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ABSTRACT

THE EMISSION TEMPERATURE AND THE NUCLEAR EQUATION
OF STATE

BY

Hongming Xu

The relative populations of a large number of particle stable states of intermediate
mass fragments were measured with the Oak Ridge Spin Spectrometer for 325 induced
reactions on "**Ag at an incident energy of E/A=22.3 MeV The measured relative
populations of these states were compared to those calculated from a thermal model
which include sequential feeding from higher lying particle unstable states of heavier

nuclei. This comparison indicated an average emission temperature of T 3—4 MeV.

To study whether emission temperatures can provide information about the nu-
clear equation of state and the in-medium nucleon-nucleon cross section, dynami-
cal calculations based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation were
performed. Calculations for °Ca+%°Ca and “°Ar+27Al collisions indicate the cross
sections for heavy residues are rather sensitive to both the equation of state at sub-
nuclear density and the in-medium nucleon-nucleon cross section. This dual sensi-
tivity may be reduced or eliminated by measurements of the emission pattern of the
coincident light particles. Excitation energies and total angular momenta were also

calculated for the residues formed in *°Ar 4 27Al collisions. These calculations sug-

i



gest that reaction dynamics, not Coulomb or thermal instabilities, plays the most

important role in limiting the production of fusionlike residues at energies E/A ~ 30

MeV.

From the emission rates of nucleons and the thermal excitation energies of heavy
residues produced in *°Ar +%7Al and *°Ar +!%Sn collisions, consistent thermal freeze-
out times were obtained. The total excitation energies and temperatures predicted
by BUU calculations are comparable with those obtained from experiments. These
predicted values for the excitation energies and temperatures are quite sensitive to
the equation of state and the impact parameter. Surprisingly, These two observables

show little sensitivity to the in-medium nucleon-nucleon cross section.
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Chapter 1

Introduction

I Motivation

Nucleus-nucleus collisions have proven to be an excellent laboratory for the study of
statistical and dynamical properties of highly excited nuclear systems. The properties
of such systems evolve with incident energy. At incident energies of a few MeV
above the Coulomb barrier, the formation of a fully equilibrated compound system
(commonly referred to as ‘complete fusion’) and its subsequent statistical decay is the
dominant process for central collisions [More 72, More 75, Frie 83, Sobo 83, Sobo 84].
The statistical decay by emissions of v, neutrons, and light charged particles as well
as fission has been well described by statistical models of compound nuclear decay.
At incident energies above E/A ~ 15 MeV, however, the situation becomes more
complicated. First, complete fusion of projectile and target becomes less likely, and
one observes the onset of preequilibrium emission mechanisms. Second, the limits of
stability and the mechanisms for decay of very hot nuclei are not known. This latter

issue provides a strong stimulus for the investigations of energetic nucleus-nucleus

collisions despite their complexity.

Investigations of nucleus-nucleus collisions have focussed either on the properties

of hot fusion-like composite residues consisting of significant fractions of the projec-



tile and target nucleons or on the statistical and dynamical aspects of the hot, but
non-equilibrium, initial stages of the reaction. In a practical sense, such a separa-
tion is artificial because one can not address issues concerning the properties of hot
residues without considering the mechanisms by which they are formed. In this dis-
sertation, both the preequilibrium processes of the initial stages of the reaction and
the thermal properties of the composite residues are considered. In the first part of
the dissertation, the intrinsic excitation of intermediate mass fragments emitted dur-
ing the non-equilibrium initial stages of the reaction is determined by measurements
of the v rays from the decay of particle stable states of the fragments. Further dis-
cussions of the physics motivation of these measurements are given in subsection A
of the introduction. These measurements have shown that the intrinsic excitation at
freezeout is surprisingly small. A theoretical investigation of the factors which may
affect the intrinsic excitation is the topic of the second half of the dissertation. There
we also explore the properties of the residues produced in these reactions. Additional

background concerning the properties of such residues is given in subsection B of the

introduction.

A Complex Fragment Emission and the Emission Temper-
ature

The emission of low energy intermediate mass fragments (IMF), 3 < Z <20, in
processes distinct from fission has been observed for a large variety of nuclear reac-
tions [Lync 87, Gelb 87a, Gelb 87b, Cass 89, Guer 89]. In general, the energy spec-
tra of these fragments exhibit broad maxima at energies close to the exit channel
Coulomb barrier and exponential slopes at higher energies. The fragment distri-
butions [Gelb 87a, Mini 82, Finn 82, Hirs 84, Chit 83, Troc 86, Fiel 86a, Fiel 86b,

Faty 87b, Sang 87] follow an approximate power-law dependence on fragment mass,
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A™", in both proton and heavy ‘ion induced reactions, possibly indicating that the
mass distributions are determined by a common physical process. For reactions at in-
termediate energies, E/A=20-500 MeV, the angular distributions are forward peaked
indicating that appreciable emission occurs prior to the attainment of statistical equi-
librium of the composite pro jectile-target system [Chit 83, Jaca 83, Fiel 84, Mitt 85,
Troc 86, Fiel 86a, Fiel 86b, Kwia 86, Faty 87a, Faty 87b, Poch 83a, Poch 85b, Chit
86, Xu 86, Xu 89, Poch 87, Chen 87a, Chen 87b, Chen 87¢,Sain 88] . At backward
angles, the angular distributions, particularly for heavier fragments, become more
isotropic, consistent with significant contributions from the statistical emission by
equilibrated heavy reaction residues that could, for example, be formed in incomplete

fusion reactions [Sobo 83, Sobo 84, Kwia 86).

At present, there is no consensus concerning the origin of these fragments. Frag-
ment production has been calculated within statistical [Mini 82, Finn 82, Hirs 84,
Fiel 84, Boal 84, Lope 84b, Snep 88, Boal 88b, More 75, Gros 82, Frie 83, Rand 81,
Fai 82, Bond 84, Ban 85, Hahn 87, Fiel 87, Gome 88] as well as purely dynamical
[Schl 87, Vice 85, Lenk 86, Baue 87, Aich 88, Boal 88b, Sura 89a, Sura 89b, Sura 89c]
models. Most models reproduce selected observables such as the fragment mass dis-
tribution. Differences between the various fragmentation models reflect, to a great ex-
tent, differences in assumptions concerning the densities, iﬁternal excitation (charac-
terized by emission temperature) and degree of thermalization which characterized the
system at thermal freezeout. For example, IMF emission has been related to the oc-
currence of adiabatic instabilities [Bert 83, Schl 87, Snep 88, Boal 89a] which may lead
to the liquid-gas phase transition of highly excited nuclear matter [Lope 84b, Finn 82,
Jacq 84]. Other statistical models [More 75, Fiel 84, Tsan 88, Hahn 87], as well as
dynamical models [Boal 89, Boal 89a, Sura 89a, Sura 89b, Sura 89c, Sura 90, Peil 89],

which do not incorporate a phase transition have been equally successful at reproduc-
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ing many features of the fragment data. To distinguish between different statistical
models, one needs to measure experimentally the freezeout densities as well as the

emission temperatures, to constrain the assumptions of these fragmentation models,

Since the fragment kinetic energy spectra are sensitive to collective motion, the
temporal evolution of the reaction, as well as Fermi motion and Coulomb barrier
fluctuations, they do not provide quantitative information concerning the internal
excitation energy at the freezeout stage of the reaction [Fiel 84, Frie 83, Bond 78,
Ban 85, Stoc 81, Siem 79]. Information about the intrinsic excitation and the degree
of thermalization at freezeout may be better obtained from the relative populations
of nuclear states of the emitted fragments [Morr 84, Morr 85, Poch 85a, Poch 85b,

Chit 86, Xu 86, Poch 87, Chen 87a, Chen 87b, Chen 87c, Bloc 87, Galo 87, Sain 88,
Xu 89, Naya 89).

Emission temperatures of T=4-5 MeV were extracted from pairs of widely sepa-
rated (AE > T) particle unbound states in *He, ®Li, and ®Be fragments at angles
significantly greater than the grazing angle where contributions from projectile frag-
mentation are negligible [Poch 83a, Poch 85b, Chit 86, Poch 87, Chen 87a, Chen 87b,
Chen 87c, Chen 88a, Sain 88]. The relative populations of these states were found
to be surprisingly insensitive to the incident er'1ergy over the range of E/A=35-94
MeV [Chen 87a, Chen 87d]. Moreover, these measurements revealed little sensitiv-
ity to the gates placed upon the linear momentum transfer to the target residue
[Chen 87c] or the associated multiplicity of charged particles emitted at forward an-
gles [Sain 88]. Slightly lower values, T=3 MeV, were extracted [Bloc 87] from the neu-
tron decays of excited states of 8Li emitted in the N+ "e*Ag reaction at E/A=35
MeV. In contrast, significantly lower values, T=1 MeV, were extracted [Galo 87]
from the neutron decays of excited 3C nuclei emitted close to the grazing angle

in the N+ '%*Ho reaction at E/A=35 MeV. Finally, measurements involving the



v-ray decays of both low lying [Xu 86, Morr 84, Morr 85, Morr 86] and high lying
[Gome 88, Sobo 86] particle stable states have been performed. Before this disser-
tation started, the emission temperatures obtained from the decay of particle stable
states [Morr 84, Morr 85] were reported to be much lower than those obtainéd from
the decay of particle unstable states [Poch 85a]. Some of earliest work done in the
dissertation study [Xu 86] demonstrated that these low-lying particle stable states are
more difficult to interpret due to sequential feeding from higher lying particle unbound
states [Poch 85a, Xu 86, Hahn 87, Fiel 87, Gome 88, Sobo 86]. When the sequential
feeding is considered, these low-lying 4-ray measurements are not in contradiction

with the emission temperatures extracted from the decay of particle unstable states

[Xu 86].

If the populations of excited states can be described in terms of thermal dis-
tributions corresponding to a single emission temperature, this temperature can be
unambiguously determined by measuring the relative populations of just two states.
Indeed, prior to the measurements undertaken in this dissertation and the disserta-
tion of Tapan Nayak [Naya 90], emission temperatures were generally extracted from
relative populations of just a few states. On the other hand, the degree of thermaliza-
tion and the internal consistency of this thermal assumption can only be investigated

by measuring a large number of states.

To perform such tests, a large number of particle stable states of intermediate mass
fragments were measured in this dissertation for 32S induced reactions on netAg at
an incident energy of E/A=22.3 MeV. These measurements were performed at angles
back of the grazing angle to avoid large contributions from peripheral processes.
Previous particle correlation experiments [Fiel 86b] on this system established that
fragments are emitted with a low average multiplicity, Myr < 1, for a broad class

of violent projectile target collisions representing about 60-70% of the total reaction



cross section. In these reactions, large amounts (200-400 MeV) of energy are converted
into intrinsic excitation, and a significant fraction of intermediate mass fragments are

emitted prior to the attainment of statistical equilibrium of the composite system

[Fiel 86b].

In this dissertation work, the measured relative populations of excited states of
intermediate mass fragments are compared with those calculated from a thermal
model which includes sequential feeding from higher lying states. The comparison
indicates an average emission temperature of T~ 3 — 4 MeV. These measurements,
combined with previous measurements of particle unstable states, provide a picture
of a constant or gradually increasing emission temperature with incident energy. The
maximum observed emission temperature, is rather small. There are other indications
from neutron multiplicity measurements, high energy hard 4-ray measurements, and
measurements of charged particle spectra which suggest a similar limitations to the

intrinsic excitation of composite residues.

Such observations may relate to the characteristic fragmentation temperature pre-
dicted to occur by multiparticle phase space models [Gros 88, Bond 85] when the hot
system expands to sufficiently low density. Questions concerning how hot systems
expand and cool may be better addressed by dynamic calculations. Surprisingly,
these models also predict a low and nearly constant intrinsic excitation at freezeout
[Lenk 86, Schl 87, Snep 88, Frie 88, Boal 88a, Boal 88b]. Within these calculations,
Both the particle emission and the expansion play roles in cooling the system. To
study whether the observed low and slowly varying emission temperatures can teach
us anything about the nuclear equation of state or in-medium nucleon-nucleon cross
section, we have performed dynamical calculations based on the Boltzmann-Uehling-
Uhlenbeck (BUU) equation, which is a theory based on the one-body density matrix.

Such calculations have the disadvantages that they do not properly describe many



body correlations and they do not contain sufficient fluctuations to properly predict
the emission of intermediate mass fragments, We therefore investigated excitation
energies and emission temperatures of the heavy residues predicted by the BUU
calculations. We are encouraged to try this approach by the results of molecular
dynamical calculations [Lenk 86, Schl 87] which indicate that all reaction products,
regardless of their masses, have about the same emission temperature. This suggests
that the excitation energies of heavy residues calculated in our study may provide
insights concerning the emission temperatures of intermediate mass fragments. Our
BUU calculations also allow us to address questions concerning the fusion cross sec-
tions, excitation energies and angular momenta for the heavy residues which have not
been studied in previous dynamical studies. Further discussion of these questions was

given in the following subsection.

B Disappearance of Fusionlike Residues

On rather general grounds, one expects fusion of the projectile and the target nuclei to
become less likely with increasing incident energy. Most experimental investigations
of the energy dependences of fusion or fusionlike processes have concentrated on mea-
surements of the traditionally well understood residue decay channels leading to the
production of the evaporation residues or fission fragments. Such measurements indi-
cate that fusionlike processes, particularly for Ar [Lera 86, Auge 86, Nife85, Fahl 86,
Jacq 84, Fabr 87, Bour 85] or Si [Deco 90, Grif 90] induced reactions, decrease rapidly
with incident energy when E/A > 20 MeV, and eventually vanish at around the Fermi
energy E/A ~ 35 — 40 MeV.

Fig. 1.1 shows a example of the fission fragment folding angle distribution (the
angle between the two fissioning fragments) measured for “*Ar+22Th collisions. In

such measurements, one sees two peaks in the folding angle distributions at E/A=31
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MeV: a large peak at Opr =~ 170°, from the decay of target residues in peripheral
collisions, and a small one at 8pr ~ 110°, from central fusionlike collisions. As the
energy increases from E/A = 31 MeV to 44 MeV, the peak due to fusionlike reactions

decreases with energy and eventually vanishes at E /A=44 MeV.

Total excitation energies and emission temperatures were also extracted from the
velocities of the fusion-like residues [Lera 86, Auge 85, Nife85, Bour 85, Gali 88] and
coincident light particle spectra [Goni 88, Gali 88, Wada 89, Deco 90], respectively.
Light particle evaporation spectra have also been analyzed [Goni 89, Bohn 90, Grif 90]
to extract the temperatures and the excitation energies of the residues. These analyses
suggested that the maximum excitation energy that a nucleus can sustain, decreases
with the mass of the composite system, from E*/A =~ 5-6 MeV for light systems
with total masses A< 100, to a value of E*/A =~ 3 MeV for a total mass A > 200.
[Guer 89, Lera 86, Auge 85, Bohn 90, Fahl 86, Bour 85]. If one assumes a level density
of a = A/8 MeV, the residue temperatures for these heavy systems are comparable
to the emission temperatures extracted from the emission of non-equilibrium IMF ’s

that were discussed in subsection A.

The disappearance of fusionlike cross sections has been most frequently interpreted
to be a consequence of the instability of hot nuclei at high temperatures [Finn 82,
Lope 84b, Bert 83, Schl 87, Snep 88, Boal 89a, Bord 85, Levi 84, Besp 89, Gros 88].
For example, the static model of Levit and Bonche [Levi 84] predicted a limiting
temperature of T ~ 5 — 10 MeV, above which nuclear matter becomes unstable
against hydrodynamic expansion. If one assumes a soft nuclear equation of state and
a level density of @ = A/8 MeV, this ‘limiting temperature’ is consistent with the
observed disappearance of fusion-like processes with Ar induced reactions at E/A> 35
MeV [Auge 86]. These analyses assume the existence of an equilibrated residue at an

excitation predicted by incomplete fusion. To address the validity of this assumption,
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Figure 1.1: Differential cross section of fission products as functions of both the inci-
dent energy and the folding angle between the two fission fragments for °Ar+232Th
collisions [Conj 85] .
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one must also consider the processes which govern the formation of a highly excited

composite residue.

Within the presently available microscopic dynamical models, the formation of
a fusionlike residue depends on the interplay of the nuclear mean field and the
in-medium nucleon-nucleon scattering cross section. Clearly within these models,
whether two nuclei fuse or not depends on these ingredients. For example, a larger
nucleon-nucleon cross sections would give individual nucleons in the medium more
chances to collide with the others. This would result in more stopping and a larger
cross section for the formation of heavy composite residues. Therefore a study of,
for example, fusion cross section with models having these ingredients may allow one
to place limits on these model parameters. Similar questions can be asked about
the sensitivity of the residue cross sections or the excitation energies to the nuclear
equation of state. Dynamical models based on the Boltzmann-Uehling-Uhlenbeck
equation [Bert 84, Bert 87, Aich 85, Bert 88, Rema 86, Baue 87, Baue 88, Moli 85a,
Moli 85b, Krus 85,Aich 87, Aich 88, Gale87, Welk 88, Gale90, Peil 89, Cass 88, Cass
89] allow the possibility of investigating these questions. Prior to this dissertation

study, however, these issues had not been investigated.

II Organization

This dissertation contains two distinctive parts: The first four chapters deal mainly
with an experimental determination of emission temperatures for a large number of
particle-stable states. The remaining three chapters describe a theoretical project,
designed to address whether one can learn anything concerning the nuclear equa-
tion of state at sub-nuclear density from measurements of emission temperatures or

heavy residue cross sections. Final conclusions are given in chapter 8. Both parts of
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this dissertation are motivated by the idea of testing the concept of thermal freeze-
out by emission temperature measurements and by the desire to learn whether such

measurements can provide information concerning the nuclear equation of state.

In particular, this dissertation is organized as follows: In Chapter 2, the ex-
perimental details, including an overall description of the experimental setup, the
background subtraction of coincident y-rays, as well as the v-ray calibrations, will be
given. In Chapter 3, the inclusive fragment cross sections are presented and fitted

with simple parameterizations. The bulk of the particle y-ray coincidence data are

also presented in this chapter.

In Chapter 4, a detailed sequential decay calculation is described. The results of
this model calculation are compared with the experimental data and a mean emission
temperature is extracted. Summary and conclusions concerning the experimental

study are also made in this chapter.

In Chapter 5, a comprehensive description of the improved Boltzmann-Uehling-
Uhlenbeck (BUU) equation is provided. In this dissertation study, the BUU equation
is improved with a Lattice Hamiltonian method. Such a method gives an excellent
conservation of total energy which therefore allows us to study the thermalization and
energy deposition which would otherwise be impossible. In this chapter, we will give
a detailed descriptions of formal equations, numerical solutions of these equations,

and numerical tests of the ground state stability and the conservation of energy.

In Chapter 6, the improved BUU equation is applied to “°Ca+*°Ca and ©°Ar+27Al
collisions in order to address the following two important questions: 1) which observ-
ables are most sensitive to the nuclear equation of state at sub-nuclear density; 2)
what are the dynamical limits to the formation of heavy residues. We will first discuss

the fusion cross sections and their sensitivities to the nuclear equation of state and
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the in-medium nucleon-nucleon cross section. We then discuss how one can design an
experiment to disentangle these sensitivities. Finally, we examine the various aspects

which limit the calculated fusionlike cross sections.

In Chapter 7, we return to address the emission temperature and its possible
relation to the nuclear equation of state. For such purposes, we investigate *°Ar+27Al
and “°Ar+'Sn collisions to determine the sensitivities to the equation of state. A

short summary is given in Chapter 8.



Chapter 2

Experimental Details

After a brief description about the experimental setup in section I, we discuss in detail
how to understand the coincident spectra and the background spectra obtained with
the Nal(T1) detectors of the Spin Spectrometer. Since the background yields measured
with these detectors are much higher than the yields of the discrete transitions of
interest (in some case, background is more than 20 times larger), it is crucial to
understand the line-shapes of the spectra. For this purpose, we present, step by step,
the calibrations of the line shapes using y — v sources, as well as proton inelastic

scattering. The determination of the absolute efficiency and the correction of the line

shape distortions due to double hits are also discussed.

I Experimental setup

The experiment was performed at the Holifield Heavy Ion Research Facility of Qak
Ridge National Laboratory. Silver targets of natural isotopic abundance were irradi-
ated with®2S ions of 714 MeV energy. Intermediate mass fragments were isotopically
identified with five AE — AE — E surface barrier detector telescopes, positioned at the
laboratory angles of 8,3 F = 20°,25°,30°,45° and 50°. The telescopes subtended solid

angles of AQ) = 9.8, 10.1, 15.4, 36.3, and 28.6 msr, respectively. Each telescope con-

13
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sisted of two planar AE-detectors with thicknesses between 50 and 100 mm and an E-
detector with thickness of 1.5 mm. Cross contaminations between adjacent isotopes
were reduced by restricting the analysis to fragments that stopped in the E-detectors
of the telescopes thus permitting two independent particle identification gates. This
introduced energy thresholds at about E/A=8 MeV for 1°B at O = 20°,25°, 30°
and at about E/A=7 MeV for 0;3,F = 45° and 50°. In order to reduce computer dead
time and speed up data acquisition, a hardware gate was set during the experiment
which suppressed triggers of the telescopes generated by light particles (p,d,..,0).
These particles are emitted with significantly larger cross sections than intermediate
mass fragments which were the focus of the present experiment. In order to make
sure that no nuclei with Z > 3 were rejected, the gates were set such that a small
fraction of a-particles were recorded on tape. About 85% of all light particles were

rejected by this method.

Coincident +-rays were detected with the Spin Spectrometer [Jaas 83]. Six of
the Nal(T1) crystals of the Spin Spectrometer were replaced by Compton shielded
Germanium detector modules. In addition to the particle y-ray coincidence events,
the Spin Spectrometer was triggered by the detection in one Germanium detector of
0.898 or 1.836 MeV 7-rays from an 3¥Y source positioned close to the Ag target. With
a high probability, a 0.898 ( 1.836) MeV v-ray detected in the Germanium ensures the
interaction of the companion 1.836 (0.898) MeV 4-ray elsewhere in the the Spin
Spectrometer. Using this additional source data, it was possible to monitor the gain
shifts of the photomultipliers of N al(T1) detectors and make corrections for these gain

shifts, run by run, in the off-line analysis.
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II Background Subtractions

In the backward hemisphere of the Spin Spectrometer, neutrons could be suppressed
by time-of-flight discrimination. The time-of-flight separation of neutrons from ¥-rays
for detectors in the forward hemisphere of the Spin Spectrometer was considerably
worse due to the large cross sections for fast, noncompound neutrons at forward
angles. To reduce the systematic errors arising from background subtraction, we
consequently restricted our analysis to data taken with the Nal(T1) modules in the
backward hemisphere (4, > 90° ) of the Spin Spectrometer. To illustrate neutron
suppression in the backward hemisphere, we show in F ig. 2.1 the relative time spec-
trum obtained between a solid state particle telescope located at Opr = 20° and a
Nal(Tl) v-ray detector located at 0, = 138°. The time spectrum clearly exhibits a
sharp peak due to prompt ¥-rays and a long tail caused predominantly by low energy
neutrons emitted from excited target residues. Significant background reductions
could be achieved by selecting prompt y-rays with a narrow time gate. The lower
and upper limits of the time gate employed for this particular detector pair are shown

by the arrows marked as #; and tn ,respectively.

