7 shows the mean radial displacement as a function of the potential ap-

plied to U2 obtained from the SIMION simulations. As expected, the average radial

displacement is proportional to U2. The slopes of these lines represent a steering

strength which depends on the mass and axial energy of the ion passing through the

Lorentz steerer. Fig. 5.8 shows steering strength values obtained from the SIMION

simulation (like those shown in Fig. 5.7). The solid line is the result of a calculation

using the analytical solution for the potential of the quartered cylinder. There is good

agreement between the SIMION simulations and the calculations.
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Figure 5.7. Results of SIMION simulation showing mean radial displacement (data

points) as a function of Lorentz steerer voltage (U2) for three different masses. Lines

are the results of a linear regression analysis.

5.3.2 How to achieve minimum cyclotron motion?

When injecting ions into a Penning trap it is important to introduce as little radial

energy in the process as possible, as non-zero values of the initial cyclotron radius,

ρ+,o, can introduce asymmetries in the resonance line shape [51] and reduce the mag-

nitude of the resonance signal. Fig. 5.9 shows the radial displacement as a function of

time of an A = 70, singly-charged ion for two different of axial energies. The steering

voltage was adjusted to result in the same final radial displacement. The curves were

calculated using the analytical potential. The solid line is the result for an ion with

K = 200 eV of axial energy and a steerer voltage U2 = 400 V. The dashed line is the

result for an ion with K = 50 eV of axial energy and a steerer voltage U2 = 200 V.

The K = 200 eV ion exits the electric field region after ≈ 1.25 µs. The oscillations

are due to the induced cyclotron motion (see Sec. 5.1), in this case leading to an

amplitude ρ+,o ≈ 0.1 mm. The slow ion exits the electric field region after ≈ 2.5 µs

and achieves the same mean radial displacement as the fast ion, but with a cyclotron
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Figure 5.8. Steering strength as a function of mass number of a singly-charged ion

with K = 200 eV axial energy determined from SIMION simulations. The solid line

is obtained using the analytical solution for the potential.

amplitude of ρ+,o ≈ 2 µm. Qualitatively this can be understood upon closer inspec-

tion of Eq. 5.2. Slower ions require more time to pass through the Lorentz steerer and

therefore require a smaller electric field strength E to drive them to the same final

radial displacement as a faster ion. For the system employed in the LEBIT Penning

trap mass spectrometer an axial energy of less than 75 eV reduces the radial energy

gain to sub-eV levels for the maximum applied steering voltages of 400 V.

5.4 Lorentz steerer measurements

39K+ ions were created with a plasma ion source and delivered as short pulses using

the LEBIT beam cooler and buncher [37]. After passing through the Lorentz steerer

the ions were captured in the Penning trap. If the ions enter the trap off axis then

upon being trapped they perform an initial magnetron motion. Application of a
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Figure 5.9. Calculated radial displacement as a function of time for an A = 70, singly-

charged ion as it travels through, and out of, the Lorentz steerer. The solid line is for

a beam with K = 200 eV axial energy. The dashed line is for a beam with K = 50

eV axial energy. The steering voltages have been adjusted to result in the same final

radial displacement.

π-pulse with frequency νrf ≈ νc can be used to completely convert the magnetron

motion into cyclotron motions as discussed above. The accompanied increase in radial

energy which can be detected via measurement of the time-of-flight of the ions [44]

from the trap to a detector located outside of the magnetic field. By taking the radial

energy gain and the known electric and magnetic fields traversed by the ion on its

path to the detector, the value for the initial magnetron amplitude can be determined.

Fig. 5.10 (top) shows the time of flight of ejected 39K+ ions as a function of voltage

applied to the Lorentz steerer electrodes after capture in the trap and subsequent

quadrupolar excitation for a time Trf = 50 ms. U2 was held at a constant 84 V

for the following reasons. Due to imperfections in the injection of the ions into the

magnetic field of the Penning trap spectrometer steering voltages of U1 = U2 = 0

do not necessarily correspond to injection on the trap axis, and an initial steering by

the Lorentz steerer may be required. The values U1,2 = (-24 V, 84 V) correspond to
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the maximum time of flight (and minimum initial magnetron amplitude). For ease

of discussion we introduce offset-corrected steering voltages such that U1,2’ = (0 V,

0 V) corresponds to the maximum time of flight observed for 39K+ ions.

Fig. 5.10 (bottom) shows the values of the initial magnetron amplitude calculated

from the time-of-flight data in Fig. 5.10 (top) as a function of U1’. The solid lines il-

lustrate that the size of the magnetron radius ρ−,o of the captured ions is proportional

to U1’, as expected from the simulation results shown in Fig. 5.7.

Fig. 5.11 shows the results for the initial magnetron radius ρ−,o as a function

of the true voltage U1 obtained from measurements with three different ion species.

The solid lines are linear fits to the data. The numbers in parentheses are the slopes

of the lines which correspond to steering strength values (in µm/V). According to

Eq. 5.4, the displacement respectively steering strength is proportional to
√

m for

ions with the same axial velocity. This is reflected in the experimental data and the

measured steering strength values for 23Na and 39K also agree with the calculated

values shown in Fig. 5.8.

The Lorentz steerer should allow for precision control not only of the amplitude

of the magnetron motion, but of the initial phase, as well. In order to investigate

how well this control works, an experiment was performed according to the following

procedure. 39K+ ions were placed off axis into the trap using the Lorentz steerer,

resulting in an initial magnetron radius. Next, a dipolar RF field, at frequency ν−

which is phase-locked to the time of ion capture, was applied. Depending on the

phase of the RF field the excitation of the magnetron motion will result in a larger

or smaller final magnetron radius. Using a π-pulse with νrf = νc and the time-of-

flight measurement allows the amplitude of the magnetron motion after the dipolar

excitation to be determined. Fig. 5.12 presents the results of such a measurement.

The magnetron amplitude ρ− of 39K+ ions is plotted as a function of the initial

phase of the dipolar RF field for four different Lorentz steerer settings. Each setting

89



corresponds to a magnetron phase change of 90◦ from the previous setting and should

provide the same steering strength. The data were fit with a sinusoidal function (solid

line), ρ−(φ) = ρ−,o + ∆ρ−·sin(φrf - φ−,o), where ρ−,o is the initial magnetron

amplitude introduced by the Lorentz steered, ∆ρ− is the maximum amplitude change

due to dipolar excitation, φrf is the initial phase of the RF, and φ−,o is the initial

magnetron phase. The results, given in Table 5.1, show that the initial magnetron

amplitudes, ρ−,o, due to the effect of the Lorentz steerer alone, agree to within a few

percent. The phase change of 90◦ from one case to the next is confirmed to within

±2◦. Both of these results together confirm that the ions were moved on a circle

in the radial plane of the Penning trap and demonstrate the precision control of the

initial ion placement in the trap available with the Lorentz steerer.

Table 5.1. Summary of the results of a fit of a sinusoidal function to the data presented

in Fig. 5.12. U1,2’ are the offset-corrected voltages applied to the Lorentz steerer,

ρ−,o is the initial magnetron amplitude given by the fit, φ−,o is the initial magnetron

phase given by the fit, and ∆φ = |φi
−,o−φi+1

−,o | is the phase advance from one setting

to the other.

