ABSTRACT

AN EXPERIMENTAL TEST OF THE
ISOBARIC MULTIPLIET MASS EQUATION

by George Frederick Trentelman

The ground state mass excesses of 9C, 13O, and 21Mg have been
determined through measurement of the Q-values of the 12C(3He,6He)9C,
16O(3He,6He)13O, 24Mg(3He,6He)21Mg reactions. These mass excesses
represent the $T_z = -3/2$ members of the $T = 3/2$ quartets for
A = 9, 13, and 21 respectively, and for 13O and 21Mg represent
measurements of improved accuracy. These experimental values for
the quartet members are used to test the isobaric multiplet mass
equation (IMME)

$$M(a,T,T_z) = a(a,T) + b(a,T)T_z + c(a,T)T_z^2$$

The measurements were made using 68-70 MeV 3He beams, and a
split pole magnetic spectrograph as an energy analyzer. An energy
calibration procedure for the spectrograph and beam analysis system
with proton and 3He beams has been developed, and has proven val-
uable in making precision Q-value measurements at high bombarding
energies.

The mass excess of 9C has been measured as 28.91±.009 MeV,
that of 13O as 23.103±.014 MeV, and that of 21Mg as 10.912±.018 MeV.
In addition, Coulomb radii for a uniformly charged sphere model for A = 9, 13, and 21 have been extracted from the coefficients of the DIMES.
AN EXPERIMENTAL TEST OF THE ISOBARIC
MULTIPLET MASS EQUATION

by
George Frederick Trentelman

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

1970
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Experimental Procedure</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Spectrograph Calibration</td>
<td>9</td>
</tr>
<tr>
<td>2.3 3He Beam and 6He Energies</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Beam System</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Particle Detection and Identification</td>
<td>16</td>
</tr>
<tr>
<td>2.6 Kinematic Compensation</td>
<td>17</td>
</tr>
<tr>
<td>2.7 Cycling Effects</td>
<td>19</td>
</tr>
<tr>
<td>2.8 Dispersion Matching</td>
<td>19</td>
</tr>
<tr>
<td>2.9 Constant Radius of Curvature</td>
<td>20</td>
</tr>
<tr>
<td>2.10 Target Thickness Measurements</td>
<td>38</td>
</tr>
<tr>
<td>3. Data Analysis</td>
<td>42</td>
</tr>
<tr>
<td>4. Experimental Uncertainties</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Uncertainties of Spectrograph Field Calibrations</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Extrapolation to Defined Radius of Curvature</td>
<td>47</td>
</tr>
<tr>
<td>4.3 Peak Location</td>
<td>50</td>
</tr>
<tr>
<td>4.4 Scattering Angle Fluctuations</td>
<td>51</td>
</tr>
<tr>
<td>4.5 Uncertainty in Scattering Angle Measurement</td>
<td>52</td>
</tr>
<tr>
<td>4.6 3He Beam Energy Uncertainties</td>
<td>53</td>
</tr>
<tr>
<td>4.7 Uncertainty in Target Energy Loss</td>
<td>54</td>
</tr>
<tr>
<td>4.8 Stray Magnetic Fields</td>
<td>54</td>
</tr>
</tbody>
</table>
5. Experimental Results 55
6. Discussion 60
Appendix A1

Derivation of the Isobaric Multiplet Mass Equation 68
List of References 71
LIST OF TABLES

2.1 Some useful reactions for calibration in momentum match 23
2.2 Possible reaction pairs for momentum match energy calibration 23
2.3 Spectrograph calibrating reactions for proton beams 24
2.4 Spectrograph calibrating reactions for 3He beams 25
2.5 Targets used for $(^3$He,6He) reactions for E(BEAM)=68.0 MeV 40
3.1 Mass excesses of $(^3$He,6He) reaction members 44
4.1 Uncertainties of outgoing 6He energy for $t_b=11.00^{\pm}.03^a$ and E(BEAM)=68.5 MeV 51
5.1 Experimentally determined $(^3$He,6He) Q-values 56
5.2 Average Q-values and mass excesses for the $T_z=-3/2$ Nuclei 58
6.1 Empirically determined coefficients for the mass equation 65
6.2 Coulomb radii from the DMEK 66
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Level diagram of mirror pairs</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>$^{12}\text{C} (^{3}\text{He},^{6}\text{He})^{9}\text{C}$ angular distribution</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Momentum match</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Momentum match spectra</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Spectrograph calibrations</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>$^{1}\text{H} (^{3}\text{He},^{3}\text{He})^{1}\text{H}$ spectrum</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Experimental area</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Electronics</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Particle identification spectrum</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Dispersion match</td>
<td>34</td>
</tr>
<tr>
<td>2.10a</td>
<td>n-source collimator</td>
<td>35</td>
</tr>
<tr>
<td>2.10b</td>
<td>n-source collimator</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>Position calibration spectrum</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>Target data</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>$(^{3}\text{He},^{6}\text{He})$ position spectrum</td>
<td>59</td>
</tr>
<tr>
<td>6.1</td>
<td>Mass deviations from DOMX</td>
<td>67</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The purpose of this work is to determine the ground state mass excesses of ^9C, ^{13}O, and ^{21}Mg. These ground state masses represent the neutron deficient $T_g = -3/2$ members of the $T = 3/2$ isobaric quartets for $A = 9$, 13, and 21 respectively, and with the exception of ^9C are the least well determined members of these quartets. Since the isobaric multiplet concept appears to be a very sound one, as evidenced by the similar level structure of mirror nuclei and by $T = 1$ states in even A, $T = 1$ triplets, it is of interest to extend the study of these multiplets to the $T = 3/2$ quartets.

The basic contention of the isobaric multiplet concept is that the multiplet members have essentially identical nuclear properties, and differ only through charge dependent effects. The $T = 1/2$ mirror nuclei are good examples of this. The level schemes for the $T = 1/2$ mirror pairs ^{17}O and ^{17}F as well as ^{13}C and ^{13}N are shown in figure 1.1. Here the level schemes, with the exception of the first excited states are very similar, and the ground state energy differences between members of each pair may be attributed to the Coulomb energy difference (plus, of course, the proton neutron mass difference). The discrepancies in the first excited states have been attributed to shell effects (No 69), and do not represent a breakdown of Coulomb systematics.

Further verification of the multiplet concept has come from the discovery of isobaric analog states. These states were first observed through the (p,n) reaction by Anderson and Wong (An 62) in a study of
nuclei from $A = 48$ to $A = 93$. In each case there was a strong neutron peak whose (p,n) Q-value corresponded exactly to the Coulomb energy difference between the target nucleus and the residual nucleus having the same A, but with one more proton and one less neutron (T differing by 1). The strong yield from these states indicates a similarity between its structure and that of its analog.

Other analog states have been observed as compound nucleus resonances formed, for example, by Target + $p \rightarrow$ excited nucleus \rightarrow Target + p reaction. Here, the center of mass energy of the incident proton must be exactly that required to excite the compound nucleus (Target + p) to one of its analog levels. Normally, these would be the $T_{\text{target}}^+ \ 1/2$ levels. In some cases, however, forbidden analog states ($T_{\text{target}}^+ \ 3/2$) are observed again as resonances, found at high excitation energies and characterized by narrow decay widths. An example of this is the forbidden $T = 3/2$ level in the system:

$$^{28}\text{Si} + p \rightarrow ^{29}\text{P} \rightarrow ^{28}\text{Si} + p \quad (\text{Te 69 and Ka 70}).$$

Here the lowest $T = 3/2$ level is the analog of the ^{29}Si ground state.

Finding such strong resonant behavior at high excitation again indicates a similarity between this state and the relatively simple structure of the ^{29}Si ground state.

In the $T = 3/2$ quartets (and multiplets of higher order) the comparison of the nuclear level schemes becomes more difficult. First, the $T = 3/2$ levels in the $T_z = + 1/2$ members analogous to the $T_z = + 3/2$ ground states lie at high excitations (~ 15 MeV in the $A = 9$ multiplet) and in some cases are unbound. This makes energy levels above these states difficult to define. Secondly, the neutron deficient $T_z = - 3/2$
(ground state) members lie far from beta stability and are difficult to measure experimentally. Excited states of these members have yet to be determined.

The isospin formalism does, however, provide an expression that connects members of these multiplets in a direct manner. This is the isobaric mass multiplet equation (IDME).

\[M(\lambda, T, T_z) = a(\lambda, T) + b(\lambda, T) \ T_z + c(\lambda, T) \ T_z^2 \]

\(M \) is the mass of a nucleus, \(T \) its isospin, and \(T_z \) its isospin projection. In essence, it is the expansion of a nuclear mass in terms of its isospin characteristics, and is particularly applicable to isobaric multiplets of \(T \geq 1 \) where the constants \(a, b, \) and \(c \) may be determined empirically. If the isobaric multiplet assumption that all members are identical in nuclear characteristics and differ only by charge effects is valid, then such an expansion of the multiplet masses in \(T_z \) is valid.

This equation may be derived from first order perturbation theory, this is shown in Appendix A1, but fundamentally it comes from two assumptions. (H1 57)

1. The Coulomb energy is a perturbation on the nuclear energy (valid for light nuclei) and may be expressed as:

\[V_C = \sum_{i,j} \frac{A q^2}{r_{ij}} \lambda \ \frac{1}{2} - \half \frac{\lambda}{2} - \half \ t_{ij} \]

(as a two body force). The \(T_z \) dependence comes from this. In addition, the proton-neutron mass difference may be expressed as:
2. The specifically nuclear properties of multiplet members are identical and may be characterized by a common set of quantum numbers (designated by δ in the equation).

Since the equation is quadratic in T, knowledge of isobaric quartets are required to test it. Since this expression engulfs the basic concepts of isobaric multiplets, one of the goals of this experiment is to test it rigorously with well determined $T = 3/2$ quartets.

The DMQE is a rather insensitive probe of particular charge dependent phenomena in itself. The fact that very good DMQE fits to the data of isobaric quartets may be obtained, for example, does not necessarily mean that the assumptions from which it may be derived are necessarily true. The reason for this lies in the fact that the quadratic nature of the equation enables it to absorb many other phenomena as perturbations with accuracy sufficient to fit existing data well. This is discussed in detail by Janacek, Garvey, and by Wilkinson (Ja 69), (Ga 69), (Wi 64). In particular, the spin-orbit interaction may be encompassed into isotensors of rank zero, one, and two:

$$V_{SO} = \frac{\mu e}{M e} \sum \left(\left[\frac{3n+3p}{4} + \frac{3n-2p}{3} t_i \cdot t_j \right] + \left[-\frac{3p}{2} (t_3 i + t_3 j) + \frac{3n}{4} (t_3 i - t_3 j) \right] + \left[(3n-3p)(t_3 i t_3 j - \frac{t_3 j}{3}) \right] \right) \frac{\hat{r} \cdot \hat{E} \cdot \hat{r} \cdot \hat{E}}{r^{2}}$$
The derivation of this is found in (Ga 69) where it is pointed out that this effect can be of the order of 50 KeV.