The energy spectra of coincident 7-rays were transformed, event by event, into the
rest frames of the detected fragments using relativistic Jacobians and Doppler shift
corrections. Since these transformations shift and broaden ~-ray transitions of the
target residues, particular attention was paid to identifying and correcting for such
effects. For this purpose, background spectra were generated by performing similar
transformations to y-ray spectra measured in coincidence with %Be nuclei which have
no strong transitions at the y-ray energies of interest. The background spectra were
then used in the fitting procedure to extract the yields of y-rays from the decay of

the detected intermediate mass fragments.
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Figure 2.1: Relative time spectrum between a particle detector ( at 6;pF = 20°) and
a Nal(Tl) y-ray detector (at 8, = 138°). The limits of the time gate used for the
analysis is indicated by the arrows marked as t; and ¢
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For illustration, the transformed 7-ray spectra measured in coincidence with !'B,
1C, and '*C fragments are shown in the left hand panels of Figs. 2.2-2.4, respectively.
The spectra were summed over all measured particle emission angles and energies
and over all y-ray detectors located in the backward hemisphere. The dashed lines
show the corresponding background spectra. On this scale, individual transitions are
barely, if at all, visible. A better visual comparison of coincidence and background
spectra is possible when smooth analytical functions are subtracted from both of

them. The dotted curves correspond to functions of the form
f(Ey) = A exp(~E, /a) + Bexp(~E,/8) + C (2.1)

where A, B, a, B are constants adjusted by fitting the background and C is a constant
offset. The solid and open points in the right hand panels show the coincidence
and background spectra after subtraction of these functions. On these scales, the
individual v-ray transitions are clearly discernible. Moreover, spurious structures
of the experimental background spectra are small in comparison with the identified
peaks of the coincidence spectra. (The subtraction of the function f(E,) cancels in
the final data reduction; this intermediate step only facilitates a detailed comparison

of the coincidence and background spectra in regions of high background.)

The yields of y-rays from the decay of the detected intermediate mass fragment
were fitted by folding the detector response function with the energies of known
transitions of the detected fragment and adjusting the strengths of the individual
transitions and the normalization of the background spectrum. The detector response
function was calibrated over the energy range of E ~ 0.5—7 MeV with v-rays emitted
from ?4Na,*°Co,%8Y, and 2°7Bi radioactive sources as well as ~-rays produced by the
inelastic scattering of protons from !2C and'®Q target nuclei. The response function
includes detailed descriptions of the photo-, first and second escape peaks, as well as

line shape corrections due to coincidence summing. Finally, the inclusive fragment
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Figure 2.2: Left hand panel: Coincidence (solid line) and background (dashed line)
spectra for 'B fragments. The dotted line corresponds to the function of Eq. (2.1)

Right hand panel: Coincidence (solid points) and background (open points) spectra
after subtraction of the function of Eq. (2.1)The locations of specific 4-ray transitions
in ''B are marked by arrows.
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yields and the fragment-y-ray coincidence yields were summed over angle to extract
the fraction F, of observed fragments which were accompanied by the designated

v-ray. Technical details of the response functions and corrections for the effects of

coincident summing are presented in the next section. Here we present a less detajled

overview of the analysis procedure.

The effects of coincidence summing are illustrated for the simple case of the 4.44
MeV ~v-ray transition of excited !2C fragments, see Fig. 2.4 for the coincidence
and background spectra. The final coincidence yield after background subtraction
is shown by the solid points in Fig. 2.5. The dashed curve shows the detector
response as calibrated via the ?C(y,~')2C reaction for which the gamma ray mul-
tiplicity is one. This calibration underpredicts the high-energy tail of the line shape
for the spectrum measured in the "2t Ag(*?S,12C) reaction in which the average 7-ray
multiplicity is high. Due to this high y-ray multiplicity, there is a non-negligible prob-
ability that two coincident 7-rays or a y-ray and a neutron are detected in a single
Nal(T1) module. We denote this effect as ‘coincidence summing’; it depends on the
associated y-ray and neutron multiplicities and on the geometry of the experiment,
but is independent of the beam intensity. The calculation of the line shape distortion
due to coincidence summing will be described in Section II(C). The corrections are
illustrated in the lower part of F ig. 2.5. The dashed line shows the response of the
detector to a given number of 4.44 MeV 7-rays in the absence of coincidence summing.
A fraction, p(~~ 0.28), of these y-rays, will interact with the detector in coincidence
with a second 4-ray or a neutron from the same reaction. The summed response to
the 4.44 MeV 4-ray plus the second 7¥-ray or neutron is shown by the dashed-dotted
curve. The remaining fraction, 1 — p, of the 4.44 MeV v-rays will interact individu-
ally with the detector with the response function measured at low multiplicities and

shown by the dotted curve. The total response function, corrected for coincidence



22

summing, is shown by the solid lines in F ig. 2.5; it corresponds to the sum of the
yields represented by the dotted and dashed-dotted curves (See also Eq. (2.19)). This
parameter-free correction reproduces the measured coincidence yield rather well. All

fitted spectra include corrections due to coincidence summing.

Coincidence summing corrections were also required to extract the v-ray yields
from measurements obtained with the Compton suppressed Germanium detectors of
the Spin Spectrometer. Due to the superior resolution of the Germanium detectors,
individual 4-ray hits are well separated from summed events and corrections to the
line shape are not required. In the Compton suppressed operating mode, however,
additional v-rays or neutrons detected in the Germanium detector or the Compton
shield result in a multiplicity dependent loss of efficiency of about 20%. This loss of

efficiency are corrected and the data are also included in Figs. 4.4 and 4.5.

Figures 2.6 and 2.7 give examples for more complicated coincidence spectra. The
solid points show the final coincidence yields from!'B (2.6) and MC (2.7) y-decays,
after background subtraction. (The original coincidence and background spectra were
already shown in Figs. 2.2 and 2.3.) The photopeak locations of the most important
7y-ray transitions are marked by arrows. The lower panels show individual contri-
butions from the most important transitions used in the fits. The most important
transitions and branching ratios used in the final fits are shown in the inserts. Clearly,
the individual populations of states above about 6 MeV excitation energy are not well
determined. In these and other ambiguous cases, we have used the summed strengths
of the groups of states indicated in the upper parts of the figures to provide informa-

tion about the emission temperature.
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Figure 2.5: Upper panel: Background subtracted coincidence yield (solid points) at-
tributed to y-ray decays of excited 12C fragments. The location of the photopeak for
the decay of the 4.44 MeV states is marked by an arrow. The dashed line shows the
original response function determined from the calibration at low ~-ray multiplicity.
The solid line shows the final line shape which includes corrections due to coincidence
summing. Lower panel: Corrections due to coincidence summing at high y-ray mul-
tiplicity. The solid and dashed lines are the same as in the upper panel. The dotted
curve corresponds to the calculated response due to the simultaneous detection of two
7-rays; the dashed-dotted line corresponds to the undistorted response when only the
4.44 MeV +-ray is detected. The solid line corresponds to the sum of the dotted and
dashed-dotted lines.
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attributed to y-ray decays of excited !B fragments. The solid line shows the fit used
for the extraction of the -ray fractions,F,,, listed in 3.2. The locations of several
strong transitions are shown by arrows. Lower panel: Contributions from individual
transitions. Important transitions and branching ratios are given in the insert.
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IIT ~-ray calibrations

A Line Shape Calibration

The response functions for the individual detector modules of the Spin Spectrometer
were calibrated with v-rays emitted from Na,%°Co,28Y, and 27Bj radioactive sources
as well as y-rays produced by the inelastic scattering of protons on 2C and 190 nuclei.

In total 12 calibration points were measured over the energy range of E, ~ 0.57 — 7

MeV.

After gain matching of the individual detector modules, the 4-ray spectra were
summed over the detectors located in the back hemisphere of the Spin Spectrome-
ter. The summed spectra were then fitted with a parameterized response function.

Examples of calibration fits are shown in F ig. 2.8. The fitted response function was

parameterized as:

E»,(E, Eo,Ao) = iAk[ak(E,Ek) +,Bk(E, Ek)], (22)

k=0
with

exp[(Lx/20})(Ls + 2E — 2E})], forE < Ef — I,
ar(E, Ex) = { exp[—(E — E})?/203), forExy — Ly < E < Ey + Uy (2.3)
exp{(Us/20})(Uk — 2E + 2E})], forE > E; + Uy

and

ﬂk(E, Ek) = Sk{g- + arctan[dk(E —F — bk)]

+Ty arctan(ax(E — Ey — b — )] — Ty arctan[a(E — Ej, — by + o)} (2.4)

In Eqs. (2.2)-(2.4), the indices k = 0, 1, and 2 denote the photo-, first and second
escape peaks, respectively; Eq and E denote the original y-ray energy and the detector
response in MeV; the functions ax(E, Ex) and Bi(E, E}) parameterize the line shapes

of the individual peaks and the Compton backgrounds, respectively. The positions of
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the first and second escape peaks were given by:
Er = Eq— 0.511k. (2.5)

The photopeak amplitude, Ao , was fit to the measured spectrum, and the relative
normalizations of the amplitudes, A; and A, , were determined from the calibrations

and could be expressed in the functional form:
Ai = CrAo{1 — exp|(1.56 — Ey)/3.0]}0(Ex — 1.56), (k = 1,2), (2.6)

where ©(z) is the unit step function, ©(z) = 0 for z < 0 and O(z) =1for z > 0,
and Cy = 0.90 and C; = 0.18. The energy dependence of the line shape parameters

was determined by the calibrations and could be represented by the functions:

Ly = [0.19 + 3.52 exp(—E})]oy, (2.7)

Ur = [0.47 + 1.22 exp(— Ex/1.91)]0, (2.8)

or = (6.8 4+ 33EL%) x 1073, (2.9)

g — { —0012E, +0.075,  for E; < 4.44MeV (2.10)
* 7\ 0.00345E% + 0.0063, for Ey > 4.44MeV '

Tk = 29-507:, (2.11)

ar = —1.0/(78.704), (2.12)

be = —2.0 — 377.00% + 50.0E, /(1.0 + 9.8E), (2.13)

¢ = 72.00,. (2.14)

Apart from the y-ray energy E, , the calibrated detector response function contains

only the adjustable parameter, Ao, which determines the normalization.
B Absolute Efficiency

The relation between the fitted amplitude Ao and the total number of v-rays of energy
Eq was calibrated at low energies, E, = 0.57 — 2.75 MeV, via -y coincidence mea-

surements using radioactive sources with coincident transitions. At higher energies,
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E, 2 4.4MeV, the absolute efficiency was obtained from P — 7 coincidences measured
for the inelastic scattering of protons on 12C and!¢Q. If the observed y-ray peak can
be attributed completely to the particle ¥-ray coincidence yield, we can define the

normalization function 5,(Ep) as:

Ny(Eo) = Ao(Eo)/N(Ey), (2.15)

where Ao(Ey) is the amplitude fitted to the spectrum of a y-ray of energy E, (defined

as Ao in Eq. (2.2) and N(Ep) is the total number of emitted 4- rays.

For two coincident 4-rays of energies Eq and Ey’, the efficiency for the detection
of v-rays of energy E, with the NalI(TI) detectors of the Spin Spectrometer can be
calibrated by determining the amplitude Ao(Ey) for the spectrum measured in coin-
cidence with v-rays of energy Eo’ detected with a Compton suppressed Germanium
detector module of the Spin Spectrometer. When gated on the y-ray peak of energy
Eo' in one (Ge) detector, non-negligible contributions, Ao(Eo’), of the same energy
Eo' are observed in the other (Nal) detectors (Fig. 2.8). These contributions, Ao(E, )s
are entirely due to random coincidences and thus allow us to correct for the random
coincidence contributions to the true peak Aq(Ep). Since Ag(Ey) is determined from
the spectrum summed over all detectors contained in the backward hemisphere of the
Spin Spectrometer, angular correlation effects are effectively integrated out. When
such random coincidence effects are important, 7,(Eo) is not given by Eq. (2.15).

Instead, making the random correction, one has,

Ty(Eo) Py(Eo) 1

1v(Eo) = [AO(EO) — Ao(Eo) 14(Eq ") P, (E, ')]NGc(EO ,)P'Y‘Y(EO)‘

(2.16)

Here, Ng.(Eo') denotes the total number of v-rays of energy Eq’ detected in the
Germanium detector; P,,(E,) denotes the conditional probability that a v-ray of
energy Ey is emitted in coincidence with the detected y-ray of energy E,’; typically,

Py (Eo) = 0.8 — 1.0; P,(Ey,) and P,(E, ") correspond the single inclusive emission
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probabilities for y-rays of energies Ey and Eq’, respectively. The second term in the
square brackets corrects for random coincidences. When gated on the other v-ray
peak Eo (Fig. 2.8, the upper and lower figures in the left-hand column), the true
coincidence amplitude for -rays of energy E,’ and random amplitude for y-rays
of energy Ey can be extracted. Thus, a corresponding equation for 7.,(Ey’) can be
established with Eo and Eo’ interchanged in Eq. (2.16), allowing the unambiguous

determination of 7,(Eo) and n,(E,’) by an iterative procedure.

For the case of y-rays emitted in the 2C(p,p'y) and 180(p, p'y) reactions, one
places a gate on the respective peak in the proton spectrum to determine the number,

Ny, of inelastically scattered protons. Summing over the Nal(T1) detectors in the

backward hemisphere, one obtains:

Mv(Eo) = AO(EO)/[NP’PP‘Y(EO)]7 (2.17)

where the amplitude Ag(Ej) is determined from the coincident v-ray spectrum, cor-
rected for random coincidences; P,,(Ey) is the conditional probability that a ~-ray of
energy Eo is emitted in coincidence with the detected inelastically scattered proton.

For the transitions of interest, the conditional probability P,,(E,) is unity.

Figure 2.9 shows individual points measured for the normalization function. The

solid line shows the analytical interpolation used in our analysis,

My(£o) = 4.11E5 %% exp[—0.0143(3.912 + ln Eg)* — 0.010(3.912 + In Eo)?]. (2.18)
C Coincidence Summing

For the average event analyzed in the present experiment, the individual NaI(TI)
modules in the backward hemisphere trigger with a coincidence probability of about
p = 28%. This high probability is due to the rather large multiplicity of y-rays (and

neutrons) emitted from highly excited target residues. Only a fraction, 1 — p, of
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recorded fragment v-rays will be correspond to single ¥-ray interactions for a given
detector module; there is the probability, p, for the coincident interaction of a second
v-ray with the same detector module. This ‘coincidence summing’ effect leads to
considerable, multiplicity dependent line shape distortions, see Fig. 2.5 of the main
text. These line shape distortions were evaluated by folding the fraction, p, of the
original calibration function, Eq. (2.2), with the normalized background function,
B,(E), obtained from an energy spectrum in the backward hemisphere of the Spin
Spectrometer which reflects the pulse height distribution for neutrons and ~-rays
emitted from target residues. This latter spectrum was gated by the detection of a
°Be fragment in a particle telescope to avoid introducing structures due to discrete

7-rays emitted from the detected fragments. The corrected response function has the

form:

£3(E: Bo, do,p) = Aof(1 = p)ex (B, Bo) +p [ dB'le, (B ~ B', Eo)B,(E")]},(219)
with

/ dE'B(E") = 1. (2.20)

where &,(E, Eo) is the result of Eq. (2.2) with Ao = 1.
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Figure 2.8: Calibrations for the 7y-ray response function, e,(E, Eg, Ag), given by

Egs.(2.2)-(2.4). The solid lines show the fitted line shapes; the dashed lines show
the calculated Compton background.
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Chapter 3

Data

In this chapter, the data for single particle inclusive spectra and the coincidence 4-
ray spectra are presented. In the first section we present the single fragment kinetic
energy spectra, and fits to the spectra using a ‘moving source’ parameterization. The

coincident v-ray data are discussed in the second section.

I Single fragment Inclusive Cross Sections

The inclusive differential cross sections, measured at 8 mMr = 20°,25°,30° 45° and 50°,
are shown in Figs. 3.1-3.5 for isotopes of lithium, beryllium, boron, carbon, nitrogen,
and oxygen, respectively. Consistent with previous measurements [Fiel 86a, Fiel 86b],
the spectra exhibit broad maxima at energies close to the exit channel Coulomb
barrier and rather featureless, nearly exponential slopes at higher energies. These
slopes become steeper at larger angles. In the center-of-mass system, the cross sections
are peaked at forward angles, indicating emission prior to the establishment of full
statistical equilibrium of the composite nuclear system. In order to obtain analytical
interpolations of the inclusive cross sections to unmeasured angles and energies, the
data were fitted by a parametrization employing the superposition of three Maxwellian

distributions (‘moving sources’):

33
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d? 3
dQ;E T & NiyE ~ U, exp{—(E — U + E; = 2/E{(E — U.) cos6]/T;}  (3.1)

Here, U. is the kinetic energy gained by the Coulomb repulsion from the heavy
reaction residue assumed to be stationary in the laboratory system; N; is a normal-
ization constant and T} is the "kinetic temperature” parameter of the i-th source;
E; = muv;, where m is the mass of the emitted fragment and v; is the velocity of the
i-th source in the laboratory system. This choice of parametrization was chosen for
simplicity. Fits obtained with this parametrization are shown by the solid lines in
Figs. 3.1-3.5; the parameters are listed in Table 3.1. Because of the small angular

range covered by the data, substantial ambiguities exist for the individual parameters.
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Table 3.1: Parameters used for the fits of the inclusive cross sections with Eq. 3.1
The Coulomb repulsion energies U, and the temperature parameters T; are given in
units of MeV, and the normalization constants IV; are given in units of ub/(srMeV3/2).

T1 vl/c N1 T2 UQ/C N2 T3 ’U3/C N3 Uc

°Li [0.156 | 5.1 73.5 [0.095| 9.6 |219.9]0.025] 5.0 {226.4 | 35.0
Li |0.143 | 86 | 229.7 |0.081 | 9.6 |369.7|0.007 | 5.0 270.6 | 34.6
8Li |0.160 | 5.0 0.1 0.090 | 11.0 | 34.3 | 0.009 | 13.7 | 17.1 | 34.3
"Be | 0.161 | 7.7 65.7 10.085)10.1 | 73.1 | 0.018 | 5.0 | 41.3 | 45.4
Be | 0.154 | 6.8 74.6 |1 0.086 | 10.0 | 107.9 | 0.000 | 5.0 | 121.5 | 44.5
19Be | 0.180 | 5.5 57.7 1 0.105 | 10.2 | 48.9 {0.043 | 10.4 | 29.7 | 44.1
B | 0.172 | 2.5 | 5675.6 | 0.097 | 10.5 | 92.8 | 0.001 | 12.7 42.6 | 47.0
B 10.167 | 4.0 977.7 10.101 | 10.4 | 190.3 | 0.008 | 11.7 | 106.8 | 46.6
B | 0.173 | 2.7 | 1494.4 | 0.102 | 11.0 | 21.9 | 0.014 12.5 | 12.0 | 46.3
3B | 0.167 | 3.3 127.4 10.097 | 12.0 | 4.8 |0.013|13.1| 2.3 |46.0
MC | 0.164 | 3.5 | 260.2 |0.100 | 11.2 | 26.0 | 0.013 9.0 | 17.2 | 58.0
C |0.165 | 3.8 | 1608.1 |0.102 { 10.1 | 156.9 | 0.022 8.4 |1139.0 | 58.8
C |0.162 | 3.5 | 1787.7 |0.100 | 10.1 | 107.1 0.037 | 6.7 | 98.6 | 66.8
MC |0.164 | 3.5 | 930.5 |0.102|10.6 | 37.5 | 0.038 | 10.2 23.7 | 58.0
BN 10.165 | 3.6 125.5 [0.102 [ 12.3| 3.8 |0.001 | 11.4| 4.6 |69.3
MN 1 0.169 | 2.7 | 11904.2 | 0.105 | 10.5 | 49.5 | 0.051 | 7.4 37.0 | 68.9
N [0.164 | 3.2 | 8122.8 | 0.106 | 9.6 | 123.1 | 0.051 8.0 | 79.0 | 68.5
16N 10.159 | 3.8 2114 |0.102 | 114 | 9.6 [0.043 104 95 |68.5
N 1 0.155 | 4.5 40.3 10.104 | 11.9 | 3.6 |0.048 116 3.5 | 67.8
50 | 0.164 | 2.8 | 2206.9 |0.106 | 11.6 | 5.6 0.052 | 7.5 | 7.0 | 76.9
%0 10.159 | 4.2 | 1254.1 [ 0.107 | 9.8 | 66.3 0.057 | 7.8 | 55.9 | 76.5
70 | 0.158 | 3.8 | 1254.4 | 0.107 | 10.1 | 33.6 | 0.054 83 | 324 | 76.1
0 10.158 | 4.0 | 557.1 |0.103 | 10.4 | 19.8 | 0.051 81 | 19.5 | 75.7
Y0 [0.149 | 5.5 22.1 0.099 | 12.6 | 2.0 |[0.055 |11.8| 3.1 |75.4
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II  ~y-Ray Spectra From Decaying Fragments

A 7y-Ray Spectra From Germanium Detectors

Spectra of y-rays detected in coincidence with isotopes of 8Li, "Be, 1°B, 1B, and !3C
are shown by the histograms in Fig. 3.6. To obtain these spectra, the energy spectra
of coincident y-rays were transformed into the rest frames of the coincident particles
using relativistic Jacobians and Doppler shift corrections. Since these transformations
shift and broaden +-ray transitions of the target residues, particular attention was
paid to identifying and correcting for spurious structures in the v-ray background.
Similar to the analyses of the NaI(Tl) spectra, background spectra were generated by
performing Doppler shift transformations on raw 4-ray spectra measured in coinci-
dence with ®Li, °Be, and 'B nuclei. These nuclei have no strong y-ray transitions at
the y-ray energies which could be measured with the Germanium detectors; however,

these background spectra contained discrete transitions from target residues common

to all spectra.

The Doppler shifted background spectra are indicated by the solid dots in the fig-
ure. The following transitions were analyzed: ®Li(1*, 0.981 MeV)— y+8Li(2+, g.5.),
"Be(}”, 0.429 MeV) — 4+"Be(27,g.5.), 1°B(1+, 2.154 MeV)— v+1°B(0+,1.740
MeV), 13C(%%‘, 3.854 MeV)— y+13C(27, 3.684 MeV), and overlapping transitions:
'2B(2%, 0.953 MeV)— y+'?B(1%, ¢.5.), ?B(1~, 2.621 MeV)— v+!2B(2-,1.674 MeV).
We did not analyze the transition, "Li(, 0.478 MeV)— 7+7Li(27, g.s.), because the
pile-up of two coincident a-particles in the telescopes is misidentified as a 7Li, [Wohn
74], nor the long-lived transition, °B(1%, 0.718 MeV)— y+1°B(3*,g.5.;7 = 1.02ns),
[Ajze 86a], because this decay occurs at a considerable distance from the target re-
sulting in major uncertainties in the efficiencies of the v-ray detectors. The data in

Fig. 3.6 were summed over all detectors; the individual detectors provide comparable
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Figure 3.1: Inclusive differential cross sections for lithium and beryllium isotopes; the

laboratory detection angles are indicated in the figure. The solid lines represent fits
with Eq. (3.1); the parameters are listed in Table 3.1.
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Figure 3.2: Inclusive differential cross sections for boron isotopes; the laboratory
detection angles are indicated in the figure. The solid lines represent fits with Eq.
(3.1); the parameters are listed in Table 3.1.
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Figure 3.3: Inclusive differential cross sections for carbon isotopes; the laboratory
detection angles are indicated in the figure. The solid lines represent fits with Eq.

(3.1); the parameters are listed in Table 3.1.
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Figure 3.4: Inclusive differential cross sections for nitrogen isotopes; the laboratory
detection angles are indicated in the figure. The solid lines represent fits with Eq.
(3.1); the parameters are listed in Table 3.1.
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Figure 3.5: Inclusive differential cross sections for oxygen isotopes; the laboratory

detection angles are indicated in the figure. The solid lines represent fits with Eq.
(3.1); the parameters are listed in Table 3.1.



