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The current theoretical situation in phenomenological
analysis of high energy scattering is reviewed. Various
attempts are made to improve upon several models. In
particular, the effect of form factors and Regge treatment
of propagators on Born amplitudes is examined. Higher
order exchange contributions are considered as possible
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model is the most successful approach, in that enerqgy
dependence difficulties are eliminated as is the need for
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INTRODUCTION

iIn a large class of inelastic elementary particle
reactions the experimental data reveal the following promo-
nent general features:
| 1. One can usually‘group‘thehfinal~particles‘into.
two quasi-states, the center-of-mass of each one nearly

maintaining the direction of one of the ineident particles,
do l

dQCM
direction or both.

is strongly peaked -either in the forward or backward

The reaction ab+1+2+3+...appears as if there were
only two particles in the final state. Examples of‘suCh

reactions are

mp?* TN
*Tn NN
KN-+KnrN

+Kn N

We refer to these "particles" as ¢ and 4 and consider
quasi two-body interactions ab-+cd in which ¢ or 4 may be
multiparticle states.. They are, in fact, the decay products
of resonant states and are no different from the resonances
themselves kinematically.

The higher the incident particle energy and the
éimpler the composition of ¢ and d, the more evident the

forward or backward peaking becomes.



2. ‘In almost-every-case, -at-certain energies the
final states do not appear-to:-be:directly -preduced. - The
reactions ‘proceed via the -production:-of -strongly inter-
acting ' (and very short~lived)~resonanhhstates~whichwunder-
go 'strong decay into the-final-state.  Por-example

TN-+pN-T TN "
KN+K*N*-+K7mN

3. The total cross-section_ctot(s*w) behaves like
s ™ for small positive n. ‘While the density of experimental
data available over a wide range of reactions and energies
is light, it is possible to note a rapid decrease (in
most cases) iﬂ the total resonance production cross—éecéion
with energy. As we shall see later it is this fact that
proves to be the most difficult to~haﬁale theoretically.

Thesevare peripheral collisions; and for lack of a
better definition we shall call theoretical models for
these processes peripheral models. ‘The idea is that a and
b do not collide head on; they undergo a glancing collision
in which the two particles barely touch each other. We
do not expect the trajectories of either of the final
particles to deviate from the directions of the incident
particles.

One expects these peripheral processes to be
dominated by long range forces. Because of the energies
involved the treatment must be relativistic and there is
no reason to suppose that we can ignore the.intrinsic

spin of the particles. From the point of view of field




theory these reactions proceed via the exchange of the
virtual quanta that will induce the longest range force,
the quanta of lightest mass. The problem has been. ..
reduced to consideration of a sum of one particle exchange

graphs as indicated in Figure 1.

a

Figure 1. The reaction ab»n particles in the
region where the final state.is dominated by production
of two resonances is approximated by a sum over all allowed
one-particle exchanges.

In its simplest form, this "Born Term Model" leads

to a matrix element of the form
<cd|Blab> = Baec(t,mc)fn? By og (trmy)
e

for the production of the intermediate resonant states
where t=-(b—d)2 is the invariant 4-momentum transfer,

p/(t—mi) is the propagator of the exchanged particle and

t,Mn) is the vertex function. At thz, B A(Mz, Mi)

BZ Len

en(
is the matrix element for the physical‘process L+e+*n. If
one regards n as a particle, B is equal to the (fen)-

coupling constant multiplied by a known kinematical. factor.




These vertex functions.afe obtained in the usual
way from interaction Lagrangians or by writing down the
most general function consistent with Lorentz invariance
and then using hermiticity, CPT. and other strong interaction
invariances to limit thevform.further.‘ |

Since small physical values of t correspond to
sméll center-of-mass scattering angles it is clear that
ifrthe vertex functions are not pathological in their
behavior this Born approximation ought to be. a good start
to explaining peripheral collisions. And because of the
"factored" structure of <cd|B| ab> we héve a basic test
of the model: %% should be independent of the angle

between the planes defined by ac and bd.

The Exchanged Particle,

Consider any specific reaction and the usual
invariance principles determine which exchanges are
allowed.

Example: KN-+KN*

1. Conservation of baryon number tells us that e
cannot be a baryon.

2. None of K,N,N* are eigenstates of the G-parity
operator so we obtain no specific information from G-
parity conservation: Ge is arbitrary.

3. Since strangeness is conserved at both

vertices the exchanged particle must not be strange: Se=0.



4. Isotopic spin conservation -at the NeN* vertex
requires 1/2+I=3/2, which gives Ie=l,2. Consistency with
the KeK vertex requires that the exchanged quanta be a
member of an I-spin triplet:..Ie=1.

5.  Consider angular momentum and parity conserva-
tion at the KeK vertex in the. outgoing K-meson rest frame.
The K has JP=0" so the addition theorem requires

2+1
L (=)

- (X - -
0 +2( ) +J2e=0 . This reduces immediately to +J§e=0 .

Clearly we must have £=Je and peé(-)z?x-)Je which means
that J§e=0+ or.1-,2+,.., Examination of the NeN* vertex
provides no information which further festricts Jze.

In summéry, for KN-+KN* the exchanged quanta must be
a non-strange member of an isospin triplet of mesons with
Jp=J(~)J. We choose from among the known low lying meson
states and conclude that p exchange is likely to dominatgw

One proceeds in just this way, applying the conser-
vation laws at‘éach vertex in. turn for each reaction to be
considered. ‘This procedure rarely limits the exchanged

I3

quanta to a single state.
Decay of the Resonant ‘State

Recall that particles ¢, 4 or ‘both in the.réacﬁion
ab+cd are in most cases pseudo-particles, resonant inter-
actions of. several elementary particles. So far we have
discussed in general terms the amplitude <cd|M|ab> for the
production of the resonant state, particle d. (For the |
moment ¢ will be juét another. elementary particle, egq..

TN>7N*). We will consider decay into two particles: d-~fg.




If we had particle d, with spin 84 at rest in the labor-
atory, its decay would be governed solely by the transition

matrix for the process d-+fg:

(g%)decay~§gd|<fg|M|d>|2°
Given an ensemble of states d at rest with spin
polulation Ad we have no reason to exgect that the popula-
tions of each projection state are different. It is clear
that this is not the case in our situation. We do not
start with'particle d; we actually observe the process
ab+cfg which proceeds via the intermediate state d:
ab+cd~cfg. In contrast to the above, we do not expect the
resonance d to be produced with an isotropic spin distri-
bution. It must be assumed that the production matrix
elements are spin dependent until we know otherwise. One
can still obtain the decay angular distfibution from the
formula given above, but the initial state for the decay

matrix element must be weighted by the probability for

production of the spin state

|ab>

<fgc|Mjab>=T <fgl|M
ge||ab>=p <t zod.

decay'd><0d|Mp

and therefore

do , ,
(aﬁ)d+fg~2<fg|Md|d>*<fg|Md|d'>§ab<cd|Mp|ab>*<cd' |Mp|ab> :




Considering only the angular part H of the decay
matrix element and normalizing, we arrive at a formula
for the expected angular distribution?of the decay pro~ -
ducts f, g of the resonance d produced in ab+cd. For
convenience everything is done in the d rest frame.

W(a,B) = N ZH(fgd)*H(fgd')pdd.

]

whare 0.4 N22<cd|Mp|ab>#<cd'|Mp|ab>

1l determines Né

Various symmetries can be used to obtain relations

Trp

among the production density matrix elements Orm * To

find these it is necessary to examine W(a,B) in more detail.

Coordinate system

Since it is convenient to do calculations in the
center-of-mass frame, we start there. In all of our cal-
culations we have defined the production plane to be the
XZ plane with the momentum vectors alighed as shown in

Figure 2.

| d
t‘(////;at’/figz-a

Figure 2. The two-body scattering ab=+cd in the
center-of-mass and the orientation of the x and z axes.

[—) >
>

Because it is easiest to look at the decay of d
from its rest system, we perform a Lorentz transformation

into this system as indicated in Figure 3.



Figure 3. The two body scattering ab+cd in the
rest frame of particle d.

The j direction, the normal to the production plane, is
axc

defined by j = Tg;ET.

The decay angular distribution

Now add the decay products f and g to the diagram,
and delete a and c to get them out of the way as indicated

in Figure 4.

Figure 4. The decay products g and h of the resonance -
d in its rest frame.

Two angles are needed to locate the decay products. Momen-
tum conservation requires f and g to move in opposite
directions. We use a polar angle a, which measures devia-
tion of the line of motion from the kX direction, and an
azimuthal angle B measuring deviation :from the production
plane. Thesg definitions correspond to the usual definifg
angles for the spherical harmonics Yzm(a,s). As long'gsJWe
choose the k axis to be the spin quantization axis for the
resonant state 4 of spin jd' the angular part of the decay

matrix element will be |fm> coupled to jf+jg to form j,.

L 4



An Example:

This is a 1 »0 +0 transition. In the p rest frame
the intrinsic spin of the p meson becomes the relative
orbital angular momentum of the two pions. The angular
part of the decay matrix element is proportional to Ylm(a’e)’

We write
W(a,B) ~grn s Yo (@ B)YY 0 (B o o
where we normalize fanpW(a,B)=l.

Symmetries of rm

It is useful to take advantage of available symmet-
ries to simplify the density matrix as much as possible.
We require that p be hermitian, p+=p. Application of
parity conservation to ab+cd leads to additional relations
among the production amplitudes. Substitution of these
relations into the formula for p immediately shows that

=(__)m—m'

P Y

mm' -m-m'

’

These two relations plus the trace condition enable

us to write

1/2(1‘900) plo pl’_l

=1 3

Prm? = P*10 P00 P*10
P1,-1 P10 1/2(1=pyq)
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Using this matrix we obtain an expression for Wp+2"(a,e):

wtaogg—w—[3/2c1 p00)+l/2(3p00 l)cosza—p1 lsin acos2p -

V2R plosinzacosB]

One also obtains an expression for the,pclarization,of
particle 4 by using P=TrpJ,. P, and P are found to vanish,
so the polarization vector of d is perpendicular to the
production plane.

The decay of a spin Jd into spins jf and j can be
analyzed in a eimilar way but it is necessary to use tbe
angular momentum addition. theorem to write~the proper -
angular functiohs. Once one has‘an‘enpreesion for w inf
terms of dennity matrix. elements, he egain examines the
effect of invafiances at the vertices on the density matrix
elements to obtaln model. dependent predictions for the.
angular dlstributions, assuming a jpe for the exchanged
quantum. Td show the method and complete the p- production
example, we look at the p+mm decay.- .

Assume the dominant contribution to 7TN+pN is the
pion exchange force and ask what this means for the decay.
distribution of the produced mesons. Consider the
vercex in the p-meson rest frame, »

A unit of orbital angular momen?um-is‘picked up'in
p—formation as intrisic spin-and‘jz for the 2T system is
zero. Note that parity is conserved. Conservation of Jz
implies Jz=0 anq;the-jzel»spin-projections of the p areinot

produced at all. The only non-vanishing density matrix
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element is Poo which, because of the normalization condi-
tion, must be unity. Substitution into W(a,B) gives

| W(a,B) = 3/4ncos?u W(a) = deW(a,B) = 3/2'coszd

W(g) = 1/2m

We look for this behavior in the experimental data as
evidence for m-exchange.- This result is quite general;
any reaction of the form PB+VB proceeding via pseudo-
scalar exchange will lead to the above,angulér distri-
butions for tHe decay of the produced V-meson,

Similar analyses may be performed for the othér
allowed spin-parity assignments of the exchanged quanta
and for arbitrary spin of the produced resonance. Table A
summarizes the results of analyses for other relevant
cases. ‘

When doing calculations helicity eigenstates are used
rather than spinors quantized relativé to the z-axis.l These
are states in which each spin is quantized relative to |
its own direction of motion. Such-states have very simple
Lorentz transformation properties -making them very easy
to use. We calculate amplitudes and cross-sections in
the production center-of-mass -system and decay. angular
distributions in the decay center-of-mass system. ' Before
we can use the density matrix-it ie necessary to perform
-a rotation-sOWthat~spianuantization~is relative to the
z-axis, a more transparent situation for comparison with

experiment.
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‘In the production CM, the:angle of rotatien for

