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Angular distributions of states in Pb, Pb, and

209Bi excited by 35 MeV protons have been measured with a
resolution of 5 to 10 keV. Collective model calculations
enabled the f%-transfers of many transitions to be iden-
tified. In 208Pb, calculations for a number of the observed
states were made with both phenomenologically determined and
theoretically calculated wave functions. Both central and
non-central two-body forces were used in the analysis and

the effects of knock-on exchange were accounted for. The
large number of observed unnatural parity states permitted
the role of non—cehtral‘forces in these inelastic transitions
to be investigated. The states which are strongly populated
in both the (p,p')‘and (e,e') reactions were analyzed in

a microscopic theory using the electron scattering form
factors. The possibility of excitation of giant magnetic
dipole levels was also investigated.

207Pb and 2OgBi the transitions to the

In the nuclei
identified single particle levels were compared to calcula-
tions involving valence orbitals with both central and

non-central interactions. The effects of core polarization
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in excitation of these states were investigated with a
microscopic model using an expanded shell model basis.

In the framework of a weak coupling model, the transitions
to many levels in these odd mass nuclei were compared to

excitations in 208Pb.
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INTRODUCTTION

The lead mass region has rightly‘been called an ideal
testing ground for nuclear models. Experimentally, the
isotopes in this region exhibit a wide range of nuclear
behavior. TFor example, levels corresponding to single
nucleon excitations have been identified; states which
exhibit properties associated with collective nuclear moticn
have also been observed. Further, the doubly-closed shell
in 208Pb is of such purity that iow~lying levels in fhis
nucleus are expected to have a simple theoretical descrip-
tion. These facts make a study of these nuclei of great
interest and importance. |

This mass regidn,has been examined previously in a
variety of ways. While each of the different reactions
and methods used to study nuclei gives a particular kind
of information, inelastic scattering probably is sensitive
to the broadest range of nuclear properties. Inelastic
scattering excites many different configurations including
states seen in decay studies, transfer reactions and
isobaric analog resonance work. Inelastic scattering can
excite large nuclear collective excitations not seen in
reactions involving nucleon transfer. Inelastic scattering

can initiate large multipolarity transitions and hence



complements electromagnetic processes which are involved

primarily in dipole and quadrupole transitions.
Experimentally, (p,p') seems an ideal mechanism to

study the lead mass region. One search using 24.5 MeV

protons has been done.l’57’70

This study was performed
with 25 keV resolution and at sufficiently high bombarding
energy so that collective model comparisons could be made.
Unfortunately, the theoretical tools for a microscopic
analysis were not well developed at the time that data was
taken. Theoretical analysis was limited to use of the
collectiQe model for identification of angular momentum
transfer and to applications of the weak coupling model.

2,58,60,71,72 have examined single

Other (p,p'}) studies
nucléi in this region and have been limited by resolution
or low bombarding energy where compound and direct nuclear
effects may be present and where angular distributions
involving different ahgular momentum transfer may not have
distinct shapes. l

Interest in protdn inelastic scattering has been renewed
by the numerous, recent experimental improvements. Primary
among these is the development of ultra-high resolution

techniqueslg’56

in particle reactions. Energy resolution

on the order of 1 part in 10000 has become possible and has
opened a new chapter in experimental study. With this reso-
lution, weakly excited states very close to other states may

be cleanly separated thus permitting analysis without fear of

anomalous contributions. Further, the availability of high



purity, isotopic material for targets, stable and large
current accelerators, and particle detectors with high
signal to background ratio strongly suggests that excep-
tionally high quality (p,p') data can now be collected.
While experimental techniques have improved, the

solution to the nuclear problem has also progressed. The
knowledge of the nucleon—nucleon'forces, the proper models
for structure calculations, and the theory of direct reac-

- 5
tions has increased greatly. The success of structureSl 53

57,60,70,72

and scattering models in the lead mass region

makes testing and extension of these methods intriguing.

These facts have motivated an extensive study of

inelastic proton scat{ering from the three nuclei: 207Pb,

208Pb, and 209Bi. Both macroscopic and microscopic models

will be used in analyzing the data. Emphasis will be placed
on analysis of the unnatural parity states.
The study divides naturally into two sections: Part A,

Qost, and Part B, dealing with the other two

208

dealing with
nuclei. In the first section, the Pb nucleus 1is examined
in the light of collective and shell models. Part B deals
with the odd mass systems and the influence of the 208Pb
core upon the odd particle or hole. Both weak coupling and
core polarization calculations will be presented.

Five Appendices have been included. The first two
deal with experimental problems and procedure. The last

three contain lists of all the measured ecross sections,

given in the center-of-momentum coordinats system.



PART A

208Pb



I, INTRODUCTION

208Pb have been

1-17

Nuclei in the mass region about

extensively studied both experimentally and theo-

retically51—55. Inelastic scatteringl—g and Coulomb

excitationlovhave given information about the strongly

populated states of many of these nuclei. Decay studies

and transfer reac’cionsll"13

resonance experimentslu_l7 have provided information about

together with isobaric analog

the microscopic structure of many of the low-lying states.
The level properties and the microscopic configurations
have been intensively studied in nuclear structure calcula-
tions. This mass vregion therefore provides an attractive
place where recent developments in inelastic scattering can
be applied.

The microscopic description of nucleon-nucleus scatter-
ing has progressed gréatly. After the initial success of
the collective model in fitting the angulaf distributions
of the strongly excitéd states, inelastic scattering was used
primarily to obtain g-~transfer information. More recently,
since knock-on exchange and the central portion of the
nucleon-nucleon interaction are better understood, microscopic
inelastic reaction theory can more sensitively probe nuclear
properties.lS Normal parity transitions permit the testing

of wave functions and transition densities of the target
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nucleus since such tfénsitions apparently depend little
on the non-central two-body interactions. Non-normal parity
transitions to levels with well determiﬁed wave functions |
allow the two-body spin-orbit and tensor forces to be studied.
Recently, experiments with charged particle reactions at
energies of 30 to 50 MeV and resolution better than 10 keV
have become possible. This permits the extraction of cross
sections and excitation energies for weakly excited states
which can be reliably compared with theoretical pfedictions.
A (p,p') study of nuclei neighboring 208Pb allows
examination éf the nucleon-core interaction. For these
nuclei, the effects of core polarization and the applica-
bility of the weak coupling model can be determined only

after study of 208

Pb has provided a basis for these models.

A relatively high resolution proton inelastic scattering
experimentl has been performed at QH.S.MéV bombarding energy
with energy resolution of 225 keV full-width-at-half-maximum
(FWHM). Spin and parity assignments for the most strongly
excited states below 4.7 MeV of ekcitation energy were made.
Lately, analysis2 of the (p,p') reaction at 54 MeV has
extended g-transfer assignments to states below about 7

MeV of excitation where 208

Pb becomes particle unstable.
The resclution was about 35-40 keV FWHM. In both studies,
experimental angular distriSutions were compared primarily
with the collective model predictions. To date, these
represent the most extensive and highest resolution (p,p')

208P

studies of b.



208Pb(p,p')

This paper reports a high resolution study of
‘performed at 35 MeV with energy resolution on the order of
1 part in 5000. Angular distributions at this bombarding
energy have more distinguishing features than those at lower
energies jet are not so forward-angle peaked as to make
identification of small &-transfers difficult. About 150
states with excitation energies‘up to 7.5 MeV have been
experimentally resolved and their angular distributions are
presented. Determinations of f£-assignments and deformation
parameters as well as comparison with previous measurements
are made. Microscopic model iﬁelastic scattering predictions
are compared with the data for normal ahd non-normal parity
excitations. The existence of magnetic dipole states is

also discussed.
IT. EXPERIMENTAL PROCEDURE

The experiment used the 35 MeV proton beam from the
Michigan State University sector-focussed eyclotron and the
scattered protons were detected using the Enge split-pole
spectrometer. The high resolution data was recorded on
Kodak NTB 25 ym nuclear emulsions in the spectrometer focal
plane. A thin, stainless steel absorber immediately before
the emulsion stopped all particles other than protons. The
10 to 15 mil absorber did nof significantly broaden the
line-width. However, tracks in the emulsions did show slight

departures from parallel trajectories. The absorber also



decreased the particle energy thus enhancing track brightness.
On-line determination of the focal plane line-width using
the "speculator" technique of Blosser gg_gl,lg was used
to optimize the resolution initially and to monitor it
during data collection. Targets of}about 100 ug/cm2 thick-
ness were used throughout the high resolution study and were
prepared by vacuum evaporation on a 15-20 ug/cm2 carbon foil
with a substrate of 1 or 2 layers of formvar. The effects
of target thickness on resolution are discussed in Appendix
I. The plate data resolution ranged from 5 to 8 keV (FWHM)
and a typical spectrum is displayed in Figure 1. Exposures
on the plates were scanned in steps of U4 mils.

To complement the high resolution data, states strongly
excited in inelastic scattering were first studied using

20

a single-wire proportional counter in the spectrometer

focal plane. A 6.0 r_ng/cm2 self-supporting foil, made by
rolling, served as the target. The lead used in all target

fabrication was isotopically enriched to 99.14% 208

Pb and

was obtained from the Oak Ridge National Laboratory. Resolu-
tion of about 45 keV allowed cross sections for the first

37, 27, u+, 6+, and 8" levels as well as the first two 5
states to be measured. Both plate and counter data were
measured relative to elastic events monitored at a scattering
angle of 90° with a NaI(Tl) detector. This angle was chosen
since 90° lies near a relative maximum of the elastic cross

208

section for Pb and also gives good separaticn of protons
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elastically scattered from lead and light mass contaminants
in the target. The beam current was monitored with a
Faraday cup and microampere current integrator. There was
_generally good agreement between the two mdnitoring methods.
Absolute normalization of the counter data was done by
comparison of the optical model using Becchetti-Greenlee521
best-fit parameters with the measured elastic angular dis-
tribution. Comparing the plate data with the counter results
thus determined the normalization of the plate data. Absolute
normalization of the counter and plate data is believed good
to about 5 and 10 percent, respectively.

Whenever possible, the more extensive counter results
are displayed although both sets of data were measured in
the range of 10 to 100 degrees. The counter data was taken
with a 1.2 msteradian (2°x2°) solid angle while all plate
data was collected with a 0.30 msteradian (1°x1°) defining
aperture. Because nuclei in the lead region have large
forward angle elastic cross sectiqns, slit scattering from
the entrance slit of the spectrometer can produce high
particle backgrounds. For this reason, a narrow edge was
machined around the opening of the defining aperture. This
thinner portion sufficiently degraded 35 MeV protons to
place them well out of the region of interest of the focal

plane and also reduced slit scattering.
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IIT. DATA

A. Excitation Energies

Average excitation energies were extracted for the
approximately 150 resolved states. TFor each exposure the
spectrometer focal plane momentum dispersion was determined’?
by using the positions, as determined from the plate scan,

of reaction products. Clearly resolved states of 208Pb,

16O, and 12C with well-known excitation energies were used
in the energy calibration. A few iterations were performed
until the input calibration energies agreed with the average
predicted energies. The methods used in analyzing the

data are sketched in Appendix II. The results for all
observed states are tabulated in Table I and the energies’
used for the calibration are indicated. For comparison the
excitation energies determined bv previous work are also
given. The energies iisted are from the results of a
Nuclear Data compilation,23 fhe recent 54 MeV (p,p') experi-
ment,2 and an intensive study by Heusler gzugi.Qq of states
below about 4,5 MaV. As may be seen the final values fob
the calibration reference levels are in excellent agreement
with prior measurements involving (d,py) and (n,n'y) high
resolution work. The general agreement with previous deter-
minations is good and appears to extend up to about 7 MeV

of excitation.

Due to kinematic broadening and to the displacements

of the focal planes of protons scattered from different mass
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nuclei the oxygen and carbon contaminant peaks appear wide
in the lead spectra and these centroids are somewhat poorly
determined. Also, the highest-lying 208Pb state used in
the calibration was the 4.423 MeV level. .Thus the‘energies
above 4,5 MeV are obtained by extrapolation. The errors

in Table I reflect this since for states lying below 4.5
MeV the standard deviation in the measured energy is given
as the error. Above 4.5 MeV, however, the given error
includes an addition to the statistical error of 1.0 keV
for each MeV of excitation toiaccount for éxtrapolation as
well as the uncertainties due to the increasing level density
and the smaller cross sections.

Most states below 5 MeV of excitation appear to be
completely resolvea. Many states have been observed corres-
ponding to levels identified previously in a variety of experi-
ments. The 3.73 and 3.76 MeV levels reported in early
207Pb(c‘1,p) experimentsll were not seen here and an upper
limit of about 40 ub/sr can be set for excitation of these
states by proton séattering at this energy. These states
have not been observed in subsequent studies with either
transfer or inelastic scattering reactions.

A peak at 4.256.MeV with a comparatively large spectral
width is apparently an unresolved multiplet. A L.251 MeV
level has been seen in a (p,t) and (t,p) study‘at 20 MeV

with 17 keV resolution performed by Igo ggmgz.;z

i3

A state
at 4.253 has been observed in (d,py) studies. Neither
work indicated the possibility of multiplet. structure. A

possible doublet at about this excitation has been seen in
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isobaric resonance worklu with 9-13 keV resolution. Using

the energy corrections of Reference 23 the members of the
doublet lie at #.253 and 4.259 MeV. Heusler gi_gl.Qq, using
shell model systematics and a global compilation of experimental
results, have concluded this multiplet to be a 4.255, 4.256,

and 4.261 MeV triplet with J" = 37, 47, and 5 , respectively.
The angular distribution for the 4.256 MeV multiplet, seen

in Figure 2, is fairly well structured but can not be fit

with a single g#-transfer again suggesting an unresolved
multiplet at this eﬁergy.

The density of states above 5 MeV of excitation becomes
increasingly large. Most of the states appear to be com-
pletely resolved but those states whose widths indicate
possible multiplet structure have been indicated in Table
I. In general, the poor statistics and narrow line shape
prohibit reliable fitting with numerical techniques. The
level at 5.194 MeV was revealed as a doublet at several

angles. The previously reported12 5.236-5.245 MeV doublet

was not resolved. The level seen here at 5.242 MeV has no
apparent doublet structure suggesting that the 5.236 MeV
level (reported in Reference 12 as a 0" 2p-2h excitation)
is not populated here. A level neér 5.5 MeV of excitation
has been identified in many different experiments but the
uncertainty in energy and Sﬁin—parity assignments suggests

strongly that two states were separately observed. (See

Section ITII-D-1).
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Interestingly, eight states that had been previously
reported were not found in the spectra: the 4,859, 4.968,
5.550, 5.629, 5.801, and 5.862, 5.937, and 5.973 MeV levels.
These states were seen in two neutron transfer by Igovgz_gl.lz
and have been identified as configurations with predominant
2p-2h admixtures. That these states are not excited in
(p,p') is consistent with viewing inelastic proton scattering
as mediated by a one body operator. A level at 5.236 MeV has
been identified as a 0 2p-2h level as well as a 3
state12’13’l7. We were unable to identify the f-transfer
for the observed 5.2u42 MeV level.