U1’ [V] U2’ [V] ρ−,o [mm] φ−,o [deg] ∆φ [deg]

1 -100 0 0.94(2) 102(1) 87(2.2)

2 0 +100 0.96(2) 189(2) 93(2.2)

3 +100 0 0.93(2) 282(1) 91(2.2)

4 0 -100 0.96(1) 13(2) 89(2.2)

A new technique for the precise manipulation of ion injection into a Penning

trap has been developed and tested. It is used routinely in LEBIT’s Penning trap

mass spectrometer. Compared to the alternative method of magnetron preparation

via dipolar excitation, it is less complicated and requires no additional preparation

time. The Lorentz steerer offers complete control over the injection process and 360◦

placement of an ion cloud in the radial plane of a Penning trap. We expect that such
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a Lorentz steerer is a likely successor to dipolar excitation for magnetron preparation

in future Penning trap systems. It is already planned to be used in the TITAN [52]

Penning trap mass spectrometer, presently under construction.
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Figure 5.10. Top: Time of flight of 39K+ ions ejected from the trap after being

subjected to a quadrupolar RF field with a frequency νc as a function of U1 with U2
= 84 V.

Bottom: Initial magnetron amplitude, ρ−,o, as calculated from the time-of-flight data

shown above. U1,2’ are offset-corrected values of U1,2 such that for U1,2’ = (0 V, 0

V) the value of ρ−,o is minimized. Lines are to guide the eye and to illustrate the

linearity of steering with applied voltage.
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CHAPTER 6

Mass Measurements of Stable

Krypton Isotopes

Krypton beams from the test ion source have been used extensively to characterize the

performance of the LEBIT Penning trap mass spectrometer in the regime of medium

heavy masses. Mass measurements utilizing 86Kr as a reference mass, measured to

high precision by SMILETRAP [53], were performed on 78,80,82,83,84Kr, revealing

somewhat surprising results [54].

Initial LEBIT measurements had indicated that the AME03 [2] mass values of

83,84Kr were too large. To explore this discrepancy in greater detail an additional

series of measurement were performed in which 4-5 cyclotron frequency measurements

were made of 78,80,82Kr+ and 11 cyclotron frequency measurements were made of

83,84Kr+. Each of these individual measurements was bracketed by a cyclotron fre-

quency measurement of the reference ion, 86Kr+. The time separating each reference

measurement was approximately half an hour. During the measurement of any spe-

cific Kr isotope, possible contamination from the other isotopes was cleaned away

via dipolar excitation as discussed in Section 3.1.3. Table 6.1 provides the frequency

ratios obtained in the run with their statistical uncertainties in parentheses, and an
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additional uncertainty of 1×10−8, added in quadrature, in curled brackets. This

additional uncertainty accounts for any additional systematic uncertainties that we

have not been able to rule out.

Using the known mass value for 86Kr and the frequency ratios obtained here,

mass values for 78,80,82,83,84Kr were obtained using an analysis application, SOMA,

discussed in Appendix B, which I created to calculate final mass values from fits of

the cyclotron resonances.

The final mass values are listed in Table 6.2 together with the AME03 [2] value

and the difference between these values. This difference is shown as a function of

mass number in Fig. 6.1.

Figure 6.1. The difference between mass values measured with LEBIT and AME03

[2] for the stable krypton isotopes. The error band corresponds to the uncertainty of

the literature values, the error bars to the uncertainty of the mass values determined

in this work.

Excellent agreement is observed for the three isotopes 78,80,82Kr within measure-

ment uncertainties. The mass values for these isotopes are known with very high

precision and are dominated by data from other Penning traps. A significant but
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equally large deviation is observed for 83Kr and 84Kr for which the masses have been

determined by many different and partially inconsistent data (discussed below). The

observed averaged relative deviation of the LEBIT results from the AME03 values is

less than 6×10−9, if 83Kr and 84Kr are excluded. As a part of this measurement se-

ries, mass comparison of 86Kr+ and 39K+ yields a mass-dependent systematic effect

of less than 10−9/u.

An analysis of the data used in the Atomic Mass Evaluation [2] shows that mass

values for 83Kr and 84Kr are determined via a network of Q-values from decays and

reactions combined with data from doublet mass measurements. The mass values

for 83Kr and 84Kr are linked strongly by an (n,γ) reaction [55] which has an uncer-

tainty of 0.3 keV. The Q-value agrees within 1.5 σ with the value calculated from the

LEBIT data. The absolute mass of 84Kr is determined primarily by the Q-value of

the β-decay 84Rb(β+)84Kr [56, 57], and the result of a doublet mass spectrometer

measurement, C6H12-84Kr [58]. The mass of 83Kr is primarily determined by the

link to 84Kr, but also by a doublet mass measurement C6H11-83Kr [58]. Two recent

measurements of 84Kr are not included in the AME03. One was made at Florida

State University, FSU [59], and another [60] at ISOLTRAP [61].

Fig. 6.2 displays the deviation of mass excesses of 83,84Kr, as determined by

individual measurements, from AME03 values. The three measurements made using

Penning traps, FSU, ISOLTRAP and LEBIT, of 84Kr agree very well. The doublet

measurements of both krypton isotopes in question also agree with the Penning trap

measurements, but may have a slight systematic bias towards heavier masses. The

mass excesses calculated from the results of the β decay measurements are obtained

by using the AME03 values of the parent nuclei. The fact that they do not agree well

with the Penning trap measurements could indicate that there is one or more incorrect

input data used in the AME03 in the region of 84Rb and 83Br. Assuming that the

AME03 mass values for 83Kr and84Kr are suspect, this provides great confidence in
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Table 6.1. Cyclotron frequency ratios R = ν(AKr+)/ν(86Kr+) obtained in this

work. Column 1 contains the atomic number of the krypton isotope. Column two

contains the weighted average of the measured ratios with the statistical uncertainties

in parentheses and an additional 1×10−8 uncertainty, added in quadrature, in curled

brackets.

A R̄

78 1.102 544 461(9){14}

80 1.075 006 812(9){14}

82 1.048 797 277(9){14}

83 1.036 139 857(9){14}

84 1.023 824 213(8){13}

Table 6.2. Mass excess values ME for krypton isotopes with mass number A as

obtained from the measured frequency ratios and compared to their AME03 [2] values.

A MELEBIT keV MEAME03 keV ∆ME keV

78 -74179.4(0.9) -74179.7(1.1) 0.3(1.4)

80 -77892.4(1.0) -77892.5(1.5) 0.1(1.8)

82 -80590.4(1.1) -80589.5(1.8) -0.9(2.1)

83 -79991.2(1.0) -79981.7(2.8) -9.5(3.0)

84 -82438.8(1.0) -82431.0(2.8) -7.8(3.0)
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CHAPTER 7

High-Precision Mass Measurement

of 38Ca and its Contribution to

CVC Tests

The Conserved Vector Current (CVC) hypothesis asserts that the vector part of the

weak interaction is independent of the nuclear interaction. This means that the vec-

tor coupling constant, Gv, is truly a constant and does not require renormalization.

This constant, when combined with the purely leptonic muon decay constant, GF ,

determines the up-down matrix element, Vud, of the CKM quark-mixing matrix.