¢,d is clearly 8cy In the-c(d) .rest.system we have

sinwc-gz‘ggnecm (giﬁwd-%‘aine )
where , with A(x,y,z) = x +y2+z2-2xy-2xz 2yz
el a2 2 2 e S
q 2/53 (s,ma,mb) incident:-channel CM momentum
‘production process
L3172 (¢, m? o
7—— my /M ) = momentum of a in ¢ rest.system

bd“%ﬁgk /2 (t,mb md) = momentum -of:-b-in d rest -system

This transformation formula for the.angle is very -easy to
derive. The component.of: a 4-vector perpendicular to the
direction of a Lorentz transformation~is-unaffected‘by
that transformation. |

Let 6(J 2 be the-helicityrstaée‘density‘matrix for.

c
production of the resonant state c of spin jc‘ The density

matrix for quantization aleng the Z-axis in the c‘reét
system is then given by
(3.)
c J

P = d,¢ ) 6 e (=v,)

: ACA'C A Al Alﬁ X'lxl (o]
which is a function of s and t for the production process,
It is this Pmm+ that goes: into the angular: distribution

formulas,
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A look at the-experimental data provides clues to
the‘prcducﬁion mechanism. We invent a model, calculate
production angular distributions,vtotal cross—sectiohs,
@roduction-density'matrix elements, and compare with the
experimental :data. - Proceeding .in this manner, it has been
possible to explain a large -number of high energyvfeactions,
though in most cases notIWithout modifications, to the

basic Born Terms.
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TABLE I

Predictions of the BTM for Density Matrix Elements

1. Vector Meson Production -(J-=1") [decay:1™+0"+0"]
significant density matrix elements: ”900’91,—1'910
(plo is complex).
a) Pseudoscalarrexchangéw(dgﬁo—)
prediction: pooal, others 2zero.
v o \J
b) Natrual-parity~exahange-(quJ(') )
prediction: Pj ., arbitrary,.others zero.
’

‘ D (-)JI+1y
c) ‘Unnatural parity exchange. (J¥=J

no -prediction.
2. N*3-production (Jp=3/2+) [decay: 3/2+»1/2++0-]
significant density matrix elements: p33,b3_l;p3l
a) Pseudoscalar exchange (JP=0")
'Prediction: all above elements are zero.

b) Vectdr meson exchange (JP=1‘)

prediction: Rep,,=0, p33=3/8, Rep, -1=3/8.
L4



THE GLAUBER FORMALISM FOR HIGH ENERGY

SCATTERING AND THE BORN APPROXIMATION

We start with a potential V(r) of finite range
;nd use the<Schroedingervequation to solve for the Wave
function, assuming high energy for the incident particlé.

By high energy we mean the incident particle energy ¢

is much greater than the absolute magnitude of the potential

Vi and that the wave length -is much shorter than the

range r, of the potential:

VO<<e xr0<<l.

Since, relative to e¢ the potential is weak, we do not
expect the wave function to deviate significantly from
a plane wave. We write

Cx(p)=e*® Eu(r),

M is assumed to vary -slowly with r.
Substituting in the integral form of the Schroedinger

equation
‘ : o ik|r-x'|
= 1]_(_'_1;"_ e‘l' - = 1 .t '
Y(x)=e AfTi:gr-_]— v(ir'“)y(z')ar',
we easily obtain ‘

. et i _—!
elk|££ I l_]_C_ (££ )V(_I_'_')M(_.‘C_'_')ds.'

= 1-2[&- V(r-r))M(z-r' )dr,

15
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_.2
where dr,=r;dr,d(cos6)dp.
Assuming VOM changes appreciably over distance d

but varies slowly over a wave length, we obtain by partial

integration
2 eikrl(l-—cose) cosb=1 1
M(z)=1+A[dr,r7d6 [F—>" Viz-z;)M(r-z,)] +8 (1)

1 cosf=-1

Atu=—l(rl antiparellel to k) the exponeftial
oscillates rapidly and this term is also of order 1/kd.

The leading contribution is

r, lk

At wan 3 K — —
M(r)=1 lffder(E r)M(x £2)|£2A&

Choosing k to be .in z direction we obtain
M(b,z)=1-i)/k[dz'V(b+kz)M(b+kz")

. 2 ”
= & =-Mvdz'-M(p, z) =e TA/K/ dz'V(brka')

where we have used as boundary condition M(b,z=-x)=1,
which comes from the requirement that we start with an
incident plane wave.

The final form for the wave function is

\ (b,2)=etk" (B¥k2)-ir/k[%az'V (brka) ,

which is valid in the region of the potential.

The limits of applicability of this approximation
have been given by R. J.'Glauber.2 It is sufficient to
know that this formalism will provide a good description

of the scattering in the forward and backward cones. We
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use the wave function x(b,z) in the formula for the
scattering émplitude in place of a plane wave. The idea
is that if the potential is well-behaved and the incident
energy is high enough, the incident wave will be only
slightly distorted in the region of the potential. We
have calculated the first order correction to the wave
function due to this distortion. This is called the
Distorted Wave Bofn Approximation and was used by

J. D. Jackson and collaborators3'4 as the starting point

in developing the absorptive model.



ABSORPTIVE CORRECTIONS

Wé are studying inelastic processes of the form
ab*cd, which we aésume to be due to the ‘interaction V in
lowest order. Now wé allow a and b to interact elastically
before they interact via V to produce ¢ and 4, which also

interact elastically, as shown in Figure 5.

o, —

b a

Figure 5. The absorptive model diagram for the
scattering ab-+cd. ‘ '

The incident and outgoing channel glastic‘interactions v,
and Vf are treated‘exactly. The result‘is a modification
to the Born term for the inelastic procéss. At the inter-
action Vv, a and b are no longer plane waves; they are
gtadually,distorted by the elastic interaction aé fhey
approach the inelastic ihteraction region. We require
that vV, and Ve and the incident energy satisfy the‘reétric—
tions implied in the Glaubef wave function. The incident
and final wave functions Xy and Xg are
x*f(g,z)=e-ig"£e_ix/q f:dz'vf(gfﬁg)

. - z ' oy 1
Xi(2r5)=eig Io iA/q_” dz'v, (b+kz')

18
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We use these wave functions to calculate first order

contribution to the inelastic scattering:

oy Z . oo
<cd|M|ab>Zfd bdzel(S b<cd|V|ab>e lx/qiwdz'vi—1X/q'fzdz'Vf

“2m[“bdb3 (Gb)el/z () g () &1/ 25 P)

where B(b)=f dZV(EfEZ) and $8=g-gq'

The range of V is assumed much smaller than Vi or Vf and
the phase shift of wave traveling through V at impact

parameter b is given by

Xp, (P)= - [* az' V(b+kz) (n=i,f)
qpl

Compare this expression for the amplitude with the partial

wave expansion.
<|M|> = D(a+1/2)M, PQ(cose)=fxdxM(x)J0(wx) (w=28in6/2)
2 v

‘Note that the expansion in impact parameter is
approximately equivalent to the partial wave expansion.

To obtain a relativistic version of this formula
and include spin, we assume that the partial Born amplitude

<AcxdlMJIAaAb>, where A; is the helicity of the lth'particle,
s J L] : 1 .
is replaced by el/szMjel/ZX%.

We start with the relativistic partial wave expansion
A=Aa-kb

. 3 3
<Ackd|M|AaAb>— §(3+l/2)<Kc%d|M 232> xu(e)'u=x -
(o

. d
invert it to obtain mJ

3 = 3
<AgrglM Jxaxb>—fd(cose)<xcxd|M|Aaxb>qu(9)-
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Including the distdrted'wave correction DWj and resumming

the series we obtain

<xcxd|M'anxb>=§(j+1/2){nwjfd(cose)<xcgd|m|xaxb>d§u(e)}diu(eo.
In actual practice this procedure is avoided when-

ever possible by making use of 'a few mathematical tricks.

For single~quantum exchanges, retaining only the two lowest

terms in n=|u—A|, the amplitudes can be put in the form

n+2

a_ 1 n, -
Mn—e z:;f (xanw +Xan? ).
e

It is possible to write
1 _ 1 1

tFmi qq"52+w2

where €2 is composed of angle independent kinematical

qﬁantities. Then using

' n
W

€2+w2

=€ foxden(mx)kn(ex)

we are able to write each amplitude as a partial wave
sum and all that need be done is to insert the distorted
wave factor DW(X) under the integral.

It should be mentioned that for all of these high
energy reactions, large numbers of partial waves contribute.

Since we are limited to small © weé can make use of the

CM
approximation

5 i o
dxu(e)~Jn«J+l/2)w) n=|u=-2\
Substituting in the Jacob-Wick Expansion and approximating

the sum by an integral we obtain

<AcAd|M|AaAb>n = f xdx<ACAd|M(X)|Xaxb>an(wx).
J

0
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Comparing this formula with the one obtained by using

the approximate amplitudes Mz and using the integral formula

above, we write

a _ b _.2z W™ n-
M, = qq'[(xan € xan)€§+w2 tow xan]
— e - 2"' -] n-
= ol (Xap€ xan)foxden(wx)Kn(ex)+w X,n) ¢

Adding DW(X) under the integral in M is essentially

the correct procedure for adding the distorted wave correc-

tions.

It is possible to write the absorptive amplitude
for a process in a way that explicitly‘éeparates the
correction term from the Born exchange contribution. We
begin with the Sopkovich formula for absorptive correc-
tions:‘ |

. F I
id% B i6.
e j<AcAd|Tj|AaAb>e 3

it

A
<Acxd|Tj|AaAb>

Writing Sj=l+2iNTj where N=normalization and energy
momentum conservation, we readily obtain

A _ B
<ACAd|T ]xaxb>n =< AglT |xaxb>

o Foy 3 F B
+iN jAlA2(2j+l)qu(6)<AcAd|T,]k1k2><1;A2|Tj[Aakb>

I L j B, . I,
+iN jklxz(2j+l)dxu(6)<xckd|Tj|A1A2><A1A2|lekaxb>

I F 3 F B il
Ny N Z(2j+l)dku(6)<kckd!Tj}AlA2|Tjlx3k4><k3x4|TjlAaA

b

>+

.
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where the Jacob-Wick expansion has been used to obtain the
full amplitude. If we approximate the initial and final
state elastic scattering amplitudes by spin-independent
functions we recover our simpler, less general, formula

F F

I F\I
3 ]

ArglTRIA A > = F(24+1) [1HTIN +1TjN TFTjN N+, ..

<A Ad|TB|A Ay >dJ (8)
= B j
§(2j+1)nwj<x Ad|T ]A Ap>dy, (8) .

The general formula is useful as a starting point for
more sophisticated calculations, eg. spin-flip in the
elastic scattering which would allow one to take into
account the hon-zero polarization found in many elastic
collisions, and to éee more clearly the effects of absorp-
tive corrections on the exchange amplitude. In practice,
calculations ﬁsing this form require large quantities of

computer time.



FORM FACTORS

One of the first ideas for improvement of the Born
Term Model was to replace the simple point vertex functions
and the propagator by functions which incorporate higher
erder effects. The existence of sﬁch effects was used to
justify replacement of the Born empiitude B by BF, where
F is some -phenomenological function depending on t and
the masses and as few arbitrary censtants~as-possible.
If one chooses such a function and obtains a best fit to
the data at some incident energy and then uses this function
to calculate at other energies,7he-hopes to succeed in
comparing withvexperiment. ‘If success does come, one has
a very simple method of calculating;

J. D. Jackson and H. Pilkuhn5 used an exponential

form factor eAt

to improve the angular distribution in fits
to KN+K*N and K*N* overethat obtained from simple vector
meson exchange. 'Later we will see that such-a form

factor works well for 7N -inelastic :collisions dominated

by vector meeon'exchangey but -that -another form factor

F(s) is necessary to fit the energy dependence.