If information on the specifics of charge dependent interactions are to be deduced from the IMME, the isobaric multiplets of $T \gg 3/2$ over as wide a range of A as possible must be measured very accurately. This might then allow trends of A dependence to be determined, and allow deviations between the equation predictions and experimental measurements to become apparent. In fact, the most accurately measured $T = 3/2$ multiplet, $(A = 9)$, has shown indications of a non-zero term proportional to T_3^3. This indicates that charge dependent perturbation terms above the first order may be needed. (Ga 68) and (Ga 69).

It is of interest then to determine the masses of the $T = 3/2$ multiplet members as accurately as possible to test the IMME.

The procedure adopted here is to measure the masses of $^{9}_C$, $^{13}_O$, $^{21}_Mg$ by experimentally determining the Q-values of the reactions: $^{12}_C(^3He, ^6He)^9_C$, $^{16}_O(^3He, ^6He)^{13}_O$ and $^{24}_Mg(^3He, ^6He)^{21}_Mg$. This required the design of new measurement techniques which are described in what follows.
2. EXPERIMENTAL PROCEDURE

2.1 Introduction

A direct measurement of the \((^3\text{He}, ^6\text{He})\) reaction Q-values consists of four major parts:

1. An accurate determination of the incident \(^3\text{He}\) beam energy
2. An equally accurate determination of the outgoing \(^6\text{He}\) energy
3. A measurement of the laboratory scattering angle at which the reaction is observed
4. A measurement of the effect of target thickness on incident and outgoing particles.

The determination of these parameters and knowledge of the reaction kinematics is sufficient to determine the Q-value. The mass of the residual nucleus may then be calculated since the masses of \(^3\text{He}, ^6\text{He}\) and the target nuclei are known.

Two particular problems arise in measuring \((^3\text{He}, ^6\text{He})\) Q-values. First, the cross sections are small (3-\,\text{mb/sr or less}) and this means low yield of \(^6\text{He}\) for the 150 to 300 nanocm² beam intensities used. Second, the \(^3\text{He}\) and \(^6\text{He}\) energy losses in the required target materials are substantial. As an example, \(E(\text{loss}) = 90.2\ \text{KeV}\) for 37 MeV \(^6\text{He}\) in a 432\,\mu g/cm² SiO target, and \(E(\text{loss}) = 32.8\ \text{KeV}\) for 68 MeV \(^3\text{He}\) in the same target. The uncertainty involved in measuring these target energy losses becomes a major contributor to the total experimental uncertainty.
of the Q-value for target thickness greater than 500 μg/cm2. The limits on target thickness and beam intensity restrict the 6He count rate for a given solid angle. The result is that stringent requirements are placed on the stability of experimental equipment such as electronics, beam transport elements, targets (deterioration), and particularly beam energy. These must remain stable for periods of time sufficient to obtain enough statistics for meaningful analysis.

Two procedures remain available for maximizing the count rate: observing the reaction at a scattering angle where the cross section is a maximum, and using the largest possible solid angle. In this experiment the optimum scattering angle was determined by taking a 12C(3He,6He)9C angular distribution between $\theta_L = 9^\circ$ to 19°. This angular distribution was taken using a 760 μg/cm2 carbon foil, and consequently some energy resolution was sacrificed. This distribution is displayed in figure 2.1. As shown, the distribution peaks at $\theta_L = 11.0^\circ$, and most of the data was taken here.

The solid angle was maximized by using a double focusing split-pole magnetic spectrograph as an energy analyzer. The spectrograph compensates for the kinematic energy spread of the reaction products (132 keV/deg for the 12C(3He,6He)9C reaction at $\theta_L = 10^\circ$) by focusing the kinematically spread particles on the focal plane (En 58 and Sp 67). This allowed a solid angle of 1.2 mrad to be used.

In addition, magnetic analysis of the reaction products was an aid in obtaining clean 6He spectra. In particular, the magnetic rigidity of the elastically scattered 3He was less than that of the 6He for the beam energies used, and for this reason the elastic 3He
peak and its low energy tail was prohibited from reaching the focal plane detector while 6He data was being taken. This reduced background in the spectra and made clean particle identification possible.

2.2 Spectrograph Calibration

An accurate energy calibration of the spectrograph is fundamental to this experiment since the spectrograph is used to determine the beam energies, and the energies of the outgoing 6He. Since the only direct information from the spectrograph is the magnitude of the magnetic field in the flat field region between the large pole tips as measured by an NMR probe and the position on the focal plane where the analyzed reaction products are incident, a method of determining particle energies with respect to these two parameters was devised. This calibration technique consists basically of three parts:

1. A calibration involving a reaction with accurately known beam energy and reaction product magnetic rigidities (ρ). This serves to define an effective radius of curvature through the spectrograph, ρ(effective), relative to a focal plane position.

2. A calibration of the field behavior relative to the NMR reading for reaction products passing through the spectrograph along ρ(effective). This calibrates the spectrograph at excitations required for measuring 3He beam and 6He energies.

3. Calibration of the field behavior at higher excitations using 3He beams.

A momentum matching null method using a proton beam was used to establish an accurately known beam energy and reaction product magnetic
rigidity (Tr 70). This technique requires that the products of two reactions such as \(^{12}\text{C}(p,p)^{12}\text{C}\) (elastic) and \(^{12}\text{C}(p,d)^{11}\text{C}\) (ground state) be detected simultaneously at the spectrograph focal plane, and be induced by a beam of energy sufficient to give both reaction products equal outgoing magnetic rigidities. This beam energy is, of course, determined by the outgoing particle type, the scattering angle at which both are observed, and the Q-values of the reactions. For this pair of reactions with a \(^{12}\text{C}(p,d)^{11}\text{C}\) Q-value of \(-16.4953 \pm 0.0011\) MeV (Ha 66) the beam energy is \(E_p = 33.691 \pm 0.0022\) MeV at \(\Theta_L = 15.0^\circ\). Furthermore, this beam energy is unique for a given pair of reactions, and the outgoing particle rigidity \((Bp_p = Bp_d = 332.256\) Kg-in for this example) is unique as well. This situation is shown in Figure 2.2, where outgoing rigidities of the protons and deuterons are plotted as a function of beam energy. The point at which the curves cross determines the unique beam energy and magnetic rigidity value. It is of interest to note that the momentum match \(Bp\) value is quite insensitive to \(\Theta_L\). Tables 2.1 and 2.2 list other reaction pairs and their Q-values suitable for momentum matching at other beam energies and magnetic rigidities. Figure 2.3 shows spectra of momentum matched protons and deuterons from the reactions \(^{12}\text{C}(p,p')^{12}\text{C}(4.4398)\) and \(^{12}\text{C}(p,d)^{11}\text{C}\) g.s. The spectra were taken simultaneously.

The accurately established \(Bp\) value and proton beam energy provide the vehicle for further calibrations. These reaction products may now be placed at a point on the spectrograph focal plane where all subsequent reactions are to be placed, and used to define an
effective radius of curvature for particles incident at that point. The relation is

$$\rho_{\text{effective}} = B \rho_{\text{NMR}} \left(\frac{\text{momentum match}}{B_{\text{NMR}}} \right)$$

where

$$B_{\text{NMR}} = \frac{\text{NMR frequency (MHz)}}{4.2577 \, \text{MHz/KG}}$$

is the field value given by the NMR probe. The establishment of a unique beam energy and magnetic rigidity is independent of any measurement other than determining that both reactions are incident at the same focal plane position. This criterion was accomplished by adjusting the beam energy until the centroids of the proton and deuteron peaks coincided as seen via the position sensitive detector at the focal plane. The ability to discern when the centroids were coincident represents the experimental limit of the calibration, and previous work indicates that determining centroid differences to 0.1 mm or better is not unreasonable. Once a match had been established, it was checked by moving the peaks across the counter by changing the field. For a real match the centroids must remain coincident. A relative shift of centroids in this process indicates a spurious match, possibly caused by DC biasing of the detector pulses, or zero level shift in the ADC's.

For these proton reactions the scattering angle was measured using the reaction $^1\text{H}(p,p)^1\text{H}$ in a forward foil of negligible thickness. The high kinematic spread of the scattered protons (298 KeV/deg at $\Theta_L = 15.0^\circ$) allowed measurement of the angle to ± 0.05. Since
the momentum matched beam energy is sensitive to the angle by the amount \(\Delta E(\text{beam}) = 30 \text{ KeV/deg}\) this required the original positioning of the spectrograph to be accurate to only \(\pm 0.5^\circ\). The precise value of the scattering angle was then used to calculate the beam energy to 4 KeV or better.

Once a beam energy and \(\rho(\text{effective})\) were defined by the momentum match, and the scattering angle measured, the spectrograph behavior at other field excitations were calibrated. This was accomplished by observing other reactions at the focal plane position defined by \(\rho(\text{effective})\). These reactions are listed in Table 2.3. The magnetic rigidity of the outgoing particles of these reactions were calculated knowing the beam energy (the momentum match beam), the scattering angle, the target thickness and the reaction Q-values. These calculated rigidities were then compared to the rigidity measured in the spectrograph when the reaction products were placed at \(\rho(\text{effective})\), namely:

\[
\frac{B_\rho(\text{experimental})}{B_\rho(\text{calculated})} = \frac{B_\rho(\text{MR})}{B_\rho(\text{MR})} \rho(\text{effective}).
\]

The comparison of the calculated \(B_\rho\) values to those determined experimentally calibrates the spectrograph behavior at \(\rho(\text{effective})\) for a given MRX reading. Several judicious points at various field excitations provided a calibration over the range of interest. The ratio \(\frac{B_\rho(\text{calculated})}{B_\rho(\text{experimental})}\) was plotted against spectrograph MRX readings, and this calibration, is shown in Figure 2.4.

The upper curve represents two independent calibrations on separate days using the \(^{12}\text{C}(p,p)^{12}\text{C}\) elastic and \(^{12}\text{C}(p,d)^{11}\text{C}\) g.s. match and indicates the reproducibility of this data. The lower
curve is a third calibration using $^{12}\text{C}(p,p')^{12}\text{C}(4.4398)$ and $^{12}\text{C}(p,d)^{11}\text{C}$ (g.s.) The beam energy and B_0 value required for this second pair ($E_p = 28.927$ MeV, $B_{0,p} = B_{0,d} = 282.822$ Kg-in at $\theta_L = 11.0^\circ$) defined a different value of ρ(effective) for the subsequent calibration and Q-value measurements. The reproducibility is again indicated by the fact that the curves are very nearly parallel. For both curves, several points were taken for each reaction on separate cycles of the magnet.

2.3 ^3He Beam and ^6He Energies

The ^3He beam energy for each run was determined by measuring the magnetic rigidity of ^3He elastic scattering from ^{12}C and ^{16}O. The procedure required adjusting the spectrograph field such that these elastic peaks were incident at the focal position defined by the momentum match. The rigidities of the elastically scattered ^3He were then calculated from the B_0(calculated) curve (Figure 2.4), B_0(experimental) the NMR frequency, and the value of ρ(effective). The relation is:

$$B_0(^3\text{He}) = \frac{V(\text{NMR}) \times \rho(\text{effective}) \times B_0(\text{calculated})}{4.2577} \frac{B_0(\text{experimental})}{\rho(\text{effective})}$$

This rigidity of the ^3He (hence the momentum and energy) plus knowledge of the scattering angle is sufficient to determine the beam energy.