42

1.0 71—
d " ‘ l

Il2l']rv'r|,,|;|,f,f 10

F 32 1 -

0.8 | Ae("SX) ? (2'223 f'Z’L, 0.8
L E/A=22.5 MeV (2.621 — 1.674)

0.6 0.6
t — Data

0.4 I ¢ Background 0.4

02 F #10.2

0.0 :;‘w.:;ﬂ;;nit:u ittt 0.0

0.8 0.8
0.6 [ 10.6
0.4 |

10.4

Relative Yield

5 0.2

.::w::sf:::%:%ffh¢#:in:; 0.0
- 1.740)%‘% (3.854 — 3.684)

0.8
los
) 0.4

0.2

N 1.,L~.|x‘.lll‘k‘|1.AxO.0
30 -50 O 50 100
E-E, (keV)

Figure 3.6: Spectra of y-rays detected in coincidence with isotopes of 2Li, “Be, 1°B,
12B, and '3C produced in 3*S from Compton Shielded Germanium detectors.
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numerical contributions to the sum. The inclusive fragment yields and fragment-y-ray
coincidence yields were summed over angle and combined to extract the fraction, F,, of
observed fragments which were accompanied by the designated y-ray. Spin alignments
were assumed to be zero. This introduced a spin alignment dependent uncertainty in
F, of about 3%. Values for F, obtained for these transitions, after correction for the

efficiency loss due to the coincidence summing effects are presented in Table 3.2.

B ~v-Ray Spectra from Nal Detectors '

The 7-ray spectra detected in coincidence with 1°Be, 2B, 18C, 1C, 1N, 18N, 160,
and '®0 fragments are shown in the left hand panels of Figs. 3.7- 3.14, respectively.
The respective background spectra are represented by the dashed lines. The right
hand panels show the yields obtained after subtraction of the background spectra.
These yields are associated with - ray transitions in the detected fragments. The
solid lines show the fits used for the extraction of the v-ray fractions, F.,. The inserts
in the left hand panels show the most important transitions and branching ratios.
Photopeak locations of important transitions or groups of transitions are indicated
by arrows in the right hand panels. For the actual fits, we used the complete set of
transitions and branching ratios from the compilation of ref. [Ajze 84-88]. The y-ray
yields associated with decays of excited !B, 'C, and 2C transitions were already

presented in Figs. 2.5-2.7.

For 12C, 13C, and °Be fragments we have investigated whether the measured
values of F., depend on the fragment kinetic energy or scattering angle. Within the
experimental uncertainties, no dependence of the F, on either quantity was observed.
Values for F,, listed in Table 3.2, were obtained by combining the data for the various

intermediate mass fragment kinetic energies and scattering angles.

The coincident 4-ray spectra can be well understood in terms of known transitions



44

in the detected fragments. The good agreement of the measured and fitted spectral
shapes justifies, a posteriori, our treatment of the background associated with emis-
sions from target residues. The only case which shows noticeable deviations from
our standard calibration and background subtraction procedures corresponds to the
width of the 0.95 MeV y-ray peak measured in coincidence with 2B fragments, see
Fig. 3.8. This peak results from the superposition of the decays ?B(2*,0.953M eV)
—7+'?B(1%,g.5.) and 1?B(1-,2.621MeV) —+'2B(2-,1.674MeV). For this low en-
ergy y-ray, the line width was somewhat larger than expected from the overall calibra-
tion of the response function, suggesting that the resolution of the Spin Spectrometer
was slightly worse during the experiment than during the calibration. This degrada-
tion of the resolution could possibly arise from the coincidence summing of low energy
v-rays and z-rays which lie below our experimental thresholds and therefore are not
taken into account by the coincidence summing corrections described in Appendix
C. This resolution problem made the background determination and subsequent sub-
traction more difficult for y-ray energies below about 1 MeV. In order to extract
the strength of this peak more accurately, the spectrum was fitted by folding the
calibrated response function with a Gaussian of 0.14 MeV FWHM (while conserving
the integral normalization of the spectrum). The v-ray fraction extracted from this
peak agrees within 10% with that extracted [see Table 3.2] from the y-ray spectra
measured with the Compton shielded Germanium detectors for which the background

subtraction was less problematic.

For a considerable number of transitions, the energy resolution of the Nal(Tl)
detectors was insufficient to allow reliable determination of the individual ~-ray frac-
tions. In such cases, the y-ray fractions are only given for groups of transitions which
could be determined with good statistical accuracy. Transitions contained within a

particular group are identified in Table 3.2 by "1, 32, ... etc.
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There are several sources for the uncertainties in the 7v-ray fractions listed in Table
3.2. Because the resolution for low energy v-rays could not be accurately assessed
from the fragment v-ray coincidence data, the extracted ~-ray fractions have asso-
ciated uncertainties which could be as large as 10% for 4-ray energies significantly
below 3 MeV. Above 3 MeV these uncertainties are less than 2%. Additional uncer-
tainties are associated with low counting statistics, uncertainties in the interpolation
of the y-ray efficiency (see Appendix B), ambiguities in the fitting procedure, and the
possibility for misidentification of the mass and charge of the intermediate mass frag-
ment detected in the particle telescope. These uncertainties were estimated and for
simplicity, were combined in quadrature to provide the uncertainties listed in Table
3.2. It was particularly difficult to estimate the uncertainty associated with possible
errors in the functional form of the background. Upper limits on this uncertainty
were obtained by fitting with different background assumptions. With extreme back-
ground assumptions, the experimentally determined yield varied by less than 8%.

This extreme error estimate, however, was not incorporated into the uncertainties

listed in Table 3.2.
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Figure 3.7: ~-ray spectra measured in coincidence with °Be fragments. The left
hand panel shows the raw coincidence spectrum with the background indicated by
the dashed line. The right hand panel shows the spectrum associated with v-ray
decays of excited '®Be fragments. The solid line shows the fit used for the extraction
of the y-ray fractions, F, , listed in Table 3.2. The insert shows important transitions
and branching ratios used for the fit. Photopeak locations of important transitions

are indicated by arrows.
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Figure 3.8: 7-ray spectra measured in coincidence with 2B fragments. The left hand
Panel shows the raw coincidence spectrum with the background indicated by the
dashed line. The right hand panel shows the spectrum associated with v-ray decays
of excited '?B fragments. The solid line shows the fit used for the extraction of the
7y-ray fractions, F, listed in Table 3.2. The insert shows important transitions and
branching ratios used for the fit. Photopeak locations of important transitions are
indicated by arrows.
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Figure 3.9: v-ray spectra measured in coincidence with *C fragments. The left hand
panel shows the raw coincidence spectrum with the background indicated by the
dashed line. The right hand panel shows the spectrum associated with y-ray decays
of excited *C fragments. The solid line shows the fit used for the extraction of the
v-ray fractions, F, listed in Table 3.2. The insert shows important transitions and
branching ratios used for the fit. Photopeak locations of important transitions are
indicated by arrows.
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Figure 3.10: +-ray spectra measured in coincidence with *C fragments. The left
hand panel shows the raw coincidence spectrum with the background indicated by
the dashed line. The right hand panel shows the spectrum associated with y-ray
decays of excited '*C fragments. The solid line shows the fit used for the extraction
of the y-ray fractions, F.,, listed in Table 3.2. The insert shows important transitions
and branching ratios used for the fit. Photopeak locations of important transitions
are indicated by arrows.
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Figure 3.11: ~-ray spectra measured in coincidence with N fragments. The left
hand panel shows the raw coincidence spectrum with the background indicated by
the dashed line. The right hand panel shows the spectrum associated with ¥-ray
decays of excited *N fragments. The solid line shows the fit used for the extraction
of the y-ray fractions, F,, listed in Table 3.2. The insert shows important transitions
and branching ratios used for the fit. Photopeak locations of important transitions
are indicated by arrows.
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Figure 3.12: v-ray spectra measured in coincidence with *N fragments. The left
hand panel shows the raw coincidence spectrum with the background indicated by
the dashed line. The right hand panel shows the spectrum associated with ~-ray
decays of excited '*N fragments. The solid line shows the fit used for the extraction
of the y-ray fractions, F,, listed in Table 3.2. The insert shows important transitions

and branching ratios used for the fit. Photopeak locations of important transitions
are indicated by arrows.
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Figure 3.13: ~4-ray spectra measured in coincidence with O fragments. The left
| hand panel shows the raw coincidence spectrum with the background indicated by

the dashed line. The right hand panel shows the spectrum associated with ~-ray

decays of excited '°0 fragments. The solid line shows the fit used for the extraction

of the ~-ray fractions, F,, listed in Table 3.2. The insert shows important transitions

and branching ratios used for the fit. Photopeak locations of important transitions
are indicated by arrows.
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Figure 3.14: y-ray spectra measured in coincidence with 0 fragments. The left
hand panel shows the raw coincidence spectrum with the background indicated by
the dashed line. The right hand panel shows the spectrum associated with ~-ray
decays of excited 20 fragments. The solid line shows the fit used for the extraction
of the y-ray fractions, F.,, listed in Table 3.2. The insert shows important transitions
and branching ratios used for the fit. Photopeak locations of important transitions
are indicated by arrows.



54

Table 3.2: Extracted fractions, F.,, of observed fragments which were accompanied
by the designated v-ray transition. Values marked by { are fractions obtained from
Germanium detectors corrected for the effects of coincidence summing. For transitions
which could not be resolved experimentally, the F,-value is given for the summed
strength. These transitions and F.,-values are identified by ‘74", i = 1,2, ..., 14.

Fragment Transition (J7, E*) F, >
"Be (£7,0.429) — (37,0.0) |0.222 +0.017¢
L °Li [ (1%,0.981) — (2F,0.0) [0.204 £0.033T | |
T0Be (2%,3.37) = (07,0.0) [ 0.61%0.03

(2%,5.96) — (2%,3.37) [ 0.16£0.02 | (L1
(1-,5.96) — (2+,3.37)
[ "B [(1*,2.154) - (0%,1.740) [0.082 £ 0.0157 | |

1B (17,2.12) —» (37,0.0) ] 0.110 £0.015
(87,4.44) - (27,0.0) | 0.143 +0.016
(37,5.02) — (27,0.0) | 0.059 % 0.008
(£7,6.74) — (27,0.0) | 0.135£0.028 | (T 2)
(1*,6.79) — (37,0.0)
(3%,7.29) — (27,0.0)
(2%,7.98) — (27,0.0)

BYe (17,2.00) > (37,0.0) | 0.151 £0.028
(£7,4.32) - (37,0.0) | 0.133£0.016 | (T3)
(1*,6.34) — (17,2.00)
(27,4.80) — (37,0.0) | 0.062 £0.013
(1%,6.34) — (27,0.0) | 0.219£0.032 | (T4)
(27,6.48) — (37,0.0)
(3%,6.90) = (27,0.0)
(3%,7.50) — (37,0.0)

12g (2%,0.953) — (1%,0.0) | 0.415 + 0.054" 5

)
(1-,2.621) — (27,1.674) | 0.43 £ 0.09 g;&
(2-,1.674) — (1%,0.0) | 0.28£0.04 | (%6)
(1-,2.621) — (2+,0.953)
[ C | (2%,444) — (0%,0.0) [ 0.406 £ 0.030 | ]
13C (£7,3.854) — (27,3.684) | 0.070 + 0.0091
(37,3.85) — (17,0.0) | 0.370 £0.029 [ (Z7)
(27,3.68) — (17,0.0)
(1%,3.09) = (17,0.0)
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Table 3.2: (continued)

| Fragment | Transition (J7, E*) | F, | T

TiQ (1-,6.09) — (0%,0.0) | 0.481 + 0.040 | (3.8)
(3-,6.73) — (0%,0.0)

(2+,7.01) — (0+,0.0)
(2-,7.34) — (0%,0.0)

My (0%,2.31) — (1%,0.0) | 0.165 % 0.030
(17,3.95) — (07,2.31) | 0.062 < 0.040
(07,4.92) — (1¥,0.0) | 0.216 £0.021 | (> 9)
(2-,5.11) — (1+,0.0)

(1-,5.69) — (1%,0.0)
(3-,5.83) — (1+,0.0)
(1*,6.20) — (1+,0.0)
(3+,6.44) — (1*,0.0)
(2+,7.03) — (1+,0.0)

15N (g ,5.27) = (17,0.0) [ 0.391 £0.042 | (T 10)
(37,5.30) — (% 0.0)

(§+,7.16) (g ,5.27) | 0.165 +£0.040 | (T 11)
(I*,7.57) — (37,5.27)

0 (37,6.13) — (07,0.0) | 0.220 % 0.025
(2¥,6.92) — (07,0.0) | 0.146 £ 0.024 | (> 12)
(17,7.12) — (U* U.0)

180 (2+,1.98) — (07,0.0) | 0.75+£0.07 | (5 13)
(2+,3.92) — (2+,1.98)

(4%,3.55) — (2+,1.98) | 0.27£0.06 | (. 14)
(0+,3.63) — (2+,1.98)




Chapter 4

Sequential Feeding and the
Emission Temperature

The relative populations of states of the emitted fragments provide a measure of the
intrinsic excitation energy of the emitting system at freezeout. It is important to
know whether this excitation energy is thermally distributed. This can be explored
by direct measurements of the relative populations of exited states. However, the
observed populations of excited states are influenced by the sequential decay of heav-
ler particle unstable nuclei [Poch 85a, Xu 86, Hahn 87, Fiel 87, Gome 88, Morr 86]
and the populations and decays of many of these unbound states are not known
experimentally. Since one does not usually know the feeding corrections experimen-
tally, they must be calculated. These calculations [Xu 86, Hahn 87, Fiel 87, Chen 88|
usually make the simplifying assumption that the states [Ajze 84, Ajze 85, Ajze 86a,
Ajze 86b, Ajze 87, Ajze 88] of primary fragments are populated according to a ther-
mal distribution characterized by a temperature, T. The accuracy of this assumption

must be checked by comparing the calculations to the experimental data.

This chapter is organized as follows: In section I, we describe the essence of the
sequential feeding calculation and how various fragments and their excited states

are included in the calculation. We then present a method for choosing unknown

56



37

spectroscopic factors of low lying states, the primary populations of these states,
as well as the branching ratios used in the decay (;alculations. In section II, we
compare the results of the calculations to the inclusive elemental yields and to the
isotopic yields of the detected fragments. In Section III, the calculated and measured
values of the coincident 4-rays are compared. We first compare results for individual
transitions. We then discuss a least-y? squares fit method to extract an average
emission temperature. Finally, in section IV, the experimental results are summarized

and put into perspective with other similar measurements.

I Feeding from Higher Lying States

A Levels and Level Densities

To determine the feeding corrections to the measured y-ray fractions, we performed
sequential decay calculations for an ensemble of nuclei with 3< Z <13. To facil-
itate the actual numerical calculations, a lookup table containing excitation ener-
gies, spectroscopic factors and different decay channels with corresponding branch-
ing ratios for approximately 2600 known levels for isotopes within this charge range

[Ajze 84, Ajze 85, Ajze 86a, Ajze 86b, Ajze 87, Ajze 88] was constructed.

Since the spins, isospins and parities of many low-lying particle bound and un-
bound levels of nuclei with Z < 11 are known, the information for these lighter nuclei
was used in the sequential decay calculations. For known levels with incomplete spec-
troscopic information, values for the spin, isospin, and parity were chosen randomly
according to primary distributions obtained from the non-interacting shell model
[Brow 88, Naya 90]. These calculations were repeated with different initialization for
the unknown spectroscopic information until the sensitivities of the calculations to

these uncertainties could be assessed. The results of the calculations appear to be
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insensitive to details in the sampling algorithm, and essentially the same results were
obtained in simpler calculations where spins of 0-4 (1/2-9/2) were assumed with equal
probability for even A (odd A) nuclei, parities were assumed to be odd or even with
equal probability, and the isospins were assumed to be given by the isospin of the
ground state. For later reference, this latter distribution of unknown spins is termed

a ‘flat spin distribution’.

The low-lying discrete levels of heavier nuclei with Z>12 are not as well known as
those of lighter nuclei. To calculate the decay of these heavier nuclei for low excitation
energies, E* < ¢(A;, Z;), we used a continuum approximation to the discrete level
density [Chen 88], modifying the empirical interpolation formula of ref. [Gilb 65b] to

include a spin dependence:

1 (2J; + 1)exp[—(J; + 1)?/207]
“gy= L . , 4.1
AER) = rexellE = BBl r  expl= (s + 1) /207] (&)
for £” < €,
where
o? = 0.0888[a; (co — Eo)} A3, (4.2)

and a; = A;/8; J;, A, and Z; are the spin, mass and charge numbers of the fragment,
and the values for €y = eo(Ai, Z;), Ty = Ti(Ai, Z:), and Ey = Ey(A;, Z;) were taken
from Gilbert and Cameron [Gilb 65b]. For Z > 12, Ey = Eo(A;, Z;) is determined by
matching the level density at ¢y provided by Eq. (4.1) to that provided by Eq. (4.3)
given below. [Note: In Eq. (4.1) and also in Eq. (4.7) below, we match the density
of levels rather than the density of states because the spins of many of the discrete

levels are not known.]

For higher excitation energies in the continuum for all nuclei, we assumed the level

density of the form

p(E™ Ji) = p1(E")pa(Ji, o), (4.3)
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where
. exp{2(ai(E* — Eo)]'/?}
p(E) 12v2[a;( E* ~ Eo)%|Y/45;’ . (44)
o(Joc) = (2J;+1)exp2;gJ;+%)2/20,?], (45)
o} = 0.0888[ai(E* — Eo))|'/?A2°, (4.6)

For Z; > 12, Ey = Ey(Ai, Z;) is determined by matching the level density provided by
Eq. (4.1) at € to that provided by Eq. (4.3). At smaller values of Z;, E, is adjusted
for each fragment to match the integral of the continuum level density to the total

number of tabulated levels according to the equation:

[os funen= [ ssas-p, »

where ¢, for these lighter fragments, was chosen to be the maximum excitation energy
up to which the information concerning the number and locations of discrete states

appears to be complete. An example [Chen 88a] of determining ¢, for the isotope

%Ne is given in figure 4.1.

To reduce the computer memory requirements, the populations of continuum
states were stored at discrete excitation energy intervals of 1 MeV for E* <15 MeV,
2 MeV for 15< E* <30 MeV, and 3 MeV for E* >30 MeV. The results of these
calculations do not appear to be sensitive to these binning widths. In this way, the
total number of discrete energy bins including the discrete states came to be about
38,000. Parities of continuum states were chosen to be positive and negative with
equal probability. To save both space and time, the isospins of the continuum states

were taken to be equal to the isospin of the ground state of the same nucleus.
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Figure 4.1: The level density of 2°Ne as a function of excitation energy [Chen 88a].
The histogram gives the number of known levels whereas the solid curve shows results
of level density predicted by eq (4.3).
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B Primary Populations

For the ith level of spin J; we assumed an initial population P; given by
P, o Py(Ai, Z;)(2J; + 1)exp(—E*/T), O (48)

where Py(A;, Z;) denotes the population per spin degree of freedom of the ground
state of a fragment and T is the emission temperature which characterizes the ther-
mal population of states of a given isotope. (This temperature is associated with the
intrinsic excitation of the fragmenting system at breakup and is, in general, different
from the “kinetic” temperature which may be extracted from the kinetic energy spec-
tra of the emitted fragments.) The initial populations of states of a given fragment
were assumed to be thermal up to excitation energy of EZ, ¢ = pA. This cutoff
was introduced to explore the sensitivity of the calculations to highly excited and
short-lived nuclei, some of which may be too short-lived to survive the evolution from
breakup to freezeout. Calculations were performed for cutoff values of u = 3 and 5
MeV corresponding to mean lifetime of the continuum states of 230 fm/c and 125
fm/c, respectively [Stok 77]. The calculations were qualitatively similar for the two

cutoff energies.

For simplicity, we parameterized the initial relative populations, Py(A4;, Z;) by
Po(A, Z) o exp(— Ve /T + Q/T), (49)

where Vi is the Coulomb barrier for emission from a parent nucleus of mass and

atomic numbers A, and Z, and @ is the ground state Q-value
Vo = Zi(Z, — 2 {rol 4" + (4, - 4)'°]} (4.10)
and

Q = [B(A,,——A,-, Zp—Zi)+Bi] "B(Ap’ Zp)- (4-11)
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We used a radius parameter of ro=1.2 fm, 4,=122, Z,=54 (these values were assumed
for compound systems due to incomplete fusion). The binding energies, B(A, Z), of

heavy nuclei were calculated from the Weizsicker mass formula [Marm 69).

7, (A-22)
AT T4

with Co=14.1 MeV, C1=13.0 MeV, C3,=0.595 MeV, and C3=19.0 MeV. For the emit-

B(A,2) = CoA - C1A*? — ¢,

(4.12)

ted light fragments we used the measured binding energies, B;, of the respective
ground states [Waps 85]. At each temperature T, the parameter, f in Eq. (4.9) was
adjusted to provide optimal agreement between the calculated final fragment distribu-
tions (obtained after the decay of particle unstable states) and the measured fragment
distributions. This constraint reduced the possibility of inaccuracies in the predicted
primary elemental distributions at high temperatures [Hahn 87, Fiel 87]. The values

of f obtained for different T are discussed in the last section of this chapter.
C The Decay Branching Ratios

The branching ratio for a state to decay by different channels has to be known for
decay calculations. If known, tabulated branching ratios were used to describe the
decay of particle unstable states. If unknown, the branching ratios were calculated
from the Hauser-Feshbach formula, with additional constraints on isospins and pari-

ties. The branching ratio for a channel ¢ in the original Hauser-Feshbach formula is

[Haus 52],

T. G,

T=v& (4.13)
where

Z=|S+j| I=|J+2Z|

Ge= ), > T(E). (4.14)

Z=|5-3| ={J-2|

Here, J and j are the spins of the parent and daughter nuclei, Z is the channel spin,

S and 1 are the intrinsic spin and orbital angular momentum of the emitted particle,
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and Ti(E) is the transmission coefficient for the Ith partial wave. By incorporating
parity and isospin conservations, we can write G, as

Ge = <TpTirT(3)10T(3)1r|TrpT(3)1p >
Z=|S+j| I=|J+2|

x >, > Al +7prprr(=1)/2} TIE). (4.15)

Z=|5-j| I=)J-2]

The factor, {1 + mprpmp(—1)"]/2 enforces parity conservation and depends on the
parities # = %1 of the emitted fragment and the parent and daughter nuclei. The
Clebsch-Gordon coefficient involving T7 p, Tt p, and Tr,F, the isospins of the parent
nucleus, daughter nucleus, and emitted particle, likewise allows one to take isospin

conservation into account.

For decays from states for which the kinetic energy of the emitted particle is less
than 20 MeV and [ < 20, the transmission coefficients were interpolated from a set
of calculated optical model transmission coefficients [Brow 88, Naya 90]. For decays
from continuum states when the kinetic energy of the emitted particle exceeds 20

MeV, the transmission coefficients were approximated by the sharp cutoff approxi-

mation;
T(E) = 1, for <]
= 0, otherwise, (4.16)

with

lo = (27 /h)ro[ A}° + (A, — AN\ /24(E = Vo), (4.17)

where p is the reduced mass, and k is Plank’s constant.

The calculation was restricted to the particle decays via n, 2n, p, 2p, d, t, *He,
and « channels. The 4-ray decay of particle stable states was taken into account in

the calculation of the final particle stable yields.
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II Elemental and Isotopic Yields

The measured fragment elemental and isotopic distributions and the calculated distri-
butions for 4 = 3 MeV are compared in Figs. 4.2 and 4.3. The solid points correspond
to the fragment yields summed over all measured energies and angles. The dashed
lines in Fig. 4.2 show the calculated elemental distributions of primary fragments
(summation of all particle stable states for all isotopes of a given element) assumed
for the temperatures T = 2, 4, and 8 MeV;; the parameters, f, are indicated in the
figure. The solid lines show the calculated final elemental distributions obtained after
the statistical decay bf particle unbound fragments. The parameter, f, was adjusted
at each temperature so that the calculated final elemental distribution closely follows
the trend of the measured elemental distribution. (After choosing appropriate but
different values for f, very similar results were obtained for 4 = 5 MeV.) Since these
parameters, f, have been adjusted to reproduce the elemental yields measured in this
experiment, one must be very cautious in applying the results of these calculations

to other reactions.

