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ABSTRACT

PRECISION MEASUREMENT OF ISOSPIN DIFFUSION IN PERIPHERAL
SN+SN COLLISIONS AT 70 MEV/U

By

Jack Robert Winkelbauer

Much effort has been undertaken recently to improve constraints on the symmetry energy

term in the Nuclear Equation of State (EOS). Specifically, the behavior of the symmetry

energy above and below nuclear saturation density plays a significant role in the properties

of neutron stars, the structure of heavy nuclei, and the dynamics of nuclear reactions. The

tendency for neutrons to drift from a neutron-rich region to a neutron-deficient region during

a peripheral collision of heavy nuclei is known as isospin diffusion, and has been previously

shown to be a sensitive observable for the study of the symmetry energy at sub-saturation

densities.

Projectile fragmentation reactions with beams of 112,118,124Sn at 70MeV/u on targets of

112,118,124Sn have been measured at Michigan State University, in order to understand the

effect of the isospin asymmetry on the reaction dynamics. Heavy fragments with Z > 20

were detected and isotopically identified using the S800 Spectrometer, and the momentum

distributions of these fragments were reconstructed. Additionally, light charged particles and

intermediate mass fragments were detected in an array of Si-CsI telescopes to simultaneously

determine the isotopic distributions of fragments with Z < 8. The impact parameter of the

collision was characterized by a measurement of the charged particle multiplicity in a 4π

scintillator array. These data provide a detailed picture of the evolution of the projectile-like

residue over a range of isospin asymmetries and impact parameter.



The measured yield ratios have been used to extract information about the diffusion of

neutrons between the projectile and target during peripheral collisions. The validity of using

isotopic yield ratios as a surrogate for the isospin asymmetry of the compound system are

discussed, and the associated isospin diffusion results are presented.
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Chapter 1

Introduction

Since Rutherford first measured α particles scattering from atomic nuclei in 1907, [1] the field

of nuclear physics advanced substantially in the description of the nucleus and the nuclear

interaction. The discovery of the neutron by Chadwick in 1932 [2] indicated that the nucleus

is comprised of two different types of nucleons. The shell model, which is still in use today,

was proposed on this basis that protons and neutrons populate different orbitals [3]. The

quark model [4, 5] successfully described each nucleon as three quarks bound together by the

strong force, and nuclei are bound by the residual interaction from the quarks. Quantum

chromodynamics (QCD) describes the strong interaction between the quarks that comprise

the nucleus, but QCD is too complex for calculations of finite nuclei to be feasible with current

theories. Consequently, much effort has been invested in the study of the structure of nuclei,

the properties of nuclear matter, and the study of nuclear reactions with microscopic and

macroscopic models.

As opposed to modeling all the constituent nucleons and their respective interactions,

nuclear properties can be modeled macroscopically. The semi-empirical mass formula, which

models the nucleus as an incompressible fluid (also known as the liquid drop model) is an

early example of describing the bulk properties of the nucleus.

Due to complexities of the physics describing the interactions among many bodies, differ-

ent theoretical approaches are used to describe nuclei of different mass scales. The advance

of supercomputing techniques and many-body theories has allowed nuclei up to (A ≈ 12)
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to be described with ab initio (from first principles) calculations [6, 7]. These methods are

limited by computing resources because the calculations grow exponentially with A.

Currently, properties of light nuclei up to 40Ca and heavier nuclei close to magic numbers

can be described by the shell model. The shell model describes the structure of the nucleus

analogous to the electronic structure of the atom. The nucleons move in a common poten-

tial well and the neutrons and protons fill different sets of orbitals because of an additional

quantum number called “isospin”. The neutron has an isospin projection of Tz = +1/2 and

the proton Tz = −1/2. The shell model is notable for its explanation of magic numbers

(2,8,20,28,50,82,126) of protons or neutrons, from strong spin-orbit coupling. Nuclei with

magic numbers such as 40Ca (N=20, Z=20) and 208Pb (N=126, Z=82) are analogous to

noble gases in atomic physics. Beyond nuclei with filled sd orbitals (N,Z > 20), approxi-

mations must be made where part of the nucleus is represented by an inert core with magic

numbers of protons or neutrons. Then, the calculation is limited to one or a few nucleons

that fill the orbitals just outside of this inert core. Because each nucleon can interact with

all other nucleons including those in the core, precise calculations are limited to the region

of the nuclear chart close to shell closures.

When describing medium and heavy mass nuclei, Energy Density Functional (EDF)

methods are often used [8, 9]. EDF methods, also called Self-Consistent Mean Field1 meth-

ods, use an effective interaction to approximate the interaction between nucleons. The effec-

tive interaction is normally tuned to reproduce relevant nuclear properties such as masses,

binding energies, or the energy levels of excited states over a large range of nuclei. Commonly

used interactions are the Skyrme interaction, the Gogny interaction, and the Relativistic

1In a “self-consistent” mean field, the potential is calculated from the actual positions (and momenta) of
the nucleons

2



Mean Field Theory [10, 11, 12]. EDF methods have the advantage that they can be utilized

across the nuclear chart.

1.1 The Nuclear Equation of State

The goal of this work is to understand the equation of state for cold nuclear matter, which

is important for nuclear astrophysics and nuclear structure. In this context the interesting

relationship is how the energy or pressure changes with density. The nuclear equation of

state is difficult to probe on earth, because it is impossible to create bulk nuclear matter in

a laboratory. The best approximation is to study the dynamics in collisions of finite heavy

nuclei at intermediate energy, where densities different from normal nuclear density can be

created. Data from these heavy ion collisions can then be compared to a transport model

that includes the important aspects of the EoS.

In central collisions above the fermi energy (the average energy of a nucleon in a nucleus),

densities higher than nuclear saturation density can be reached. Light particles emitted

during the expansion of the compressed nuclear system can provide a characterization of

the expansion of this dense matter [13]. In some cases, the expansion results in a complete

breakup of the system where many fragments of varying sizes (also known as Intermediate

Mass Fragments, with Z = 3 to Z = 20) are emitted, a process called multifragmentation.

In mid-peripheral collisions, a low-density neck can form between the target and projectile

nuclei, which can also be a source of intermediate mass fragments. In all cases, the goal is

to understand the dynamics of nuclear collisions, which are controlled by the Equation of

State.
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Much effort has been spent on constraining the EoS, because of its importance for many

physical systems. The behavior of nuclear matter that is symmetric, i.e. the densities

of protons and neutrons are equal, has largely been constrained in the laboratory using a

variety of different experimental techniques using beams of heavy-ions [13]. The frontier

of this research is in the understanding of asymmetric nuclear matter, specifically in the

understanding of the density dependence of the symmetry energy.

Information about the EoS of asymmetric nuclear matter is essential to describing phys-

ical properties of a neutron star. One possible end point for a star with sufficient initial

mass, neutron stars are compact objects that have collapsed gravitationally to the point

where nuclear degeneracy pressure is in hydrostatic equilibrium with the gravitational force.

To understand any of the properties of a neutron star, its Equation of State (EoS) must be

known.

1.2 Outline of Dissertation

This dissertation is a study of the density dependence of the symmetry energy term in the

nuclear EoS using heavy ion collisions at intermediate energy. First, in Chapter 2, the

motivation for this experiment is described, as well as the experimental landscape leading

up to this experiment. The theoretical framework that is used to interpret this data is also

introduced and described here. Chapter 3 describes the physical setup of the experiment

and the detectors used in this study. Chapter 4 presents all the critical steps in processing

the raw data into physical observables. Chapter 5 discusses the physical observables that

are extracted in this study. These physical observables are also compared to theoretical

predictions. Chapter 6 talks about the physics insights drawn from the analysis of the data
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from this experiment, and open issues regarding the density dependence of the symmetry

energy. In the Appendices, several aspects of the experiment that were investigated in detail

during the course of the data analysis are discussed.
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Chapter 2

Motivation

2.1 Density Dependence of the Symmetry Energy

The liquid drop model and the semi-empirical mass formula provide some physical intuition

regarding the nuclear EoS and the symmetry energy. The semi-empirical mass formula is

used to describe the binding energy (mass) of nuclei using only the number of protons and

neutrons [14, 15]. It is composed of several terms motivated by physics, and the coefficients

of each term are normally obtained by fitting Equation 2.1 to the known masses of nuclei.

A standard form for the binding energy per nucleon is

E

A
= aV︸︷︷︸

Volume

− aS

A1/3︸ ︷︷ ︸
Surface

− aC
Z2

A4/3︸ ︷︷ ︸
Coulomb

− asym
(N − Z)2

A2︸ ︷︷ ︸
Symmetry

− δ(A,Z)︸ ︷︷ ︸
Pairing

(2.1)

The first three terms are easily visualized in terms of the liquid drop model. The volume

term is simply the binding energy due to the cohesion of the nucleons in the nucleus. The

nuclear force has a limited range, so each nucleon interacts only with the adjacent nucleons.

Thus the volume binding energy per nucleon, aV , is constant. For a finite nucleus, the

surface nucleons are in contact with fewer nucleons than the core nucleons, so the binding

energy is reduced. The surface term accounts for this reduction by subtracting a binding

energy proportional to the surface area of the sphere. The coulomb force further reduces the

binding energy due to the repulsion of the positively charged protons, and the approximate
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magnitude can be calculated analytically. The last term is called the “pairing” energy and

accounts for the extra stability for even-Z, even-N nuclei and the reduction of stability for

nuclei with an unpaired proton or neutron. The remaining term is known as the “symmetry”

energy. The symmetry term decreases the binding energy for nuclei with different numbers

of protons (Z) and neutrons (N). Configurations with N = Z minimize the binding energy

because protons and neutrons fill two separate sets of orbitals. Stable heavy nuclei have

N > Z due to the competition between the coulomb term and the symmetry term. The

symmetry term is parametrized by the isospin asymmetry, δ

δ =
(N − Z)

(N + Z)
(2.2)

The symmetry term is proportional to the square of the asymmetry, because the strong

nuclear force should be equivalent for neutrons or protons, so only even powers of δ are

allowed. The isospin asymmetry is a small number (δ < .25) for most nuclei, and higher

powers (e.g. δ4) can normally be neglected. Using just this simple picture and a few free

parameters, Equation 2.1 reproduces the mass of known nuclei, and provides estimates of the

unmeasured masses of exotic nuclei. In fact, in many nuclear reaction simulations, variations

of the liquid drop model formula have been used to calculate the masses for extremely proton-

rich or neutron-rich nuclei.

The semi-empirical mass formula is a suitable conceptual starting point for realistic EoS,

but it assumes that the system is at zero temperature and at fixed density. To further

develop the EoS, the nuclear potential must be parametrized as a functional of the proton

and neutron density, which is one of the primary goals of nuclear physics research today.

The focus of this dissertation is on improving the understanding the symmetry energy part
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of this energy functional. The symmetry energy part of the nuclear energy density can be

separated from the symmetric matter equation of state in the following way

ε(ρ, T, δ) =ε(ρ, T, δ = 0) + S(ρ)δ2 (2.3)

where the symmetry interaction S(ρ) is a function of the nucleon density. S(ρ)δ2 is called the

“symmetry energy”. This expression is an approximation for δ � 1. While the temperature

can play a role, the more important unknown behavior is the dependence of the symmetry

energy on the density. Typically, formulations of S(ρ) ignore any explicit temperature de-

pendence. When describing the interaction in terms of the nucleon density, the asymmetry

is defined by:

δ =
(ρn − ρp)
(ρn + ρp)

(2.4)

where ρp is the volume density of protons, ρn is the volume density of neutrons, and ρ is

the total nucleon density ρn + ρp. The symmetry energy at saturation density is related to

the symmetry term asym ≈ 24 MeV in the semi-empirical mass formula, but S(ρ) includes

explicitly the density dependence.

The symmetry energy is modestly constrained at subsaturation densities, and mostly

unconstrained for supersaturation densities. For example, the symmetry energy near nuclear

saturation density has been constrained from the binding energy of stable nuclei [16]. A

common energy functional used for calculations of nuclear matter and finite nuclei is the

Skyrme-Hartree-Fock model, [10] which is described in further detail in Section 2.4. The

Skyrme force is controlled by a set parameters that can be varied to optimize the model’s
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ability to reproduce specific experimental observables for nuclei. Within this model, the

density dependence of the symmetry energy is valid mainly around nuclear saturation density

which describes the central dnesity of most heavy nuclei. The nuclear interactions that are

used in this work are derived from the general Skyrme-type interaction.

2.2 Physical Consequences of the Symmetry Energy

The symmetry energy has a large influence in many areas of nuclear physics and astro-

physics. It dictates many properties of neutron stars, because neutron stars are dense, cold,

and extremely asymmetric nuclear matter. It also influences nuclear structure; as the density

decreases near the surface of a nucleus, a greater asymmetry of neutrons can be supported,

creating a so-called neutron skin [16]. Furthermore, the symmetry energy affects the dy-

namics of nuclear reactions with neutron-rich heavy nuclei. These different areas of nuclear

physics can provide information about the symmetry energy which can likewise assist in the

interpretation of these physical processes.

2.2.1 Nuclear Astrophysics

A neutron star has collapsed to the point where the nuclear force is in hydrostatic equilibrium

with the gravitational force. The intense pressure causes electron capture reactions to become

energetically favorable and the matter can become dominated by neutrons. The situation

is known as “beta equilibrium”, because the energy gained by an electron capture reaction

is equal to the energy cost imposed by the symmetry energy, which is a function of the

density. In this way, the proton fraction in a neutron star is completely determined by

the density dependence of the symmetry energy. If the proton fraction is high enough, the
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“direct Urca process” can occur, which cools neutron stars by allowing energy to be carried

away by neutrinos [17]. If the direct Urca process can take place at some depth (density) in

a neutron star, it will dominate the cooling of the neutron star and impact the evolution of

the neutron star.

The bulk properties of a neutron star are also dictated by the symmetry energy, in the

form of the mass-radius relationship. When the composition and equation of state are known,

the mass and radius of a spherical body in hydrostatic equilibrium are related by:

dP (r)

dr
=
GM(r)ρ(r)

r2
(2.5)

This is modified with general relativity to arrive at the Tolman-Oppenheimer-Volkov equa-

tion [18]:

dP (r)

dr
=− G

r2

[
ρ(r) +

P (r)

c2

] [
M(r) + 4πr3P (r)

c2

] [
1− 2GM(r)

c2r

]−1

(2.6)

Once the equation of state (the relationship between ρ(r) and P (r)) is specified, the mass-

radius relationship can be determined. Conversely, if the mass and radius of a neutron star

can be simultaneously and precisely measured, a constraint on the EoS can be determined.

The maximum mass in the mass-radius relationship allows observations of the mass alone

to provide constraints on the neutron star EoS. Two recent measurements of neutron stars

close to 2 solar masses [19, 20] are very informative for the study of the neutron star equation

of state, because they rule out EoS’s with small symmetry energy at high density. Only an

EoS with a stiffer asymmetry term at higher density is able to sustain a massive neutron

star by providing the pressure needed to resist gravitational collapse. The location of the
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transition between the heterogeneous, solid crust and the homogeneous, liquid outer core

is also sensitive to the symmetry energy [21]. The density dependence of the symmetry

energy determines the energy cost of separating uniform, isospin-asymmetric nuclear matter

into regions of higher and lower density. For a stiffer symmetry energy term, the core-crust

transition occurs at a lower density.

2.2.2 Nuclear Structure

Analogous to the example of neutron stars, the symmetry energy also plays a role in the

structure of heavy nuclei. Although heavy nuclei have δ < 0.25, the symmetry energy is a

crucial uncertainty in mean field models of the nuclear interaction. When describing nuclear

matter, S(ρ) is often described with a quadratic Taylor series, expanded about ρ = ρ0:

S(ρ) =S0 + L

(
ρ− ρ0

3ρ0

)
+
Ksym

2

(
ρ− ρ0

3ρ0

)2

. . . (2.7)

Where S0 is the symmetry energy at saturation density, L is the slope of the symmetry

energy at saturation density, and Ksym is the curvature of the symmetry energy at saturation

density. The linear term in 2.7 is the source of the “symmetry pressure” which can be

obtained from the Helmholtz free energy for T ≈ 0:

P =ρ2 ∂ε

∂ρ
(2.8)

and so at nuclear saturation density ρ0 the pressure of pure neutron matter is approximately:

P0 =ρ0
L

3
(2.9)
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One example of the effect of the symmetry energy in nuclear structure is the existence of a

“neutron skin” in neutron rich nuclei. Quantitatively, the neutron skin is described by the

difference between the root-mean-square neutron and proton radii:

∆np =
√
r2
n −

√
r2
p (2.10)

The neutron skin of 208Pb calculated in the Skyrme-Hartree-Fock model has been shown to

be directly and tightly correlated with the slope of the symmetry energy L [16]. A stiffer

symmetry energy (higher L) results in a lower value of the symmetry energy at subsaturation

densities. Therefore, the energy cost of an asymmetric neutron skin (low density) is lower

than the energy cost of spreading the asymmetry over the volume of the nucleus (normal

nuclear density) result in a larger neutron skin thickness. Various techniques have been

employed to measure the neutron distributions of heavy nuclei [22, 23, 24, 25]. Interpretation

of these data is difficult because the results from hadronic probes are highly model dependent.

Thus, large uncertainties exist in the neutron distributions while the charge distributions are

precisely known.

Measuring the neutron skin thickness is a useful test for the isospin dependent part of the

nuclear energy density functional. The most model independent method is a measurement

of the neutron radius of 208Pb using parity-violating electron scattering on a polarized Pb

target. This experiment was completed, but had large error bars because it did not acquire

enough statistics [26]. The measurement for 208Pb will be repeated after installing radiation-

hard electronics and vacuum systems, which were a large source of down-time during the

first experiment [27]. A measurement for 48Ca has been approved as well [28].
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2.2.3 Nuclear Reactions

The symmetry energy also affects the dynamics of many types of nuclear reactions. For

example, multifragmentation is the process by which an excited heavy nucleus decays when

the excitation energy is too large for the nucleus to deexcite by emitting only nucleons and

gamma rays. The process can be pictured as the formation of a region of hot nuclear matter

shortly after collisions of two nuclei, which then expands to subsaturation density and breaks

up into many smaller fragments. The fragments are distributed in mass and charge according

to the free energy of a partition of fragments. The fragments can still have significant

excitation energy, and realistic predictions require further evaporation of light particles.

The Statistical Multifragmentation Model (SMM) treats this process in a simple, statistical,

and semi-empirical way, and provides reasonable predictions of multifragmentation yields.

[29] The symmetry energy in the form of the chemical potentials plays a critical role in

multifragmentation, in particular the isotopic distributions. As will be discussed in Section

2.3.1, how the isotopic distributions change from one system to another is correlated to the

strength of the symmetry energy. SMM-type models do not treat the nuclear interaction

directly, instead they approximate the process into several instantaneous steps. Nonetheless,

SMM requires assumptions about the EoS which can be informed by experimental constraints

on the symmetry energy.

Another class of nuclear process that is partially tied to the symmetry energy and the EoS

of nuclear matter are known as Giant Resonances. Important examples are the Giant Dipole

Resonance (GDR) and the Giant Monopole Resonance (GMR). The GMR is also known as

a breathing mode, and can be understood as a radial oscillation of the proton and neutron

densities. The resonance energy of the GMR is directly related to the incompressibility
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of nuclear matter, because the incompressibility provides the restoring force against the

vibration. The incompressibility of bulk nuclear matter is defined to be

K0 =9ρ2d
2E/A

dρ2

∣∣∣∣
ρ=ρ0

, (2.11)

but for finite nuclei, surface and coulomb effects must be included. A finite nucleus incom-

pressibility can be extracted from the experimental energy of the GMR and the RMS nuclear

radius by

EGMR =

√
~2KA

m < r2 >
. (2.12)

KA can be determined from experiment, but the relationship between KA and K0 is uncer-

tain, which makes the determination of K0 difficult.

The GDR is a dipole oscillation of proton and neutron densities along one axis of the

nucleus. When the proton and neutron densities oscillate in phase, the excitation is called

isoscalar, and when the proton and neutron densities oscillate out of phase it is called isovec-

tor. The isovector GDR is an oscillation where the restoring force is provided by the sym-

metry energy. Thus, studying the GDR provides information about the symmetry energy.

These oscillations of finite nuclei only provide information about densities close to normal

nuclear density. In contrast, the Pygmy Dipole Resonance (PDR) is proposed to be an

oscillation of the isospin symmetric core of the nucleus inside the asymmetric neutron skin.

[30, 31] Because this would preferentially probe the surface of the nucleus, it could provide

information about the low density behavior of the symmetry energy. The relative strength

of the PDR has been shown to be related to the density dependence of the symmetry energy.
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2.3 Isospin Diffusion

One concept that was developed in the study of the symmetry energy with heavy ion collisions

is called isospin diffusion. This simple concept is a natural step in reaction dynamics: put

a neutron-rich nucleus very close to a neutron-poor nucleus and see how fast the system

reaches isospin equilibrium. The symmetry energy would drive the two nuclei to exchange

protons or neutrons, until the isospin asymmetry of the two nuclei became equalized. In

practice, the situation is more complicated.

To overcome the coulomb repulsion, the projectile and target nuclei must have large rel-

ative velocity. For isospin diffusion to occur, the reaction timescale should be comparable to

the nucleon-nucleon collision timescale inside the nucleus. For this reason, the physics must

be interpreted using a dynamical reaction model that describes the evolution of individual

nucleons through the collision. To describe this many body problem, many approximations

must be made. Nonetheless, by carefully choosing reliable observables and continuously im-

proving the nuclear transport calculations, constraints on the symmetry energy have been

obtained.

For the purposes of this dissertation, isospin diffusion will be discussed in the context of

isotopes of Sn. This is a natural choice, as Sn has stable isotopes ranging from 112Sn (δ =

.1071) to 124Sn (δ = .1935), and the Sn+Sn system is large enough to apply a macroscopic

approach to the physics. With high-intensity radioactive beams at the Facility for Rare

Isotope Beams (FRIB, under construction), the range of asymmetry can be increased using

radioactive isotopes from 108Sn to 132Sn.

When 112Sn and 124Sn collide in a peripheral collision (large impact parameter b), an

overlap region forms between the colliding nuclei and nucleons can be exchanged. On average,
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neutrons would diffuse from the neutron-rich 124Sn to the neutron-poor 112Sn through the

neck region. The densities of protons and neutrons can be described with a diffusion equation,

jn =D
ρ
n∆ρ−Dδ

n∆δ (2.13)

jp =D
ρ
p∆ρ−Dδ

p∆δ, (2.14)

where the D
ρ,δ
n,p are the diffusion coefficients for neutrons and protons for density and isospin.

Combining Equation 2.13 and 2.14 gives

jδ =jn − jp =
(
Dδ
n −Dδ

p

)
∆δ︸ ︷︷ ︸

Isospin Diffusion

−
(
D
ρ
n −Dρ

p
)

∆ρ︸ ︷︷ ︸
Isospin Migration

(2.15)

which indicates that two mechanisms drive the diffusion of isospin between the projectile

and the target. The isospin gradient drives a diffusion of isospin directly. A separate effect

known as “isospin migration” also influences the equilibration. Isospin migration is a net

flux of isospin because the density diffusion coefficient D
ρ
n for neutrons is different from the

density diffusion coefficient D
ρ
p for protons. Because the symmetry energy decreases with

decreasing density, a low density region can support a bigger isospin asymmetry so neutrons

diffuse faster into the neck region than protons [32]. Isospin migration would be present in

both the symmetric and mixed collisions.