When ^3He beams were used, the scattering angle was checked by measuring the reaction $^1\text{H}(^3\text{He},^3\text{He})^1\text{H}$ on a forward foil. The outgoing ^3He energy was determined in the manner described above, and the angle determined from the reaction kinematics. The high kinematic spread of the ^3He (1490 KeV/deg for $E = 68.5$ MeV and $\theta_L = 11.0^\circ$) makes
the angle calculation very insensitive to the ^3He beam energy. A spectrograph entrance aperture of $\pm 0.08^\circ$ was used for the angle measurements to reduce the energy spread acceptance and maintain reasonable peak shape. Figure 2.5 shows a sample position spectrum of the $^1\text{H}(^3\text{He}, ^3\text{He})^1\text{H}$ reaction.

Additional information on the spectrograph calibration was obtained by measuring the ^3He induced reaction shown in Table 2.4. Since the ^3He beam energy and scattering angle were known, and $\rho(\text{effective})$ previously defined, these reactions provided additional $R_p(\text{calculated})$ data. For this reason, these points are also $R_p(\text{experimental})$ displayed on the calibration curve (Figure 2.4).

The outgoing ^6He energies from the $^{12}\text{C}(^3\text{He}, ^6\text{He})^9\text{C}$, $^{16}\text{O}(^3\text{He}, ^6\text{He})^{13}\text{O}$ and $^{24}\text{Mg}(^3\text{He}, ^6\text{He})^{21}\text{Mg}$ reactions were measured in the same manner as the elastic ^3He. However, since the beam energy and scattering angle had been measured, the ^6He energies allowed the $(^3\text{He}, ^6\text{He})$ Q-values to be calculated.

During each ^3He run, data was taken for all calibrating reactions as well as $(^3\text{He}, ^6\text{He})$ reactions on each cycle of the spectrograph field. In effect each such cycle provided an independent measurement of the desired Q-values.

2.4 Beam System

Beams for this experiment were prepared in the Michigan State University Sector-focus Cyclotron and delivered via the analysis and transport system (Ma 67). A general view of the experimental area is given in Figure 2.6. The slit boxes on the analysis system (S1, S2, S3)
were typically set to deliver a beam of maximum energy spread of
± 20 KeV at 70 MeV and maximum radial divergence of ± 2 milliradians.
Magnets M3 and M4 provided the initial energy analysis, and M5 is
a switching magnet. The direction of the beam incident on target
was defined by two sets of slits S4 and S5. Slits S4 are current
reading and are permanently located between the scattering chamber
and last quadrupole, 85 inches from the center of the chamber. These
slits were set at ± 0.30 inches from the beam line center.

Slits S5 are mounted on the target frame, and a ± 0.030 inch
opening defined the scattering chamber center and spectrograph object
point. These slits were also current reading. After the beam had
been aligned using M5 and M6, the S5 slits were lowered out of the
beam and the targets were bombarded. Continuous monitoring of the
slits S4, and the availability of monitoring S5 at any time assured
constancy of incident beam direction. In addition, the switching
magnet M5 was continuously monitored with an NMR.

The slits labeled S6 are located at the entrance to the spectro-
graph 10.67 inches from the target, and define the solid angle.
Three solid angle defining slits were used for this experiment;
1.2 mrad subtending 2° in the scattering plane and 2° vertically,
0.30 mrad subtending 1° in the scattering and 1° vertically, and
0.05 mrad subtending 0.16° in the scattering plane and 1° vertically.

Most of the proton calibration work was done with the 1.0°
slit since the cross sections were substantial, and minimum kinematic
spread in the peaks was desired. This was necessary since the
calibration work was done without moving the detecting apparatus to
compensate for kinematic spread. For the \(^3\text{He},^6\text{He}\) reaction the large solid angle 2.0\(^\circ\) X 2.0\(^\circ\) slit was used.

A check with an optical surveyor's telescope verified that the centers of all three slits coincided. Also, as a check that no spurious effects arose in the placement of the reaction peaks at the focal plane due to slit changes, many of the calibrating reactions were observed with each of the three slits (at constant spectrograph field). No centroid shift was found to be significantly greater than the statistical error of the centroid itself.

2.5 Particle Detection and Identification

Particle detection and identification at the spectrograph focal plane was accomplished with a 300 \(\mu\) position sensitive silicon surface barrier detector (Da 69 and Jo 70). The energy loss signals position signals were fed into separate Ortec Model 109 preamplifiers and from there into two Tennelec Model TC-200 amplifiers. These amplifiers were used in AC coupled, double differentiating mode to prevent DC biasing of the pulses. This is particularly important since the position information from the detector is computed as:

\[
X(\text{position}) = \frac{XAE\ \text{pulse}}{\Delta E\ \text{pulse}}
\]

Thus, any constant added to one of the pulses (DC bias or raised zero level) would yield erroneous position information. The zero levels of the ADC's were also checked with a precision pulser before each run to eliminate offset zero levels. The amplifier operating time constants were .8 usec. The amplified pulses were then sent
to two Northern Model NS-629 ADC's and hence to the Laboratory's XDS Sigma-7 computer where the data was analyzed on-line. Figure 2.7 is a diagram of the detector and electronics setup. The data taking routine TOOTSIE (Ba 69) displays the data according to the energy loss in and position along the detector. An example of this display is shown in Figure 2.8. The particles are incident on the detector at an angle of about 45° giving the detector an effective thickness of ~425 µ. Particles were identified via their differential energy loss in the detector. The detector was biased at -150 volts and cooled with alcohol at dry ice temperature.

2.6 Kinematic Compensation

Kinematic compensation requires that the energy spread across the spectrograph entrance aperture of the reaction products due to the reaction kinematics be refocussed at the detector, and not be observed in the peak width. The design of the spectrograph provides for a fixed focal plane for paraxial rays emerging from its object point in the scattering chamber. With a finite angular acceptance in the scattering plane, however, the energy difference between rays accepted at angles $\theta_L + \delta$ and $\theta_L - \delta$ due to kinematic spreading is not negligible (this energy spread would be 264 KeV for the 1.2 mm aperture and the 12C(3He,6He)9C reaction at 10°).

The effect is that the ray entering at $\theta_L - \delta$ has a higher energy, and traces a larger radius of curvature than the paraxial rays. The ray entering at $\theta + \delta$, being at a lower energy, traces a correspondingly shorter radius of curvature. The net effect is that these rays
intersect one another (focus) closer to the spectrograph than the paraxial rays do, and the focal point moves toward the spectrograph and becomes a circle of least confusion of rays. The equation used for calculating this shift \(\Delta \) of the focal point is (Sp 67):

\[
\Delta = \frac{[DM \rho K_0 (T_1/T_o)^{1/2} \sin \theta]}{[(K_o - K_0) (T_1/T_o)^{1/2} \cos \theta]}
\]

where: \(\Delta \) = focal plane shift for a given reaction at radius of curvature \(\rho \)

\(D \) = spectrograph dispersion at \(\rho \)

\(\rho \) = radius of curvature

\(K_o \) = \(\left(\frac{M_i M_o}{M_R} \right)^{1/2} \)

\(M_i \) = mass of incident particle

\(M_o \) = mass of detected reaction product

\(M_R \) = mass of residual nucleus

\(K_0 = 1 + M_o/M_R \)

\(T_i \) = energy of incident particle

\(T_o \) = energy of detected reaction product

\(\theta \) = mean laboratory scattering angle

More complete discussions of this phenomenon may be found in references (Sp 67) and (En 58). For the \(^3\text{He}, ^6\text{He} \) reactions measured here this focal shift was three to six inches at \(\rho = 32 \) inches.

The apparatus necessary to achieve this compensation consisted of a 50-inch plate or detector holder mounted on two motor operated drive screws in the spectrograph camera chamber. This allowed the detector holder to be driven horizontally toward the spectrograph exit port. The detector holder may also be driven vertically allowing the detector to be placed at the position of optimum count rate.
The relativistic kinematics calculations and computations of various spectrograph parameters were made with the computer program SPECTKINE. In addition to the reaction kinematics it provides NMR frequency and magnet decapot settings as well as calculations of the kinematic shift described above.

2.7 Cycling Effects

It has been observed that the spectrograph field behavior is sensitive to the field recycling procedure used (Sn 67). In particular, the calibration data showed that cycling at different speeds caused apparent changes in the effective field strength relative to a constant reading of the NMR frequency. This effect was made negligible by using a cycling time of 40 minutes for a field change of 0.0 to 0.9 to 0.0 of its maximum value. All data was taken on the 0.0 to 0.9 half of the cycle with the field always rising to its desired value.

Once the proper cycling procedure had been ascertained for the spectrograph, there was very little field drift as monitored by the NMR. Such fluctuations amounted to about ±0.7 KHz (at a frequency of ±55 MHz). This introduced an uncertainty in the outgoing 6He energy of only ±0.6 KeV.

2.8 Dispersion Matching

Partial dispersion matching was used to reduce the effects of beam intensity shift within the energy limits set by the beam transport-analysis system (especially important in three to six hour runs). A perfect match would mean that the energy dispersion of the beam
produced by the cyclotron and analysis system would be exactly compensated by the dispersion produced in the spectrograph. The net result of the ideal situation would mean a finite width (and energy dispersed) beam spot at the spectrograph target would be focussed to a point by the spectrograph. This is shown graphically in Figure 2.9. The effect of a total or partial dispersion match is reduced image width for a given reaction. In addition, the peak centroid is made less sensitive to fluctuation in the energy intensity pattern of the incident beam.

The dispersion matched condition was created by choosing quadrupole lens settings that gave the dispersed beam a width on target commensurate with that required by the dispersion characteristics of the spectrograph. The amount of dispersion match actually used in this experiment ranged from 50–75% of total match. The energy dispersion required by the spectrograph for perfect matching is:

$$\frac{\Delta X}{\Delta E} = \frac{D \rho}{E M_H}$$

where ΔX is the energy dispersion of outgoing particles across the target, ΔE is the energy dispersion of the spectrograph at ρ and E is the mean energy of the outgoing particles.

2.9 Constant Radius of Curvature

The success of accurate energy measurements in the spectrograph depends upon defining an effective radius of curvature (or a corresponding focal plane position), and placing all pertinent reaction products
there. Since the information regarding the peak positions was obtained through detector pulses analyzed by computer, and consequently appeared to change with changes in amplifier gains or ADC conversion gains, some method of providing a fiducial mark at the focal plane was required. This requirement was filled by mounting a collimated 241Am alpha source on the counter bench unit one inch from the counter. The counter could then be lowered vertically in its bench to the level of the source. The resulting alpha peaks then provided a positive position indicator on the counter with a corresponding position channel number. When the amplifier gains were changed, it was a simple matter to lower the detector and recalibrate. Figure 2.10 shows photographs of the focal plane apparatus, alpha source, and detector. Figure 2.11 shows the three resulting calibration alpha peaks.