"Above 6 MeV many states were also observed. At these
excitation energies, states excited by inelastic scattering
and levels seen with other reactions may not correspond to
the same nuclear state. Due to the uncertainty in excitation

energy and the increased level density comparison other

than in Table T will not be made.
B. Inelastic Angular Distributions

The angular distributions for all resolved peaks result-
ing from inelastic scattering are shown in Figures 2 through
5. The cross sections are displayed with their corresponding
excitation energies. The error bars indicate statistical
errors and were drawn only when greater than the symbol size.
It should be emphasized that the curves passing through the

data in these figures have been drawn merely as a guide and
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FIGURE 2.-~Measured inelastic cross sections for 208Pb.
The lines drawn through the points are
merely to guide the eye and do not represent
fits to the data. The excitation energy of
the levels is given in MeV.
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do not represent theoretical fits to the cufves. Gaps in
the angular distributions at certain angles are due to
obstruction of the peaks of interest by reaction products
from the various contaminants in the target.

Since the plate results were normalized by comparison
to the counter data, ﬁormalization errors due to the poorer
quality counter resolution should be considered. The first
37 and first and second 5 1levels, that is the levels
emphasized in the normalization, were completely resolved
in both sets of data. In the counter data, however, the
2+? 4+, 6+, and 8+ states were not completely separated
from nearby levels. 1In the counter data, some neighboring
states either were partially resolved from the stronger
states, as in the case of the 7  level being almost completély
resolved from fhe 2+ level, or had cross sections which were
negligible comparéd to the more populated levels. In the
latter case, the weaker peaks contributed no more than 5
per cent error to the counter data cross sections for the

higher excitation‘energy levels.

C. Discussion of the Collective Model

A Distorted Wave Born Approximation (DWBA) angular
distribution has a characteristic shape determined by the
strengths of each %-transfer involved in the transition.
In turn, the strength of each f-transfer is determined by

the strengths of the nonspin-flip and spin-flip modes of
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+
208Pb has a 0 ground state, all natural

excitation. Since
parity transitions can involve only one f£-transfer in the
direct DWBA theory. For transitions to a natural parity
state, knock-on exchange effects at 35 MeV usually preserve
the shape of the direct cross section and merely increase
the total cross section. For a spherical nucleus such as
208Pb, the collective vibrational model can be used to obtain
the characteristic f-transfer shape and also to give the
deformation parameter, BL, which can be related to the rate
of electromagnetic decay from the excited state to the

ground state.

The DWBA collecti&e model uses a deformed optical
potential as the form factor for inelastic scattering. The
optical potentials are usually obtained from fits to elastic
scattering data and a number of sets of parameters for
208Pb in this energy region has been detew_ﬂmined.I"L“5‘’S}"’b25
Figure 6 displays the 35 MeV proton elastic scattering
angular distribution measured with the wire counter. Also
- shown are the results of calculations for elastic scattering

208

from Pb using the Becchetti-Greenlees (BG) best~fit

optical model parameterszl and also parameters resulting
from a search on the data with the code GIBELUMP.26 The
search was initialized with the BG values but there was no
variation of the BG spin-orbit potential since 35 MeV

polarization data was not available. Both the original and

fitted sets yield predictions in good agreement with the
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data and differing only slightly from one another. Similar
‘results were obtained in searches using real and imaginary

geometries of other 208

Pb optical models as initial values
and simply adopting their spin-orbit geometries.

Two sets of CM DWBA calculations were performed for
i-transfers of 2, 4, and 6 to determine the sensitivity of
the BL'S to the optical potentials. In one set of calcula-
tions, the BG optical model was used for the entrance
channel and form factor while the other set used the fitted
optical model values. Both sets had identical exit channel
parameters. Due to the much deeper surface imaginary well
there was a 30 per cent larger total cross section predicted
with the fitted parameters than with BG. However, the ratio
of cross sections for L=2,4,6 was the same for each set.
This corresponds to an overall normalization of the DWBA
and has been noted before.2

Because the BG parameters are functions of the particle
energy, the energy dependence of the incoming and outgoing
distorted waves may be accounted for. Since the asymmetric
optical potentials may be used, because the elastic cross
section was not measured at larger angles, and because the
spin-orbit geometry could not consistently be determined
in the search it was decided to use the BG model in all
subsequent DWBA calculations. This also ﬁade renormaliza-

tion of the CM unnecessary.
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D. f~-transfers and Deformation Parameters

CM calculations were performed with the code DWUCK27

using the BG optical parameters. Tests involving Q-value
dependence of the cross sections indicated little sensi-
tivity and a Q=-5 MeV was assumed for each #-transfer for
each calculation. Coﬁlomb excitation was included in the
L=2 and 3 cases although only the smaller 2&-transfer receives
notable contribution from this mode of excitation. Integra-
tion was carried out to 20 fm and 40 partial'waves were
used. The fits to the states are displayed in Figure 7 and
8 and are commented on below. The f¢-assignments were made
by comparing the data with both the theoretical angulav
distributions and, where possible, the experimental cross
sections for states with unambiguous f-assignments. The
BL'S, the deformation parameters, were obtained from
Bi:oexploth. Both the BL,and f-transfer assignments are
given in Table I for comparison with the measurements of
Reference 2. Where possible those states with angular
distributions of unidentifiable shape have J" adopted from
the work of Reference 23 or Reference 2u.

Table IT comparés measured deformation parameters of

states in 208

Pb that have been studied in (p,p') at many
different energies. The deformation parameters appear to
be energy dependent. Knock-on exchange does have similar

energy dependence. However, as commented above, the optical

model used in the CM can also lead to marked differences.
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FIGURE 7.--Collective model fits for all identified states.
Displayed with the fit is the excitation energy
of the state and the deformation parameter, BL,
corresponding to orbital angular momentum.

transfer L.
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TABLE II.--(p,p') collective model results.

Ex(geV) 2.615 3.128 3.709 u.ois u.3iu u.u§3 4.610
J 3 5 5 2 n 6 8

E

P

ou,5% 0.12 0.072 0.034 0.058 0.066 0.057 0.0u45
30P 0.13

30.3° 0.11

31,09 0.13

35.0° 0.126 0.058 0.03% 0.058 0.067 0.062 0.040
wo. T 0.11
yo® 0.11 0.059 0.059

54? 0.11 0.055 0.035 0.058 0.069 0.06% 0.039
61" 0.098 0.043 0.027 0.053 0.062 0.055 0.039
dRef. 1
bRef. 7
CRef. 9
dRef.
ePresent work

fRef. 5
ERef. 6
?Ref. 2

lRef. 8
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D-1. The 1~ states

The levels at 4;8&1, 5.291, 6.261, 6.965, and 7.239
MeV have fairly similar angular distributions, as seen in
Figure 9. All are fairly strongly forward peaked and have
angular distributions that oscillate together in phase.

These levels have been identifiedlg’23

as electric dipole
levels and the data appears consistent with these assign-
ments.

At energies below 35 MeV both resonantlu’lS

and non-
resonantl (p,p'j experiments reported states at about

5.505 MeV. A 5.505 MeV state seen in a resonant (p,p'y)"
study16 was assigned a spin of 17 on the basis of its ground

207Pb(d,py) results®® indicated

state gamma decay strength.
a 1l  level at 5.506 MeV as did the two neutron transfer
study of Reference 12. However, the 54 MeV inelastic proton
study2 found an unresolved doublet at 5.515 MeV and assigned
a tentative 3~ spin. We observe an apparent multiplet at
5.514 MeV which has a large forward angle cross section,
like the U4.841 aﬁd 6.261 MeV states, but is fit well at
larger angles by an L=3 characteristic shape. These facts
suggest that this excitation is a doublet with dipole and
octu?ole members,

States near 5.9Y4 and 6.31 MeV have been seen in (d,py)
measurementsl3 as dipole levels. A two neutron transfef

exp‘erimentl2 also tentatively reported 1~ levels at 7.176,

7.319, 7.387, 7.480, and 7.523 MeV of excitation energy.
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Here, there is no marked similarity in angular distributions
of levels near these excitations with those of the levels

identified above as 1 .

+
D-2. Search for 1 states

Considerable attention has been given to the searc:h28’2g

for magnetic dipole states in heavy mass nuclei. A recent
study with 180° electron scattering29 identified probable

Ml transitions to levels at 6.2 and 7.9 MeV. Our data

reveals two states which may correspond to the magnetic

dipole levels identified in (e,e').. The strength of the

state found ét 6.233 MeV is given fairly well by a microscopic
calculation using the 1% wave functions of Broglia gzmgl.go
(This éalculation used the methods described in Section IV-B,
below, and included central and non-central forces and
e¥change effécts.) Not only is the magnitude well estimated
but the shape is reasonably reproduced, as shown in Figure
10. A level at about 8.01 MeV has a cross section which
peaks at forward angles as does the 6.233 MeV state but

is unfortunately obscured by contaminants or adjacent 208Pb
1evels.at most angles. This state may correspond to the

7.9 MeV level observed in the electron scattering study

and is presumably the ATZ1 excitation, the lower excitation

30,31,53

~ . . . +
being ATI0. Theoretical wave functions for 1

208

levels in Pb all give ground state transition widths

. +
of about 2 eV and 80 eV for the first and second 1 levels,
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- FIGURE 10.--Angular distribution for the 6.233 MeV level. The
solid lines correspond to calculations done with both
central and non-central forces; the dashed curves

show results with only a central force. The asterisks
indicate calculations including exchange effects. The
curves without the asterisks show the direct contri-
bution to the cross section only.




39

respectively. The (e,e') experiment reported transition
widths of 11 and 44 eV for the 6.2 and 7.9 MeV transitions.
The proton data is quite insensitive to mixing of the wave
functions whereas the (e,e') excitation proceeds mainly
through AT=1 transitions. Calculations with the wave
functions of Reference 31 suggests that a 10 per cent admix-
ture of the ATI1 state into the ATI0 state will produce agree-
ment of theory with the experimental (e,e') results. This
admixture does not affect the calculated (p,p') cross
sections if the nucleon-nucleon interactidn has a Serber
exchange mixture. Thus, the present data supports identifi-
cation of the 6.23 and 8.01 MeV levels as magnetic dipole

levels,

D-3. The 2' states

We have identified six probable quadrupole levels.
The well-known 2+ stafe at 4.085 MeV is a dominant feature
of any inelastic proton spectrum. Two nearby states at
H.14%1 and 4.159 MeV are also tentatively identified as
L=2 states and it seems fairly certain that the excitations
at 4.463, 5.564, and 6.170 MeV are also Qf states. The
observed 2+ states have about 20 per cent of the total
expected strength given by an energy-weighted sum rule
(ESR) .32

As mentioned previously, states excited in (p,t) and
(t,p) Studieslz and identified as 2p-2h quadrupole levels

were not seen here.
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D-4. The 3~ levels

Many transitions involving angular momentum transfers
of 3 were observed and transition strengths were extracted
for them. The first excited state, with transition strength
of 39.6 single particle units (SPU), exhausts about 20 per
cent of an ESR,32 revealing it as a truly collective state.
Totally, the observed 3~ excitations contribute about 50
pér cent to the isoscalar octupole ESR strength predicted
for 208Pb. Further, the observed 3~ strength is quite

fractionated and many of the levels identified were pre-

viously unreported.
+
D-5. The 4 1levels

A number of 4+ states have been detérmined.. The
collective model fits to the well known 4%.423 MeV level
and other L=4 levels are shown in Figure 7. The angular
distributions of the 4;403 and 6.615 MeV states are fit
equally well by L=3 and L=4 characteristic shapes so that
the f-transfer is not uniquely determined for these levels.
The level at 5.689 MeV is quite collective with a transition

strength of about 6 SPU.

D-6. The 5 states

Numerous states were found whose measured cross sections
were similar to L=5 collective model calculations. The

first two 5 1levels at 3.198 and 3.709 MeV are very collec-

tive with deformation parameters of 106.5 and 3.6 SPU,
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respectively. The states at 5.483 and 6.688 MeV have
inelastic transition rates of 6.3 and 5.2 SPU, respectively,
revealing a rather large concentration of strength at high
excitation. The 3.961 MeV level was previously suggested
to be a 4 unnatural parity excitation with possible

doublet properties.23 Our assignment of 5 is in agreement

with the conclusions of Reference 12 and 24.

+
D-7. 6 states

Besides the well-known 6+, 4.424 MeV level other

| levels with shapes,correspondinglto L=6 were found. There

is some ambiguity in assigning a spin of 6 to the 5.4l17

MeV level as it is probably equally well described by an

L=7 shape. The 4.917, 5.4u44, and 5.615 MeV levels apparently
involve f-transfers of 6 but anvexact assignment cannot

be made.

D-8, States with L>7

Transitions with large f-transfer have angular distri-
butions which fall off less rapidly and whose maxima occur
at larger angles than those involving small f#-~transfer.

For L<6 these two features generally make an assignment
fairly unambiguous but for L>7 the distinction is not so
clear. The data for the 4.037 MeV level, for example, has
a maximum near 60° fit by L=7 or L=8 curves but has a very
rapid fall-off so that a J" of 77 is concluded for this

level. Reference 14 has suggested a (7 ,6 ) doublet at this
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energy while Reference 12 identified a 7 both supporting
our identification. As exemplified by this state and as
notéd by Lewis gz;gl.z the predicted collective model

cross section for large momentum transfer usually under-
estimates the forward angle data, the difference between
the data and the theory apparently being greater for the
high spin cases. This fact and the lack of distinct shapes
for states with spins larger than 6 makes f-transfer

identification tentative.
Iv. APPLICATIONS OF THE MICROSCOPIC MODEL

A. Comparison with (e,e') for the Strongly Excited States

Inelastic electron scattering allows the portion of
the proton- transition density, important to low momentum
transfer (p,p'), to be determined fairly unambiguously.
Unfortuhately (e,e') gives little information about the
neutron motion in nucleaf excltations. Howéver, it appears
that for collective states the ratio of the neutron to the
proton transition density is the same as the ratio of the

neutron number to the atomic number of the nucleus.sg’—35

Bernstein33

has shown this prescription to work well for
inelastic alpha scattering.
In applying this prescription to (p,p'), we have

assumed that the spin-flip and non-central forces contribute

negligibly in transitions to the normal parity states. The
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DWBA form factor, FJOJ, for a transition to a state of spin
J was obtained following Reference 36. Basically,
JOJ f(VJOJ 2 gOJ)p r3dr

where pp is the proton transition density obtained from
(e,e'). VggJ and VggJ are the strengths of the gth multipole
of the proton-proton and proton-neutron interactions,
respectively. Here, the interactions were effective bound
state potentials (G-matrix) obtained from the separated
Hamada-Johnston potential. To account for knock-on exchange
the zero-range approximation of Petrovich37 was adopted.
In this approximation a zero-range pseudo potential is
added to each‘interaction to account for the exchange
process. Similar calculations36’38’39 have been successful
in other nuclei.