The observable that would constitute a direct measurement of isospin diffusion would

be a measurement of the isospin asymmetry of the excited projectile-like fragment at the

moment of the separation between projectile and target, which happens on the timescale of

≈ 10−22s. Unfortunately the reaction products are measured on a timescale that is many

16



orders of magnitude longer, and the detected fragments have deexcited by particle emission.

Because of this deexcitation, the composition of the primary excited fragment is obscured.

When simulating the reaction with a dynamical transport model, the asymmetry of the

primary source can be calculated directly. In an experiment, the measured observables must

be related to this observable in a quantitative way. For the purpose, the “isospin transport

ratio” has been constructed (in this case for the mixed reaction 112Sn+124Sn1) to quantify

the amount of diffusion.:

RI(X112+124) =
2X112+124 − (X124+124 +X112+112)

X124+124 −X112+112
(2.16)

where X is an observable that is related to the isospin asymmetry achieved in the reaction.

This observable has several useful properties. If an experimental observableX is identified

where δ = aX + b, then RI(δ) = RI(X). This is critical because the theoretical calculations

produce the isospin asymmetry δ, which cannot be measured directly in the experiment. If

X112+124 = X112+112 then RI = −1, and if X124+112 = X124+124 then RI = +1. RI = ±1

indicates that no diffusion occurred. If diffusion drives the system to isospin equilibrium,

then RI(X) = 0 in either mixed reaction.2

If an observable which meets the linearity condition is identified, then the measured

observable can be compared to the calculated isospin asymmetry. This is an experimental

question independent from the measurement of isospin diffusion. Previously [33] and for this

purposes of this study, the observable that is explored is the isotopic scaling (denoted by α)

of fragments which is the topic of the next section. It was shown in [34] that δ = aα+ b for

central collisions, but this linearity should be measured for peripheral collisions as well.

1The convention for reaction notation throughout the dissertation will be: (projectile)+(target)
2Because of the mass asymmetry of the projectiles, RI (δ)=0.0507 at equilibrium, see Section 5.4.
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2.3.1 Isoscaling in Statistical Processes

“Isoscaling” describes the way that an isotopic yield ratio of fragments emitted in a statistical

process follows an exponential function of the neutron and proton number of the fragment.

When plotted as a logarithm, the trend is linear. This behavior was first described in [35],

and was identified in many physical systems including multifragmentation, evaporation, and

deeply inelastic reaction mechanisms. Since that time, isoscaling has been observed in many

other physical systems such as fission and projectile fragmentation. [36, 37] The isoscaling

trend is generally described with a three parameter relation:

R21(N,Z) =
Y2(N,Z)

Y1(N,Z)
= Ce(αN+βZ) (2.17)

where Yi(N,Z) is the yield of the isotope with atomic number Z and neutron number N,

measured in the reaction i. By convention the more neutron-rich system is in the numer-

ator, which results in α > 1 and β < 1. This is a useful way to describe how the isotopic

distribution changes when the isospin content of the emitting system is changed. In prac-

tice, forming yield ratios between different reactions eliminates the dependence on absolute

normalizations, detector acceptance, and the structure of the emitted fragments, as well as

reduces the effects of sequential decays. Isoscaling is fundamentally related to the symmetry

energy, and various statistical models predict that the magnitude of the isoscaling slope α

(or β) should be proportional to the symmetry energy part of the nuclear binding energy

Csym
T . [38] The description most often used, which keeps the leading order terms in N and
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Z, and assumes the temperature to be the same in the two systems being compared, is:

α =
∆µn
T
≈

4Csym

T

[(
Z1

A1

)2

−
(
Z2

A2

)2
]

(2.18)

β =
∆µp
T
≈

4Csym

T

[(
N1

A1

)2

−
(
N2

A2

)2
]

(2.19)

∆µn (∆µp) refers to the difference of the neutron (proton) chemical potential between the

two emitting sources, and are approximated by the neutron and proton separation energies.

These expressions are produced in the context of several statistical models [35], but exper-

imentally, some ambiguity remains. Equations 2.18 and 2.19 show that α and β do not

depend linearly on the isospin asymmetry of the emitting source. In the previous study of

isospin diffusion, [33], it was assumed that this expression might be linear with the asym-

metry of the composite system as it is difficult to determine the asymmetry of the emitting

system.

An alternative picture can be described in terms of scaling with the mass and neutron

excess as opposed to the neutron and proton number. It is a simple transformation, but has

some useful features. In this case α and β are replaced with α′ and β′, which are the scaling

coefficients for mass and neutron excess, respectively:

R′21(A,N − Z) =
Y2(A,N − Z)

Y1(A,N − Z)
= C ′e

(
α′A+β′(N−Z)

)
(2.20)

where

α′ =
(α + β)

2
(2.21)

β′ =
(α− β)

2
(2.22)
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and in this alternative point of view, the results are related to the isospin composition by:

α′ =
∆(µn + µp)

2T
≈
−Csym

T

(
δ2
2 − δ

2
1

)
(2.23)

β′ =
∆(µn − µp)

2T
≈

2Csym

T
(δ2 − δ1) (2.24)

This alternative isoscaling was suggested originally in [39] where isoscaling (of light frag-

ments) was studied with multifragmentation reactions induced by light ions. In that study,

it was noted that the absolute magnitudes of α and β were similar, so α′ was small although

was measureably positive. In [40], “isobaric scaling” was studied, where the yield for a

constant A was fit as a function of N − Z when measuring heavy residues from projectile

fragmentation. In this study, β′ was shown to have similar behavior to α, but α′ was as-

sumed to be negligible. The choice may seem simply notational, but one method may have

advantages. For instance, when studying projectile fragmentation the temperature could be

approximated by a linear function of the fragment mass:[41]

T (A) =To + T1

(
A

Aproj

)
(2.25)

From the point of view of measuring isoscaling of heavy residue yields from projectile frag-

mentation, especially over a large range of Z and A, a varying temperature would result in

a systematically varying α and β. When fitting the isobaric yield ratios as a function of

N − Z, because isotopes of a fixed mass likely come from a single temperature, the isoscal-

ing trend may be more reliable. It is possible to extract a slope for each fragment mass,

β′(A), and a slope for for each neutron excess, α′(N − Z). With the “normal” isoscaling
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variables, α(Z) and β(N) can be extracted. In the ideal case, the formulations are identical

and interchangeable. In the experiment, both are potentially useful.

Another consideration is that of the possible isoscaling variables, only β′ = (α−β)/2 has

a linear dependence on δ, which makes it appealing for use with the isospin transport ratio.

Also, one very interesting relationship appears when taking the ratio of the α′ and β′ from

2.23 and 2.24:

α′

β′
=
α + β

α− β
=
δ1 + δ2

2
= δ̄ (2.26)

Since the T and Csym cancel, this ratio would probe the average asymmetry between the

two reactions directly, without relying on a calibration of the temperature. Since in this

experiment the reference reaction (reaction “1”) is 112Sn+112Sn, the average asymmetry is

a measure of the asymmetry of the compared reaction (reaction “2”). The isospin transport

ratio calculated with this observable is useful to understand the systematics of the isoscaling

behavior in projectile fragmentation.

This dissertation seeks to use isoscaling as an observable for the isospin transport ratio

to measure isospin diffusion between 112Sn and 124Sn. In addition, a secondary goal is to

verify the relations with α and β with δ.

2.3.2 Previous measurement of Isospin Diffusion at NSCL

The present study is a continuation of a long program at NSCL to constrain the symmetry

energy part of the nuclear EoS. [42] Isospin diffusion was used successfully for this purpose in

[33]. In that experiment, the four reactions 112Sn+112Sn, 112Sn+124Sn, 124Sn+112Sn, and

124Sn+124Sn at 50 MeV/u were studied. The experiment combined the Miniball-Miniwall
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Reaction α RI(α)
112Sn+112Sn
112Sn+112Sn

0 -1
112Sn+124Sn
112Sn+112Sn

0.16± 0.02 −0.45± 0.05
124Sn+112Sn
112Sn+112Sn

0.42± 0.02 0.47± 0.05
124Sn+124Sn
112Sn+112Sn

0.57± 0.02 +1

Table 2.1 Neutron isoscaling parameter α and isospin transport ratio measured in the
previous NSCL Isospin Diffusion experiment.

array with the Large Area Silicon Strip Array (LASSA) (both described in Chapter 3) and

an additional annular Silicon-CsI detector at very forward angles, and the purpose was to

measure isoscaling of intermediate mass fragments (IMF’s) from the the Sn+Sn collisions.

The data that was used to form these isoscaling ratios was selected to be “mid-peripheral”,

by requiring b/bmax > 0.8 and y/ybeam > 0.7 where b is the scattering impact parameter and

y is the rapidity. The purpose of this impact parameter selection is to select collisions

where the nucleons can be exchanged between the target and the projectile. If more central

collisions were included, the data would contain fragments emitted from multifragmentation

of the entire combined Sn+Sn system, which would represent isospin equilibrium.

IMF yields were measured for 3 ≤ Z ≤ 8, and the fragments were fit using the standard

three parameter isoscaling formula. Results are published in [34, 33]. For example, the

isoscaling parameter α that was extracted is listed in Table 2.1. The result obtained was

RI(α) = +0.47 ± 0.05 for the 124Sn+112Sn system and RI(α) = −0.45 ± 0.05 for the

112Sn+124Sn system. The interpretation of this result is that the system evolved roughly

halfway to isospin equilibrium during the collision.
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2.3.3 A New Measurement of Isospin Diffusion

The focus of this dissertation is a new measurement of isospin diffusion using the isoscaling

parameters extracted from heavy projectile-like fragment yields. The experiment is described

in detail in Chapter 3.

There were several shortcomings in the previous isospin diffusion experiment that are

meant to be addressed in this study. One issue with measuring isoscaling of IMF’s is that

the yields for these fragments are relatively low. Because the LASSA array only covers a small

portion of the possible scattering angles, the efficiency for detecting these fragments is quite

low as well. As an alternative way of probing the isospin asymmetry of the projectile like

fragment, heavy projectile-like fragments can be measured at very forward angles. Projectile

fragmentation cross sections are high; a semi-peripheral collision will very likely result in

producing a heavy fragment. Higher cross sections (as well as many more data points)

will allow for much higher statistics. The properties of the heavy fragments are also more

directly connected to those of the excited primary source. The yields of IMF’s can be

influenced by various reaction mechanisms which can obscure the isospin diffusion signal.

Various measurements [37, 43, 44] of isoscaling from heavy projectile-like fragments also

provide some confidence that this type of study can be used with good precision. In addition

to logistical advantages, theoretical calculations suggest that the heavy residues may have a

different sensitivity to the symmetry energy than the IMF’s [45].

Another nice feature of the measurement of heavy residues is that heavy fragments only

result from peripheral collisions. This will allow for an additional measure of the centrality

of the collision: higher Z fragments come from more peripheral collisions. In addition, the

measurement of the impact parameter will be more reliable, with an improved method for
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normalizing the beam current and total reaction cross sections. A reliable extraction of

the impact parameter being probed in the experiment is important in the comparison to

theoretical calculations.

Finally, this experiment will attempt to verify the relationships of the isoscaling parame-

ters α and β with the N
Z or δ of the emitting source. This will be accomplished by measuring

a data set for the 118Sn+118Sn in addition to the 112Sn+112Sn and 124Sn+124Sn reactions.

The 118Sn+118Sn system represents a data point approximately midway between the other

two symmetric systems, and should give an independent measure of “isospin equilibrium”.

In other words, by examining the trend of the isoscaling observables with the increasing

asymmetry of the different Sn isotopes, the isoscaling relationships described in this chapter

can be tested. Measuring additional combinations with the 118Sn isotope may also help to

constrain other effects that affect the isospin content, such as isospin migration.

2.4 Transport Calculations

When studying the nuclear equation of state, physical quantities are rarely probed directly.

Normally, an observable is measured in the laboratory and the results are then compared to

a realistic simulation. The input parameters of the model calculation are varied to find the

best agreement with the data before drawing any physical conclusions. This requires a model

that can not only reliably reproduce experimental quantities, but has physically motivated

input parameters. A phenomenological model is less useful because some model parameters

may not be physically meaningful, and the models may not contain all of the physics involved

in the collisions. When using heavy ion collisions to study the EoS, the collision process has

a large number of degrees of freedom so the calculations are computationally demanding.
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Nonetheless, the models must be sufficiently complex so that the microscopic physics is

treated realistically.

For this study, the ImQMD model is used [46, 47, 48]. This is a variation in the class of

Quantum Molecular Dynamics (QMD) models. Molecular Dynamics models were developed

to describe molecular systems, but the method has been adopted in nuclear physics as well.

In QMD, each nucleon is represented by a gaussian wave packet which moves semi-classically

subject to a self-consistent mean field. The width of the gaussian wave packet is an important

parameter in the simulations, and its value is fixed during the reaction. For system with

different sizes, a phenomenological formula was proposed to parametrize the width of wave

packet:

σ2
r =

σ2
r,Aproj

+ σ2
r,Atarget

2
(2.27)

where

σ2
r,A =

(
0.16A1/3 + 0.49

)2
fm2. (2.28)

QMD keeps track of the correlations between N nucleons, compared to BUU-type models

[49]. As a result, it is more computationally demanding than BUU. The single particle phase

space distribution function is given by:

fi(~r, ~p) =
1

(π~)3
exp

(
−(~r − ~ri)2

2σ2
r
− (~p− ~pi)2

2σ2
p

)
(2.29)
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where σr and σp are the position and momentum wave packet widths. The specific details

of the QMD model are well documented elsewhere [46, 47, 48] and are not critical to this

study.

Because the models are semi-classical, the Pauli exclusion principle has to be included

at least in an approximate way, which is referred to as “Pauli blocking”. There are many

different versions based on the QMD model, which usually differ by the method that they

handle “Pauli blocking”. In Antisymmetrized Molecular Dynamics [50, 51], each nuclear

system is represented by a Slater determinant of gaussian wave packets, which satisfies

the Pauli principle. This leads to a much more computationally intensive model, so AMD

calculations for very large systems are not commonly performed. The CoMD formulation

[52] addresses Pauli blocking by placing a limit on the phase space occupation density; if

a particle travels into occupied phase space, the particle is scattered. If Pauli blocking is

ignored in the model, the system will evolve towards a classical thermodynamic limit, which

is not applicable to finite nuclei.

The Improved Quantum Molecular Dynamics Model (ImQMD) was originally developed

for the description of fusion processes near the coulomb barrier [46]. ImQMD uses isospin

dependent nucleon-nucleon scattering cross sections; the cross section for protons is different

than for neutrons. The critical input to ImQMD is the form of the mean field potential

that dictates the evolution of the nucleonic wave packets. Recently, ImQMD05 [47] has been

modified to study the Nuclear EoS using heavy ion collisions. In ImQMD05, the symmetric

part of the nuclear potential can be taken from the Skyrme force [10]:

Vloc =
α

2

ρ2

ρ0
+

β

η + 1

ρη+1

ρ
η
0

+
gsur
2ρ0

(∇ρ)2 (2.30)
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where α, β, η, ρ0, and gsur are parameters of the model and are related to the standard

Skyrme parameters. In the case of ImQMD05, the goal is to study the density dependence of

the symmetry energy, so a simple power law dependence is adopted for the potential energy

part of the symmetry energy density:

εsym =
Csym

2

(
ρ

ρ0

)γ
ρδ2 (2.31)

which allows for simple control of the symmetry energy. High values of γ (γ > 1) are labeled

“stiff” and lower values (γ < 1) are labeled “soft”.

ImQMD05 was used successfully in determining constraints on the symmetry energy from

heavy ion collisions. Measurements of isospin diffusion using isoscaling of intermediate mass

fragments and 7Li/7Be yield ratios were reproduced by ImQMD calculations of the average

isospin asymmetry in collisions at several impact parameters [34]. The “double-ratio” of

neutrons to protons in central collisions of 112Sn+112Sn and 124Sn+124Sn presented in [53]

was also reproduced by calculations with ImQMD05 in [54]. The extracted constraints on

the density dependence of the nuclear symmetry energy are summarized in [42].

A newer version of the ImQMD model, ImQMD-Sky, was developed to utilize an even

more realistic nuclear interaction [48]. A more detailed Skyrme potential is used, but the

spin-dependent part of the potential is neglected because this is thought to be a minor

contribution. The momentum dependence of the nuclear mean field is included as:

Vmd =

∫
d3pd3p′

[
Cof(~r, ~p)f(~r, ~p ′)

(
~p− ~p ′

)2]
(2.32)

+

∫
d3pd3p′

[
Do

(
fn(~r, ~p)fn(~r, ~p ′)

(
~p− ~p ′

)2
+ fp(~r, ~p)fp(~r, ~p

′)
(
~p− ~p ′

)2)]
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where C0 and D0 are each directly a function of the parameters of the Skyrme force and the

local part of the nucleonic energy density is

Vloc =
α

2

ρ2

ρ0
+

β

η + 1

ρη+1

ρ
η
0

+
gsur
2ρ0

(∇ρ)2

︸ ︷︷ ︸
Symmetric Matter

(2.33)

+
gsur,iso
ρ0

[
∇
(
ρn − ρp

)]2
+
(
Asymρ

2 +Bsymρ
γ+1

)
δ2︸ ︷︷ ︸

Asymmetric Matter

and the parameters α, β, η, γ, gsur, gsur,iso, Asym, Bsym can be obtained from the normal

Skyrme interaction parameters. The benefit of using the Skyrme interaction is that the

Skyrme potential has been developed to describe nuclear structure properties, which provides

some confidence that the physics is properly treated. In addition, the Skyrme parameter sets

are easily interchanged and a different interaction can be used. Using the Skyrme interaction

allows more degrees of freedom in describing the interaction, but these effects can be hard

to understand intuitively. One way to picture the momentum dependent interaction is with

the concept of an effective mass. The effective mass can be introduced to describe how

the potential energy depends on the momentum. This can be pictured by writing down

Hamilton’s equation:

ẋ =
∂H

∂p
=
∂T

∂p
+
∂V

∂p
(2.34)

=
p

m
+
∂U

∂p
(2.35)

=
p

m

(
1 +

m

p

∂U

∂p

)
≡ p

m∗
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Name ρ0 (fm−3) E0 K0 S0 L Ksym m∗/m m∗n/m m∗p/m
SLy4 0.160 -15.97 230 32 46 -120 0.69 0.68 0.71
SkI2 0.158 -15.78 241 33 104 71 0.68 0.66 0.71
SkM∗ 0.160 -15.77 217 30 46 -156 0.79 0.82 0.76

Gs 0.158 -15.59 237 31 93 14 0.78 0.81 0.76

Table 2.2 Effective physical quantities resulting from the parameter sets used in this study.
These quantities are calculated from the interaction at nuclear saturation density.

where m∗ is the effective mass. m∗
m represents the overall effect of the momentum dependence

of the nuclear potential. m∗n and m∗p are not free parameters of the interaction, but result

from of the choice of the Skyrme parameter set. It is also a function of the local nucleon

density. The effective mass at saturation density is approximately 30% lower than the free

nucleon mass. This “effective mass splitting” is a measure of how the momentum dependence

can affect the symmetry energy part of the nuclear interaction, and therefore can affect

isospin-sensitive observables.

In this dissertation, calculations with both versions ImQMD05 and ImQMD-Sky have

been performed. For ImQMD05, γ’s from 0.5 to 2.0 were used. For ImQMD-Sky, the

four parameter sets that will be shown are SLy4, SkI2, SkM∗, and Gs. The saturation

parameters for the four Skyrme parameter sets are shown in Table 2.2.

Although isospin diffusion is mainly influenced by the density dependence of the symme-

try energy, the momentum dependence of the nuclear interaction (reflected in the effective

mass splitting) can also affect the isospin transport ratio [45]. By examining calculations

with a varying symmetry energy density dependence (ImQMD05), as well as calculations

with several accepted Skyrme parameter sets (ImQMD-Sky), the best picture of the isospin

dynamics can be obtained. The results of the calculations will be shown in Chapter 5.
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Chapter 3

Experimental Setup

3.1 Overview of Experiment

This experiment was performed at the Coupled Cyclotron Facility (CCF) at the National

Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). The

experiment utilized primary beams of 112Sn, 118Sn, and 124Sn from the K1200 Cyclotron

at 120 MeV/u. The energy of the primary beam was degraded using the A1900 fragment

separator, which resulted in beams with an energy of 70 MeV/u with a momentum width

of ±0.125%. These beams were transported from the A1900 to the target position in the S3

vault at the pivot point of the S800 Spectrometer. The beams were impinged on isotopically

enriched (> 99.5% purity) targets of 112Sn, 118Sn, and 124Sn. The thicknesses of the targets

used are shown in Table 3.1. Using the Miniball-Miniwall array as an indirect beam monitor,

the beam rate on target was determined to be between 2× 107s−1 and 6× 107s−1.

Target Thickness
(
mg

cm2

)
Number Density

(
1019 atoms

cm2

)
112Sn 5.940 3.19
118Sn 6.316 3.22
124Sn 5.512 2.68

Table 3.1 Target thicknesses.
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Figure 3.1 Schematic of the scattering chamber, showing the Miniball-Miniwall and the
LASSA array. The beam enters from the left, and the heavy residues exit to the right into
the S800 spectrometer.

The experimental apparatus included three separate detector systems: the MSU Miniball-

WashU Miniwall array, the LASSA array, and the S800 spectrometer. A schematic drawing

of the target chamber is shown in Figure 3.1.

The reaction targets were located at the center of the Miniball, and charged particles from

reactions in the target were detected in the Miniball and in the LASSA array, while heavy

residues passed through the scattering chamber to be detected in the S800 spectrometer.

Additionally, a thin scintillator (made from BC-408 scintillator material) was located ap-

proximately 0.75 meters from the target position. This thin scintillator was used to measure

the time-of-flight (TOF) of heavy fragments through the S800.

The combination of several complex detector systems poses unique challenges. The ex-

periment uses stable beams and the reactions of interest have large cross sections, so the
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rate limiting factor was the throughput of the data acquisition system. To help limit the

dead-time associated with each event, the electronics were separated into three distinct data

acquisition systems (LASSA, Miniball-Miniwall, S800). Each event was time-stamped and

the resulting data files were merged offline. This allowed each system to digitize signals

in parallel, which decreased the dead-time. In this configuration, the dead-time is dictated

by the dead-time of the slowest system. The resulting live-time was 70% or greater when

reading up to 500 events/second.

To record the timestamp for each event, each of the three systems contained an XLM72

configured as a 64-bit scaler. This scaler was incremented by a signal from a 100MHz clock

module which was reset at the beginning of each run. To combine the data offline, the

timestamp of the event recorded in each detector system were matched up event-by-event.

A negligible number of events were lost in this merging procedure. In order to verify that

the three systems were timestamped correctly online, certain reference signals were recorded

in each system, which could be compared directly without merging the data.

During the experiment, the trigger for the data acquisition system was a coincidence

of the S800 spectrometer (derived from the E1 timing signal), with the multiplicity trigger

from the Miniball-Miniwall array (multiplicity ≥ 2). The LASSA array was not part of

the trigger, and its data was only taken along with the S800 and the Miniball-Miniwall. In

the end, seven different Sn+Sn reaction systems were measured, and the amount of events

recorded in each system are shown in Table 3.2.
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Reaction System Events (Millions)
112Sn+112Sn 11.4
112Sn+124Sn 8.7
118Sn+112Sn 3.8
118Sn+118Sn 10.7
124Sn+112Sn 12.3
124Sn+118Sn 10.1
124Sn+124Sn 15.2

Table 3.2 Statistics obtained from each reaction system, combining the three magnetic
settings of the S800 spectrometer.
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3.2 S800 Spectrometer

The S800 spectrometer [55] was used in this experiment to measure the heavy residual frag-

ments from 112,118,124Sn+112,118,124Sn collisions. The S800 consists of two dipole magnets

that are capable of bending fragments up to 4.0 T·m. The momentum acceptance is ≈ 5%

and the angular acceptance is about 20 msr. In this experiment, the S800 is operated in

focused mode, where the beam is focused at the target position, and the fragments are dis-

persed by their magnetic rigidity in the focal plane. The S800 can identify the mass and

charge of these fragments by using the ∆E-TOF-Bρ method, described in Section 4.2.