The alpha source also provided an energy calibration for the counter since the alpha group energies are well known (5.48 MeV for the dominant group). Thus particle energy loss in the detector and electronic noise level could be calibrated without recourse to a pulser.

Since it is also critical that the detector not be moved relative to the alpha source between the proton calibration and the taking of (3He, 6He) data, each run consisted of both a proton calibration and 6He data taking without removing the detector or its mount from the camera chamber.

The alpha source, however, moved with the detector when the focal plane apparatus was moved to compensate for kinematic spreading. To insure that the radius of curvature defined by the proton calibration intersected the same point on the focal plane despite this movement,
the elastic ^3He from ^{12}C were observed at this point as the detector was moved to various positions. The result was a calibration for the drive screws in which the ^3He peak centroid always maintained its proper position. The 0.08° entrance slit was used for this calibration to minimize the peak widths and maintain good peak shape.
Table 2.1 Some Useful Reactions for Calibration in Momentum Matching Method

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Ex(Residual Nucleus) (MeV±K eV)</th>
<th>Q-value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C(p,p)12C</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>12C(p,p)12C*</td>
<td>4.4398±0.3a</td>
<td>-4.4398±0.3</td>
<td></td>
</tr>
<tr>
<td>16O(p,p)16O</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>16O(p,p)16O*</td>
<td>6.1305±0.4b</td>
<td>-6.1305±0.4</td>
<td></td>
</tr>
<tr>
<td>12C(p,p)11C</td>
<td>0.0</td>
<td>-16.4953±1.1d</td>
<td></td>
</tr>
<tr>
<td>16O(p,d)15O</td>
<td>0.0</td>
<td>-13.4434±1.2d</td>
<td></td>
</tr>
<tr>
<td>16O(p,d)15O*</td>
<td>6.180±4.0c</td>
<td>-19.623±4.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2 Possible Reaction Pairs for Momentum Match Energy Calibrations

Calculations are for $L = 15.0^\circ$

<table>
<thead>
<tr>
<th>Reaction 1</th>
<th>Excitation Energy 1 (MeV±K eV)</th>
<th>Reaction 2</th>
<th>Excitation Energy 2 (MeV±K e V)</th>
<th>Beam Energy (MeV±K e V)</th>
<th>Beam Particle</th>
<th>Magnetic Rigidity of Outgoing Particles (Eg.in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C(p,p)12C</td>
<td>0.0</td>
<td>12C(p,d)11C</td>
<td>0.0</td>
<td>33.691±2.2</td>
<td>P</td>
<td>332.256</td>
</tr>
<tr>
<td>12C(p,p)12</td>
<td>4.4398±3</td>
<td>12C(p,d)11C</td>
<td>0.0</td>
<td>29.099±2.2</td>
<td>P</td>
<td>282.084</td>
</tr>
<tr>
<td>16O(p,p)16O</td>
<td>0.0</td>
<td>16O(p,d)15O</td>
<td>0.0</td>
<td>27.336±2.5</td>
<td>P</td>
<td>299.009</td>
</tr>
<tr>
<td>16O(p,p)16O</td>
<td>0.0</td>
<td>16O(p,d)15O*</td>
<td>6.180±4.</td>
<td>40.106±8.</td>
<td>P</td>
<td>363.381</td>
</tr>
<tr>
<td>16O(p,p)16O*</td>
<td>6.1305±4</td>
<td>16O(p,d)15O</td>
<td>0.0</td>
<td>20.981±2.5</td>
<td>P</td>
<td>219.312</td>
</tr>
<tr>
<td>16O(p,p)16O*</td>
<td>6.1305±4</td>
<td>16O(p,d)15O*</td>
<td>6.180±4.</td>
<td>33.607±8.</td>
<td>P</td>
<td>299.600</td>
</tr>
<tr>
<td>Reaction</td>
<td>Excitation Energy (MeV±eV)</td>
<td>Q-value (MeV±eV)</td>
<td>Outgoing Rigidity (MeV) for E(beam) = 33.691° L = 15.0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12C(p,p)12C</td>
<td>4.4398±0.3</td>
<td>4.4398±0.3</td>
<td>309.085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16O(p,p)16O</td>
<td>6.1305±0.4</td>
<td>6.1305±0.4</td>
<td>300.064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16O(p,d)15O</td>
<td>0.0</td>
<td>13.443±1.2</td>
<td>361.263</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27Al(p,d)26Al</td>
<td>0.0</td>
<td>10.832±2.9</td>
<td>384.616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Li(p,d)6Li</td>
<td>0.0</td>
<td>5.028±1.6</td>
<td>425.142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7Li(p,d)6Li</td>
<td>2.18±2.0</td>
<td>7.21±3.0</td>
<td>409.201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H(p,p)1H</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a See (Na 66)
b See (Aj 66)
Table 2.4 Spectrograph Calibration Reactions for 3He Beams

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Excitation Energy (MeV ± KeV)</th>
<th>Q-value ($Q_0 + E_{\text{exc}}$)</th>
<th>Outgoing Rigidity (Bo) for E(beam)=68.500 MeV $\theta_L = 11.00^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{12}\text{C}(^3\text{He},^3\text{He}^\prime)^{12}\text{C}^*$</td>
<td>4.4398±0.3</td>
<td>-4.4398±0.3</td>
<td>394.168</td>
</tr>
<tr>
<td>$^{16}\text{O}(^3\text{He},^3\text{He}^\prime)^{16}\text{O}^*$</td>
<td>6.1305±0.4</td>
<td>-6.1305±0.4</td>
<td>389.305</td>
</tr>
<tr>
<td>$^{12}\text{C}(^3\text{He},^3\text{He})^{12}\text{C}$</td>
<td>0.0</td>
<td>0.0</td>
<td>407.902</td>
</tr>
<tr>
<td>$^{16}\text{O}(^3\text{He},^3\text{He})^{16}\text{O}$</td>
<td>0.0</td>
<td>0.0</td>
<td>408.385</td>
</tr>
<tr>
<td>$^{12}\text{C}(^3\text{He},^4\text{He})^{11}\text{C}$</td>
<td>0.0</td>
<td>1.8582±0.0012a</td>
<td>473.490</td>
</tr>
<tr>
<td>$^{13}\text{C}(^3\text{He},^4\text{He})^{12}\text{C}$</td>
<td>0.0</td>
<td>15.631±0.0009a</td>
<td>516.704</td>
</tr>
<tr>
<td>$^{16}\text{O}(^3\text{He},^4\text{He})^{15}\text{O}$</td>
<td>0.0</td>
<td>4.910±0.0013a</td>
<td>484.592</td>
</tr>
<tr>
<td>$^{1}\text{H}(^3\text{He},^3\text{He})^{1}\text{H}$</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

a See (Ma 66)
RUN 3-32

\(^{12}\text{C}(^{3}\text{He}, ^{6}\text{He})^{9}\text{C}\)

E(beam) = 68.51 MeV

\(\theta_{tgt} = 45^\circ\)

d\(\Omega = 1.2 \times 10^{-3}\) sr

\(^{12}\text{C} \text{ FOIL} \ 760 \mu g/cm^2\)

Figure 2.1

\(^{12}\text{C}(^{3}\text{He}, ^{6}\text{He})^{9}\text{C} \) angular distribution
MAGNETIC RIGIDITY vs BEAM ENERGY

FOR

\[^{12}\text{C}(p,d)^{11}\text{C} \]

\[^{12}\text{C}(p,p)^{12}\text{C} \]

- DEUT \(\theta = 14.5 \)
- DEUT \(\theta = 15.0 \)
- PROTON \(\theta = 14.5 \)
- PROTON \(\theta = 15.0 \)

Figure 2.2

Momentum match
MOMENTUM MATCH
RUN NO. 3-57
E (BEAM) = 28.924 MeV.
\[\theta_L = 1082^\circ \]
\[F_s = 40.6256 \text{ MHz.} \]
\[B_p(\text{OUT}) = 282.822 \text{ Kg-in.} \]
\[^{12}\text{C FOIL} \quad 58 \mu g/cm^2 \]

\[^{12}\text{C(p,d)}^{14}\text{C(00)} \]
PEAK CENTROID CHAN 503

\[^{12}\text{C(p,p')}^{12}\text{C(4.4396)} \]
PEAK CENTROID CHAN 503

Figure 2.3
Momentum match spectra
RUN 3-11

$^{\theta_\ell} \text{ DETERMINATION}$

$^1\text{H} \ (^3\text{He}, ^3\text{He}) \ ^1\text{H}$

$E \ (\text{BEAM}) = 68.512 \text{ MeV}$

$\theta_\ell = 11.01^\circ$

$F_s = 50.9184 \text{ MHz}$

$\rho_{\text{eff}} = 32.223 \text{ in.}$

FORMVAR TARGET

Figure 2.5

$^1\text{H}(^3\text{He},^3\text{He})^1\text{H}$ spectrum
\(^{12}\text{C}(^{3}\text{He},X)\) \quad \text{TARGET} = 155\,\mu\text{g}\text{m/cm}^2.

\(E_{^{3}\text{He}} = 68.56,\quad Q = 95.4\,\mu\text{coul.}\)

\(\theta_{\text{LAB}} = 15^\circ,\quad d\Omega = 1.2 \times 10^{-3}\text{Sr.}\)

\(E_{6^{\text{He}}} = 35.45\)

\(\text{\^{6}He}\)

\(\text{\^{3}He}\)

\(\text{\alpha}\)

\(\text{t}\)

\(\text{d}\)

\(\text{XE/E-CHANNEL NO.}\)

\(\text{CHANNEL NO.}\)

\(\text{40 KeV}\)

\(\text{Figure 2.8}\)

Particle identification spectrum
Figure 2.9
Dispersion match

If the beam energy increases from B to A, the spectrograph dispersion reduces image width B'A'.
Position calibration spectrum

Figure 2.11

RUN NO. 3-1
ALPHA CALIBRATION SPECTRA FROM 241 AM SOURCE

COUNTS/CHANNEL

POSITION CHANNEL \(\Delta \langle \Delta B / \Delta B \rangle \)
2.10 Target Thickness Measurements

The 3He and 6He energy loss in the targets used in this experiment represent a significant correction to the measured outgoing 6He energies, and therefore, careful measurement of all targets was required. The targets were measured in air with an alpha source gauge, and the energy losses for various particles calculated using the published tables (Wia 66). The appropriate 6He loss was taken to be that of a 3He at half the 6He energy.

Briefly, the measuring technique requires passing 5 MeV α-particles from an 241Am source through the target (located a fixed distance from the source) and detecting them with a solid state detector mounted on a micrometer. When the total thickness of air and target material between the source and counter is not sufficient to stop the alphas, the count rate measured at the detector will be essentially constant. As the counter is moved away from the source, however, the alphas begin stopping before reaching the detector. In this region, the count rate falls rapidly to zero as the counter is moved further away, and the micrometer reading gives this distance quantitatively. The target is then removed and the measurement repeated with only air between the counter and source. This produces a curve similar to the first, but displaced from it a distance equal to the air equivalent thickness of the target material for the alphas. Figure 2.11 shows the data of such a measurement for a 12C foil.