Measuring the ft values of super-allowed 0+→ 0+ transitions allows Gv to be deter-

mined. A precise determination of Vud has been, and continues to be, an important

component in the test of the unitarity CKM quark-mixing matrix and the search for

physics beyond the Standard Model. In order to determine the ft values the decay

half life, the branching ratio for the 0+ → 0+ transition, and the QEC values need

to be known. Small radiative and isospin-breaking corrections have to be applied to

determine a corrected Ft value that can then be used for the test of CVC and the

determination of Vud.
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To date there are 12 well-known CVC test candidates that provide an average Ft

value with a relative uncertainty of 3.7×10−4, as presented in a recent survey [1].

Nine of the candidates are close to the valley of stability and their QEC values were

measured in reaction experiments. I will refer to these as classical candidates. Penning

trap measurements of 0+ → 0+ emitters now allow us to determine high-precision

QEC for isotopes which were inaccessible in the past. Three such species, 22Mg

[62, 63], 34Ar [64] and 74Rb [65], have recently been included in [1]. The addition of

more candidates is important for testing the CVC hypothesis and for benchmarking

the calculation of the theoretical corrections. Assuming CVC is true, the accuracy of

the theoretical corrections to the ft values can be tested and their calculation can be

improved. Nuclides with large theoretical corrections include the even-Z, Tz = −1

nuclei with 18 ≤ A ≤ 42 and odd-Z, Tz = 0 nuclei with A ≥ 62. 22Mg, 34Ar, 74Rb,

and 38Ca, are among them. Penning trap mass measurements can also be used with

advantage to revisit the classical cases. A Penning trap measurement of 46V [66] with

the CPT spectrometer at ANL found a significant deviation from the literature QEC

value of the 0+ → 0+ decay of this nuclide, previously determined by an average of

reaction measurements. A recent measurement with JYFLTRAP [67] validated CPT’s

result for 46V. The JYFLTRAP group also measured the classical candidates 42Sc,

26Alm and showed that speculations made in [66], that more reaction experiments

might be wrong, could not be substantiated.

7.1 Experimental procedure

The data presented in this thesis were taken during two separate experiments in which

the same primary beam was utilized. The first experiment was dedicated to studying

the stopping and extraction of Ca ions from the gas cell, mass separation techniques,

and identification of 38Ca2+ ions in the Penning trap. A primary beam of 40Ca at
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140 MeV/u was produced by the CCF and reacted with a 460 mg/cm2 beryllium

target. The secondary beam was purified by the A1900 fragment separator [35] and

delivered to the gas cell as a cocktail beam consisting of 50% 38Ca, 35% 37K and

15% 36Ar. A series of range measurements were performed to study the stopping

distribution of ions in the gas cell. A Si detector which can be positioned in the beam

path was used to identify the ions passing through the gas cell by time of flight and

energy loss. By varying the angle of the glass degrader the energy loss experienced

by the ions passing through the degrader changes. Scanning the degrader angle and

measuring the activity collected on the Si detector with and without buffer gas in the

gas cell provided information on the fraction of the beam which was brought to rest

in the gas cell.

After the optimal degrader angle was found the next step was to determine the

chemical form of the 38Ca activity extracted from the gas cell. Using the mass

filter the activity was collected on the needle electrode as a function of the mass-

to-charge ratio, A/Q, and the results are shown in Fig. 7.1. Peaks in the measured

activity appeared at A/Q values of 28, 37, 46 and 55. This pattern is consistent

with water molecules attached to 38Ca2+ ions to form [38Ca(H2O)n]2+, with n =

{1,2,3,4}. The appearance of water adducts was not particularly surprising due to the

relatively-high water partial pressure in the gas cell resulting from an earlier venting

and cleaning of the gas cell electrodes. The Q = +2 charge state is also to be expected

as calcium has a second ionization energy of only 12 eV, while the first ionization

energy of helium is 25 eV [68]. We chose the ions with A/Q = 28, corresponding to

38Ca(H2O)2+, to be transported to the cooler/buncher. It was found that collisions

of the 38Ca(H2O)2+ ions with the helium gas in the cooler were energetic enough to

dissociate the 38Ca(H2O)2+ ions into its constituent components, 38Ca2+, A/Q =

19, and H2O. This breakup allows for a very efficient suppression of undesired stable

molecular ions with A/Q = 28 which were transported along with the 38Ca(H2O)2+
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Figure 7.1. Activity as a function of the mass-to-charge ratio A/Q of ions extracted

from the gas cell and selected with the mass filter. A 38Ca secondary beam was

stopped in the gas cell. Lines are to guide the eye. The radioactive molecular ions

assigned to these peaks are indicated.

ions. The probability of a breakup of the contaminants into fragments with A/Q =

19 was found to be small. Therefore, the time-of-flight mass separation using the

fast beam gate between the Penning trap and the cooler/buncher was very efficient.

A few cyclotron resonance measurements of 38Ca2+ were performed in the Penning

trap during the first run to evaluate if a precision mass measurement of 38Ca would

be possible.

The second run was dedicated to the high-precision mass measurements of 37,38Ca.

Fig. 7.2 shows one of the 38Ca2+ measurements taken during the second run. In this

measurement an RF excitation time Trf = 300 ms was used, which resulted in a

resolving power of R = 2×106. A total of twenty-one resonance curves were ob-

tained for 38Ca2+. High-level contaminating molecules were identified by measuring
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cyclotron frequencies over a broad frequency range and using SCM Qt, described in

Appendix C, to determine the molecules. In all of the 38Ca2+ measurements, with

the exception of the first seven measurements in this run, all conceivable contami-

nants were cleaned via dipolar excitation and the fast beam gate was used to suppress

possible contaminating species with different A/Q values. Additionally, the number

of ions simultaneously stored in the trap was kept at about 1 ion/cycle to avoid

frequency shifts due to interactions with possible contaminants that were not being

cleaned. Taking the MCP efficiency into consideration this was achieved by keeping

the average number of ions detected per cycle to ≤ 0.4.

H3O+ ions from the gas cell were chosen as the reference species to calibrate

the magnetic field. Alternating measurements of 38Ca2+ and H3O+ were made.

Because H3O+ has the same A/Q value as 38Ca2+ it is an ideal reference species since

it minimizes mass-dependent systematic effects. The same precautions were taken

with for H3O+ cyclotron measurements as with the 38Ca2+ measurements, such as

cleaning of contaminants, single ion storage, etc. Reference measurements were taken

on the order of every 20 minutes. The twenty one 38Ca2+ measurements taken over

a period of 22 hours were necessary to achieve the mass uncertainty required for a

CVC test candidate. Each measurement consisted of the detection of approximately

300 ions.

7.2 Experimental results

As mentioned in Sec. 3.1.5, the primary experimental result of a mass measurement

using the LEBIT mass spectrometer is the ratio, R = νc/νc,ref , of the measured

cyclotron frequency, νc, of the ion of interest and that of the reference ion, νc,ref .

Each νc measurement should be bracketed by two νc,ref measurements which can be

used to make a linear interpolation of the magnetic field. The cyclotron frequencies

104



Figure 7.2. Cyclotron resonance of 38Ca2+ measurement taken with an excitation

time Trf = 300 ms. The solid line is a fit of the theoretical line shape [3] to the data.

and their statistical uncertainties are determined by fitting the measured resonance

curves using a theoretical line shape [3], as shown in Fig. 7.2. Other sources of

uncertainty to be considered will be discussed later.
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g

Figure 7.3. Deviation of individual frequency ratio measurements, R = νc/νc,ref ,

from the mean. The error bars correspond to the statistical uncertainty.