23
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Form factors are also able to improve on the Born
model for reactions dominated by the exchange of pseudo-

scalar particles. Amaldi and Sellexiq6'two of the early

investigators of peripheral collisions, were successful

in fitting the data on mp+pp with the function

F(t)= 0572 - + ‘0528 : s
l+(M,n_--t)/4.73MTr l+[(Mn—t)/32Mﬂ]




A -REGGE MODEL

Another approach based on an idea first suggested
by Gell-mann, Frautschi, and Zacharisen,7 draws on the
Regge Model of high -energy-scattering. One starts with
the t-channel process, writing down-a partial wave expan-
sion for the amplitude.  -Assuming a-resenance in a partial
wave one performs an analytic continuation via the
Sommerfield-Watson transform to the 's channel. This
amplitude, the contribution to the s channel amplitude due
to the virtual exchange of the t-channel resonance, is
used to calculate cross-sections. - One obtains a one-meson
exchange model in a different way; ;he exchanged particle

has a spin a(t). One can show that the characteristic

propagator form —5—7 is contained -in the amplitude.
t~-M ‘

Many authors have done calculations based on this

model.® The idea is to replace the factor —2—7 in the one-
SR t-M
e

meson exchange amplitude, the one -obtained field theoreti-
cally and not the one crossed from t -channel by a phenom-

enological function of Regge form:

‘ -ima(t) , o(t) . a(t)
F(t) K(2a(t)fl)(l+re- )(s-u I”'[qtqt ]
t—Mé 2 sinma ‘4qtq£ Ma/MbMd

25
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The trajectory a(t) is determined experimentally. This is
done for each exchanged particle. The extra factors have
been introduced to make‘the'formula~dimenéiona11y simple.
The basis for this replacement is that had we started with
the t-channel amplitudeth(51t)=k§£2£fl)T2(et)Pm(cosét),
assumed dominance of a resonance of 'spin &, performed the
Sommerfield-Watson transform and continued to the s channel

we would not get -a factor —%——‘ Instead we would have

obtained something like

s (t) a(t) ' . 2
sInﬂu(tS(s ) ‘where JwRea(M )
where (t) will have the behavior ———7 ;provided it is not

t-M
destroyed by other factors in §. - Thls does happen occasion-

ally. Starting with the Regge -Form

P_ (- Xy )+P (x - 4aq.9q)! a(t):
(2m41) (= O (—=E ) B
2 sinmo , MaJE'Md

where qt’qé are initial, final cm momenta for t-channel;

using
s-u s-1/2 (M2 +MZ+uZ4n?)

X -cose =
t I“:“r §>>t !qtqé

and

a(t) -ima

T(a+1/2)2% a(t) -
P (x,. )~ = C
o0t ey Nt Xe

we write

Pa(—xt)ste Pa(xt)

a(t)

_ -ima(t) . q.q)
B(anc(i:)-o-l)l""re . g e T ~where have put

ZsInma () Xg
Ma/ﬁ;M

cB=B and t is the signature of the exchanged trajectory.
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B is determined by requiring this expression to coincide
with the field theory propagator at the pole t=M§

-ima(t)
%H&Z[B(Za(t)+l) %+§inﬂa(t) t(t>[] ML

Near the pole (at to)
alt)~a(ty)+a’ (ty) (t-t,)
3 ~ 3 A 1 L4 . £ . -
sinma(t) =~ SLnna(t0)+nu (to)cosnu(tb)(t ty)
¥ sinwj+wa'(to)coswj(t—to):na'(to)(t-to)cosnj
~ . e 1\ J
~ mat (g ) (E-ty) ()

=>

| 3 L
Q,j.m [§(2j+l)l+ T(-) Xj[]J - 1 ]
tot, 2(=)mat (£) (t-t ) F t-t,

from which we readily obtain

- [ "j _j
B - 2““ (tO)Xt /[(T+( ) )(2j+l)]
_mat(e) { s—l/2(M§+M§+M§+M§)} -3
3 -
(2j+1)[T+( )71 2Ma/E£Md
Example:

For J=1 exchange the propagator is replaced by

i j—e~ima(t) s-l/2(M§+M§+Mi+M§) a{t)

R(£)=B (20 (t) +1) | — }

2sinma (t) 2MaVNbMd
where B is given by

s - 1/2(M +M2+M2+M2) a(t)

= m, b "¢ d

B= 3% gay (Ep) :

2M /MbMd
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The procedure is to calculate the cross-section and dénsity
matrix elements with this form for the propagotor using

the experimentally determined ‘Regge. trajectory appropriate
to the exchanged state.  Since. the 'Regge model is known

to give the correct asymptotic energy dependence for cross-
sections one hopes that this. phenomenological ansatz

based on the Regge idea will ‘show similar socially acceptable
behavior when it comes‘fo energy: -dependence. The problem
of correct energy dependence is one ‘of the chief diffi-
culties of the -other methods of ‘calculating peripheral
reactions. As a derivation of one-particle-exchange via
the Regge approach makes clear, the energy dependence is
intimately connected'with the. spin of the exchanged quanta.
In the Regge approach, exchange of a spin j does not lead
to amplitudes which go ‘as sJ but as Saj(t) where uj(t) is
the trajectory of the exchanged quanta.

We might wonder why the field theoretic t-channel
amplitude is not used and explicitly continued to the
s-channel rather than making this propagator replacement.
Such calculations are being done and they are more compli-
cated than the replacement procedure. Starting with the
t-channel exchange amplitude, the kinematical singularities
introduced by spin are explicitly removed and the amplitude

is continued analytically to the physical s-channel region.
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Again, the residues are determined by»réquiring equality
with the Born term at the pole. ~Ag--an -example of such
calculations, the reader is:-referred to the recent work
of Griffiths and Jabburglon N*3. production, in KN
collisions., Recent~calculationSwon-n? charge exchange
combining the absorption model. with -a consistent treat-
ment of spin in the Regge model. will ‘be outlined later in

this paper.



ONE-MESON-EXCHANGE CALCULATIONS

AND COMPARISON ‘WITH EXPERIMENTS

Most of the basic -approaches to theoretical analysis
of peripheral collisions have been discussed. To familiar-
ize the reader with the general picture - before describing
present attempts to find improvements to OME models,
consider two reactions. -One, 7N-+pN, is dominated by
pseudoscalar meson exchange, the other, mn+uwp, by vector
meson exchange. We discuss them in terms of the models
just outlined. This discussion will be qualitative. The
figures show general s and t behavior only. Notation

and conventions are detailed in Appendix I.

The first of these reactions has been studied by
many high energy'theorists3~ and summarizes the successés
of the models. This_is both éood and bad. It is good
that everyone can invent a model, but bad because there is
no resultant discrimination among ideas. The second
reaction has been chosen because none of the models already
discussed can explain all of the data. Some models give
~correct angular distributions and others handle the energy-

dependence.

30
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Figure 6 shows-%% vs t for each of the reactions on

a linear scale of arbitrary normalization.

ol

1%

=017 @) -k 25 (b)Y =k

Figure 6. Qualitative sketches of the t-angular
distributions for (a) mwp+pp at 4.0 GeV/c and (b) nn+wp
at 3.25 GeV/c.

Notice the peaking, particularly strong for np+cp, in
the forwardvdirection} This peaking is characteristic

of peripheral processes. The anguiar distribution for
n+n+wp, dominated by p‘exchahge,'is less peripheral

than the -m-exchange reaction, as is to be expected since
mp is much larger‘than m, . In each case the total cross-
section drops guickly with increasing energy as

indicated in Figure 7.
o ()

3 :

Figure 7. Sketch of s-dependence of the total
cross-section in a quasi two body high energy scattering
involving guantum number exchange.
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Data on the production density matrix are meager.
Because of invariance principles, there are only three
elements of interesﬁ and -they are the same ones for each
reaction: poo,plo,pl'_l.- The element °1o is complex but
we need only the real part for the: decay distributions
W(cosa) and W(B). For T7p-pp at 4;0 GeV/c the available
data are <pgo> = o.Ssro.12,,<pl,_l>‘= 0.160.10, |
P> = -o.qs:o.os. Similarly, for h+n(p)wp at 3.25 GeV/c
Jackson givés <Pgo” = 0.5 and at 1.7 GeV/c he gives
> = 0.6%0,12,

> = 0.0%0.712, > = -0.06%0.08.

<Poo “P1,-1 P10
In both cases the averagé‘is over cosf from 1.0 to about

] ) : ‘
0.80. This data is not very limiting to a model, but we

shall see that it does tell us something.

The Born Term Model (BTM)

If we superimpbse theoretical curves for %% on the

experimental data as indicated in Figure 8 we see immed-
iately that the BTM is just not good enough. The crosgs-
sections are(too large and not nearly_peripheral enoggh.
It should be noted that the vector-meson-baryon coupiing
involves an aypitrary factor. There are two coupling
constants, the‘vector coupling GV and the tensor GT',
Even if one uses some symmetry scheme to fix Gv’ he must
look elsewhere to get GT/G . Jackson gives GT/GV = 3.7

\4
inferred from T+l electromagnetic form factors.
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de
- dk
(3.0 4
EXP
-k -k

Figure 8, Comparison sketches of the BTM and

experimental (EXP) for (a) mp+pp and (b) mn-wp.

Comparison of theoretical.and experimental total
cross-sections and density matrix elements is as unfavor-
able as for the angular distribution. The energy depend-
ence is particularly bad for the vectof meson exchange
reaction. But it is of practical value to carry through
an analysis to determine the BTM predictions for —
It is not necessary to do any calculating to get answers.
For m p(m)p p, Figure 9 shows. the 7mp vertex in the p rest

frame.

Tune Y Tk

Figure 9. The wmp-vertex in the p-meson rest frame.

This case was considered in the discussion of
density matrix elements. The analysis was done in the
rest frame of the p-meson and we concluded that the ohly
non-vanishing element is Poo and using the normalization
condition Trp =1 we obtained p00=1. The data teli us
that the BTM prediéfidn is incorrect.

We ask if the fault is with the BTM or with the
quantum we have assumed to be éxchanged. To answer this

we look at the decay angular distributions of the resonant
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state, W(cos®) and W(p) and note that even though Py,-1
14 Y
and P1o are doubtless non-zerc, they are extremely small,
which is consistent with pseudoscalar exchange. The

experimental W's, shown in Figure 10 support this conclusion.

ey (o)
-
Ve - - <l e S aes s -
-A o 'S -n ) w
com o ]

Figure 10. Sketches showing the experimental decay
distributions for the decay p+mm in the reaction mp+pp+mTp
assuming 0 exchange (a) W(cosa) (b) W(R).

Additional support comes from the BTM distributions
assuming vector meson exchange which is also allowed in
this reaction. Figure 11 shows these distributions. (We
will see how to obtain these distfibutions shortly). It
is apparent that these distributions are not at all close
to the experimental data. The conclusion is that the basic
idea of pseudoscalar exchange dominance is a good one

but that it is too simple; the BTM neglects too much.

w (=)
[ d
’ "i \\\_ ’I \ I’ \
> \, X\
-y o 4 -y o "
cox o, ¥

Figure 11. Sketches showing the experimental decay
distributions for the decay p+7n7 in the reaction TP+PP+TTP
assuming 1 exchange (a) W(cosa) (b) W(B).
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For ﬂ+npr the analysis procedes 1n the same manner
as for 0 exchange. In . the rest frame of the w, we have,
from the angular momentum addition theorem that -
0_+Jge+L(—)L=l—; J =1 implies L=0, 1, or 2 and, since we
are in the w rest frame, LZ:Ow The conservation of parity
in strong interactions tells us that (—)Pe(—)Ls(—) or L
must be odd, since Pet—lh Therefore L=1. Conservation
of the z-component of J tells us that Jezzo'fl” Sq we

must have |Im> coupled to ‘lO»I to produce ilm»w. Again
e

4

by the rules for adding momenta we see that the state

produced. Therefore we can conclude that Pro = Pom = 0.

Substituting in the decay angular distribution formulas

we obtain

Wicosu, ) - 3/4W(1/2~p1 _ Cosz B sina
. ! ]

I
or

F

CW(cosa) = 3,/4s1n%u Wl = L4 «(le2g cos® By,

ISR L
(These formulas are valid fu!'w decay even though it is
a 3m resonénce 1f the angles are redefined such that o 1is
the angle between the incident ot and the normal to the

m™ n° decay pion plane; B 15 then the corresponding azimuthal

angle) .
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We see immediately that for vector meson production
in PB collisions the decay angular distributioné-are
distinctly different for pseudoscalar and vector exchange
dominance. (Actually the above analysis is valid for an
exchanged. state with Pe=(~)Je, Je>1; these are called
natural parity states. For unnatural parity, Pe=(—-)Je+l
we get no restrictions),

Figure 12 shows the experimental W's for n+n»wp.
It 1s clear that the evidence is strong for the exchange
of a natural parity state. The simplest possible
exchange candidate is the p-meson, a mefiber of the 1”

octet.

Figure 12. skctches of the experimental decay d;stri—
butions of w in the reaction "n*wp (a) W(cosa) (b) W(B).

