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ABSTRACT

NUCLEAR MODELS FOR BETA AND DOUBLE-BETA DECAYS

BY

LIANG ZHAO

The 2v3 decay matrix element of *Ca is studied with a large-basis shell-model
calculation. The theoretical and experimental ,3' and B* spectra and their relation
to 2v P are discussed. A new empirical effective interaction is found to give the best
agreement to A~ and Bt spectra with the effective Gamow-Teller operator &t=0.77ct.
Our shell-model prediction of T}/,=1.9x10' yr differs by a factor of two from present

experimental limit of T/, > 3.6x10'? yr.

The validity and accuracy of the pnQRPA as a model to study 8% and 38 decay
are examined by making a comparison of the pnQRPA and the full-basis shell-model
calculations for the fp shell nuclei. Our comparison includes the total decay matrix
elements, the relevant strength distributions and coherent one-body transition densi-
ties. The coherent one-body density is introduced in order to study the single-particle
state contributions to the total Gamow-Teller strength. Discrepancies between the
two models are found. The pnQRPA overestimates the total 8% and 38 matrix el-
ements. There are large disagreements in the shape of the spectra as well as in the
coherent one-body transition densities between the pnQRPA and shell-model results.

Empirical improvements for the pnQRPA are discussed.

The correlated BCS wave function is introduced by first-order perturbation theory,

in which the four quasiparticle correlations are taken into account. The extended



BCS equation is derived. The applications of the extended BCS have shown some

improvements compared to the standard BCS theory.

An extended pnQRPA equation is developed based on the extended BCS theory
and applied to study 8% and §8 decay. The calculations show that the disagreements
between the pnQRPA and the shell model in the total B(GT+) strengths and 83
decay matrix elements have been reduced, but those in the shape of the spectra have

not yet been improved.

Other possible improvements for the pnQRPA are discussed. A second pnQRPA
equation is developed by including two and four quasiparticle excitations in the
phonon creation operator. An extended second pnQRPA equation is obtained by
combination of the second pnQRPA and extended pnQRPA equations. They should
provide more accurate methods for studying the transition of the one- and two-body

charge exchange modes.
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Chapter 1

Introduction

1.1 Beta and Double-Beta Decays

The beta () decay process was one of the first types of radioactivity to be observed
and still provides new valuable insight into weak interaction and nuclear structure. In
this process, the 5 unstable nucleus can become more st;able by converting a proton
( neutron ) within the nucleus into a neutron ( proton ). So the mass number of the
nucleus, A, remains the same but the nuclear charge number, Z, changes by one unit.
The 3~ decay involves emission an electron and an antineutrino, (4, Z) — (4, Z+1)+
e~ +7, and A% decay involves a positron and a neutrino (4, Z) — (4,2 —1)+e* +v.
The B decay mechanism is well described by the standard weak interaction theory.
The beta transition probability T'(8) depends on two different nuclear matrix elements

and can be written as
T(B) x G} B(F) + G} B(GT), (1.1)

where Gv and G, are the coupling constants associated with the vector part and the
axial-vector part of charge-current, respectively. B(F) is the Fermi transition matrix
element related to the isospin operator. B(GT) is the Gamow-Teller transition matrix

element associated with the Pauli spin operator as well as the isospin operator.

1



Nuclear double-beta (33) decay phenomena is a rare transition between two nuclei
of the same mass number having a change of two units of nuclear charge. In cases of
interest, ordinary single beta decay is forbidden because of the energy conservation
or because of the very strong suppression due to a large angular momentum mis-
match between the parent and daughter states. There are two modes of double-beta

decay [Hax 84, Doi 85, Mut 88, Ver 86],

2vmode: (A,Z2)— (A, Z+2)+2 +20 (1.2)

Ovmode: (A,Z) > (A, Z+2)+2e". (1.3)

The first one is called two-neutrino (2v) 88 decay, which involves the emission of two
antineutrinos and two electrons (2v mode), it occurs in second order of the standard
weak interaction theory. Another is called neutrinoless (0v) 38 decay, which involves
the emission of two electrons and no neutrinos. This process violates the lepton
number conservation and requires the neutrino to be a Majorana particle and have
a nonzero mass and/or a nonstandard right-ha,nd~ coupling. It occurs in the theories

beyond the standard weak interaction model.

The 2v3f decay has been observed in recent experiments [Ell 87, Avi 91, Eji 91,

Tur 91], but the Ov38 decay has not yet been observed.

There are two important nuclear models which can be applied to the study of the
B and B decays which occur in nuclei, the shell model and the pnQRPA model. We

will briefly discuss them in the following sections.