Knowing the air pressure and temperature allows a calculation of the density of, and hence the alpha energy loss through the air
(or equivalently, through the target). This in turn allows the target thickness in mg/cm² to be calculated. Several measurements were made over the surface of each target foil to obtain an average thickness value. It may be noted also that since target thickness is measured relative to an equivalent amount of air, precise knowledge of the alpha energy used is not critical if the stopping power of the target elements are commensurate with that of air.

Once the target thickness and desired energy losses were established, they were applied as corrections to the outgoing particles as follows:

$$\overline{\Delta E}_{\text{LOSS}}^\text{(outgoing)} = \frac{1}{2}[\Delta E_{\text{LOSS}}^\text{(outgoing)} + \Delta E_{\text{LOSS}}^\text{(incident)}]$$

This assumes that on the average the desired reaction will occur at the target center, and consequently both the incident beam particles and reaction product will be reduced in energy by half the target.

The average energy loss for the outgoing particles in the target was then introduced as an effective excitation energy in the corresponding reaction kinematic calculations.

The uncertainty in the energy losses was estimated by making several separate measurements of each target. Table 2.5 lists all targets used for this experiment, their thickness in mg/cm², the average energy loss of ⁶He (as described above) and the uncertainty in the energy loss.
Table 2.5 Targets Used For \(^3\text{He},^6\text{He}\) Reactions
for \(E(\text{BEAM}) = 68.0\) MeV

<table>
<thead>
<tr>
<th>Targets</th>
<th>Thickness (mg/cm(^2))</th>
<th>(E(\text{^6He}),\text{ Ave. Loss (KeV)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12}\text{C} #1)</td>
<td>0.153</td>
<td>25.4±3</td>
</tr>
<tr>
<td>(S_{10}, \text{ F-80})</td>
<td>0.227</td>
<td>34.1±4</td>
</tr>
<tr>
<td>"Glass" (S_4O_2)</td>
<td>0.491</td>
<td>71.0±8</td>
</tr>
<tr>
<td>(24\text{Mg Foil})</td>
<td>0.656</td>
<td>83.5±13</td>
</tr>
<tr>
<td>(S_4O + C)</td>
<td>0.432</td>
<td>66.5±7</td>
</tr>
<tr>
<td>(^{12}\text{C} "P")</td>
<td>0.117</td>
<td>19.0±3</td>
</tr>
</tbody>
</table>
TARGET: 12C FOIL "F"

DATE: 5-30-70

PRESSURE: 30.9 in. Hg

TIME: 40 SEC.

DETECTOR MOTION (MILS)

ALPHA COUNTS PER 40 SECONDS

Figure 2.12
Target data
3. DATA ANALYSIS

Many of the parameters involved in obtaining the \((^3\text{He}, ^6\text{He})\) Q-values were subject to experimental uncertainties that were difficult to determine quantitatively. Because of this, and because the goal of this experiment was precise measurement, several independent measurements were made. Beam energies and scattering angles were varied, and for the \(^9\text{C}\) and \(^{13}\text{O}\) measurements, several different targets were used. In addition, two different detector geometries were used; the first with particles incident at 45° in which the detector operated in the 4N mode, and the second with particles \(4\pi\) incident at 53° and the detector operating in the E mode for the \(^{12}\text{C}(^3\text{He}, ^6\text{He})^9\text{C}\) and \(^{16}\text{O}(^3\text{He}, ^6\text{He})^{13}\text{O}\) reactions. Rotating the detector 8° relative to the incident particles also increased the effective energy dispersion scores it by about 20%. Each of these independent runs was preceded by its own proton calibration run. In all, three such independent runs were made, and several measurements of the Q-values were taken during each run. These measurements made during each run were, however, subject to any systematic uncertainties in the preceding proton calibration run, in the detector geometry and in target thickness measurements.

Each Q-value determination was assigned an uncertainty consisting of all known parameter fluctuations summed in quadrature. For a particular measurement this would include beam energy fluctuation, scattering angle fluctuations, statistical error of the peak centroid, uncertainties involved in correcting peak centroids not falling
exactly on the focal point defined by \(\rho \) (effective), and any observed magnetic field fluctuations. A weighted average of all Q-value measurements for a reaction was then taken, with the weighting factors taken as the square of the uncertainty of each point. Since these uncertainties were very nearly the same for each point, the weighted average was numerically equal to an unweighted average for each reaction. In addition, the uncertainty of the average was computed using the same weighting factors according to the formula (Be 57)

\[
\sigma = \left(\sum \left(W_i S_i \right)^2 \right)^{1/2} / \sum W_i
\]

\(\sigma \) = error of average

\(W_i \) = weighting factor

\(S_i \) = error of point

The systematic uncertainties such as those assigned to the calibration procedure, and to target thickness measurements were then summed in quadrature, and added to the uncertainty of the average Q-value.

To check the validity of this assignment of uncertainties, the standard deviation of the distribution of individual measurements was also computed for each reaction. (For \(^9\)C there were eight measurements, nine for \(^{13}\)O and four for \(^{21}\)Mg). In each case the standard deviation of the distribution and the total experimental uncertainty described previously were very nearly equal.

Finally, in computing the mass excesses of \(^9\)C, \(^{13}\)O, and \(^{21}\)Mg, the uncertainties of the other masses involved, \(^3\)He, \(^6\)He, \(^{12}\)C, \(^{16}\)O and \(^{24}\)Mg were also summed with the Q-value uncertainty in quadrature. The uncertainty of 4 KeV associated with the \(^6\)He mass excess (Ma 66) was not negligible in computing the total error of \(^9\)C and \(^{13}\)O. The masses of \(^3\)He, \(^6\)He, \(^{12}\)C, \(^{16}\)O, and \(^{24}\)Mg are given in Table 3.1.
Table 3.1 Mass Excesses of \((^{3}\text{He},^{6}\text{He})\) Reaction Members (Ha 66)

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Excess (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12}\text{C})</td>
<td>0.0</td>
</tr>
<tr>
<td>(^{16}\text{O})</td>
<td>4.7365±.0003</td>
</tr>
<tr>
<td>(^{24}\text{Mg})</td>
<td>-13.9333±.0017</td>
</tr>
<tr>
<td>(^{3}\text{He})</td>
<td>14.9313±.0002</td>
</tr>
<tr>
<td>(^{6}\text{He})</td>
<td>17.598 ±.004</td>
</tr>
</tbody>
</table>
4. EXPERIMENTAL UNCERTAINTIES

4.1 Uncertainties of Spectrograph Field Calibrations

Uncertainty in the field calibration curve (Figure 2.4) \(E_{\text{calc}}\) is the consequence of two separate phenomena; first \(E_{\text{exp}}\) the uncertainty in the \(^{12}\text{C}(p,d)^{11}\text{C}\) Q-value since this reaction is used for the momentum match, and second the uncertainty of fit of the calibration curve to the calibrating reactions. These points will be dealt with separately.

Uncertainty Due to Momentum Match

As pointed out in the section on spectrograph calibration, the momentum match defines both a proton beam energy and an effective radius of curvature. Since it is such a point of definition, any calibration curve must necessarily pass through it regardless of where other related calibration points may lie. This momentum match beam energy has a minimum uncertainty of \(+2.2\) KeV due to the 1.1 KeV uncertainty in the \(^{12}\text{C}(p,d)^{11}\text{C}\) Q-value. Since the calibration curve is required to pass through the point itself and since this beam energy is used in calculating the other calibration points, the effect of this 2.2 KeV uncertainty is to make any curve through the 2.2 KeV error bar acceptable as long as such a curve is parallel translation of the curve best fitting all of the calibration data. In other words, the location but not the shape of the calibration curve may be altered.
by the uncertainty of the $^{12}\text{C}(p,d)^{11}\text{C}$ Q-value. This effect represents
a systematic uncertainty in any outgoing particle rigidity (and hence
outgoing energy) based on this curve; outgoing ^{3}He for beam energy
and angle measurements, and outgoing ^{6}He, for example.

Quantitatively, the effect is the following. Since a translation
of the calibration curve is reflected directly in outgoing particle
energies:

$$\Delta E(\text{outgoing}) = \frac{2.2 \times 10^{-3} \text{ MeV}}{E(\text{outgoing})} = \frac{33.691 \text{ MeV}}{33.691 \text{ MeV}}$$

where 33.691 MeV is the momentum match beam energy at $\theta_L = 15.0^\circ$.

This reduces to:

$$\Delta E(\text{outgoing}) = 6.7 \times 10^{-5} \times E(\text{outgoing})$$

for a ^{3}He beam $E(\text{BEAM}) = 68.520 \text{ MeV}$ producing a ^{6}He of $E(^{6}\text{He}) = 36.069$
the individual uncertainties would be $\Delta E(\text{BEAM}) = 4.7 \text{ KeV}$ and $\Delta E(^{6}\text{He}) = 2.5 \text{ KeV}$. However, since any such systematic uncertainty must work in
the same direction for both measurements, the uncertainty in the
calculated Q-value is again their difference:

$$\Delta Q = \Delta E(\text{BEAM}) - \Delta E(^{6}\text{He}) = \pm 2.2 \text{ KeV}$$

for the parameters given above.

Uncertainty Associated With Calibration Curve

The uncertainty associated with the fit of the calibration curve
to the calibrating reactions is basically an estimate. To make this
curve as reliable as possible, an attempt was made to use calibrating
reactions whose Q-values carried minimal experimental uncertainties.
The best of these (in this respect) are the $^{12}\text{C}(p,p')^{12}\text{C}$ (4.4398) (Ch 67) and the $^7\text{Li}(p,d)^6\text{Li}$ (g.s.) (Ma 66) reactions, as well as the momentum match point which falls between them. Fortunately these reactions span a rigidity region that includes the points required for determining the ^3He beam energy and the ^6He energies from ^9C and ^{13}O. The ^3He induced calibrating reactions $^{12}\text{C}(^3\text{He},^3\text{He}')^{12}\text{C}(4.4398)$ and $^{12}\text{C}(^3\text{He},^4\text{He})^{11}\text{C}$ (using a ^3He beam energy determined via the proton calibration curve) then provided a check on the consistency of the curve shape over a greater rigidity range, particularly to that rigidity value required by ^{21}Hg. Using the quoted uncertainties of the calibration reaction Q-values, and considering the consistency of the curve shape over several sets of experimental measurements it is estimated that the uncertainty associated with the fit of the calibration curve is not greater than 0.5×10^{-4} of the outgoing particle energy. This uncertainty was applied directly to the outgoing ^6He energies and hence to the calculated Q-value. Quantitatively it amounted to about ± 2 KeV.

$$AQ(\text{fit}) < 0.5 \times 10^{-4} \times E(\text{outgoing } ^6\text{He}) = 2.0 \text{ KeV}$$

4.2 Extrapolation to Defined Radius of Curvature

The essence of these Q-value measurements was choosing a spectrograph field that places the desired reaction at a very carefully calibrated point on the focal plane. Since in practice this was almost impossible to do exactly for the ($^3\text{He},^6\text{He}$) reaction (primarily because the low count rates did not always allow a great deal of time
for such fine tuning), some method of extrapolating from the actual particle group position to the desired position was required. The approach was the following: knowing the field and where the particles are, what would the field be if the particle group were where it belonged? Such a problem depends basically on two factors; the characteristics of the detector and the dispersion of the spectrograph. Since the dispersion is essentially constant, particularly over the length of the focal plane subtended by the detector (30 mm) (Sp 67), the relation between a peak centroid in some position channel Cl (or equivalently at some place on the counter analyzed as channel Cl) with NMR frequency F1 and an equivalent centroid in channel C2 with frequency F2 is

\[
\frac{F_1 - F_2}{(C_1 - C_2)(F_1 + F_2)} = \text{constant}
\]

This is actually a statement of constant dispersion and should hold for a given detector geometry. In principle this constant may be calculated by taking some reaction such as $^{12}\text{C}(^3\text{He}, ^3\text{He})^{12}\text{C}$ and placing the peak in two different channels by changing the field and using the formula above. This constant and the formula would then allow determination of the field value that any other peak would have at $\rho(\text{effective})$.