Multiplicative Form Factors and Reggeized Propagators

Both of these approaches involve replacing the

exchange amplitude mE¥ by ME¥

F(s,t), where F(s,t) 1s a
suitable function with as few aribtrary parameters as
possible. Figure 1l3a shows the effect of the Amaldi-
Selleri torm factor on the n-exchanhge BTM cross-section

for mp»p p. The effect is to damp the amplitude at
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larger values of t. This model compares favorably with
experiment for incident pion momenta from 3.0 to 8.0 or 9.0
GeV/c in the lab. The séme information is given in Figure B b

for the Regge propagator model.

-k

Figure 13. Comparison sketches of (a) BTMF and (b)
BTMR with experiment of the reaction mp+pp. The dashed
curves are the experimental: results.

g%(t=0) is matched to the theoretical calculation at t=0.

One can see that the results are favorable. Again,

the effect of this modification is to damp the Born
amplitude at larger values of tj which is the desired
effect. There is some arbitrariness in the pion tra-
jectory; since it is difficult to isolate experimentally

one determines the form from general principles.
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For vector exchange reactions, Jackson and Pilkuhn
improved the BTM angular distributions with an exponential
form E(O)e”‘t (usually normalize form factors‘to 1 at the
exchange pole: F(t=m§)=l; E(0)=le-Am:).

Figure l4a shows the effect of such a factor with
)\==2.S(GezV/c)-2 on the ﬂ+n+wp reaction. We see an improver
ment in the angular distribution. There is, of course,
not any improvement in the energy dependence. We could
always add a factor S " and adjust n for a best fit. The
Regge propaqetor result is shown in‘l4b.. The trajedtory
used in thefcalculation is ap(§)=.57+l.08t; the parameters
are from experiﬁent. The energy dependence also consider-

ably improved.

o
2t
-y

(6) | ®) |

{

Figure 14. Comparison sketches of (a) BTMF and (b)
BTMR with experiment for the reaction mn+wp. The dashed
curves are the experimental results.

%%(t-p) is matched to the theoretical calculation at t=0.
Theory and experiment are on the same scale.
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Neither of these modifications to the BTM affect
the density matrix predictions; no spin-independent
modifications can do so. To see this we loock closely at

the definition of pmm.,~assuming'a,resonant state d:

‘ *
p = NI<A m|M| )fa)‘b><)‘cm' M| A 2 > Trp=1

/

mm'

where <|M|> are the production helicity amplitudes.

If M denotes the BTM amplitude and F a function, independent

of spin, then the form factor modified or reggeized pro-

pagator amplitude is MF. §Since F factors we have
o = N|F|%z<|m|><|u]>" = n|p| %27

and we see immediately that Trp =1 gives N=A|Fl—2 and

P is unaffected.

mm '’
Absorptive Corrections

By the same kind of argument, it is apparent that
the absorptive corrections will modify the density matrix
elements because the effective function F is different
for each spin amplitude.: However, since absorption
usuallyvdamps down contributions to the lower partial waves

much more than the high ones for each amplitude one expects
BTM
mm'
elements--exactly the experimental situation..

the modifications to p to be small for most of the
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For the Tm-exchange reaction it is difficult to
distinguish between the absorptive and Regge calculations.
The results are not identical but they are close for
scale and anQular distribution. The density matrix predic-
tion of the ébsorption model 1s good, while the BTMR
calculation gives the same prediction as the BTM. The
situation is somewhat diffefent for the p-exchange reaction,
n+n*wp. Aqéin the absorptive model does well with angular
distribution and density matrix elements but the absolute
magnitude of the total cross—section‘prediction'is too
high. 1In this regard, the Regge propagatof form does
much better. Because the meager data we cannot say just
how much better; it is possible that the prediction is
low. As in the p¥case, this Regge model gives no improve-
ment in the production density matrix prediction over

that of the BTM.

The absorptive corrections for these éalculations
were obtained from phenomenological fits to experiment
according to the prescription of Jackson and Gottfried?
(1964). This approach is quite successful and is used
by most. everyone doing absorptive calculations. The idea
is too obtain from the latest experimental data a best
fit to the elastic scattering amplitude and invert it to
obtain the elastic phase shift which is then used to

correct the inelastic amplitude.
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Recall the DWBA formula for the elastic scattering

amplitude:
P I
fEL = —Afd_l; e *a EV(E)X(E_)

Substituting the high energy approximate expression

for x(u) we obtain

fEL

]

1g!' - 1. ....')\ 2 ' '
-Mar e718' Iy (p)eldrr-igfdztvib, 2y

_."&. ' ! A e _‘_l
-ig/bdbdsdzg- e”'g [d2'V(b,2") idb  b=q-q

(for 6<<1 A g= 2 so A+x< A+b)

- ' 1
The integral over z gives e lA/qudz Vib,z )~l=
elX(b)—l. After the integration over 6 we obtain the

Glauber formula.
o i ix(b)_
for, = igjbdbJd, ( b) [e 1]
; : ' = Lsiaonn
using fbdb]n(Ab)Jn(A b) = £8(A-4")
we obtain

ix(b) _ i
e = l+afAdAJO(Ab)fEL(A)

The standard parameterization of the experimental

data on elastic scattering is a Gaussian distribution in A:

. 2
£ - 1079 e-cA o
EL 47 C = T =1
iC 2 YTmc Y Z(?
= 1 o7H/AY

Substitution in the Glauber formula readily gives

n 32 /a2
eI () _ o mYI/q
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The parameters C,y are directl& related to experi-
mental quantities. Usually they are assumed independent
of energy. One fits them to the available data at one
incident energy and calculates the inelastic cross-
sections over a range of energies and compares with
experiment. The results are quite good for many reactions,
but the very best fits to the data require energy dependent
C and v.

A very similar record of successes and failure
appears in other 7N channel reactions and in KN and NN
reactions. The success or failure of a mddel depends
more on the ténsor character of the exchanged quanta
than on the natﬁre of the final-state (eg. one resonance,
two resonances, etc.--), To summarize:

1. ThHe Born Term Model (BTM) while exhibiting some
nice features is inadequate. Looking at the experimental
data we intuitively conclude that we should try to modify
it in some way rather than abandon it alltogether. One
makes this decision because one-pérticle exchange is
relatively simple to calculate. Also, the density matris
data show quite well the effects expected from one-particle

exchange.
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2. Simple phenomenological form factors F(t) can
provide agreement with the production ahgular distribution
data over a respectable range of energies--particularly
for p-exchange. Sometimes (p~exchange) one also gets good
oT(s) vs. s; for some reactions an additional factor F(s)
is necessary. No improvement in density matrix elements
is obtained.

3. The Regge form of the propagator works well
for production angular distributions and does much better
on enefgy dependence than the BTM, but fails on density
matrix elements. More sophisticated Regge calculations
can give Ppnm' Predictions. Basically this approach is
quite like using a form factor.

4. The absorptive model performs extremely well
whenever reactions go via pseudoscalar exchange. It gives
good OT(S) vs. s, good g% vs. t and usually good absolute
magnitude. Also, predictions on Pum' &Y€ good. Whenever
V-exchange dominates, ﬁhe_angular shape is good and density
matrix predictions are acceptable, but absolute magnitude
of cross-sections is too large and the energy dependence

prediction incorrect.



ANOTHER APPROACH TO ABSORPTIVE CORRECTIONS

One can try to be more ambitious in applying
absorptive corrections to inelastic BTM amplitudes.

Instead of purely phenopenological fits to the elastic
scattering data, one cak construct models for the
elastic amplitude basea on physical ideas, hopefully
containing as few parameters as possible and use them
to generate absorptive corrections. If the model is
good we expect a fine fit to the elastic scattering and
to the inelastic processes with the same values for the
parameters. We consider one such model. |

Recently S. Frautschi and B. MargolislO proposed
a model of high energy elastic scattering based on the
identification of the Born term with Regge exchange.
The t-channel Regge exchangé is assumed to generate the

s-channel potential rathef than the amplitude. They

start with the Born approximation to Glauber's formula:

B - i 2, .. ib-gq
for, (A,Q) = 5-;} [d“b2is (b)e
The physics enters here. fgL is equated to the

leading Regge trajectory pole. contribution
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oMo (t)
Apole ce

S , . . ,
u=1n N -in/2, signature is neglected, oa(t) is the
0 .
Pomeranchuk trajectory,a(t):a(t0)+a'(t—t0)

Ap=ceua(t)= —%% fdzbZi(S(b)eib.q

Frautschi and Margolis then solve for §(b) and sum the
Born Series to obtain an expression for the elastic amplitude,
an amplitude consisting of the pole term plus a series of
multiple scattering terms which can be likened to Regge
cuts. The one free parameter (the slope of the Pomeranchuk
is obtained elsewhere) is fit to experiment at some incident
enerqgy and calculatlons are compared with experlment over
a range of energies with much success.

This model can be used to -generate absorptive
coriections, which can be applied -to inelastic processes
in the spirit of the JacksonQGottfried approach. inverting
the above equation we have

2i6(b) = - & N2
where we have assumed

ap(t)#l+a't.
Using this expression we obtain the corresponding absorp-
tive correction function

SiX(b)_ 218 (b)_ ~£/ue D /40"n
Notice that

Ieix(b)I»I as s,
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This absorption function has several features
noticably different from the Jackson-Gottfried approach.

1. The correction is a complex function. We can
expect the density matrix elements to be slightly different.

2. The correction is energy dependent and leads to
a decrease in the amount of absorption as the energy
increases. The effect is to soften the s~dependence of the
BTM exchange. |

We have compared this method of generating absorp-
tive corrections with the curve fit approach for the
reaction pp+nA3/2++. This reaction was chosen Since
Frautschi and Margolis have fit the parameter (£) in their
hédron scattering model for p elastic scattering. As is
usual, approximate equélity of the absorptive correction
function in the incident and final channel has been
assumed in the absence of definitive NN* elastic scatter-
ing data.

Recall that the procedure is to replace fhe appropriate

BTM partial wave amplitude MJ with
A A MIa A >DW \;=helicity of iP particle
c’d a’b 3 i

The Jackson-Gottfried correction function has been

parameterized as

2 2-2/qf

.2/q -
+][1—c_e Y-3J

-2
2_._ =Y©,.3
(DWj) [1 c,e +

* refer to incident and final channels, respectively.
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The parameters Ct,yt are derived from elastic pp scatter-
ing data to be:
Ci=l y+=.24AGeV/c
Yy_=.10 GeV/c
In the model based approach, the absorptive function

used is
2

, T2 an um? ol 22,4
(ij)2= exp(—%i e~J /4o uq+)exp(—%—-- e”J /4o HdL
We used the same value for the slope of the
Pomeranchuk trajectory as Frautschi and Margolis:

a'=0.82(GeV/c)—2. Also, their fits to the elastic pp data

2

at 20 GeV/c with this value of the slope and s,.=1GeV

0
yield £=7. Starting with £t=7 this parameter was varied
over a wide range to get a good fit to the pp*nA;;z.

Also, some calculations were done to determine the effect
of different a' on the result.

The initial appeal of Frautschi's elastic scatter-
ing model for absorptive corrections is the logarithmic
energy dependence which shows up in the expression for the
phase shift. Absorptive model calculations a' la’
Jackson-Gottfried at Several -energies show that the amount
of absorption necessary to get a-good phenomonological
fit to the data decreases slowly with energy. It was hoped

that the Frautschi parameterization of elastic scattering

might allow for this decrease.
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do
dat’
particular energy there is trivial difference between the

It is possible to get a good fit to but at a
different approaches as shown in Figure 15. Differences in
the predicted density matrix elements are easier to see--
as a function of energy; the Frautschi model corrections
give Pram" which change more rapidly. Unfortunately there
will not be’enough good data until the summer, at which
time comparison from 6-30 GeV/c should be possible.

There are other objections to this approach. From
a phenomenological point of view it would be better to use
the energy dependent corrections. But values of the
absorptive parameters necessary to fit the inelastic data
do not provide a satisfactory fit to the elastic scatter-
ing. Figure 16 compares a theoretical curve of the Frautschi
model, using the parameters that provide a best fit to
pp*nA with the elastic scattering. It is not clear that
the model is internally consistent. Sums of t-channel
exchange diagrams can show a Regge behavior; the Frautschi
model probably "double counts" contributions to the amplitude.
Also, one can show that resonance behavior-at low energy
can be deduced from a Regge amplitude at high energy.
Resonance is a property of amplitudes not potentials. The
Frautschi model says that Regge exchange in one channel
generates potentials in the crossed channel rather than

amplitudes. This seems inconsistent with the other result.
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We must conclude that the Frautschi model is
probably not cbrrect. It is'pOSSible to generate absorp-
tive correctionsfcontaining-a»small~energy dependence
(any Regge model of elastic 'scattering can work) and improve,
if only slightly, the fit to experiment. We are being
drawn to simultaneous use of the Regge model and absorp-
tive corrections. The 6nly~obstacle is the question of
double counting--a question that can be answered in favor

of combination of the models.
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Figure 15. Comparison of theory and experiment for
the reaction pp+nA3/2.
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Figure 16. Comparison of pp elastic scattering
with theory giving best fit. to pp+nA3/2.