The dashed, solid and dotted histograms in Fig. 4.3 represent final isotopic dis-
tributions obtained for the three temperatures, T = 2, 4, and 8 MeV, using the
parameters, f, given in Fig. 4.2. In general, the isotopic distributions are fairly well
reproduced. For T=2 MeV, however, the calculated isotopic distributions are some-
what narrower than the measured ones and for T=8 MeV, the calculated distributions
are somewhat broader than the measured ones. The agreement is slightly better for

calculations in the neighborhood of T=4 MeV.
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Figure 4.2: Element yields summed over all measured energies and angles. The dashed
and solid histograms show the primary and final fragment particle stable yields for
the feeding calculations described in the text. The three panels show the results for
T =2, 4, and 8 MeV, respectively. The adjusted values for the parameter, f, in Eq.
(4.9) are given in the figure.
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Figure 4.3: Isotope yields summed over all measured energies and angles. The dashed,
solid, and dotted histograms show the final fragment distributions for the feeding
calculations at T = 2, 4, and 8 MeV, respectively.
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III Mean Emission Temperatures

Starting from the initial distribution, Eq.(4.9), we have calculated the fraction, F,,
of y-rays emitted in coincidence with a given fragment as a function of the emission
temperature, T, which characterizes the ensemble of emitted fragments. The results
for an excitation energy cutoff of 4 = 3 MeV are presented in Figs. 4.4-4.6 for the
transitions given in individual panels. The range of calculated fractions, F, | for
individual 4-rays are bound by the solid curves in Figures 4.4 and 4.5 for transitions
measured in this experiment. The range of calculated values for the relative vy-ray
intensities, R, = F.,;/F,, are shown by the solid lines in Fig. 4.6 for those fragments
for which more than one 7-ray transition were measured. The corresponding calcula-
tions for an excitation energy cutoff of 4 = 5 MeV are qualitatively very similar and

in some cases, indistinguishable.

The spread in calculated values of F,’s and R,’s shown in Figs. 4.4-4.6 reflects
primarily uncertainties in the spins, isospins and parities of many low lying particle
unstable levels which directly feed the particle stable states of interest. The range
of calculated values was determined by repeating calculations with different spectro-
scopic assumptions until the sensitivity of the calculation to those uncertainties could

be assessed.

In order to illustrate the modifications due to feeding from particle unbound states,
the dashed lines in Figures 4.4-4.6 show the results of calculations which include
feeding from higher lying particle stable states, but not from particle unstable states.
In all cases, both F,’s and R,’s are predicted to be sensitive to feeding from particle
unbound states for temperatures higher than approximately 2-3 MeV. (For example,
for 1'C with y= 3 MeV and T = 3 MeV, 55% of the yields of the 4.32 MeV excited state

and 59% of the ground state yields are predicted to proceed through the sequential
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decay of heavier particle unbound nuclei). The ratio R, has the advantage of being
independent of the total feeding to the ground states of the observed fragments. Since
the ground state is fed more strongly than the excited states, the ratios R, are slightly

less sensitive to the uncertainties in the sequential decay corrections than the fractions

F, shown in Figures 4.4 and 4.5.

The shaded horizontal bands in Figs. 4.4, 4.5 and 4.6 correspond to the experimen-
tal values of F, and R,, respectively, that are obtained when data for different interme-
diate mass fragment kinetic energies and scattering angles are combined. In general,
the experimental data are larger than the calculations for emission temperatures less
than 2 MeV. For most transitions at temperatures of about 3 to 4 MeV, the range of
calculated values lie within 20% of the range of experimental values permitted by our
estimate of the experimental uncertainties. However, at these and higher tempera-
tures, the calculations are not very sensitive to the temperature, making it impossible
to extract reliable upper limits based on individual cases. Some of the transitions,
e.g., the fractions F, for ®Li(0.98 — g.s.), "N(5.27 + 5.30 — g.5.), %0(6.13 — g.s.),
and the ratio R, (=F,1/Fy) for 1'C(6.34 — 7.50 — g.s. /4.32 — g.s.), deviate sig-
nificantly from the overall trends, with the ranges of calculated and measured values
in disagreement by more than 20% at temperatures of 3-4 MeV. Such discrepancies
could be due to inaccuracies in the spectroscopic inforniation that influence strongly
the calculations for these nuclei, or could be indicative of non-thermal excited state
populations either in these nuclei or in heavier nuclei which feed these transitions by

sequential decay processes.

To provide a more quantitative comparison between calculations and experimental

data, we have performed a least squares analysis. For each initial temperature in the
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Figure 4.4: The solid curves indicate the range of calculated fractions, F,, for frag-
ments decaying through the designated q-ray transition as a function of the emission
temperature, T, which characterizes the ensemble of emitted fragments. (The values
for F, on the curves are one theoretical standard deviation from the average value
of F, provided by the calculations.) The dashed lines show the fractions calculated
when feeding from particle stable states is included, but not feeding from particle
unbound states. The horizontal bands indicate the measured values.
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Figure 4.5: The solid curves indicate the range of calculated fractions, F,, for frag-
ments decaying through the designated y-ray transition as a function of the emission
temperature, T, which characterizes the ensemble of emitted fragments. (The values
for F, on the curves are one theoretical standard deviation from the average value
of F, provided by the calculations.) The dashed lines show the fractions calculated
when feeding from particle stable states is included, but not feeding from particle
unbound states. The horizontal bands indicate the measured values.
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Figure 4.6: The solid curves indicate the range of calculated fractions, R,= F,;/F,;,
of designated +-ray transition probabilities as a function of the emission temperature,
T, which characterizes the ensemble of emitted fragments. (The values for R, on the
curves are one theoretical standard deviation from the average value of F, provided
by the calculations.) The dashed lines show the ratios calculated when feeding from
particle stable states is included, but not feeding from particle unbound states. The
horizontal bands indicate the measured values.
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calculation, we compute the function,

1 & (Yexp,i — Yeali)?
= Ly o= v an
=1

g;

where Yexpi and yca; are the i-th experimental and calculated values of the y-ray
fraction, F,, or the ratio of y-ray fractions,R,; v is the number of independent data
points (v=28 for F.’s, and v =12 for R,’s); and o;, given by ¢? = Ooepi + 0210, 1
an uncertainty associated with the comparison for the i-th measured quantity. In
the latter expression, gexp, is the experimental uncertainty; 0cal; reflects the range of
calculated values corresponding to the different assumptions for the spins, isospins and
parities of low-lying states where this information is incomplete. oca; was computed

as the variance of the calculations indicated in Figs. 4.4-4.6.

Values for x2 calculated for the 4-ray fractions in Figures 4.4 and 4.5 are shown
on the right side of Fig. 4.7. Values for x2 calculated for the ratios of 4-ray fractions
given in Fig. 4.6 are shown on the left side of Fig. 4.7. The solid and open circles
depict the values of x2 obtained for excitation energy cutoffs of 4 = 3 and 5 MeV, re-
spectively, when the unknown spectroscopic information for low-lying discrete states
was chosen according to the noninteracting shell model. The open squares depict
the values of x2 obtained for an excitation energy cutoff of 4 = 3 MeV when the
unknown spectroscopic information for low-lying discrete states was chosen accord-
ing to the simpler 'flat spin distribution’ described in section V. For all calculations,
minimum values for x? are observed in the region of T = 3-4 MeV for both sets of
measurements. The comparison involving ratios of 4-ray fractions may be slightly
more accurate because such ratios are insensitive to uncertainties in the ground state
yields, for which much more sequential feeding contributions are observed in these
and other similar calculations [Xu 86, Hahn 87, Fiel 87, Chen 88]. This argument is
supported by the reduced values of x? indicated in the figure. For the comparison

involving ratios of v-ray fractions, the minimum value of x? approaches unity, cor-
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Figure 4.7: Left side: Results of the least squares analysis of the ratios of ~-ray
fractions, R,. Right side: Results of the least squares analysis of the v-ray fractions,
F,,. The solid and open circles depict the values for x2 obtained for excitation energy
cutoffs of 4 = 3 and 5 MeV, respectively, when the unknown spectroscopic information
for low-lying discrete states was chosen according to the noninteracting shell model.
The open squares depict the values for x? obtained for an excitation energy cutoff of
#t =3 MeV when the unknown spectroscopic information for low-lying discrete states
was chosen according to the simpler ‘flat spin distribution’ described in section V.
The lines connecting respective points are used to guide eyes.
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responding to statistical agreement between calculations and measurements. X2 is
larger for comparisons involving 4-ray fractions alone. This larger value of x? may be
partly attributed to a small number of transitions where the disagreements between
measured and calculated values of F., are especially large. Some of these transitioné
(e.g. in ®Li, ®N, and 'O fragments) were identified previously. Both calculations
appear to exclude temperatures much larger than 5 MeV or smaller than 3 MeV. The
upper limit is, however, much less certain because the feeding corrections are larger

and the measurements less sensitive to temperature at higher excitation energies.

IV  Summary and Conclusions

We have investigated the emission of intermediate mass fragments for 32S induced
reactions on "**Ag at E/A=22.3 MeV. Inclusive energy spectra and angular distri-
butions were measured for isotopically resolved fragments with Z=3-8. The energy
spectra exhibit broad maxima at energies close to the exit channel Coulomb barri-
ers and nearly exponential tails at higher energies. The slopes of the energy spectra
become steeper at larger emission angles. The angular distributions of the emit-
ted fragments are forward peaked in the center-of-mass frame indicating significant

emission prior to the attainment of statistical equilibrium of the composite system.

Information about the populations of particle stable states of the emitted frag-
ments was obtained by measuring their y-ray decays with the Spin Spectrometer. A

total of 28 independent y-ray transition intensities were measured for fragments of

mass A=T7-18.

The effects of feeding from particle unbound states of fragments with Z < 13
were investigated by calculations in which the initial populations of particle bound

and unbound states, both discrete and continuum, were assumed to be thermally
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populated. The decay of these fragments was calculated by using experimentally
known -ray branching ratios and particle decay branching rations. When branching
ratios for the decays of particle unstable states were unknown, they were calculated
from the statistical model. The primary fragment distributions were adjusted such
that, after the decays of particle unstable states, the calculated final fragment yields
were consistent with the measured yields. Unknown spins and parities of low-lying
discrete particle unbound states were chosen randomly according to a distribution
defined by the non-interacting shell model. Repeating the calculations with different
choices for this spectroscopic information gave a range of calculated v-ray fractions
and ratios of y-ray fractions. This provided a measure of the theoretical uncertainty
associated with the lack of spectroscopic information. It remains an open question,
however, whether a more accurate description of the isospin and parity dependence
of the level densities could result in significantly different predictions for specific

transitions.

No significant dependence of the measured 7-ray intensities upon the fragment
energy or emission angle was observed. When the experimental data for all angles
and energies were combined, a large number of y-ray intensities could be rather well
described by these calculations for emission temperatures ranging from 3-4 MeV. This
result is significant since it allows the description of a large number of measured values
in terms of a single parameter. This, ultimately, must be the experimental justification
of statistical treatments. This result therefore adds support for statistical treatments
of the fragmentation process and for a thermal description of the primary distribution.
A few of the measured 7-ray intensities strongly disagree with the calculated v-ray
intensities at temperatures of about 3-4 MeV. Because all of the measured 7y-ray
transitions are strongly fed at high excitation energies, however, the present level of

agreement between calculations and measurements may reflect more the accuracy of
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the sequential decay calculations than the accuracy of the thermal description of the

primary distribution.

Fig. 4.8 shows the emission temperature extracted in this dissertation (solid dia-
mond), along with the emission temperature extracted by Nayak et al [Naya 90] from
the relative populations of a large number of particle unstable states in the 4N +
n4tAg reactions at E/A=35 MeV (solid square), the emission temperatures extracted
from pairs of widely separated particle unstable states of 5Li (solid circles) and ®Li
(closed crosses) fragments obtained from MN + 97AU reactions at E/A=35 MeV,
“OAr + "**Ag reactions at E/A=60 MeV, and 190 + " Ag reactions at E/A=94 MeV
[Chen 88a]. These measurements suggest a gradual increase in the emission temper-
ature with the incident energy per nucleon. More detailed coincident measurements
reveal little sensitivity to gates placed on the linear momentum transferred to the
target residue [Chen 88a] or to the associated multiplicity of coincident charged par-
ticles detected at forward angles [Sain 88]. Similar temperatures have been obtained
from the analyses of the kinetic energy spectrum of light particles emitted in “°Ar
+ U collisions at E/A=27 MeV [Jacq 84] or deduced from the neutron multiplicities
observed in *°Ar + ***Th collisions at various incident energies [Jian 89]. In this latter

case, a level density parameter of a=A/8 MeV ~! was assumed.

Such a gradual dependence of the emission temperature on incident energy could
arise from expansion of the emitting system [Bond 85, Gros 86, Frie 88, Snep 88] and
suggests that thermal freezeout occurs at a nearly constant temperature, rather than
at constant density as is frequently assumed. A number of dynamical calculations
of expanding nuclear systems arrived at qualitatively similar conclusions [Schl 87,
Boal 89, Snep 88]. Surprisingly, some of these dynamical calculations predict that

all fragments, including a target-like residue, are emitted at a constant temperature

[Boal 89, Schl 87].
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Figure 4.8: Summary of the emission temperature extracted from recent experiments.
The sold diamond is the experimental result of this dissertation. The solid square is
taken from ref. [Naya 90] which is derived from a large number of particle unstable
states. The solid circles and solid crosses are results of excited states of 5Li and 8Li,
respectively {Chen 88a]. The dashed lines are used to guide the eyes.
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Little is known concerning the relationship between the impact parameter or the
choice of model assumptions in these dynamical calculations and the values of the
temperatures these models predict. The existence of a strong sensitivity of freezeout
temperature to important issues like the low density EOS could serve to stimulate
more detailed experimental investigations of the emission temperature. The second
half of the dissertation is motivated by a desire to determine whether there exists

such a strong theoretical motivation for emission temperature measurements.



Chapter 5

BUU Equation in the Lattice
Hamiltonian Approximation

Starting from this chapter, we will try to address the the second important question
mentioned in the introduction, i.e., do the values of emission temperature T ~ 3 — 4
MeV hold any implications about basic quantities such as the nuclear equation of

state or the in-medium nucleon-nucleon cross section.

In principle, one should examine this issue theoretically by calculating the exci-
tation energies of intermediate mass fragments produced in heavy-ion collisions. At
present, such information may be obtained from molecular dynamics calculations.
However, the theoretical justification for applying molecular dynamics to heavy-ion
collisions remains unclear. For this reason, it is uncertain how much one can learn
about the nuclear mean field at low density from such calculations. The connec-
tion to nuclear mean field is somewhat better established for models based on the
Boltzmann-Uehling-Uhlenbeck equation. These approaches, however, do not incor-
porate sufficient fluctuations of the mean field and therefore do not allow the cal-
culations of cluster emission and excitation energies of intermediate mass fragments.
Nonetheless, it is possible to study the excitation energy of the heavy residues pre-

dicted by the BUU calculations. Since molecular dynamical calculations predict that

79
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the average excitation energy per nucleon is approximately the same for all fragments
produced in the reaction. One may hope that the information about the excitation
energies of the intermediate mass fragments may be obtained by studying the excita-
tion energies of heavy residues produced in BUU calculations. To explore this issue,
we have therefore performed BUU calculations to investigate the sensitivity of the
residue excitation energies to the equation of state and the in-medium nucleon cross

section.

In this chapter, we will discuss numerical details of the Lattice Hamiltonian
Method used to solve the Boltzmann-Uehling-Uhlenbeck equation. As first shown
by Lenk and Pandharipande, this method provides a more accurate algorithm for
the treatment of the nuclear mean field and the equations of motion. Consistent
with Lenk and Pandharipande, we found that the total energy is well conserved in
our numerical calculations. In the following sections, we give a detailed descriptions
of the BUU equation followed with a discussion of the numerical details of its solu-
tion. Some numerical tests of stability of the nuclei in their ground states and energy

conservation are also presented.

I The Formalism

A The BUU equation

We solve the Boltzmann-Uehling-Uhlenbeck equation [Bert 84, Aich 85, Bert 88]

af da,m
Gt Ve fi- VUV, f = / Phad kpd QT2
X[fsfa(1 = 1)1 = f2) = fufo(1 - fa)(l - f4)]53 (Fy + &y — By — Ey), (5.1)

where f = f(F,p,t) is the Wigner transformation of the one body density matrix and
d—fjﬁn and v,2 are the in-medium cross section and relative velocity for the colliding

nucleons. In Eq. (5.1), U is the total mean-field potential parameterized as
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U=Ve+Us+Upm, (5.2)

here Vi, U, and U,y represent the Coulomb potential, the isoscalar nuclear potential
and the symmetry energy, respectively. In our simulation, the isoscalar mean-field

potential U, (in MeV) is approximated [Bert 84, Aich 85, Bert 88] by
Un = Ap/po + B(p/po)", (5.3)

where po = 0.017(fm)=2 is the saturation value of the nuclear matter density and
p = p(7) is the local density of nuclear matter. Values of A = —356 MeV, B = 303
MeV, and 7y = 7/6 correspond to a soft nuclear matter equation of state (EOS) with
compressibility coefficient K = 200 MeV; while A = —124 MeV, B = 70.5 MeV and

v = 2 correspond to a stiff EOS with K = 375 MeV. The symmetry potential U,y

is represented by:

Usym = C[(pn — pp)/ po]T:. (5.4)

where, p, and p, are the neutron and proton‘ matter densities and 7, is the isospin
operator with eigenvalues 41 and —1 for neutrons and protons, respectively. C is a
constant with a value C=32 MeV. For simplicity, ony = [ dﬂ%ﬁm is chosen to be
isotropic and energy independent. The mean-field and the Pauli-blocking factors in

the collision integral are averaged over an ensemble of 80 parallel simulations (for

details, see section II).

B The Lattice Hamiltonian Method

The Boltzmann-Uehling-Uhlenbeck equation, given in Eq. (5.1), is most frequently
solved by the test particle method [Wong 82, Bert 84, Aich 85, Bert 88], in which the

Wigner function f is approximated by
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f 51 = &

”h) 2 8(F = F()6(F - Fi(t)), (5.5)

here, Ni.,: is the number of paralle] ensembles and § is the Dirac delta function. In the
test particle approach, f solves the BUU equation provided : and 7: are themselves
the solutions of equations of motion for test particles in a self consistent mean field
[Wong 82, Bert 84, Aich 85, Bert 88]. This mean field is calculated on a lattice on
which the local density is evaluated by integrating Eq. (5.5) over the momentum.

In the early BUU calculations, the test particles propagated according to Newtonian

mechanics
. 9H _§ .
r; = 6}3‘, - m’ p;’ - '—VtU, (56)

where the the mean field U was defined on a lattice. The gradient could be evaluated

by taking a difference between the mean field at the neighboring points, given below,
1
(=ViU), = U p(k = 1, k2, k) = U(p(ks + 1, k2, ks))] (5.7)

where [ was the lattice spacing, and ki, ky, ks, are the the coordinates of the lattice

point where the particle is located.

The numerical techniques outlined above did not conserve energy because Egs.
(5.6) and (5.7) do not take the influence of the lattice properly into account. As
a result, spurious emission of free nucleons could be so'large that the total energy
would be increased by as much as 1 MeV per nucleon over a period of 100 fm/c
[Bert 88]. To calculate the excitation energies of the order of ~ 2 — 3 MeV per
nucleon, a more accurate energy conservation is required. Lenk and Pandharipande
recently [Lenk 89] demonstrated that excellent energy conservation could be obtained

if adequate attention was paid to the role of the lattice upon which the density and

therefore the mean field were calculated.
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Following Lenk and Pandharipande, we evaluate the average density pr at lattice

location a by smearing out the test particle with a form factor S,
pL(Ta) = Z S(Fa = 7), (5.8)

where 7, is the position of lattice point q, 7; the position of particle t, and N, the

number of parallel ensembles. The the form factor S has the form

S(M) = Wg(r)g(y)g(Z), (5.9)
9(q) = (nl - |g])O(nl - |q)). (5.10)

Here,  is the lattice spacing, and O(x) is the step function with values of 1 for z >0
and 0 for z < 0; n is an integer which determines the range of S. Following ref.
[Lenk 89], we also take n = 2 in our calculations. The specific choice of the form

factor S(7) in Eq. (5.9) satisfies the normalization condition

By S(Fy—7) = ! , (5.11)
o Ntcat

independent of 7, and therefore the total number of particles is exactly conserved:

By pr(i) = A (5.12)

It is simple to show the potential energy density at 7 is given by

A B
o) = TLY 4 R Ly 4 L

pPo”  v+1 po

e g by (5.13)

where A, B, C, and 7 are parameters of the mean field. The total potential energy

can be calculated by summing over the lattice points,

V=023 v, (5.14)
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and the total ‘lattice’ Hamiltonian (or total energy) for a classical system of N, A

test particles is given by

ANte:t p2
H= Y o T NeewtV (5.15)

=1

With this Hamiltonian, it’s straight forward to derive the Hamilton’s equations of

motion for the individual test particles:

. _OH 7
fi=g==E, (5.16)
I.-)‘i =-V;H = ‘Nteatviv = —Nteatz gpv Vipa

= _NtestZU(Pa)viPo‘- (517)

If the trajectories of test particles satisfy Hamilton’s equations, it is trivial to verify
that the Hamiltonian given in Eq. (5.15)is a conserved quantity. It interesting to
note the force on the right hand side of Eq. (5.17) is more complex than that given

in Eq. (5.6). Further numerical details to implement Egs. (5.8)-(5.17) are derived in

the next section.

II' Numerical Realizations of the BUU with the
LHM

We now discuss the numerical procedure for our improved BUU calculations. There
are basically 3 steps in the program flow: 1) the initialization of positions and mo-
menta for test particles in both the projectile and target; 2) the propagation of test
particles according to a mean field dynamics; 3) the checking of collisions and the
modification of momenta if a collision is not Pauli-blocked. After initialization, the

Program alternates between step 2 and 3 until the final step, given by inputs, is
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reached. For most collisions presented in this study, we follow a time evolution of

t = 240 fm/c, though most of the interesting observables are evaluated at an earlier

time.

In the following subsections, we provide details of the initialization procedure in
subsection A. Details concerning the density evaluation and the equations of motion
are derived in subsections B and C, respectively. Two-body collisions and the Pauli-

blocking algorithm are discussed in subsections D and E, respectively.