The charge transition densities were obtained from
the work of Nagao and Tdrizukaqo and of Heisenberg and
Sick.ql Since the effect of the finite proton size is
small in the lead region, this correction was neglected
and for each transition the proton density was taken to
be the experimenfal charge density. The only exception
was the 6+ level. Since the experimental best fit parameters
were not reporteduo the (e,e') data for this level was

fit using a transferred-momentum-corrected Born approxima-

tion. The density had the radial form
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J-1 d r-Cy 2.7+

pg(r) = Nr I5 (l+exp(—K—) )

where N is related to the B(EJ) for the transition and C
and A are the usual nuclear surface parameters. Also, for
the 3~ level there was some ambiguity in the transition
rates. Nagao and Torizuka give a B(E3)=43.5 SPU while
Heisenberg and Sick have used 39.5i2.é SPU which was adopted
from work of Ziegler and Pe”cersonl"L2 involving low energy
electron scattering data. A recent measurement of
Friedrich43 gives a value of 34.2+2.2 SPU. (A difference
of about 5 SPU leads to about a 30 per cent difference in
the (p,p') cross sections for the 3~ state.) Here, the
transition density of Heisenberg and Sick was used in the
calculations for the 3. Their B(E3) is in good agreement
with the 83=39.6 SPU extracted here using the CM (Section
III-D-4). The parameters of the transitibn density for
each state considered ére given in Figure 11. The first 3~

+ + + . - .
2 , 4, 6 as well as the first two 5 1levels are examined.

3

The results of these calculations are given in Figure
11. The dashed curves show results with (long dash) and
without (short dash) the exchange approximation. The
solid curve was calculated with a form factor which was
the sum of the (real) approximate exchange (e,e') form
factor and an imaginary CM form factor. Complex coupling
has given improved fits in other studies of (p,p‘).qu The

strength of the imaginary form factor was obtained by

comparing the cross section of a purely real CM calculation
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FIGURE 11.--Results of calculations for the strongly
excited states seen in both (p,p') and (e,e').
The lower and upper dashed curves correspond
to calculations with and without the exchange
approximation, respectively. The solid curve
includes complex coupling effects as explained
in the text.
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‘with the approximate exchange (e,e') results to obtain an

effective deformation parameter. Since the 2" state is

the only one of these states significantly excited by the
Coulomb interaction, the solid curve for this state includes
both complex coupling and Coulomb excitation.

The first 5 state is the only level underestimated
by these calculations. Using the data of Friedrich43 for
this state, a slightly larger estimate can be made but the
data is still underestimated. This indicates that the
neutron and proton transition densities are not in the
assumed ratio of N:Z. Indeed, the wave function used in
calculations in Section IV~C has a neutron density larger
than N/Z times the proton transition density and gives a
better prediction of this state's inelastic strength.

For the other levels the slight overestimation is
consistent with the use of the zero-range exchange approxi-
mation.37 Further, the prescription used for the complex
coupling assumes that the processes giving rise to the
imaginary portion of the inelastic form factor are as con-
structively coherent as the processes leading to the
imaginary part of the optical model potential. This need
not be true so that the present prescription probably gives
an upper limit for the imaginary portion of the inelastic
form factor.

In conclusion, these results generally support the

assumption about the ratio of the neutron and proton motions
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and the dominance of the central, non-spin-flip forces in
collective excitations. The transition to the first 5~
state suggests that these assumptions may not always be
true. The results also support the validity of the micro-

scopic prescriptions that were used.

B. Phenomenological Wave Functions

This section considers the results of calculations done

with the phenomenological wave functions of Heusler and

von Brentano.24

of’208Pb data involving particle transfer, gamma-ray, and

These authors, using a global compilation

(p,p') resonant data, have examined the excitation energy
region in 208Pb below about 4.7 MeV. This work has resolved
many problems and raised interesting new questions. From
shell model arguments, possible coupling schemes, and
orthogonality requirements, spin and multi-component wave
functions have been determined. The orthogonality conditions
permit proton configurations as well as the relative signs

of the proton and neutron components to be extracted. How-
ever, the orthogonality is only approximate, resulting in
some ambiguity in the signs.

Microscopic model calculations using these wave functions
were performed. Since many of the states examined have
unnatural parity, contributions from the non-central forces
may be expected to be comparable to those of the central

potential. To perform calculations with non-central forces
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the code DWBA?OL}5 was used. The numerical form of the

program prevented use of externally calculated transition
densities or the realistic effective interaction used in
the (e,e') calculations. The Serber exchange mixture was
used for the effective interaction. This effective force

has been foundus’q7

to be a good representation of the
phenomenological force determined by fitting definitive
reaction data and of the low momentum components of the
separated Hamada-Johnston potential. The Serber mixture
had strengths of -30:10:10:10(MeV) and the radial form was
taken to be a 1 fermi range Yukawa. The tensor force was
taken from the works by Crawley 33“21.48 and by Fox and

" Austin'’ and resulted from fitting the crucial (l+,T=0)

luN(Z.Sl MeV) with a

to (O+,T=l) transition in 1LLN(p,p')
tensor force of OPEP form and with a PQ—Yukawa shape. The
range was obtained by matching the OPEP potential and the
strength adjusted to fit the nitrogen data. This study
assumed that the tensor isoscaiar portion was zero. The
L+S force was taken from studies by Fox and Austiniqg in
which the spin-orbit potential was cbtained by matching

the cut~-off Hamada-Johnston potential. The radial shape
was givén by two Yukawas with respective proton and neutron
strengths (ranges) of 29;l‘and 20.1 MeV (0.577 fm) and
-1496 and ~752 MeV (0.301 fmj. In all cases considered,

the spin orbit force was always dominated by the tensor

force and contributed negligibly to the cross sections.
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The harmonic oscillator wave functions used had an
oscillator parameter, b, set to 2.47 fm, a value consistent

with 208

Pb(e,eo) results. Exchange is treated exactly in
DWBA70. The BG model was used for the distorted waves,
the outgoing parameters being adjusted to the proper exit
channel energy. The calculations used a 0.15 fm step size
and 15 fm integration limit.

The results of both direct and direct-plus-exchange
calculations are shown in Figure 12 through 14. An asterisk
indicates the direct-plus-exchange cross section. For
these microscopic calculations, the results with only central
forces are given by the dashed curves while the solid curves
indicate results using the complete central+tensor+spin-
orbit interaction. The 2~ level at 4.230 MeV has both
magnitude and shape very well reproduced by the calculations.
The central force contribution to the cross section is very
weak for this 2  state. The sepond and fourth 3~ states
are also shown. The first octupole level at 2.615 MeV has
too complex a p—h‘character to be established phenomenolo-
gically. The third 3~ is a member of the experimentally
unresolved triplet at 4.260 MeV. The theory for the dis-
played 3 1levels reproduces the shape fairly well but under-
estimates the forward angle cross section for the 4.054 MeV
state and is consistently low by a factor of 5 for the

4,698 MeV level.
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The first three unnatural parity 4 states' cross
sections are also shown in Figure 12. The first 4 level

has a dominant (2g9/2~3p1}2) neutron configuration and has

L
been observed in analog experimentsl*’ls’SO

11,13,17

and in (d,p)
experiments. It corresponds to the first shell
model state arising from breaking the 3pl/2 neutron pair.
For this state, the phenomenological wave functions ailow
a fair reproduction of the data. The experimental angular
distribution falls off less rapidly than the theory but
the phase is well predicted. The predictions for the
second and third levels are both smaller than the data.
Both the theoretical distributions for the first two U4
levels are characteristic of an f-transfer of 5 due to the
large contribution of the tensor force which favors the
higher of the allowed %-transfers. The third 4 1level has
a cross section underestimated by about an order of magnitude
and has a shape quite‘different from the theoretical pre-~
diction.

The angular distributions for four 5 1levels are com-
pared with the theory in Figure 13. The fifth 5 state
at 4.260 MeV, an unresolved component of the 3 -4 -5
triplet, is not shown. (Calculations using the wave func-
tions for these three states suggest that the combined
strength can account for aboﬁt 50 per cent of the observed

transition rate.) The data for the collective 3.198 and

3,709 MeV states are stronger than predicted. The third
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5" is also underpredicted while the 4,181 MeV level is well
estimated.

Predictions for the first three 6 states and the 7~
level at 4.037 MeV all underestimate the experimental cross
sections while the shapes are reproduced fairly well. This
may be seen in Figure 14. The forward angle enhancement
of the 7  level can not be reproduced by the theory.

In summary, there appears to be a systematic under-
esfimation of the cross sections using these wave functions.
As might be expected, the more collective states cannot be
adequately described in a few p-h basis space. Also, the
non-central forces apparently enhance the non-normal parity
cross section most but in general provide little enhancement

for the normal parity states.

C. Theoretical Wave Functions

In the lead region many shell model calcula’cions51—53

have been done with both the Tamm—Dancoff and the Random
Phase Approximations (RPA). The success of these calcula-
tions is based on the puritys5 of the double shell closure
in 2OSPb. Highly collective odd parity states which have
many ph components are generally better deséribed by the
RPA, For example, the electromagnetic transition rates

are often given accurately with little or no need of effec-~

tive charges. When comparison is possible, transition

densities similar to those measured with (e,e') are often
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obtained. 1In this section RPA wave functions for a number
of states are used to describe inelastic scattering,
Excitations of normal parity were considered first.

The wave functions of Gillet et al.52 and of Kuo53 were

+
s 2,

used to predict cross sections for the first two 17
37, and 7 states, the first four § levels, as well as
the first 4+ and 6+ excitations. The Gillet vectors were
used for the 2+ and 4+ calculations. As an estimate of
the single particle strength, the neutron configuration
(gg/z—iI%/z)--which is prominent in the 2% and completely
dominant in the u+ first excited states wave functions--
was taken to be the single configuration of the 6+ level.
Scattering to the negative‘parity states was calculated
with the vectors of Kuo. In the calculations the same
central and non-central forces were used as in the phenom-
enological wave function study. DWBA70 was also used and
the RPA wave functions were converted to G-vectors (X'=X+Y,
Y¥'=0) for all these calculations.

The RPA ﬁodel_space involves only 1 Tiw ph excitations.
This should allow a reasonable estimate for the lower-lying,
negativebparity states. However, the number of possible
configurations leading to even parity states is quite
restricted and thus the strong even parity states are not
expected to be given well in this basis.

Figure 15 shows calculétions with the Gillet G-vectors
for the lowest lying 2+ states, lying at #.085 and 4,1ul

+ .
MeV, and for the 4 gstate at 4.323 MeV. The calculations
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for the 6+ state at 4.423 MeV were done with the single
configuration mentioned above. The second 2" state cross
secfion is under-estimated by about a factor of two but

does have its shape well reproduced. The non-central forces
contribute substantially to this cross section even though
the excitation is one of natural parity. This is due to

the large spin-flip amplitude of the proton (hg/zmhii/Q)
configuration which is the largest component (0.88) of the
wave function.

The first 4+ and 2+ levels are underestimated by almost
an order of magnitude. Correspondingly, the calculated
B(EJ)'s for those stateé are much weaker than the observed
transition rates, as noted previously.sz‘ However, comparison
with recent (e,e') resultsLLD indicate that for the lower
2+ state an effective charge less than 1 is necessary to
produce agreement with the magnitude of the electron form
factor. Tor the u+ level an effective charge of about 1.8
is required. These results suggest that for the 2+ and
probably the 4+ states, inclusion of core polarization
effects could bring the theoretical estimate into reasonable
agreement with the experimental (p,p') cross sections with-
out introducing deformed components into the wave functions.

The 6+ level is badly described, the data being about
thirty times larger than the prediction. This state is
apparently seen in both the (p,t) and the (t,p) reactions

12

at 20 MeV and also in studies of the 8q/9 analog

14,15

rasonance, No definite knowledge of its exact structure
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seems available but it appears complex. These results
thus seem consistent. The cross section does display the
forward angle enhancement which can be given by the non-
central forces, especially in the exchange calculation.

Figure 16 displays the results of calculations using
the Kuo wave vectors. Both of the 17 angular distributions
have well estimated strengths but badly reproduced phases.
The unusual shape of the calculations for the fivst 17 is
due to the radial extension of the neutron spin-flip trans-
ition density beyond the non-spin-flip density. At forward
angles, the oroés section is then dominated by the spin
flip amplitude. Excitation via the Coulomb interaction
is not included but should result in approximately a 10
per cent increase in the total cross section for the first
state and about a 5 per cent decrease for the second. For
the 3~ levels, the fits to the angular distributions for
both states appear satisfactory. The wave function for
the second 3~ is dominated by jﬁst a few components but
seems to give proper estimation of the inelastic transition
strength.

As shown in Figure 17, the resulté for the first two 5
levels are quite dissimilar. The-wave function calculated
for the 3.198 MeV level gives good predictions for both
(p,p') and gaﬁma decay transifion rates. On the other hand,
the second 5 has a B(E5) roughly one-half the measured

value whereas the (p,p') prediction is 10 times weaker than
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the scattering data. The third 5 at 3.961 MeV hés a
‘poor estimate of the shape but the strength of the angular
distribution is well given. The fourth 5 is underpredicted
by a factor of 5 and has a somewhat poor agreement in shape.
The Gillet wave functions for the first 3~ and 5 states
gave results smaller than the Kuo calculations and are not
shown here.
The first and second 7 excitations are also shown.
The first of these very high spin states is underestimated
by the calculation, especially at the larger angles. The
forward angle plateau of the data is lacking in the predicted
cross section for the first 7 . The second 7 is given
well at forward angles but overestimated at back angles.
Transitions to the unnatural parity states were studied
using the vectors of Kuo and Figure 18 displays these
results for the first three 2 and 6 states and the first,
second, and fourth 4 1levels. As in the case of the phenom-
enological wave functions, it is most interesting that the
transitions to these states proceed only weakly through
the spin-flip portion of the central effective interaction.
It appears that almost the entire transition to these states
‘comes about through the tensor portion of the non-central
forces, the spin-orbit force being negligible for the cdn—
figurations considered here. There is very good agreement

in the cases of the first 4 and the third 6  states. The
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4~ at 3.919 MeV excitation appears very difficult to describe
with either the phenomenological or theoretical wave
functions.