The measurement of the heavy fragments begins when the fragments pass through a

100µm plastic scintillator located about 0.75m downstream of the target. A rectangular hole

was cut out of the center of the scintillator to allow the beam to pass through, undegraded.

Otherwise, the 112Sn beam would have been deflected into the S800 focal plane. If the full

beam intensity entered the focal plane, the focal plane detectors would have been damaged.

The scintillator itself would also deteriorate quickly if the beam was impinged on it. The

effect of this hole on the results is discussed in more detail in Appendix C.

The focal plane consists of several detectors that are used to provide kinematical informa-

tion about the detected fragments. A schematic drawing of the focal plane is shown in Figure

3.2. First, the fragments pass through two Cathode Readout Drift Chambers (CRDC’s) [56].

Each provides a position measurement in two dimensions. Each CRDC is approximately 30

cm by 59 cm wide, and is about 1.5 cm thick in the beam direction. They are filled with a gas

mixture that is 80% CF4 and 20% C4H10 at 140 Torr. The gas volume is isolated from the

vacuum by thin windows made from 12µm thick PPTA, a polymer similar to kevlar. When

a particle passes through the gas volume, the gas is ionized and the ionization electrons are
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Figure 3.2 Schematic drawing of the S800 focal plane. Figure is taken from [57].

drifted by an electric field. They are avalanched on anode wires that run perpendicular to the

beam direction, which induces a charge on the cathode pads. Each CRDC has 224 pads that

register the induced charge from the avalanching electrons. The induced charge is spread

over about 10 pads in a roughly gaussian distribution By fitting the charge distribution, the

position in this dimension (the “dispersive” direction) can be determined with a resolution of

σ < .5 mm. By comparing the time that the signal arrives to a fixed reference, the position

in the non-dispersive direction can be determined. A schematic drawing of the CRDC’s is

shown in Figure 3.3.

After the CRDC’s, the fragment enters the ionization chamber, where they lose a signifi-

cant portion of their energy. The atomic charge Z of the heavy fragment is determined using

the energy loss measured in this detector. Like the CRDC’s, the S800 ionization chamber
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Figure 3.3 Schematic drawing of the CRDC’s in the S800 focal plane. Figure is taken from
[58].
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is a gas-filled detector, filled with 300 Torr of P10 gas. (90% Ar, 10% Methane). It is seg-

mented into 16 separate volumes, and the ionization in each volume is measured individually.

The ionization chamber is segmented to decrease the overall noise in the combined signal.

Each segment has 1/16th of the electronic noise of the total volume, but the noise adds in

quadrature and not additively.

The fragments then deposit most or all of their remaining energy in a 30cm by 59cm wide,

1mm thick scintillator, called the E1 scintillator. The timing signal from the E1 scintillator

is subtracted from the timing signal from the scintillator in the target chamber to give the

time-of-flight through the S800. The time-of-flight is used to identify the heavy fragments by

their mass-to-charge ratio. The scintillator has an EMI 9807B photomultiplier tube at each

end. In this experiment, only information from the high-momentum side was used, because

this side provided the experimental trigger.

Finally, the highest energy fragments deposit any remaining energy in a 4 by 8 array of

32 CsI(Na) scintillators, which are each read out with a Hamamatsu model R1307 photomul-

tiplier tube [59]. It can be seen at the end of the focal plane in Figure 3.2. The hodoscope

was commissioned shortly before this experiment. Its purpose is to provide an additional

measurement of the fragment energy. The total energy is needed to distinguish fragments

that are not fully stripped of electrons. The analysis of the data from the hodoscope is

described separately in Appendix B.

In order to reconstruct the full momentum distribution of the heavy fragments, three

different magnetic settings were used in the S800. The range of isotopes that are measured

in this experiment was determined by the choice of magnetic rigidity. For a given velocity,

very neutron-rich fragments have high magnetic rigidity, and neutron-poor fragments have

low magnetic rigidity. The least rigid beam species is 112Sn, with Bρ = 2.745 T·m. To
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prevent any charge states of the primary beam from entering the focal plane, measurements

were made at 2.40, 2.51, and 2.60 T·m. This also means that the fragments that were

measured are more neutron-poor than 112Sn, because the fragments will all have similar

velocity.

3.3 Large Area Silicon Strip Array (LASSA)

The Large Area Silicon Strip Array (LASSA) was used to detect and identify light particles

and intermediate mass fragments (IMF’s) up to Carbon [60]. The LASSA array, for this

experiment, was made up of eight telescopes, each consisting of a 500 µm double-sided

silicon strip detector in front of a group of four CsI(Tl) crystals. A schematic of the LASSA

array is shown in Figure 3.4. The silicon DSSD is segmented into 16 strips on each side, with

the front strips orthogonal to the back strips. When a charged particle passes through the

silicon wafer, a signal is induced in one back strip and one front strip. The overlap between

the triggered front and back strip defines a pixel, a 3mm by 3mm square. The position of

the pixel can be used to determine the scattering angle of the detected particle. The identity

of the particle can be determined by comparing the signal measured in the silicon detector

with the signal measured in the CsI crystal. Using this method, isotopic identification can be

obtained up to oxygen isotopes, but in this experiment the dynamic range of the electronics

was chosen to measure through Carbon.

The LASSA array, with 8 telescopes, contains 256 individual silicon detector strips. Each

detector strip was connected to a charge sensitive amplifier (CSA), which was located near

the detectors inside the vacuum chamber. The CSA’s were built specifically for the LASSA

array, and are described in detail in [60]. The electronics used to process the signals from
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Figure 3.15: A schematic of the detectors in a LASSA telescope, showing how front andFigure 3.4 Schematic drawing of the LASSA array. Figure is taken from [61].

the LASSA silicon detectors were Application-Specific Integrated Circuits (ASIC) [62], which

were specifically developed for use with silicon strip detectors such as LASSA (or HiRA [63]).

The advantages of using these high-density ASIC electronics are their relatively low cost and

the low space requirements for instrumenting the array. Because the ASIC’s are designed

for sparse readout (only channels which are above threshold are recorded), many channels

can be instrumented without drastically increasing the dead-time of the system.

The dynamic range of the ASIC electronics is limited, which limits the range of elements

that could be isotopically identified. To solve this problem, the signals were recorded with

two gain stages. The signal from the high-gain charge-sensitive preamplifier was resistively

split and one signal was attenuated by a factor of four. The high gain setting was optimized

for distinguishing isotopes of hydrogen and helium, and the low gain setting was chosen to

identify isotopes through carbon. This method has since been used in several experiments
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Figure 3.5 Photo of the LASSA array. The forward rings of the Miniball and Miniwall are
shown on the left side, and the eight LASSA telescopes are shown on the right side.

with the HiRA array [64]. The number of channels (512) was manageable compared to the

full suite of HiRA detectors which requires nearly 2000 channels.

The LASSA array took the place of the right side of the forward part of the Miniball-

Miniwall Array. A photo of the LASSA in the experimental configuration is shown in Figure

3.5. During the experiment, the silicon detectors were covered with a thin Mylar foil to

prevent light leaks as well as several layers of Sn-Pb foil to absorb electrons ejected from the

target.

An important feature of DSSD’s is the pixel structure that results from the perpendicular

front and back strips. The position of the pixel determines the scattering angle of a particle

if the position of the detector relative to the target is measured. The position of the LASSA

array was measured using a portable coordinate measuring machine (CMM) arm, commer-

cially available under the brand name ROMER. This arm is capable of measuring positions in
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three dimensions in an approximately 1m radius with a precision of < 100µm. The ROMER

arm measures the position of a probe tipped with a 3mm ruby sphere. By measuring data

points along a surface, 3 dimensional features (planes, spheres, cylinders, etc.) can be con-

structed. Because the ROMER arm requires physical contact with a surface, the position

of the silicon detectors was determined by measuring the position of the aluminum housing

of the telescope. The pixel positions were then found using the CAD design parameters of

the LASSA telescope. The positions are first measured in the local coordinate system of

the ROMER arm, and are then transformed into the NSCL global coordinate system. The

beamline and S800 are aligned to this reference frame, so the angles with respect to the

beamline can be determined. The measured positions are shown in Figure 3.6.
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Figure 3.6 Angles of each pixel for the eight LASSA telescopes, extrapolated from measure-
ments with ROMER Arm. Angles are calculated with respect to the measured beamline.
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3.4 Miniball/Miniwall Array

The MSU-Miniball [65] was developed to study multifragmentation induced by heavy ion

collisions. In its original configuration, it consisted of 188 individual detectors, covering 89%

of 4π. It consisted of 11 azimuthally symmetric rings of detectors, and each ring is mounted

separately on a pair of rails along the beam direction. Heavy ion collisions at intermedi-

ate energies require high granularity at forward angles, because the reactions produce high

charged particle multiplicity at forward directions. To address this, the Miniwall array was

built at Washington University [66]. The Miniwall replaced the forward two rings of the

Miniball with 6 new rings. The Miniwall detectors are functionally similar to the Miniball

detectors. As opposed to being mounted on individual ring structures, the Miniwall de-

tectors are all mounted from a single metal base. The Miniwall detectors are significantly

further from the target, and are more densely packed, which allows for a significant increase

in granularity. The Miniwall is shown, with the first two miniball rings, in Figure 3.7, and

the full Miniball-Miniwall assembly is shown in Figure 3.8.

Each detector has two active elements: a thin, fast plastic scintillator in front of a

2cm thick CsI(Tl) scintillator crystal. This configuration is called a phoswich (“phosphor

sandwich”), and the light produced in the scintillators is measured by a photomultiplier

tube. A schematic of a single detector is shown in the left side of Figure 3.9. The two

scintillating elements have different time responses, so that signals in the fast scintillator

can be disentangled from the CsI by comparing the signal at different regions in time. The

right side of Figure 3.9 shows the structure of the output of a Miniball-Miniwall detector.

Specifically, elements with higher Z will lose a larger portion of their energy in the fast

scintillator compared to the CsI, and so the ratio of Fast:Slow will be larger. In addition,
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Figure 3.7 Forward part of the Miniball-Miniwall array, in the configuration used for this
experiment. The two most forward rings of the Miniwall are not used.

for light particles (H and He), the shape of the pulse depends weakly on the Z and A of the

incident particle. By comparing the Slow and Tail signals, the shape can be used to identify

isotopes of H and He.

The Miniball-Miniwall electronics, for this experiment, consisted of 12 banks of 16 chan-

nels (192 channels), and for each channel, four signals needed to be digitized. (Fast,Slow,Tail,

and Time). Detailed diagrams of the Miniball electronics are shown in [61] and [68], and

the electronics used in this experiment were designed in the same way. Table 3.3 shows the

geometric coverage of the Miniball-Miniwall array that was used during this experiment.

Because many detectors had to be removed to allow the LASSA array to be mounted, the

coverage of the remaining array adds up to 77% of 4π.

For the purposes of this dissertation, the Miniball-Miniwall array functions as a charged

particle counter. By simply counting the number of detectors that are above threshold,

44



Figure 3.8 Fully assembled Miniball-Miniwall array, showing the backward rings. The beam
in incident from the left, and the target is at the geometric center of the miniball.

Fast Slow Tail

33ns 180ns 540ns 1.5µs 3µs

Time

0

Figure 3.9 Left: Schematic of a Miniball detector [65]. Right: Schematic showing the time
structure of a Miniball signal [67]. The three shaded regions represent the time windows
wherein the Fast, Slow, and Tail signals are integrated by the Charge ADC’s.
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Ring # # of Detectors θ◦ ∆Ω (msr)
3(MW) 10/22 10 2.59
4(MW) 12/26 13 2.85
5(MW) 11/24 16.625 5.56
6(MW) 11/24 21.875 10.64

3’ 13/28 28 11.02
4 10/24 35.5 22.9
5 13/24 45 30.8
6 15/20 57.5 64.8
7 20/20 72.5 74
8 16/18 90 113.3
9 14/14 110 135.1
10 12/12 130 128.3
11 8/8 150 125.7

Total 165/264 - 9712 (77% of 4π)

Table 3.3 Geometric parameters of the Miniball-Miniwall array used in this experiment.

the approximate charged particle multiplicity can be determined. The charged particle

multiplicity can be related to the impact parameter, which is described in detail in Section

4.5. The more complex functions of the Miniball, like the particle identification or energy

calibration, are not used in this dissertation, but can be used in the future for further analysis.

For example, the total transverse energy can be used as a measure of the centrality of the

collision as well [69].
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Chapter 4

Data Analysis

4.1 Detector Calibrations

4.1.1 Ionization Chamber

The purpose of the S800 ionization chamber is to provide a measure of the energy loss that

a fragment experiences, which gives information about the atomic number of the fragment.

(see Section 4.2) The ionization chamber is segmented [56] into sixteen separate sections,

which reduces the overall signal resolution. The 16 signals are gain matched so that the

signal from the primary beam is equal in each segment. To combine the signals from 16

anodes, the signals are simply summed (and divided by 16, to keep the numbers on the same

scale).

∆Esum =
1

16

16∑
i=0

∆Eraw,i (4.1)

The main calibration that needed to be applied to the ionization chamber was a correction

for the drift of the gain, due to a systematic shift of the gas pressure during the experiment.

The pressure of the P10 gas was nominally set at 300 Torr, but due to a problem in the

gas handling system, the gas pressure drifted between 300 and 330 Torr. The pressure was
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Figure 4.1 Gas pressure in the S800 ionization chamber, as a function of time. The pressure
deviated from the set pressure of 300 Torr throughout most of the experiment.

recorded by the gas handling system so an empirical correction is made run-by-run. The

trend of the pressure as a function of time is shown in Figure 4.1.

The drift of the gas pressure would affect the resolution of the particle identification

spectrum in a given beam-target-Bρ setting, since the gain would drift proportionally. The

effect is particularly problematic during the data taken with the 112Sn beam, since each

Bρ setting was measured in two segments, with appreciably different gas pressures. The

correction is based on the concept that the amount of ionization will depend on the volume

number density in the gas, which is directly proportional to the gas pressure. A first order

correction can be obtained by simply scaling the energy loss with the fractional change in

the pressure:

∆E =
∆Esum

1 + P−300
300

(4.2)

but an empirical scaling factor for the pressure was determined, so that the resulting

correction was
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Figure 4.2 Left Panel: Uncorrected ionization chamber energy loss vs. gas pressure, gated
on 75Br. Several different reactions at Bρ = 2.6 are shown to sample the range of pressure
from 300-335 Torr. Right Panel: Same as left, but with the correction from Equation 4.3
applied.

∆E =
∆Esum

1 + (.00394) · (P − 300)
(4.3)

The correction was found by fitting the trend of the energy loss with the measured

pressure. Since any one setting only sampled a small range of pressure, many settings had

to be used. The result of the correction for pressure is shown in Figure 4.2. This energy loss,

corrected for pressure, is the quantity used for particle identification in Section 4.2.

4.1.2 Hodoscope

The hodoscope at the end of the S800 focal plane consists of 32 CsI(Na) scintillator crystals,

arranged in a 4x8 array, and is used to measure the total kinetic energy of the fragment

detected in the focal plane. During the experiment, the gas was removed from the CRDC’s

and the ionization chamber, and the beam was scanned across the face of the detectors.

This supplied a monoenergetic signal to match the gain of all the crystals. Since only one
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Figure 4.3 Top Panel: Raw hodoscope signals for each crystal, when scanning the 124Sn
beam across all detectors. Bottom Panel: Same as top, with all crystals gain matched.

calibration point was possible, and the light output of CsI depends on the species of the

fragment, all channels are simply scaled to have the same peak value. This calibration is

shown in Figure 4.3. When calibrating to a true energy scale, a non-linear function must

be applied, as described in [70]. The hodoscope did not perform as expected during this

experiment so the hodoscope data were not used. Further analysis with the hodoscope is

described in Appendix B.

4.1.3 Cathode Readout Drift Chambers (CRDC’s)

The S800 spectrometer has a dispersive focal plane: a fragment’s position in the focal plane

determines its magnetic rigidity, or momentum. Two CRDC’s are used to measure the

position of the incoming fragment in two dimensions, at two planes separated by about 1m.

These detectors provide critical information about the detected fragments, because these

position measurements allow for the particles trajectory to be traced back to the target
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position. The inverse mapping is described in Section 4.1.4. This section describes the

calibration of the position information from the CRDC’s.

The x (dispersive) positions are measured by analyzing the charge induced on an array of

224 pads. Pads which are missing, have saturated signals, or otherwise marginal performance

are excluded. Charge is induced on many pads, and the corresponding position can be

extracted with a resolution that is better than the pad pitch. This position can be extracted

either by using the center-of-gravity of the charge distribution or by fitting. Since both

of these methods involve comparing the amplitudes of neighboring pads, a procedure was

implemented to match the gain of all the pads. For each pad, the charge induced on the pad

was compared to the energy loss in the ionization chamber. Each pad signal was matched

to the energy loss in the ionization chamber, actually using a non-linear function to fix

the saturation of some pads. The result of this, for the first CRDC, is shown in Figure

4.4. Although the linearity correction is probably unnecessary for the precision needed in

this experiment, this procedure may be useful for experiments requiring very high precision

angular resolution.

Fitting the charge distribution as opposed to using center-of-gravity was found to be

much more precise when commissioning the CRDC’s, so that method is used in this analysis

[56]. This distribution is sampled for each event, and an example of this fitting for a single

event is shown in Figure 4.5. The fit yields a pad value, which is converted into an x position

using the pad pitch (2.54mm/pad).

The exact calibration of the dispersive position can be verified using data from mask

runs, but in general, the calibration of this dimension does not change, since the CRDC pads

are fixed in space from one experiment to the next. The calibration of the non-dispersive

position does change from one experiment to the next, and even throughout an experiment.
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Figure 4.4 Top Panel: Maximum raw pad signals vs. pad number for one run in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm. Bottom Panel: Same as top, but pads are
gain matched and corrected for non-linearity. Sloped cutoff at low channels corresponds to
a threshold in the E1 scintillator, which is used as the S800 DAQ trigger.
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Figure 4.5 Induced pad signal vs. pad number for one (typical) event in the 112Sn+112Sn
reaction system at Bρ = 2.4 Tm. A gaussian fit to the data is shown, and the dotted line
indicates the extracted centroid of the event.
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The non-dispersive position is obtained by using the drift time of the electrons from the

ionization track along an electric field in the non-dispersive direction. This measurement is

sensitive to variables such as the gas pressure and the purity of the detector gas, which vary

with time. The calibration is obtained by inserting a tungsten mask into the path of the

fragments. The mask was located approximately 10 cm in front of each CRDC. The mask

was machined with precise holes and slots to allow fragments to pass through at specific

positions. A CAD drawing of the CRDC mask is shown in Figure 4.6. When the mask is in

place, only fragment which travel through the holes/slots will be detected.

When calibrating the position, there are two minor complications. One complication

comes from the finite spacing between the CRDC and its mask. For fragments which transit

at an appreciable angle, the position measured in the spectrum will be offset from the design

position of the hole. Because reaction fragments are used to populate the mask run, there

is a large spread of angles, which significantly decreases the precision of the calibration.

To account for this, the information from both CRDCs can be combined to utilize this

angle information. This procedure causes the second complication, because it causes the

calibration of CRDC1 to depend on the calibration of CRDC2. The two CRDC’s must be

then corrected iteratively, one at a time, until the calibration converges. The intermediate

steps are not shown here, but the resulting CRDC1 mask spectrum is shown in Figure 4.7.

The last step in calibrating the CRDC’s is to make a correction to the calibration in the

non-dispersive direction, to account for the changing electron drift velocity over time. By

simply extracting the centroid in the non-dispersive direction run by run, and then scaling

that calibration, the variation from run to run is eliminated. The matched, calibrated non-

dispersive position is shown in Figure 4.8
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Figure 4.6 Schematic drawing of the CRDC mask. The long edge corresponds to the
dispersive direction.
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Figure 4.7 Mask spectrum for CRDC1.
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Figure 4.8 Top Panel: Raw CRDC1 drift time vs. run number, for all data runs. Bottom
Panel: Calibrated and matched CRDC1 non-dispersive position vs. run number.
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4.1.4 Inverse Mapping

The measured positions in focal plane can be transformed into corresponding quantities at

the target position by use of an inverse map [71]. These inverse maps are available publicly,

and are utilized in most experiments with the S800. The magnetic field of the S800 magnets

was mapped and the data were incorporated into a simulation using COSY INFINITY,

which is then used to extract an empirical transformation between the incoming (target)

and outgoing (focal plane) positions and angles. This transformation is then inverted, and

can be used in the analysis to reconstruct the reaction at the target position.

The inverse map can be described with a matrix equation:



dta

yta

ata

bta


=



(dta|xfp) (dta|yfp) (dta|afp) (dta|bfp)

(yta|xfp) (yta|yfp) (yta|afp) (yta|bfp)

(ata|xfp) (ata|yfp) (ata|afp) (ata|bfp)

(bta|xfp) (bta|yfp) (bta|afp) (bta|bfp)


︸ ︷︷ ︸

Inverse Map Matrix

·



xfp

yfp

afp

bfp


(4.4)

where the variables are described in Table 4.1. To fully account for the measured magnetic

field profiles, each element in the inverse map matrix is a nonlinear function of the four mea-

sured parameters. The non-dispersive position at the target, yta, can be obtained through

the inverse map, while the dispersive position at the target, xta, cannot. This is simply due

to the fact that the x direction has dispersion in the magnetic field, so that ata and dta are

convoluted.
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Variable Description Definition
xfp Dispersive position at the focal plane crdc1.x
yfp Non-dispersive position at the focal plane crdc1.y

afp Dispersive angle at the focal plane crdc2.x−crdc1.x
1.073m

bfp Non-dispersive angle at the focal plane crdc2.y−crdc1.y
1.073m

dta Fragment Energy (Fractional) Output from Map
(
E−E0
E0

)
yta Non-dispersive position at the target Output from Map
ata Dispersive angle at the target Output from Map
bta Non-dispersive angle at the target Output from Map
E0 Central energy of magnetic setting Constant for an experimental setting

Table 4.1 Descriptions of the variables obtained from the S800 or calculated using the inverse
maps.

Using the inverse map allows for the determination of the energy (with high precision) of

the outgoing fragment, as well as provides angular information. The angular acceptance in

this experiment was too limited to provide useful information about the systematics of the

angular distributions produced in projectile fragmentation, although the angular information

can be used to make corrections for acceptance, which is described in more detail in Appendix

C.

The last step involves applying offsets to the target angles (ata and bta) to correct for

the incoming angle of the beam. For each beam, the beam was degraded into the focal plane

using varying thicknesses of aluminum foil. These calibration runs provide the outgoing

target angles that are then defined as zero angle. If there were an offset in the dispersive

position at the target, that would result in a miscalibration of the energy of the fragment

detected in the focal plane. This could be addressed using the energy of the primary beam

into the S800 focal plane as a calibration point, but a precise, absolute energy calibration is

not critical for the physics in this experiment.