Complications arise, however, due to non-linearities in the detector response. This situation effectively makes the dispersion appear non-linear. In order to calibrate for this effect, the detector was carefully mapped with one of the calibrating reactions (usually elastic
3He from 12C) during each run. This essentially yielded a set of dispersion "constants" for various areas of the counter. This information permitted subsequent mounting of the detector so as to utilize its most linear region. Doing so minimized nonlinearities to the point where an average value of the dispersion constant could be calculated over the region of interest. Since the dispersion is viewed via the detector and related electronics, it appears to depend upon the amplifier gains. The constant was, therefore, redetermined after any gain change.

The values of the dispersion constant for any given setup would vary by approximately 10% over the detector range of interest. Subsequently any such extrapolation of the field was given an uncertainty of 10% of the extrapolated value. Such extrapolations were generally in the range of 5-15 KHz, and all but two were less than 25 KHz. At an extrapolation of 25 KHz the uncertainty introduced is ± 2.5 KHz which translates into an uncertainty of ± 3.5 KeV in the outgoing 6He energy (=37 MeV).

The energy uncertainty was calculated as follows: for a given frequency interval ΔF at some average frequency F determining outgoing particle energy $E(\text{He})$

$$\frac{2\Delta F}{F} = \frac{E}{E}$$

$$\Delta E = \frac{2\Delta F \cdot E}{F}$$

Therefore, for dispersion constant = $\frac{\Delta F}{F}$ with uncertainty $\frac{\Delta E}{F \Delta C}$
\(\delta(\Delta F) = 10\% \frac{\Delta F}{FAC} \) the Q-value uncertainty becomes

\[
\Delta Q(\delta) = 10\% \times \frac{\Delta F \times 2 \times E}{F} = 0.20 \times \frac{\Delta F \times E(^{6}\text{He})}{F}
\]

4.3 Peak Location

The uncertainty of the location of a peak centroid due to its shape and statistics was accounted for by calculating the statistical uncertainty of the centroid. For a peak with calculated centroid at \(C \), the expression for \(C \) is

\[
C = \frac{\sum n_i c_i}{\sum n_i}
\]

where \(n_i \) is the number of counts in channel \(c_i \),

and its uncertainty is

\[
\delta C = \left(\frac{\sum n_i (c_i - C) \times N(N-1)}{N} \right)^{1/2}
\]

where \(N \) is the total number of counts in the peak

Translating this to energy units is accomplished as follows: for a centroid with uncertainty \(\delta C \) located at a detector position where the dispersion constant \(\frac{AF}{FAC} \), \(\delta C \) becomes an effective field uncertainty:

\[
\delta F = \delta C \times \frac{AF}{FAC}
\]

and hence an uncertainty in the outgoing \(^{6}\text{He} \) energy:

\[
E(^{6}\text{He}) = \delta C \times \frac{AF}{FAC} \times F \times 2 \times E(^{6}\text{He})
\]

In the majority of cases the centroid uncertainty ranged between 0.2 - 0.7 channels. For the typical value \(\frac{AF}{FAC} = 1.5 \times 10^{-2} \) M\(\text{Hzs} \) channel
this yielded uncertainties in the outgoing 6He energies of 2.0 - 7.0 KeV. These uncertainties are reflected directly in the calculated Q-values:

$$\Delta Q = \Delta C \times \frac{(\Delta P)}{P} \times F \times 2 \times E(\alpha)$$

4.4 Scattering Angle Fluctuations

The uncertainty of outgoing 6He energies due to uncertainties in the scattering angle θ_L consists of two parts. The first is a random contribution to each point due to possible fluctuation in beam direction while a particular data point was being taken. From consideration concerning the geometry of the beam delivery system and the general consistency of the calibration data this effect was estimated to yield an uncertainty in θ_L of $\pm 0.03^\circ$. This is reflected in the outgoing 6He energy through the value of the kinematic energy spread for each reaction. Table 4.1 shows these values and the energy uncertainty for each reaction for $\theta_L = 11.00^\circ \pm 0.03^\circ$ and $E(\text{BEAM}) = 68.5$ MeV.

Table 4.1. Uncertainty of Outgoing 6He Energy for $\theta_L = 11.00^\circ \pm 0.03^\circ$ and $E(\text{BEAM}) = 68.5$ MeV

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$^{12}\text{C}(\alpha,^6\text{He})^{9}\text{C}$</th>
<th>$^{16}\text{O}(\alpha,^6\text{He})^{13}\text{O}$</th>
<th>$^{24}\text{Mg}(\alpha,^6\text{He})^{21}\text{Mg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic Spread</td>
<td>150 KeV/deg</td>
<td>108 KeV/deg</td>
<td>70 KeV/deg</td>
</tr>
<tr>
<td>$E(\alpha)$ for $\Delta \theta = 0.03^\circ$</td>
<td>± 4.5 KeV</td>
<td>± 3.3 KeV</td>
<td>± 2.1 KeV</td>
</tr>
</tbody>
</table>
These uncertainties are reflected directly in the calculated Q-values:

$$\Delta Q(\theta_L) = \Delta E(6He)$$

4.5 Uncertainty of Scattering Angle Measurements

The second uncertainty in the lab scattering angle is that attached to the actual measurement of the angle. Since the $^1\text{H}(3He,3He)^1\text{H}$ reaction used to measure θ_L is extremely sensitive to angle because of the kinematics of the reaction (1480 KeV/deg at $\theta_L = 11.0^\circ$, $E(\text{BEAM}) = 68.530$ MeV) it is quite insensitive to the beam energy. The angle measurement was therefore assumed good to $\pm 0.03^\circ$, since this meant determining the outgoing $3He$ energy to only ± 45 KeV. The angle uncertainty affects the outgoing $6He$ energy two ways; first through the beam energy, since the reaction $^{12}\text{C}(3He,3He)^{12}\text{C}$ and θ_L are used to determine the beam energy, and second, directly through the measured $6He$ energy. Fortunately, these two effects tend to cancel one another since the Q-value reflects a difference of incident and outgoing particle energies. This is illustrated in the following example:

Suppose the elastics from $^{12}\text{C}(3He,3He)^{12}\text{C}$ are measured and have energy $E(3He) = 67.892$ MeV for $\theta_L = 11.0^\circ$ this gives $E(\text{BEAM}) = 68.530$ MeV. For the same outgoing $3He$ energy but $\theta_L = 10.0^\circ$, $E(\text{BEAM}) = 68.420$. Now, for the reaction $^{12}\text{C}(3He,6He)^{9}\text{C}$, these two sets of parameters would yield:

- $E(6He) = 36.069$ MeV for $E(\text{BEAM}) = 68.530$, $\theta_L = 11.0^\circ$
- $E(6He) = 36.116$ MeV for $E(\text{BEAM}) = 68.420$, $\theta_L = 10.0^\circ$
Therefore, $\Delta E(\text{He}) = 47$ KeV/deg for $^{12}\text{C}(^{3}\text{He}, ^{6}\text{He})^{9}\text{C}$. The same calculation for the other reactions gives:

\[
\Delta E(\text{He}) = 6 \text{ KeV/deg for } ^{16}\text{O}(^{3}\text{He}, ^{6}\text{He})^{13}\text{O}
\]

\[
\Delta E(\text{He}) = 45 \text{ KeV/deg for } ^{24}\text{Mg}(^{3}\text{He}, ^{6}\text{He})^{21}\text{Mg}
\]

Assuming $\theta_L = \pm 0.03^\circ$, the uncertainty reflected in the final outgoing ^6He energies and hence the calculated Q-values becomes:

\[
\Delta Q(\Delta \theta_L) = \pm 1.4 \text{ KeV for } ^9\text{C}
\]

\[
\Delta Q(\Delta \theta_L) = \pm 0.2 \text{ KeV for } ^{13}\text{O}
\]

\[
\Delta Q(\Delta \theta_L) = \pm 1.4 \text{ KeV for } ^{21}\text{Mg}
\]

Since such an error in angle determination would be systematic over an entire run, these uncertainties are applied to the average Q-value of each reaction, rather than to each particular measurement.

4.6 ^3He Beam Energy Uncertainties

The systematic uncertainties associated with absolute measurement of the ^3He beam energies are so much a function of the calibration procedure and scattering angle determination, that the values used for ^3He beams are effectively defined by these procedures. Systematic errors in its value has therefore been absorbed into these other uncertainties.

Estimates of the beam energy fluctuations during a run were obtained from the scatter of the ^3He calibration reaction points.
over the course of a run. For example, nine individual measurements of the $^12C(^3He,^3He)^{12}C$ elastic over the course of a two day run varied by a maximum of only 8 KeV, with the other calibration reactions showing similar scatter commensurate with their sensitivity to beam energy. This remarkable stability of beam energy was of prime importance to the experiment. The largest such fluctuation for any of the runs was $\Delta E(\text{beam}) = \pm 10$ KeV.

4.7 Uncertainty in Target Energy Loss

This problem is discussed in the section on target energy loss measurements, and uncertainty values are given there. In the case of the $^{24}Mg(^3He,^6He)^{21}Mg$ measurement where only one target was used for all measurements, the uncertainty is treated as systematic and applied to the average of the Q-value measurements. For the 9C and ^{13}O measurements several targets were used, and the uncertainties applied to the Q-value measurements for the corresponding targets.

4.8 Stray Magnetic Fields

To guard against spurious effects on incident beam direction due to stray fields of the cyclotron, bending magnets, and particularly the spectrograph whose field was often changed, as well as effects due to the earth's magnetic field, all exposed areas of the beam transport system were wrapped with soft iron for magnetic shielding.
5. EXPERIMENTAL RESULTS

Table 5.1 lists all individual measurements of the Q-values obtained along with the experimental parameters pertinent to each. The column labeled "total error" represents all known experimental uncertainties for that point summed in quadrature as though they were the only measurement made. The column labeled "partial error" represents the sum (unquadrature) of random errors associated with that particular point.

Table 5.2 lists the resulting average Q-values, their total uncertainties and the resulting values for the mass excesses of 9C, 13B, and 21Mg.