Comparison of the results of the theoretical with the
phenomenological wave functions indicate that the theo-
retical vectors give better predictions of the (p,p') transi-
tions to the natural parity states, especially in the cases
of collective motion. For the unnatural parity states, the
phenomenological vectors give perhaps a slightly better
prediction of strengths as compared to the theoretical
estimates.

In summary, the calculations with the phenomenological
and RPA state vectors give results that are consistent with
the adopted models. Due to the small ph basis, the former
éet of wave functions can not describe the highly collective
states. On the average, however, both sets do well in esti-
mating the cross sections for those states with little
collectivity and with oniy a few dominant ph components.

For the RPA results, the good agreement between the average
of the experimental and the theoretical transition strengths
for the weakly excited states is to be expected. The large
difference between the predicted and measured cross sections
for the positive parity states is a consequence of the 1 ﬁw
space and the one particle-one hole basis used in the RPA
structure calculations.52 The requifement for large effec~

tive charges to reproduce the measured B(EJ)'s for these



65

positive parity states is consistent with the lack of calcu-
lated (p,p') strength. .As expected, the RPA vector553 for
the lowest—lying; negative parity collective levels give

a good estimate of the (p,p') strength and require l1little

or no effective charge.

V. CONCLUSION

208Pb has been investigated using high resolution

proton inelastic scattering. Angular distributions for

all resolved states have been presented and excitation
energies have been extracted. Spins, parities, and deforma-
tion parameters have been obtained using a collective model
fit to the data. These results were generally found to

be in good agreement with previous measurements.

Microscopic model calculations using theoretical wave
functions and phenomenological transition densities and
wave functions were compared with the data. The highly
collective states were studied with form factors based on
(e,e') measurements and a simple model for neutron motion
in these collective excitations. With a G-matrix inter-
action for the nucleon-nucleon potential, the results were
fairly consistent with the data but required complex-coupling
to match the observed strengths. Non-central forces were
not used for these calculatidﬁs and are not expected to-

contribute significantly to the cross sections.
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The phenomenological wave functions of Heusler and von
Brentano24 were used with an effective interaction including
bqth central and non-central parts to give reasonable descrip-
tions for many of the states observed. Although, in general;
the calculations underestimate the data slightly the results
are encouraging.

Angular distributions were also prédicted for inelastic
scattering using RPA wave functions. The strongly populated
odd, normal parity states had cross sections comparable to
the theoretical estimates. The cross sections of the
unnatural parity states were also described fairly well using
these wave functions but were typically underestimated by
the calculations. The use of an effective tensor interaction
based on the OPEP form, which saw reasonable success in
describing transitions in the case of qu, appeafs to work well
in the lead region. Continued study of the unnatural parity
states promises that more knowledge of the tensor portion of

the effective interaction can be obtained.
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I. INTRODUCTION

Nuclei that are only one or two particles away from a
shell closure permit the valence nucleon-core interaction
to be investigated. The 1ead.mass fegion is well suited
for such investigation due to the purity of the double

shell closure and the knowledge of many states in 208Pb.

207 209

This paper reports the (p,p') study of Pb and Bi

208Pb core with a

each 6f which can be considered as a
valence neutron hole or proton particle. Inelastic proton
scattering was used to excite a variety of states in these
nuclei. Collective, single particle, and apparently complex
excitations have all been observed and angular distributions
recorded.

207 209

Experimentally, Pb and Bi are difficult to study

because of the high level density and fractionation of

inelastic transition strength. In 208Pb many levels are

well separated. In 207Pb or 209Bi, however, weak coupling
to core excitations produces a spread of inelastic transi-
tion strength among many levels. Often, members of the

multiplet are separated from one another or other states by
only a few keV of excitation energy. For example, the 3.1

MeV multiplet in 203

Bi, apparently arising from the h9/2
valence proton weak coupled57 to the 3.2 MeV 5 wvibration
in 208Pb, has doublet members Separated by less than § keV,
spans an excitation energy region of only 225 keV, and lies

within 15 keV of other states. Such problems necessitate

68
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the use of ultra—highiresolution techniques for separation
and identification of multiplet members from other levels.
With data of high quality, spin-parity assignments for
multiplet constituents and searches for weak coupled states
built on high excitation energy collective core states are
possible.

Aside from the weak coupling excitations, inelastic
proton scattering from these nuclei allows study of the
single particle and single hole states and of tﬁe extent
of core polarization in their excitation. Core polarization
effects in transitions to the most well known single hole

states in 2O7Pb58’59

209,.60
i

and to the 1i3/9 proton state 1in

have been examined. Here it was hoped to determine

the importance of both the 208Pb core and the non-central

B

forces in the excitation of some of these states.

Section II discusses the experimental set-up and
procedure. The reduction of the data, angular momentdm
transfer identificafion, and comparison with previous work
are discussed in Section III. Calculations involving the
weak coupling theory and the microscopic Distorted Wave

Born Approximation (DWBA) are shown in Sections IV and V.
IT. EXPERIMENTAL PROCEDURE

The experiment used 35 MeV protons extracted from the
Michigan State University cyclotron with beams on target
ranging between 1/2 and 1 microampere, the smaller currént
being used on the lower melting point bismuth. Protons

209 207

scattered from targets of Bi and Pb were observed using
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pboth a wire proportional counter and photographic emulsions
in the focal plane of the Enge split-pole spectrometer.

The high resolution cyclotron-spectrograph system was used
to obtain typical plate data resolution of 5-10 keV full-
width-at-half-maximum (FWHM). The plate data spanned the
region of excitation energy between about 0.5 and 8.0 MeV.
The counter data had a resolution which was detector.limited
to about 50 keV FWHM and examined the lowest 5 MeV of
excitation.

AInitially, angular distributions were measured using
thick lead and bismuth targets and the wire counter-
scintillator set—up.ZO Protons exciting the low-lying states
were geﬁerally well resolved with good statistics. Measure-
ment of the elastic angular distribution was also made.
Comparing the elastic cross sections with the optical model.
calculations using Becchetti-Greenlees best-fit parameter821
determined the absolute normalization to about 5%. Comparing
the completely resolved inelastic states in both plate and
counter data gave the absolute normalization of the plate
data to about 10%. Whenever possible the better statistics
counter data is displayed.

The high resolution data was recorded on Kodak 25 Um
NTB emulsion with a piece of 0.,015" stainless steel shim
stock before the plate to enﬁance track brightness and to
absorb heavier mass particles. Spectra were recorded from
10° to 100°. Tifteen angles were Fecorded for the plate
data. Most plate data was taken with a 1° x 1° spectrometer

entrance slit but some 2OgBi spectra were taken with a 2% x 2°
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slit as a reasonable compromise of resolution and count
rate. Before beginning a run, the resolution was optimized

using the on-line focal plane line width determination

system and dispersion matching.19

207 209

Typical spectra of Pb and Bi are shown in Figure

19. Also shown is a spectrum of 208

208

Pb to allow comparison.

The fragmentation of Pb collective states into multiplets

is apparent. Maﬁy single particle states were resolved and

are also indicated. The increase in level density from

208 207P 209

Pb to b to Bi is striking. Discrete structure can

' be seen up to 6 MeV in the two lead spectra but the bismuth

spectrum is essentially a continuum above 5.5 MeV of

excitation.

Since Bi is monoisotopic, few contaminants were found in

the bismuth data, the major ones beiﬁg oxygen and carbon

from the thin carbon foil-formvar backing. The 207Pb targets

were made from an isotopically enriched lead sample obtained

from the Oak Ridge National Laboratory and was 99.81% 207

% 208Pb,_and had small amounts of other lead isotopes.

Pb,
0.13
The lead targets also had backings. Target thickness was
about 100 ug/cm2 and 3 mg/cm2 for the plate and counter
studies, respectively. The effects of target thickness on

resolution are discussed in Appendix I.
ITII. DATA

A. Excitation Energies

The excitation energies of the 170 levels observed

in 207Pb and the 80 levels seen in 209Bi are listed in
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FIGURE 19.M—Typica1 spectrum of 207Pb, 2O8Pb,

are apparent in the other spectra.

and
Multiplets built on strong levels in 20

2085,
8Pb
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Tables III and IV along with the results of recent Nuclear

61,62

Data Sheets. The energy calibration for each plate

exposure was made using lead or bismuth levels whose focal
plane positions were unambiguously known and whose excitation
energies were well determined in previous high resolution
studies. Levels used for calibration are noted in the
tables. The calibration involved using the best experi-
mentally determined excitation energies initially, predict-
ing average energies with all plate spectrum, and iterating
until the average energies were consistently obtained. The
well—known levels of 12C, 13C, and 16O were also used

in the calibration whenever possible.

‘The large levei population at even low excitation
energies prevented the use of many levels in the calibration.
In 207P5 and 2098i the excitation energies above 2.730 and
3.155 MeV, respectively, were determined by extrapolation.
Therefore, below these energies the error is simply the
standard deviation. Above these energies the error is the
standard deviation plus an additional 1 keV/MeV of extra-
polated energy. This systematic error is an estimate of

both the interpolation error and the uncertainties caused

by the high level density.

B. Inelastic Angular Distributions
Angular distributions for which no definite ¢-~transfer
assignment could be made are shown in Figures 20 through 22,

207Pb, and in Figure 23, for 20981. Figures 25 through

for
27 display angular distributions which are reasonably

well fit by collective model calculations for these isotopes.
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TABLE III.--~Energy levels, %-transfers, and deformation

parameters for 207ppb.
Present Work Compilatione
A a Ul
Ex EX L BL Ex J L
0.57097 2 0.026 0.56967 5/2
0.8985b 2 0.025 0.8976 3/2°
1.63370 6,7 0.019,0.019 1.63329 1379
2.3398P i 0.024 2.33989 7/2 y
2.3687
2.5637
2.6230° 3 0.076 2.62u1 5727 3
2.6626° 3 0.087 2.6619 7/2" 3
2.702+0.005 2.705?2
2.7276" 5 0.021 2.726 9s2" 6
2.8407
2.9027
2.9097
3.0047?
3.057?
3.1807?
3.200%0.003 3.202 5
3.223%0.002 5 0.013 3.222 5
3.267? _
3.298 172
3.3197
3.3352
3,347
3.384%0.002 (5) 0.027 3.382 (972%,1172") 5
3.413%0.002 n 0.021 3.409 9/2” I
3.429%0.002 (5) 0.016 3.126
3.476%0.003 (5) 0.013
3.509%0.002 (5) 0.025 3.199
3.583%0.002 5 0.023 3.580 5
3.620%0.002 5 0.028 3.620 5
3.634%0.002 3 0.019 3.632
3.650%0.003 9 0.020

3.672+0.003
3.709*0.004
3.726*0.003
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TABLE III.--Continued,

4,546

Present Work Compilatione
ExaiAEX L BL Exa | Jﬂ
3.829%0.003 5 0.014
3.857+0.004 7,8 0.014,0.015
3.869+0.002 (5) 0.016
3.887+0.003
3.901£0.002 7,8 0.023,0.023
3.925¢0.0059
3.986%0.002
'3.999+0.003
4.017+0.003
4.034+0.005 (3) 0.007
4.062t0.004
4.088t0.00u 4.089
4.103:0.003 2 0.036 4,113
4,140+0.003 2 0.045 4,127
4.190+0.003 7,6 0.026,0.02U
4.213+0.003 5 0.022
4,232+0.005
4,250+0.00u
4,270+0.00u (6) 0.010
4.287£0.006 Iy 0.0080 4,288
4.313£0.004 m 0.067 I.318
4, 342+0.006 (3) 0.009 4.339
4.364+0.003 6 0.042 . 380
4.387:0.004 4.387
4.40u£0.003 6 0.047
4.422+¢0.00 3 (2) 0.017
4. 465:0.00 59 '
4.479:0.00Y
4.494:0.005 (8) 0.009
4.514£0.00 4 t.513
y,527+0.00 Y4 (2) 0.010
4.538:0.004 i, 541
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TABLE III.--Continued.

Present Work Compilatione

= m
EX EX L BL N J

4,558+0.003

4.592+0.006
4.612+0.003

4,630t0.003 (8) 0.028 4,629
L,6560.005 . 2 0.013
4.671+0.003 (8) 0.025

4.,700-4.730°
4.7330.003

4.745%0.003  (8) 0.016
4.761+0.00Y

4.785£0.00 7
4.806%0.005

4.835+0.0069

4,870x0.004
4.884+0.003
4.921+0.004
4.943x0.004
4.957+0.004
4.975+0.006

4.987+0.005% 3 0.022

5.018+0.005 9 0.021

5.039+0.005 9 0.021

5.053+0.005

5.081£0.004 3 0.029
5.117+0.0069

5.129+0.0059 5.129
5.156+0.006 (3)  0.010
5.177+¢0.006% 3 0.029  5.178
5.193+0.005 '
5.217+0.005 5.219
5.245+0.008 3 0.017 5.252

5.267+0.005 3 0.016
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TABLE III.--Continued.

Present Work ' Compilation®
ExaiAEx L BL Exa an
5.290+0.005
5.310+0.005
5.321+0.005 3 0.020
© 5.336%0.005 3 0.023
5.352%0.005 3 0.026
5.369%0.005 (6) 0.027
5.383%0.005 ‘
5.402+0.006
5.428+0.005 3 ~0.018 5.417
5.4L0%0,005 3 0.022
5.454%0,005
5.474%0,004
5.487+0.006
5.501£0.005 I 0.017
5.526+0.006%  (7) 0.027
5.537+0.005
5.548+0.,006
5.569+0.005 3 0.020
5.584%0.004
5.598+0.005
5.614%0.006 (3) 0.019

5.648%0.006
5.668%0.005
5.689+0.005
5.720%0.006
5.735%0,006
5.765%0.007
5.803%0.006
5.822%0.006
5.8L0+0.006
5.868+0.006
5.897+0.007
5.915+0.008
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TABLE III.--Continued.