58



4.2 Particle Identification

One of the main advantages of the S800 Spectrometer is its ability to isotopically identify

heavy reaction products. To analyze the data, the TOF-∆E-Bρ method is used. First, the

mass-to-charge ratio can be related (for motion through a magnetic field) to the Time-Of-

Flight (TOF) and magnetic rigidity (Bρ) by:

m

q
∝ Bρ

βγ
∝ Bρ · TOF (4.5)

Where m is the fragment mass, q is the charge of the fragment, Bρ is the magnetic rigidity of

the particle, β is velocity of the fragment in units of the speed of light, and γ is the Lorentz

factor. The atomic number can be related to the energy loss in the ionization chamber by

the Bethe-Bloch formula:

−dE
dx

=
4πe4Z2

m0c2β2
Nz

[
ln

(
2m0c

2β2

I

)
− ln

(
1− β2

)
− β2

]
(4.6)

which gives the stopping power dE
dx in a medium of atomic number z, atomic number density

N and ionization potential I. Where e and m0 are the charge and mass of an electron, Z

is the atomic number of the fragment. Finally, since both the energy loss (∆E) and TOF

have some non-trivial dependencies on the velocity, these numbers are corrected empirically

using the measured Bρ. In addition, dependencies of the ∆E and TOF on the measured
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trajectories in the focal plane can be removed as well. Finally, the corrected ∆E and TOF

can be converted into Z and A. This process is described in detail in this section.

4.2.1 Empirical Corrections

There are several quantities that obviously affect the TOF and ∆E. For instance, there will

be a spread in the raw TOF associated with the spread in the fragment momentum, because

the S800 has a 5% momentum acceptance at a given rigidity setting. As a concrete example,

75Br in the Bρ = 2.51 rigidity setting travels approximately 15 m from the target to the S800

focal plane in between 138.7 and 144.9 ns (assuming only the momentum spread is affecting

the TOF ), but the separation between 75Br and 76Br is only 1.65 ns at Bρ = 2.51. This also

would assume that the flight path has a fixed length, which is only true for fragments that

travel along the optical axis of the S800. For example, fragments of a fixed momentum that

are scattered to the inside of the bend of the S800 dipoles would experience a shorter flight

path than particles which travel on the outside of the bend. In addition to physical differences

in TOF , there can be effects due to the detection systems. For example, the measured TOF

would be affected by propagation time of the light created in the E1 timing scintillator, since

it is a very large scintillator and the timing signal is collected at the ends. Fragments that

hit the timing scintillator close to the photomultiplier tube will have a shorter measured

TOF than fragments that hit the middle of the scintillator. Instead of trying to understand

each of these effects separately, the TOF and ∆E are simply corrected empirically using the

measured positions in the focal plane. Because the method for applying these corrections is

of general interest, the steps for one case are shown in detail in this section. Usually, the
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TOF and ∆E are corrected the following way:

TOFcorr = TOFraw −
(
d(TOF )

d(x1)

)
crdc1.x−

(
d(TOF )

d(afp)

)
afp (4.7)

−
(
d(TOF )

d(y1)

)
crdc1.y −

(
d(TOF )

d(bfp)

)
bfp

∆Ecorr = ∆Eraw −
(
d(∆E)

d(x1)

)
crdc1.x−

(
d(∆E)

d(afp)

)
afp (4.8)

−
(
d(∆E)

d(y1)

)
crdc1.y −

(
d(∆E)

d(bfp)

)
bfp

where the linear corrections are obtained empirically from the data. For a better description

of the variables used, see Section 4.1.4.

The general goal of the corrections is to simply subtract the dependence of the TOF and

∆E on the focal plane coordinates. Ideally, this dependence would be extracted after the

particle identification is done, but in practice, this must be done iteratively. In Figure 4.9a,

the TOF and ∆E are shown with no corrections. In this case, slanted lines corresponding

to fragments of a given element are seen, although with inadequate resolution. Because the

TOF changes continuously with Z as well as with m/q, it is necessary to require a selection

on Z to extract the correction for the TOF . The two dimensional gate which selects one Z

is shown as a solid line on Figure 4.9a. Figures 4.9b and 4.9c show the correlation between

the raw TOF and the dispersive position at CRDC1 (corresponds roughly to the fragment

momentum) and the correlation between the raw TOF and the dispersive angle measured

at the focal plane, respectively. To obtain the approximate trend, a line is drawn and the

linear function is extracted. These approximate linear functions are shown in Figures 4.9b

and 4.9c as a solid line. This linear trend with both variables is subtracted from the TOF
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Figure 4.9 a.) Uncorrected TOF vs. uncorrected energy loss, measured in the 112Sn+112Sn
reaction system at Bρ = 2.4 Tm. Solid line shows the two dimensional gate used to select
an approximate Z b.) Uncorrected TOF vs. dispersive position at the focal plane, requiring
the gate shown in panel a. Solid line shows the correlation between TOF and dispersive
position. c.) Uncorrected TOF vs. dispersive angle at the focal plane, requiring the gate
shown in panel a. Solid line shows the correlation between TOF and dispersive angle. d.)
Corrected TOF (first iteration) vs. uncorrected energy loss.

and the result is shown in Figure 4.9d, and the isotopic structure starts to become apparent.

As a note, Figure 4.9 shows a lower efficiency between −20mrad < afp < 40mrad , which

is caused by the rectangular cutout in the start timing scintillator, discussed in more detail

in Appendix C.

Applying the same procedure again, yields the results shown in Figure 4.10. In this step,

the correlation between the TOF and the focal plane variables is much more apparent, and

is again shown as a black line in Figures 4.10b and 4.10c. The horizontal line structures in
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Figures 4.10b and 4.10c correspond (approximately) to different isotopes for the selection of

an element Z shown in Figure 4.9a. After applying the second iteration of the correction,

there is reasonable separation of all isotopes, shown in Figure 4.10d. Comparison of Figure

4.9a and 4.10d shows a dramatic improvement in the isotopic resolutions. In Figure 4.10d,

the well-separated vertical bands correspond to a fixed N − Z, while no isotopic separation

is seen in Figure 4.9a.

Once the corrections for the dispersive focal plane position and angle are applied, cor-

rections for the non-dispersive position and angle can be extracted exactly the same way,

although these are smaller corrections. In Figure 4.9a, each vertical band is composed of

many isotopes with equal N − Z, but with different atomic number Z. To achieve this

separation, the energy loss must be corrected as well.

The measured energy loss is influenced by the focal plane trajectories in a similar way to

the TOF . For a given isotope, fragments with higher momentum will have a lower energy

loss (Eq. 4.6). In addition, fragments with a different incident angle through the ionization

chamber will deposit a different amount of energy. As with the TOF , the correlations are

simply extracted empirically and are subtracted from the energy loss.

The first iteration of the energy loss correction is shown in Figure 4.11. The goal is to

separate different elements, so the best way to visualize this is to select fragments with a

fixed neutron excess (the nearly vertical lines shown in Figure 4.11a). The correlation of the

energy loss with the dispersive focal plane position and angle are shown in Figures 4.11b and

4.11c. As with the TOF , the first iteration only needs to extract the general trend, so the

line drawn in Figure 4.11a is simply a guess. The corrected particle identification spectrum

is shown in Figure 4.11d. Even after the first iteration, separation of isotopes by atomic

number is apparent.
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Figure 4.10 a.) TOF (first iteration) vs. uncorrected energy loss, measured in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm. b.) TOF (first iteration) vs. dispersive
position at the focal plane, requiring the gate shown in panel a. c.) TOF (first iteration) vs.
dispersive angle at the focal plane, requiring the gate shown in panel a. d.) TOF (second
iteration) vs. uncorrected energy loss.
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Figure 4.11 a.) TOF (second iteration) vs. uncorrected energy loss, measured in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm. b.) Energy loss (uncorrected) vs. dis-
persive position at the focal plane, requiring the gate shown in panel a. c.) Energy loss
(uncorrected) vs. dispersive angle at the focal plane , requiring the gate shown in panel a.
d.) TOF (second iteration) vs. energy loss (first iteration).
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Figure 4.12 a.) TOF (second iteration) vs. energy loss (first iteration), measured in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm. b.) Energy loss (first iteration) vs. dispersive
position at the focal plane, requiring the gate shown in panel a. c.) Energy loss (first
iteration) vs. dispersive angle at the focal plane , requiring the gate shown in panel a. d.)
TOF (second iteration) vs. energy loss (second iteration).
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After applying this same procedure again, the results for the second iteration of the

correction to the energy loss are shown in Figure 4.12. In the second iteration, the correlation

with the dispersive focal plane angle is much clearer, shown in (Figure 4.12c). The particle

identification spectrum, shown in Figure 4.12d shows both isotopic and elemental resolution

over this range of fragments for this system. In these figures, only the correction for the

dispersive focal plane variables are being applied for clarity. In the case of the Bρ = 2.51

Tm and Bρ = 2.60 Tm settings, for higher-Z fragments, it is necessary to apply corrections

for the non-dispersive variables as well.

The procedure detailed above allows for optimization of the TOF and ∆E for a single

isotope, or a region of isotopes. In this experiment, it is necessary to achieve good resolution

over a wide range of isotopes and elements, and to develop a procedure to do this consistently

for many reaction systems anUnitd settings. The corrections applied above diverge from the

true corrections when moving away from the isotopes used to optimize the correction. Once

the TOF and ∆E are corrected enough to draw gates around individual isotopes, a correction

can be determined locally for each isotope. Also, since the corrections described previously

relied on less robust iterative multidimensional fitting, these local corrections can improve

on the consistency of the corrections between reaction systems.

The first step is to create a set of gates for the isotopes which have adequate statistics.

First, gates are drawn for each Z and N − Z line, and then the intersection of these two

gates roughly defines an isotope. To find the gates in a consistent repeatable way, a gaussian

function is fit to a projection of the data for that isotope onto the TOF and ∆E axes. An

example of this procedure is shown in Figure 4.13. This procedure allows for straightfor-

ward automation for generation of gates for all reaction systems. These gates are used for

calculation of the final, local corrections, but the final particle identification determination
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Figure 4.13 a.) TOF vs. ∆E, measured in the 112Sn+112Sn reaction system at Bρ = 2.4
Tm, showing gates for a fixed Z and N − Z. b.) Projection onto the TOF axis of the
spectrum in panel a, gated on one isotope. c.) Projection onto the ∆E axis of the spectrum
in panel a, gated on one isotope. d.) TOF vs. ∆E, showing an example of a gate resulting
from this fitting procedure. The gate is an ellipse with the semimajor axes equal to 2σ,
extracted from the fits in panels b and c.

is based on a rectangularized matrix of variables which is described later in this section. An

example of the complete set of gates for one reaction system is shown in Figure 4.14.

The next step is to extract corrections for the TOF and the ∆E on an isotope-by-isotope

basis. Since there is typically several hundred isotopes in a given beam-target-Bρ setting, and

21 different settings were measured, this procedure cannot be done iteratively as described

above. Instead, a similar procedure is used with a few differences. First, the variables used in

the fit are slightly different. Also, the corrections here are multiplicative factors, as opposed

68



Time­of­Flight (ns)
­40 ­35 ­30 ­25 ­20 ­15 ­10 ­5

E
n

e
rg

y
 L

o
s

s
 (

A
.U

.)

0

200

400

600

800

1000

1200

1400

1600

Figure 4.14 Spectrum of TOF vs. ∆E, with the particle identification gates adopted in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm.
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to subtractions. This is physically motivated, because many of the correlations (for instance,

how ∆E depends on the fragment momentum) are direct proportionalities. The functional

forms used for the correction are:

TOFcorr = TOFraw/ (1 + a1 (x1 + x2) + a2 (x2− x1) + a3 (y1 + y2) + a4 (y2− y1)) (4.9)

∆Ecorr = ∆Eraw/ (1 + b1 (x1 + x2) + b2 (x2− x1) + b3 (y1 + y2) + b4 (y2− y1)) (4.10)

where the coefficients ai, bi are obtained from fitting directly a four-dimensional hyper-

plane for each isotope for both TOF and ∆E. Since these coefficients are extracted for

each isotope, technically, ai = ai(N,Z). Since N,Z are not known until after applying this

correction, the coefficients can be parametrized as ai = ai(TOF0,∆E0) where TOF0 and

∆E0 are simply the centroid for each isotope using the initial set of corrections. An example

of the dependence of a1 on TOF and ∆E is shown in Figure 4.15. The measured positions

of the centroids (using the initial correction) are overlaid for reference as black crosses. For

a given event, the final correction is calculated in two steps. The global correction must

be used in the first step to interpolate the value of the correction. This correction yields

a TOF and a ∆E that are approximately correct, which are in turn used to interpolate a

new correction, which is then used to calculate the final TOF and a ∆E. This is necessary

to ensure that the final correction depends only on the final location of the TOF and ∆E,

which is the quantity used to parametrize the correction. This is shown in Equations 4.11

to 4.14.
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TOFstep1 = TOFraw/

(
1 +

∑
i

ai
(
TOFglobal,∆Eglobal

)
fi(x1, x2, y1, y2)

)
(4.11)

TOFfinal = TOFraw/

(
1 +

∑
i

ai
(
TOFstep1,∆Estep1

)
fi(x1, x2, y1, y2)

)
(4.12)

∆Estep1 = ∆Eraw/

(
1 +

∑
i

bi
(
TOFglobal,∆Eglobal

)
fi(x1, x2, y1, y2)

)
(4.13)

∆Efinal = ∆Eraw/

(
1 +

∑
i

bi
(
TOFstep1,∆Estep1

)
fi(x1, x2, y1, y2)

)
(4.14)

The end result of these corrections is that the TOF and ∆E for a given isotope collapse

into a single point. This is equivalent to the situation that all the fragments travelled at the

central rigidity of the S800 and along the central ray of the S800. The vertical and horizontal

widths of these structures are only influenced by the experimental detector resolutions.

4.2.2 Absolute Determination of N,Z

After the particle identification spectra are properly corrected, there is still some ambiguity

in the absolute determination of N and Z. However if the N and Z of one isotope is identified,

the remaining isotopes can be found by simply counting from the known isotope as a function

of Z or N − Z. This can be achieved in several ways. Some experiments measure the beam

directly in the production data. This was not done in this case because the range of fragments

was chosen to avoid illuminating the focal plane detectors with different charge states of the

beam, so the fragments in the data have much lower magnetic rigidity than the three beam

species used. Another useful method is to use the fact that 8Be is unbound and count isotopes

up from there. This would involve changing the voltages and pressures in the CRDC’s and
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Figure 4.15 a1 coefficient, plotted as a function of TOF and ∆E, measured in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm. The a1 coefficient represents how strongly
the TOF depends on the quantity x1 + x2. The black crosses represent the final locations
of the isotopes of interest. The values of the correction coefficients are extrapolated outside
this range of TOF and are used for the first step of the correction, which is approximate.
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the Ionization chamber, and would waste valuable beam time. This was not realistic to do

for the many reaction systems measured in this experiment.

The proposed method in this experiment was to degrade the beam into the focal plane

using varying thicknesses of aluminum foil. While it was simple to degrade the beam into

the focal plane, the method also requires that sufficient fragments are produced in the range

between the beam and the fragments of interest. Unfortunately, the statistics in each case

were insufficient. Also, in order to degrade the beam with varying amounts of material, a

degrader was placed at the target position as well as on the drive that held the scintillator

used as a start time for the S800 particle identification. Since this scintillator couldn’t be

used while degrading the beam, it is difficult to compare the degraded beam data to the

measured fragment data. In the end, a combination of methods is used to achieve a reliable

determination of the particle identification.

First, the absolute N −Z can be determined from the shape of the constant N −Z lines.

For N −Z = 0, the time of flight does not change with Z. Unfortunately, the data generally

does not contain fragments this neutron-deficient. In the case of 112Sn+112Sn, the data does

extend into this region, but with very low statistics. However, By extrapolating from data

that is measured with good statistics, the vertical line of isotopes for N − Z = 0 can be

easily determined. The extrapolation used is linear, and done separately for each Z. This is

shown in Figure 4.16.

The determination of the absolute atomic number can also be extracted from the behavior

of the TOF . Assuming that the TOF is linearly related to the m/q of the fragment, and

that m/q = A/Z (assuming q = Z), the isotopic spacing in TOF is inversely proportional to

Z:
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Figure 4.16 The centroid positions in TOF and ∆E for each isotope identified in the
112Sn+112Sn reaction system at Bρ = 2.4 Tm. Measured centroids for each isotope are
shown as solid circles, while extrapolated positions are shown as open circles. A vertical line
is drawn to indicate the location of the N − Z = 0 isotopes.
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TOF = a · A
Z

+ b (4.15)

∆TOF

∆A
= a · 1

Z

This isotopic spacing is found from the linear extrapolation that is also used in Figure

4.16. This spacing can be fit by a function, using a guess for Z, allowing for an integer offset

of Z, and using the χ2 to choose the best fit. The fitting function is:

∆TOF

∆A
= a · 1

Z − Zoffset
(4.16)

An example of the fit to find the absolute Z is shown in Figure 4.17. Using this procedure,

with the stated assumptions, gives a best fit for Z. Since the χ2 distribution does not have

a sharp minimum, the determination is not exact. The value of Z extracted in this way

may be off by ±1 charge unit, but it is not likely off by two units. To further solidify this

determination, there is several more pieces of information that can be used.

The best case for comparing the degraded beam to the reaction fragments (As described

on Page 73) is when the 112Sn beam was degraded into the focal plane, because its magnetic

rigidity was closest to the magnetic rigidity of the measured fragments. Because the start

timing scintillator was not in place during this data, a different timing signal had to be used.

In this case, the start time is provided by the RF signal from the coupled cyclotrons, which is

basically the time that the beam pulse is generated. The disadvantage of this method is that

the timing resolution of the RF signal is σ = 1.5ns, too large to distinguish isotopes. To deal
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Figure 4.17 Isotopic spacing (ns/nucleon) vs. Z, measured in the 112Sn+112Sn reaction
system at Bρ = 2.4 Tm. A fit of Equation 4.16, with Zoffset = 0 is shown in the main panel.
In the inset, the χ2 distribution for varying Zoffset is shown.
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with the resolution problem, the normal particle identification using the timing scintillator

is applied first. Then, for each selected isotope, the centroid of the particle identification

spectrum using the RF as the start time can be determined. These centroids are shown in

Figure 4.18. Since there is gap in coverage between the beam and the measured fragments,

some extrapolation must be made, as shown in the solid and dashed lines. The highest Z

shown in Figure 4.18 is Z = 47, which is not used in the extrapolation because of edge

effects. The position of the degraded beam is consistent with the previous determination of

the atomic number. Again, this gives an absolute determination of the atomic number.

Another test that can be applied relies on a phenomenon known as Odd-Even Staggering

(OES). In many nuclear reactions, in this case projectile fragmentation, there is an overpro-

duction of fragments with even-Z, when compared to the neighboring odd-Z nuclei. Recent

studies have shown that the staggering is more complicated; there is staggering in both the

neutron number N and in the atomic number Z, and these effects can compete with each

other [72, 73]. The effect has been associated with nucleon pairing, which becomes important

during the final stages of the de-excitation process. One clear message of these studies is

that one can expect overproduction of even-Z fragments, especially for even-A fragments,

and especially in the case of neutron-poor fragments. When using the procedures described

above, the particle identification may be ambiguous by one unit, but the OES can be used

to validate the choice made. The OES is calculated by dividing the yields by a smooth func-

tion that is defined by a polynomial fit to several points above and below that point. This

procedure clearly shows only the fluctuations around the smooth behavior of the yields. In

this case, the integrated yields are used to calculate the ratio, described more in Section 4.4.

Figure 4.19 shows this ratio, calculated for both the even and odd mass fragments measured

in the 112Sn+112Sn reaction system at Bρ = 2.4 Tm. It is clear in the case of the even
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Figure 4.18 Particle Identification centroids, calculated using the cyclotron RF as the start
time, measured in the 112Sn+112Sn reaction system at Bρ = 2.51 Tm. The solid circles
represent a centroid extracted from data, while the open circles are extrapolated centroids.
In addition, the particle identification spectrum for the degraded beam run is shown on
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extrapolations for Z = 49 and Z = 51.
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Figure 4.19 Odd-Even Staggering ratio, measured in the 112Sn+112Sn reaction system, using
the integrated yields. Left panel shows even-A (even N − Z) fragments. Right panel shows
odd-A (odd N − Z) fragments.

N − Z (even A) fragments that there is overproduction for even values of Z, which means

that the determination of Z cannot be offset by only one unit. The odd masses are shown

as well, to address the case where both Z and N − Z are offset by one unit. In this case,

the staggering is still as expected, which implies that even if N −Z was also shifted by one,

the staggering should still be present as normal.

Once the determination is made for one system, the other systems can be calibrated the

same way. If there were some miscalibration of the particle identification, there are some

tests to verify that particle identification matches between reaction systems. The first test is

to verify that, for one reaction, the three Bρ settings are identified the same way. Since the

determination of N − Z is done fairly confidently, the main concern is the determination of

Z. This can be verified by comparing the energy loss without corrections between the three

Bρ settings. When the correction for momentum is not applied, the energy loss should be a

continuous function of rigidity over the three overlapping rigidity settings. This is shown in

Figure 4.20. Following this process allows very confident matching between rigidity settings.
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Figure 4.21 Particle identification centroids for the three symmetric reactions 112Sn+112Sn,
118Sn+118Sn, and 124Sn+124Sn, for Bρ = 2.4 Tm.

Finally, once the determination of Z and N − Z are made for all beam-target-rigidity

combinations, the particle identification from the three systems can be compared. Ideally,

the positions of isotopes in the corrected particle identification plots should be the same from

one system to another, but because of minor differences in magnetic settings, calibrations,

and corrections, there can be some small differences. The particle identification centroids for

the three symmetric reactions are shown in Figure 4.21. The figure shows that basically the

same isotopes are measured in all three reactions, and the locations of those isotopes only

shift slightly between reactions.
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Once the particle identification spectrum is understood, the continuous variables TOF

and ∆E can be converted into discrete Z and N − Z. Instead of drawing gates for each

isotope, the TOF and ∆E are converted directly into Z and N−Z by creating a two dimen-

sional transformation. The transformation is done by assigning a Z and N−Z to each TOF0

and ∆E0 (the centroid in the particle identification plot), and then directly interpolating the

points in between. The result is a rectangularization of the particle identification variables,

which can then be used for the final isotope selection. The actual cuts used to determine Z

and N − Z are Z0 − .5 < Z < Z0 + .5 and (N − Z)0 − .5 < N − Z < (N − Z)0 + .5. The

transformation of the particle identification plot is shown in Figure 4.22.
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4.3 Charge State Analysis

The procedure outlined in the previous section allows for determination of Z and A/q, and

so far it is assumed that Z = q. However, some fragments may pick up electrons from the

target or the timing scintillator, which causes q 6= Z. To measure the actual value of q, the

Total Kinetic Energy (TKE) of the fragments is measured at the end of the focal plane. The

CsI hodoscope was not part of the original proposal, but the array had been commissioned

shortly before this experiment. As explained in Appendix B, the hodoscope did not prove to

be useful for high-Z fragments in the energy domain of the current experiment. This section

will describe the problems that were found, as well as a procedure adopted to calculate the

magnitude of the correction for this effect.

To understand how the problem would manifest itself in the data, some assumptions can

be made. First, for the fragments of interest, assume that the primary contamination in the

spectrum is from fragments that have picked up only one electron. The predicted location

that these hydrogen-like ions would enter the particle identification spectrum is shown in

Figure 4.23. This figure is consistent with the fact that the particle identification seems to

still resolve isotopes above Z=40, as the contamination is indistinguishable from the main

fragments. This figure also shows that these hydrogen-like ions would enter the data set

identified with the correct Z, but would be identified as the isotope with two more neutrons.