OTHER MECHANISMS
With the successes and failures of ‘one-meson-exchange
in mind, we focus now on vector meson exchange and investigate
improvements to OME models. As an example of a vector

exchange dominated process we continue examination of TR>WP .
Vertex Correction Mechanisms

The use of phenomenological form factors to improve
simple OME was based on the assumption that other more
complex diagrams contribute to the scattering amplitude,
and that such factors (functions of t) improve the angular
distribution over the BTM prediction for both pseﬁdoscalar
and vector meson exchange dominated reactions. We ask if
it is possible to get a better clue as to the functional
form of such factors by looking at other diagrams which
can contribute. Figure 17 shows the diagrams for the BTM

and lowest order corrections for m+n-wp.

() (&)

Figure 17. Diagrams showing (a) the BTM and (b)~(d)
some vertex corrections to the NpN vertex for wn-+wp.
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In addition there can be graphs where the virtual
nucleons are replaced by nucleon resonances.

We concentrate on diagrams l7b.as the next simple
cases after the BTM. Using the Feynman rules for forming
the S-matrix, we obtain the transition amplitude assuming
this diagram to be the dominant contribution (detailed

calculations can be found in Appendix III. We obtain

. f
- 2 vV 1 *
<xcxd|M|Ab>n- 2GNngpV—M;R ;7rzeuvooa epeq(c,xc)

U(d,kd)YSAuYSU(b,Xb)
where

Yot vg=-28, LI o ye2iy, 03 ey -0 03 ey

np
4 9.8
(”)(M) =[das/ d 24 5 A u = B, =M -M
(2m) " [2°-24p_+A ] p

All of the terms in A are finite, if one allows a
liberal interpretation of the rules for manipulating
infinite quantities. It is interesting to note that if
we neglect the neutron-proton mass difference for internal
lines the amplitude vanishes.

After very involved algebra, one obtains a compact
expression for the helicity amplitudes

B0 )
<Ackd|M|Ab>n = ik—s Klyz]

M -t
Y

Here A ’Ad’Ab refer to the helicity quantum number

of the w,p,n respectively. {2A d’l } is shorthand for the
spinor product ﬁ(p,ld)u(n,kb), K contains coupling constants
and miscelianeous factors, and B>‘c comes from the 7pw

vertex. Consider first the energy dependence. Refering
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to the BTM calculation one easily finds that the calculated
%% ~52. We saw earlier that this result conflicts with
the experimental evidence. Turning now to the vertex

3/2 and s

correction contribution, B and {Ad,kb} go as s
respectively (k~so). The energy dependence of K[YZ] is
the only unknown. Should this factor, which comes from
the closed loop in the diagram be independent of energy,
we will obtain the same energy dependence of %% as the
BTM. This will turn out to be the case. To see this we

look more closely at the algebra. K[yz] can be expressed

as a sum of three terms:
‘ 2M '
Kiyz] = K, [yz] + —& K'[y2z2] + 2K"[y22]
1 Anp 1 1

Where the first term comes out of L(B)(Mn) and the others
. (3) _7 (3) o :

from ZlYA[Luv (Mn) Luv (M )]. Rewriting in terms of the

fourth order Feynman parameter functions Fi(x,z) defined

in Appendix III we have
2 1

K, [yz] = dz F_(1,z)M
1 (2n)4£ 3 n
22 2 1
Ky ly“2) = 1 { dz z[F (1,2)M -F (1,2)M ]
(2n£ 1
n 2 — —-—
Kl[yz ] = (2“)4 { dz z [F3(l,z)Mn F3(l,z)M ]

This extra algebra proves very convenient; these
functions Fi(x,z) characteristic of fourth order diagrams
in thé mN channel.

Again refering to Appendix V , examination of the
functions Fi(x,z) shows clearly that all s-dependence

vanishes at X=1: Fi(l,Z) are independent of s.
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Figure 18 shows ReK[yz] for several values of
incident pion momentum over the physical range of t.

(ImK 1073

ReK) Notice the similarity in the curves for
different energy and the forward peak. Since the scattering
amplitude is proportional to wnK[yz] we can understand
the peaking of %% at non-forward t. Assuming that these
vertex correction type graphs are the dominant production
mechanism for mn+wp the cross section was calculated,
and is shown in Figure 19. The angular distribution is
not bad and the absolute magnitude is more in line with
experiment. Keep in mind that no absorptive corrections
have been added. Addition of such corrections would shift
the peak more toward the forward direction, but also would
damp the absolute magnitude far to much. For comparison
"Figure 19 also shows the result of an absorptive BTM
calculation at the same energy. Also, these graphs cannot
improve the fit to the w production density matrix elements;
indeed the prediction is the same as the BTM.

Another approach would be to interpret these fourth

order corrections in a strictly field theoretic sense as

next order corrections to the BTM and assume

AAgIMA > = BTM + v
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Here we can have interference and reference to the
calculational details for the separate terms shows that
the corrections to the BTM helicity amplitudes are such
that we could obtain a prediction for the denity matrix
elements. However, absorptive BTM gives us this already
and there is still the problem of energy dependence.
There are, of course, still the other fourth order
contributiohs of this type, diagrams 17c, for example, as
well as others. These other graphs are plagued by severe
divergence problems and‘the non-divergent terms show no
improvement in the energy dependence. The conclusion is
that vertex corrections are not the answer to the energy
dependence problem, so one must try other things.

There is currently much interest in the relation-
ship between absorptive corrections and Regge poles; most
of it devoted to justifying simultaneous use of the two
models. The idea is to write a Regge form for the inelastic
interactions and apply absorptive corrections.

We will see that such calculations can be successful.

There is, however, one other alternative to be considered.
Two-Pion Exchange

We abandon the BTM and guess, perhaps, that only
pions can be exchanged in the interaction. The @ resonance
is assumed to be produced by sequential pickup of two

virtual pions. The simplest relevant Feynman graphs are

shown in Figure 20, Note that this time we have 6

contributing graphs.



P
| | S
T
Ly :W
R
n i P
I. I, m,
Figure 20. Simple two pion exchange diagrams

for the reaction Tn-wp.

As before, using the usual rules, one obtains expressions

for the matrix elements:

' I - *
<au' |M |p> 2/§'G €ropo?rd € (c,k)u(d,u')ysApysu(b,u) g=b-d

't |[MPp>_=-mmmmmmmmmmmmmmmm s o mm s oo Azl
* -
ot M > =mmmmmmmmme- axrveoid,k)u(c,u‘)YsAillysu(b,u)r=b—c
with
4

d’e e

A=A [—— P
p np (27)

[e2+M§][(a+e)2+M2][(q—e)2+Mi][(b-e)2+M2?
+ other terms and obtain II by the replacement a»-c in AI
and III by the replacement g-r in AI.

It is necessary to be very careful when making
approximations to be sure the dominant contributions are
retained. We assume, however, that the contribution from
IIT can be neglected relative to I and I1I.

Reference to Appendix IV shows that we can write

(using the same notation as for the vertex correction

calculation)

I, _ (4) - (4) _; (4)
5ApY5 anUV (Mp)+lYl[L (M )~L LV (Mp)]
p P D___
M) =Jas' [&F — p_M
(2m ° [e -2epz+pz]
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A seemingly endless number of algebraic manipula-
tions leads to a compact form for the scattering amplitudes.

We obtain
W

I Lo A . U'u A

<Aut > = ' - - A =T -
TRNL Y =ik {u', ul1(yz]-iKB I;;- I3-KMy, 3/8np  I=I,-T,

Similar expressions can be written for the TII and
TIII terms. Here K contains coupling constants, and
miscellaneous factors of and has the same definition as

in the vertex correction amplitude.

The other factors are

Bk=i7qq- sin6_ 8, .o W =10(d, ") #U (b,u)
2 &

. - — A
lugul = U@, v um,w Mﬁ.u=U(d,u')N U(b, )

N=€,0p0 2xdyEG(c,A)

Rewriting in terms of the fourth order parameter
functions'Fi(X,Z) for convenience in investigating the

energy dependence, we have.

[T [azdxz? (1-2)F, (x,z2)
1 (2'"-)4 i ' Mp
M

IZ= 4 fdzdxz3(1—z){[Fl(x,z)+z~E FZ(X’Z)]n -

(2m) M DP

[Fl(x’z)+'A—;§ Fp(x,2) 1))
I$=(2:)4 fdzdxzz(l-z)z(l—x)[Fl(x,z)Mn—Fl(x,z)Mp]
2

J +7§;TZ i dzdx(l—z)z[F4(x,z)Mn-F4(x,z)Mp]

The energy dependence of the F's is discussed in

the Appendix, as is that of the other factors. We find that

-2 -1 -2 -1
Fl' F2~S and F4~S so I, 12, I3~S and J.8 ~.
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Similarly, examination of the axpressions for W ,

1

A . .
and MU'U gives S8~ and 83/2, respectively, for the energy

dependence. (MU'U~SO ). Therefore we can write
! = a +a, /&
1 72
Squaring, etc. leads to an expression for %%--
drI ‘b c , .
r-Eyi at+— + 5 const. (one can obtain similar results

for I and III).

This result is obviously much more pleasing that
the BTM and its simple vertax corrections; there is at
least some reason to be optimistic about 2T-exchange.
The t-behavior can be seen easily in Figure 21, which
shows ReIl(I) and ImIl(I) as a function of CM scattering
angle for incident pion momenta ofA3.25GeV/c. Note the
predominant forward peak and absence of any backward
peak. It should be noted that the peak in the cross section
will be shifted away from the forward direction because
of the influence of angular factors in the kinematics.

Figure 22 shows the same information with the T(II)

contribution added, egq. Re(Il—fl) and Im(Il—fl). The T(II)

contribution is about 1/30 of T(I)

(I1)

in magnitude. It is
clear that T could have been neglected.

The term proportional to J (J looks like I but is
of opposite sign) provides a small correction which
additively effects the helicity amplitudes and can there-

fore give a non-BTM density matrix prediction, but at

these energies this correction is not noticable. Figure 23
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shows the angular distribution assuming 27T ‘exchange

for the production mechanism. Absorptive corrections have
been included, the result is acceptable. The conclusion

is that 27 exchange can work and give an acceptable energy
dependence.  Cursory examination of final states containing
higher spin resonant states shows that 2m exchange will
break down, ie. predict an incorrect energy dependence,

but that n™ exchange for some appropriate n will restore

the prediction to an acceptable value. It is interesting
that sums of exchange graphs can give Regge energy behavior.

Also absorption is clearly a different physical effect

from multiparticle exchange. The argument that the physical
effects behind Regge exchange and absorption are distinct
has  recently been given in detail by Marc Ross, Frank Henyey,

and Gordon~Kane.ll




ABSORPTIVE REGGE MODEL

We accept the qualitative arguments against double
counting and apply absorptive corrections to the Regge
exchange amplitudes for the reaction np*pn assuming
dominance of the Tr,p,A2 trajectories. This reaction is
interesting because of the availability of experimental
data for the cross section and an experiment now in
progress to measure the final neutron asymmetry, ie. a
polarization. If the cross section for this reaction
(and related reactions) can be fit in a consistent manner
then one obtains a prediction for the polarizations.

Regge poles have definite spin and parit}?and the
Regge model tells us that the trajectories with the largest
a(t) will dominate the amplitude at high energy. The
conservation laws tell us that the exchange quanta must
be members of non—stranée isotopic spin triplets of
mesons; ﬂ,p,A2 are acceptable candidates. We must determine
how these trajectories contribute to various t-channel
helicity amplitudes.