Present Work Compilatione
axp m
EX EX L BL % J

5.934+0.007
5.952+0.005
' 5.969+0.006
5.998+0.006
6.010£0.005
'6.031%£0.006
6.041+0.007
6.064+0.007
6.073%0,006
6.090£0.007
6.105%0.006 (3) 0.015
6.146+0.0059
6.170%+0.008 (7) 0.017
6.188:0.0079  (7) 0.024
6.228+0.007
6.251+0.006
6.262%0.006
6.276%0.006 (3) 0.016
6.310+£0.007
6.332%0.007
6.360%0,005
6.381+0.007
6.402£0.006
6.449+0.007
6.483£0.008 (3) 0.013
6.547+0.008 '
6.62740.008°
6.654%0.008
6.670+0.008

6.7163:0.007d
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TABLE III.-~-~Continued.

Present Work Compilation®
a a T
E, *AE L By, _ E J
6.76210.007d
6.788+x0.009
6.864+0.,008
: d

6.912:0.008
6.939:0,009
6.955+0.009
7.048+0.009

2a11 energies in MeV,

bState used in energy calibration.

CSpectral region with unresolved multiplet structure.
dLevel with probable multiplet structure.

eReference 6l.
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TABLE IV.--Energy levels, %-transfers, and deformation parameters

for 209B'.
Present Work Compilation®
E PAE L BL E 2 J" L
0.8959P (2) 0.013 0.8966 7/2” 2
1.6081° 3 0.027 1.6085  13/2° 3
2.492+0.001 3 0.026 2.492 3/2" 3
2.564:0.001 3 0.047 2.563 9/2" 3
2.581+0.002 3 0.041 2.582 7/2% 3
2.59940.001 3 0.074 2.599 11/2" 3
| 2.601 13/2" 3
2.617+0.002 3 0.035 2.616 572" 3
2. 74040 3 0.057 2.741 15/2" 3
2.766+0.002 4 0.013 2.762 |
2.8251P 2.822 5/27
2.827
2.91
2.956£0.003 (&) 0.01L 2.957
2.986%0.001 5 0.021 2.987 13/2" 5
3.038+0.002 5 0.013 3.038 3/2"
3.091+0.003 5 0.01L 3.091 5/2F
3.118+0.002 3.116 3/2°
3.13397 5 0.036 3,135  11/2°,19/2" 5
3.1534° 5 0.032 3.asn 17/27,7/2 o B
' 17/2" 972"
3.168+0.002 5 0.026 3.170 15/2" 5
3.197
3.211+0.001 5 0.020 3,212 9/2° or 5
' 17277727
3.222
3.309+0.003 (3) 0.009 3.311
3.358+0.002 3.363
3.379
3.393
3.406

3.4337
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TABLE IV.--Continued.
Present Work Compilation®
ExaiAEx L BL Exa J" L
3.450
3.466+0.0029 5 0.019 3,465
3.476
3.489
3.501%0.005 3.503
3.579%0.003 5 0.012 3,579 L=5 Group
3.597:0.0029 5 1 0.020 3.597
3.633%0.004 3.640 1/2”
3.670
3.685%0.003 5 0.015 3.683
3.703%0.004 5 0.015 3.692
3.710-3.750° 3.719
3.735
3.753
3.765+0.0039 3.763
3.803%0.004 (3) 0.013 3.802
3.815%0.002  (7,8) 0.031,0.026 3.818
3.839%0,0049 3.839
3.855%0.003 3.855
3.880
3.89240.003 3.893 L=2 Group
3.909 '
3.92420.005¢  (3) 0.013 3.919
3.937
3.950%0.005 (3) 0.012 3.950
’ 3.962
3.981%0.003 2 0.033 3.981
3.99y
4,013+0.005 I, 015



TABLE IV.--Continued.

Present Work Compilation®
ExatAEX L By Exa g’ L
4.047+0.005 4.050
4.079
4.092+0.00u 2 0.027 4.096
4.116+0.00u (7) 0.022 4,121
4.133
4,157+0.00L 2 0.027
4.177+0.004 3 0.033 4.178
4.210+0.004 3 0.029 ‘ L=4 Group
4.235+0.004 |
4.257+0.004
4,286+0.003 4 0.034% 4.276
4.301+0.003 27 %0.033
4.326+0.003 4,327
4.362+0.003 m 0.032
4.397+0.003 4.397
4.411+0.003 28 20.035 h.421 1/27
4.uy1+0,0049 n 0.017 b 447 7/27
4.469+0,003%
4.485+0.004
4.512+0.005 4.519
4.532:0.004% T8 0.021
4.592+0.006 4,601
4.613+0.005%
4.630-u,7u5° 4.650
B 7U5

4,760 0.0049
4

4.791 0.006
4.828 0.005
4.853 0.005
4,949 0.004
4,985 0.005

d
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TABLE IV.--Continued.

Present Work Compilatione

E AR, L By @ g"

4.998+0.006

5.056%0.005%

5.131%0.006% 7 20.022

5.241+0,007 5.20

5.2820.005

5.31240.0059 5.304

5.333+0.005

5.360+0.0069

5.423+0.006° 5.43

5.463£0.005

5.509+0.0069

5.569+0,010% 5.57

5.769+0.005 ' 5.77

5.795+0.0079

5.835+0.0089
6.39u
7.169
7.176
7.416
7.637

4a11 energies in MeV, ,
'bState used in energy calibration.

CSpectral region with unresolved multiplet structure.
dLevel with probable multiplet structure.

€Reference 62.
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FIGURE 20.--Measured inelastic cross sections in 207Pb for

which collective model assignments could not

be made. The lines drawn through the points

are merely to guide the eye and do not represent
fits to the data.

The excitation energy of the
levels is given in MeV.
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The latter are discussed in Section III-D and E and the
former are discussed here. In all cases only the levels
apparent in six or more plate exposures are displayed in the
figures. The error bars drawn indicate only statistical
errors and are shown only when larger than the size of the
symbol. Gaps in the angular distributions occur when the
peak of interest was obscured by a contaminant.

In some cases multiplet structure is suggested in the
data by a larger-than-average peak width or by resolution
of a peak into a doublet at a few angles. States having
such features have been noted in the tables as possible
multiplets. Yor both isotopes, as indicated in Tables III
and IV, some regions of the spectra have level densities
too great for states to be resolved.

In 207Pb many of states observed have been previously
reported. There are some states reported in (d,d') and
(d,‘t)3 or other61 studies which were not observed here.

An upper limit of about 40 ﬁb/sr can be set for the peak
differential cross section for excitation of these states

by (p,p'). A large number of previously unidentified levels
have been observed, especially in the excitation energy
region above 4.5 MeV. Because of the large level density,
identification of levels at high excitation which correspond
to those seen in other reactions is quite uncertain.

207 209B

In both Pb and i, (p,p') excites states which

have been populated in a variety of single nucleon transfer
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3,11,63-67 20

. 7
reactions. In "7 'Pb the Py/9>

2098i

f7/2 neutron hole configurations were seen and in
the h9/2, f7/2, 113790 f5/2, Pg/po and Py /o Proton particle

levels were excited. Thus these nuclei permit the study of
hole and particle states in the same major oscillator shell.
The angular distributions for these levels have fairly
characteristic shapes and many of them are discussed in

Section V.

209,

In Bi, inelastic proton scattering apparently

excites most states seen in direct reactions but is most

sensitive to collective nuclear motion. Some of the states

populated in the (p,p') study of Clearysz’]2 were not seen

here. That study with 14.95 and 16.1 MeV protons examined

2098i both on and off the 8q/9 isobaric resonance. At

those energies many of the configurations formed are sensi-
tive to the compound nucleus energy and are not expected

to be strongly populated at 35 MeV.

209 20

Another study of Bi using the 7Pb(u,d)69 reaction

excited levels not observed here. This particular transfer

reaction is expected to excite configurations involving

(ﬂvv-l) as the final state, where the neutron hole is in
the Py /9 orbital. Because (p,p') can be described by a
one body 6perator in the quantum space of the nucleus it

is expected that states excited in both (p,p') and (a,d)
L _

hgso  P1/9
both reactions are the 2.91, 2.979, and 4.133 MeV levels

should involve (7 ). The states not excited in

YV
P

f5/a2 Pgyps 113/,» and
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suggesting that these are 2p-lh states not involving the

h9/2 proton orbital.
Many levels in the region above 4.6 MeV of excitation

were resolved in this study of 203

Bi that were not reported
before. 1In this excitation region the extremely high
population of levels and the fractionation of strength

makes resolving states very difficult.

C. Discussion of the Collective Model

The primary information required for a conventional
collective model (CM) calculation is the nucleon-nucleus
elastic scattering optical model potential. This potential
is usually obtained with search codes that vary the model
parameters until the best chi-square fif to elastic scatter-
ing data and, often, to polarization data is achieved.
Figure 24 compares the 207Pb and 2098i elastic data with
optical model calculations using the best-fit Becchetti-
Greenleele (BG) paraméters and those obtained with the

26 Since there is

optical model search program GIBELUMP,
no polarization data for 35 MeV protons the search was
performed with fixed BG spin-orbit geometry. Spin-orbit
sets adopted from other studies at other bombarding energies
gave similar good agreement between the measured and Calcula?
ted elastic cfoss sections.

However; collective model calculations with the BG and
fitted sets yield different cross section predictions. With
the BG and fitted optical models for either nucleus, the CM

gives about a 40 per cent difference between results for the

same f-transfer. However, the ratic of L-transfers within
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a set 1is identical. This ambiguity in normalization of
the DWBA cross section has been noticed previously.2
‘For this reason and because of the lack of polarization
and large angle data the BG optical model parameters have
been used in all macroscopic and microscopic model
calculations in this study. Use of these parameters gives
excellent agreement with previous CM analysis of these
nuclei usingvthe (p,p') reaction. |
In the collective model calculations, the code DWUCK27
was used with 40 partial waves, integration limit of
20 fm, and integration step of 0.1 fm. Both the real and
imaginary parts of the optical model wefe deformed and,
since there is little sensitivity to the reaction Q-value,
all calculations were for transitions to states lying at
5 MeV of excitation energy.  Coulomb excitation was included
in the L=2 and 3 cases but only in the former excitation
is the contribution significant. The deformation parameter,
BL, was calculated as the square root of the ratio of the
experimental and predicted CM crbss sections. There was
no accounting for the initial and final state spins involved.
For L greater than about 5 the forward angle CM fits
to the data are not good. The data consistently shows
forward angle strength not predicted by the CM. This fact
and the rather similar angular distributions for L>6 makes
large L assignments quite tentative.
The results for the CM fits are discussed below. The

actual fits are shown in Figures 25 through 27 and the
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FIGURE 25.--Collective Rgdel fits for all identified
states 1in Displayed with the fit
is the excitation energy of the state and
the deformation parameter, correspond-
ing to orbital angular momen%um transfer L.
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deformation parameters and L assignments are listed in

Tables III and IV.
D. f-transfers and Deformation Parameters for 207Pb

The results of CM fits to the 207Pb data are displayed

in Figures 25 and 26. Whenever possible, comparison of the

data with angular distributions for levels of known %-transfer

207

was made. In Pb, considerable fractionation of the

strength seen in 208Pb generally occurs. States are dis-

cussed in the following sections according to L.

D-1l. Quadrupole excitations.

The states at 0.571 and 0.899 MeV of excitation,

11,63-65,68

previously identified as single particle states,

are excited predominantly with L=2. The rate of fall of
the angular distributions are well reproduced and the phase

of the data is also reasonably well given. These f

5/2
58-59
and Ps/o neutron hole states have been shown to have

significant contributions from quadrupole core polarization

excitations.

208

+ . : .
The Pb 2 state at 4.086 MeV is apparently split

into a doublet with members at 4.103 and 4.140 MeV.

1,70

Vallois et al. have identified strong quadrupole excita-

tions at 4.090 and 4.125 MeV. Within experimental error,
the excitation energies and deformation pérameters from

bthat study agree with our values. However, a 4.115 MeV



100

state seen’81 in (d,p) suggests that a doublet may lie
near this excitation energy. Our data does reveal a
weakly excited state at about 4.112 MeV which is unfor-
tunately seen at only a few angles. When resolved its
cross section is less than 5 per cent of that of the 4.103
MeV state.

Tentative identifications of states involving L=2
transitions have been made for the states at 4.422 and

4.527 MeV. TIdentification of the 4.656 MeV level as L=?2

is fairly certain.

D-2., Octupole excitations

There were many tfansitions involving L=3 angular
momentum transfer. This is to be expected since there are
many 1p-2h configurations that can arise from the large
number of 1p-1h octupolé configurations in the 208Pb core.
The well known doublet with members at 2.623 and 2.663
MeV dominates any inelastic spectrum and was so intense at
some angles as to be unscannable. Both members of the
doublet have characteristic L=3 shapes.

The 4,342 MeV level is believed to be an octupole

1,70 identified a state at

excitation. Vallois et al.
4.340%0.,015 MeV as being an L=6 level. As there is no
state observed in our data within 15 keV of the 4.342 MeV

state we conclude that either a doublet is present at

that energy or the initial L assignment is incorrect.
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The level at 5.177 MeV appears to be a multiplet. An

L=3 assignment has been made for the strongest member.

D-3. States involving L=4,

Collective model calculations for states involving
L=4 transitions were similar to only a few experimental
angular distributions. The L=4 strength appears concen-
trated in only a few levels. The 2.340 MeV state, which
has been identified as the f7/2 neutron hole state, has
an angular distribution with characteristic L=4 shape.
According to direct DWBA theory this state can be reached
only by L=2 or 4.

The state at 4,313 MeV has been assumed to be the
unresolved weak coupling doublet built on the 4.323 MeV 4+

208 207

vibration in Pb. This Pb state has a small satellite

at 4.287 MeV which is weakly excited but has an identifiable

L=4 shape.

D-4, States with L=5.

As in 208Pb there are many states that involve L=5

transitions. In particular, the region from 3.20 to 3.62
MeV of excitation has many weakly excited levels that have
g~transfers of 5. The states at 3.583 and 3.620 MeV both

have L=5 shapes. The 2.728 and 3.429 MeV levels were

previously assigned70 L=6. We have assigned L=5 for both

3,61

states. The 2.728 MeV level is seen in (d,p) with anu.
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The neutron configuration of 8q/9 COupled to 206Pb(O.OO MeV)

which has been suggested3’11’65’68 for this state is con-

sistent with both identifications.

A significant fraction of the L=5 strength seen in

207

208Pb is not seen in Pb. Probably most interesting is

the lack of L=5 strength in the excitation region of 207Pb

corresponding to the first excited 5  state in 208pp,

This missing strength is discussed in section iV-B, below.

Higher excitation L=5 strength seen in 208Pb has not

207

been observed in Pb. This may be due to configuration

207

mixing or masking of the strength by other "Pb levels.

We also noted a similar lack of octupole strength corres-
ponding to that seen in high-lying levels in 208Pb& This

probably has the same explanation.