The reason that the contamination follows such a simple pattern is that the region of isotopes

being measured is close to the N − Z = 0 line, so m
q ≈ 2.0. The result is that removing

one unit of charge and two units of mass only slightly alters the m
q of the hydrogen-like

fragment. The hydrogen-like fragments also have nearly the same energy loss as the isotope
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with two more neutrons because, for a fixed Bρ and m
q , the velocity is fixed, which means

the stopping power is the same. (See Equation 4.6).
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Figure 4.23 Calculated particle identification locations for a subset of the fragments of interest
in the 112Sn+112Sn reaction system. The fully stripped fragments are represented by the
black crosses and the primary contaminant from hydrogen-like fragments are represented by
red crosses. The error bars represent one sigma resolution in the respective experimental
quantities. The Z values for the contaminant are scaled by the ratio of the (slightly different)
m
q of the two overlapping fragments, which approximates the difference in their energy-loss
measurements.

4.3.1 Calculation of Contamination using GLOBAL

To understand the magnitude of the charge state contamination, the empirical code GLOBAL

is used [74].

The use of this code is well justified by [75], where the predicted charge state distributions

agree with the measured charge state distributions from the fragmentation cross sections of
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a 86Kr (Z=36) beam at 64 MeV/u with complete A,Z, q identification. It was found that the

experimental charge state distributions reasonably agreed with the predictions of GLOBAL,

certainly within a factor of 2 for the single electron charge state. GLOBAL provides charge state

information for projectile energies from 30 MeV/u to 2 GeV/u, and although it was designed

for Z > 28, it provides reasonable results for lower Z as well. The version of GLOBAL that is

packaged with LISE++ is used, which has minor improvements over the published algorithm.

The results of a calculation for isotopes with fixed N − Z at fixed Bρ are shown in Figure

4.24. For the purposes of this study, the equilibrium charge state distribution is used, and

the distribution comes from the timing scintillator, which is modeled as simply carbon. For

the fixed isotopes shown, the charge state contamination decreases with increasing velocity,

as expected. To properly account for the velocity dependence, a linear fit to three data

points (at Bρ = 2.4, 2.51, 2.6) is used to calculate the correction as a function of Bρ.

To simplify the process of correcting the data, it is assumed that only the first charge

state contributes, which should be reliable as long as this contribution is small (< 20%).

Also, it is assumed that the particle identification previously contains only the fully stripped

fragment and the one contaminant isotope. With this assumption, the correction for isotope

(N,Z) depends on four variables: the yield of isotope (N,Z), the charge state fraction of

isotope (N,Z), the yield of isotope (N − 2, Z), and the charge state fraction of isotope

(N − 2, Z). Since the measured yield Yexp is a combination of the fully stripped ions and

the contaminant ions:

Yexp(N,Z) = Y (N,Z, q = Z)︸ ︷︷ ︸
fully stripped

+Y (N − 2, Z, q = Z − 1)︸ ︷︷ ︸
contaminant

(4.17)
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Figure 4.24 Charge state contribution (ratio of hydrogen-like ions to fully stripped ions)
shown as a function of atomic number Z, as calculated by GLOBAL. Isotopes shown have
N − Z = 6.

and the desired yield is:

Y (N,Z) = Y (N,Z, q = Z) + Y (N,Z, q = Z − 1) (4.18)

which means that the measured yield is related to the desired yield by:

Yexp(N,Z) = Y (N,Z) + a · Y (N − 2, Z)− b · Y (N,Z) (4.19)

= (1− b) · Y (N,Z) + a · Y (N − 2, Z)
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where

a =
Y (N − 2, Z, q = Z − 1)

Y (N − 2, Z)
(4.20)

b =
Y (N,Z, q = Z − 1)

Y (N,Z)

and a and b are the fractions calculated using GLOBAL. a represents the contamination of the

isotope of interest from N − 2, and b represents the loss of the isotope of interest to N + 2.

To get a correction factor, just divide by Y (N,Z):

Yexp(N,Z)

Y (N,Z)
= (1− b) + a · Y (N − 2, Z)

Y (N,Z)
(4.21)

But the yield ratio on the right side involves the desired yields, which are unknown. Since

the results from GLOBAL are approximate, the ratio of the uncorrected experimental yields

can be used:

Yexp(N − 2, Z)

Yexp(N,Z)
≈ Y (N − 2, Z)

Y (N,Z)
(4.22)

The procedure is slightly more complicated than is described above, since the yields are

broadly distributed in Bρ and the charge state fractions depend on Bρ (velocity) as well.

In that case the yields, Y (N,Z), would be replaced by distributions in rigidity, y(N,Z,Bρ).

This is handled appropriately in the analysis, but for clarity, the description here only refers

to the total integrated yields. Since the correction depends on the ratio,
Y (N−2,Z)
Y (N,Z)

, the

correction must be calculated separately for each system. The correction, calculated using
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the integrated yields for 112Sn+112Sn and 124Sn+124Sn, is shown in Figure 4.25. The effect

that this correction would have on the isoscaling observables is shown in Section 5.3.
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Figure 4.25 Charge state correction (inverse of left side of Equation 4.21) shown as a function
of atomic number Z. Isotopes shown have N − Z = 6, 7, 8.
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4.4 Reconstructing Momentum Distributions

4.4.1 Combining Spectrometer Settings

In this experiment, the data were measured in several settings, each covering about 5% in

magnetic rigidity or momentum. The three rigidity settings had central values of 2.4, 2.51,

and 2.6 Tm. The width of the distribution in momentum is on the order of 0.2 Tm (FWHM),

depending on the A and Z of the species, so each momentum distributions spanned all three

momentum settings. These settings were chosen such that there would be at least three

isotopes with a majority of their momentum distribution measured. To combine the three

different settings, each setting was scaled by the live time (measured using a clock scaler in

the S800 DAQ) and scaled by the raw miniball scaler (proportional to the number of beam

particles). The distribution (no correction for acceptance or charge states) for one isotope is

shown in Figure 4.26, with the three settings shown as separate colors. It is apparent that

the acceptance drops off near the minimum and maximum momentum measured in each

setting. This effect is discussed more in Appendix C.

Although there are some differences in the acceptance from one setting to another, this

effect was most pronounced for systems using the 112Sn beam, at the beginning of the

experiment. During the systems using the 124Sn beam, the acceptance was more stable

between rigidity settings. Assuming the acceptance is a function of Bρ which is flat near the

central rigidity, the central region can be used to obtain a rigidity (momentum) distribution

that is accurate up to a scaling factor related to the angular acceptance. Based on the

information in Appendix C, specifically Figure C.5, the central region with flat acceptance

corresponds to −.025 < dta < .025, which corresponds to Bρ ≈ Bρ0 ± .03 Tm.
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Figure 4.26 Distribution in magnetic rigidity (momentum), for 88Zr, measured in the
124Sn+124Sn reaction. The lower axis shows the rigidity, while the upper axis shows the
linear momentum. The data are scaled by the live time and the miniball beam normaliza-
tion.
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Figure 4.27 Distribution in magnetic rigidity (momentum), for 88Zr, measured in the
124Sn+124Sn reaction. Only data measured in the central region of the S800 spectrom-
eter where the acceptance is constant are included in this figure, and in the final fitting
procedure. The final fit result for this isotope is shown as a dotted line.
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4.4.2 Fitting Function

After removing the edge regions from the data in Figure 4.26, information about the rigidity

(momentum) distributions can be extracted. An example of this is shown in Figure 4.27.

The goal is to extract the integral of the rigidity (momentum) distribution, since different

isotopes have different coverage in rigidity as shown in Figure 4.28. The simplest way to

describe the distribution is with a Gaussian function, although this would not account for

any asymmetries between the low momentum and high momentum sides of the distributions.

This has been addressed previously by using a gaussian function which is asymmetric about

the peak value [75]. This description can be rationalized by attributing the high momentum

events to pure fragmentation and the low momentum events to a mixed reaction mechanism.

In this experiment, the coverage is limited such that most rigidity (momentum) distributions

are not precisely measured in their tails. It is reasonable to expect some asymmetry in the

distributions, but extracting this information is difficult. The function described in [75] is

two half gaussians with different widths, joined at the center. The data from this experiment

should not be fit with this type of function, because one side of the distribution would be

relatively unconstrained, due to limited acceptance. An alternative would be to use a skewed

gaussian function, where the constant width is replaced with a linear function of the rigidity

(momentum):

f(x) = a0 · exp(
(x− a1)2

2(a2 + a3(x− a1))2
) (4.23)
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Figure 4.28 Fit result for distributions in velocity, for A = 77, measured in the 124Sn+124Sn
reaction. The range of velocity that is covered by a fixed range of Bρ is different for each
isobar, and is shown by the dotted arrows.

The benefit of such a function would be that the asymmetry would be applied to both

sides, so the fitting routine would be more robust when fitting partial distributions. To

illustrate this effect, Figures 4.29 and 4.30 show the resulting distributions in momentum

when using either a normal gaussian fit compared to a skewed gaussian, when comparing

two isotopes of the same mass. For equal A, the momentum (or velocity) distributions are

expected to be approximately equal [75]. The figure shows that, with a normal gaussian,

there is a systematic shift due to the different rigidity acceptances of the two isotopes. (This

is observed systematically in all isotopes) When fitting each isotope with the skewed gaussian,

the distributions become identical. This indicates that fitting with a simple gaussian would

introduce a systematic effect in the extrapolation for certain isotopes and that a skewed

gaussian is more reflective of the full distribution.

4.4.3 Simultaneous Fitting of Isobaric Velocity Distributions

Since the goal is to extract ratios of fragment production cross sections, any fitting procedure

must not introduce an effect that is systematic with the rigidity (momentum), because the
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Figure 4.29 Fit results for distributions in momentum, for A = 77, measured in the
124Sn+124Sn reaction. The fitting function is a normal gaussian function, with three free
parameters, and the plotted curves are equally normalized. Each distribution is fit individ-
ually. Different isobars result in different fits because of the asymmetry of the distribution
combined with the limited acceptance range.

rigidity is correlated with the neutron excess of the fragment. Higher mass isotopes have the

high momentum side cut off and lower mass isotopes have the low momentum side cut off.

To improve the reliability of these fitting functions, a fit can be done using multiple isobars

that are expected to have the same shape (in momentum or velocity space). As opposed to a

fixed Z, which contains around 5 isotopes, a fixed A only has 2-3 isobars in the experimental

acceptance. Isobars have different rigidity distributions so they sample different parts of

their (presumably identical) momentum distributions. Enforcing these systematics involves

fitting the distributions (in momentum space, or velocity space) simultaneously using the
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Figure 4.30 Fit results for distributions in momentum, for A = 77, measured in the
124Sn+124Sn reaction. The fitting function is a skewed gaussian function (Equation 4.23,
with four free parameters, and the plotted curves are equally normalized. The three distri-
butions are fit individually.

same shape parameters for the skewed gaussian while keeping the normalization parameters

separate for each. For example, in the case shown for Figure 4.30, the fitting function would

be:

f(x) =



a34 ∗ exp(
(x−a1)2

2(a2+a3(x−a1))2
) : A = 34

a35 ∗ exp(
(x−a1)2

2(a2+a3(x−a1))2
) : A = 35

a36 ∗ exp(
(x−a1)2

2(a2+a3(x−a1))2
) : A = 36

(4.24)
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where the six parameters a1, a2, a3, a34, a35, and a36 are optimized simultaneously, and

a34, a35, anda36 are the relative normalizations for each isobar. When this simultaneous fit

is applied, a single velocity distribution reasonably describes the data from the 124Sn beam

and for the 118Sn beam. This result for the A = 77 isobars is shown for 124Sn+124Sn in

Figure 4.31 and 118Sn+118Sn in Figure 4.32.
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Figure 4.31 Fit result for distributions in velocity, for A = 77, measured in the 124Sn+124Sn
reaction. The three spectra are fit simultaneously with Equation 4.24, so that the shape is
identical in each spectrum.
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Figure 4.32 Fit result for distributions in velocity, for A = 77, measured in the 118Sn+118Sn
reaction. The three spectra are fit simultaneously with Equation 4.24, so that the shape is
identical in each spectrum.

To illustrate the advantage of fitting the isobars simultaneously, Figure 4.28 shows a fit

distribution from the 124Sn+124Sn reaction, with the range in rigidity covered by each isobar

shown by dotted arrows. Fitting the distributions simultaneously allows for more consistent

fitting for the isobars where only one side of the distribution is given, which is necessary for

extrapolation of the integrated yield.
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In the data using the 112Sn beam, the situation is somewhat more complicated. When

fitting the three distributions simultaneously, there is a systematic shift in the peak value

of the distribution for different isobars, so that fitting with a common distribution is not

possible. To fit these distributions, an additional parameter can be added so that the peak

centroid has a linear dependence on the Z of the isobars. This effect was also seen in the

data from Ref. [75], where a similar linear dependence was used when fitting isotopes at the

edge of the acceptance. More details of these systematics will be discussed in Section 5.1.

To allow for this additional parameter, the fitting function becomes:

f(x) =



a34 ∗ exp(
(x−a1)2

2((a2+a4i)+a3(x−a1))2
) : A = 34

a35 ∗ exp(
(x−a1)2

2((a2+a4i)+a3(x−a1))2
) : A = 35

a36 ∗ exp(
(x−a1)2

2((a2+a4i)+a3(x−a1))2
) : A = 36

(4.25)

where i is an index over the isobars. The parameter a4 allows the centroid to shift across a

chain of isobars, and for this example changes the peak of the velocity distribution by about

0.5% between each isobar. The result for this new fitting function for the 112Sn+112Sn

system is shown in Figure 4.33. For consistency, all systems are fit allowing this parameter

to vary. The systematic trends of the velocity distributions are presented in Section 5.1.
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Figure 4.33 Fit result for distributions in velocity, for A = 77, measured in the 112Sn+112Sn
reaction. The three spectra are fit simultaneously with Equation 4.25. Contrary to Figures
4.31 and 4.32, the centroids of the distributions are allowed to vary between isobars.
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4.5 Miniball Centrality Selection

The Miniball allows for characterization of the impact parameters probed in the measured

data set. The parameters of the Miniball are described in Section 3.4. The miniball multiplic-

ity, which is close to the total charged particle multiplicity, is calculated simply by counting

the number of miniball detectors with signals above threshold in an event. Although each

miniball detector measures 4 quantities (fast, slow, tail, and time), only the energy in the

slow gate is used for this calculation. This choice is made both for convenience, and because

the electronics for the slow branch were the most reliable.

Once the multiplicity is extracted, this information can be transformed into a measure-

ment of the impact parameter. This procedure has been used in the previously published

results with heavy ion collisions, and is detailed in [76]. The calculation relies on the simple

concept of a geometrical cross section for a collision with a sphere with radius r:

σ =πr2 (4.26)

This cross section can be parametrized using the scattering impact parameter b, so that the

cross section of a collision that has an impact parameter of b or less is:

∫ b

0
σ(b′)db′ =πb2 (4.27)
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and the miniball multiplicity (Nc) should be anticorrelated with the impact parameter:

∫ b

0
σ(b′)db′ =

∫ ∞
Nc

σ(N ′c)dN
′
c (4.28)

where σ(Nc) is a quantity that is actually measurable in experiment. An important con-

sideration in this measurement is that the experimental apparatus measures any reaction

between the beam and target, and so the data acquisition system is triggered using only the

Miniball, requiring a multiplicity of Nc >= 1. This is different from the experimental trig-

ger condition, so these normalization runs were measured for each beam-target combination

separately from the fragment production data. In these runs, the beam was attenuated and

the downstream timing scintillator was moved to the n̈ormalization positions̈o that the beam

rate can be counted directly. This procedure was done with the target in to measure the

total reaction cross section, as well as with the target out (through a blank target frame) to

measure the amount of background not coming from the reaction target. The spectra in each

configuration are normalized by the number of incident beam particles (measured directly by

the scintillator), as well as the areal atomic number density of the respective target. Then,

the target-out spectra are subtracted from the target-in spectra. The resulting spectra are

shown in the left-hand panels of Figure 4.34.

The total reaction cross section, and in turn bmax are defined by:

πb2max =

∫ ∞
1

σ(N ′c)dN
′
c (4.29)

and these results are shown in Table 4.2
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Figure 4.34 Total reaction cross section vs. miniball multiplicity (left-side panels) and
calculated impact parameter vs. miniball multiplicity (right-side panels). Shown for two
targets each for 112Sn (Top), 118Sn (Middle), and 124Sn(Bottom).

The extracted bmax for the 124Sn+124Snreaction is smaller than for the 112Sn+112Sn

reaction, even though the radii of the neutron rich 124Sn would be larger. This suggests that

the multiplicity is influenced by the neutron-richness of the system as well as the impact

parameter, since emitted neutrons are not detected.

When comparing systems which have different size, it is convenient to use the reduced

impact parameter:

b̂ =
b

bmax
(4.30)
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Reaction σtotal (barn) bmax (fm)
112Sn+112Sn 4.04 11.34
112Sn+124Sn 3.79 10.98
118Sn+112Sn 4.07 11.38
118Sn+118Sn 3.71 10.86
124Sn+112Sn 4.07 11.38
124Sn+124Sn 3.62 10.73

Table 4.2 Maximum impact parameter and total integrated cross section measured in the
for the six measured beam-target combinations.

which gives a dimensionless variable which scales with the centrality of the collision, event

by event. The relationship between b̂ and Nc is shown in Figure 4.35.

The experimental data is averaged over a range of impact parameters, while theoretical

calculations have a fixed impact parameter. The amount of isospin diffusion that will occur

is correlated with time when the projectile and target are in contact. This contact time

increases with increasing centrality of the collision. Thus, the impact parameter must be

characterized to compare the simulation to the data. The experimental observable (isoscal-

ing) is most conveniently measured as a function of Z, so a relationship between the measured

Z and the impact parameter must be determined.

Because the data are measured in three different momentum settings, it is impossible

to have a “minimum bias” normalization as was done with the Miniball. The relationship

between the measured Z and the deduced impact parameter is shown in Figures 4.36 and

4.37 for the 112Sn+112Sn and 124Sn+124Sn reactions, respectively. These figures are made

by combining all the data from the three Bρ settings, with the appropriate normalizations

for each setting. These spectra have a cutoff due to the acceptance at low Z, because the

gain of the S800 focal plane detectors was not high enough to detect low Z fragments. At
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Figure 4.35 Reduced impact parameter vs. miniball multiplicity (right-side panels). Shown
for the reactions 112Sn+112Sn and 124Sn+124Sn.

high Z, there are low statistics near Z=50 because the entire isotopic distribution was not

measured, only the more neutron-poor fragments were measured.

In Figures 4.36 and 4.37, the black circles represent the mean impact parameter for

all events that result in a heavy fragment of charge Z. Alternatively, the most probable

impact parameter could be used. Figure 4.38 shows the difference in the deduced impact

parameter when calculating the mean compared to extracting the peak from a gaussian fit

to the distribution. The difference is less than 0.1 fm, which is negligible. Since the isospin

diffusion data is measured as an average over impact parameter for a fixed Z, the mean

impact parameter will be used in all further analysis.
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Figure 4.36 Two-dimensional spectrum showing the impact parameter extracted from the
Miniball multiplicity vs. the atomic number Z of the fragment measured in the S800, plotted
for the 112Sn+112Sn reaction data. The solid circles show the average impact parameter for
each Z, where the errors are smaller that the data points.
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Figure 4.37 Two-dimensional spectrum showing the impact parameter extracted from the
Miniball multiplicity vs. the atomic number Z of the fragment measured in the S800, plotted
for the 124Sn+124Sn reaction data. The solid circles show the average impact parameter for
each Z, where the errors are smaller that the data points.
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with a gaussian function vs. the atomic number Z of the fragment measured in the S800,
plotted for the 112Sn+112Sn reaction data.
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Figure 4.39 Measured correlation between the average Z of the heavy residue measured
in the S800 and the impact parameter extracted from the charged particle multiplicity.
Data points are shown for the 112Sn+112Sn, 112Sn+124Sn, 124Sn+112Sn, and 124Sn+124Sn
systems. The impact parameter is calculated as the mean impact parameter for events which
yield a fragment with atomic number Z.
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The relationship between the mean impact parameter and the fragment Z is shown for

the four main reaction systems in Figure 4.39. Overall, the trend is similar between all

four systems. For smaller Z, the deduced impact parameter does not strongly depend on the

system, but for larger b there is a small difference between the four systems. The similarity of

these trends gives some confidence that the charged particle multiplicity is a reliable measure

of the impact parameter. The discrepancy at high Z between the different systems may be

caused by the experimental acceptance, because only the more neutron-poor fragments are

measured in each reaction.

Because the impact parameter distribution is sharply peaked, no cut on the impact

parameter is made before extracting the isoscaling information. This allows the use of the

full measured statistics, and the relationship between Z and b can be used to measure isospin

diffusion as a function of impact parameter. From the measured relationship, the measured

data from about Z = 27 to Z = 43 spans a range of impact parameters between b ≈ 7

fm and b ≈ 10 fm. The results for the four main reaction systems are shown in Table 4.3.

The errors quoted in this table are obtained from a gaussian fit to the impact parameter

distribution for each Z. These results will be used in Section 5.4 to connect the measured

data with theoretical calculations.
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b (fm) b (fm) b (fm) b (fm)

Z 112Sn+112Sn 112Sn+124Sn 124Sn+112Sn 124Sn+124Sn
27 7.1±1.5 7.4±1.4 7.1±1.5 7.1±1.3
28 7.2±1.5 7.5±1.4 7.2±1.5 7.2±1.3
29 7.3±1.4 7.6±1.4 7.3±1.5 7.3±1.3
30 7.4±1.4 7.7±1.3 7.4±1.4 7.4±1.3
31 7.6±1.3 7.9±1.3 7.6±1.4 7.6±1.2
32 7.7±1.4 8±1.2 7.7±1.4 7.7±1.2
33 7.9±1.4 8.1±1.2 7.8±1.4 7.8±1.2
34 8±1.3 8.3±1.2 7.9±1.3 7.9±1.2
35 8.2±1.3 8.4±1.1 8.1±1.3 8±1.1
36 8.3±1.3 8.6±1.1 8.2±1.3 8.2±1.1
37 8.5±1.2 8.7±1.1 8.3±1.3 8.3±1.1
38 8.7±1.1 8.9±1.1 8.5±1.2 8.4±1
39 8.9±1.1 9.1±0.93 8.6±1.2 8.6±1
40 9±1.1 9.2±0.91 8.8±1.1 8.7±1
41 9.2±1.1 9.4±0.82 8.9±1.1 8.9±0.93
42 9.4±0.97 9.5±0.8 9.1±1.1 9±0.91
43 9.6±0.88 9.7±0.76 9.3±1.1 9.2±0.83

Table 4.3 Mean impact parameter deduced from the miniball multiplicity tabulated by
atomic number Z. The errors are the width (σ) of a gaussian fit to the impact parameter
distribution for each Z.
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Chapter 5

Results

5.1 Systematics of Velocity Distributions

In this section, the measured fragment velocity distributions are discussed. By comparing

the velocity distributions to established trends, the systematics may provide information

about the reaction dynamics which may explain the isoscaling and isospin diffusion results

in Sections 5.3 and 5.4. Many experiments focus on providing production cross sections for

exotic nuclei, in order to improve models used to predict properties of exotic beams. Accu-

rate predictions of projectile fragmentation cross sections are practically useful because fast

fragmentation is the primary method for producing very exotic beams. The data measured in

this experiment may be useful to improve models used to predict the purities and intensities

of radioactive beams. In particular, this experiment measures how the projectile and target

N/Z affects the fragmentation dynamics, because of the wide range of isospin asymmetry

that was probed.