A Initialization

The calculation starts by initiating the projectile and target with their surface sep-
arated by 4 fm. In total, there are (Zy + Z4)Niest and (Np 4+ Ni)Nieyt test particles,
respectively, for protons and neutrons. Here, A, = Z,+ N, and A, = Z, + N, are the
masses for the projectile and target, respectively. For each nucleus, the test particles
are distributed uniformly with a sphere of radius R = 1.124Y/ 3, with A being A, or

A¢, according to

r = R(z)'/? (5.18)
cosd =1 -2z, (5.19)
¢ =2rz; (5.20)

where (r, 8, $) are the spherical coordinates of the test particle with respect to the
center-of-mass coordinates of projectile or target. z;,z,, z3 are three random numbers
uniformly distributed among 0 < z; < 1. Using the test particle spacial distributions,
the local proton and neutron density are calculated on the lattice according an algo-
rithm to be dis;:ussed in the next section. The momentum of the test particle is then

assigned stochastically within a local momentum sphere with its radius given by

Py () = (37%p*(7) "k (5:21)
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where p% and p* are the local fermi momentum and density and the index, p = 1,2,
denotes protons and neutrons respectively. Finally, the momentum of test particles
in the projectile and target are boosted towards each other with their respective c.m.

momenta determined from the incident energy and the masses of the projectile and

target.
B Density evaluation

The neutron and proton densities as well as the mean field potential are calculated in
a lattice of dimension 32fm x 34fm x 48fm with a lattice spacing of { = 1fm. The
neutron and proton densities on these lattice points are computed by summing over
the contributions from all individual test particles. The contribution of test particle

¢ to the density [ from Eq. (5.9)] at lattice point 7 is computed by the form factor

S(T‘K - r,~) = ST H(2 - |T,'“ — I(ul) (5.22)
es m

=1

where K, = (Kj, K, K3) denote the Cartesian coordinates of the lattice point 7x.
Each test particle contributes to 64 neighboring lattice points positioned from K, =
r), —1to r), +2 with p = 1,2, 3, respectively. Here, ) = (r%,r%,r%) represent the

integer truncations of the coordinates 7; = (ri1,7i2,7i3) for test particle ¢.

It is perhaps useful to note that this method to distribute the density creates an
effective surface with an average skin thickness of r, ~ 2.5 fm as shown in Fig. 5.1
for both “°Ca (top) and '?4Sn (bottom) nuclei. This value of skin thickness agrees
with the empirical value of rem, ~ 2.4 fm [deSh74]. In Fig. 5.2, we plot the binding
energy per nucleon predicted by LHM for a wide range of masses A ~ 30 — 200 on the
valley of beta-stability. The solid line is calculated from the liquid drop mass formula
[Myer 66] |

(N - A)?
A

Z2
B(N, Z) =ayA+ asA2/3 + ac

S (5.23)

+ay
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with
av = 15.68; as = —18.56; ac = —0.717; a; = —28.1; [MeV]. (5.24)

For A > 30, nuclei bound by the soft EOS (designated by open circles) are in good
agreement with the liquid drop formula. For nuclei bound by the stiff EOS (solid
circles), the binding energy/nucleon of nuclei in this mass range is 0.4 - 0.8 MeV less

than that with the soft EOS, mainly because the surface energy coefficient for the

stiff EOS is somewhat larger.
C Equation of Motion

Between successive collisions, the test particles are propagated according to classical
equations of motion. To preserve the accuracy to O(6t), each test particle i is

propagated by the simple algorithm

Lo L Lo ] pi(t)
i Sot)=ri(t— - .
r(t+26) it 26t)+5t — (5.25)
= 1
Pi(t + 6t) = pi(t) + 6tE(7;, t + 5&) (5.26)

where 6t is time step size and £ is the force on particle ¢ derived from Eq. (5.17). In all
our calculations we use 6t = 0.5fm/c. We note here the positions and momenta given
by Egs. (5.25)-(5.26) are not evaluated at the same time but at times differing by 6t /2.
This algorithm is essential to preserve a good numerical accuracy and its convergence

to O(6t°) can be verified, from Eq. (5.25), by performing a Taylor expansion,

1 .1 il 1dF 1,
~ il -~ o - —_ t c e 5,27
it + 56t) r,(t)+r,(26t)+—2!(25t) +317m (59 + (5.27)
1 L1 B 1o, 1dF, 1,
S 18 = Lo 2 L2 e 2 5.98
7i(t 26t) i (t) + 7i( 26t)+2!( 26t) + 378 251:) + (5.28)

subtraction of Eq. (5.27) by Eq. (5.27), one obtains

Rt + %&) _ At — %&) = Fi(t)8t+ LEL (S0 4 -

PIFTS
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Figure 5.1: The density distributions as functions of the radius for both *°Ca, (top
window) and '*#Sn (bottom window) nuclei.
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initialized at the beginning of the BUU calculations for both the stiff (circles) and
the soft (squares) equations of state. The solid line indicates the results from the

liquid drop mass formula.
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= 7i(t)6t + O(63) + - - -

= §t28 L O(683) + - - - (5.29)

a similar exercise can be performed to check the accuracy of Eq. (5.26) as well.

The force F;, given in Eq. (5.26) must be derived from Eq. (6.17). It has the

form, for example, for z-component F;,

i +2 03 +2 1 3

Fo=- Z Z 2% H(2 = Irip = Ku)[U(r}) - 1, K, K3)

Ky=r} -1 K3=r0 -1~ u=2
HU(rhy, K, Ks) = U(ry + 1, Ka, Ks) — U(r + 2, K5, Ka)] (5.30)

where U is the mean field potential given by Eq. (5.2). The other notations were
given in the previous subsection. By similar equations, one can compute the other
two components Fy, Fi3. clearly, F # —V,U as was the approximation used in early
calculations [see also (5.7)]. The precise calculation of Eq. (5.30) requires information
about the mean field from 64 neighboring lattice points and this slows down the

calculation of the force term considerably.

During the simulation, the positions 7 and momenta pi of the test particles are
known at times which differ by 6¢/2. On the other hand, when one wants to calculate
the total energy and various contributions to the excitation energy, one needs to know
the positions and momenta at the same time. To achieve this in our simulation, we
branch out from the main flow of the test particle propagation and move the position
one half time step forward using a equation similar to Eq. (5.25) to match the time
at which the momentum is known. Then we calculate the quantities of interest. The
dependence of the conservation of energy on time step size 6t, as well as the stability

of the nucleus propagated by the mean field, is discussed in section IIL
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D Two-Body Collisions

Collisions between two test particles are only allowed to occur for test particles within
the same ensemble. This reduces the number of computations and allow us to use
the collision cross section ¢,, without reduction [Bert 88]. Successful collisions are
allowed if the two test particles are close enough and if their momenta after scattering
are not Pauli-blocked. If one of the test particles are Pauli-blocked, the original
momenta of both test particles are restored. Details of the Pauli-blocking will be

discussed in subsection E.

To check whether particles are close enough, let us consider two test particles at
(71, P1; 72, P2). The two test particles follow straight line trajectories between succes-
sive time steps. For a collision to occur, the two test particles must pass by each other
the point of the closest approach within a collision radius defined by r'nn = (Onn/m)V2

This condition can be expressed by the following two equations

6721 - 60y 6t
—_— < R .
| Somm | < évny 5 (5.31)

2

5F21 . 61721 l2 < 7‘2 — _O'ﬂ : (5 32)
— 'nn s .

- 2_
7 - |

Where 67-"21 = 7?2 - ’l’-“l, 6621 = 62 - 171 and 6’021 = |172 - 171|
If the pair of test particles satisfies both Eq. (5.32) and Eq. (5.31), the momenta

of the two particles are changed from (7y; 7;) to (p1';p2") with 1’ and §," given by

- - 1 -

' = Pom. + 5P (5.33)

- - 1 -,

p2, = Pem. — '2' p;l (534)
where fem. = 2(P1 + p2) is the nucleon c.m. momentum and 0p%, is the relative

momentum assigned randomly according to an isotropic distribution with a magni-

tude 6pz; = |p2 — p1|. This algorithm clearly conserves both momentum and energy.
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Although it violates in principle the conservation of angular momentum for each in-
dividual pair of test particles, our numerical simulations indicate that its influence to

the total angular momentum is negligible.

E Pauli-blocking

After the pairs get their respective new momenta, it is checked whether the collision
violates the Pauli principle. To do this, we build of sphere of radius r around 1
and a sphere of radius p around p)’ so that ng test particles inside the phase-space
means full occupation. Scaling with ground states (a phase-space of (£)*RPP} is
fully occupied by Ni..:A test particle) and with the relation r /p = R/Pr one can get

r and p, respectively, once ng is given. Thus the occupation probability is calculated

filfL, ) = —, : (5.35)

where n; is the number of test particles inside the phase-space volume not including
the test particle being checked at (7, 7, ’ ). Similarly, one can calculate the probability

fa. The probability for this pair to collide successfully is calculated by

P=(1-fi)1-f). (5.36)

In our calculations, we choose ng = 4 and thus, the radii of the spheres are r = 0.60 fm
and p = 0.904 fm~!, respectively. This yields about a 80% blocking probability for the
ground states of **Ca and **Sn nuclei. Probability closer to 100% would be preferred.
Most of the collisions allowed for the ground states of “°Ca and !24Sn nuclei occur
between test particles near the phase space boundaries of the nuclei. There, the Pauli
blocker samples regions of phase space in which no test particles are found. Clearly,

additional work on the Pauli blocking algorithm is needed.
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III Ground State Stability and Conservation of
Energy

To check the stability of ground states produced by the Lattice Hamiltonian Method,
we have performed extensive calculations for °Ca and 124Sn nuclei. We start the cal-
culation by providing a nucleus in its ground state using the algorithm as described
in section II (A). We then let the individual test particles (nucleons) propagate ac-
cording to their mean field for a period of 300 fm/c with the step size 6t = 0.5 fm/c.
Figs. 5.3 shows projections of the nuclear densities in the z — z plane for 4°Ca (left
two columns) and **Sn (right two columns) ground state nuclei as a function of time
in steps of 40 fm/c. In all our calculations the full potential includes the Coulomb
field and the symmetry terms in addition to the isoscalar mean field. As shown in

these figures, only a few test particles escape from the mean field over a period of of

160 fm/c.

A more quantitative analysis of the calculations is shown in F ig. 5.4. The left
column is the results obtained for “°Ca and the right is that for 4Sn. The top
windows display the binding energy per nucleon predicted by both the soft equation
of state (open circles) and the stiff equation of state (open crosses) calculated from
Eq. (5.15). One can see that both equations of state produce an effective binding
energy B/A =~ 8 MeV. The binding energy obtained for calculations with the soft
equation of state is somewhat larger since the corresponding potential is deeper at
low densities. The number of escaped particles Acscaped and the root-mean-square
radius R,n, for both nuclei are plotted, respectively, in the bottom windows. The
escaped particles are defined as those having a local density lower than 7%po. The

root-mean-square radius includes all test particles.

Once nucleon-nucleon collisions are turned on, spurious emission of nucleons oc-
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curs due to the insufficient Pauli-blocking at the nuclear surface. With a nucleon-
nucleon cross section of o, = 41 mb, the average emission rate is less than 8% over a
period of 160 fm/c. The total energy is, nonetheless, well conserved. The dependence
of the conservation of energy on the time step size §¢ has been extensively investi-
gated. In Fig. 5.5, we show the results for °Ca+*Ca collisions using the mean field
given by Eq. (5.2) with the soft EOS parametrization. AH is the energy difference
calculated between t = 140 fm/c and t = 0. For 6t < 0.5 fm/c, the total energy
changes by less than 0.1 MeV/A during this time interval. We have chosen §¢ = 0.5

fm/c in all our calculations.
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Figure 5.3: The time evolution of °Ca (left-hand two columns) and '**Sn (right-hand
two columns) ground state nuclei projected in the z — z plane in step of 40 fm/c. The
equations of state and the time at which the density is plotted are already indicated

in the figure.
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Figure 5.4: Stability tests and the conservation of energy for the ground states of
*Ca (left column) and '**Sn (right column) nuclei. the top and the central windows
display, respectively, the number of escaped particles A.scaped and the root-mean-
square radius R, (see the text). The bottom windows display the binding energy
per nucleon predicted by both the soft equation of state (open circles) and the stiff
equation of state (open crosses) calculated from Eq. (5.15).
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Figure 5.5: The step size dependence of the conservation of the total energy for
*0Ca+1°Ca collisions with the soft equation of state. AE is the energy difference
calculated between ¢ = 140 fm/c and ¢ = 0.




Chapter 6

The Disappearance of Fusion-Like
Processes and the Nuclear
Equation of State

Hot nuclei can be readily formed by the incomplete fusion of projectile and target
nuclei in a heavy ion reaction. For moderate incident energies, the excitation energies
of fusion-like residues increase with incident energy. At incident energies in excess of
about E/A = 35-40 MeV, however, vanishing cross sections for fusion-like residues
have been reported, and interpreted as a manifestation of a bulk instability of nuclei at
high temperatures. This interpretation may be unwarranted if very hot nuclei decay
via unexpected decay modes, or if the reaction dynamics preclude the formation of

very highly excited residues.

Although this issue is not directly related to the questions raised in the experimen-
tal study of this dissertation, early results of the Lattice Hamiltonian code prompted
us to direct some efforts to the understanding of the dynamical limits to the residue
formation. In this chapter, we will attempt to address 1) what can be learned about
the nuclear equation of state and the in-medium nucleon-nucleon cross section from
measurements of fusion-like residues; and 2) what are the dynamical limitations to

the formation of hot composite nuclei. For such purposes, heavy residue cross sections

98
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were calculated for *°Ca + “°Ca and “°Ar + 2"Al collisions using the Boltzmann equa-
tion. Qualitatively consistent with experimental observations, the calculated heavy
residue cross sections decrease rapidly to zero for E/A > 35 — 40 MeV. The decrease
in cross section does not appear related to a bulk instability of nuclei at high tem-
perature. The calculated cross sections are quite sensitive to the in-medium nucleon-

nucleon cross section and the nuclear equation of state (EOS) at sub-nuclear density.

I Fusionlike Cross Sections and the Equation of
State

A *Ca+*Ca Collisions at E/A =40 MeV

The formation and decay of heavy residues is an important process at energies E/A
< 40 MeV. To illustrate our calculations for heavy residue cross section, we consider
first the calculations for the “°Ca + °Ca system at E/A = 40 MeV, performed for
an isotropic nucleon-nucleon cross section of ¢,, = 41 mb and for both soft and stiff
equations of state. Figs. 6.1 and 6.2 show the projections of test particles on the
T — z plane as functions of time for both stiff and soft EOS. For calculations with the
stiff EOS and b=2 fm, one obtains a single fusionlike residue. For the soft EOS, on
the other hand, one obtains two residues. The impact parameter dependences of the
calculations for the two equations of state are shown in the left column of Fig. 6.3

where we plot the masses (upper left panel) and the component of velocity parallel
to the beam axis (lower left panel) of heavy residues produced in the calculations.
Two residues with 30 < A < 40 are produced at large impact parameters, b >
3.3 fm, in calculations with the stiff EOS (open points) and the soft EOS (open
squares). A single heavy residue is observed at small impact parameters, b < 3.3 fm,
in calculations with the stiff EOS (solid points). For small impact parameters with

the soft EOS, however, the projectile and target simply pass through each other, with
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Figure 6.1: The time evolution of test particles for **Ca+Ca collisions at E/A=40
MeV and b=2 fm with the stiff EOS and ¢,, = 41 mb projected in the z — z plane
in step of 20 fm/c.
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Figure 6.2: The time evolution of test particles for *°Ca+Ca collisions at E/A=40
MeV and b=2 fm with the soft EOS and ¢,, = 41 mb projected in the z — z plane
in step of 20 fm/c.
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Figure 6.3: Observables calculated for the *Ca+ “°Ca system at E/A=40 MeV as-
SUMIng o, = 41 mb. Upper left: Mean residue masses. Lower left: Component of the
mean residue velocity parallel to the beam. Upper right: Mean residue angular mo-
mentum for the stiff EOS. Lower right: Mean residue total excitation energy /nucleon
(solid points), after subtracting the rotational energy (crosses), and after subtracting

the total collective energy (solid diamonds) for calculations with the stiff EOS. The
lines are drawn to guide the eye.
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their velocities and masses reduced due to insufficient nuclear stopping for the soft
EOS at this energy. The right-hand panels of this figure will be discussed in the next

section.

B Sensitivity of Fusionlike Cross Sections to The Equation
of State

The energy dependences of the heavy residue cross sections for 9°Ca+Ca collisions
with soft and stiff equations of state are indicated respectively by the solid squares and
solid points in the upper half of Fig. 6.4. Each symbol (square or point) is obtained
from the largest calculated impact parameter b,,,, which yields massive fusion-like
residues; the upper edge of each vertical bar corresponds to the smallest calculated
impact parameter b;; which yields distinct pro jectile- and target-like residues. These
critical parameters, b,,,, and b;; , are listed in Table 6.1. As an example, Fig.
6.5 shows the time evolution of the bound test particles for “Ar +27Al collisions
at E/A=30 MeV at the critical parameters, b,,,, = 4.3 fm (left two columns) and
byr = 4.5 fm (right two columns). For a constant nucleon-nucleon cross section of 41

mb, the cross sections for fusion-like residues are larger for calculations with the stiff

EOS.

To see which part of the equation of state is responsible for the varying fusion
cross sections, we performed calculations at E/A = 40 MeV with equations of state
having variable low- and high-density behavior. For example, we define a soft-stiff
equation of state which follows the soft EOS at low density and the stiff EOS at high
density. The parameterizations for this and the analogous stiff-soft equation of state
are given in Table 6.2. The *°Ca+*°Ca heavy residue cross sections obtained with
these EOS’s, 330 + 30 mb for stiff-soft and 120 + 20 mb for soft-stiff, show that the

residue cross section depends mainly on the low density EOS.
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Figure 6.4: Upper half: Residue cross sections for “°Ca+ “°Ca collisions. The ar-
row indicates zero cross section for soft EOS. Lower half: Residue cross sections for
“°Ar4+27Al collisions. The solid points and solid squares describe calculations with

the stiff and soft equations of state, respectively. The lines are drawn to guide the
eye.
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Figure 6.5: The time dependent spatial evolution of Ar+27Al collisions at E/A=30
MeV at the critical impact parameters, bmq.; = 4.3 fm (left two columns) and b;; = 4.5
fm (right two columns). The time at which the density is plotted is indicated in the
each panel. The free particles have been suppressed.
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This sensitivity to the low-density EOS could have been anticipated from the
qualitative study of ref. [Bert 78]. There it is shown that compression of nuclear
matter in one-dimensional collisions is followed by a rarefaction, and the maximum
tensile strength of the nuclear matter in the low-density phase depends on the EOS.
Stiffer equations of state have higher tensile strengths, and so the tendency of the

system to breakup into two or more fragments is less.

A possible determination of the low-density EOS on the basis of the cross sections
for residue formation is hindered by the fact that these cross sections are also sensitive
to ons. To illustrate the possible theoretical ambiguities, calculations were performed
for the “*Ar+ Al system in which the value for o,, was adjusted separately for
calculations with both stiff and soft equations of state to obtain residue cross sections
of about 500 mb at E;;3/A = 30 MeV. These choices, (1) on,= 25 mb and a stiff
EOS and (2) 0., =50 mb and a soft EOS, provide essentially equal residue cross
sections at E/A < 30 MeV. The critical parameters are listed in Table 6.3. The
energy dependence of the residue cross sections predicted by both calculations is
qualitatively consistent with experimental observations. Differences between the two
sets of calculations at E,/4 > 30 MeV may not be large enough to discriminate
between different equations of state. One must also assess the differences that could
arise from variations in the energy dependence in the in-medium nucleon-nucleon

Cross section.
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Table 6.1: The critical parameters for fusionlike reactions in *°Ca+Ca collisions.
The nucleon-nucleon cross section are taken to be Onn = 41 mb for both calculations.

EOS | E/A | bnaz | b11
(MeV) | (fm) | (fm)

20 6.0 | 6.3

stiff 30 4.5 | 4.8
40 3.3 | 3.5

60 1.3 | 1.5

20 58 | 5.9

soft 25 48 | 5.0
30 3.7 | 4.0

35 2.0 | 2.5
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Table 6.2: Parameters used for the isoscalar nuclear Mean Field
Set | Label range A(MeV) | B(MeV) | v | K(p = po)(MeV)
1 soft 0< p/po <B 356 303 7/6 200
2 stif | 0< p/po <B 124 70.5 2 375
3 | soft-stiff | p/po <1.024 356 303 7/6
1.024< p/po | 124 70.5 2
4 | stiff-soft | p/po <1.024 124 70.5 2
1.024< p/po | 356 303 | 7/6
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Measurements of additional observables may help to reduce these ambiguities. For
example, the top panel in Fig. 6.6 shows the corresponding predictions for the ratio
of the yield of nucleons emitted in the reaction plane over the yield emitted out of the
reaction plane for center of mass angles, 30° < 4., < 150°, and energies, E.,, > 20
MeV . Calculations with the soft EOS and Onn = 50 mb are more isotropic. The
greater isotropy of calculations with larger o, is also manifested in the dependence
of the mean transverse momentum of emitted nucleons upon rapidity, shown in the
bottom panel of Fig. 6.6. Significantly larger transverse momenta are predicted at
Y < Yieam for calculations with smaller values for Oun. Even larger anisotropies would
be expected for deuterons, tritons or a particles within the coalescence approximation
for cluster emission. Given advances in the treatment of cluster production, such
large anisotropies in the emission of the heavier hydrogen and helium isotopes could
provide significant constraints on ¢,, and consequently, on the EOS, if anisotropy

measurements are combined with heavy residue cross sections.

Some caution must be exercised when comparing these residue cross sections to
experimental data. Since the BUU equation is a one-body theory and it does not have
sufficient fluctuations, it can only calculate the average trajectories and cannot fully
handle the subsequent decay of the residues formed during the collisions. Therefore,
all residue decay channels, including the binary emission of heavy fragments, [Plag 89,
Frie 80, More 72] must be experimentally measured and summed before comparisons
to the calculated cross sections of Fig. 6.4 can be made. Additional investigations are
necessary to assess whether prompt multi-fragmentation processes, not considered by
the present Boltzmann code, remove flux from the reaction trajectories that lead to
heavy residue formation in the present calculations. Investigations are also required
to assess the sensitivity of the residue cross sections to details of the Pauli-blocking

algorithm and the surface energies of the computational nuclei.
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Figure 6.6: In/out-of-plane ratios and mean transverse momenta for unbound nucle-
ons with E.,. > 20 MeV from calculations for the °Ar+27Al system at E/A = 30
MeV for o,, =25 mb with a stiff EOS (solid points) and ¢, =50 mb with a soft
EOS (solid squares). Upper half: Ratios of the nucleon yield in the reaction plane
(azimuthal angles —30° < ¢ < 30° and 150° < ¢ < 210° to the nucleon yield out
of the reaction plane (60° < ¢ < 120° and 240° < ¢ < 300°) for the polar angles
30° < 0..,.. < 150° Lower half: The component of the mean transverse momentum
of unbound nucleons in the reaction plane as a function of rapidity. A weighted sum

over impact parameters b < 4 fm has been performed. The lines are drawn to guide
the eye.
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Table 6.3: The critical parameters for fusionlike reactions in “°Ar+2"Al collisions.
‘Two sets parameters, (1) stiff EOS and o, = 25 mb; and, (2) soft EOS and o,,, = 50
mb, are used to produced the same fusion cross section at E/A=30 MeV.

EOS E/A bmaa: Amaz Ima:c Jmaa: bII III JII
(MeV) | (fm) (a.m.u.) | (a.m.u.)- fm? (A) | (fm) | (a.m.u.)- fm? (h)

20 6.0 60 1118 75 6.3 1381 79

25 5.0 58 980 64 5.3 1204 69

stiff 30 4.3 56 1141 57 4.5 1298 64
35 2.0 54 972 25 2.2 1170 31

40 1.2 50 953 15 1.3 1084 18

20 6.0 58 1277 68 6.1 1495 71

25 4.7 54 1006 52 5.0 1215 57

soft 30 4.0 52 1081 46 4.2 1314 51
35 3.3 49 1116 37 34 1203 43

40 2.4 44 800 21 2.5 1213 28
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II Entrance Channel Effects and the Formation
of Hot Nuclei

In this section, we will examine in further detail the possible origins for the dynamical
limitations to the formation of fusionlike residues. For such purpose, we present the
excitation energies and the angular momenta for the fusionlike residues formed in
“*Ar+%"Al collisions. In this study, we will continue to use the following two sets of
parameters: (1) on,= 25 mb and a stiff EOS and (2) 0., =50 mb and a soft EOS,
with which almost equal fusion cross sections have been produced at E/A~ 25 — 40

(see the last section).