Figure 5.1 displays typical position spectra for the $(^3$He,6He) reactions.
<table>
<thead>
<tr>
<th>Date</th>
<th>Run Number</th>
<th>Reaction</th>
<th>Q-value (MeV)</th>
<th>Total Error (MeV)</th>
<th>Partial Error (MeV)</th>
<th>^3He Beam Energy (MeV)</th>
<th>θ_L (deg)</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/3/70</td>
<td>1-121</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.566</td>
<td>±0.020</td>
<td>±0.018</td>
<td>68.574±0.10</td>
<td>14.82</td>
<td>^{12}C #1</td>
</tr>
<tr>
<td></td>
<td>1-123</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-31.510</td>
<td>±0.020</td>
<td>±0.018</td>
<td>68.577±0.10</td>
<td>14.82</td>
<td>"Glass"</td>
</tr>
<tr>
<td>4/3/70</td>
<td>2-89</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.574</td>
<td>±0.011</td>
<td>±0.010</td>
<td>68.476±0.08</td>
<td>10.96</td>
<td>^{12}C #1</td>
</tr>
<tr>
<td></td>
<td>2-89</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.581</td>
<td>±0.011</td>
<td>±0.010</td>
<td>68.470±0.08</td>
<td>10.96</td>
<td>^{12}C #1</td>
</tr>
<tr>
<td></td>
<td>2-106</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.597</td>
<td>±0.011</td>
<td>±0.010</td>
<td>68.470±0.08</td>
<td>10.96</td>
<td>^{12}C #1</td>
</tr>
<tr>
<td></td>
<td>2-93</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.506</td>
<td>±0.012</td>
<td>±0.011</td>
<td>68.476±0.08</td>
<td>10.96</td>
<td>S10, F-80</td>
</tr>
<tr>
<td></td>
<td>2-101</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.524</td>
<td>±0.012</td>
<td>±0.010</td>
<td>68.470±0.08</td>
<td>10.96</td>
<td>S10, F-80</td>
</tr>
<tr>
<td></td>
<td>2-107</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.504</td>
<td>±0.011</td>
<td>±0.010</td>
<td>68.470±0.08</td>
<td>10.96</td>
<td>S10, F-80</td>
</tr>
<tr>
<td></td>
<td>2-103</td>
<td>$^{24}\text{Mg}(^3\text{He},^6\text{He})^{21}\text{Mg}$</td>
<td>-27.523</td>
<td>±0.018</td>
<td>±0.013</td>
<td>68.470±0.08</td>
<td>10.96</td>
<td>^{24}Mg Foil</td>
</tr>
<tr>
<td></td>
<td>2-108</td>
<td>$^{24}\text{Mg}(^3\text{He},^6\text{He})^{21}\text{Mg}$</td>
<td>-27.519</td>
<td>±0.017</td>
<td>±0.010</td>
<td>68.470±0.08</td>
<td>10.96</td>
<td>^{24}Mg Foil</td>
</tr>
<tr>
<td>4/12/70</td>
<td>3-15</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.574</td>
<td>±0.011</td>
<td>±0.010</td>
<td>68.512</td>
<td>11.01</td>
<td>^{12}C #1</td>
</tr>
<tr>
<td></td>
<td>3-27</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.577</td>
<td>±0.011</td>
<td>±0.009</td>
<td>68.512</td>
<td>11.01</td>
<td>^{12}C #1</td>
</tr>
<tr>
<td></td>
<td>3-17</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.500</td>
<td>±0.011</td>
<td>±0.010</td>
<td>68.512±0.08</td>
<td>11.01</td>
<td>S10, F-80</td>
</tr>
<tr>
<td></td>
<td>3-28</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.514</td>
<td>±0.022</td>
<td>±0.012</td>
<td>68.512±0.08</td>
<td>11.01</td>
<td>"Glass"</td>
</tr>
<tr>
<td>Date</td>
<td>Run Number</td>
<td>Reaction</td>
<td>Q-value (MeV)</td>
<td>Total Error (MeV)</td>
<td>Partial Error (MeV)</td>
<td>3He Beam Energy (MeV)</td>
<td>θ_L (deg)</td>
<td>Target</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4/12/70</td>
<td>3-21</td>
<td>$^{24}\text{Mg}(^3\text{He},^6\text{He})^{21}\text{Mg}$</td>
<td>-27.499</td>
<td>± 0.916</td>
<td>± 0.09</td>
<td>68.512 ± 0.08</td>
<td>11.01</td>
<td>^{24}Mg Foil</td>
</tr>
<tr>
<td></td>
<td>3-29</td>
<td>$^{24}\text{Mg}(^3\text{He},^6\text{He})^{21}\text{Mg}$</td>
<td>-27.505</td>
<td>± 0.017</td>
<td>± 0.010</td>
<td>68.512 ± 0.08</td>
<td>11.01</td>
<td>^{24}Mg Foil</td>
</tr>
<tr>
<td>5/30/70</td>
<td>3-88</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.572</td>
<td>± 0.012</td>
<td>± 0.011</td>
<td>68.210 ± 0.10</td>
<td>10.68</td>
<td>^{12}C "P"</td>
</tr>
<tr>
<td></td>
<td>3-77</td>
<td>$^{12}\text{C}(^3\text{He},^6\text{He})^{9}\text{C}$</td>
<td>-31.572</td>
<td>± 0.013</td>
<td>± 0.012</td>
<td>68.199 ± 0.10</td>
<td>10.68</td>
<td>^{12}C "P"</td>
</tr>
<tr>
<td></td>
<td>3-78</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.478</td>
<td>± 0.014</td>
<td>± 0.011</td>
<td>68.199 ± 0.10</td>
<td>10.68</td>
<td>^{16}O +C</td>
</tr>
<tr>
<td></td>
<td>3-89</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.510</td>
<td>± 0.014</td>
<td>± 0.011</td>
<td>68.210 ± 0.10</td>
<td>10.68</td>
<td>^{16}O +C</td>
</tr>
<tr>
<td></td>
<td>3-90</td>
<td>$^{16}\text{O}(^3\text{He},^6\text{He})^{13}\text{O}$</td>
<td>-30.510</td>
<td>± 0.014</td>
<td>± 0.011</td>
<td>68.230 ± 0.10</td>
<td>10.67</td>
<td>^{16}O +C</td>
</tr>
</tbody>
</table>
Table 5.2 Average Q-values and Mass Excesses for the $T_z = -3/2$ Nuclei

<table>
<thead>
<tr>
<th>Element</th>
<th>Reaction</th>
<th>Q-value (MeV)</th>
<th>Mass Excess (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9C</td>
<td>12C(3He, 6He)9C</td>
<td>-31.578 ± 0.008</td>
<td>28.911 ± 0.009</td>
</tr>
<tr>
<td>13O</td>
<td>16O(3He, 6He)13O</td>
<td>-30.506 ± 0.013</td>
<td>23.103 ± 0.014</td>
</tr>
<tr>
<td>21Mg</td>
<td>24Mg(3He, 6He)21Mg</td>
<td>-27.512 ± 0.018</td>
<td>10.912 ± 0.018</td>
</tr>
</tbody>
</table>
Figure 5.1

\((^3\text{He},^6\text{He})\) position spectrum
6. DISCUSSION

Table 6.1 gives the coefficients of IMME for the A = 9, 13, and 21 isobaric quartets. The coefficients a(α,T), b(α,T) and c(α,T) were obtained from a least squares fit of the form

\[M = a + bT_z + cT_z^2 \]

to the mass excesses of the quartet members. The d(α,T) coefficient is the coefficient of a \(T_z^3 \) term when the same data is fit to the expression

\[M = a + bT_z + cT_z^2 + dT_z^3 \]

For both cases the mass excess values for the \(T_z = -3/2 \) members are taken from Table 1 of (Ga 69). The term \(^2 \) represents the quality of the fit, and the expression used was

\[^2 = \frac{1}{\text{deg}(\text{exp})} \left[\frac{M_{\text{calc}} - M_{\text{exp}}}{\text{deg}(\text{exp})} \right]^{1/2} \]

Deviations of the experimentally determined masses and predictions of the IMME with a, b, and c coefficients of Table 6.1 are displayed graphically in Figure 6.1. Only the A = 9 quartet shows deviations greater than the experimental uncertainty of the points.

The addition of higher order terms such as \(T_z^3 \) and \(T_z^4 \) to the IMME are predicted when the Coulomb potential is expanded as a second order perturbation. Such a second order treatment then involves mixing of states of \(T(\text{perturb}) = T \pm 1 \) through the off diagonal matrix elements of the expansion. This has been done in detail in a recent article by
Janecke (Ja 69), where the IMME is expanded to a quartic in T_z. The conclusion reached here is that terms in T_z^3 and T_z^4 will be small, not so much because the perturbation is small, but because the major effects of such perturbations are absorbed mostly in the T_z, and T_z^2 terms.

The size of the d coefficient (of dT_z^3) has been estimated to be ≈ 9 keV and the data indicates a d term of this magnitude. For $A = 13$ and 21 such a term is not evident.

The determination of such a cubic term from isobaric quartets must be done with caution. Since the cubic will fit a quartet exactly, the d term and its uncertainty may be expressed in terms of the masses:

$$d = \frac{M(3/2) - M(-3/2) - 3(M(1/2) - M(-1/2))}{6}$$

$$\Delta d = \frac{\Delta M(3/2) + \Delta M(-3/2) + 3(\Delta M(1/2) + \Delta M(-1/2))}{6}$$

where M is the mass of the multiplet member whose T_z value is in parenthesis. From these expressions, it is apparent that the generally small experimental uncertainties of the $T_z = \pm 1/2$ members (≈ 3 keV) may contribute as much or more to the uncertainty in d as the larger uncertainties of the $T_z = \pm 3/2$ members. For this reason, careful determination of all member masses is required.

Another attempt to make some estimate of the size of the d term
is presented in (He 69), where the Schroedinger equation is solved directly for a nuclear model. The model consists of three nucleons outside an inert core, with each of these extra nucleons in a Woods-Saxon nuclear potential, a Lane symmetry potential, and the Coulomb potential of a uniformly charged sphere with radius equal to that of the Woods-Saxon well. The coefficients for the T_z and T_z^2 terms agree with experimental values, generally to within 10 - 20%. The predicted d term, however, is on the order of several hundred eV rather than the ≈ 9 KeV (Zac) estimate. Such values are not inconsistent with those of $A = 13$ and 21 of Table 6.1.

Because many charge dependent effects may be absorbed into the T_z and T_z^2 terms, the quadratic form of the RMEE fits data well over a wide range of mass values (Table 2 in Ga 69, for example). This quality provides confidence that the quadratic RMEE may be used to extrapolate to unknown masses with good accuracy. This has been done, for example, to determine the mass of 25Si (Wi 70).

Several attempts to extract specific information from a study of the RMEE coefficients (Ja 66 and Wi 64) but were limited to some extent by the quantity and quality of data available on $T \neq 1$ multiplets.