In the first run, which served as a feasibility test, 38Ca2+ was identified in four

cyclotron frequency measurements during the last 16 hours of the run. These data

are not used in the final mass analysis since contaminants were not identified and

cleaned. The fast beam gate had also not yet been installed, and the time separating
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the reference measurements was on the order of hours.

An RF excitation time Trf = 200 ms was used only on the first resonance taken

during the second run. The remaining resonances were obtained using an RF exci-

tation time Trf = 300 ms. The first two resonances were also taken with the fast

beam gate off and therefore exhibit a higher average rate of detected ions per cycle,

n = 0.27, 0.37 compared to a rate of n = 0.07 − 0.22. During the 14 final measure-

ments the cleaning scenario was in place and nothing was changed. Fig. 7.3 displays

all of the frequency ratios obtained during the second 38Ca2+ run. The mean value

of all data taken during the second run, including those with larger count rates and

incomplete cleaning is R̄ = 1.001 592 097(3).

7.3 Uncertainty analysis

Experimental data obtained in various online and offline experiments were used to

determine possible sources of uncertainty. The online data were analyzed for uncer-

tainties associated with nonlinear magnetic field effects, systematic frequency shifts

due to ion-ion interactions, and relativistic effects. The offline results include a mass

measurement of 40Ar2+ using 23Na+ as a reference (both available from the test ion

source), to test for any unforeseen uncertainties associated with mass measurements

of doubly charged ions.

7.3.1 Analysis of online results

Magnetic field strength calibration

The linear interpolation of the magnetic field assumes that nonlinear magnetic field

changes are insignificant. The greater the time span between reference measurements

the greater the probability that nonlinear changes in the magnetic field become sig-

nificant. Fig. 7.4 shows the magnetic field as a function of time, as determined
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Figure 7.4. Variations of the magnetic field and atmospheric pressure vs. time. Data

points are the relative change in the magnetic field as obtained from the reference

measurements taken over the course of the second run. The Wunder line are pressure

readings (obtained from a local weather station) near East Lansing, MI. The Setra

line is pressure data taken with a precision barometer in the lab.

from cyclotron resonance measurements of the reference molecule, H3O+, over the

course of the second run. The solid lines show the measured atmospheric pressure

as a function of time obtained from a weather station and from a high-precision,

absolute-pressure gauge brought into operation during the run. One can easily see

that the magnetic field strength and the atmospheric pressure are correlated, an effect

common to the type of superconducting magnet system used. Atmospheric pressure

changes affect the internal pressure of the superconducting magnet’s liquid helium

bath. These pressure changes within the cryostat alter the boil-off rate of the helium,

changing the temperature of the bath. It is suspected that this change in tempera-

ture changes the magnetic susceptibility of materials used in the construction of the
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superconducting coils [69, 70], thus changing the total magnetic field strength. The

atmospheric pressure dependence has since been removed by maintaining a constant

pressure in the helium cryostat using an absolute-pressure gauge and electropneu-

matic valve operated on a PID loop. The internal pressure is now stable to about 10

ppm.

The uncertainty of the ratio of measured cyclotron frequencies due to the appar-

ent nonlinearity in the temporal change of the magnetic field has been analyzed. The

measured reference data were fitted with a polynomial function over the time span in

which the 38Ca2+ measurements were performed. Reference points were then gen-

erated for every minute along the fit line. Using these data points the deviation of

the interpolated magnetic field strength Bint from the actual magnetic field strength

B were determined. Choosing a time ∆t between two reference measurements and

stepping through the points the deviation ∆B = B - Bint was recorded. From the

distribution of ∆B and including the statistical uncertainty of the cyclotron frequency

determination a standard deviation s(∆B) was obtained. Fig. 7.5 shows the variation

of s(∆B)/B, as a function of the time ∆t between any two reference measurements.

For times ≤ 1 hr, s(∆B)/B was found to be constant and is dominated by the statis-

tical uncertainty of the cyclotron frequency measurement.

In order to obtain an estimate of the effect of non-linearities in the magnetic

field changes a maximum time separation ∆t = 1.5 h was chosen (note that 38Ca

reference measurements were performed every 20 min). A linear fit to the data at

times less than 1.5 hr resulted in a slope of 2(1)×10−10 hr−1. The largest uncertainty

yields a value of 3×10−10 as an estimate for the maximum systematic error, which

is negligibly small.

108



0 1 2 3 4 5

!T [hr]

5.0E-09

1.0E-08

1.5E-08

2.0E-08

s
(!

B
)/

B

Figure 7.5. The magnetic field strength nonlinearity parameter, s(∆B)/B, as a func-

tion of ∆t between reference measurements.

Effects of contaminating ions and background events

Even though the number of detected ions per cycle was less than one for all of the

38Ca2+ measurements in the second run, the first two 38Ca2+ measurements in

the second run did exhibit higher average counts per cycle. Fig. 7.6 displays the

count rate information for the second 38Ca run. The average number of counts/cycle

for all of the measurements of 38Ca2+ ≈ 0.15, while the maximum was ≈ 0.37.

These measurements were sorted into count rate bins and used to calculate the mean

frequency ratios. This procedure allowed identification of frequency shifts associated

with residual contamination. Table 7.1 presents the mean frequency ratios obtained

for the four bins. The frequency ratios in the first three bins, containing 19 of the

21 measurements, agree perfectly. The bin containing the measurements with the

highest count rate exhibits a possible shift towards lower frequencies. A shift towards

lower frequencies, i.e. heavier masses, has been found previously to be indicative of

the presence of contaminating masses [71]. These two measurements with the highest

count rate are among the first seven measurements of the second run. Evidence
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Figure 7.6. Average counts/cycle for each 38Ca2+ measurement made in the second

run. The first seven measurements have been excluded from the final analysis due to

possible contamination and high count rates (see text).

of contamination disappeared after cleaning the possible contaminants via dipolar

excitation was initiated. Therefore, we excluded the first seven measurements from

the final mass analysis. A linear regression of the mean frequency ratios obtained

from the three bins with the lowest count rates yields an additional uncertainty of

4×10−9 due to possible contamination.

Relativistic effects

Relativistic mass shifts will always occur to some degree in the cyclotron frequencies.

As long as both the species of interest and the reference mass are a mass doublet and

have the same initial magnetron radius, ρ−,o, then the relativistic effects cancel in

the determination of the frequency ratio. This should be the case as both 38Ca2+

and H3O+ have the same A/Q = 19. The ion optics for the injection of the ions into

the trap should be the same, and the ions should be captured into a magnetron orbit

with the same amplitude. The initial magnetron radius is one of the parameters of the
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Table 7.1. Count rate information for each 38Ca2+ measurement of the second run.

The bins are average counts/cycle. N is the number of measurements included in the

bin.

Bin N R = νc
νc,ref

x≤0.11 5 1.001 592 097(11)

0.11<x≤0.15 8 1.001 592 098(10)

0.15<x≤0.20 6 1.001 592 097(12)

0.20<x 2 1.001 592 113(19)

theoretical line shape that is fitted to the resonance data. Fig. 7.7 shows the results

for the initial magnetron radius for each H3O+ and 38Ca2+ measurement. The

average values for the initial magnetron radii obtained are ρ̄−,o = 1.47(1) mm for the

H3O+ and ρ̄−,o = 1.46(10) mm for the 38Ca2+ and agree within the uncertainties.