D-5. States with L>6.

A few states apparently involve L=6 transfers. The
weak coupling doublet with parentage in the 6  state in
208Pb apparently lies at 4.364 and 4.404 MeV. The 1.634
MeV state which is highly excited in single particle

transfersll’63—65’68

is excited in (p,p') by L=6 or 7.
Direct DWBA theory allows the transition to proceed through
only L=5 or 7.

All angular momentum transfer assignments for L=7
or larger are quite tentative. As noted above, this is

due to the generally similar shapes of these high f&~transfers.

States which possibly involve high spin transfer are found
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at 3.650, 3.857, 3.901, 4.494, 4,630, 4,671, 4.745, 4.785,
5.018, 5.039, 5.526, 6.170, and 6.188 MeV. Most of these
levels have tentative assignments and many appear to have

multiplet structure.

E. f-transfers and Deformation Parameters for 2OgBi.

The 209

Bi(p,p') data displayed in Figure 27 has been
compared with CM characteristic shapes. The large level
~density and the apparent extreme splitting of the strength

208

of Pb core excitations made L assignment difficult.

In general, the bismuth angular distributions were similar

to those of 207Pb.

E-1. Quadrupole excitations.

The single particle state at 0.896 MeV (J"=7/27) seen
in the (3He,d)66 and (a,t)67 reactions is populated primar-
_ily by an L=2 transition although L=0,2,4,6,8 are allowed
for transitions to this state.

Three distinct quadrupole excitations at 3.981, 4.092,
and 4.157 MeV have been resolved. The total deformation
parameter for this triplet 1s about O.OSOG' Bertrand énd

2OgBi, reported

Lewis,71 in an inelastic proton study of
an L=z2 group centered at about 3.96 MeV of excitation and
with a BZ:O.OHQ. These two measurements are in good agree-

ment. The 3.981 MeV level has been suggested62 to be an

~unresolved doublet.
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E-2. Octupole excitations.

There were a number of states seen with characteristic
L=3 angular distributions. Most interesting is the dominant
six~-member group centered at about 2.6 MeV. This is the
well-known multiplet resulting from the hg/2 proton coupling
to the octupole vibration at 2.615 MeV in 208Pb.

The il3/2 single particle level at 1.608 MeV also has
an angular distribution well fit by an L=3 CM calculation.
This state has been shown60 to have a large adﬁixture of
the 13/2" member of the 2.6 MeV multiplet.

Other states with L=3 were found at 3.309, 3.803,
3.924, 3.950, 4,177, and 4.210 MeV. The last two levels
show a fairly large concentration of octupole strength in
an excitation region where no comparable strength is found

in 298py.

E-3. Levels with L=i,

Two low-lying states at 2.766 and 2.956 MeV were
observed that previously were seen72 in (p,p') work near
15 MeV bombarding energy. There, the lower state was
concluded to be a member of the multiplet built on the
lowest 5 1level in 208Pb. The upper state was assigned
a spin of 3/2+. Our daté indicates that the cross sections

for these states are fit only by the L=4 shape. This is

in disagreement with the previous conclusions.
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A strongly populated group near 4.3 MeV was also
observed to have two members with L=u shapes. The members
lie at 4.286 and 4.362 MeV. The b4.,uhl MeV excitation,
which is probably a multiplet, has been assigned L=4., The
level at 5.509 MeV may correspond to the L=i level at
5.20+0.5 MeV observed71 at 62 MeV, but we could not make

an assignment of L.

E-4., Transitions with L=5. .

The bismuth spectra have two dominant groups at about
3.13 and 3.56 MeV and with charaéteristic L=5 shapes.
These groups have been identified in other (p,p') studies
as L=5 excitations. The 62 MeV work7l extracted deformation
parameters of 0.050 and 0.029 for the lower and higher
states, respectively., We have obtained total deformations
of 0.065 and 0.037 for these transitions. The disagree-
ment may arise from problems in background subtraction in
the higher energy data. We are in good agreement with
the results given ip Reference 72.

No other L=5 identifications could be made.

E-5. States with L>6.

A few states were identified as haviﬁg angular momentum
transfer greafer than 5. As in the case of the 207Pb data,
the experimental angular distributions for high Q—transfers
are difficult to distinguish because of the similar shapes.

States at 4.116, 4.301, and 5.131 MeV showed possible L=7

strength. States at 4.411 and 4.532 MeV revealed poussible
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L=8 strength. No L=6, 9, or 10 transitions were found in
the data. This might result from the fractionation of

core strength by weak coupling.

F. Summary of the Collective Model Results.

The results of the CM fits are presented in Figure 28.
There, the strength for each g-transfer ranging from 2
to 9 has been displayed according to excitation energy for
each of the three nuclei, 2°'Pb, 298pb, and 2%%i. 1t is
clear that the distribution of inelastic strength is quite

similar in each nucleus. This similarity will be discussed

in the next section.
IV. THE WEAK COUPLING MODEL

A. Discussion
It is evident from the spectral plots of Figure 19 and
from the deformation parameter verses excitation energy

display of Figure 28 that the strong excitations in 208Pb

207Pb and 209Bi. The character~

split into multiplets in
istics of these multiplets are that they are centered
about the energy of the éore excitation, their total
strength is about equal to that of the core level, and
the ratio of members' cross sections is roughly constant.

The cross sections for 208

Pb states, which apparently are
the bases on which these multiplets are built, are compared
with the angular distributions for corresponding multiplet
members in Figures 29 and 30. The similarity between

angular distributions of the core state and states in the

odd A nuclei is quite striking.
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FIGURE 29.--Comparison of 2U°Pb angular distributions with

cross sections for weak coupling multiplets in
Pb built on the indicated 208Pb excitation.

The curves result from smooth interpolation

through the 208pyp data for the indicated level.
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These properties are given by the weak coupling
model74 which assumes that a valence particle or hole
nucleon interacts only weakly with a collective core
excitation. This assumption leads to a number of predic-
tions which have been applied to the data assuming a 208Pb
core and which are summarized in Tables V and VI. These
predictions are also discussed below. It should be noted
that Cleary 23_21.75 have found that weak coupling to

excitations in a 210Bi core can equally well describe levels

in 2OgBi in the excitation energy region between 2.98 and
3.65 MeV. There is, however, no evidence to decide the
more proper alternative.

According to the weak coupling model, members of a
multiplet have cross sections, I which are related to
the core cross section, O by a simple spin-statistics
factor. If JC, Jw, and jm are the spins of the core
excitation, the weak coupled particle, and a particular

multiplet member, respectively, then

(23 +1)
- m OC
m T 2T FD( 2T F1) .
C W

Summing this expression over possible multiplet spins
predicts that the total multiplet strength should equal
that of the core. Due to experimental difficulties, the
data for these nucleili were taken at slightly different
scattering angles. Since the cross sections vafy fairly

rapidly with angle, a direct comparison of the total strength



112

: o T
*suc 03 Tenbs ATTROTIUSPT (T+°02)Z

ST OTARJI oYl S319TQnOp pPoOATOSaJIUN ﬁomp Aﬂ+ﬂhmva runs A8aesus poiyltem aﬂ&mm
T td3
90°0 00°T +N\maﬁ+m\ma 88T*9 hZ0°0 12¢0°0 88T°9 Ehh*9g L
S0°0 00°T +m\mﬂn+m\mﬁ 92¢8° S L2000 L20°0 826°9S 0zZL*S L
h0*0 96°0 +N\u gee-°g
S0°*0 €0°T L0/ 8 TZE"§ - -0€0°0 §€0°0 0€e°g ShE*S £
h0°0 9.0 _2/ST TL9*h
S0°0 9T°'T _C/LT 0E9*H LEC"O 0h0°0 Bho* 0T8°'1h 8
20°0 T0°T _Z/€T  t0h*h
¢0°0 L6°0 _C¢/T 3 h9g*h £50°0 £90°0 98¢ °H hgh'h 8
Z20°0 00°T _¢/8°_Z/L 0 €TIE°H L90°0 L90°0 mam.ﬁ - €ge 5
¢0*0 €6°0 .¢/S OhT°h
¢0°0 0T°T _Z/€ €E0T*h 8S0°0 8G0°0 GZT*h 980°h ¢
S0°0 #0°T +m\mﬂ 06T h
S0°0 68°0 LC/ET T06°¢ S€0°0 ' 8E0°0 GG0°h LEQ* L
no*0 ZT°T /T ozete
€00 S8°0 +m\m €8G6°¢ - G9€0°0 hE0* 0 €09°¢ 80L"*¢E S
¢0°0C h6°0 +N\> _ £€99°¢
¢0°0 980°T +N\m €29°¢ ¢T°0 ¢T1°0 gh9°¢ GT9°¢ €
(APKH) A (APKH) (ABH)
T T T Ehdele)
LTIRY L Fg @y, ez (sa02) Ty _sams I
*qg JI0J siTnsada wcﬂﬁmﬂoo xmo3||.> I79V.L



e

113

€0L"¢

0T*0%00"T /LT
50°07£8°0 L0/8°.8/L s8ore
L2/8T¢ 2/S
60°0%h0"T /80 2/T LeSTE
TT*0%L8°0 L2/TT 6LS" 8
60°0%86°0  .2/ST°,2/6T  99h°¢ L§0°0 n€0* 0 TeSte  80LE S
L0°0Fh0"T L2/6 Tz ¢
90°0%50° T 2/LT 69T "¢
90°0%90° T L2/STC /L esTee
$0° 0766 L2/6T°,2/6T  hET'e
60° 0526 L2/8 T60"€
ASNESSEN: /€ 880" ¢
L0°0726°0 L2/TT 986°7 $90°0 850°0 ZL0°€ 86T°¢ S
20°07€6°0 L2/8T onL* e
£0°0%5L6°0 K% L1192
20°0720°T  ,2/€T° ¢/TT 66572
£0°0786" 0 Lo/l 185°2
£0°0780°1 L0/6 £95°¢
20°0589°0 RIE Z6h°2 021" 0 92T°0 0z9°z  ST9'Z ¢
(AGK) (ARH) (ASH)
oTIRy L0 T3 (saooyld  _sams %%z 1

AT

J07 sitnsaa 3uTtTdnod eoM--°IA T19VI



11y

‘punol usaq jou sey Arqeqoad Tg

*OATIBIUDL
uT yaBuedils TrIOL

Axen sav siusuudtsse utdg
9yl sJ9JsUBRIL=-Y ©59Yl J0J

q

T
(T+702)2
: A8 22u8Ttem utd
(T+°02) T3z uns Asasus peidsl FeSe
LO*O0FT6°0 _C/S Thh*h
_Z/eTf /1T
H0*0¥96°0 “T/6°_2/T z9e°h
_T/LT _
70°0F720°T _T/ST_2/L 98z *h 050°0 L90°*0 SEE*H hZE h  oh
€0°0%28°0 /LTS LST"h
H0*0FE6°0 _C/ET Z60°h
HO*OFTT T _Z/TT¢_2/6 T86°¢ 050°0 860°0 190"+ 980" h 42
(ASH) (APH) (A®W)
T T 200
oT3ey L0 *a (sa00) g _sams e

*pPONUTIUOD--"TA JTdVL



115

with that of the core could not be done reliably. However,
by using the CM deformation parameters the angle averaged
strengths of the data can be compared. For this reason

the total effective deformation parameters for the multiplet
is compared with the corresponding core deformation in the

tables.

In the case of a single multiplet member the above

equation predicts that the expression

(2Jc+l)(2Jw+l) o

—_ = 1
(25+1) 9%

only for the choice of j=jm. If members of the group are
degenerate then a similar expression, involving a sum

of (2j+l)‘factors in the denominator, will be one only for
the proper choice of spins. This method of checking spin
assignments has been used and the results for each multiplet
level 1is displayed in the ratio column of Tables V and

VI. Again, since the core and multiplet data were not
measured at exactly the same angles, the core cross section
was taken to be the sum of multiplet member cross sections.
If the ccmplete strength of the multiplet has been identi-
fied this is a safe procedure. TYTor most cases it appears,
from comparison with the core strength, that the total
strength has been found. The ratio listed is the weighted
average of the values determined at each possible angle.

The given error corresponds to the mean deviation in the
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ratio. The tables also give the spin weighted energy
average for each multiplet. Of course, in the 1limit of no
particle-core interaction, this energy is expected to be

identical to that of the core excitation.

2
B. “07Pb Results

B-1. Coupling to the 3~ core state

The doublet arising from the coupling of the Py/9

208

neutron hole to the lowest octupole level in Pb has

members at 2.623 and 2.663‘MeV. Calculations for these
states have been performed by Hamamoto76 and indicate that
the intensity ratio should conform to the expected weak
coupling prescription. However, those results76 also
suggest that the states should absorb only 94 per cent of
the observed core strength. We have found that the total
strength of this doublet is about 95 per cent that of the
20851, 37 vibration and that the intensity of each member
is fairly consistent with the assigned spins of 5/2" and

7/2 . A study,]7 involving 1lnelastic proton excitation

functions of the 5 and 4 analog resonances in ngBi,

supports these spin assignments and is independent of
assumptions about the weak coupling model.

The 2.623 and 2.663 MeV states have been examined in

a variety of inelastic scattering experiments.l’%2’70’73’78’79

42,79

Two of these studles were unable to resolve the doublet
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but did detect strength about equal to the strength of the

core state. The remaining studiest>70573,78

found the relative
strengths generally consistent with the predictions of a

weak coupling model. References 1 and 70 observed about

91 per cent of the total streﬁgfh, however. A (d,d') experi-
ment73 reported only 87 per cent of the core strength. The
deuteron experiment was performed at 13 MeV so that compound
nucleus processes may be important. Therefore, it seems

that inelastic experiments generally support the weak coupling
model for this doublet.

208Pb 2.615 MeV octupole vibration is very

Since the
collective it might be expected that neutron holes other
than the Py /9 could couple to this vibration as well. The
work of Grosse et a1.80 has suggested that levels observed
at about 3.210 and 3.580 MeV could correspond to configurations
with the f5/2'and P3/9 holes coupling to the octupole,
respectively. We were unable to assign an 2-transfer
value to the 3.200 MeV level observed in our data. The
3.223 MeV excitation has an L=5 assignment. The state seen
at 3.583 MeV of excitation energy has a definite L=5 assign-
ment and seems to be a member of the weak coupling doublet
built on the second 5 core state. The only state in this
excitation region having an L=3 identification is the 3.63Y4
MeV level which has a transition rate only 2 per cent of
the core octupole. Thus, there appear to be no multiplets

207 208

in Pb arising from coupling of the Pb 3~ level to

other neutron holes.
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20

B-2. Coupling to the “°%ph first 5 state

208

The level at 3.198 MeV excitation in Pb is a strong

collective state with about 10 single particle units strength.