A Decomposition of the Excitation Energy

Since the residue continues to decay after its formation, the residue masses, excitation
energies and angular momenta are sensitive to the freezeout time at which observables
are evaluated. To indicate how this freezeout time was chosen and how to estimate
the thermal energy of the residue, we decompose the total energy E,, calculated

from Eq. (5.15), into collective E.,; and internal Eint components,[Rema 88]
Etot =H= Ecoll + Eint- (61)
the collective energy is estimated by
G
E.y = -m / 17 6.2

where p(7) and j(7) are the local density and local collective current field defined as

) = s | 150 (63

7 = e | 21650, (6.4
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The internal energy E;,. can be decomposed into a thermal excitation energy £},
and a "cold” internal energy Eipi(T =0, A,.,):
E,'nt = ;he + Eint(T = 0, Ares), (65)

where A,., denotes the residual mass of interest, and, E;(T = 0, A,es), obtained
for a cold nucleus with the same density distribution p(7), includes both the kinetic
energy density 7(7) due to Fermi motion (required by the Pauli exclusive principle)

and the potential energy density v(7):
BinT =0, Are)) = [[7(7) + v(M)dr. (6.6)

in the Thomas-Fermi limit 7(7) has the form
2

(7) = 15 BP0 + o357, (6.7

and, the potential energy density v(F), given by Eq. (5.13), includes both nuclear and

Coulomb interactions.

It is instructive to consider the various excitation energy components contained
in Eqs. (6.1)-(6.6) for the case of an isolated nucleus at its ground state. Obviously
such a nucleus should have no collective energy, E.,y = 0, and no thermal excitation
energy, Ej, = 0. The total energy E,, is therefore equal to the internal energy
Eini(T = 0,A,.,) of a ground state nucleus with a central density p = po. (In our
later discussions, we denote this energy of ground state by Ey;(Ares). Obviously,
Ey.s.(Ares)/Ares has an average value of about —8 MeV as shown in Fig. 5.2). In
numerical computations, however, particular care has to be taken to eliminate spuri-
ous contributions due to finite statistics of test particles. Because of finite number of
test particles at each lattice point, calculations of the local current f(r"') via Eq. (6.4)

would yield non-zero values even if the whole nucleus is at rest. This would yield a
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positive value for the collective energy E..; by using Eq. (6.2). This effect, due to
finite statistics, can be analyzed using techniques similar to those developed by Gold-
haber in his treatment of projectile fragmentation [Gold 74]. We have compared the
Goldhaber technique with a more direct approach discussed in Appendix A, and we
find that both methods give essentially the same values. By subtracting this spurious
contribution from the collective energy, we checked that the application of equations
(6.1)-(6.6) always yields zero collective energy for an isolated nucleus in its ground
state. Such corrections to the collective energy have been taken into account in all

our calculations.

In analyzing the excitation energy at different stages of nucleus-nucleus collisions,
it is frequently useful to separate the test particles bound in a residue from those
which are free. The analysis of the free test particles is simple. Following our previous
decomposition, free test particles have no therma) excitation energy E},, = 0 and no
cold Fermi energy (since p = 0). Their contribution to the total energy E,.; consists
of only their kinetic energies which appear, in our analysis, as a contribution to E,;

following Eq. (6.2). For later reference, we separate out this collective (or total)

energy of free particles and denote it by E,,.eon.

When the local density of a given test particle exceeds p 2 T%po, we consider
this test particle to be part of a bound cluster. Bound test particles contribute to

all terms of Eqs. (6.1)-(6.6). The total mass A,., and the total energy FE;,; of a

composite residue can be determined by

Ares(t) = Jo p(F)dr | (6.8)
Etot(Area) = fc dar{m?[f 22,:; (T-",ﬁ,t)dzp] + ‘U(T_')} (69)

Here, v(7) is the potential energy density given by Eq. (5.13). We define the total

ezcitation energy of the residue to be the difference between E,,;(Ares) and the energy
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E;.,.(Ares) of a computational nucleus of the same mass A,., in its ground state and

moving at the same c.m. velocity:

1
E* = Etot(Ares) - Eg.s.(Area) - —AreamV2

2 res (6'10)

where V,., is the c.m. velocity of the residue and m is the mass of a nucleon. We
are especially interested in the portion of excitation energy which can be considered
thermal in origin. For this purpose, it is useful to separate out the two non-thermal
contributions, E?, and E¢omp, from the total excitation energy Ei:(A,es). Here, the
first contribution E* is the collective energy of the residue as observed at the rest
frame of the residue. It can be evaluated easily by performing the integral in Eq.

(6.2) over the volume, yielding Ey1, and subtracting from it the translational energy

of the c.m. motion of the residue:
- 1 9
coll = ECO” - §ATCSmVre3 (611)

The compression energy Ecomyp is the difference between the internal energy of a cold

nucleus with density distribution p(7,t) and that of the corresponding g.s. nucleus
Ecomp = Eint(T = O, Ares) - Eg.a.(Area) (612)

Obviously, E,,., is non-zero only when the density distribution of the residue differs
significantly from that of the corresponding g.s. nucleus. Subtracting E},; and E oy

from E*, one can obtain the thermal energy E;,, of the residue
the = E” — Ecomp — Ely (6.13)

To understand the dynamics governing the formation of the residues, it is some-
times instructive to decompose the collective energy K7, of the residue, see Eq. 6.13,

into a rotational component E,,; and a non-rotational component E, , ,
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Ecall = Erot + E*

(6.14)
Here, the rotational energy EY , is estimated by
. _J?
Erot - 2—1-' (615)
where J is the angular momentum of the residue A,., calculated by
> 1
J = / =/ =N 13,133 1
h(27rh)3 (™" x p") (7", 7 )dr'dp (6.16)

and 7' and §” are defined in a coordinate system centered at center of mass of the
residue. In our simulations, we choose the z — » plane as the reaction plane and
therefore the total angular momentum ljes along the y axis. For the residue nucleus,
we also found that the angular momentum of the residue are nearly parallel to the y-
axis. We therefore neglect rotations about the and y axis axis and we approximate

the rigid body moment of inertia by

I~1, = /C (2? + 2%)pd’r (6.17)

Examples of values of I and J calculated in this approximation for **Ar+27A] collisions

were listed in Table 6.3.

After the decomposition of Eq. (6.14), the total excitation energy E* now has the

following components

E = E; coll + E:he + ECO’mP - E:ot + E'r:r + ECO"IP + t*he (618)

Since the rotational energy EZ,, is associated with the motion in the tangential di-
rection, the non-rotational energy E_ is therefore primarily associated with radial
motion. This non-rotational energy could originate from the excitation of giant res-
onances, with dominant contribution, argued by Remaud et al, from monopole oscil-

lations [Rema 88].
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Using Egs. (6.1)-(6.18), we can explore how one may define an appropriate time
for thermal freezeout. The decomposition by Eq. (6.9)-(6.18) can also provide infor-
mation concerning the dynamics for the formation of the heavy residues. In the next
few subsections, we will use the decomposition to consider whether the rotations or

thermal instabilities place limitations on the formation of heavy residues.

B Freezeout Conditions

Since the pre-equilibrium and equilibrium emissions are both present in intermediate
nucleus-nucleus collisions, one needs to know whether the thermal freezeout is indeed
reached and whether one can define a freezeout time unambiguously. To investigate
this, we describe, in the following three subsections, three distinctive criteria used to
define the thermal freezeout time. Two of these criteria, the emission rate and the
thermal excitation energy, were found to give consistent freezeout times. The third
criterion, the quadrupole moment of the momentum distribution, did not provide a
clear signature for the freezeout time, but was not inconsistent with the freezeout

time determined from the other two criteria.

Emission Rate

In Fig. 6.7, we display the emission rate of nucleons as functions of time for ©Ar+27Al
collisions at E/A=30 MeV. The solid and open circles in the figure depicted the
calculations with the stiff and soft equations of state, respectively. The corresponding
nucleon-nucleon cross sections are indicated in the figures. For all calculations, one
observes large emission rates at t =~ 60—80 fm/c. These large emission rates reflect the
fast pre-equilibrium emission of nucleons before the system reach equilibrium. The
emission rate, at t > 100 fm/c for stiff EOS, and ¢ > 120 fm/c, is significantly reduced

and changes very slowly, suggesting a slow statistical emission from the reaction
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Figure 6.7: The emission rates of “°Ar+27Al collisions at E/A=30 MeV for impact
parameters b=1-4 fm. The solid circles are results with stiff EOS and onn = 25mb.
The open circles are results with soft EQOS and onn = 50mb. The corresponding
freezeout times are indicated by the arrows (solid for stiff EOS and open for soft
EQS). The respective lines are used to guide the eyes.
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residue. The emission at later times is modulated by the influence of macroscopic
vibrations which can be clearly seen in the Qzz plot (Fig. (6.10)). We will come
back to this point. The solid and open arrows in Fig. 6.7 indicate the freezeout
times selected by this criterion for the calculations with the stiff and soft équations
of state. These freezeout times are consistent with the freezeout times obtained from

the thermal excitation energy of the residues described below.

Thermal Excitation Energies

In general, one expects the temperature or the thermal excitation energy of a hot
equilibrated nucleus to decrease with time via evaporative cooling. Assuming this
evaporative cooling is properly described by sequential decay calculations like those
described in chapter 4, the emission temperature should depend on the maximum
thermal energy at the end of the preequilibrium stage of the reaction. This provides
a second criterion for choosing the freezeout time. In Figs. 6.8-6.9, we display the
various contributions to the excitation energy for “°Ar+?7Al collisions at E/A=30
MeV assuming a soft EOS (Fig. 6.8) and a stiff EOS (Fig. 6.9), respectively. Several
features of the reaction dynamics are immediately apparent. First, from the time
dependence of potential energy (bottom curve), it is clear that the system undergoes a
compression during first 40 fm/c, and afterwards an expansion between 40 fm/c < ¢t <
80 fm/c, and finally a relaxation to a more tightly bound state at 120 fm/c (100 fm/c
for stiff EOS). The binding energy Ein(T = 0) (third curve from the bottom) exhibits
a similar behavior at a smaller scale. Second, the energy of free particles increases
rapidly after ¢ > 40 fm/c, suggesting much of the collective energy E.u is taken
away by particle emission. Finally, the thermal energy E},., which is of our particular
interest, exhibits two maxima: one global maximum at ta 40fm/c and one local

maximum at ts,. = 120 fm/c (¢4, = 100 fm/c for stiff EOS). The maximum at t~
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Figure 6.8: Decomposition of the various excitation energies as a function of time for
0 Ar+%"Al collisions with the soft equation of state at E/A=30 MeV, b=0 fm. The
bottom line is the nuclear potential energy. From this bottom line up are,respectively,
Coulomb energy (difference between the second and the bottom lines), Fermi energy
required by the Pauli exclusion principle (difference between the third and second
lines), kinetic energy of emitted particles (difference between the fourth and third
lines), collective energy of bound nucleons (difference between the fifth and fourth
lines) and thermal energy (difference between the top and fifth lines). The freezeout
time is indicated by the dotted line.
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required by the Pauli exclusion principle (difference between the third and second
lines), kinetic energy of emitted particles (difference between the fourth and third
lines), collective energy of bound nucleons (difference between the fifth and fourth

lines) and thermal energy (difference between the top and fifth lines). The freezeout
time is indicated by the dotted line.




122

40fm/c is an artifact of the initial momentum distributions, in which the longitudinal
velocities of the projectile and the target nuclei cancel each other, causing a minimum
in the computation of the collective energy. At the second maximum, the initial
"preequilibrium stages have finished and residue has already contracted to a more
compact spacial configuration and fhe thermal energy at its local maximum. After
this time, the thermal energy gradually decreases. Due to the evaporative cooling, we
take the freezeout time to be the time of the second maximum in the thermal energy.
This time is consistent with the time determined by the change in the nucleon emission

rate shown in Fig. 6.7,

It is interesting to note that the freezeout time is largely determined by the re-
laxation time of the surface of the residue. Residues calculated with stiff equation
of state, which has a larger restoring force and a larger sound speed, contracts to a
compact configuration more rapidly than the residues calculated with soft equation of
state. The excitation energies left in the residues are higher for residues characterized

by a stiff EOS because they have less time for preequilibrium cooling.

Momentum Distributions

A third measure for defining the freezeout time may be obtained by the quadrupole

moment of momentum distribution [Cass 87, Baue 87):

Qz2lt) = fass [ Eréptant — it )01 (6.19)

This criterion is motivated by the belief that a system in thermal equilibrium should
satisfy QJzz = 0. To see how this variable changes with time, we plot Qzz in the
bottom panels of Fig. 6.10 as a function of time for *Ar+27Al collisions at b=0 fm.
For comparison, we show the emission rates in the top panels. The left hand panels

show results obtained with the stiff equation of state. The right hand panels show
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those from the soft equation of state. The dashed lines include all nucleons while
the solid lines include the nucleons bound in the residual nuclei. Clearly at the ¢ fre
defined previously, Qzz is significantly reduced from its initial value at t=0. However,
the values of Qzz continue to oscillate about zero for a long time after thérmal
freezeout, reflecting the existence of macroscopic quadrupole vibrations. Such long
term collective vibrations render Qzz less useful in defining the thermal freezeout

time.

In summary, a consistent freezeout time was obtained by checking three different
variables. In the next few subsections, we will study the excitation energies and the

angular momenta of residual nucleus at freezeout.

C Collisions at E/A=30 MeV

In Fig. 6.11, we show different contributions to the excitation energies of residues at
freezeout as functions of the impact parameter for °Ar+ 27 Al collisions at E/A=30
MeV assuming alternatively the stiff (lower panel) or the soft (upper panel) equations
of state. ( A similar analysis was shown in lower right hand panel of Fig. 6.3 for
“Ca+4°Ca system at E/A=40 MeV assuming stiff EOS.) The solid symbols in the
figure represent the calculations in which a single heavy residue is observed in the
final state. The open symbols represent calculations at larger impact parameters
in which the system breaks up into projectile-like and target-like residues at a later
time. The total excitation energy E* (solid circles), calculated from Eq. (6.10)
increases slightly with impact parameter. This increase can be partly attributed to
the collective rotation. The crosses in Fig. 6.11 depict the excitation energy after
the rotational energy E?,, see Eq. (6.15), has been subtracted. The remaining part,
E* — E;,;, becomes constant for the central collisions where heavy composite residues

were formed. We note here that the rotational energy E* ., indicated by the difference
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between the points and crosses, increases with impact parameter until reaching the
maximum impact parameters for fusion, it then becomes constant at larger impact
parameters. The constant behavior of E,, at large impact parameters can be expected
since the moment of inertia I scales as I ~ b2, and the angular momentum J scales as

J ~ b at large impact parameters. Thus from Eqs. (6.15)-(6.17), one would expect

constant values of E}, at larger impact parameters.

The compressional energy, which corresponds to the difference between the crosses
and the diamonds shown in Fig. 6.11, exhibits little dependence on the impact param-
eter. The collective energy E?_, indicated by the difference between the diamonds
and the squares, remains roughly constant for central fusionlike reactions at impact
parameters at b < 4 fm. This constant value for fusionlike residues reflects the energy
stored in macroscopic vibrations which may have a significant monopole components
[Rema 88]. At larger impact parameters, b > 4 fm, the collective energy E}  in-
creases with impact parameter suggesting an incorhplete dissipation of the incident
collective motion of projectile and target nucleons. It is this incomplete stopping,
not the thermal instability, which cause a decrease in the residue cross section as the

incident energy is raised.

The thermal excitation energy the» designated by the squares in Fig. 6.11, de-
creases slightly with impact parameter. Thus in these dynamical calculations, the
formation of heavy residues for “°Ar + 2’Al at E/A < 30 MeV does not appear to be
limited by the stability of the residual nucleus at high temperature. Indeed, in larger
impact parameter collisions, where the residue formation is less likely, the intrinsic

thermal energies are somewhat smaller.

Experimental investigation of excitation energy have been based on the mas-
sive transfer models [Lera 86, Auge 85, Nife85, Goni 89, Wada 89, Deco 90, Grif 90,

Fahl 86, Bour 85, Gali 88] in which the measured residual velocities were used to es-
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timate the excitation energies. In Fig. 6.12, we show the comparisons of the massive
transfer models with the BUU calculations. The open points depict the results of
massive transfer models (for details, see Appendix B) using the residue velocity from
the BUU calculations. The massive transfer models significantly over-estimate the
total excitation energy, suggesting the present BUU calculations are inconsistent with

expectations of massive transfer models.

D Limiting Angular Momenta

Fig. 6.13 shows the total angular momenta for residues, obtained for both the stiff
equation of state (solid circles) and the soft equation of state (squares), as a function of
impact parameter for *Ar +%7Al collisions at E/A=30 MeV. The angular momentum
increases linearly with impact parameter to a value of J,,,, ~58 % at b=4.3 fm for
stiff EOS (Jmar 44 ki at b = 4 fm for soft EOS), comparable to the maximum orbital
angular momentum predicted by the liquid-drop model [Cohe 74, Ring 80] for mass
A=56 (A=52 for soft EOS). Similar results were shown in the upper right panel of
Fig. 6.3 for “°Ca +%°Ca collisions with a stiff EOS. This suggests that the formation
of a residue at E/A = 30 MeV may be partially limited by the maximum angular

momentum that a nucleus can sustain.

To examine how the maximum angular momentum evolves with incident energy,
we display, in Fig. 6.14? the energy-dependent residue masses (top windows) and the
maximum angular momenta (bottom windows) for both the soft equation of state
(right-hand side) and the stiff equation of state (left-hand side). At each energy,
the solid symbol corresponds the maximum angular momentum J,,,, which occurred
at the largest impact parameter b,.,; for which a fused residue is observed in the
final state. The open symbol corresponds to the minimum angular momentum Jy;

calculated at slightly higher impact parameter b;; for which the system breaks up
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eventually into two pieces. These boundary values, b2y Amaz, Imaz and Jmaz, and,

brr, Irr and Jyr, were listed in Table 6.3.

For both sets of equations of states, the fusion-like residues are comparable to
the maximum angular momenta (solid curves in Fig. 6.14) predicted by liquid-drop
models [Cohe 74] at E/A < 30 MeV. At higher energies, E/A>35 MeV, however, the
maximum angular momenta from BUU calculations decrease more rapidly than that
expected from liquid-drop model calculations, suggesting that the liquid- drop model |

calculations provide little theoretical guidance at high energy collisions.
E Limiting Excitation Energy

Much effort has been devoted to the determination of the maximum excitation energy
that a metastable composite nucleus can sustain. To learn about the possible dynam-
ical limitations to the residue excitation energy, it is interesting to see how the calcu-
lated total excitation energy evolves with the incident energy in fusionlike collisions.
On the left hand side of Fig. 6.15, we show the decomposition of the excitation energy
for central collisions as a function of incident energy for the soft EOS (top panel) and
the stiff EOS (bottom panel). On the right hand side, we provide the corresponding
calculations for the maximum impact parameters b,,,, that lead to residue forma-
tion. With both equations of state, the calculated total excitation energy and the
thermal excitation energy increase slightly with incident energy, a phenomenon also
predicted in other simulations of light systems. [Snep 88, Boal 88a, Boal 88b]. The
calculated excitation energies are generally larger for calculations with the stiff EOS,
a trend also predicted by static models, [Levi 84] even though o,, was adjusted to
make equal residue cross sections for the two sets of parameters. The total excitation
energy for the stiff EOS increases gradually from E* /A= 3.8 MeV at E/A=25 MeV
to E*/A=5.5 MeV at E/A=40 MeV; the thermal energy increases correspondingly
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from Ej,. /A= 2.4 to 2.8 MeV. The maximum predicted thermal energy, E};, /A =2.8
MeV, is not small compared to predictions for the maximum excitation energy that a
non-rotating nucleus can sustain. Thus it is possible that, besides limited by dynamic
effects in large impact collisions, additional reductions in the calculated residue cross
sections may occur for central collisions at the highest energies due to thermal insta-
bilities [Boal 88a, Boal 88b, Levi 84, Saga 85, Gros 88] of the hot residues which are

not considered by our calculations.

Similar excitation energies have Been estimated from the experimentally measured
residue velocity distributions using massive transfer models. An analogous procedure
using the calculated residue velocity provides the open points in Fig. 6.16. As also
shown in Fig. 6.12, application of the massive transfer to BUU calculations greatly
model overestimates the residue excitation energy of this light symmetric system at
all energies because it underestimates the cooling due to preequilibrium emission.
Part of this discrepancy may also be due to the fact that the present calculations
seem to lead to residue velocities which are smaller (for reverse kinematics) than the
measured ones. This discrepancy could be reduced by choosing smaller values of
nucleon-nucleon cross section that lead to residue velocities which are more similar
to the measured ones. A detailed study of this issue would require a large amount of

computer CPU time and it is beyond the scope of the present study.

III Conclusions

In summary, calculations have been performed with the Boltzmann equation to as-
sess the sensitivity of heavy residue cross sections to the EOS and the in-medium
nucleon-nucleon cross section. For specific choices of ¢,, and the nuclear EOS, the

calculated residue cross sections decrease and eventually vanish for incident energies
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above E/A > 35 MeV, consistent with experimental observations. This decrease in
 cross section does not seem to be related to a bulk instability of nuclei at high tem-
perature. The calculated residue cross sections are sensitive to both the nuclear EOS
and the nucleon-nucleon cross section. This dual sensitivity constitutes an ambiguity
which may be reduced or eliminated by measurements of observables like the in/out-
of-plane ratio and the mean transverse momentum that are related to the isotropy of

the emission patterns of coincident light particles.

By using a decomposition technique for the excitation energy, we have investigated
in detail the thermal and dynamical limitations for the formation of heavy residues
formed in the **Ar+%"Al collisions. For a given incident energy of E/A < 30 MeV, the
calculated excitation energy is slightly lower than the maximum values extracted from
experiments and the cross sections are mainly limited by dynamical considerations
in large impact parameter collisions. At higher energies, however, the calculated
maximum angular momentum decreases much faster than that predicted by static
model calculations, indicating large dynamical effects. Moreover, the thermal energy
increases from Ej;,, /A= 2.4 to 2.8 MeV as the incident energy is raised from E/A=25
to 40 MeV. The maximum predicted thermal energy, Ej;,. /A =2.8 MeV, is comparable
to predictions for the maximum excitation energy that a non-rotating nucleus can
sustain. Thus it is possible that, besides limited by dyndmic effects in large impact
collisions, additional reductions in the calculated residue cross sections may occur for
central collisions at the highest energies due to thermal instabilities [Boal 89, Levi 84,

Saga 85, Gros 88] of the hot residues which are not considered by our calculations.

The present calculation has several limitations. Because the theory has insuffi-
cient fluctuations, it can not predict, for example, under what conditions and how
the hot residues will disassemble. Even within the model itself, there are considerable

uncertainties concerning the nuclear EOS and in-medium nucleon-nucleon Cross sec-
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tion. Further investigations are also required to assess the sensitivity of the calculated

observables to the detailed algorithm for Pauli- blocking and to the surface energies

of the computational nuclei.