Since the dynamics of projectile fragmentation are dictated by the mass loss of the frag-

ment, ∆A = Aproj − A, so all parameters will be plotted in this chapter vs. ∆A. Although

secondary decay alters the mass of the detected fragments, the mass loss can be related to

the impact parameter and the energy dissipation during the collision. Plotting a variable

vs. the mass loss then can give some insight into how that parameter is varying with the

centrality and dissipation of the collision, which is useful for comparison to theory.
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The parameter that accounts for the “skewing” of the distributions, γskew, is shown in

Figure 5.1. The magnitude of this parameter reflects how asymmetric the velocity distribu-

tions is; a smaller magnitude of γskew means closer to a normal gaussian distribution. Many

studies of projectile fragmentation [75, 77, 78] have shown that the momentum distribution

is asymmetric. Semi-empirical models have been put forward to explain why this might be,

but is beyond the scope of this work. The trend of the measured data shows that γskew does

not seem to vary with the target mass at all. There is a weak dependence on the mass of

the projectile. For all systems, the magnitude of γskew increases with increasing mass loss.

If the process proceeded by “pure fragmentation”, the gaussian distribution would be more

symmetric with γskew ≈ 0. The experimental result that γskew 6= 0 is a signature of the

increasing importance of non-fragmentation effects.

Another systematic trend which is not simply understood is how the velocity of isobars

changes. Simple models of projectile fragmentation do not predict an isospin dependence for

the velocity distributions [79, 80]. Most of the measured reactions demonstrate a velocity

that depends only on the mass loss of the measured fragment. However, the neutron deficient

reactions 112Sn+112Sn and 112Sn+124Sn have a clear dependence on the neutron excess of

the isobars. When simultaneously fitting the velocity distributions, (see Section 4.4) the

centroid β0 of the skewed gaussian distribution is described as a linear function of the charge

of the isobar:

β0(A,Z) = β0(A,Z0)

(
1 +

dβ0

dZ
(Z − Z0)

)
(5.1)

dβ0
dZ is a parameter of the fit and is plotted in Figure 5.2. For the reactions with the 112Sn

projectile, the effect of changing Z by one while holding A constant is an approximately 0.5%
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Figure 5.1 Skew parameter vs. Mass Loss (Aproj−A). Top, middle, and bottom panels are

the 112Sn, 118Sn, and 124Sn projectiles, respectively. The 112Sn, 118Sn, and 124Sn targets
are represented by the blue,green, and red points, respectively. A horizontal dashed line is
drawn for no skewing, or a symmetric gaussian. A negative value represents a longer tail
extending to lower velocity.
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shift in the velocity. For comparison, the shift from the beam velocity (β = .367) is < 5%,

and the average velocity only shifts by about 2% over the whole range of 20 < ∆A < 60.

This means that for the most neutron-poor projectile, changing Z between isobars has a

significantly larger effect than does changing A between isotopes. For the more neutron-rich

projectiles,
dβ0
dZ has a smaller magnitude and changes with target mass.

In this experiment, there is limited angular acceptance (see Appendix C, and there are

other effects such as charge state contamination which could potentially create this effect,

so data from [75] was investigated for this same effect. In that experiment performed at the

NSCL, beams of 40,48Ca and 58,64Ni were impinged on Be and Ta targets and the reaction

products were measured and identified by the A1900 fragment separator. For the neutron-

poor reactions,
dβ0
dZ is again measurably positive and has a similar magnitude as results

from the Sn+Sn collisions. This result is shown in Figure 5.3. In [75], the neutron-rich

projectiles show the shift in the velocity distributions, but with
dβ0
dZ < 0. For the neutron

rich projectiles,
dβ0
dZ also shows a strong dependence on the target. These changes in the

velocity distribution follow a clear trend, and suggests further study to investigate the cause.

The peak of the velocity distribution β0 also exhibits a very regular trend, shown in

Figure 5.4. For small mass loss, β0 decreases with increasing mass loss. As the mass loss

becomes larger, the trend becomes flat. In the reactions with 118Sn and 124Sn projectiles

the trends are flatter simply because more nucleons must be removed to produce the same

isotopes. [81] showed a similar trend for β0 and suggested that β0 can be used a tracer of

the dissipation in the reaction. That experiment measured reactions with a 86Kr beam and

112,124Sn and 58,64Ni targets at 15 MeV
u .

This trend in the velocity is very useful in the interpretation of the reaction dynamics,

because the isoscaling relations require that the temperature be equal in the systems being
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Figure 5.2 Isobar velocity slope parameter vs. Mass Loss (Aproj − A). Top, middle, and

bottom panels are the 112Sn, 118Sn, and 124Sn projectiles, respectively. The 112Sn, 118Sn,
and 124Sn targets are represented by the blue,green, and red points, respectively. A horizon-
tal dashed line is drawn for zero slope, which means that all isobars have identical velocity
distributions, where a positive value means that higher Z isobars have higher velocity.
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projectiles with 9Be and 181Ta targets, at 140 MeV
u . Data taken from [75]
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Figure 5.4 Most-probable velocity vs. Mass Loss (Aproj − A). Top, middle, and bottom

panels are the 112Sn, 118Sn, and 124Sn projectiles, respectively. The 112Sn, 118Sn, and
124Sn targets are represented by the blue,green, and red points, respectively. The data are
corrected for the energy loss in the target and the timing scintillator. The beam velocity for
all three projectiles is β = .367.
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Figure 5.5 Gaussian width parameter vs. Mass Loss (Aproj−A). Top, middle, and bottom

panels are the 112Sn, 118Sn, and 124Sn projectiles, respectively. The 112Sn, 118Sn, and 124Sn
targets are represented by the blue,green, and red points, respectively. The dashed lines
indicate the fitting result of the modified Goldhaber description discussed in the text.

compared. The systematic trend and the magnitude of β0 are quite similar, which suggest

that these reactions have a similar degree of dissipation. In addition, because the velocity

flattens out with increasing mass loss, it can be assumed that for these fragments (i.e. ∆A &

35 for 112Sn+112Sn), the excitation energy (and temperature) is not changing significantly.

The final parameter of interest in the velocity distributions is the width of the distribu-

tions. Goldhaber proposed a model for the systematics of the width [80], and this was further

modified by Morrissey [79]. It is still an active area of research, [57, 82, 75] because it is

critical in the production of radioactive beams via fast fragmentation. Goldhaber expanded
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on the work by Feshbach and Huang [83] to explain the trends in many fragmentation data

sets, and showed that the momentum distributions follow a common trend regardless of

many assumptions made about the fragmentation process. The Goldhaber formulation can

be simply derived by assuming that the system comes to equilibrium with a temperature T.

Because the projectile separates into two fragments, the system has one degree of freedom,

and so the average thermal kinetic energy is kT/2. Assuming that the projectile is separated

into two fragments with masses A and Aproj − A which have equal and opposite momenta,

the energy in the center of mass can be written as

kT

2
=
< p2

0 >

2mnA
+

< p2
0 >

2mn(Aproj − A)
(5.2)

where mn is the nucleon mass and < p2
0 > is the mean squared momentum in the center of

mass frame. Recognizing that < p2
0 >= σ2

0, Equation 5.2 can be rearranged to give

σ2 = mkT
A(Aproj − A)

(Aproj)
. (5.3)

These simple assumptions do not reproduce a factor of Aproj/(Aproj − 1) which is seen in

the data, but this is a negligible factor for large Aproj. The form of Goldhaber’s systematics

is usually written as:

σ2 =σ2
0

A(Aproj − A)

(Aproj − 1)
(5.4)

for a fragment A and a projectile Aproj, where σ0 is approximately 90 MeV/c and can be

related to the nucleon fermi energy.
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Because the data from this experiment does not include fragments close to the projectile,

distinguishing between different models is not possible. But, comparing the measured sys-

tematics to these models can indicate the robustness of the fitting procedure for the velocity

distributions. To this end, the data is only compared to the Goldhaber systematics.

The actual measured width, shown in Figure 5.5, is a convolution of the fragmentation

process, the straggling in the energy loss in the target and the timing scintillator, the beam

spot size in the dispersive direction, and the intrinsic momentum width of the incoming

beam. The beams used in this experiment are degraded from 120 MeV
u , to 70 MeV

u using

the A1900 fragment separator to select the appropriate portion of the beam. This results

in an approximately 0.25% spread in the incoming beam momentum. Because this spread

was not measured directly for each beam, a constant term σproj is added to the Goldhaber

formula, and is allowed to vary in the fitting procedure. Since velocity distributions and

not momentum distributions are used in the present results, the Goldhaber formula must be

described in terms of velocity and mass loss ∆A:

σ2
β =

σ2
0(∆A)

(Aproj −∆A)(Aproj − 1)
+

σ2
proj

(Aproj −∆A)2
(5.5)

The fits of this function to the data (for the three symmetric systems) are shown in Figure

5.5. The fitting parameters are listed in Table 5.1. In order to fit the data, the constant

additive factor must be on the order of 1% (of the total momentum), which is much larger

than the 0.25% momentum width of the beam. This discrepancy implies that there is more

complicated dynamics than the simple Goldhaber description. Nonetheless, the conclusion

of this fitting procedure is that the reduced width σ0 is similar to the Goldhaber description,
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Reaction System σ0 (MeV/c) σproj (MeV/c)
112Sn+112Sn 94.6 416
118Sn+118Sn 101 410
124Sn+124Sn 95.3 397

Table 5.1 Fitting parameters from the systematics of the velocity distributions.

which gives some confidence in the consistency of the data from one reaction system to

another.
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5.2 Isotopic Distributions of Residue Fragments

One goal of this experiment is to use isoscaling observables to infer information about the

isospin content of the heavy projectile-like fragment distributions. This requires measuring

precisely the shape of the isotopic distributions, which are used to make the isoscaling ratios

in the next section. The relative yields, for a given element, are shown in Figure 5.6 and

5.7, where five different reaction systems are shown for each element. Although only relative

yields are measured in this experiment, the shapes of the isotopic distributions should be

preserved.

Comparing the dotted and solid lines in Figures 5.6 and 5.7 clearly indicates that changing

the system asymmetry changes the isotopic distributions, albeit a small effect. For the higher

Z fragments, the peak of the distributions are shifted to the right simply because fragments

of a larger mass can support a larger neutron excess. To isolate that effect, isoscaling ratios

are constructed in Section 5.3.
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Figure 5.6 Isotopic yield distributions for five reaction systems, for Z=30 to Z=35. The data
are corrected for the charge state contamination, but are not corrected for acceptance. Solid
lines/filled circles represent symmetric reactions, and dotted lines/open circles represent the
mixed reactions.
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Figure 5.7 Isotopic yield distributions for five reaction systems, for Z=35 to Z=41. The data
are corrected for the charge state contamination, but are not corrected for acceptance. Solid
lines/filled circles represent symmetric reactions, and dotted lines/open circles represent the
mixed reactions.
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5.3 Yield Ratios and Isoscaling

To quantify the differences in the isotopic distributions between reaction systems, isoscaling

can be used to condense the information from many data points into a single, physically

meaningful quantity. In particular, the parameter that will be extracted for this analysis is

the slope of the isotopic yield ratios, known as the “neutron isoscaling parameter”. (Defined

in more detail in Section 2.3.1) By making a ratio of the isotopic distributions, microscopic

effects such as binding energies and level densities are cancelled. The measured isoscaling

ratios, with a fit to extract the slope for each individual element is shown in Figures 5.8 to

5.12. The last of these figures, for the 112Sn+124Sn reaction, is plotted in two panels for

clarity because the slope of the yield ratios are small so neighboring elements would overlap.

The quantity that is important to extract is the slope of the lines shown in each figure.

To extract a precise number it is important to address the non-linearities in the isoscaling

ratio. In all the systems, when fitting a line to more than three isotopes, there is an obvious

curvature so that the slope increases with higher N. The effect seems to be more pronounced

for the lower mass fragments than for the higher mass fragments. Other studies of isoscaling

have seen a similar effect. The non-linearity does affect the interpretation of the value of

the isoscaling parameter α, as well as affecting the associated error bars, but the isospin

transport ratio may not be affected, as is discussed in the next section.

The trend of the isoscaling parameter α with atomic number Z is shown in Figure 5.13.

The data plotted in this figure are the fit parameters from the individual fits in Figures 5.8 to

5.12. The data for the 112Sn+124Sn system is divided into even and odd Z for clarity, because

the values of α are small. These figures have not been corrected for the contamination due

to charge states. To see the effect of the charge state correction, the isoscaling parameters
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Figure 5.9 Neutron isoscaling ratio for 124Sn+118Sn with respect to 112Sn+112Sn for Z=27
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are shown in red for clarity.
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Figure 5.13 Neutron isoscaling parameter α for 112,124Sn+112,124Sn and 118Sn+118Sn for
Z=27 to Z=43. No correction for charge state contamination is included.

obtained with corrected data are shown in Figure 5.14. The charge state correction causes an

increase of α up to 10%. Because the charge state correction relies on an empirical calculation

of the charge state effect, the correction introduces some systematic error into the absolute

value of α. Fortunately, the correction has very little effect on the isospin transport ratio,

which is discussed in Section 5.4.

The main source of error in the determination of α comes from the non-linear trend in

the isoscaling ratios. Because of the non-linear trend, the slope is highly correlated with

the choice of fit range. Sharp variations in the value of α as a function of Z are simply

caused by changes in the range of isotopes that are measured. To demonstrate this effect,
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Figure 5.14 Neutron isoscaling parameter α for 112,124Sn+112,124Sn and 118Sn+118Sn for
Z=27 to Z=43. The calculated correction for charge state contamination has been applied
to the data.
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in terms of α, the fit range can be modified by excluding a data point on either end of the

fit range. Figure 5.15 shows how the choice of fit range affects the determination of alpha.

Removing only one isotope changes the extracted value of alpha by as much as 5-10%. It

is also clear from this figure that there is a similar effect for both reaction systems. This

suggests that there is some systematic error (due to the non-linearity of the isoscaling ratio)

that is similar for each system. One way this can be interpreted is that the primary emitting

source has a range of different asymmetries that are correlated with the neutron excess,

which is a probable consequence of measuring a system which has not reached complete

equilibrium. Another possibility is that the effective temperature of these sources is slightly

different. This is the claim made in [85], which suggests that the source temperature should

be linearly dependent on the source asymmetry. Whether or not this is the case, fitting to a

fixed range of isotopes would choose a certain temperature range, and this choice should be

the same for each system. Section 5.4 will show that this choice does not significantly affect

the isospin transport ratio.

Although there are several effects that can cause some change to the isoscaling parameter

that is extracted from the data, the isospin diffusion effect can be clearly seen in the mixed

systems, 112Sn+124Sn and 124Sn+112Sn, shown in Figure 5.16. The general trend upward

as a function of Z can be interpreted as the effect of a decreasing temperature for more

peripheral collisions, because it is observed in the symmetric systems as well. In the more

peripheral collisions, less nucleons are abraded from the projectile, resulting in a less excited

nucleus. The fine structure, especially for the 124Sn projectile, is a result of the effects of the

different fit ranges for different Z. It will be shown that this fine structure, and the overall

trend with Z is mostly canceled in the isospin transport ratio.
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Figure 5.15 Neutron isoscaling parameter, α for 124Sn+124Sn and 118Sn+118Sn with respect
to 112Sn+112Sn, for Z=27 to Z=43, showing the effect of the choice of fit range. Solid symbols
show the two symmetric reactions with the full fit range, while the open symbols show the
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Clearly, the isoscaling parameter α is sensitive to the isospin content of the system, but the

precision of α alone is not adequate for this study. Although isoscaling is a phenomenon that

is reproduced by many statistical models, the present study requires a dynamical transport

model to understand the diffusion. Because of the computational difficulties with microscopic

transport models, models such as ImQMD cannot be used to generate accurate isotopic

distributions for heavy nuclei, so the isoscaling results cannot be compared to theory, directly.

The next section will discuss how the parameter α can be used to form an isospin transport

ratio, which is critical for a realistic comparison to theory.
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5.4 Isospin Transport Ratio

The isospin transport ratio combines information (from isoscaling, in this case) from two

symmetric systems and one mixed system to describe the degree of isospin equilibrium that

the mixed system reached during the collision. In particular, the end goal is to understand

the dynamics in the reaction between 112Sn and 124Sn, and how their differing isospin

asymmetry affects the dynamics. In this experiment, the 118Sn+118Sn reaction is measured

as well, which is relevant for the interpretation of the isospin diffusion data. Using the isospin

transport ratio allows for a direct connection between physical observables and theoretical

quantities, and is a simple, intuitive quantity. The isospin transport ratio is defined for the

purposes of this experiment as:

RI(X(112+124 or 124+112)) =
2X(112+124 or 124+112) − (X(124+124) +X(112+112))

X(124+124) −X(112+112)
(5.6)

where the observable X is quantity that is either measured experimentally or calculated

theoretically. In this case, the observable X is the isoscaling parameter α. Because isoscaling

is a quantity that is determined from two reaction systems, this expression must be modified.

The 112Sn+112Sn system is used as the reference, so dividing numerator and denominator

by X(112+112) gives:

RI(X(112+124 or 124+112)) =

2
X(112+124 or 124+112)

X(112+112)
− (

X(124+124)
X(112+112)

+ 1)

X(124+124)
X(112+112)

− 1

(5.7)
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and recalling that the isoscaling parameter involves the logarithm of the yield ratios, the

fractions on the right hand side can be replaced with the isoscaling parameter (and log(1) =

0), giving:

RI(X(112+124 or 124+112)) =

2α(112+124 or 124+112
112+112

) − α(124+124
112+112

)
α(124+124

112+112

) (5.8)

which gives the expected values of -1 when the mixed reaction behaves like the 112Sn+112Sn

reaction, and +1 when the mixed reaction behaves like the 124Sn+124Sn. Practically, the

isospin transport ratio is simply a linear transformation of an observable. There are other

advantages that will be discussed further in this section.

There are several advantages to using the isospin transport ratio, that help to minimize

the effect of several experimental problems. First, because the effect of charge state contam-

ination has been calculated approximately, its effect on the isospin transport ratio can be

estimated. As discussed in the previous section, the contamination amounts to a correction

to α of up to 10%. Because the correction affects the different systems in a linear way, the

correction has little effect on the isospin transport ratio. Figure 5.17 shows this effect, for

the 118Sn+118Sn reaction. The correction to the isotopic yields is a smooth function and is

mostly cancelled in constructing the isospin transport ratio. Because the main uncertainty

in the charge state correction is the calculation from GLOBAL, which is the same for all

systems and elements, so there is no indication that anything would change the cancellation

of the correction. The correction is less than 0.02 for all Z, and because of the limited

reliability of GLOBAL, this result is simply included as a systematic uncertainty of ±0.02.

In general, the biggest source of uncertainty in the determination of α is the non-linearity

of the isoscaling ratio. There are various explanations for this non-linearity such as secondary
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decay or differences in temperature of the emitting source. The non-linearity of the isoscaling

ratio log(R21) is actually minor, but because it is systematically non-linear, there can be

a systematic effect on the determined value of α. Although the systematic error in the

determination of α is large, (see Figure 5.15) the effect on the isospin transport ratio is more

subtle. Figure 5.18 shows the effect that the isoscaling fit range can have on the isospin

transport ratio. Removing one isotope from the fit has an effect on the extracted Ri which

is smaller than the propagated statistical error bars. Only the result for 118Sn+118Sn is

shown, because the result does not depend strongly on the atomic number of the fragments

used in the isoscaling fits. The effect on the isospin transport ratio is much smaller than the

effect on the isoscaling parameter itself. The three options shown are for the full range of

isotopes, and for removing one isotope from each end of the fit range. The variation between

the three choices is less than the statistical error for each element, so there is no indication

that the choice of fit range affects the isospin transport ratio, as long as the fit range is kept

the same for each system. This is fortunate; it indicates that this observable is not very

sensitive to the selection of fragments measured in the the experiment. More quantitatively,

when taking an average of the points, the fit of the full range gives Ri = 0.207±0.013, while

the sub-ranges give Ri = 0.214± 0.015 and Ri = 0.187± 0.009. Thus, the uncertainties that

arise from the fit range are neglible.

5.4.1 Linearity of Isoscaling Observables

The measurement of the 118Sn+118Sn system gives important information about the valid-

ity of the isoscaling parameter as an isospin observable. In the simplest assumption, the

118Sn+118Sn system represents when the 124Sn+112Sn system has reached isospin equilib-

rium; if the 112Sn and 124Sn nuclei simply exchanged neutrons and no nucleons are lost. This
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measurement helps to verify the important assumption: does the isoscaling parameter have

a linear relationship with the isospin asymmetry of the emitting source? The isospin asym-

metry of the primary fragments can be calculated in the ImQMD framework, but cannot be

measured in experiment. The isoscaling parameter can be measured in the experiment, but

cannot be easily calculated in the ImQMD framework. The isospin transport ratio allows

these two variables to be compared directly, but only if they are linearly related to each

other.

One consideration is the mass asymmetry of the different Sn isotopes. Because exchanging

neutrons between the projectile and the target also changes the mass, the 118Sn+118Sn

system is actually not halfway between 112Sn+112Sn and 124Sn+124Sn, in terms of δ = N−Z
A .

In fact, when calculating Ri using only the δ of the Sn isotopes, the 118Sn+118Sn system

would yield a value of Ri = .051 [45]. The value found in this study has been shown to be

appreciably higher, Ri = 0.207±0.013. Actually, the isoscaling parameter has been assumed

to have the following form, as derived in several statistical-type model frameworks [38]

α21 =
4Csym
T

((
Z1

A1

)2

−
(
Z2

A2

)2
)

=
4Csym
T

∆NZ (5.9)

where T is the temperature of the emitting source, and Csym is the strength of the symmetry

energy. No attempt is made here to deduce the temperature and extract Csym, but this

equation can give some insight into the dependence of α on the isospin content of the emitting

source. The temperature confuses the situation until the isospin transport ratio is used, which

cancels the T and Csym, assuming that the temperatures reached in the different collisions

are similar. However, α still depends on the difference of the square of Z/A between the two

systems. Assuming this to be exactly true, the Ri that is obtained using Equation 5.9 should
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be Ri = 0.0762. This expected quantity is shown as a dashed line in Figure 5.18. Although

the discrepancy is outside of the error range for the experimental result, the relation between

α and ∆NZ is remarkably similar to expectations given the myriad of assumptions that must

be made to derive Equation 5.9. This discrepancy must be addressed in order to compare

the isospin diffusion results to ImQMD calculations.

One possibility is that the assumptions made when deriving Equation 5.9 do not hold.

The first assumption was that the symmetry energy provided the main contribution to the

neutron (proton) separation energy difference between the two systems. Assuming a statisti-

cal process created these fragments, the isoscaling parameter α (β) is equal to the difference

in the neutron (proton) chemical potential between the two reactions, divided by the tem-

perature. While different fragments detected in this study could come from different temper-

ature, (removing more nucleons from the projectile results in higher excitation energy) the

regular linear trend of the isoscaling ratios log(R21) implies that the temperature difference

between the two reactions is small. Equation 5.9 was derived by taking the derivative of

the binding energy with respect to neutron (proton) number assuming the symmetry energy

is the main contribution. When comparing the symmetry, surface, and coulomb terms, the

symmetry term makes up 98% of this neutron separation energy difference. More impor-

tantly, the separation energy difference is still linear with ∆NZ when including the surface

and coulomb terms. In the case of the proton isoscaling parameter β, the contributions from

coulomb and surface effects are slightly larger, but the trend is still mostly linear as well.

