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ABSTRACT
VIABILITY OF CARBON NANOTUBES FOR SPACE RELATED TECHNOLOGY
AND APPLICATIONS

By

Susan P. Song

Currently there is a critical need to develop non-Si based “radiation-hard” devices and
nanotechnology for space applications. A “radiation-hard” device is a device able to
withstand a dosage up to 1000 Gray (Gy) before failing. Space technology must be
shielded from radiation encountered in space: heavy ions, protons, electrons, and
neutrons. Methods for radiation-hardening have included using silicon-on-sapphire [1-5]
or silicon-on-insulator substrates, which are however, expensive and fail after a period of
time. Silicon-based devices fail due to destruction of p-n junctions. Carbon nanotube
(CNT) based technology is not based on conventional p-n junctions with charge-
separated regions. CNT-based space technology could alsc bring the advantages of cost
and size reduction. At the time of this writing, only a few papers, which are theoretical
[6-7]. have been published on the potential effect of radiation on CNTs. However, to the
best of this author’s knowledge, the experiments outlined in this thesis are the first such
experiments in which the effect of radiation on the properties of CNTs has been

investigated in such a well calibrated experiment.
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INTRODUCTION
This work described in this thesis investigates the effect of space radiation, specifically at
low-earth orbit (LLEO), on the properties of carbon nanotubes (CNTS) in order to
determine their viability for space applications. LLEO is the region ranging from 10 km to
1000 kin above the earth.  Potential space applications of carbon nanotubes include:
self-repairing materials for the skins of shuttles or space suits, new space-resilient

electronics, flat-panel displays and even space elevators,

Heavy jons are a significant source of radiation and are encountered in LEO at high
declination. The heavy-ion, and trapped particle regions are illustrated in Figure 1.
Current transistor-based clectronjcs technology requires radiation shiclding against heavy
ions, which are massive, charged particles. The amount of shielding required for
effective defense against heavy ions would be mass-prohibitive. Radiation effects are
classified into non-destructive errors, which can be overcome by device reset and
destructive errors, which cause permanent device malfunction. Examples of radiation
effects include: Single Event Upset (SEU), a change of state or transient induced by an
jionizing particle such as a cosmic ray or proton in a device; Single Event Functional
interrupt (SEFI)/Single Event Transient (SET), a condition where the device stops
operating in its normal mode, and usually requires a power reset or other special
sequence Lo resume normal operations; Single Hard Error (SHE), an SEU which causes a
permanent change to the operation of a device; Single Event Latchup (SEL), a
potentially destructive condition involving parasitic circnit elements forming a silicon

controlled rectifier (SCR): Single Event Gate Rupture (SEGR), the burnout of a gate
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insulator in a power MOSFET and a destructive condition: Lastly, Single Event Burnout
(SEB) which is a highly localized burnout of the drain-source in power MOSFETs, which
is also a destructive condition.” All the previously mentioned damage mechanisms are

serious problems for current transistor-based electronics in space applications,

Since their discovery over a decade ago by Iijima [8], CNTs have spawned a wave of
rescarch into their potential applications. NASA is particularly interested in the
development of CNT-based electronics and textiles which are space-qualifiable.
Investigations into the potential use of CNTSs as cold cathode sources have also been

conducted [2-11].

CNTs are essentially self-closed sheets of graphite. CNTs are either single-wall or
multi-wall. Single-wall CNTs can be either separate or bundled in a rope containing
twenty to fifty individual nanotubes in a triangular lattice (hexagonal close-packed
stacking); the latter is shown in Figure 2 (a)-(b). Individual single-wall CNTs are
generally on the order of (.7-2 nm in diameler and several microns in length. The mean
diameters of single-wall CNTs (both individual and bundled), and the inter-tube distances
for bundied CNTs, are dependent on the catalyst used and the growth conditions.
Individual, separate single-wall CNTs, to best of this author’s knowledge, have been
synthesized only in the presence of any one of the transition metals such as iron, nickel,

copper or cobalt or lanthanides, such as lanthanum, yurium, gadolinium and neodymium.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.