Chapter 7

Nuclear Temperature and Nuclear
Equation of State

In the Preceeding chapters, we presented experimental measurements of emission tem-
perature obtained from the relatjve population of excited states of intermediate mass

fragments. In chapter 5 and 6, we discussed BUU calculations which were under-

quantities such as the nuclear equation of state and in-medium nucleon-nucleon cross
section. Some sensitivity of the excitation energies to these quantities was obtained
for light systems and they were presented in chapter 6. Such light systems may not
be ideally suited to address our original questions about limiting temperatures since
the residues formed in such light systems do not survive collisions for incident ener-
gies in excess of E/A =~ 40 MeV. Emission temperatures, on the other hand, have
been obtained for heavy asymmetric systems at incident energies up to E/A=94 MeV
[Chen 88a]. Here we present Boltzmann-Uehling-Uhlenbeck (BUU) calculations for
the asymmetric *°Ar+27Al and “©Ar+'%8n system. We show that the calculated
thermal temperature for the residual nucleus is sensitive to the nuclear equation of
state, as well as the impact parameter, and surprisingly, in-sensitive to the in-medium

nucleon-nucleon cross section.
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This chapter is organized as follows. In section I, we check whether the criteria
used to define the freezeout time are also satisfied for this heavy asymmetric system.
We discuss the dependence of the total excitation energy on incident energy and
compare the results with the predictions of massive transfer models in Section II. In
Section III, we consider a simple model for extracting the emission temperature from

the thermal excitation energy. Some conclusions are drawn in Section IV.

I Freezeout Conditions

Before we present the calculated excitation energies and temperatures, we would
like to check whether the freezeout conditions discussed in the previous chapter give

consistent freezeout times for Ar+124Sn collisions.

Figs. 7.1-7.4 show the decomposition of the excitation energy using Egs. (6.1)-
(6.6) for °Ar+243n collisions at b=0 fm. In Figs. 7.5-7.6, we display the emission
rate of nucleons as functions of time for “*Ar+124Sn collisions at E/A=35 MeV and
65 MeV, respectively. The solid (open) circles depicted the calculations with the
stiff (soft) equation of state. Both calculations are performed assuming an isotropic
in-medium nucleon-nucleon cross section of 41 mb. Similar to “°Ar +27A1 collisions
shown in the last chapter, one sees a prompt non-equilibriunﬁ peak at t ~ 60—80 fm/c
followed by a lower emission rate characteristic of slow statistical evaporation from -
a equilibrated system. The solid arrows in the figures indicate the freezeout times
we choose for the stiff EOS while the open arrows indicate the freezeout time for the
soft EOS. By examining the thermal excitation energies shown Figs. 7.1-7.4 and the
emission rates shown in Figs. 7.5-7.6, consistent freezeout times were achieved. The
freezeout time ty,. for *Ar+24Sn collisions at b=0 fm are, respectively, ¢t ~ 140

(tre =~ 120) at E/A =35 MeV; and t4,, ~ 160 (tsre = 120) at E/A=65 MeV; for
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Figure 7.1: Decomposition of various excitation energies as a function of time for
““Ar+2%Sn collisions with the soft equation of state at E/A=35 MeV, b=0 fm. The
bottom line is the nuclear potential energy. From this bottom line up are,respectively,
Coulomb energy (difference between the second and the bottom lines), Fermi energy
required by the Pauli exclusion principle (difference between the third and second
lines), kinetic energy of emitted particles (difference between the fourth and third
lines), collective energy of bound nucleons (difference between the fifth and fourth
lines) and thermal energy (difference between the top and fifth lines). The freezeout
time is indicated by the dotted line.
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Figure 7.2: Same as Fig. 7.1, but for “°*Ar+24Sn collisions with the stiff EOS at
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Figure 7.3: Same as Fig. 7.1, but for **Ar+!24Sn collisions with the soft EOS at
E/A=65 MeV, b=0 fm.
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Figure 7.4: Same as Fig. 7.1, but for “°Ar+'24Sn collisions with the stiff EOS at
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Figure 7.5: The emission rates of ®Ar+2Sn collisions at E/A=35 MeV for impact
parameters b=1 — 4 fm. The solid circles are results with stiff EOS and the open
circles are results with soft EQS. The corresponding freezeout times are indicated by
the arrows (solid for stiff EOS and open for soft EQS). The respective lines are used
to guide the eyes.
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Figure 7.6: The emission rates of *Ar+124Sn collisions at E/A=65 MeV for impact
parameters b=1 — 4 fm. The solid circles are results with stiff EOS and the open
circles are results with soft EOS, The corresponding freezeout times are indicated by
the arrows (solid for stiff EOS and open for soft EOS). The respective lines are used
to guide the eyes.
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soft (stiff) EOS. In general, the freezeout time reached with our criteria are slightly
sﬁorter for stiff EOS compared to that obtained for soft EOS. More detailed studjes
also indicates that the freezeout time does not depend on the impact parameter at
E/A=35 MeV for either stiff or soft equation of étate. However, at higher energies,
E/A=65 MEV, the freezeout time depends very sensitively on the impact parameter,
particularly for the soft EOS. With onx = 41 mb, the freezeout time decreases from
tgre & 160 fm/c at b=0 fm to t;,. ~ 120 fm/c at b=6 fm for the soft EQOS; and the
freezeout time decreases from ¢y, ~ 120 fm/c at b=0 fm to ¢ fre = 100 fm/c at b=6

fm.

The bottom panels of figs. 7.7-7.8 show the quadrupole momentum distributions
as a function of time for °Ar+'?4Sn collisions at b=0 fm.  For comparison, the
emission rates at b = 0 are presented in the top panels. Similar to ©Ar +27Al
collisions discussed in the previous chapter, Qzz does not provide accurate freezeout

time due to complications from quadrupole vibrations.

The final spatial configurations at freezeout depend very much on the incident
energy. Figs. 7.9-7.13 show the final spatial distributions for “°Ar+124Sn collisions
at E/A=35 MeV and 65 MeV with soft or stiff EOS. At E/A=35 MeV, one always
see a single well defined residue at the freezeout time, even for the larger impact
parameter collisions in which the bound residue decays into distinctive projectile-like
and target-like residues at a later time. In contrast, at E/A=65 MeV and impact
parameters greater than b ~ 2 — 3 fm, the projectile-like and target-like residues
(sometimes more than two residues) at freezeout appéa,r to be more distinct. This
indicates that the time scale for breakup in high energy collisions becomes shorter
than the time scale for relaxation and equilibration of the extended residues. We
also note here that at E/A=35 MeV, the residues appear to distribute over a larger

volume for the calculations with oxn = 20 mb (Fig. 7.10) than the corresponding
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Figure 7.7: The emission rates of nucleons (top panels) and the quadrupole mo-
mentum distributions Qzz (bottom panels), defined by Eq. (6.19), for ©Ar+124Sp
collisions at E/A=35 MeV, b=0 fm. The left panels (right panels) show the results
for the stiff EOS (soft EOS). The vertical dot-dash lines indicate the freezeout time
discussed in the text. The dashed lines in the bottom panels include the calculations
for all nucleons, while the solid lines include only nucleons in the bound residues.
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Figure 7.8: The emission rates of nucleons (top panels) and the quadrupole mo-
mentum distributions Qzz (bottom panels), defined by Eq. (6.19), for “*Ar+124Sn
collisions at E/A=65 MeV, b=0 fm. The left panels (right panels) show the results
for the stiff EOS (soft EOS). The vertical dot-dash lines indicate the freezeout time
discussed in the text. The dashed lines in the bottom panels include the calculations
for all nucleons, while the solid lines include only nucleons in the bound residues.
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calculations with oy = 41 mb (Fig. 7.9). We will come back to this point when we

evaluate the density dependent level density parameter.

II The Excitation Energy at Freezeout

A Excitation Energies

In Fig. 7.14, we display the decomposition of the excitation energy at freezeout using
Eq. (6.18) for *°Ar +124Sn collisions at E/A=35 MeV. The freezeout configuration
at this energy consists of a single bound system, similar to those obtained for “°Ar
+% Al system at E/A=30 MeV and the qualitative behavior of various contributions

to the excitation energy is also similar.

At higher incident energies, E/A =65 MeV, the freezeout configurations shown
in Figs. 7.12-7.13 are more complex. The left hand panels of Fig. 7.15 display
the decomposition of the excitation energy if all the residues are included in the
calculation. The right hand panels show the corresponding decomposition if only the
largest residue (target-like residue) is analyzed. In addition to the density requirement
for the bound residues, a sphere of adjustable radius with its origin at the center of
the target-like residue is used to separate the target-like residue from other bound
clusters. Applying our analysis at large impact parameters, b > 3 fm, to the entire
system yields a total excitation energy per nucleon which is significantly larger than
that for the target-like residue alone. These large values for the excitation energies
are a consequence of the large relative velocities between the various residues. These
large relative velocities could be responsible for the significant increase in the non-
rotational collective energies, E; .., denoted by the difference between the diamonds
and squares of the left hand panels of Fig. 7.15, at larger impact parameters. The

thermal energy per nucleon (squares), however, is practically the same if one considers
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Figure 7.9: The spatial distributions at the freezeout time for “°Ar+124Sn collisions at
E/A=35 MeV with the soft EOS and ony = 41 mb. The values of impact parameters
are indicated in each corresponding panel. The beam directions is in the vertical
direction (projectile moves from top to bottom).
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Figure 7.10: The spatial distributions at the freezeout time for “*Ar+12Sn collisions at
E/A=35 MeV with the soft EOS and onxx = 20 mb. The values of impact parameters
are indicated in each corresponding panel. The beam directions is in the vertical
direction (projectile moves from top to bottom).
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Figure 7.11: The spatial distributions at the freezeout time for ®°Ar-+124Sn collisions at
E/A=35 MeV with the stiff EOS and oyy = 41 mb. The values of impact parameters
are indicated in each corresponding panel. The beam directions is in the vertical
direction (projectile moves from top to bottom).
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Figure 7.12: The spatial distributions at the freezeout time for 0 Ar+1248n collisions at
E/A=65 MeV with the soft EOS and on~N = 41 mb. The values of impact parameters
are indicated in each corresponding panel. The beam directions is in the vertical
direction (projectile moves from top to bottom).
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Figure 7.13: The spatial distributions at the freezeout time for °Ar+24Sn collisions at
E/A=65 MeV with the stiff EOS and oxy = 41 mb. The values of impact parameters

are indicated in each corresponding panel. The beam directions is in the vertical
direction (projectile moves from top to bottom)
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Figure 7.14: Decomposition of the excitation energy at freezeout for 40Ar+1%49n
collisions at E/A =35 MeV, assuming the soft EOQS, (top panel) or the stiff EOS (lower
panel). The respective symbols indicated in the figure are the different components
by using Eq. (6.18). The lines are drawn to guide the eye.
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Figure 7.15: Decomposition of the excitation energy at freezeout for ©Ar+124Sn col-
lisions at E/A =65 MeV, assuming the soft EOS, (top panels) or the stiff EOS (lower
panels). The left hand panels display the decomposition of the excitation energy
when all the residues are included. The right hand panels show the corresponding
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symbols indicated in the figure are the different components by using Eq. (6.18). The
lines are drawn to guide the eye.




156

the whole bounded system (left hand panels) or if one simply considers a single target-
like residue (right hand panels). This result is consistent with the assumption that

the thermal excitation energies per nucleon are the same for all clusters.

On the left panels of Fig. 7.16, we show the decomposition of excitation energies
with soft EOS and onn = 20 mb at E/A=35 MeV (top panel) and 65 MeV (bottom
panel) at freezeout time. For comparison, the corresponding calculations for oy y = 41
mb are re-plotted on the right panels. The qualitative behavior with both values of
oNN is very similar, indicating that no significant dependence of excitation energies
on nucleon-nucleon cross sections. Indeed, one might expect that a larger nucleon-
nucleon cross section could generate more excitation and therefore a larger excitation
energy. However, this effect is partly compensated by the fact that the calculations
with smaller oy tend to freezeout earlier. In fact, the thermal excitation energy and
the non-rotational collective excitation energy (the difference between the diamonds
and the squares) at E/A =35 MeV calculated with oy = 20 mb are slightly higher
than those calculated with oyy = 41, since the systems freezeout at ¢ fre 120 fm/c,
earlier than ¢, ~ 140 fm/c obtained with oxnx = 41 mb. we will come back to this

point when we evaluate the temperatures.

In the bottom window of Fig. 7.17, we show the energy dependences of the total
excitation energy (circles) and thermal energy (squares) per nucleon for Ar +124Sp
collisions at b=0 fm. The corresponding residue mass is shown in the top window. For
both the stiff EOS (solid symbols) and the soft EQS (open symbols), the excitation
energy increases with incident energy. However, this increase with energy becomes
more gradual at energies E/A > 65 MeV, indicating that the excitation energy per
nucleon may be reaching a saturation value. The difference between the excitation
energies for different equations of state is of the order of ~ 1 MeV per nucleon at all

energies. For comparison, the solid diamonds depict the excitation energies deduced
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Figure 7.16: The dependences of the excitation energies on ony for ©°Ar+124Sn col-
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hand panels are results with oxy = 20 mb and the right hand panels are results with
onN = 41 mb. the excitation energies indicated by respective symbols are the same
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from neutron multiplicity measurements for the 9Ar +232T}h system [Jian 89]. In
ref. [Jian 89], only the total excitation energies were given. For simplicity, we have
assumed the residue mass A,., = 272 for the ©Ar +232T} system. If the residue
mass for this heavier system decreases with the incident energy as dramatically as
we have calculated for °Ar + 124Sn system, the excitation energy per nucleon of the
residues for the “°Ar +%32Th system would actually be increasing with incident energy.
With the present calculations, we have not attempted to determine the EOS from the

available data though the calculated excitation energies per nucleon are closer to the

predictions for soft EOS than for stiff EOS.

To further illustrate the difficulties in making these comparisons more quantitative
at present, we show the total excitation energies of these systems. The total calcu-
lated excitation energies predicted for “°Ar+ 24Sn are lower than those determined
experimentally for ©Ar+ 22Th system. Clearly, to extrapolate our calculations to
the “*Ar +22Th system, we need to know more about how the residue excitation
energies depend on the target mass. The calculations do show that the total exci-
tation energies predicted by both equations of state appear to be in-sensitive to the
incident energy at E/A > 40 MeV, similar to the insensitivities demonstrated by the
experimental data. This result indicates that, because the residue mass is decreasing
with incident energy, the total excitation energy may even saturate at energies where

the excitation energy per nucleon shown in Fig. 7.17 is still increasing.
B Massive Transfer Models

Experimental studies of residue excitation energies are frequently based on analysis
of residue velocities using massive transfer models. Such models assume that part
of the projectile ‘fuses’ with the target, while the remaining part of the projectile

escapes with the beam velocity. Using this simple assumption, it is easy to deduce the
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Figure 7.18: The dependence of the total energy and the thermal energy on the
incident energy for “*Ar+124Sn collisions at b=0 fm and and for **Ar+232Th extracted
experimentally. The solid symbols represent the results with the stiff EOS and the
open ones represent the results with the soft EQS. The total energy and the thermal
energy are indicated by the circles and squares, respectively. The lines are used to
guide the eyes.
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excitation energy from the measured residue velocity (see Appendix B for details). To
examine whether our BUU calculations are consistent with massive transfer models,
we show in Fig. 7.19 the residue velocities (top panels) and the total excitation
energies predicted by the BUU and the excitation energies extrapolated from the
residue velocities (bottom panels) according to the massive transfer assumption. The
left hand panels show the results for “°Ar + 124Sn collisions at E/A =35 MeV and the
right hand panels show the results for E /A=65 MeV. The circles in the bottom panels
depict the excitation energy extracted from the calculated residue velocity using the
massive transfer models. The squares depict the total excitation energies obtained
directly from the BUU calculations. Both the residual velocities and the excitation

energies are determined for the targetlike residues which have survived the collisions.

At E/A=35 MeV, the predicfed residue velocity by BUU is slightly less than the
velocity of the center of mass and shows little dependence on impact parameter. In
contrast, the velocity at E/A=65 MeV depends significantly on the impact parameter.
At both incident energies and at all impact parameters, the massive transfer model
significantly overestimates the excitation energy for the largest residue. The discrep-
ancy is largest for the central collisions. In our simulations, the massive transfer
model fails because it significantly underestimates the cooling due to preequilibrium
emission and because the pre-equilibrium particles have velocities which are signifi-
cantly less than the beam velocity, inconsistent with massive transfer models where
the pre-equilibrium particles have the beam velocity. Caution must be taken when
interpreting the calculated residual velocity because we have not adjusted onn to
reproduce the experimental data. Smaller discrepancies will occur for smaller values
of onxn. Additional uncertainties may arise because the BUU models only predicts
the average trajectory and can not accurately predict the multifragment breakup,

due to the suppression of fluctuations by the ensemble averaging in the calculations.
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Figure 7.19: Comparison of BUU results with that from massive transfer models for
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Pre-equilibrium emission of complex fragments via multifragment breakup could re-
duce the velocity of the residue, and therefore might reduce the excitation energy

estimated by the massive transfer model.

IIT Nuclear temperatures of the Residues

A Formalism

To allow a comparison with experimental emission temperatures, one must relate
the excitation energies of the residues to the corresponding temperatures. For our
computational residues, the level densities are sensitive to the density distributions
and thermal energies of the residues and not solely to the total excitation energy,
because there are sizable non-thermal collective energies and because the density
distributions of the residues may retain some memory of the collision dynamics. We
estimate the temperatures of the residues by integrating the Fermi-gas expression
e"(T,er(p(F))) for the excitation energy per nucleon over the nuclear density and
equating this value to the thermal energy provided by the numerical simulations, as

follows.

Bie = [ @r{pn-&"(T,er(pp)) + pn- £°(T,cx(pn)) (7.)

Here, p, and p, are the matter densities for neutrons and protons, respectively. For
simplicity, we approximate e*(T,er(p)) by its low temperaturev limit, and thus Eq.

(7.1) becomes
the = aT” (1.2)

with a, the level density parameter, given by

m ,3r?

¢ = 35 [ Erpto (1:3)
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In expressions 7.2 and 7.3, we have assumed equal Fermi energies for protons and

neutrons, and have used the local density approximation,

B 3n2
er(p) = 5 (—5—/))2/3 (7.4)

In our calculation, the level density parameter is evaluated from the density distri-
bution produced from BUU calculations at freezeout. Since we already calculated
the thermal energy, we can calculate the temperature from Eq. 7.2. The results are

discussed in the following subsections.

B Results
19Ar+27Al collisions

Fig. 7.20 shows the predicted temperature at freezeout as a function of impact pa-
rameter for °Ar+%"Al collisions at E/A=30 MeV. The solid symbols indicates the
calculations where a single fused residue is produced while the open ones correspond
to the calculations in which two residues are observed in the final states. For both
the stiff (circles) and soft (squares) equations of state, the predicted temperature
decreases slightly with impact parameter. At larger impact parameters where no fu-
sions occur, the predicted temperatures are smaller, thus indicating that, at E/A=30
MeV, the fusion cross sections are not limited by thermal instability at high tem-
peratures. For all impact parameters, the temperatures predicted by the stiff EOS
- are much higher than that predicted by the soft EQS, even though the nucleon cross
sections with the stiff EOS has been adjusted to produce similar fusion cross section
as that of the soft EOS. The predicted values, T~ 3 — 5, are comparable to inclusive

experimental observations.

To indicate the range of the level density parameter, the different curves in Fig.

7.20 are the results obtained by Eq. (7.2), with respective values of @ indicated in
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Figure 7.20: Dependence of the temperature on the impact parameter for °Ar+27Al
at E/A=35 MeV. The circles are results with the stiff EOS and oyy = 25 mb. The
Squares are results with the soft EOS and oxy = 50 mb. The solid and open symbols
are discussed in the text. The respective lines are calculations by E* = aT? with
corresponding values of a indicated in the figure.
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the figure. The predicted values of the level density parameter show little sensitivity
to the nuclear equation of state. These in-sensitivities of the level density parameter
to the nuclear EOS may indicate that rather similar freezeout density distributions
are produced by both equation of state. We note here that although the values of
the level density parameter, a ~ A/T — A/9, are similar to the empirical values
of A/8 commonly used to relate the total excitation energy to the temperature via
the relation E* = aT?, it is important to recall that we are using the level density

parameter to describe the thermal excitation energy and the temperature.

The dependence of temperature on incident energy is shown in Fig. 7.21. The
left hand side is the calculations at b=0 and the right hand side is at b = b,,,, the
maximum impact parameter for fusion. The predicted temperature at b = 0 for both
equations of state increases slightly with energy, a trend also seen experimentally
[Chen 87c]. In all energies presented here, the calculations with the stiff EOS are ~ 1
MeV higher than that with the soft EOS, though the corresponding oy is half as
large. At lower energies, £ /A = 25—30 MeV, the values of T at bmas are smaller than
that at b = 0. At higher energies, E/A ~ 30 — 40 MeV, the values of temperature
at bmq, approach those at b = () fm, reflecting the fact that bmaz — with increasing

incident energy.

Based on the calculations on “°Ar+ 27A] collisions, it is possible to extract the
information concerning both the equation of state and oy, if the observables for ex-
periments are properly selected. At low energies, for example, at E/A=30 MeV, the
temperature at most central collisions, b < 3 fm, are relatively insensitive to impact
parameter, but very sensitive to the nuclear equations of state (Fig. 7.20), even if
the corresponding nucleon-nucleon cross sections are constrained to yield equal fusion
cross sections. Thus it may be possible that, by measuring the fusion cross section,

and by measuring the excitation energy or temperature for central collisions, one
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Figure 7.21: Dependence of the temperature on the incident energy for °Ar427Al.

The left hand window is calculations at b=0 and the right hand window
" culations at b

results with the stiff EOS and ONN

is the cal-
maz; the maximum impact parameter for fusion. The solid circles are
= 25 mb. The open circles are results with the

soft EOS and onn = 50 mb. The respective lines are calculations by E* = aT? with
corresponding values of a indicated in the figure.
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may obtain the minimum two constraints needed to separate the dual dependences
of the observables on the nuclear EOS at low density and ony. The emission pat-
tern of coincident light particles, discussed in Chapter 6, can also provide additional

information about oxy.

10A r+124Sn collisions

Fig. 7.22 shows the predicted temperature as a function of impact parameter for
“Ar+1Sn collisions at E/A=35 MeV (top window) and E/A=65 MeV (bottom
window), respectively. The dependence of the temperature on nuclear equation of
state is shown in the left-hand panels. The solid circles in the left hand panels depict
the results obtained for the stiff EOS, while the open ones depict the results for the
soft EOS. For comparison, the respective curves are the results obtained with Eq.
(7.2), and a constant level density parameter a with its value indicated in the figure.
At E/A=35 MeV and central collisions, b< 4 fm, the predicted temperature depends
weakly on impact parameter, but depends sensitively on nuclear equation of state.
In contrast, the temperature depends rather strongly upon the impact parameter at

higher energies, E/A =65 MeV.

The sensitivities to nucleon-nucleon cross sections are shown on the right hand
panels of Fig. 7.22. The predicted temperatures show surprisingly little sensitivity to
the nucleon-nucleon cross section. This result is due to the fact that the calculations
with smaller nucleon cross sections yield earlier freezeout times by using the criteria
of nucleon emission rates and the thermal energies. For example, at E/A=35 MeV,
the freezeout times with soft EOS and onyN = 20 mb are about ¢4, & 120 fm/c in
contrast to ts.. ~ 140 fm/c for the corresponding calculations with oyy = 41 mb.
We also note here that the predicted level density parameters for the soft EOS and

ovy = 20 mb at E/A=35 MeV, are higher than that for other calculations shown
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in the figure. This occurs because the densities at freezeout for this calculation are

distributed over a more extended volume than those for the other calculations.