Expanding in t-channel partial waves we have

=L(23+1) A0, | T (8) [A A > ad
; 4

(6
e ey

)

<A2x4|T(t,et)lAlA ¢

>
3 n,

64
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Ae=rmA,

He=ho=hy

Pe=he My

In np charge exchange Al=x2=A3=A4=l/2, giving a
total of 16 heiicity amplitudes. Application of parity
conservation énd time reversal invariance reduces this
number to 6. Further, strong interactions are I-spin
invariant so we neglect the n-p mass difference and
kinematically we have identical particle scattering which
gives one more relation and so reduces the number of

independent helicity amplitudes to these five:

¢§=<1/2 1/2|T|1/2 1/2>,
05=<1/2 1/2|T|-1/2-1/2>
¢§=<l/2—l/2|T|l/2—l/2>O
¢2=<1/2‘1/2|T|—1/2 1/2>,

$c=<1/2 1/2|T|1/2-1/2>,

t

To determine the Regge contribution to each amplitude
we write the amplitudes as linear combinations of parity
conserving amplitudes (Regge poles have definite parity),
expand these into partial waves (definite spin assoc.
with each trajectory) and perform the Sommerfield-Watson
transform to obtain the appropriate Regge forms. After
removing kinematic singularities we obtain (after long

and tediegus algebra)
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t_ i+, i- qi
¢l—1/2§(800+800)Ci(S/SO)

t i+_oi ol
=1/25 (82t -817)s, (s/50) 4

$2=1/2E(Byo=Bgq) Sy (s/

¢5=1/2%a, (B1+81])S, (s/80) 4L

¢5=-1/2%0, (8]7-8]7])S; (s/80) %

t . i+ a;-1
¢5=1/281n6t§81081(5/80) 1

where s is the usual signature factor, ai(t) is the ith

i+
Regge trajectory, and the B;; are the residue functions,

natural .
unnatural) parity).

We see immediately that the p and A2, both natural

(the * refer to (

parity particles, can contribute to all of the amplitudes.
The 7, unnatural parity, contributes only to Bga and
therefore only to ¢§ and ¢§ such that ¢§npole=_¢§ﬂpole‘
With faith that our ¢§ contain only dynamical singularities

- 13
we apply crossing to obtain the s-channel amplitudes:

S «q1/2 1/2 _ 1/2 -
AAGITIA A >T=2d30 % () @0 Ty (mmx ) dyh s, (mmxy)
aa b"b c'c
1/2 £

d (X ) <A'A|T]AtA>
A'dkd t ca d"b

1/2

where cosxt=[s/(s~4M2)] [t/(t-—4M2)]l/2

After much calculating we obtain
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2
S_ .2 t t .t t t _l+cos™y
¢l_1/251n xt[¢l+¢2+¢3+a¢4+4b¢5] _ a—;I;7_;_

s_ .2 t__ .t t t.
¢95=1/2sin Xe [7-ad 405 ¢ +4bo ] b=coty

¢§=1/25in2xt[¢§+¢§—a¢§-¢z+4b¢§]

¢2=l/281n2xt[a¢;~¢§-¢§+¢§‘4b¢§]

t,,t, t t
1*02+¢3-

S_ .2 - Ryt
¢c=1/2sin X (=B (9 $4)+2(1-b )91
Reference to the expressions for ¢§ shows that
only ¢§ and ¢z contains the 7 pole. One readily obtains
sTpole_ smpole_ =T O
65 =ty =1/28"s_(s/s;)
Now, ¢Z is an n=2 amplitude, ie. net helicity transfer
from the incident to the final‘state is 2 units of angular
momentum, and must therefore vanish like (-t) as t+0.

- Therefore we conclude that
B"=(-t)g"
and the 7 pole cannot possible ceontribute to the experi-

mentally observed forward peak. 1In Figure 24a we see the

ﬂpole amplitude as a function of t.
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1‘?"\‘ da-
dx
Lwnb -

1] + -
% .05 -k w17 x

Figure 24, Sketches of (a)w pole amplitude ahd (b)
experimental t angular distribution for np pn at 8 GevV/c.
Since the 7 pole is nearest to the physical region it is
expected to be the dominant contribution to the cross .
section. The conclusion is that the Regge pole model
predicts a dip in the forward direction in np charge
exchange. (Figure 24b shows the shape of the experimental
do/dt.)

There is a way around this difficulty.l4 Until now
the solution has been to assume the existence of a parity
doublet for the m. We require a second 1 trajectory,ﬂd,
of positive parity which conspires with the m such that

d
¢z+n =0, as required by conservation of angular momentum,

T+
2

The nd contributes to ¢§ and ¢i with opposite sign

without the necessity for ¢ =0,

SO we obtain

™ d

d
ST+ =1/2'é“sﬂ(s/so)Ot +1/28" Sﬂd(s/so)aﬂ

¢

d

d il d
T =1/28"s_(s/s0)® -1/25" s 4(s/50)%" s =s d

7
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Now angular momentum conservation gives

sn+wd .
¢4 (t=0)=0 (the p and A2 contributions

vanish at t=0)

+ BT (t=0)=3"%(t=0)

an(t=0)=aﬂd(t=0)

d
and we see that ¢§"+" need not vanish at t=0 and the

existence of the m pole at t=M§:0 insures a large contri-
bution in the forward direction.

It is true -that the p, A2 contributions to ¢f,
and ¢§ do not have to vanish in the forward direction as
indicated in Figure 25. However, the amplitudes are rather
smooth and flat, slowly decreasing, functions of t. When

the m pole is added and the other amplitudes

(o ‘ )
IAL P|Al
‘{3 \Pv\#o
{n=0)
0% -x 03 -k

Figure 25. Sketches of p and A. contributions to
(a) n=0 and (b) n+0 amplitudes in the feaction Tp+pn.

are considered the combined effect is to produce a dip

in the forward cross section; the presence of the nd

‘trajectory remedies this defect.
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One problem with the conspiracy solution is

that the nd is not observed so its introduction becomes

a non-physical extension of the model. We will see.:that
application of absorptive corrections introduces:cutsi
associated with each pole, each containing positive.and
negative parity parts,-and that the behavior of .the.r .
cut in the forward direction is effectively that of :the.
conspirator éo we explain the-daté in a physical way. . .

We look at the absorptive formula derived earlier:
A _ B, , |
DAl T A A n = A 1T A >

i T (o 3 EL _ B
+1Nj(2]+l)dxu(e){<kckd]Tj |k1A2><AlA2|Tj|AaAb>

B EL\, o1 _____
+<xcxd|Tj|AlA2><AlA2|Tj |2 2>}

where, as is usual, the absorptive interactionsin the
incident and final channels are assumed ‘-equal. Using of the
Jacob-Wick expansion and the elastic scattering parameter-

ization
EL 2. At/2 |
<Ac)d|T IAaAb>~ 49” (i+p)ogp GACAaGAdAb where

op=total cross section and p=ReTEL/ImTEL are

experiment ally determined as is A.

one -obtains

pAt/2f

0
At'/2 y
1 _mdt'p In(A/tt )

A _ B
AT |Aakb>n—<xcxd|w IAaAb>n+K

. B » —— OT - o
<AcAd|T IAaAb>n with K =-g=x (1-ip) .
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The Born pole term or Regge pole term TB enters
in the second term which is a superposition of several
poles, ie. a cut. Thus to each pole there is associated
a cut generated by the absorptive correction to the -
amplitude. The cut is not a parity eigenstate and so.
contains both natural and unnatural parity parts. This.
means that we can have interesting polarization -effects,
"self-conspiracy” etc. The important point is that the
cut term could, and so we shall see does, have the same
effect as the introduction of conspiring trajectories. eg.,
np charge exchange: the ¢zcut need not vanish at t=0,

We fix the n-residue by equating, in the high energy
limit, the Born term to the Regge contribution at the
pole. With T pole + wm-cut most of the very forward
cross section is reproduced. Figure 26 shows %%
vs t at 8 GeV/c with the experimental data.l5 The same
procedure of equating Regge form and Born term at the pole
for the p meson is used. First we look at 7N charge
exchange and use factorization of residues to determine
the ratio of non-flip to flip p residues. Extrapolation
to the Born term of np charge exchange then fixes the
magnitudes and signs of the residues in a consistent manner
in terms of the vectof and tensor coupling constants of
vector mesons to baryons. (np charge exchange Born term
is enough by itself but 7N charge exchange allows separation
of residues into vertex parts and provides a consistency

check).



72

0,

(pueTbum ‘TTemieq

"H¥Td°Y TP 39 butuuey ,w.EOHw SI® eleQ) °*2/A%9 g 3e ud.du JI0F 3 *sA wm ‘9z sanbrg
Wig 509
S O G o0¢ G2 oz SlI° 0O GO -
| = T | T _ _ [
+ + N s
// .
SREINN
/T v
\ l.m
N\ -9
AN 4,
\ g
// d6° -
/ .
N ~o"|
~ =R
3/A89 J ~o_dz
uu—dd ~47
92 914 el
v’
— G’




73

We set the relative sign of the p and A2 by requiring
the (p+A2) contribution to an amplitude by predominantly
real. (The p and A2 are treated as exchange degenerate.
Experimentally g%(np+pn) holds its shape to low energies,
ie. no resonance formation). Since the signs of the .7
and p are fixed by the Born terms, all signs are
determined absolutely.

‘The procedure was to fix 7 pole + 7 cut to reproduce

the break in %% and add p and A2 to get a best fit to .
the overall t-distribution by varying the values of .G

\Y
and GT for the p and A2 within physically acceptable. ..

limits. The procedure uniquely fixes the polarizations.
The experiment now in progress measures the recoil

neutron asymmetry by using a polarized proton target.

A simple calculation determines thisg polarization in terms

of the ¢i to be

_ s$=* S,.S .S s -1_ s, 2 s 2 s, 2 s2 do
A close look at the contributions of the various poles

and cuts to the expression shows
SN'_—-S
1. ¢5~/ t¢5
2. ¢§+¢§+¢§—¢2 does not contain the 1 pole

We expect the 71 cut to dominate at small t because
of the proximity of the 7 pole to the physical region,
and theréfore gttribute the sharp forward peak to this
contribution. We suspect that g% A/VvE will be relatively
flat. Calculations clearly support these conjectures.

Figure 27 shows the results of the calculations.
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There is one last point to be examined. Analysis of
the reaction, pp~nn shows that it has the same t-channel
as np charge exchange, and therefore must be dominated
by the same poles. Application of the G-parity operator
to the two reactions shows that we obtain the pp-+nn .
amplitudes by changing the sign of the p contribution .to
the charge exchange, Consistency requires a good fit
to pp*nn with the same parameters. Figure 28 compares
the theoretical fit to the experimental data for pE*nﬁ
at 7 GeV/c]T6 The fit is quite goed so we conclude that
this model is a good one. |

While other approaches to this problem of np -charge
exchange can be Successful, we believe that -absorptive
corrections to Regge pole amplitudes has strong ‘appeal
from a physical point of wview. It ig certainly a more
satisfying explanation than introduction of spurious
trajectories and arbitrary vanishing of residues to
satisfy experiment. we have faith that attempts to
fit other high energy inelastic reactions with this model

will prove successful. Only time will tell.
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APPENDIX I

Notation and Kinematics

l. For the diagram shown in Figure 28, a,b,c,d,e are
the 4-momenta of the particles of mass Ma’ Mb’ Mc’ Md’
Me' respectively. The metric is such that scalar products

are written ab= -a b ta*b = a b +a‘b.

070 474
a c
€
b d

Figure 28. Feynman diagram of OPE contribution

to ab»cd scattering.

2. Whenever convenient we use the Mandelstam variables

s,t,u given by

S = -(a+h)? = - (c+d)?
t = —(b—d)2 = --e2 = —(c-—a)2
u = —(a-d)2 = —(c—b)2.

These variables are not independent; energy-momentum

2

conservation leads to s+t+u = M2+M§+M2+M
a c d

3. Figure 29 shows the orientations of the 4-momenta
relative to the coordinate axes in the s-channel center-

of-mass system

78
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d r
b \f//A{;::/’a‘ R
c/

Figure 29. The s-channel center-of-mass system for

)
il
IRIR>
3
Polie>

A

AR x

A

ab+cd scattering

With this orientation, the 4~vectors for the momenta take

the form

a_ = (ao,o,o,-q) c.. = (co,—q'sine,o,~q'cose)

b = (bo,o,O,q) d (dO,q'sinG,o,q'cose)

4. It is convenient to define the complete symmetric

function A (x,y,z):
Aix,y,z) = x2+y2+22—2xy—2xz—2yz.
Using this function we obtain

incident channel CM momentum

1
_ 1/2 2 2
gq= ZVs A (s,Ma, Mb)
2

1
q'= 2Vs Al/z(slMC,Mé) = final channel CM momentum
1
ac= 2Mc Al/z(t,Mg,Mg) = magnitude of 3-momentum of a in
¢ rest frame
- 1/2 2 .2
bd= 2Md A (t,Mb,Md) = magnitude of 3-momentum of b in

d rest frame

Other useful kinematic quantities are easily cast into

this compact form.
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5. We write the Dirac equation for spin-1/2 particles
as (iy+x+M)U=0 and normalize the spinors as UU=2M. The
y-matrices are defined such that y+=y and y5=le2y3y4=
iyly2y3yo. The quantity o, =—i[yu,y ] is also used
frequently. Using these yY's and referring to the CM
coordinates we obtain the following positive energy
spinors: (U(x,Ax)=pos. E. spinor of 4-momentum x and
C _ - 1/2

helicity A N(x)«(xo M)
F 1 1 1 1

0 kEN(b)| g = N (b)fzd—|X

q b0+Mb ol 0 'b

U(b,1/2) = N(Y)

1 0 1
U(b,-1/2) = N(b)_q = N()_ g

U(d,1/2) = N(4Q) _q (Xl/2c0s6/2 + x_l/2sin6/2)

.