This part of the analysis does not seem to be the cause of this non-linearity.

Another possibility is that the preequilibrium emission strongly affects the asymmetry

of the projectile-like fragment in the early part of the reaction. The isoscaling parameter

reflects the asymmetry of the primary fragment at the point that the reaction becomes
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a statistical thermodynamic process. Nucleons that are emitted early during the collision

would not affect this observable. Because neutrons are not measured, this effect can only be

predicted by calculations.

A third possibility is that the α measured for 124Sn+124Sn with respect to 112Sn+112Sn

is modified by secondary decay of fragments more strongly than the alpha for 118Sn+118Sn

with respect to 112Sn+112Sn. This would happen, for instance, if secondary decay affected

the yields for 124Sn+124Sn more than the other two reactions. Because secondary decay

brings the final isotopic distributions closer together, it decreases the magnitude of α and β.

This effect can be examined in the ImQMD framework as well. ImQMD does not include

the effects of secondary decay, the results only give insight into the primary fragment yields.

The isospin asymmetry, averaged over all fragments with Z > 20, is plotted in Figure 5.19.

The calculation shown is with ImQMD-Sky with four parameter sets, and the impact param-

eter is b = 10 fm. This result shows that the average asymmetry of the primary fragments is

predicted (in ImQMD-Sky) to be linearly correlated with the projectile asymmetry for the

symmetric reactions, regardless of the interaction used. The requirement of Z > 20 does

not much affect the result in this case, because for such a peripheral reaction, very few large

fragments are created with Z < 30.

While the effects of secondary decay are not included in ImQMD, and are not calculated

here, the effect can be understood in a qualitative way. When measuring isoscaling, the yield

of a specific isotope is compared to the same isotope in another reaction. The events that

result in this certain isotope being measured have very different histories in one reaction ver-

sus another. There are two main effects that would cause the reaction to progress differently,

but arrive at the same measured fragment. First, the mass of the Sn projectiles are different;

to form a primary fragment of mass number 85 requires removing 27 nucleons from 112Sn
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but requires removing 39 nucleons from 124Sn. Therefore, the higher mass projectile would

create a larger temperature and excitation energy. Then, the nucleus with a higher temper-

ature would require more particle emission to decay to its final state. This would affect the

comparison between the 118Sn+118Sn and 112Sn+112Sn reactions to a similar degree that

it would affect the comparison between the 124Sn+124Sn and 118Sn+118Sn reactions, so the

temperature difference alone would not lead to this non-linearity.

Once it is established that the different systems require different amounts of secondary

decay, it follows that to measure fragments of the same (N,Z) in the different reactions, they

must have originated from different primary fragments. In general, evaporation of nucleons

has been shown to cause the system to approach an “Evaporation Attractor Line” (EAL),

where the decay widths of protons and neutrons become equal [86]. As the decay process

brings the system closer to the EAL, the driving force decreases, and the system approaches

the EAL asymptotically. In general, how close the system gets to the EAL is directly related

to the excitation energy. Because the higher-mass projectile would begin with hotter, more

massive primary fragments to get to the same final isotope, the average asymmetry would

be pushed more towards the EAL. This will be investigated in the future by using a decay

model to study the de-excitation of the residues.

The result of this examination of the results from the 118Sn+118Sn system shows that

the information from the third symmetric system is very helpful to understand the isoscaling

parameter obtained in the mixed systems. The Ri obtained from the 118Sn+118Sn reaction

in both experiment and in the calculations is nonzero, so some correction should be made

before comparing the isospin transport ratios. Although the precise functional form of the

relationship between α and δ is unknown, assuming the effect is smooth and continuous, a
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quadratic correction can be used. A modified isospin transport ratio R∗i can be defined as:

R∗i (X) =Ri(X) +Ri(Xeq)
(
Ri(X)2 − 1

)
(5.10)

where Xeq is the observable measured in the 118Sn+118Sn reaction. This expression still

yields ± for the 124Sn+124Sn and 112Sn+112Sn reactions, but uses the freedom in the

quadratic term to put 118Sn+118Sn at R∗i (Xeq) = 0. The purpose of developing the isospin

transport ratio was to allow for a more direct comparison between experiment and theory.

One result of this experiment, shown in this section, was to investigate how the isoscaling

parameter depends on the asymmetry of the emitting source. This assumption turns out to

be approximately true, although there is a non-linear effect on the order of 10%, which is

remarkable considering the many assumptions made. To attempt to make a more precise

measurement, the modified isospin transport ratio will be described in the next section.

5.4.2 Isospin Diffusion Results

One purpose of this measurement was to understand how the dynamics during collisions of

heavy ions at intermediate energies are affected by changing the isospin asymmetry of the

reaction system. In particular, how does the isotopic distribution of heavy fragments change?

In Section 5.2, the isotopic distributions are shown, and there is a clear shift in the peaks

of the isotopic distribution between the symmetric systems and the mixed systems. This

is shown more clearly using the isospin transport ratio in Figure 5.20. The magnitude of

the difference between the symmetric system and the mixed system, describes how much

“diffusion” has occurred. As discussed in the previous section, the isoscaling parameter has

some non-linear behavior with respect to the isospin asymmetry. For the same reason that
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Figure 5.20 Isospin transport ratio, calculated using the isoscaling parameter α using 5
measured reactions.

the 118Sn+118Sn system gives Ri > 0, the two mixed systems in Figure 5.20 give results

that are asymmetric about zero.

The striking feature of this result is that the absolute value of Ri(α) increases for in-

creasing Z, meaning that the diffusion decreases for increasing Z. This is an expected fea-

ture, because larger Z fragments result from more peripheral collisions where the projectile

and target will be in contact for a shorter time, resulting in less diffusion. The ImQMD

simulations predict that the amount of diffusion should be at least similar in the two mixed

reactions, so before comparing to the calculations, the nonlinearity of Ri(α) must be re-

moved. Using the average value of Ri for the 118Sn+118Sn system, the modified isospin
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Figure 5.21 Modified isospin transport ratio, calculated using the isoscaling parameter α
using 5 measured reactions. The black open squares are the average of the two mixed
systems.

transport ratio establishes the expected symmetry, shown in Figure 5.21. The values are

transformed from the standard isospin transport ratio using the average value of Ri(α) for

118Sn+118Sn, so the green squares are centered at R∗i (α) = 0 by design. The average of the

two mixed systems is shown as well. The average is close to R∗i (α) = 0, but is measurably

lower, R∗i (α) = −0.036± 0.008. This is either an indication that the correction being made

does not have the simple quadratic form that is assumed for R∗i , or that the two mixed sys-

tems exhibit a different amount of isospin diffusion. Either of those explanations is possible,

so this difference is a measure of the systematic error in the final results.
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Figure 5.22 Modified Isospin Transport Ratio vs. Atomic Number Z, for the two mixed
reactions, 124Sn+112Sn and 112Sn+124Sn.

The final isospin diffusion result using the modified isospin transport ratio is shown in

Figure 5.22. The 124Sn+112Sn system shows a slightly larger extent of isospin diffusion than

the 112Sn+124Sn system. This dependence could result from the simple correction applied

for the nonlinearity of α. This asymmetry could also result from the two systems having

slightly different impact parameters.
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150

Ri Ri Ri R∗i R∗i R∗i
Z 112Sn+124Sn 118Sn+118Sn 124Sn+112Sn 112Sn+124Sn 118Sn+118Sn 124Sn+112Sn
27 -0.57±0.059 0.2±0.097 0.78±0.12 -0.71±0.06 -0.0033±0.098 0.7±0.13
28 -0.62±0.05 0.15±0.066 0.73±0.072 -0.75±0.051 -0.057±0.066 0.64±0.074
29 -0.61±0.07 0.25±0.1 0.76±0.1 -0.74±0.072 0.051±0.1 0.67±0.1
30 -0.65±0.053 0.21±0.088 0.77±0.082 -0.77±0.054 0.012±0.088 0.68±0.084
31 -0.66±0.039 0.19±0.056 0.78±0.059 -0.78±0.039 -0.015±0.056 0.7±0.061
32 -0.62±0.04 0.17±0.06 0.79±0.051 -0.75±0.04 -0.027±0.06 0.71±0.053
33 -0.6±0.07 0.26±0.11 0.81±0.12 -0.73±0.071 0.067±0.11 0.74±0.13
34 -0.68±0.048 0.26±0.058 0.81±0.071 -0.79±0.049 0.061±0.059 0.74±0.073
35 -0.66±0.042 0.18±0.067 0.79±0.077 -0.78±0.043 -0.02±0.067 0.72±0.079
36 -0.68±0.035 0.22±0.053 0.87±0.063 -0.79±0.035 0.025±0.053 0.82±0.065
37 -0.69±0.02 0.2±0.029 0.81±0.021 -0.8±0.021 -0.00031±0.029 0.74±0.021
38 -0.78±0.037 0.2±0.036 0.83±0.057 -0.86±0.038 0.005±0.036 0.76±0.059
39 -0.75±0.03 0.24±0.041 0.81±0.062 -0.84±0.03 0.048±0.041 0.74±0.063
40 -0.83±0.032 0.22±0.039 0.83±0.017 -0.89±0.033 0.017±0.039 0.77±0.018
41 -0.83±0.034 0.18±0.042 0.89±0.065 -0.9±0.035 -0.019±0.042 0.85±0.067
42 -0.9±0.059 0.21±0.059 0.91±0.053 -0.94±0.061 0.015±0.059 0.87±0.055
43 -0.9±0.045 0.27±0.08 0.91±0.067 -0.94±0.046 0.078±0.08 0.87±0.069

Table 5.2 Isospin Transport Ratio and Modified Isospin Transport Ratio results, tabulated as a function of atomic number Z.
These data are plotted in Figures 5.20 to 5.22.



When constructing a comparable observable from the ImQMD calculations, the biggest

uncertainty is the ambiguity in reproducing the impact parameter dependence. When simu-

lating these collisions with ImQMD, computing resources are a limiting factor. As a result,

these calculations were only done for impact parameters of b = 6 fm, b = 9 fm, and b = 10

fm. A more thorough study would be to generate collisions with a weighted distribution of

impact parameter. This would allow for a more detailed comparison of how the observables

depend on the impact parameter selection, or equivalently, which range of Z a calculation

should be compared to. More calculations are being done to establish this dependence, but

are not available for this study.

Since the experimental Ri is formed by comparing results with a constant Z, the calcu-

lation must be constructed the same way. Fortunately, a fixed impact parameter results in

similar range of Z in each system, because the projectiles have equal charge. Figure 5.23

shows an example of the results for the SLy4 skyrme parameter set, for two impact parame-

ters. For a fixed b, the mixed systems have a different average Z than the symmetric system

of the same projectile by about 1 unit of charge. This may be explained by the difference

in the radii of the different isotopes of Sn; a bigger target abrades more nucleons. Another

important trend is that the slope of the asymmetry in the mixed systems with Z is different

from the symmetric systems. This is also expected, because the amount of diffusion should

increase with decreasing impact parameter. The combination of these two trends results in

a systematic shrinking of the isospin transport ratio so that ∆ < δ >6= ∆δZ for both mixed

systems and for any Z. The data compare the same Z in two reactions, whereas the calcu-

lations compare same impact parameter in two reactions. This effect should be addressed

when comparing the ImQMD results to the data. Although the detailed observables, such

151



as the Z distribution may not be reproduced by ImQMD, there will be a similar effect in the

real data.

Figure 5.24 shows how different Ri result from using either the average asymmetry, < δ >,

for a fixed impact parameter or using the asymmetry for a fixed Z, δZ . The difference is

largest (≈ 15% more diffusion)for the SLy4 parameter set, which predicts the largest isospin

diffusion signal. To accurately account for this effect, more ImQMD calculations are needed

at impact parameters from 7fm to 12fm. The result using only the calculations at 6fm and

10fm shows the behavior qualitatively, but is not robust enough to form a constraint on the

symmetry energy.

Figure 5.25 shows the resulting Ri(δZ) when the impact parameter dependence is in-

cluded, for the four skyrme parameter sets used in this study. Only the calculation for

the 124Sn+112Sn reaction is shown for clarity. The effect of the density dependence of the

symmetry energy is clearly demonstrated. SkI2 has a “stiff” density dependence of the sym-

metry energy, which means that the symmetry energy is smaller at subsaturation density. A

smaller symmetry energy results in less diffusion because the driving force in the low density

neck region would be weaker. A skyrme set with a “soft” symmetry energy produces more

diffusion. The SLy4 interaction has a soft symmetry energy but a similar momentum de-

pendence as the SkI2 interaction, and the diffusion is accordingly larger for SLy4. The effect

of the different momentum dependent interactions used is shown, reflected by the different

effective mass splitting. Because the skyrme parameter sets have many parameters which

are simultaneously fit to data, it is difficult to isolate the effect of one aspect of the physics.

The different effective mass splitting is obscured by the fact that the isoscalar effective mass

is simultaneously changing. To understand the relationships between the various interaction

properties, the covariance analysis is described in [87].
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Figure 5.23 Primary residue asymmetry, calculated using ImQMD-Sky with the SLy4 pa-
rameter set (soft symmetry energy), plotted against the average Z of the resulting projectile-
like fragment, for the reactions 112Sn+112Sn, 112Sn+124Sn, 118Sn+118Sn, 124Sn+112Sn,
124Sn+124Sn, for impact parameters b = 10fm and b = 6fm.
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The ImQMD-Sky model provides some insight into the physics, but to isolate the effect

of the density dependence of the symmetry energy, ImQMD05 is used. For ImQMD05, the

interaction portion of the nuclear symmetry energy is described by a simple power law,

Si(ρ) = Si,0

(
ρ
ρ0

)γ
. These calculations were done for b = 6 fm, b = 9 fm, and b = 10 fm, but

only the 112Sn+124Sn mixed system was calculated for b = 6 fm. Using this limited number

of impact parameters, a linear dependence on Z for Ri can be generated from the model

calculations. This is shown in Figure 5.26. There is a dependence of Ri on the stiffness

of the symmetry energy term, so the experimental Ri should allow for a constraint on the

exponent γ.

This diffusion result can be compared to the calculations, although a detailed comparison

will be done when more calculations are available. The available calculations (shown in

Figure 5.26) are plotted with the data for the 112Sn+124Sn system in Figure 5.27. The

impact parameter calibration for the 112Sn+112Sn system is used, and the error region

corresponds to an error in the average Z of ±2.5 units.

The preliminary comparison suggests a density dependence of γ ≈ 1.0. The previously

measured constraints from isospin diffusion were γ = 0.75±0.25. The preliminary results may

be consistent with these previous studies. Until more theoretical calculations can be done at

the appropriate impact parameters and the results understood, no conclusions can be made.

Also, work is currently underway to study the covariance relationship between the extracted

γ, the strength of the symmetry energy at saturation density S0, and other transport model

input parameters. A similar χ2 analysis as in [42] will be done with additional ImQMD05

calculations, in order to obtain a confidence interval for γ. Nonetheless, the isospin diffusion

result using heavy residue projectile fragmentation is a viable observable for constraining

the density dependence of the symmetry energy.
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Chapter 6

Conclusion

In this dissertation, the dynamics of nuclear reactions at intermediate energies were investi-

gated by measuring heavy residues from collisions of 112,118,124Sn beams with 112,118,124Sn

targets. Isotopic yield ratios of heavy fragments with Z > 25 were used to determine the

extent of isospin diffusion that occurred in these reaction systems. By measuring a larger

matrix of reactions than in previous isospin diffusion studies, a non-linear relationship be-

tween the isoscaling parameter α and the isospin asymmetry of the excited fragments was

identified. These results will be used to improve the current experimental constraints on the

density dependence of the nuclear symmetry energy.

The relative yields of heavy residues were measured using the S800 spectrometer. Isotopic

and elemental identification was determined using time-of-flight and energy loss, which were

corrected event-by-event using the measured fragment trajectories. An approximate cor-

rection was derived for the contamination due to multiple charge states of fragments being

detected in the S800. Seven different reactions were measured using three magnetic rigidity

settings, and the velocity distribution of each isotope was reconstructed. The relative yields

were obtained by integrating these velocity distributions.

The MSU Miniball was used to measure the impact parameter event-by-event using the

charged particle multiplicity and by measuring the total reaction cross section. The reduced

impact parameter extracted from the charged particle multiplicity was shown to have an

approximately linear relationship with the atomic number of the fragment measured in the
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S800. An approximate relationship between the impact parameter and the atomic number

Z of the heavy residue was determined.

The relative isotopic distributions measured by the S800 were used to form isotopic

yield ratios to compare the isospin asymmetry obtained in each system. The data were

shown to follow established isoscaling relationships, and the neutron isoscaling parameter was

extracted as a function of atomic number for all systems. The neutron isoscaling parameter

was shown to be positively correlated with atomic number, which can be attributed to an

increasing temperature with increasing mass loss. The neutron isoscaling parameter was also

found to vary with the range of isotopes used for the fit, so that fitting more neutron rich

fragments resulted in a larger α.

The isoscaling parameter was used to form an isospin transport ratio to compare the

118Sn+118Sn system to the 112Sn+112Sn and 124Sn+124Sn systems. The isospin transport

ratio for this system was shown to be insensitive to the systematic effects that caused vari-

ations in the isoscaling parameter, and was approximately constant over the range of Z

measured in this experiment. This system yielded an isospin transport ratio which is larger

than zero, indicating that the isoscaling parameter is not exactly linearly related to the

isospin asymmetry of the initial compound system.

The isospin transport ratio was also used to quantify the amount of isospin diffusion

that occurred in the mixed 124Sn+112Sn and 112Sn+124Sn systems. The isospin transport

ratio for the 124Sn+112Sn system had a larger absolute value than for the 112Sn+124Sn.

This asymmetry is consistent with the positive isospin transport ratio measured for the

118Sn+118Sn system.

To account for the non-linearity of the isoscaling parameter, a modified isospin transport

ratio was proposed which incorporated the measurement of the 118Sn+118Sn system. This
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correction largely removed the asymmetry of the two mixed reactions. It was found that the

amount of diffusion increased as the atomic number Z of the measured fragment decreased,

which was interpreted as a dependence on the impact parameter in the collision.

The Improved Quantum Molecular Dynamics (ImQMD) transport simulation was used

to interpret the isospin diffusion results. The collisions were simulated at several impact

parameters, and with several different forms of the density dependence of the symmetry

energy. The result was shown to be sensitive to the impact parameter, which qualitatively

agrees with the experimental results.

Both the ImQMD-Sky and ImQMD05 results show a correlation between the isospin

transport ratio with the density dependence of the symmetry energy. The data and the

calculation show a strong dependence on the impact parameter. Because of computational

limitations, calculations were completed for a limited set of impact parameters. To better

account for the impact parameter dependence more calculations are needed, so a precise

constraint on the impact parameter is not produced at this time. Calculations with other

transport models such as the Boltzmann-Uehling-Uhlenbeck (BUU) model are underway as

well.

The experiment also measured the yields of light particles and intermediate mass frag-

ments in the LASSA array. Isoscaling information will be extracted from the intermediate

mass fragment yields, and this information will be compared to the results presented here.

The intermediate mass fragments should give a second independent measurement of isospin

diffusion, which will improve the reliability of these results.
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Appendix A

Particle Identification Spectra

This section shows the final corrected particle identification spectra obtained using the S800
Spectrometer. Each figure shows the three magnetic rigidity settings measured for a single
reaction. Seven different reaction systems are shown.
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Figure A.1 Particle Identification for the 112Sn+112Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.
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Figure A.2 Particle Identification for the 112Sn+124Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.
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Figure A.3 Particle Identification for the 118Sn+112Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.
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Figure A.4 Particle Identification for the 118Sn+118Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.



168

2 4 6 8 10

10

15

20

25

30

35

40

45

50

=2.6TmρB

Neutron Excess N­Z

2 4 6 8 10

10

15

20

25

30

35

40

45

50

=2.51TmρB

Sn
112

Sn+
124

2 4 6 8 10

A
to

m
ic

 N
u

m
b

e
r
 Z

10

15

20

25

30

35

40

45

50

=2.4TmρB

Figure A.5 Particle Identification for the 124Sn+112Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.
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Figure A.6 Particle Identification for the 124Sn+118Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.
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Figure A.7 Particle Identification for the 124Sn+124Sn reaction. The three panels show the three different momentum settings
that were measured. See Section 4.2 for details.



Appendix B

Hodoscope Analysis

The S800 spectrometer measures time-of-flight, energy loss, and magnetic rigidity in order
to extract the charge, mass, and momentum of heavy residue fragments. When fragments
enter the S800 with Z 6= q they will be misidentified. A CsI hodoscope to measure the total
kinetic energy (TKE) of the fragments was commissioned just prior to this experiment in
order to solve this problem. The hodoscope did not exist at the time of the proposal, so
the experiment was not optimized to take advantage of it. The energy of the projectile was
increased from the proposed energy so that fragments could be detected in the hodoscope.
Ultimately, the hodoscope did not provide useful information for this experiment, but the
attempted analysis is described here.

Two overlapping isotopes in Figure 4.23, at a fixed Bρ, mq , and Z, would enter the S800

with different total kinetic energy (TKE), and the hodoscope would be able to discriminate
between these two isotopes. In practice, there are several complications. The first problem
is that the fragments must travel through several detectors (the two CRDC’s, the ionization
chamber, and the timing scintillator) as well as a Teflon covering over the CsI array. The
hodoscope was commissioned using a beam of 76Ge (Z=32) at 130 MeV/u, or 9870 MeV TKE.
[59] In that case, after taking into account all energy losses, the calculated energy at the
hodoscope was 8680 MeV. Fragmentation products were also measured using both Au and
Be targets, and the hodoscope was characterized over the energy range of 3600 MeV to 7600
MeV TKE for elements from Z = 17 to Z = 33. [70] In this experiment with Sn beams of
70 MeV/u, the measured energies of fragments from Z = 20 to Z = 45 are much lower. Table
B.1 shows the materials and estimated thicknesses of the detectors in the S800 focal plane.
To investigate the effect of energy losses for this experiment, calculations using LISE++
[88, 89] are shown in Table B.2. The calculations are done for an isotope in the middle of
the measured isotopic distribution, and the incoming energy is 60 MeV/u for all fragments for
simplicity. 60 MeV/u is chosen because it corresponds the Bρ = 2.51 setting, in the center
of the experimental acceptance. Because there are many uncertain variables such as the gas
pressure (which varied throughout the experiment), the E1 timing scintillator thickness, or
the exact thickness of the teflon covering of the hodoscope, this is only an estimate of the
energy losses.