Fig. 7.23 shows the energy dependence of the temperature for the “°Ar+124Sn
system at b=0 fm. The experimental values of the emission temperature obtained
in this dissertation study, along with other experimental results [Poch 85a, Poch 87,
Chen 88a, Naya 90], are depicted by the squares. Both equations of state predict a
gradual increase in temperature as the incident energy was raised from E/A=30 MeV
to 55 MeV. The stiff EOS predicts consistent larger values of temperature at all inci-
dent energies. At higher incident energies, E/A > 65 MeV, however, the temperature
increases very little, suggesting a possible saturation in the temperature with inci-
dent energy. At all energies, our calculated temperatures are similar to experimental
ones. Due to large uncertainties in the choice of the impact parameter averaging and
the uncertainties in the Pauli-blocking and nucleon-nucleon cross section, we can not
make more quantitative conclusions concerning the compressibility of the EQS at low

density from our present comparisons.
IV  Summary

In summary, guided by numerical solution of an improved BUU equation, we have
studied the global features of the reaction dynamics for ©Ar-+124Sn collisions. Using
various criteria, we found that consistent freezeout times could be defined. The
predicted thermal temperature for the heavy residues at freezeout is comparable with

experimental measurements.

Our studies indicates that the extraction of information concerning the equation
of state and the in-medium nucleon-nucleon cross sections is not trivial. Although

the predicted excitation energies and emission temperatures display a significant sen-
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Figure 7.23: Dependence of the temperature on the incident energy for “°Ar+124Sp
collisions at b=0 fm. The open circles are results with the stiff EOS and the open
squares are results with the soft EQS. The respective lines are calculations by Ej,, =
aT? with corresponding values of a indicated in the figure. The sold diamond is the
experimental result of this dissertation. The solid square is taken from ref. [Naya 90]
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and solid crosses are results of excited states of 5Li and 8Li, respectively [Chen 88a].
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sitivity to the nuclear equation of state, a comparable sensitivity to impact parameter
is also observed, particularly at higher energies. Fortunately, our calculations show
that the predicated thermal excitation energies and the temperatures are relatively
in-sensitive to in-medium nucleon-nucleon cross section, reducing the possibility of

ambiguities in the interpretation of emission temperatures.



Chapter 8

Conclusion

In this dissertation, we have measured the average emission temperature for a large
number of particle stable states of intermediate mass fragments for 32S induced reac-
tions on "**Ag at the incident energy of E/A=22.3 MeV. To assess if measurements
of nuclear temperature can provide information concerning the nuclear equation of
state and the in-medium nucleon-nucleon cross section, we have performed dynamical

calculations based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation.

To test the statistical assumptions for the fragment emission and to check the
degrees of thermalization and the internal consistency of thermal assumptions, 28
independent v-ray transition intensities were measured using the Spin Spectrometer
[Jaas 83]. The measured relative populations of these states were compared to those
calculated from a thermal model which include sequential feeding from higher lying
states. This comparison indicated an average emission temperature of Ta~ 3 —4 MeV.
This result is consistent with the trends established by measurements of the particle
unstable states of *He, 5Li, ®Li, and, B nuclei [Poch 85a, Poch 87, Chen 88a). It is
also consistent with the results of a recent investigation of large number of particle
unstable states of intermediate mass fragments in N induced reactions on Ag at
E/A=35 MeV [Naya 90]. Putting together these results suggests that the emission

temperature increases gradually with incident energy from values of T & 3 — 4 MeV
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at E/A 23 MeV to T ~ 5 — 6 MeV at E/A=94 MeV.

To study whether the emission temperature can provide any information about the
nuclear equation of state and the in-medium nucleon-nucleon cross section, we have
performed dynamical calculations based on the Boltzmann- Uehling-Uhlenbeck (BUU)
equation. Since the BUU equation is an one-body theory, it does not have the many-
body fluctuations required to produce the intermediate mass fragments. We therefore
attempted to study the excitation energy and the emission temperature of the heavy
residues. We believe this approach may be justified because molecular dynamics
calculations [Lenk 86, Schl 87] indicate that all reaction products, regardless of their
masses, could be characterized by a common temperature. This result indicates
that the information concerning the emission of intermediate mass fragments may
be obtained from the emission temperatures of heavy residues predicted by BUU

calculations.

To improve the stability of the ground-state nucleus and the conservation of energy
during nucleus-nucleus collisions, we have used a Lattice Hamiltonian method to solve
the BUU equation. With this improved code, consistent thermal freezeout times are
obtained from the emission rates of nucleons and the thermal excitation energies of
the heavy residue produced in “°Ar +27Al and “°Ar +!24Sn collisions. The predicted
total excitation energies and emission temperatures at freezeout are comparable with
those obtained from experiments. These predicted values for the excitation energies
and temperatures are quite sensitive to the equation of state. Surprisingly, little
sensitivity of the emission temperature to the in-medium nucleon-nucleon cross section
is observed. Unfortunately, the predicted emission temperatures are also sensitive to
the impact parameter, particularly at high incident energies, making it difficult to

determine the EOS and oyy from inclusive measurements.

Calculations for *°Ca+%Ca and “°Ar+27Al collisions also indicate that the residue
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cross section is rather sensitive to both the equation of state at sub-nuclear density and
the in-medium nucleon-nucleon cross section. This result provides another observable
which may be used to obtain information concerning the equation of state at the low
densities. We also demonstrate that measurements of the emission pattern of the
coincident light particles may provide information concerning the in-medium nucleon-

nucleon cross section.

The dynamical limitations to the formation of fusionlike residue are investigated
by calculating the excitation energies and the total angular momenta for the residues
formed in “°Ar + ?7Al collisions. These calculations indicate that the dynamics,
not the Coulomb or thermal instability [Levi 84, Besp 89, Gros 82, Ban 85, Gros 86,
Gros 88, Bond 85, Mekj 90], plays a decisive role in limiting the production of fusion-
like residues at energies E/A < 30 MeV. At higher energies, E/A> 35 MeV, dynamics
are still important, but we can not rule out additional reductions of the residue cross

sections due to instabilities of hot nuclei at high temperature.

Based on our theoretical study, it is possible to extract information concerning the
nuclear equation of state at sub-nuclear density and the in-medium nucleon-nucleon
cross section from exclusive investigations of emission temperatures, cross sections of
fusionlike residues, and the emission pattern of light particles [Xu 90, Tsan 89]. Addi-
tional theoretical work is needed to check the sensitivity of experimental observables

to momentum dependent interactions as well as to the details of the Pauli-blocking

algorithm.



Appendix A

Correction of Finite Statistics to
the Collective Excitation Energy

In this appendix, we discuss two methods used to correct for spurious contributions

to the collective energy due to finite number of test particles.

I The Goldhaber’s Problem

To illustrate the finite particle number effects, we first consider the problem of projec-
tile fragmentation. In order to understand the projectile fragmentation in relativistic
heavy ion collisions, Goldhaber [Gold 74] considered the following question: Suppose
that A nucleons are assembled with a zero net momentum, §4 = 0. If K of these
nucleons are chosen at random and are emitted as a single fragment, what would be

the mean square total momentum p% of this fragment?

Goldhaber [Gold 74] solved this problem by the following arguments. By assump-

tion, the total momentum of A nucleons has
<Py >=< Q) >=0, (A1)
i
and, in consequence,

A<p’>+> <pipy>=0, (A.2)
i#i
176



177

or
CF-F>=—<p> /(A1) (A.3)

where < p? > is the mean square nucleon momentum and the double bracket denotes
an average over all ¢ # j. A similar exercise applied to the momentum of X nucleons
yields

K
<Pk >=<< (LR’ >=K<p’>+K(K-1)<fi-5; > (A.4)

=1

Here, the double bracket indicates an average over all possible choices of the K nu-

cleons from given A nucleons. Substituting Eq. (A.3) into Eq. (A.4), one obtains

<Pk> =K<p>-K(K-1)<p*>[(A-1)

=K(A-K)<p'> [(A=1) (A.5)

Goldhaber used a Fermi gas value for < p? > and was able to interpret quite success-
fully the mass dependent fragmentation spectra with Eq. (A.5). In the limit A — oo,
(A—-K)/(A—1) =1, thus Eq. (A.5) becomes

<pk>x K<p*> (A.6)

As we will see later, this expression is very close to the spurious collective momentum

of K test particles located at a given lattice point in the hot residue.

II Correction of Finite Statistics‘to the Collective
Excitation Energy

In our calculations, the collective excitation energy is obtained by summing up con-
tributions from individual lattice cells in which the collective current are evaluated.
Let’s look at a given lattice cell with K test particles. Suppose this cell has a true

collective momentum of p,,; per nucleon in the continuum limit (an infinite number
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of test particles). The true collective excitation energy of K test particles can be

represented by

Kp,
Ecall = 2m”' (A7)

Here m is the nucleon mass. In practice, this true collective energy is not known.

Instead, we calculate the apparent collective energy EZ

. (=K p)?
coll — < 2[<m > (A.8)

Rewriting p; = §;' + peou (here , p;’ is zero on the average),

. _ <[ZK@ A+ o)) >
coll 9OKm

2]{ [I< pcoll + ZPCOU < sz > + < Z (Ag)

i=1 i=1
In our simulations, the second term can be ignored, since the vector sum satisfies
(YK, p:") 0, when summing over all possible ensembles or over all lattice points.
The third term, however, is non-zero and has a value corresponding to Eq. (A.6).

Using this expression, Eq. (A.9) becomes

[ Kpgoll+<p/2>
coll 9 o', .
<p?>
= Egu + gm : (A.10)

Thus the apparent collective energy is larger than the true collective energy by a value
of 51;7:—> Rewriting Eq. (A.10) in terms of the true collective excitation energy per

nucleon, one gets

0
E.u _ ELu 1 <p?>

= Sell o (A.11)
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with

1 <p”?>
ecor'r:E' .

(A12)

2m

This correction to the collective excitation energy is due to the finite number of test
particles. We note here that p’ is viewed in the frame of the true local velocity and

is not known. In the following two subsections, we describes two different ways to

estimate < p? >.

A Thomas-Fermi Approximation

Since p" is evaluated in a frame moving with local current, one may estimate €., in
the local Thomas Fermi approximation. Using this assumption, Eq. (A.12) becomes

1 <p?> 13

~ 13 Al
om K5 (A-13)

—_—

Ecorr = K

here the local Fermi energy er is given by

2

= P
er =35, (A.14)
with
3r%p 1/3
pr = hi( 5 ). (A.15)

In these expressions, we have assumed that the proton and neutron have the same

local Fermi energy.

For a lattice cell of size 1 fm~3, with local density of pg = 0.17fm"23 and Ni.,; =
80, one would obtains K ~ 14, thus the correction to collective energy would be
Ecorr & 1.7 MeV /nucleon. This is clearly a non-negligible correction. As we discussed
in Chapter 6, we have calculated the collective energy for a nucleus in its ground
state. After correcting the local energy by a term given by Eq. (A.13), one indeed

obtains a zero collective energy ( for details, see the discussions in Chapter 6).
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B Local Momentum Analysis

Another way of calculating < p2 > in Eq. (A.12) is to try to relate it in terms of

momentum p; which is known. For this purpose, we use the identity

LB = 7) =3 (7'~ 7). (A.16)

i#j i#]

Averaging over ensembles, the right hand of this equation becomes

<D B -0 >=2K(K-1)<p?> —2K(K-1)< 5" p;">, (A.17)
t#]

Using Eq. (A.3), this equation becomes

”
<Y(B =) >=2K(K 1) < p? > +2K(K —1) . P>

1#7 A-1

=2K(K—1)-—'A—1'<p’2>
~2K(K-1)<p”?>: (A.18)

in the limit of large A. Similarly, the left hand side of Eq. (A.16) has the form

<Y (Fi—-p)>= 21\.’-—12<p,> —2< > piepi > (A.19)
i#j i=1 i#i

Using the identity

<Y Pi- Py >=< Zp, >-—<Zp, (A.20)

i#]

we can rewrite (A.19) into

<Y (B -p;) >= 21{[Z<p,> K<( iz By s

1#7 i=1

=2K < ZW *;(1 Zi=tPiyy (A.21)
1=1
K )
Here the term #(Z‘f{-‘ﬂ)2 is the apparent collective energy. Equating Eq. (A.18)

and Eq. (A.21), one obtains

1 ) K )
= — A.22
Seorr = om K(K—l <Z. i - (5% =By (A-22)



181

which can be evaluated at each lattice point. This expression corrects for all spurious
collective motion coming from the Fermi motion and the thermal motion. In our
calculations, We have evaluated numerically the corrections given by Eq. (A.13) and
by Eq. (A.22), and they essentially give the same results, indicating the dominant

contribution from the Fermi motion. Further discussions are presented in Chapter 6.



Appendix B

Massive Transfer Model

In this appendix, we present the basic formula of massive transfer models which are
commonly used to estimate the excitation energy in incomplete fusion reactions. For

convenience, we start by considering reactions leading to complete fusion.

I Complete Fusion

Suppose a projectile of mass m;, with beam velocity , is fused completely with a

target of mass m;, the residue velocity @, of the fused composite system satisfies

5= el B.1
T, ——— (B.1)

Neglecting the ground state Q-values, the total excitation energy E* has the form

1 1
E*= §m1’v3 - §(mp + my)v?

=z I (B.2)

Egs. (B.1)-(B.2) are constantly used in estimation of the excitation energies for

reactions leading to complete fusion.
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II Incomplete Fusion

The massive transfer models are referred to the following assumption used in in-
complete fusion reactions. For a normal kinematics in which m, < mq, the massive
transfer models assume that a fraction, f, of the projectile mass fuses completely
with the target, with the remaining fraction, 1 — f, escaped with beam velocity. The
excitation of the composite system can therefore be evaluated from the measured

residue velocity. Under this assumption, one has

(fmy + me)v, = fmyv,, (B.3)
or
mgvu,
! = .

and similar as Eq. (B.2), the excitation energy E* are given by

me(fm, + m,) o2

fmp T

From Egs. (B.4)-(B.5), one may obtain the fraction f and the excitation energy E*

By (B.5)

once the residue velocity is measured.

Similar exercise can be performed for reverse kinematics (mp > my). In this case,

the projectile fuses with part of the target f. The expressions for f and E* are given

by

_ my(v,— )
f - myv,

(B.6)

_21., fmi(m, + fmy) 2 (B.7)

My

E* =

Using these equations, We have calculated the excitation energies from the residue
velocities predicted by BUU calculations. The results are discussed in Chapter 6 and

Chapter 7.
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116
:oll = :ot + E:;,r (614)

Here, the rotational energy E*, is estimated by

.
Erot - EI- (615)

where J is the angular momentum of the residue A, calculated by
J= 1 / (7' x p") (7', §")d®r 'dp’ (6.16)
(27h)3 Je ’ '

and 7' and p” are defined in a coordinate system centered at center of mass of the
residue. In our simulations, we choose the z — z plane as the reaction plane and
therefore the total angular momentum lies along the y axis. For the residue nucleus,
we also found that the angular momentum of the residue are nearly parallel to the y-
axis. We therefore neglect rotations about the z and y axis axis and we approximate

the rigid body moment of inertia by
I~1, = /C(a:2 + 2% pd®r (6.17)

Examples of values of I and J calculated in this approximation for % Ar+27Al collisions

were listed in Table 6.3.

After the decomposition of Eq. (6.14), the total excitation energy E* now has the

following components

E* = ‘oll + E;he + Ecomp = E:ot + E;:.r. + Ecomp + :he (6-18)

Since the rotational energy Er, is associated with the motion in the tangential di-
rection, the non-rotational energy E* . is therefore primarily associated with radial
motion. This non-rotational energy could originate from the excitation of giant res-
onances, with dominant contribution, argued by Remaud et al, from monopole oscil-

lations [Rema 88].
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Using Eqs. (6.1)-(6.18), we can explore how one may define an appropriate time
for thermal freezeout. The decomposition by Eq. (6.9)-(6.18) can also provide infor-
mation concerning the dynamics for the formation of the heavy residues. In the next
few subsections, we will use the decomposition to consider whether the rotations or

thermal instabilities place limitations on the formation of heavy residues.
B Freezeout Conditions

Since the pre-equilibrium and equilibrium emissions are both present in intermediate
nucleus-nucleus collisions, one needs to know whether the thermal freezeout is indeed
reached and whether one can define a freezeout time unambiguously. To investigate
this, we describe, in the following three subsections, three distinctive criteria used to
define the thermal freezeout time. Two of these criteria, the emission rate and the
thermal excitation energy, were found to give consistent freezeout times. The third
criterion, the quadrupole moment of the momentum distribution, did not provide a
clear signature for the freezeout time, but was not inconsistent with the freezeout

time determined from the other two criteria.

Emission Rate

In Fig. 6.7, we display the emission rate of nucleons as functions of time for ©Ar+27Al
collisions at E/A=30 MeV. The solid and open circles in the figure depicted the
calculations with the stiff and soft equations of state, respectively. The corresponding
nucleon-nucleon cross sections are indicated in the figures. For all calculations, one
observes large emission rates at t =~ 60—80 fm/c. These large emission rates reflect the
fast pre-equilibrium emission of nucleons before the system reach equilibrium. The
emission rate, at ¢ > 100 fm/c for stiff EOS, and ¢ > 120 fm/c, is significantly reduced

and changes very slowly, suggesting a slow statistical emission from the reaction
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Figure 6.7: The emission rates of *°Ar+?"Al collisions at E/A=30 MeV for impact

parameters b=1-4 fm. The solid circles are results with stif EOS and onN = 25mb.

The open circles are results with soft EOS and onxy = 50mb. The corresponding

freezeout times are indicated by the arrows (solid for stiff EOS and open for soft
w EOS). The respective lines are used to guide the eyes.
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residue. The emission at later times is modulated by the influence of macroscopic
vibrations which can be clearly seen in the Qzz plot (Fig. (6.10)). We will come
back to this point. The solid and open arrows in Fig. 6.7 indicate the freezeout
times selected by this criterion for the calculations with the stiff and soft équations
of state. These freezeout times are consistent with the freezeout times obtained from

the thermal excitation energy of the residues described below.

Thermal Excitation Energies

In general, one expects the temperature or the thermal excitation energy of a hot
equilibrated nucleus to decrease with time via evaporative cooling. Assuming this
evaporative cooling is properly described by sequential decay calculations like those
described in chapter 4, the emission temperature should depend on the maximum
thermal energy at the end of the preequilibrium stage of the reaction. This provides
a second criterion for choosing the freezeout time. In Figs. 6.8-6.9, we display the
various contributions to the excitation energy for “*Ar-+27Al collisions at E/A=30
MeV assuming a soft EOS (Fig. 6.8) and a stiff EOS (Fig. 6.9), respectively. Several
features of the reaction dynamics are immediately apparent. First, from the time
dependence of potential energy (bottom curve), it is clear that the system undergoes a
compression during first 40 fm/c, and afterwards an expansion between 40 fm Je<t<
80 fm/c, and finally a relaxation to a more tightly bound state at 120 fm/c (100 fm/c
for stiff EOS). The binding energy E;n(T = 0) (third curve from the bottom) exhibits
a similar behavior at a smaller scale. Second, the energy of free particles increases
rapidly after ¢ > 40 fm/c, suggesting much of the collective energy E.u is taken
away by particle emission. Finally, the thermal energy E},., which is of our particular
interest, exhibits two maxima: one global maximum at ta 40fm/c and one local

maximum at ¢z, = 120 fm/c (¢ = 100 fm/c for stiff EOS). The maximum at t~
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Figure 6.8: Decomposition of the various excitation energies as a function of time for
“°Ar+%"Al collisions with the soft equation of state at E/A=30 MeV, b=0 fm. The
bottom line is the nuclear potential energy. From this bottom line up are,respectively,
Coulomb energy (difference between the second and the bottom lines), Fermi energy
required by the Pauli exclusion principle (difference between the third and second
lines), kinetic energy of emitted particles (difference between the fourth and third
lines), collective energy of bound nucleons (difference between the fifth and fourth
lines) and thermal energy (difference between the top and fifth lines). The freezeout
time is indicated by the dotted line.
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Figure 6.9: Decomposition of various excitation energies as a function of time for
“OAr+*7Al collisions with the stiff equation of state at E/A=30 MeV, b=0 fm. The
bottom line is the nuclear potential energy. From this bottom line up are,respectively,
Coulomb energy (difference between the second and the bottom lines), Fermi energy
required by the Pauli exclusion principle (difference between the third and second
lines), kinetic energy of emitted particles (difference between the fourth and third
lines), collective energy of bound nucleons (difference between the fifth and fourth

lines) and thermal energy (difference between the top and fifth lines). The freezeout
time is indicated by the dotted line.
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40fm/c is an artifact of the initial momentum distributions, in which the longitudinal
velocities of the projectile and the target nuclei cancel each other, causing a minimum
in the computation of the collective energy. At the second maximum, the initial
'preequilibrium stages have finished and residue has already contracted to a more
compact spacial configuration and fhe thermal energy at its local maximum. After
this time, the thermal energy gradually decreases. Due to the evaporative cooling, we
take the freezeout time to be the time of the second maximum in the thermal energy.
This time is consistent with the time determined by the change in the nucleon emission

rate shown in Fig. 6.7.

It is interesting to note that the freezeout time is largely determined by the re-
laxation time of the surface of the residue. Residues calculated with stiff equation
of state, which has a larger restoring force and a larger sound speed, contracts to a
compact configuration more rapidly’than the residues calculated with soft equation of
state. The excitation energies left in the residues are higher for residues characterized

by a stiff EOS because they have less time for preequilibrium cooling.

Momentum Distributions

A third measure for defining the freezeout time may be obtained by the quadrupole

moment of momentum distribution [Cass 87, Baue 87]:

Qaalt) = gz [ Erdp(2p - 1t~ B 150 (6.19)

This criterion is motivated by the belief that a system in thermal equilibrium should
satisfy QZZ = 0. To see how this variable changes with time, we plot Qzz in the
bottom panels of Fig. 6.10 as a function of time for “°Ar+2"Al collisions at b=0 fm. ‘
For comparison, we show the emission rates in the top panels. The left hand panels

show results obtained with the stiff equation of state. The right hand panels show
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Figure 6.10: The emission rates of nucleons (top panels) and the quadrupole mo-
mentum distributions @7z (bottom panels), defined by Eq. (6.19), for *Ar+27Al
collisions at E/A=30 MeV, b=0 fm. The left panels (right panels) show the results
for the stiff EOS (soft EOS). The vertical dot-dash lines indicate the freezeout time
discussed in the text. The dashed lines in the bottom panels include the calculations
for all nucleons, while the solid lines include only nucleons in the bound residues.
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those from the soft equation of state. The dashed lines include all nucleons while
the solid lines include the nucleons bound in the residual nuclei. Clearly at the ¢ fre
defined previously, Qzz is significantly reduced from its initial value at t=0. However,
the values of Qzz éontinue to oscillate about zero for a long time after thérmal
freezeout, reflecting the existence of macroscopic quadrupole vibrations. Such long
term collective vibrations render Qzz less useful in defining the thermal freezeout

time.

In summary, a consistent freezeout time was obtained by checking three different
variables. In the next few subsections, we will study the excitation energies and the

angular momenta of residual nucleus at freezeout.

C Collisions at E/A=30 MeV

In Fig. 6.11, we show different contributions to the excitation energies of residues at
freezeout as functions of the impact parameter for °Ar+ 27 Al collisions at E/A=30
MeV assuming alternatively the stiff (lower panel) or the soft (upper panel) equations
of state. ( A similar analysis was shown in lower right hand panel of Fig. 6.3 for
“Ca+*Ca system at E/A=40 MeV assuming stiff EOS.) The solid symbols in the
figure represent the calculations in which a single heavy residue is observed in the
final state. The open symbols represent calculations at larger impact parameters
in which the system breaks up into projectile-like and target-like residues at a later
time. The total excitation energy E* (solid circles), calculated from Eq. (6.10)
increases slightly with impact parameter. This increase can be partly attributed to
the collective rotation. The crosses in Fig. 6.11 depict the excitation energy after
the rotational energy E;,,, see Eq. (6.15), has been subtracted. The remaining part,
E* — E},,, becomes constant for the central collisions where heavy composite residues

were formed. We note here that the rotational energy E7,,, indicated by the difference
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Figure 6.11: Decomposition of the predicted excitation energy at freezeout for differ-
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