207P

However, there are apparently no L=5 states in b in the

region about 3.2 MeV that exhaust more than 5 per cent of
the inelastic transition strength of the core state. A

strong level at 2.728 MeV does involve an angular momentum

11,65,68

transfer of 5 but this level has been shown to have

the configuration of the 89/9 neutron coupled to the ground

206

. . + .
state and first excited 2 state of Pb. Thus it seems

that the weak coupling model breaks down here. This has

been notedl’70’73 before, The missing strength probably can
be explained by the fact that the 208Pb 5" wave func-
tionzu’s*—53

has a large (>0.6) amplitude neutron (g9/2—
pi}z) component. Thus, the inelastic strength for excita-
tion of the core 5 1level is severely hindered by the missing

P1/9 strength.

B-3. Coupling to the 208py, second 5 state

We observe states at 3.583 and 3.620 MeV which are
definitely L=5 excitations and whose summed strength agrees
fairly well with the core-particle model. However, the
relative intensities are not in good agreement with the
predictions. Since a number of other L=5 states lie
nearby, this disagreement may have a possible explanation

in the configuration mixing of these levels.
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Reference 70 reported states at 3.575 and 3.615 MeV
excitation for which f-transfer assignments could not be
made. Alster79 reported L=5 excitations in 207Pb near
3.4% and 3.7 MeV that have combined strength equal to that

208

Pb 5,

of the X Thus, inelastic scattering results tend

to support a weak coupling configuration for these two

levels.

B-4, Couplingvto the 208Pb quadrupole excitation.

The levels at 4.103 and 4.140 MeV are excellent
candidates for weak coupling members of a multiplet with

208py . The

parentage in the 4.085 MeV ¥ excitation in
inelastic transition rates are in good agreement and the
intensities agree fairly well with the weak coupling
model prescription. Alster79 detected 100 per cent of
the core cross section in his (a,a') study and Vallois
gg_§£.70 reported an intensity identical to that of the

core but observed relative population of the levels not

in agreement with the theory.
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B-5. The unresolved multiplet at 4.313 MeV

Although there were no experimental indications of
multiplet structure for this level we conclude that the
4,313 MeV state.corresponds to a weak coupling doublet

208 1,76,79

built on the u+ level in Pb. Other studies

reported a single level at this energy and observed a cross
section equal to that of the core state. We also observe
the same strength as that of the core vibration so that

a doublet assignment for this level seems fairly certain.

B-6. Other possible weak coupling levels

+
The 6 (4.424 MeV) and the 8+(4‘610 MeV) in 208Pb

are both fairly strongly excited in (p,p') and could be

expected to lead to multiplets in 207Pb. The 207Pb levels

at 4.364 and 4,404 MeV, with L=6, and the levels at 4.630
and 4.671 MeV, with L=8, have relative intensities and
summed cross sections in agreement with the weak coupling

model predictions.

207 2

Although L=7 levels observed in OBPb have

Pb and
tentative spin identification it seems that multiplets
with parent 7 core states have been found. The total
strength and locaticn near the core excitation energies
‘suggests identification of these levels as weak coupling

states. The lowest 7 state in 208Pb, at 4.037 MeV,

leads to two levels at 3.901 and 4.190 MeV in 207Pb. The

summed strength is slightly less than that observed in
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the core and the relative intensities are in fair agree-

ment with the model.

The 7  levels in 208Pb at 5.720 and 6.443 MeV may
correspond to degenerate doublets in 207Pb at 5.526 and
6.188 MeV, However, the 2O7Pb states are separated from

the excitation energies of the corresponding core states

by a much larger energy gap than the other levels dis-

cussed above. The strength of these levels is essentially

equal to that of the core states. The large energy separation

and the uncertain L assignments, however, makes identification

of these levels as weak coupling multiplets quite tentative.
Lastly, the doublet with constituents at 5.321 and

5.336 MeV, apparently 5/2+ and 7/2+ states, respectively,

may héve parentage in fhe 5.345 MeV octupole excitation in

208Pb. The total core strength is nearly reproduced and the

relative intensities are about in the ratio given by the

model. Again, a possible explanation of the missing

strength lies in mixing with nearby octupole levels.
C. 2098i Results

C-1. Coupling to the 3~ core state

In the particle-core coupling model, coupling of the

208

h9/2 proton to the Pb octupole vibration can lead to a

septuplet of states. Our study and a number of other charged

72,73,78

particle studies of this multiplet have only

resolved six members. However, assuming a (2J+1) cross
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section dependence, the strength of the 2.599 MeV state
suggests that this level is a degenerate ll/2+, 13/2+ doublet.
Coulomb excitationgl has shown that his level is a doublet
with members separated by only about 2 keV, the larger spin
state lying higher. We have found the total strength of this
multiplet nearly equal to that of the core excitation. The |
assigned spins are in agreement with those given in
References 72,73,78, and 81 and the relative intensities

agree quite well with the weak coupling model predictions.

208

C-2. Coupling to the Pb first 5 state

Spin assignments for this multiplet have been made and
compared with the weak coupling theory in Table VI. A
total strength greater than that of the core excitation was
observed. The intensities follow a (2J+1) rule quite well
and, as shown in Table VII, the agreement with previous spin
assignments is good. In all assignments but that of

+ .
57 the 1/2 1level of the multiplet has not

Francillon et ail.
been located. Since this 1/2+ state is expected to have a
very small cross section, identification of this level is
expected to be difficult. The 3.309 MeV level, identified by
Fréncillon et al. as the 1/2+ state, has a distinct L=3

shape in our data. Unless a doublet lies at this energy it
appears that the 3.309 MeV state can not be a member of the

multiplet. Cleary72 suggested that a very weak state seen

+ .
at 2.847 MeV may be the 1/2 level but the cross section was
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TABLE VII.--Spin and parity assignments for the 9/2” x

51 multiplet in

209

Bi.

EX(MeV) Present Work Ref. 57 Ref. 72 Ref. 73
2.766 - - 3/2" -
2.986 11/2" 13/2" 19727 13/2%
3.038 3/2" 3/2" 5/2° 372"
3.091 5/2" 7/2% 779" 5/2%
s.13h - 13/27,19/2% 1172719728 11/2%,18/72% 11727190721
3.153 772" ,15/2% 572 19700 92t 19/2% 772t 17727
3.169 17/2°7 15/27 13727 15727
3,211 9/2" 9/2% - 9/2"
3.315 - 1/2% - -
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so small that an angular distribution could not be measured.
Our spectra show no states near 2.847 MeV.

Using techniques indépendent of any weak coupling
assumptions, Cleary also identified the 2.986 MeV level as
having spin 19/2+, However, the strength he measured for
this level was much less than that predicted by the weak
coupling model assuming Jw=l9/2+. The strength that was
measured is consistent with.our spin assignment and the
weak coupling picture. Being very sure of the spin assign-
ment, however, Cleary attributed the difference between the
weak coupling model and experiment to mixing of this level
with the higher lying 19/27 state associated with the

decuplet built on the 208

Pb second excited § . Our analysis
of the two L=5 multiplets, however, indicates that mixing

of these two sfates is not required if one assumes that the
2,986 MeV level has spin 11/2. It should also be noted that
Cleary concluded that the 3.211 MeV level had a microscopic
configuration based on coupling of the h9/2 particle to the

208Pb.‘ Our bismuth data

unnatural parity 4 level in
indicates that the 3.211 MeV level is the 9/2+ weak coupling
member of the 5; multiplet.

Our assignment of doublet spins to the 3.153 MeV level
is consistent with the results of Reference 73 which found
two members at about this energy and with separation of
about 4 keV. That work also suggested possible doublet

structure and spin assignment for the 3.134 MeV level and

concluded that its members are separated by at most 3 keV.
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208

C-3. Coupling to the Pb second § state

Five members of a multiplet near 3.6 MeV have angular
distribufions similar to those of the second 5  1level in
208Pb. The total cross section is slightly greater than
that seen in the core. It also seems that many of the
levels are degenerate since coupling of the valence proton
to the core excitation is expected to result in 10 states.

This apparent degeneracy makes the spin assignments quite

uncertain.,

C-4. Other possible weak coupling levels

Excitations involving angular momentum transfers of

209

2 and 4 were identified in Bi that lie near the excitation

energies of the first 2+ and 4+ levels in 208Pb. In both
cases the total strength of the core was not observed and
it seems that some fragmented strength has not been resolved.
However, spins have been assigned assuming that all possible
strength was observed and that the relative intensities are
given by the (2J+1) rule. Therefofe, the spins given in
Table VI for the L=2 and L=4 multiplets are quite tentative;'
About 75 per cent of the core guadrupole strength was
found. - Cleary72 reported an additional L=2 excitation at
4,213 MeV and observed about 72 per cent of the expected

strength. Reference 62 has suggested that the 3.981 MeV

level is really a doublet. A gamma-ray resonance
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experiment82 on 2098i identified L=2 transitions to levels

at 3.977, 4.083, 4.156, 4.176, and 4.206 MeV, the lower three
levels corresponding to our identified L=2 states. The

levels seen here at 4.177 and 4.210 MeV have definite assign-
ments of L=3, although doublet structure is possible. It seems
that complete identification of the 2+ and M+ weak coupling

multiplets in 20953 requires higher resolution than currently

possible.

V. THE SINGLE PARTICLE STATES AND A MICROSCOPIC MODEL

207 209

Both Pb and Bi have states strongly populated

in single particle transfer reactions and thus identified

as single particle levels. Most of these states have been
observed in the present (p,p') study. It is expected from
electromagnetic measurements83 and other inelastic scattering

58,60

experiments that the inelastic transitions to these

states involve strength greater than that given by a model

involving a single valence nucleon.

207

A, The States in Pb

To explain the measured angular distributions for
. . . . i - - +
the inelastic scattering from the fivrst 5/2 , 3/2 , 13/2 ,

and 7/2° excited states in 207

Pb, DWBA calculations were
made which included only the valence orbits. Figure 31
compares these theoretical results with the data. The

curves give both direct and direct-plus~exchange predic-

tions.
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The valence calculations shown in Figure 3la used
a central nucleon-~-nucleon force and an approximate treat-

ment of knock-on exchange.S’

This exchange approximation
has been shown to predict cross sections slightly larger

than those for exact calculations, the overestimation

‘being larger for small f~-transfers. For the direct

amplitude, the projectile-target interaction was taken to

be the two-body effective bound state interaction (G-matrix)
derived from the Hamada-~Johnston (HJ) potential. In these
calculations, harmonic oscillator wave functions were

used with the size parameter set to 0.405 fm + which
reproduces the results of elastic electron scaftering on

208Pb. The optical model parameters for the results

shown in Figure 31 were those of Becchétti and Greenlees,zl
although use of other sets gave similar results. In

Figure 3la, only the dominant, non-spin-flip (S=0) transi-
tions are displayed. The calculations underestimate the
data, the data being 3 to 10 times stronger. The shapes

of the angular distributions predicted by the theory

are generally not in good agreement with the data.

A previous study,8LL using central and tensor forces
for the 20 MeV data58 for these states, suggested
important tensor contributions in the transition to the
3/2° state. It is interesting to determine if non-central
forces could significantly improve the fits to the data.
Calculations were therefore carried out still assuming

207

a simple valence description of Pb and using the code

DWBA?OHS which allows the use of spin-orbit and tensor
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FIGURE 31.--Measured differential cross sections and
valence orbital model predictions for
single particle states in 207Pb. (a)
Predictions using a purely central force.
The broken and solid curves give the direct
(D) and direct-plus-exchange (DE) results,
respectively. (b) DE results using the
code DWBA70. The broken curve gives the
predictions using a central force only.
The solid line displays calculations
including non-central interactions.
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VALENCE CALCULATIONS
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two-body forces and treats exchange exactly. The central
portion of the nucleon-nucleon effective force was taken

to be.a Serber exchange mixture; the Yukawa radial shape

had a 1 fermi range and strength of -30 ﬁeV for Vo' (With
this even-state, central interaction, results compare

well with the HJ and the approximate exchange calculations
as can be seen in Figure 31b.) For the non-central analysis

the tensor and L+S potentials were identical to those used

in the 208

Pb microscopic calculations, above.

Figure 31b displays the results using the central-
plus-non-central forces. In thé DWBA70 calculations,
contributions from both S=0 and S=1 transitions were
included. For each state, the tensor dominates the spin-
orbit contribution, even in the case of the 13/2+ state
where the allowed orbital angular momentum transfers are
5 and 7. The angular distributions are somewhat improved
in shape but are still lower than the data by factors of
3 to 6. The predictions for the 13/2" state show the
most dramatic increase. Calculations with.DWBA70 using
Woods-Saxon wave functions give enhanced forward angle
cross sections but renormalization by factors of 2 to 6
is still needed. |

The reﬁormalization of the two-body force needed to
match the data is related to the effective charge in
electromagnetic transitions, both being correctidns for
core polarization effects. Bérnstein33 and Astner gi_gl.ss

have given a semi-quantitative relation between these two

parameters. Using the results of the calculations with



harmonic oscillator wave functions and assuming the proton-
proton force is half aé strong as the proton-neutron
force, effeetive charges of 0.75, 1.1, 0.62, and 0.42 were
obtained for the 3/2 , 5/2°, 7/2 , and 13/2" states, respec-
tively. For the first two levels these are in fairly good
agreement with values measured using electromagnetic
techniques.83
It is clear from these results that a model involving
only pure, single hole states cannot reproduce the data
even though both central and non-central forces are used.
More complicated excitations of the core particles are
apparently significant. Such core polarization effects
were calculated using two different models. First, the
Phenomenological model of Love and Satchler85 was used,
The core polarization (CP) form factor (FF) was summed
coherently with the direct-plus-exchange valence FF for
the S=0, L=J transition of each state. The strength of
the CP was chosen to give the fits shown in Figure 32a;
the CP contribution was always larger than the valence
term. Becchetti and Greenlees optical model parameters
were used in the collective model for the core. In this
macroscopic model,85 a radial matrix element of rL
relates the CP strength to the effective charge; these
matrix elements were calculated using Woods-Saxon wave

1/3

functions in a well of radius 1.2 A" °F, diffuseness

0.70 F, spin-orbit strength of 25 MeV, and depth adjusted
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FIGURE 32.--Measured differential cross sections and
core polarization ‘model prﬁgéctions for
single particle states in Pb. (a)
The macroscopic core polarization prediction
is given by the solid line; for comparison,
the broken curve shows the DE valence model.
(b) the DE microscopic core polarization
results are given by the broken curve. The
solid curve shows results using complex
coupling.
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CORE POLARIZATION CALCULATIONS
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to give the correct binding energy. Expressed as
<rL>/(1.2 A1/3)L, these matrix elemeﬁts have values of
0.625, 0.722, 0.778, and 0.716, in order of éxcitation
energy. Effective charges of 0.74, 0.95, 0.61, and 0.u43
were extracted for the 3/2, 5/27, 7/2” and 13/2" levels,
respectively. These values are consistently smaller than
the effective charges obtained at 20 MeV58 using the same
model. This apparent discrepancy is probably due to
contributions to the cross section from exchange effects
which are more important at 20 MeV and which were not
included in the lower energy calculations. However, the
effective charges extracted here compare very we}l with
those extracted ffom the renormalization of the valence
calculations given above. Tor the 13/2+ level, this CP
model cannot give the forward angle enhancement shown in
both the data and exchange calculations.