The uncertainty in the value of the initial magnetron radius for the H3O+ is smaller

due to the greater number of counts. Taking the uncertainty in the difference of the

initial magnetron radii into consideration a maximum effect on the frequency ratios

was calculated to be 3×10−9.

7.3.2 Independent precision test with 23Na+ and 40Ar2+

Effects Due to Higher Charge States

A mass comparison of the stable, well-known ions 23Na+ and 40Ar2+ ions was per-

formed as an independent test for possible systematic errors in the mass comparison

of singly-to-doubly charged ions. The masses of these two nuclides are known with

sub-ppb precision and are nearly a mass doublet which minimizes mass-dependent

effects. Furthermore, 40Ar has a second ionization energy of ≈ 28 eV [68], which is

more sensitive to systematic charge exchange effects as compared to Ca which has a

second ionization energy of only ≈ 12 eV.
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Figure 7.7. Initial magnetron radii, ρ−,o, for 38Ca2+ and H3O+ as determined from

a theoretical fit to the cyclotron resonances.

Both 23Na+ and 40Ar2+ ions were obtained from the test ion source of LEBIT.

Adjustments of the extracted beam current and the opening time of the ion source

beam gate allowed the number of detected ions after the Penning trap to be main-

tained at < 1 count/cycle as in the calcium experiments. Also, a continuous dipolar

cleaning of 40Ar+ and He+ was employed to remove potential charge-exchange prod-

ucts as they were created. Ten measurements were made in this test run, yielding

a frequency ratio R = 1.150 574 623(5) resulting in an insignificant deviation of

3(5)×10−9 from the ratio obtained from literature [2] values.

7.4 38Ca mass evaluation

A theoretical line shape [3] was fit to the 38Ca2+ and H30+ cyclotron resonances,

and the resulting fit files were entered into SOMA. Discarding the first seven mea-
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surements of 38Ca2+ of the second run and using the remaining 14 we obtain R =

1.001 592 097(3). Within rounding the same value obtained using all of the 38Ca

measurements. As an additional systematic error we quadratically add the sum of

3×10−9 for uncertainties in the magnetron radii and 4×10−9 for the presence of con-

taminating ions to the the statistical uncertainty and get a mean ratio of R = 1.001

592 097(8).

The atomic mass value of 38Ca was then calculated by m(38Ca)=2·R−1
(m(H3O)-

me+b1+2me-b2), where b1 = 5 eV [72] is the first ionization energy of H3O, b2 = 17

eV is the sum of the first and second ionization energies of 38Ca, and me is the mass

of the electron. The mass of H3O is known with a precision of δm/m< 10−9 and its

uncertainty is negligible. The result is a mass excess for 38Ca ME = -22058.53(28).

This value agrees with the current literature value, ME = -22059.2(4.6) [2], but is

over an order of magnitude more precise.

7.5 Impact of improved 38Ca mass on the precision

of the Ft value of the 0+ →0+ decay

Using the mass excess of the 38Km 0+ state from [1] an improved QEC = 6611.7(4)

for the 0+→ 0+ transition of 38Ca to 38Km can be calculated. The f value depends on

the QEC value to the fifth power, so that the uncertainty is (δf/f) ≈ 5(δQEC/QEC).

The uncertainty in f introduced by the QEC using the improved 38Ca mass value is

only δf/f = 3×10−4, which is a factor of 12 smaller than the previous uncertainty.

Fig. 7.8 shows the relative uncertainties in f, δf/f, of the 12 most precisely known

0+→ 0+ decays from Hardy and Towner’s most recent survey [1], along with the

relative uncertainty in f of the 38Ca decay using the new LEBIT mass value. The

new 38Ca mass value reduces the relative uncertainty in f of the 38Ca decay to the

same order as that of the most precisely known super-allowed 0+→ 0+ decays.
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value of the 12 most precisely known 0+→0+ decays [1] and 38Ca using the new

LEBIT mass value.

Fig. 7.9 shows the Ft values for the 12 most precisely known 0+→ 0+ decays.

The solid lines represent the uncertainty in the mean Ft value calculated from these

results. The precision limit of the Ft value for 38Ca due to the improved mass value

from this work is also shown. The absolute Ft value for 38Ca is not yet determined as

the branching ratio is unknown and the uncertainty in the half life is large. Results of

measurements recently performed at Texas A&M [73] and ISOLDE [74] may reduce

the half life uncertainty and determine the branching ratio. In the meantime, the

mass of 38Ca has been measured at ISOLTRAP with less precision [75], but the value

agrees with the mass value obtained with LEBIT.
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CHAPTER 8

Summary

In 2000 the initial design work on the Low Energy Beam and Ion Trap project at

the Coupled Cyclotron Facility of the NSCL was begun. By 2004 the system was

complete and commissioning of the entire apparatus was begun. In May of 2005 the

first mass measurement of a radioactive species, 38Ca, was performed. Thus it was

proven that radioactive beams created via fast-beam fragmentation can be prepared

with excellent beam properties and high purity which are required for high-precision

mass measurements. In the future it is envisioned to make these low-energy purified

beams available for other experiments such as laser spectroscopy for the study charge

radii and moments of rare isotopes or for post-acceleration for nuclear astrophysics

experiments.

In the five years required to bring LEBIT to its fully operational state, many

students, post-docs and faculty have contributed to its success. My Ph.D. work

emphasized the design, construction and commissioning of the LEBIT 9.4 T Penning

trap system, the exploration of the octupolar RF excitation, the surprising 83,84Kr

mass measurement and the mass measurement of the short-lived 0+ → 0+ β emitter,

38Ca.

The design of the LEBIT high-precision Penning trap required extensive simula-
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tions to reduce the electric field imperfections while simultaneously minimizing the

effects of magnetic field inhomogeneities introduced by the materials used to construct

the trap. Several iterations and a close collaboration with the design department was

required.

Many systematic studies of the 9.4 T Penning trap system were performed with

stable species to assess the absolute accuracy achievable, and has been reduced to

≤ 10−9. Improvements were also made along the way to actively compensate the

natural magnetic field decay during long measurements a counter-current introduced

via a coil wrapped around the bore tube. Magnetic field changes were further reduced

by stabilizing the pressure of the magnet’s liquid helium bath.

The first radioactive mass measurement of 38Ca was performed in May of 2005,

followed up with another experiment in July 2005 where 37Ca was also measured.

The analysis of the 38Ca data was presented in this thesis and a final mass excess

of ME = -22058.52(17) was obtained, which agrees with the current literature value

of ME = -22059.2(4.6), but is about 30 times more precise. An experiment at Texas

A&M university, led by John Hardy, was recently performed to determine the half

life and branching ratio of the 38Ca β decay, which is necessary to calculate the Ft

value. The results are forthcoming.

Since those first experiments the LEBIT group has been working hard to extend

the mass measurement program. In a year and a half of operation a total of 26 radioac-

tive masses have been measured: 37,38Ca, 64,65,66Ge, 40,41,42,43,44S, 66,67,68,80As,

29,34P, 63,64Ga, 68,69,70,81m,81gSe, 33Si, 70m,71Br. This is a very successful begin-

ning of a mass measurement program which is expected to contribute not only to our

understanding of nuclear physics, but also to make important contributions to other

fields, such as nucleosynthesis and tests of fundamental interactions and symmetries.
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APPENDIX A

Solution to the Electric Potential

of an Infinite Quartered Cylinder

Here I present the solution of the electric potential of the infinite quartered cylinder.