Because energy loss increases with Z, fragments with Z > 35 do not reach the hodoscope.
For Z = 25, already half of the fragment energy is estimated to be lost before reaching the
hodoscope. To see the real effect of the energy losses, Figure B.1 shows the overall efficiency
for detecting fragments as a function of Z. This efficiency is calculated as the ratio of events
with a signal above threshold in the hodoscope compared to the total number events with a
fragment identified in the focal plane for each given Z. Figure B.1 agrees qualitatively with
the calculations from Table B.2, but the calculations clearly underestimate the energy loss.
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Layer Material Estimated Thickness
CRDC1 entrance window PPTA 12 micron
CRDC1 gas 80% CF4 - 20%C4H10 40 torr
CRDC1 exit window PPTA 12 micron
CRDC2 entrance window PPTA 12 micron
CRDC2 gas 80% CF4 - 20%C4H10 40 torr
CRDC2 exit window PPTA 12 micron
IC entrance window PPTA + Kevlar 14.0 mg/cm2

IC gas P10 300 Torr
IC plates PPTA 2 mg/cm2

IC exit window PPTA + Kevlar 14.0 mg/cm2

E1 scintillator polyvinyltoluene 1.0 mm
Teflon hodoscope cover Teflon 300 µm
hodoscope CsI(Na) 5 cm

Table B.1 Approximate thicknesses of the S800 focal plane detectors

Fragment Z (N-Z) E After IC E After E1 E into Hodo
20 (4) 54.1 MeV/u 42.5 MeV/u 35.3 MeV/u
25 (5) 52.6 MeV/u 37.7 MeV/u 27.8 MeV/u
30 (6) 51.2 MeV/u 32.9 MeV/u 19.7 MeV/u
35 (7) 49.9 MeV/u 28.2 MeV/u 9.94 MeV/u
40 (8) 48.7 MeV/u 23.4 MeV/u 0 MeV/u

Table B.2 Approximate energy loss as a function of Atomic Number Z, Starting from
60 MeV/u (near Bρ = 2.51)

For Bρ = 2.51, which should be directly comparable to Table B.2, the efficiency drops by
50% by Z = 28. Furthermore, the range where charge states become an appreciable effect
is for Z > 30.

To further understand the effect of energy loss with increasing Z, Figure B.2 shows the
hodoscope energy for one crystal as a function of Z, for the 112Sn+112Sn reaction system, at
Bρ = 2.51 Tm. The hodoscope energy quickly drops to zero as Z increases beyond Z = 25,
which is consistent with the energy loss effects described above. Another effect that may
play a role is the light response of the CsI(Na) for these very highly ionizing particles. This
effect was described in [70], but that analysis relied on the ability to accurately calculate all
energy losses before the hodoscope. Without better calibrations of the material thicknesses,
this would be futile for the present experiment.

Another problem, also observed in the commissioning of the hodoscope, is the position
dependence of the CsI signals. The array is made up of 32 separate crystals arranged in a
4x8 array. It was found that the energy deposited (by the monoenergetic primary beam)
had anomalous behavior near the edges of the crystals. Within about 5mm of each edge of
the crystal the light output is enhanced. In that experiment, data from the edges of the
crystals were simply removed. In this experiment, the problem is unavoidable. As discussed
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Figure B.1 Overall detection efficiency of the CsI hodoscope for the 112Sn+112Sn reaction
system, at Bρ = 2.4, 2.51, and 2.6 Tm. The efficiency is simply the fraction of particles
which are otherwise detected and identified in the focal plane that also leave a signal in any
hodoscope crystal.

in Appendix C, due to a problem in the tuning of the S800, the acceptance of the S800 was
very limited, especially in the non-dispersive direction. As a result, instead of illuminating
the entire middle two columns of crystals, only the seam between these two columns is
illuminated. During the first few days of the experiment, in June, the fragments are well
spread over the hodoscope, as expected. This is shown in Figure B.3. Based on the energy-
position correlation noted in the June segment of the experiment, to remove the edge region
would likely mean removing ± 5mm, which would remove most of the data. To analyze these
data would require a careful calibration of the position dependence, which is not done here.
To make a correction for this effect, the best case scenario would be to send a monoenergetic
beam into the focal plane to scan the crystals. In this case, because the experiment uses
beams of Sn, (Z = 50), the beam does not reach the hodoscope, due to energy losses. When
calibrating the hodoscope crystals, the gas was removed from the ionization chamber and the
two CRDC’s, so the calibration data has no tracking information. This position dependence
is evident in the data from June, although only qualitatively, so it is not shown here.
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Figure B.2 Energy measured in crystal #9, shown vs. Z, for the 112Sn+112Sn reaction
system, at Bρ = 2.51 Tm. This figure requires that crystal #9 is the crystal with the largest
signal amplitude for that event.

Another problem that may affect the resolution of the hodoscope is the possible presence
of multiple hits in the hodoscope in a single event. Since higher-Z fragments that are
triggered in the timing scintillator are stopped there or in the Teflon cover of the hodoscope,
there are many events that do not include a corresponding TKE in the hodoscope. In these
events, there are often signals with appreciable amplitude, which must come from either pile-
up from other events, multiple hits in a single event, or some other source of background.
The signature of these effects is the same: there are signals in hodoscope crystals where
there should be none. This can be seen simply from Figure B.1 where, at high Z, all three
Bρ settings approach a non-zero value, around 4%. By requiring that the TKE is extracted
from the hodoscope crystal that is indicated by the position tracking, some of these spurious
signals could be removed, but there may still be a problem of multiple hits in crystals with
real events.

Figure B.4 shows the correlation between a signal in a given crystal and the position of
that signal. There are several features in this figure worth noting. First, aside from most of
the counts inside the dimensions of the crystal, (shown by two dotted lines) there is also a
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Figure B.3 Non-dispersive position spectra at the hodoscope, shown for the two different
segments of the experiment. The dotted line shows the approximate position of the gap
between the middle two columns of hodoscope elements. The spectra are arbitrarily nor-
malized to be on the same scale. Because the acceptance was limited to the region near the
gap, most of the data is corrupted by the position dependence of the crystal response.

distribution of events that are outside those dimensions, although still correlated spatially.
This may be a signature of angular straggling for some low-Z particles. There is also some
background that is not spatially correlated, which covers the same energy range as the signals
presumed to be from the heavy fragments. These could be pile-up, multiple-hit events, or
possibly light particles emitted from the stopped heavy fragments. To better characterize
the background due to the these effects, Figure B.5 shows the hodoscope spectrum for crystal
#9, requiring a high-Z identification from the ionization chamber. Since a high-Z fragment
stops before reaching the hodoscope, signals in Figure B.5 must be spurious events.

Figure B.5 shows that the TKE spectrum would contain contaminated signals, even if
the particle tracking were enforced. In the low energy portion of Figure B.4, there is an
excess of counts as the energy goes to zero. Looking closer at this region shows evidence
of the gain shifting near the edges of the crystal, which rules out electronics noise or ADC
pedestal values. Since the counts do appear spatially correlated with the crystal, it can be
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Figure B.4 Hodoscope Energy from crystal #9 vs. Dispersive position spectra at the ho-
doscope, for the 112Sn+112Sn reaction system, at Bρ = 2.4. The dotted lines show the
approximate positions of the edge of crystal #9.

assumed that they come from real particles. If these particles are arriving in coincidence
with the heavy fragment in the focal plane, there may be a significant fraction of events
where a heavy fragment does leave a real signal in the crystal, but is coincidence-summed
with other detected particles, so the hodoscope misidentifies the TKE of the fragment of
interest.

After this aggregation of problems, the best case scenario for extracting useful information
is the highest velocity, lowest Z fragments that are measured with appreciable statistics. This
leaves only the Bρ = 2.6 Tm setting, and a Z of 22. Focusing on this isotope, first, the
hodoscope energy can be corrected empirically for the momentum (similar to the TOF and
∆E), which allows for a 1-d projection onto the hodoscope energy. This is shown in Figure
B.6. Assuming that the energy scale is linear, the resolution for this element may be sufficient
to estimate the contribution of charge states, but not to physically resolve them.

Because of the many problems and uncertainties associated with the hodoscope data from
this experiment, no useful information is extracted from the hodoscope. The conclusion is
that the hodoscope is not a useful tool for measuring the charge states distributions for
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Figure B.5 Hodoscope Energy from crystal #9 vs. Dispersive position spectra at the ho-
doscope, for the 112Sn+112Sn reaction system, at Bρ = 2.4. The dotted lines show the
approximate positions of the edge of crystal #9. Only fragments identified as Z > 30 using
the normal particle identification spectrum are included this figure, which should not reach
the hodoscope. As a result, these signals come from either coincident light fragments or
background from multiple hits.

fragments of Z > 25 with energies at or below 60 MeV/u. For this type of experiment,
some possible improvements would be to decrease the thickness of the E1 scintillator and
to minimize and measure the exact thickness of the material covering the front face of the
hodoscope crystals. To do precision work with the hodoscope, the non-linearity near the
edges of the hodoscope would have to be carefully characterized. In any similar future
experiments, the question of multiple hits in the hodoscope would have to be addressed.
For this experiment, the contributions from charge states are characterized using empirical
models as originally planned, described in the Section 4.3.1.
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Figure B.6 Hodoscope energy, measured in the 112Sn+112Sn reaction system, at Bρ = 2.6
Tm, empirically corrected for momentum, for 46Ti22+. The solid line shows the approximate
centroid of this peak, and the dotted line shows the estimated position of the primary
contaminant, 44Ti21+, when accounting for energy losses and assuming the energy scale is
linear.
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Appendix C

Acceptance Correction

As with most detector systems, the S800 Spectrometer only accepts a limited range of
kinematical variables. In the case of the S800, the situation is complicated, as the detectors
are located in the focal plane, after passing through several magnets. As a result, particle
trajectories must be traced back through the magnets to reconstruct the reaction at the
target position. This process is described in more detail in Section 4.1.4. Tracking through
the magnets also introduces a correlation between the angle of a particle and the magnetic
rigidity of a particle. To correct for this effect, the acceptance must be simulated using a
Monte Carlo algorithm. This experiment was designed to measure ratios of particle yields,
specifically to avoid this type of problem with acceptance. If the spectrometer acceptance
was unchanged from one reaction system to another, the acceptance correction would cancel
in the ratio. During the experiment, there were several problems that led to having different
acceptance corrections in the different reaction systems, and these are accounted for in the
calculation of the acceptance.

The largest problem affecting the acceptance was the result of an error in the device
tuning for the S800 itself. To accommodate the large volume of the miniball detectors
around the target position, the target was placed about 50 cm upstream of the normal focal
point of the S800. This requires a simple scaling of the fields in the quadrupole magnets
after the target, to optimize the acceptance for the new target position. While this was done
correctly during the first portion of the experiment in June 2011, when the experiment was
resumed in October 2011 this step was accidentally omitted from the beam-tuning checklist.
The problem is shown schematically in Figure C.1. While it was observed that the S800 was
working normally in the beginning of the experiment in June, this problem was not noticed in
October and persisted through all three beams used in the experiment. Fortunately, because
of the possibility of changes in detector gains or thresholds, the 124Sn beam measurements
were repeated when the experiment resumed in October, so comparable data was taken for
all beams. After mapping the angles to the target position, the differences are obvious, as
shown in Figure C.2. The end result is that the angular acceptance is about 25% of the
nominal acceptance, and this reduced efficiency magnifies other changes in the acceptance.

Figure C.2 shows that the acceptance at very small angles (near afp = 0,bfp = 0) is
reduced by a cutout in the scintillator placed after the target. This scintillator was required
to measure the start time of the time-of-flight from the target position to the focal plane.
Because the expected beam rate was larger than 10 MHz, and the stable beams used were
highly focused, the plastic scintillator material would be rapidly degraded if the full beam
rate was impinged on it. A square hole was cut into the scintillator, which would allow the
unreacted beam to pass through it. The light-guide for the scintillator was then designed
with two photomultiplier tubes to collect light from particles hitting either side of the hole.
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Figure C.1 Schematic diagram showing magnetic elements of the S800. Only the Optics in
the Non-Dispersive Direction are shown. The S800 was tuned assuming the reaction target
was at the normal target position (the pivot point), which resulted in over-Focusing the
fragments from the actual target position. The dashed green curve represents the track of
a fragment emitted at the maximum scattering angle from the optimal target position. The
solid red curve represents the track of a fragment emitted at the maximum scattering angle
from the actual target position, upstream of the pivot point.

Figure C.3 shows an image of the scintillator after the experiment, with one of the two
photomultiplier tubes still attached. This scintillator hole modifies the acceptance between
reaction systems because of a faulty mechanical target drive that was used to adjust the
position of the start timing scintillator. It was discovered part-way through the experiment
that the drive did not hold its calibration reliably. The uncertainty in the scintillator position
was minimized by recalibrating the drive before each movement. The largest miscalibration
occurred during the 112Sn beam, which is shown (for the worst case, when comparing to the
124Sn beam) in Figure C.4. Because these changes in acceptance can make an impact on the
resulting fragment yields, a careful calculation of the acceptance was done, and is described
in further detail in this section.
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Figure C.2 Scattering angles at the target position. The left panel shows the 124Sn+124Sn
reaction at the 2.6 Tm magnetic rigidity setting as measured in June 2011 with the proper
beam tuning. The right panel shows the 124Sn+124Sn reaction at the 2.6 Tm magnetic rigid-
ity setting as measured in October 2011 with the incorrect beam tuning. Neither histogram
requires a particle identification gate, but both require a timing signal in the timing start
scintillator, which causes the square cut out in the center. (See Figure C.3)

Figure C.3 Scintillator used to measure the start time of the heavy fragments that are
detected in the S800 focal plane. Notice the square hole cutout, which allows the unreacted
beam to pass through.
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Figure C.4 Scattering angles at the target position. The left pane shows the 112Sn+112Sn
reaction at the 2.4 Tm magnetic rigidity setting. The right pane shows the 124Sn+124Sn
reaction at the 2.4 Tm magnetic rigidity setting. The significant vertical offset in the left
panel is due to miscalibration of the mechanical target drive used to move the scintillator.
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C.1 Monte Carlo Acceptance Calculation

While the S800 has a complex geometric acceptance, the ability to track particles from
the focal plane to the target position allows for an accurate calculation of the acceptance
correction. A comparable procedure has been used multiple times to make corrections at
large scattering angles when using the normal acceptance of the S800. [90, 91] In this exper-
iment, the distributions in energy and in scattering angle are necessary to make comparisons
between different beam-target combinations. The goal of the correction is to derive a weight-
ing factor for a given (θ, dta) that can be applied on an event by event basis. The basic steps
to do this are as follows: generate a large set of simulated data events, apply the require-
ments of the experimental conditions, and simply calculate what fraction of the events at a
given (θ, dta) would be detected. The procedure assumes that, inside the gates chosen, the
efficiency of detecting a particle is 100%, which means that edges must be excluded in the
simulation as well as the data.

The first step is to generate a random distribution of (θ, φ, dta, yta). For (θ, dta), a
uniform distribution is used, since the correction is calculated independently for each (θ, dta).
For φ, a uniform distribution is used because the reaction should be cylindrically symmetric.
Since the S800 measures scattering angle in terms of rectilinear variables ata and bta, θ
and φ are transformed accordingly. yta, which is the non-dispersive position at the reaction
target, is taken from the data itself, and it simply represents the spread of the beamspot
on the target. In this experiment, the beam was well focused at the target position, and
is represented in the simulation by a gaussian distribution. The width (FWHM) of the
yta distribution is typically 3mm but is extracted for each beam-target-rigidity setting
separately, to account for possible offsets in calibrations between settings.

Once the pseudodata is generated, several two-dimensional gates can be applied. The
S800 measures four parameters (ata,bta,yta,dta), and these four variables can have correla-
tions between them. In previous studies, 2 dimensional boundaries in the ata − dta plane
and the yta − bta plane were applied. In this experiment, because of the square cutout in
the timing scintillator, there is also a correlation in the ata− bta plane. Also, as a result of
the overfocusing of the S800 quadrupole magnets, there is an appreciable correlation in the
bta− dta plane as well.

The first gate, which is the easiest to understand, is in the ata−dta plane. Since the S800
dipoles deflect fragments in the dispersive direction, the range of ata that can be detected
becomes smaller as the magnetic rigidity moves away from the central value. This correlation
is shown in Figure C.5. The acceptance in the ata−dta plane changes from system to system
only because the three different beams impinge on the target with slightly different angles.
The incoming beam angle is determined by degrading each beam into the focal plane using
varying widths of aluminum.

The next gate that can be applied to the pseudodata is in the yta−bta plane. In this case,
with the S800 in focused mode, there is only a small spread in yta. Nonetheless, when bta
approaches the edge of the acceptance, the value of yta becomes important. Extracting this
behavior is complicated, because of the correlations in the boundaries in the ata− bta plane
as well as the bta− dta plane. Since it is impossible to visually determine these boundaries
in 3 and 4 dimensions, this multidimensional correlation must be extracted iteratively. To
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Figure C.5 Dispersive angle at the target position versus fragment energy (dta) measured in
the 124Sn+124Sn reaction at the 2.51 Tm magnetic rigidity setting. No PID gates or other
requirements are applied, the sharp cutoffs are simply due to the acceptance of the S800
Spectrometer. The dotted line shows an example of the ata− dta gate used to calculate the
acceptance.

understand the boundary in the yta − bta plane, the dependence of btamax on ata and
dta should be subtracted, and this must be done separately for btamin (not shown). This
correction is shown in Figure C.6. Another correlation that has to be accounted for in the
acceptance calculation is between bta and dta. Again, this is shown for btamax in Figure
C.7. And finally, the correlation between ata and bta is shown in Figure C.8.

A separate restriction on the acceptance comes from the cutout in the timing scintillator.
This effect can be determined by making the same spectra as described above, but requiring
a signal from the timing scintillator. These corrections can be seen in Figure C.9, and the
same procedure described above to determine btamax is used to determine btahole.

The pseudodata is filtered by all described gates, and the fraction of the generated par-
ticles which are accepted at each dta and θ is calculated. An example of the result from this
calculation is shown in Figure C.10.
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Figure C.6 Non-dispersive position at the target versus Non-dispersive angle, measured in
the 124Sn+124Sn reaction at the 2.51 Tm magnetic rigidity setting, with a gate requiring
−.03 < dta < .03. The spectrum on the left shows the raw measured parameters, while the
spectrum on the right shows bta corrected for the correlations with ata (approximated as
quadratic), dta (approximated as linear), and yta (approximated as linear).
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Figure C.7 Non-dispersive angle at the target versus fragment energy, measured in the
124Sn+124Sn reaction at the 2.51 Tm magnetic rigidity setting. The spectrum on the left
shows the raw measured parameters, while the spectrum on the right shows bta corrected
for the correlations with ata (approximated as quadratic), dta (approximated as linear), and
yta (approximated as linear).
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Figure C.8 Dispersive angle at the target versus Non-dispersive angle at the target, measured
in the 124Sn+124Sn reaction at the 2.51 Tm magnetic rigidity setting. The spectrum on the
left shows the raw measured parameters, while the spectrum on the right shows bta corrected
for the correlations with ata (approximated as quadratic), dta (approximated as linear), and
yta (approximated as linear).
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Figure C.9 Corrections for acceptance calculation from cutout in timing scintillator, mea-
sured in the 124Sn+124Sn reaction at the 2.51 Tm magnetic rigidity setting. Top: Dispersive
angle at the target versus Non-dispersive angle at the target; Middle: Non-dispersive angle
at the target versus fragment energy; Bottom: Non-dispersive position at the target ver-
sus Non-dispersive angle. Spectra on the left show raw measured parameters, spectra on
the right show parameters with correlations removed as discussed in the text. Dashed lines
indicate cuts applied to the other spectra to demonstrate the boundary clearly.
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Figure C.10 Monte Carlo efficiency calculated for the 124Sn+124Sn reaction, for the Bρ =
2.51Tm magnetic setting. The efficiency is plotted as a two dimensional function of scattering
angle θ and the measured dta. The color scale represents the fractional efficiency for each
bin.
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C.2 Effect on Experimental Data

The result of the acceptance correction is a two dimensional detection efficiency which
is a function of dta and θ. When processing the data, this efficiency is used to weight the
results event by event. The weighted results are placed into a corrected velocity distribution
which must be fit and integrated. This process is detailed in Section 4.4.

To gauge the accuracy of the acceptance correction, a calculation for two different regions
of the acceptance in one reaction system can be compared. Dividing the acceptance into
two approximately equal sized regions results in a difference of ≈ 20% in the corrected
yields for the same data. Thus, a systematic error of at least ±10% would be introduced by
implementing this correction. The source of this inconsistency is possibly due to the intrinsic
resolution of the measured tracking information, or because of a miscalibration of the CRDC
positions. The acceptance is very small, the continuous coverage in ata or bta only spans
at most 20 mrad and the angular resolution of the scattering angles is about 2 mrad. As a
result, edge effects likely dominate all regions of the acceptance. Also, the calibration of bta
had to be extrapolated from the measured data, which introduced a large uncertainty in the
results.

The experiment relies on a precise measurement of yield ratios to get the slope of the
logarithm of isotopic yield ratios. This observable is described in more detail in Section
2.3.1. The ratio is expected to follow a simple formula:

R21(N,Z) =
Y2(N,Z)

Y1(N,Z)
= Ce(αN+βZ) (C.1)

In practice, 4-5 isotopes are measured for each Z, and a linear function can be fit to the
logarithm for each Z. To minimize the effect of the acceptance correction on the yield ratio,
a double ratio can be formed for each Z. The integrated yield for each isotope is divided by
a reference isotope (N0, Z) in that same reaction, and this yield ratio is compared between
two systems with a “modified isoscaling ratio”:

Rmod,21(N,Z0) =
Y2(N,Z0)/Y2(N0,Z0)

Y1(N,Z0)/Y1(N0,Z0)
=

exp
(
αN + βZ0

)
exp

(
αN0 + βZ0

) = Cmod exp
(
αN
)

(C.2)

where Z0 is the atomic number of the chain of isotopes being considered, and N0 is the
reference isotope that would be chosen individually for each Z0. The α extracted in this
manner is unaffected by this modification, but the sensitivity to the acceptance is cancelled.
Because the range of isotopes being compared is small, the angular acceptance of these
isotopes is approximately equal. The measured yields are related to the experimental yields
by:

Yexp(N,Z) = Y (N,Z)

∫ ∫
f(N,Z,Bρ, θ)dBρdθ (C.3)

where Y (N,Z) is the total yield of an isotope, f(N,Z,Bρ, θ) is a detection efficiency function.
If the efficiency function is approximately constant as a function of Bρ, this equation could
be written as:

Yexp(N,Z) ≈ Y (N,Z)

∫ Bρmax

Bρmin

εBρfBρ(N,Z,Bρ)dBρ

∫
εθfθ(N,Z, θ)dθ (C.4)
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Where fBρ is the distribution in rigidity and fθ is the distribution in angle. When Equation
C.4 is substituted into Equation C.2, the correction for the angular efficiency would be can-
celed for isotopes of approximately the same mass. The rigidity efficiency εBρ would not be
exactly constant, based on the calculations in the previous section. But because the efficiency
would be approximately symmetric about dta = 0, so averaged over three Bρ settings, the
overall efficiency would be smoothed. In fact, Section 4.4 shows that this must be an accurate
assumption. If the efficiency depended strongly on dta the velocity distributions would be
discontinuous between the three rigidity settings. The velocity distributions are smooth and
continuous without any correction. In addition, the systematics of the velocity distributions
shown in Section 5.1 indicate that the velocity distributions are similar between reactions
and for all isotopes. Consequently, the shape of the uncorrected velocity distribution must
be similar to the true velocity distribution.

When extracting the isoscaling parameter α, the modified isoscaling ratio in Equation
C.2 is equivalent to subtracting an offset from the normal isoscaling ratio. Because α is the
exponent, a multiplicative correction only changes the value of the constant, and not α. In
other words, the linear slope of the logarithm is not changed by subtracting a common offset
from each point. For these reasons, the acceptance correction does not appreciably affect the
results of the isoscaling analysis. The calculated acceptance correction has large systematic
errors because the acceptance is quite small, so the acceptance correction is not used in the
final analysis. The yield ratios shown in Section 5.3 are not modified in this way, because α
would be unaffected regardless.
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