Second, CP effects were calculated with a completely
microscopic model. Admixtures of 1 particle~2 hole core
excitations in each state were determined using first
order perturbation theory. The CP wave function, |J>

Ccp?

for a state of spin j was given by

13>cp = 13> +2 AGID G5,

the sum running over j' and J. The ket |j> denotes a
valence state of spin j corresponding to the appropriate

neutron hole. [(3j'J)j> refers to a component of total
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spin j resulting from the éoupling of a neutron hole of
spin j' to a particle-hole state of the core with angular
momentum J. The amplitude of a particular component is

given by
A(3'3d3) = =<(3'M)j|V]i>/AE

where the energy denominator E=Ej~Ej,—EJ. The energies
for the orbitals were taken either from the zero deforma-
tion Nilsson scheme or from experiment. The orbitals
included are listed in Table VIII. Harmonic oscillator
wave functions with 1engfh parameter o=0.405 fm"1 were
used. The coupling potential, V, was the Kallio-Kolltveit

for'ce.86 Similar treatmentssg’SO

in this mass region
have given encouraging results. For the transitions from
the ground state to the 3/2 and 5/2 levels, respective
B(E2) values of 189 and 231 ezfml1l were calculated using
these wave functions and using no effective charge; these
values are in fairly good agreement with experimental
measurements.83

Distorted wave calculations using these CP wave
functions are displayed in Figure 32b. The broken curve
gives the results for the direct-plus-approximate exchange
calculations. Only central forces were used. In each
case the experimental strength is underestimated.

Unfortunately, numerical limitations prevented calcula-

tions using DWBA70 and including non-central forces.
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Table VIII. Proton and neutron orbits used in the
core polarization calculations. Lack
of J subscript indicates both j=2%1/2

were used.

PROTONS NEUTRONS

Particles Holes Particles Holes

Ohg /g Ohy1/9 0314/ 281/9

1t 281/2 : lg . 0g

0i 1d 03 1d

2p Og 2d Oh

1g | 1p 1h 1f

03 of 381/2 2p

2d 0ky9/2 0313/

1h 2f7/2

38172 0l19/2

0%y7/2

2899

0

L1972
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The solid curve in the figure shows results using
a complex FF. The imaginary portion of the collective
vibrational model FF was added to the approximate exchange
microscopic CPFF. The strength of the complex FF was
obtained from a CM fit to the data. As seen in other

. 44,5
instances, ’ 9

introduction of complex coupling improves
the agreement; the strength seems well estimated although
the large angle data is still overestimated.

To summarize, the strengths of the inelastic transi-

tions to the first four excited states in 207

Pb are fairly
well predicted by a microscopic model. However, using
realistic interactions with non-central components and
accounting for exchange effects, calculations reproduce
only 20%-50% of the observed cross sections when simple
neutron hole wave functions are used. A macroscopic core
polarization description of these states is consistent
with lower energy results. Microscopic core polarization
wave functions give reasonable estimates of electro-
magnetic strengths using no effective charge but, with
central forces, predict inelastic cross sections slightly
lower than those observed. Addition of an imaginary
portion to the real, microscopic CPFF gives the best fits.

The importance of the tensor and spin-orbit forces in this

CP description remains to be investigated.

B. The States 1in 2098i

The single particle orbits seen in 2098i lie at 0.896,

1.608, 2.825, 3.118, and 3.633 MeV of excitation energy
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and have spins and parities of 7/2 , l3/2+, 5/27, 3/27,

and 1/27, respectively. Following the above procedure,
inelastic scattering to these states was first calculated
using a simple valence proton model. The calculations used

an effective bound state interaction, used the BG optical

model for the distorted waves, included the results of

7

knock~on exchange using the approximation of Petrovich® 5

and were done with the code DWUCK.27

All possible LSJ
triads were included. TFor the l3/2+ level twenty such
triads are possible. For each state, the cross sections
fqr each LSJ transition were summed to give the total
cross section. For the 13/2+ level, the L1J transitions
were comparable in strength to the usually dominant LOL
transitions. The results of these central force and valence
particle calculations are given in Figure 33 by the short
dashed curves. In all instances the calculations fall at
least a factor of 10 below the data.

The effects of the non-central nucleon-nucleon forces
were investigated using the code DWBA?U.”S Because of
numerical limitations only the cross sections for the 1/2°
and 3/2  states could be calculated. The Serber exchange
mixture was used for the central interaction and the
spin-orbit and tensor forces were identical to those used
above., The long dashed curves for these two states

shown in Figure 33 show the results of these non~-central and

central forces with valence particle calculations. Apparently,
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FIGURE 33.--Calculations for the single particle states
in 209Bi. The meaning of the curves is
given in the text.



do/dQ (b, sr)

bl ot ptont et

4

I T IIIHHI 7

-

oy
[en]
[wn]
T TTTTm

a

«¢

<

q
MIGI
+ Y
. |

0 40 80
Oc.m. ldegrees])

120

FIGURE 33



141

non-central forces cannot sufficiently enhance the theoretical
cross sections to match‘the strength of the data.

Finally, microscopic core polarization calculations
were done. The 2p¥lh admixtures in the wave functions for
these levels were calculated using first order perturbation
theory as above. For those states whose quadrupole trans—
ition rates. have been measured,83 the core polarization
wave functions give B(E2) values in fair agreement with

2

experiment. Values of 22 and 572 e‘fml‘L were calculated

without effective charge for the 7/2  and 5/2 transitions,
respectively. The measured Valueég3 are 24 and 288 ezfmq.
Transition densities obtained with the resulting wave
functions were folded with the effecti§e bound state inter-~
action used above. The zero range approximation was again
used to account for knock-on exchange and the code DWUCK27
was again utilized. The results of these calculations are
given by the solid lines in Figure 33. 1In all cases but
the 13/2+ transition the agreement with the data has greatly
improved. In the case of the 3/2 level the calculated
strength falls only about a factor of two:beiow the data.
For the 5/2 cross section the calculation gives a good fit
to the data.

The worst case is the l3/2+‘calgulation where the core
polarization results essentially reproduce the valence cal-

culations. In the core polarization results the LOL transi-

tions have become more dominent while the L1J transitions
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have lost much of the strength possessed in the valence
model. The net result is that the cross section remains
about the same as it was in the valence calculation. This

60,66

state has been shown to have a large admixture of the

weak coupled 13/2% state. The effect of this admixture has

been studied60

in a (p,p') experiment at 39.5 MeV where good

agreement with the experimental cross section was obtained

only when the weak coupled admixture was included. Since

the perturbation prescription used here cannot produce the

coherent 2p-lh components found in the admixture, the present

results for the il3/2 single particle state are to be expected.
To summarize, it seems that the single particle states

can only be éxplained when core polarization effects are

treated. The microscopic calculation involving simple

2p-1h and 2h~1p models for these single particle states in

209Bi and 207

Pb apparently can account for much of the
observed core polarization strength in transitions not
involving contributions from coherent excitations of the

core.
VI. CONCLUSION

The (p,p') reaction has allowed an intensive study of

207

the macroscopic behavior to be made. In both Pb and

2098i collective model fits to states enabled the transfered

angular momentum to be identified. A large number of states
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in both nuclei had features corresponding to the weak coupling
of the valence hole ér particle to core excitations. In

2098i the extremely high level density and fractionation of
strength permitted only a few multiplets to be studied. Of
these, the weak coupling groups corresponding to the first

3™ and the first and second 5 levels in 2C°Pb had most of
their strength identified and were found to conform to a

weak coupling prescription. Spins and parities were assigned
using this fact and were found in good agreement with previous

07

studies. The less dense level structure in 2 Pb apparently

permitted more weak coupled states to be identified. Most

of the states expected to be built on the very strong 208Pb

207Pb

core excitations were observed and a few high-lying
states were found corresponding to high lying core states.
Most interesting was the absence of a weak coupling multiplet
with parentage in the lowest 5 level in 208Pb. This missing
strength may possibly be explained by examining the ph
structure of the core state.

The single particle stafes in 207Pb and 2098i were
excited in this (p,p') study and examined using microscopic
models. As expected from électromagnetic measurements,
transitions tb these states were found to be greatly enhanced
by the core polarization effects. Calculations with the
single valence nucleon, exchange effects, and non-central
forces apparently cannot reproduce the observed cross

sections. A first order perturbation theory calculation

using a large number of neutron and proton shell model orbitals
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gave a core transition density comparable to that of the
valence particle. The DWBA calculations with the core
polarization density and purely central forces gave reasonable
reproductions of the data in all cases but that of the 209Bi
13/2% state which has been shown to have significant mixing
with the weak coupling 13/2" lying at higher excitation.

It is concluded that these single particle states are properly

described only in models which properly account for core

polarization.
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APPENDIX I
Optimum Target Thickness

In most nuclear experiments the beét resolution
consistent with the highest count rate is desired. The
target thickness, pdx, can affect both the resolution
and the count rate in particle experiments. With other
factors fixed, targét thickness is related linearly to
the count rate but there is no clear relation of thick-
ness to resolution. For this reason the optimum target
thickness for high resolution (p,p') was determined
experimentally.

A number of bismuth targets were made with similar
backings but of varying thicknesses. Care was taken to
insure thickness uniformity and the foils ranged from
about 50 to 1300 ug/cmz. The relative target thickness
was measured using a 90° monitor and thé Elcor charge
integrator. The thickest target was measured with fhe
alpha guage, and all other thicknesses were calculated
relative to it using the monitor-charge results.

It was assumed that the target effect was a function
of the density of electrons in the target material and not
of the atomic electron structure. Of course, with this

209

assumption, the results found for Bi would hold for the

entire lead mass region.
Using 40 MeV protons, the cyclotron-transport-spectro-

graph system was tuned for best resolution using a thin

I



146

target and the "speculator" technique of Blosser et al.lg

The 1° x 2° solid angle aperture was used. All parameters
were held fixed except the spectrograph magnetic field and
the target thickness. The data obtained is displayed in
Figure I-1. There the resolution of the elastic peak in
keV is plotted against the target thickness. It has been
assumed that the focal plane line shape is Gaussian. The
errors in the resolution correspond to the statistical
uncertainties in the speculator measurements. The target
thicknesses are probably accurate to about 10%.

For sufficiently thick targets the straggling contri-~
bution to the line width is expected to dominate the
intrinsic thin target line width. The dashed curve in the
figure gives the results of adding an assumed intrinsic line
width of 6.5 keV in quadrature to the straggling effect which
was calculated assuming a Vavilov distribution. The solid
curve displays the results from linearly combining the
assumed width and the straggling contributions. It appears
that the linear folding of the effects compares best with
the data. Since the actual energy distributions deternine
the proper method for combination, the proper combinatorial
technique is not clear. Also, target non-uniformities could
possibly contribute anomalously to the measured resolution.

From this data it appears that targets of 100 to about
250 pg/cm2 areal density affect the resolution very little.

The targets finally used in the high resolution runs were
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made about 100 ug/cm2 to allow for the uncertainties
in these measurements and for the bombarding energy

being 35 rather than 40 MeV.
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APPENDIX II

Analysis of the Data

The plate data was scanned in vertical strips whose
height was dictated by the optical systems of the scanning
microscopes. Each band was scanned so that extraneous
background was excluded. For each exposure, the separate

passes were combined using the program JABBERWOCKY87

written

by S. Ewald. This program allowed combination of the

separate vertical passes in two ways: straight addition or

addition after shifting of the passes so that the centroids

of specified peaks were alligned as closely as possible.

The latter option permits compensation for skewness in the

focal plane images or zercing errors in scanning. The program

used a least-squares, Gaussian fitting routine to indicate

which of the two methods yielded the tallest, thinnest

peaks. In almost all cases, the straight addition mode gave

the better line width. The counter data was taken using the

data acquisition program TOOTSIE.88
With the data in counts-verses-channel number form, the

program MOD789 was used for the data reduction. This program

permits background approximation with polynomials and allows

peak areas and centroids to be extracted. Although a

number of numerical peak-fitting routines were available for

reduction of the data, they were tested and found less

desirable to use than MOD7. The very narrow line shape
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(the peaks were only two to four channels wide at half
maximum) and the small number of counts in most peaks
prevented these routines from giving results that were
believed to be more consistent or more reliable than those
given by MOD7. For a few cases, comparison indicated
that equivalent peak areas and centroids were obtained
using either method of analysis. Further, use of MOD7
is probably faster than use of the numerical codes.

With the reduced data, the program322 CALIB and
MONSTER were used for further analysis. The correspondence
between excitation energy and focal piane‘position was
found with the code CALIB which can perform a search on
beam energy, scattering angle and focal plane parameters
to determine the best fit to the positions of peaks of known
energy. For our data, the searches were limited to the
angle and to the focal plane variables because, since
particles other than protons were excluded from the emulsions,
the beam energy could not be uniquely determined. Instead,
the bombarding energy was determined using the bending
magnets' N.M.R. readings and a correction empirically
established using the momentum cross-over technique.90
Beam energies can be calculated better than 1 part in
1000 with the correction. Much of the data was taken at a
single bombarding energy ana, since the spectrometer is run
in the energy loss mode, there is little sensitivity to the

actual beam energy.

The focal plane parameters from CALIB were entered into
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the program MONSTER which was used to calculate the
excitation energies of peaks and the laboratory to center-
of-momentum conversion. Output from that program was used

9L which was used to catalogue and

in the program DMBEX
normalize the data. With the large volume of data collected
use of such a program was indispensable. DMBEX served to
identify all peaks whose corresponding excitation energies
were within a given energy interval of a specified energy.

With this criteria, the program referenced cross sections

for plotting, statistical analysis and other usage.
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APPENDIX IV

207Pb Angular Distributions
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