Using the solution an analytic expression for the electric field can be calculated and

used as an approximation for the electric field produced by the Lorentz steerer in-

troduced in Chapter 5. The easiest method for solving the electric potential of the

quartered cylinder is to first solve for the halved-cylinder potential and then sum

over four different orientations to arrive at the solution to the quartered cylinder.

The process is illustrated in Fig. A.1

To begin, the general solution to the Laplace equation in polar coordinates is given

by

V (r, φ) = [a + b · ln(r)][A + B · φ] +
∞∑

n=1

[
anrn + bnr−n

]
[An cos(nφ) + Bn sin(nφ)] .

(A.1)

The following list of boundary conditions must be met in order to physically

describe the system:

• V is finite at the origin → b = bn = 0.
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Figure A.1. Cartoon illustrating the method used to solve for the electric potential

of a quartered cylinder.

• V is an odd function of φ → A = An = 0.

• V(r,0) = V(r,2π) = 0 → B=0 and n is integer.

The application of these boundary conditions reduce Eq. A.1 to

V (r, φ) =
∞∑

n=1
Bnrn sin(nφ). (A.2)

By using the orthogonality of sin(nφ)sin(mφ) over the range of 0 to 2π the Bn

coefficients can be solved for on the boundary of radius R at a potential ±V1.

Bn =

∫
V sin(nφ)dφ

Rn
∫

sin2(nφ)dφ
=

∫ π
0 V1 sin(nφ)dφ−

∫ 2π
π V1 sin(nφ)dφ

Rn
∫ 2π
0 sin2(nφ)dφ

=
2V1[1− cos(nφ)]

Rnπn

(A.3)
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The first few terms of the expansion are

B1 =
4V1
πR

B2 = 0

B3 =
4V1

3πR3
B4 = 0

B5 =
4V1

5πR5
.

.

B2n = 0, n > 2

B2n+1 =
4V1

(2n+1)πR2n+1 , n > 2

(A.4)

Now use (reiφ)n - (re−iφ)n = 2irnsin(nφ) and rewrite Eq. A.2 as

V =
4V1
2πi

∞∑
n=1

zn − (zn)∗

n
(A.5)

where z = (reiφ).

Using the sum

1

2

∞∑
n=0

ln

(
1 + n

1− n

)
= n +

n3

3
+

n5

5
+ ... (A.6)

allows us to rewrite Eq. A.5 as

V =
2V1
π

Im

[
ln

(
1 + z

1− z

)]
, z =

reiφ

R
. (A.7)

By summing over all of the configurations show in Fig. A.1 the final solution for

the potential of a quartered cylinder is

V =
V1
π Im

[
ln
(

1+z
1−z

)
+ ln

(
1+y
1−y

)]
+

V2
π Im

[
ln
(

1+x
1−x

)
+ ln

(
1+w
1−w

)] (A.8)

where z = x = reiφ

R , y = rei(φ−π/2)
R , w = y = rei(φ+π/2)

R .

121



Expanding the logarithm terms and converting back into cylindrical coordinates,

the potential can be written as

V (r, φ) =
V1
π

[
tan−1

(
2Rr sin(φ)

R2−r2

)
− tan−1

(
2Rr cos(φ)

R2−r2

)]
+

V2
π

[
tan−1

(
2Rr sin(φ)

R2−r2

)
+ tan−1

(
2Rr cos(φ)

R2−r2

)] (A.9)
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APPENDIX B

SOMA documentation

B.1 Introduction

SOMA, Simple Online Mass Analysis, is a program designed for online analysis of

Penning trap mass measurement data. Ease of use, accuracy of results and easy in-

tegration with software currently used at LEBIT, i.e., Mass Measure and Eva (main-

tained by Stefan Schwarz), were the primary design considerations. SOMA can be

used independently of these pieces of software if the measurement data follows the

Eva data formats.

With LEBIT there are three steps in the data acquisition and analysis processes:

• Use Mass Measure to collect time-of-flight spectra as a function of applied RF

frequency and write the results to a data file.

• Use Eva to process the data files from Mass Measure and make fits of the time-

of-flight spectra and write the results to a fit file.

• Use SOMA to process fit files from Eva to calculate a final mass value.

Eva outputs two ascii files from fits generated from data collected with Mass

Measure, and use the extensions .log and .ft2. Either of these files can be used with

123



SOMA. The .log file contains more information, but none of it is used in the SOMA

evaluation.

SOMA was written in Qt and has been compiled for Windows, OSX and Linux.

Qt is a C++ development framework which is free for open source development and

can be downloaded from www.trolltech.com.

A folder named massdata must be located in the same folder as the SOMA bi-

nary file. Within this folder are two text files which SOMA requires for operation.

The awm03.txt file is the AME03 [2] data file and element names.txt contains the

elemental abbreviations and proton number. Both files must be present or an error

will be presented upon opening SOMA.

B.2 Getting to Know SOMA

B.2.1 The main window

Upon opening SOMA the user is presented with the window shown in Fig. B.1. The

main window is separated into two sections, the calibration menu on top and the

measurement menu on the bottom. Valid calibration files, *.log and *.ft2 as provided

by Eva, can be dragged and dropped into the Calibration Menu, or the Load File

button can be used. When two or more calibration files have been loaded SOMA will

display magnetic field decay information to the right of the data file list.

Any number of measurement species can be analyzed at one time. In order to load

a new measurement species a new mass tab must be created. In the measurement

menu use the Add Tab button to create a blank tab. Now drag the files corresponding

to a single species into the newly created tab. Do this for each measurement species.

Fig. B.1 shows that 25 86Kr+ files have been added to the Calibration Menu and

5 mass tabs have been added for the other stable krypton isotope measurements.

Tabs can be removed using the Remove Tab button. Highlighting rows in either
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Figure B.1. The SOMA Main Window which is presented upon opening the appli-

cation.

menu section and pushing the corresponding Remove Row(s) button removes the

highlighted files.

Pressing the Calculate button will calculate the results of the mass measurements

which have been loaded into SOMA. Each mass measurement must fall between two

calibration measurements. If any mass measurement lays outside the range of the

loaded calibration files then a warning will be displayed and that measurement will

not be included in the final analysis. Due to the manner in which SOMA calculates the

final mass, all measurements in a mass tab must have the same calibration species

for the first calibration measurement. The second calibration measurement does

not need to be the same element/molecule as the first measurement as the ratio of
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frequencies is only calculated with the first calibration measurement. The first mass

measurement in a mass tab determines the first calibration species. For any additional

mass measurements in the tab which do not share the same first calibration species

a warning will be displayed and that measurement will not be included in the final

analysis.

If the user is interested in seeing how the final analysis changes by excluding

certain calibrations or mass measurements, simply highlighting the rows containing

the unwanted measurements and pressing the Calculate button will recalculate the

results without having to remove the files from SOMA. To undo simply removing the

highlighting and press the Calculate button again. The results of the mass analyses

are presented in the results tab in the Measurement Menu.