U(d,-1/2) = N(d}- q°' (x_l/zcose/Z—xl/zsine/Z)

U(a,1/2) = N (a) X
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1
U(a,-1/2) = N(a)|- X
a,.+M 1/2
0 g
1
U(c,1/2) = N(c)- g (X_q, ,,CO868/2- s1inb/2)

0 ¢

U(cl—l/2) = N(c)- (Xl/20059/2+X_1/251n9/2)

We use these spinors to calculate useful scalar products:

(@) (Agsdy,) = U(a,2q) 75U (b, 2,)

(1/2,1/2)
(1/271/2)

-(-1/2,-1/2) = -g-cosd/2

(-1/2,1/2) = L+s1nb/2 = r+w/2
(b) {Ad,xb} = U(d,xd)U(b,xb)
{1/2,1/2} ={-1/2,-1/2} =y _cos6,2
{1/2,-1/2} =={=-1/2,1/2} = ¢+31n6/22w+u/2

where

1

_ 1172, g q’
,=[(b,+M ) (d,+M,) ] ( )
+ 0 b 0 d b0+Mb d0+Md

- 172 q g :
l”:r'[(boi"Mb)(dO’LMd)] (l+b +M,  d +M.)
0 " b 70 "4

Similar quantities Z:,¥"' can be defined for scalar

products involving spin 1/2 particles a,c
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(c) The following products are also useful:

1) wAdAb= 10(d,Aq)AU(b, A ) W =W__=(agb,-qz,)
W+_=—W_+=(—a0w_+qc_)w/2

e A A .
2) M =U(d, A )X “U(b,A ) with N C=¢ a,e e (c,\)
}\d)\b "4 ’ b ¥ Avidd A dJ e

The 4-vector eu 1s a spin 1 polarization vector,

It is discussed in Section 6.

R 5 1 L
M++=M__=75*§+(qco+q'a0)w =5 C+a0q'w?2w+qq'm

o __.0 _ _1 2
M++— M___- -2-§+qMcw
1
-1_,1 _ 1 =
Mpy=M__ = /%c+qc0w72w+qq'w
1 ~1l_ = 1 2,1 2 -1
M, _=-M_T=V2¢ c ~q'a,)~——— ¢ a.q"'n t—iei qegtw T -M
=TT 2k (aema T ay) 27y mot T ot
o _,0 __
M+ M_+ qMc; w
M;E——M}+=—if g_qcom 1y qq'w
2v2 '
All of these expressions are small angle approximal ions;

only the lowest powers of ware retained,

6. Specification of spin-1 states is in terms of polar-
ization 4-vectors eu(c,Ac) subject to the subsidiary
condition c+e=0 and defined such that
c., o
AV
'Y= = (‘ 4 ——.
eu(c,A)eu(c,A )=8, 14 eplesMevic,n) Ly Wi
C
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Refering to the CM coordinates, if
(a) particle ¢ is spin 1

e(c,+l)=—£[04xx£,—i,-sln@]
V2

€(c,o) =M£[q',—cosin6,o,~cosel
c

e(c,-l)=—l[o,cose,—i,—sine]

V2

(b) particle 4 is spin 1

e(d,+1)=—l[o,-cose,~i,51n6]

1

e (d,o) =5 [q',dosine,o,docosel

(o N

e(d,—l)=~l[o,cose,—i,-sinel
V2

7. For particles of spin greater than 1, we use the Rarita-
Schwinger formalism and construct high spin wave functions
by the angular momentum addition theorem subject to
subsidiary conditions:
Example: spin 3/2
Uu(d,Ad)=<lAl/2XI3/2Ad>€u(d,A)U(d,X)
=0 d U =0
YUUU H U
Expanding, we obtain
Uu(d,3/2)=su(d,+l)U(dll/2)

U (d,1/2)=;ie (d,+1)u<d,-1/2)+¢§; (d,0)U(d,1/2)
u /3 M 37y

The other two spinors can be obtained by changing the signs

of the helicities.
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8. We rewrite the propagator —%—- to make the dependence
M -t

on w=2s8in6/2 more transparent:

2 M2 (bod) e (b g V24 an2. 2 2
Me~t=M+(b=d) "== (b -d,) “+(q~q') “+qq'w M

now
S=(a+b)2=(ad+bo)2

SO write
2.1 _ 2
(bo-do) =I5 [2(b0 do)(a0+b0)]

=%§[(b0—do)(a0+b0+c0+d0)]2 using a0+b0=co+d0
=js[(b-d)(b+d)+(c~a)(c+a)]2/

1 22 2.2 2

which leads to

2 2 21 2 .2 2 2. .2 2_ 4.2, .2
Me—t—Me+(q—q') —Zg[(Md—Mb)+(MC—Ma)] taq'w =qq'e“+qq'w
which defines 52
. 2 ,.-1 1 1 : R :
and gives us [M“-t] “ggT "33 Which we use frequently in
e qqg 52+w2

absorption calculations of OPE diagrams.

One can procede in the same way for u-channel exchanges

to obtain

2 2, 2
Me U aq eu+wu
with

v e2in2y o 121 2_,2 2,2, 42
99T e =Mt (a-q") T-gml MG-MD) + (7 -M2) ]
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9. For cross section calculations we use
e s 4 -1 .
S=1-1i(2n) G(pf-pi)[p(ZEi)] M as our S-matrix
i

and obtain

[} .
B - L : Lo eaghglmina -2
64n1<s 9 (25,+1) (28, +1) spin a
and
do_ m do
dt aa -

aq'



APPENDIX II

Calculation Details: OME and Modifications for n+n+wp

In the center-of-mass we arrange the coordinate system

as shown in Figure 30.

A
&

d p {
nob ~¢-"°‘/7 amt e 59

Figure 30. Coordinate system for OME calculation
of 7 n+uwp.

Using this geometry we easily write the energy-

momentum 4-vectors of the particles,

a=(ay,0,0,-q)
b=(b0,),),q)
o:(c0,~q'sin6,o,~q'cose)
d=(d0,q'sin8,0,q'cose)
Application of the Feynmann rules leads to an expression

for the helicity amplitudes M:

<Acxdlmixb>n n=|(AC—Ad)+Ab]

M

£ A
= Tow - fo] ;
—;—— GVZU(d,)\d)AUNLj U(b,kb)

86
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where Z=[M§—t]_l, fﬂpw 1s the PVV coupling constant and

GV is the vector BVB coupling constant.

s . B -1
Au—lyo[nyu+21Andu] A—(Mb+Md)

— * L] 1 GT l+,-
NU—E:U\)pOa\)ppEO (C,)\C) n = .+q = e

GT=tensor BVB coupling

s(c,kc) is the w-meson polarization 4-vector

Expanding and using the center-of-mass vectors a,b,c,d,

we obtain

* * * *
AuNu=—A0a3clsz+Al(a3c0~aoc3)£2+A2[(a0c3—a3c0)el—aocle3
* *
+a3cleO]+A3aocls2

S0 one can write

) 1 1
A+Ag Hohiak Mgty

<Au'M|u>~ [-a uE>‘+Alli Hp 3

0
U"U_.— ] )
where An =U(d,u )AnU(b,u)
It is necessary to calculate only half of the amplitudes
because <-i-y' |M[-p> :—(~)n<Xu'|M]u> which comes from
invariance pPrinciples. (Inversion of the y-axis 1in

connection with parity conservation gives this relation)

The factors A are easily evaluated:

++ -, .

A0 = AO =if[-n w++2Anw_d0]cose/2
+- -+ . .6

AO ——Ao =i[-n w_+2Anw+dOJSLn2
- . 20, )

Al = Al =i[4Ang y_cos B €+181n2

- =+, . L 20 . o
Al = Al =1[4Ang w+51n §+n C._Jcos2
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++_ == B
A, = A, =n'g, sinx

- =t 0
A2 = A2 =n §_COS§

++_ - . o ]
A3 = A3 =] [2Ang Y_cosf-n g+]cos2
+—__ -+= ] — Iy “.g
A3 = A3 1[2Ang w+cose n c_191n2
also: E =—%-—qq'sine'—--—g---fft E0=FO=HO=0 G0=—qM s1inb
/2 29 ©

_i_‘ —rr ! f_Ml* - '
F —/i_[qc0 q aocosel G =1 n[qcocose asd ]

It is convenient to rewrite all of the angular
factors in terms of w=2sing. Then we form the amplitudes

2

as

<Au' |M|u> =6ZA N =625 «x
n Hu
=n
where the index a numbers amplitudes of a given helicity

transfer n and

£
G-M GV
w
It is now a simple matter to Obtain the scattering
amplitudes in a particular model.
1. The Born Term Model (BTM)
Calculate the cross section using the amplitudes
as they stand.
2. Born Term with Form Factor (BTMF)
1 ,

Let Z=(M§—t)“ F(s,t) and calculate using the BTM

expression for the amplitudes.
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3. Reggeized Propagator Model (BTMR)
Follow the procedure discussed in the Regge

Model section; let

o -ima(t)
2mo' (t0) (Za(t)+l)l‘e

Z= : o
(23+1) [1+(-)J] 2sinma (t)

2
b

1/2
2Ma(MbMd)

2,.,2 a(t)-1
+Mc+Md)

S-1/2 (M2+M
{ a }

and use the BTM expression.
4. The Absorptive Model (BTMA)

Let DW(x) be the absorptive function. Then,
n+2

neglecting terms in w higher than w ,
6 2 *u
a_ _ 2= n, o
Bn~——7[(xan e°X_ e xdxd (wx)k (ex)DW(x)
qq’ Jo

n-—
+w XanDW(JO)]

n
where we have used the ldentity g 5

£ tw

o0
=gl Joxdx J_ (wx)K (exy .
JO n n

In an actual calculation the upper limit will have
to finite-~one simply chooses xu large enough to get most
of the amplitude. JO 1s the lowest allowed partial wave:

= - . ! Ln this change 1s
Jo Max[lAc Adl,lAa_Ab[] The error in is g
small. This short cut as mentioned already is only good

for modifications to the plain BTM.



APPENDIX III

BVB Vertex Corrections

We consider only the two simplest graphs as

shown in Figure 31.

LN
w
\
N T“‘~. W
¢ ?
W/’ L3 AN 1
/ T, \
n /_T;—\
n P n ¢

Figure 31. Diagrams giving vertex corrections to
NpN point vertex.

Using the Feynman Rules we obtain an expression for the

helicity amplitudes:

f
o SH 2 Vvp 1 *
<)‘c)‘d'M‘)‘ b”~ 2GNNPgPPV Mc Mz_teuvpoavepgo(c’hc)
P

U(d,Ad)YSAuYSU(b,Ab)

where

4 28

(2m* (1Zed) ((e-1) 22 LB M 1 ()M

90
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the following parameterization facilitates simplification

of the integrand;

-1
1 1 1 - 1 fdy 1
3,2 2 2 2.7 2 12
L +M7T 2 --2e2+A2 L -2b2+A3 L +Mn o [2 —2epy+Ay]
1
! 1
=/ 2(1-2)d_4a
zZ'y 2_ 13
0 ds [2 2epz+AZJ
celim2oam_ _
Az—e +Mn~Mn t . Py—e+dy
B,=b, (1-y)+A.y A =b%41?
y "2 3 3
PZ=Py(l—Z) =by (1-Z) +e (1-y) (1-2)
Ay=b_(1-7)+M2
2 Ty i
Rearranging and using (ipg+M)u(P)=0
we obtain
- (3) ‘ (3) —r (3) =M -
AU— 24npL (Mp)+2lYA[LAu (Mn)*LAu (Mp)] Anp‘Mb Md
=M_-M
n p
with
4 L2
Ly (0)=fas /-2 T
(2m) ° [27-2eP,+4,]

Léi) contains one finite and one divergent term.