The uniformly charged sphere model serves as an example of how information may be extracted from the coefficients. For a Coulomb energy of

$$V_C = \frac{3}{5} \frac{Z(Z - 1)}{R_C} \epsilon^2$$

the term $Z(Z - 1)$ may be expanded in terms of T_z and T_z^2 to yield the
IMME coefficients (Ga 69):

\[b = -\frac{3}{5} \left(A^{-1/3} e^2 + (M_n - M_p) \right) \]

\[c = \frac{3}{5} \frac{e^2}{R_o A^{1/3}} \]

\(A \) is the mass number of the multiplet and \((M_n - M_p)\) the neutron-proton mass difference. The Coulomb radii \(R_o \) may be obtained for known \(b \) and \(c \) coefficients, and these radii are given in Table 6.2. The validity of such a model will be reflected in the values of the radii, and in their consistency. In addition, the radius values should be the same whether extracted from the \(b \) or \(c \) coefficient.

The radii from Table 6.2 are reasonable and compare with those of various models (No 69, for example). This would indicate that such a Coulomb potential is a major contributor to \(T_z \) and \(T^2_z \) dependence. The fact that the \(b \) and \(c \) coefficients yield different results, however, indicates that other effects are also present. An attempt to reduce this effect by deforming the sphere yields negative results since such a reduction in the Coulomb energy could not account for the fact that for \(A = 37 \) the ratio \(R(c) / R(b) \) is greater than one for the other multiplets. Estimates of the deformation effect also indicate that changes in the \(R(c) / R(b) \) ratio would be small. The failure of this simple model to reproduce these effects indicates that charge dependent interactions in addition to the Coulomb interaction are contributing to the \(T_z \) and \(T^2_z \) terms.
A detailed study of the coefficients to obtain specific information on the Coulomb systematics requires good experimental measurements of high T multiplet members. In addition, the determination of excited levels in the $T_z = -3/2$ members would be valuable for comparison with structure of the other multiplet members. The experimental procedures developed in this work will, in addition to making absolute Q-value measurements at high bombarding energy possible with high precision, allow study of neutron deficient nuclei and thus aid in the study of the Coulomb systematics of high T multiplets.
Table 6.1 Empirically determined coefficients for the mass equation

\[M = a + bT_Z + cT_Z^2. \] The last column indicates the

coefficient of a \(T_Z^3 \) term assuming the equation to

have the form \(M = a + bT_Z + cT_Z^2 + dT_Z^3 \).

<table>
<thead>
<tr>
<th>Mass</th>
<th>(a(α, T)), MeV</th>
<th>(b(α, T)), MeV</th>
<th>(c(α, T)), MeV</th>
<th>(\chi^2)</th>
<th>(d(α, T)), KeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>26.343±.004</td>
<td>-1.3185±.003</td>
<td>0.266±.003</td>
<td>4.0</td>
<td>0.0083±.0039</td>
</tr>
<tr>
<td>13</td>
<td>19.257±.0027</td>
<td>-2.1802±.0035</td>
<td>0.256±.003</td>
<td>.002</td>
<td>-0.0002±.0035</td>
</tr>
<tr>
<td>21</td>
<td>4.8987±.0046</td>
<td>-3.6573±.005</td>
<td>0.240±.0048</td>
<td>1.28</td>
<td>0.0057±.0051</td>
</tr>
</tbody>
</table>
Table 6.2 Coulomb Radii from the IMME Coefficients

<table>
<thead>
<tr>
<th>Mass A</th>
<th>$b(a,T)$ (MeV)</th>
<th>$R_c(b)$ (Fermi)</th>
<th>$c(a,T)$ (MeV)</th>
<th>$R_c(c)$ (Fermi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-1.319<sup>a</sup></td>
<td>1.581</td>
<td>.266<sup>a</sup></td>
<td>1.562</td>
</tr>
<tr>
<td>13</td>
<td>-2.180<sup>a</sup></td>
<td>1.489</td>
<td>.256<sup>a</sup></td>
<td>1.436</td>
</tr>
<tr>
<td>17</td>
<td>-2.878<sup>b</sup></td>
<td>1.469</td>
<td>.238<sup>b</sup></td>
<td>1.412</td>
</tr>
<tr>
<td>21</td>
<td>-3.657<sup>a</sup></td>
<td>1.411</td>
<td>.240<sup>a</sup></td>
<td>1.305</td>
</tr>
<tr>
<td>23</td>
<td>-3.960<sup>c</sup></td>
<td>1.409</td>
<td>.223<sup>c</sup></td>
<td>1.362</td>
</tr>
<tr>
<td>25</td>
<td>-4.387<sup>b</sup></td>
<td>1.372</td>
<td>.216<sup>b</sup></td>
<td>1.368</td>
</tr>
<tr>
<td>37</td>
<td>-6.181<sup>b</sup></td>
<td>1.340</td>
<td>.174<sup>b</sup></td>
<td>1.490</td>
</tr>
</tbody>
</table>

^a Present work

^b See (He 70)

^c See (Ga 69)
Figure 6.1
Mass deviations from ENDF

\begin{align*}
A = 9 & \quad \chi^2 = 4.5 \\
A = 13 & \quad \chi^2 = 0.002 \\
A = 21 & \quad \chi^2 = 1.2
\end{align*}
APPENDIX
APPENDIX A1

Derivation of the Isobaric Multiplet Mass Equation (IMME)

The IMME:

\[M(a, T, T_z) = a(a, T) + b(a, T)T_z + c(a, T)T_z^2 \]

may be derived from first order perturbation theory with the following assumptions: the Coulomb potential is two-body, and is a perturbation on the nuclear potential, and all members of an isobaric multiplet are identical in their charge independent characteristics.

The charge independent characteristics are denoted by \(a \) in the equation. Then for

\[V_c = \sum_{i>j} \frac{e^2}{r_{ij}} (1/2 - t_z i) (1/2 - t_z j) \]

where \(t_z \) is the isospin value +1/2 for neutrons and -1/2 for neutrons, and \(r_{ij} \) is their relative separation, the expression for \(V_c \) becomes:

\[V_c = \sum_{i>j} \frac{e^2}{r_{ij}} \left(1/4 - 1/2(t_z i + t_z j) + t_z i t_z j \right) \]

and judicious addition of a term \(\frac{t_z i t_z j}{3} \) yields

\[V_c = \sum_{i>j} \frac{e^2}{r_{ij}} \left(1/2 - t_z i t_z j \right) \]

\[\sum_{i>j} \frac{e^2}{2r_{ij}} \left(t_z i t_z j \right) \]

\[+ \sum_{i>j} \frac{e^2}{r_{ij}} \left(t_z i t_z j - \frac{t_z i t_z j}{3} \right) \]

68
The Coulomb potential has thus been separated into tensor operators $V_c(0)$, $V_c(1)$, and $V_c(2)$ of rank 0, 1, 2, and the perturbing Coulomb term $\langle \alpha | T_z \hat{J}_z | \alpha \rangle$ may be reduced with respect to isospin:

$$\langle \alpha, \Gamma_z | V_c | \alpha, \Gamma_z \rangle = \langle \alpha, \Gamma_z | V(0) | \alpha, \Gamma_z \rangle$$

$$\langle \alpha, \Gamma_z | V(1) | \alpha, \Gamma_z \rangle$$

$$\langle \alpha, \Gamma_z | V(2) | \alpha, \Gamma_z \rangle$$

using the Wigner–Eckhart theorem this becomes:

$$\langle \alpha, \Gamma_z | V(0) | \alpha, \Gamma_z \rangle = \langle \Gamma_z, \Gamma_z | V(0) | \alpha, \Gamma_z \rangle$$

$$\langle \alpha, \Gamma_z | V(1) | \alpha, \Gamma_z \rangle = \langle \Gamma_z, \Gamma_z | V(1) | \alpha, \Gamma_z \rangle$$

$$\langle \alpha, \Gamma_z | V(2) | \alpha, \Gamma_z \rangle = \langle \Gamma_z, \Gamma_z | V(2) | \alpha, \Gamma_z \rangle$$

where the double bracket represents matrix elements reduced w.r.t. isospin. The Clebsch–Gordan coefficients are:

$$\langle \Gamma_z, \Gamma_z | V(0) | \alpha, \Gamma_z \rangle = 1$$

$$\langle \Gamma_z, \Gamma_z | V(1) | \alpha, \Gamma_z \rangle = \frac{T_k}{[T(T+1)]^{1/2}}$$

$$\langle \Gamma_z, \Gamma_z | V(2) | \alpha, \Gamma_z \rangle = \frac{3T_k^2 - (T+1)}{(2T-1)(2T+1)(2T+3)}^{1/2}$$

Since T is a constant for a given multiplet the Coulomb perturbation then becomes

$$\langle \alpha, \Gamma_z | V | \alpha, \Gamma_z \rangle = a(\alpha, \Gamma) + b(\alpha, \Gamma)T_z + c(\alpha, \Gamma)T_z^2$$
The mass difference between the proton and neutron which must be taken into account between the members of an isobaric multiplet may be written:

\[V(\Delta m) = \frac{(M_n + M_p)\lambda}{2} + (M_n - M_p)T_z \]

and may therefore be absorbed into the DME since it is linear in \(T_z \).

Ce 68 J. Cerny, Ann. Rev. of Nucl. Sci., 18 (1968) pp 27

Ja 69 Joachim Janecke, Nuclear Physics A128 (1969) 632

Jo 70 R. K. Jolly, G. F. Trentelman and E. Kashy to be published in Nuclear Instruments and Methods

Ka 70 E. Kashy, R. K. Jolly, and G. F. Trentelman, to be published

Ma 66 C. Maples, G. W. Goth and J. Cerny, Nuclear Reaction Q-values Lawrence Radiation Laboratory, Berkeley, California, UCRL-16964 (1966)

Mar 67 J. B. Marion, University of Maryland Technical Report #ORO-2098-58 (1967)

Sn 67 J. L. Snelgrove and E. Kashy, Nucl. Inst. and Meth. 52 (1967) pp 153
Sp 67 J. E. Spencer and H. A. Enge, Nucl. Inst. and Meth. 49
 (1967) pp 181
Te 69 B. Teitelman and G. M. Temmer, Phys. Rev. 177 1656
 (1969)
Tr 70 G. F. Trentelman and E. Kashy, to be published in Nuclear
 Instruments and Methods
 Rev. 140 B1202 (1965)
Wia 66 C. F. Williamson, J. P. Boujot, J. Picard, Tables of
 Range and Stopping Powers of Chemical Elements for Charged
 Particles of Energy 0.05 to 500 MeV, Centre D'Etudes
 Nucléaires De Saclay, CEA-R3042 (1966)
Wi 57 E. P. Wigner, Isospin–A Quantum Number for Nuclei Proceed-
 ings of the Robert A. Welch Foundation Conferences on
 Chemical Research, I. The Structure of the Nucleus (1957)
 Houston, Texas
 pp 571, Physics Letters, Vol 12 No. 4, (1964) pp 348
Wi 69 D. H. Wilkinson and D. E. Alburger, Phys. Rev. Letters,
 24 (1969) pp 1134
Me 70 R. Mendelson, G. J. Wosniak, A. D. Bacher, J. M. Loiseaux,
Ja 66 Joachim Janecke, Phys. Rev. 147 (1966) pp 735