There are two menus in the menu bar, File and Tools, each containing several

actions. First I will cover the actions in the File menu. The New action clears

out all files that are currently loaded into SOMA. Save will save an ascii file with a

.par extension which contains all the files, uncertainties and electron binding energies

that are currently loaded into SOMA. Load loads a .par file. Export will export

data in an ascii format for importing into another program. Upon selection Export

a dialog box with three check boxes is displayed. The check boxes available are

Calibrations, Measurements and Results. Checking these boxes will choose what

is to be exported. Pressing the Save button will opens another dialog where a base

filename and location is to be chosen for the exported data. The Tools menu contains

three actions, Uncertainties, Info and Plots. Each of these actions open a separate

dialog box which will be covered in the next sections.

B.2.2 The uncertainty window

The uncertainty window (Fig. B.2) contains two tabs, Uncertainties and

Electron Binding Energies. The Uncertainties tab contains a table with a row
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Figure B.2. The SOMA Uncertainty Window accessed through the Tools menu.

for each mass tab in the main window. There are three columns, Mass Dep. Unc.,

(dB/dt)/hr and Systematic Unc.. Each column represents a possible uncertainty

which can be added into the final mass analysis. The Mass Dep. Unc. is in units

of relative deviation per mass unit. This shifts the final mass value and adds an ad-

ditional uncertainty to correct for identified mass-dependent effects. (dB/dt)/hr ac-

counts for magnetic field fluctuations over time as described in [30]. Systematic Unc.

is an additional systematic uncertainty, such as the known precision limit of the spec-

trometer, applied to the final analysis and won’t be reduced by additional statistics.

Three line edits appear below the table and are used to apply the same values for each

of the three types of uncertainties to each measurement species. The Clear button

zeros out all uncertainties.

The Electron Binding Energies tab contains two separate tables, one for the

calibrations and one for the mass measurements. Here you can enter the total electron

binding energies for inclusion in the final mass analysis. Two Clear buttons zero out

the entered values.
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Figure B.3. The SOMA Info Window accessed through the Tools menu.

B.2.3 The info window

The info window (Fig. B.3) provides detailed information of the calibration and mass

measurement files loaded into SOMA. There are two tabs at the top of the window,

Calibrations and Measurements, which allow you to switch between the two file

types. In order to view the measurement files the proper mass tab must be selected

in the main window. In both cases, selecting a number in the combo box which

corresponds to the number of the calibration or mass measurement as shown in their

respective tables displays all the information for that given file. By checking the check

boxes next to the parameter descriptions you can toggle if the information for all files

is shown in the table.
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B.2.4 The plot window

Figure B.4. The SOMA Plot Window accessed through the Tools menu.

The plot window contains three tabs, Calibrations, Measurements and Results,

each of which displays a different plot. The calibration plot uses the calibration

measurements to plot the decay of the magnetic field and fits it to a linear function.

The measurement plot plots the individual measurements from each mass tab, shown

in Fig. B.4. There is a combo box on the right hand side which can be used to switch

between the different measurement species. The y-axis is the energy difference, in

keV, of the measurement value minus the AME03 [2] value. The solid red lines

represent the uncertainty in the AME03 value while the solid blue lines represent

the uncertainty in the measurement mean value. A box to the right of the plot

displays some relevant information, such as the AME uncertainty, the measurement

uncertainty, the difference of the means and the Birge ratio [76] of the measured data.

The results plot plots the final mass value for each mass tab along with the AME03
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uncertainty. The y-axis is again the energy difference.

B.3 Analysis Methodology

In this section I will cover the methods SOMA uses to arrive at a final mass value

given a set of measurement and calibration data. The mass calculation routine is a

loop over all entries in an individual mass tab. If there are multiple mass tabs then

the loop repeats until they have all been calculated. Table B.1 lists the constants and

their hard-coded values which are used by SOMA.

Table B.1. SOMA constants and values

Constant Value

π 3.14159265358979

me (keV) 510.99898565154

U (keV/amu) 931494.013

The first step in the analysis is to read the date and time of the measurement

and find the two nearest reference measurements with respect to time, one before and

one after. If the measurement does not lie between two references it is ignored and a

warning is issued. Once the two references have been determined a linear interpolation

of first reference’s value of νc is performed based on the magnetic field defined by the

νc’s of the two references. The uncertainty associated with this interpolation is given

by the uncertainty in the χ2 fit [77] and will be labeled σinterp. Next the ratio of the

measurement and calibration frequencies calculated and defined as

R =
νc(meas)
νc(ref)

. (B.1)

The uncertainty in this ratio is defined as

σR = R ·

√√√√( σinterp

νc(interp)

)2

+

(
σmeas

νc(meas)

)2

. (B.2)
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An additional term must be taken into account when considering the uncertainty

in the ratio. The nonlinear magnetic field term, σB(t), described in Sec. B.2.2, is

introduced in the corrected ratio uncertainty as

σR(corr) =
√

σ2
R + (∆t · σB(t) ·R)2, (B.3)

where ∆t is the time separation between the two reference measurements and σB(t)

is the mass-dependent uncertainty specified in the uncertainty window. Once this has

been calculated for all measurements in a mass tab the mean ratio is calculated by

R̄ =

∑
meas

R
σR

2
(corr)∑

meas
1

σR
2
(corr)

. (B.4)

In order to determine if the measurement data scatter is statistical, the Birge ratio

is calculated, defined by ratio of the outer over inner uncertainties. The outer and

inner uncertainties are defined by

σout =

√√√√√√√√
∑

meas

(
R−R̄

σR(corr)

)2

(N − 1)
∑

meas
1

σR
2
(corr)

(B.5)

σin =

√√√√√ 1∑
meas

1
σR

2
(corr)

. (B.6)

The uncertainty in the Birge ratio as given in [76] is 0.4769/
√

n. A Birge ratio of 1

means that the measurement fluctuations are purely statistical. While if the ratio is

greater than one it could indicate that there are additional systematic uncertainties

which aren’t accounted for. A Birge ratio of less than one could indicate that the

uncertainties of the measurements have been overestimated.

The mean ratio, R̄, needs to be corrected for any mass-dependent shifts inherent

in the system, and is defined by

R̄corr = R̄ + σM · R̄ · (Ameas − Aref ), (B.7)
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where σM is the mass-dependent uncertainty. Using R̄corr the corrected mass of the

measurement species can be calculated as

Mmeas =
qmeas

qref
· R̄corr · (Mref − qref ·me + bref ) + qmeas ·me − bmeas, (B.8)

where qref is the charge state of the reference, bref is the total electron binding energy

of the reference ion’s missing electrons, qmeas is the charge state of the measurement

species and bmeas is the total electron binding energy of the measurement ion’s

missing electrons. The absolute final uncertainty is given by

σabs =
√

σ2
in + (σsys · R̄)2, (B.9)

where σsys is the additional systematic uncertainty specified in the uncertainty win-

dow. The final mass uncertainty is then

σM =
√

(Mref · σabs)
2 + (R̄corr · σM,ref )2, (B.10)

where σM,ref is the uncertainty in the mass of the reference species in amu.
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APPENDIX C

SCM Qt Documentation

C.1 SCM Qt Intro

SCM Qt (Search for Contaminant Masses) is a program designed to identify contam-

inants in a Penning trap. It is based on a similar command-line-based program first

written by Stefan Schwarz. By measuring the cyclotron frequency νc of the contami-

nant ion and comparing it to a reference ion it is possible to generate a list of possible

contaminants.