Write 2=2'+PZ and obtain
] 1 ] L
_ d42' zuzv +JLUPZ +2vPZu+PZuPZ v
LyvM=Jds[ ) 73
(2m) [2! +AZ-PZ]
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The term odd in &' vanishes and the quadratic term
is divergent (or, more correct, the integral does not
exist). Allowing a liberal interpretation of the rules

for manipulating infinities we write for the 279 term in A

4 ‘
: ater 1 1 ‘
2ifasp P | S——gl—p- 73T T 73!
(2m) [ +AZ(Mp)-Pz] ‘ [2 +Az(Mn)-Pz]
recall
P =byzt+e(l-y) z (have let z+1-z)

80 we can write

U(d)ip,U(b) -Mbyzﬁ(d)U(b)-(Mb-Md) (1~Y) 20 (d) U (b)

= -M,yz 20 (d) U (b)

-Anp
Using this expression we obtain
My 2 2 2
—_n2 ; ' . ", —_—
Au— ZlbuAnp{Kl[yz]+ZZ;; Kl[y z ]+2Kl[yz 1} 2lbuAnpK[YZJ
with

72
Kl[yz]¢-1—rjsz3(l,z)M
' (2m) : p

. 2 !
2.2 Ll .
Kily“z%]= [dz z[F (1,2), -F_(1,2), |
1 (2m) 3 5 M "5 M

2
2 m .
K" [yz")=———rfdz z[F_(1,2), -F_(1,2). ]
1 (2ﬂ)4 3 Mn 3 Mp y
(the y integrations have been performed analytically.

Please refer to the discussion of the parameter functions

Fi)n
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Substituting, we obtain

\ | 6&27§b2g§—Anp
AcAleIAb>n=1SZB {Ad,Ab}K[yz] c
z=[M§-tJ“l

A
B" b Neeuvpobuavcpeo(c A )
=-qq'/§€2(c,k) in CM sygtem

which gives

<0 1/2|T| 1/2>,=0

<1 1/2|7|-1/2> =Loy s R[yz
T 7 -7——7 yz)

<of1/2|'r|1/2>1 =0

1 W o
<1 1/72|T| 1/2> ==—6y_v ———=K[ yzl
| 1 /2 e +w Y

<1-l/2|T|—l/2>l=<l 1/72|T| 1/2>1

<1l-1/2|T] 1/2>,=-<1 1/2|T[—l/2>0

These amplitudes can be used to calcﬁléte cross sections

in the usual way.



APPENDIX 1V

Two Meson Exchange in PB+VB

The relevant diagrams (the éimplest) are shown in Figure 32.

L W e —
' \ A
sl N
H i
n p *
T x LS

. . +
Figure 32, Two plon exchange graphs for n n*wp.

Using the Feynman rules and proceding in the usual manner

we obtain

f
I 5 .2 Tpw * = I B =}
TY—Z 2 GNNngnanC Ekvpo aAqv€o<C)U(d)YSAuY5U(b) q=b-d

f .
II__ 2 mTpw * = IT
T " =~2V2 GNNngnnpﬁzh-exvpo aAquo(C)U<d)Y5Au YSU(b)

£
TIII=—2J§—G2 g Tpw

AT II
NN#=nn oM €Avoo aAfvEO(d)U(c)ysA“

IYBU(b3 r=h-c

924
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with
AI=A d4e ep
Hompt o4 [e2+M2][(a+e)2+M2][(q-e)2+M2][(b—e)2+M2]
e n g P
4 e e
+iYA d'e U A { 1

(ZTr)4 [e2+M§][(a+e)2+M§][(q~e)2+M;] %—e)2+ME

l .
- }
(b~e)2+M§

one obtains Ai by the replacement a+-c in Ai

and AiII by £hevreplacement g*r in Aﬁ

We rewrite ALl and compress it by the use of parameter

1
af+b (1-f)

1
\ , 1l
integrations = de

to obtain

= (4) , (4) L (4)
YSAuYS_AnPL (Mp)+lYA[LAu (Mn) LAu (Mp)]

where

4
(4) d’e
L.\ =/ds'f
¢ Cem? (e2-2ep

eue v

1 ‘
57 ds'=~——~zdxdydz z(l-z)
Z+PZ] (2m)

iP,=igZ+idy Zz-ia (1-x) (1- 2)

performing the loop integration we have (using the Dirac
equation to simplify)

4 o
Lé )(Mp)=1dujds R

C (Mp)

(4) iy —ia f z_ .o ..l 1 244
ULAU (M) -1dqus Eﬁfg; l?z+lflykgkufdsETﬁT ds=n"ds

iy
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One can write

U(d,Ad)i?zU(b,Ag=—AanUU-MpyzUU—WAdAb(1-x)(l-z)

W =10 (d) AU (b)
Aa*p

Putting all of the terms together we finally obtain

U(d, )YSAIYSU(b,A )=

. 3

id [fds—~x—-— jdsyz (1+Y p ) (
o’ c? (M) Anp C2(M ) c? )

W

A A
g2 dsyz (1-x) (1~2) (il )

np cfm ) cfm )

U(d,kd)Y U(b,A}) [ds (= 1

)
C(M ) C(MpT

which we rewrite as

Wy b
. : 1=
1dpAnp{Il I, ‘Z“” I, }- 5U(d, A )y U(b,A)J

where the definition of Ii and J is clear.

Substituting into the expression for TI we finally obtain
A A

A
: i pn)C s _kMm"¢
<A Ad|T IA >=1iKB {Ad A }I-1ikB I, T A pd
np p
where BAC=;%qq'/§'sin6bd6kc’tl (in the CM)
- Ac = _AC
Wy = By b,y N Cag €, (c/hy)

Aarp o “uvpouvEg

K=2/2G2 g A
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The integrel J is small than Il’ I2, 13 for moderate s

but will eventually dominate as s+« since J~s'.l and
-2
Ii~s .

Performing the y-integration (parameter integral)

analytically we get

I.= n?

L 2m

2
7/dzdxz (1—z)F1(x,z)Mp

2 ‘ M
™ 3 .
I =——y/dzdxz” (1-z) { [F (x,z)+KE~F (x,z)IM }
2 (2m) / 2 np 2 P

TT2

- : 200 N2 B ,
13—?;;szdzdxz (1-2)“ (1 x)[Fl(x,z)Mn Fl(x,z)Mp]

2
e 1- ' ’ -
J mjdzd)((l Z)Z[F4 (X,Z)Mn F4 (X,Z)Mp]
Again, there are 12 amplitudes, 6 of them obtainable from

the other six via symmetry considerations; the six

independent amplitudes are

1 o e 0 0
By <Ol/2|T|l/2>0 = KMl/z l/zJ/Anp .S
W
Bi <11/72|T|1/2>) ==Eqq'/sy_wl1- 22 /2 | 4
=9 - A 3
V2 -"np
—xml 1/2
KMy 2 1/29/80p -5
; a v -q )
K. oy oo Fo¥Pe"d 1/2
=~24q ' VEY_w (LD 1,] -8
/T V_bnp 3
-xmi 1/2
KMl/z 1,29/ 8y | .8
BT <0-1/2|T|1/2>. =k 3/ | s?
1 1 -1/2 1/2 np ~



APPENDIX V

4th Order Parameter Functions for Pb-VB

l. All of the 4th order virtual momentum integrations

can be reduced to the form

[ds N(x,y,2)
0 c™ (M)
where
ds = dzdxdy z(l-z)

n = positive integer

N(x,y,2)= polynomial in kinematical variables and X,¥,2

and C(M) = A(x,z)y%+B(x,z)y+C(x,z)
M=mf

The 40 order functions Fi(x,z) are the result of

performing the y-integration analytically:

1
_jlydy _ 1. 2a+B _ . .
Frlomy =l I = glais - B eyl = 6y, 02)

C
F.(x,z), = lzigx = i[~-§i£9 + 2CF, (x,z),] = G,.,(x,2)
2 7% M “é g2  Q A+BiC 4 7reimt T oty
F.o(x,z), = zzflxgx = Ei[lo B+B*C _ bR, (x, 2) ] = 26, . (x,2)
3'%r2ly 0 @ A 9 g @iyl o= 11 %

98
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1. 1 92 1
F4(x,z) = f ix = ~3{tan 1 2A+? - tan 1 B
M e JI) ~
0 ¢ vg /Q V0
2 2 2
2:1v“a z A+B+C B™-2AC
Fs(x,z)M = gz 23 = EK[Z x log G + = F4( ,z)M]
1 m
Q = 4ac-B2 G (x,2) = | XEQX,
0 C (M)
v i o b L. m p
N(x,v,z) can always be written in the form A

Lmp AQmp Xy
Therefore we write

1 L1 . m_p
[ as N, ye2) J ds'dyfgmpaj2 XYz
0 mp© 2

1
= - - %(s'xzsz
0 C Pe™

- Qmpbi nm (X7 2)y

It is usually necessary to perform the x,z integrations

with help of a computer,

2. The denominators C (M)
There are three topological diagroms ko

as shown in Figure 33.

G -w-~w; ’ ‘ Q T}\\/g < a - e
el ’3 A
\ [ 3 A b - ‘.0';{._4._ e | Y A
T T o

Figure 33, Configurations for two-meson exchange
graphs for ntn-uwp,
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(a) EI(x,z) = AI(x,z)y2+BI(x,z)y+CI(x,z)
AI(x,z) = Méz2
BI(x,z) = (Mg—Mg—t)zz+(M§+Mi—s-t)z(l—z)(l-x)~(M§—t)z’
clix,z) = t22+(M§—M§+t)z(l—z(l~x)+(M§—t)z

+[(Mﬁ—M§)(1—x)+M§x](1~z)+M§(1—x)2(1—z)

(b) EII(x,z). Detailed examination of diagram II shows

that exchange of a<->-¢c in I will give II

This leads to

AII (XIZ) = Mézz
II e (MMt 02 a2 2 _ o w2
B " (x,z) = (M -M3-t)z"+ (s M_-M3)z (1-2) (1-x) (Mg t)z
ct(x,2) = t22+(M2*M§+t)Z(l~z)(l-x)+(M§—t)z
2 .2 2. 2 V2
+[(Mh~Mc)(l~x)+Mexj(1—z)+Mc(1—x) (1-2)
(c) EIII(X,Z). Similarly we get III from I via t»u and

keeping labeling defined as in I (remember c,d masses

interchanged here)

This gives (alternatively: wuse I with
GmObC instead of ebd
AIII(x,z) - M222
d
III = (M2 M2 1) 224 (MM gm ) o (1o (1o 2.
B (x,2) = (Mb Md u)z +(Mb+Mc s-u)z(l-z) (1-x) (Mg u) z
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¢t (x,2) = uz®+ 03-MZru) 2 (1-2) (2-x) + (42-u)

+ [ (M2-m2) (1-x) +1%x] (1—z)+M§(l—x)12 (1-2)2

Remember that only two of s,t,u are independent variables

because of the relation

2
i

2

s+t+u = IM
i d

2,2 .2
= +
Ma Mb+Mc‘+M
we use 8 and t

3. Energy Dependence

We use s and t as the independent variables.

Examination of the denomins#tor polynomials CI(M), CII(M),

et () gives us the s-dependence of the functions Fi’II'III

at fixed t.

(a) Graphs I,

0 0 2 2

AI(x,z)ws BI(x,z)ms 4 CI(x,z)ws *Q=4AC~-B .8

So we conclude
Fi(x,Z)Ms"l

(b) Graphs II. Same as Graphs 1I.

(c) Graphs III. AIII(x,z)aso BIII(x,z)~s CIII(x,z)~s
+Q~asz+bs
and therefore
FiII(x,z)~s~l 80 FiII(x,z)~s~2 F%II(x,z)~so
Fgll(x,z)»as~2+bs~3 pI1I 1

LS (x,2) -8
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(d) Vertex Corrections (BVB) The Diagram for this correction

is shown in Figure 34.

Figure 34, Configuration of NeN-vertex correction
graphs for mn-wp.

Since AI(l,z)~so, BI(l,z)~so, CI(l,z)~so,
we conclude that any energy dependence vanishes from the
F's at x=1:
I 0
Fi(l,z)~s '
and therefore, that the triangle loop cannot change the

energy dependence relative to the simple BTM.