In order to run the data files folder must be located in the same directory as

the SCM binary. This directory contains four ascii files which SCM uses during

normal operation. The awm03.txt is the AME03 [2] data, element list.txt is a list of

chosen elements and will be described later, element names.txt contains the elemental

abbreviations and proton number and nubtab03.txt which contains the NUBASE03

nuclear data compilation [78].

SCM Qt was written in Qt and has been compiled for Windows, OSX and Linux.

Qt is a C++ development framework which is free for open source development and

can be downloaded from www.trolltech.com.
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C.2 Using SCM Qt

C.2.1 The main window

Figure C.1. The SCM Qt Main Window which is presented when opening SCM Qt.

The main window, as shown in Fig. C.1, is the first thing the user sees when

launching SCM Qt, and where most of the work will be done. The Main Window

consists of 4 sub-areas: the Reference Mass area, the Contaminant Mass area,

the Search Options area and the Elements area. Each of these sub-areas will be
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described in full detail in the following sections.

The Reference Mass area is where the user enters information concerning the

reference mass calibration which was in use when the contaminant mass frequency was

determined. By comparing the ratio of the frequencies of the contaminant ion and the

reference ion it is possible to determine the mass of the contaminant using the mass

of the reference species. The reference species is entered using the Mass Measure

convention N(El)A, where N is the number of atoms of one specific element, El is

the elemental abbreviation (caps sensitive) and A is the atomic number. Elemental

entries are separated by a colon. For example, if H2O was the reference then in the

species edit the user would enter 2H1:1O16. If the entry is valid then a formatted

string will appear in the bottom of the Reference Mass sub-area displaying the

nuclides’ information. In the frequency edit the user enters the cyclotron frequency

of the reference species. The charge box is used to select the charge state of the

reference species.

The Contaminant Mass sub-area is used to enter information concerning the

contaminant ion that the user would like to determine. In the frequency edit the user

enters the cyclotron frequency of the unknown ion. The uncertainty in the frequency

is then entered into the uncertainty edit.

The Search Options sub-area is where the search parameters are set. The ele-

ment max box sets the maximum number of unique elements to be searched for and

currently has a 5 element hard-coded limit. The multi-max box is used to the the

maximum N value for each element in the search. If the user would like to add unsta-

ble isotopes to the search then they would check the unstable check box and enter the

minimum half life for the isotope that they would like included. If the user would also

like to search for multiply charged isotopes then they would check the multi-charge

check box and set the minimum and maximum charge states to be searched. Note

that the more options which are used will increase the time to complete the search.
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The Elements sub-area determines the elemental species which will be included

in the search. Upon opening the program all elements are chosen. Removing a check

next to the element will remove it from the search. This applies to any unstable

isotopes if they are included. The clear button removes all checks and the select all

button applies checks to all elements. It is possible to save and load a set of elements.

The Save Elements action in the File menu will write the checked elements to the

element names.txt file mentioned previously. The Load Elements action will reload

the saved elements.

At the bottom of the main window are two buttons, Generate List and RUN !.

The Generate List button list populates a list of searchable isotopes based on the

search options settings and the checked elements. The RUN ! button starts the search.

One does not need to use the Generate List button previous to running the search,

but doing so allows manual exclusion of individual isotopes and will be described in

the next subsection.

C.2.2 The isotope list window

After the Generate List button in the Main Window has been pressed the

Isotope List Window (Fig. C.2) displays all the isotopes to be used in the search,

along with its half life and mass excess. To exclude individual isotopes in the list

from the search simply highlight the row which contains its information. To include

it in the search again, deselect the row.

C.2.3 The results window

After the RUN ! button on the MainWindow has been pressed the matches appear

in the Results Window (Fig. C.3). Since the search algorithm and the GUI run on

separate threads the GUI is able to sort the matches as they’re found. They are listed

in descending order of distance from the cyclotron frequency of the contaminant ion
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Figure C.2. The SCM Qt Isotope Window which lists the isotopes to be used in the

search.

specified in the Contaminant Mass sub-area on the Main Window. The matches

are named using the Eva/Mass Measure convention so they can be copied and pasted

into Mass Measure for cleaning, if necessary.

C.3 Additional Tools

C.3.1 The mass fragment calculator

The Mass Fragment Calculator (Fig. C.4) is used to determine what molecules are

possible within a specified mass region. The user enters in a mass and tolerance, in

amu, and presses the RUN ! button on the Mass Fragment Calculator Window to
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Figure C.3. The SCM Qt Results Window which lists the matches generated by the

search algorithm using the specified search parameters.

generate a list of molecules. The search options are specified in the Main Window, as

covered previously. The same rules apply to isotope list generation and exclusion. It

is a good idea to keep the isotope list as small as possible to reduce the total number

of combinations returned.

C.3.2 The frequency separation window

The Frequency Separation Window (Fig. C.5) is used to calculate the difference in

the cyclotron frequencies, and mass in keV, of two species. The first species used is

that which appears in the Reference Mass sub-area in the Main Window, and is

also shown in the Reference Species sub-area in the Frequency Separation Window.

138



Figure C.4. The SCM Qt Mass Fragment Calculator Window calculates which

molecules fall within a given mass range.

The other species is entered in the line edit in the Measurement Species sub-area.

If a valid string is entered then the Calculate button will be enabled and pressing it

will calculate the results.
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Figure C.5. The SCM Qt Frequency Separation Window which calculates the differ-

ence in the cyclotron frequencies between two species, as well as the energy separation.
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APPENDIX D

Fit procedure to minimize

higher-order electric field terms

The optimum voltages to be applied to the Penning trap electrodes are found by

a fitting routine. It is a variant of the traditional χ2 fitting routine [77] where a

variable function is fit to a data set. Here we have data sets which correspond to the

potentials along the trap axis from each electrode pair with 1 V applied. Each data

set can be multiplied by an arbitrary factor corresponding to an applied voltage. The

total potential along the trap axis for any given point is

V (zi) =
4∑

k=1
akXk(zi), (D.1)

where Xk are the SIMION potentials and ak are the unknown scaling factors. A

perfect electric quadrupole field would be purely quadratic along the trap axis. So

the unknown scaling factors must be determined such that data is fit to a quadratic

function.

To begin, a pure quadratic function is given by

y =
z2

z2
o

+ c, for z ≤ zo (D.2)
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The normal definition of χ2 is:

χ2 =
N∑

i=1

yi −
4∑

k=1
akXk(zi)

2

(D.3)

where yi are curve fit points. The first sum is over each value of z, and the second

sum is over the unknown potentials. The best fit is that which minimizes Eq. D.3.

This is found by solving

0 =
∂

∂ak
χ2 =

N∑
i=1

yi −
4∑

j=1
ajXj(zi)

Xk(xi) (D.4)

Now we let Aij = Xj(zi), bi = yi and a = (a1,a2,a3,a4). Substituting these back

into Eq. D.4 yields

0 =
N∑

i=1

yiXk(zi)−
4∑

j=1
ajXj(zi)Xk(zi)

 = AT − (AT · A) · a (D.5)

We can then solve for a and obtain

a =
(
AT · A

)−1
·
(
AT · b

)
(D.6)

Provided that the inverse exists we have a method for calculating the optimum elec-

trode potentials.
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