1.2 Shell Model Theory

The nuclear shell-model theory was introduced by Mayer and Jensen 40 years ago [May 55].

The basic assumption is that each nucleon (proton and neutron) moves independently



3

in a potential that represents the average interaction with the other nucleons in the
nucleus. This poténtial is the combination of a central part and the spin-orbit cou-
pling term. The energy levels oBtained by solving the Schrédinger equation for a
nucleon in the potential are given in Figure 1.1. The energy levels in the column
(a) and (b) are obtained by using harmonic-oscillator and Wood-Saxon potentials,
respectively, where the spin-orbit coupling term has not been included. s, p, d, f, etc
stand for orbital momentum! = 0,1,2,3, etc. The column (c) in Figure 1.1 illustrates
the level splitting due to addition of spin-orbit coupling term. Each level in column
(c) is called a single-particle state and is labeled as (nlj) in this thesis, where n is the

radial quantum number and j =1 + s.

The ground state in the simple shell model is assumed to be the configuration in
which the energy levels are filled consecutively by the nucleons with the constraint
of the Pauli principle. For example, the configuration of the *8Ca ground state is
that the 28 neutrons have filled the single-particle states up to 1f7/, shell, and the
20 protons have filled the single-particle states up to 1ds/; shell. *Ca is a closed
shell nucleus. The schematic representation of *8Ca is shown in Figure 1.2 (a). For
the ground state of %°Ca, the configuration in the simple shell model is that the
valence neutron occupies the 2ps/, state outside of the 43Ca closed shell as shown in
Figure 1.2 (b). So the ground state spin should be J* = 3/2~. The success of this
simple model is that there are niany nuclei whose ground states properties agree with

these assumptions.

In order to simplify our discussions for the excitations in the simple shell model,
we only consider two single-particle states 1f7/; and 2p3/;. Then the excitations of
*8Ca can be constructed by removing one nucleon from 1f7/; to 1ps/; state, forming

the one-particle-one-hole configurations. For 4°Ca, the excitations are two-particle-
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Figure 1.1: (a) The single-particle energies of a harmonic-oscillator potential. N is
the oscillator quantum number. (b) The single-particle energies of a Woods-Saxon
potential. (c) The single-particle energies of a Woods-Saxon potential plus spin-orbit
coupling. Each state is labeled by (nlj). (d) The numbers (25 + 1).



one-hole configuration. The schematic illustrations of these excitation configurations

are presented in Figure 1.2 (c) and (d).

In present shell-model theory, the nuclear structure properties are assumed to be
determined by the valence nucleons which simultaneously occupy several different,
partially filled, single-particle states within one or two given major shells. For light
nuclei ( A< 40), the major shells are the oscillator shells indicated by the N labels
on the left-hand side of Figure 1.1. For heavy nuclei (A> 40), the major shells usu-
ally include the addition of one high j-state from the (N + 1) oscillator shell. This
procedure is called the large-basis shell-model calculation. Many multinucleon con-
figurations are taken into account in this calculation. For example, the ground state
configuration of **Ca in the full fp shell (1f7/2,2ps/2,1f5/2 and 2py/3) is considered as
the linear combination of all possible configurations in which eight neutrons simulta-
neously occupy all states in the fp shell. The label |nyn;nang > used below indicates
that n; neutrons occupy the 1f7/;, ny the 2ps5, n3 the 1f5/;, and ny the 2f;/,. The
Pauli principle and summation ny 4+ ny + n3 + ng4 = 8 must be satisfied. Then the

wave function of the %Ca ground state is expanded as

|**Ca,0t > = ;1]8000 > +a2|6200 > +a3|5300 > +a4[4400 > +--- +

a72|0242 > +a73|0062 >, (14)

with 3°; a? = 1. There are 73 terms (partitions) in Eq. (1.4). Some terms are missing
due to the angular momentum coupling [Etc 85]. Within this set of partition, the
number of independent states with J = 0 is 347, and the number of independent
states with M = 0 is 12022. These numbers are referred to the J-dimension and
M-dimension, respectively. In the simple shell model, all coefficients in Eq. (1.4) are

zeros except a; = 1. The corresponding J— and M — dimensions are both equal to 1.

The large-basis shell-model calculation includes three steps, (1) set up the single-
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Figure 1.2: Schematic representation of simple shell-model configurations (a) *Ca
ground state (close shell). (b) *°Ca ground state. (c) “*Ca excitation state. (d) **Ca
excitation state.
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particle basis, (2) construction of the Hamiltonian matrix, and (3) diagonalization
of this matrix. However, carrying out the large-basis shell-model calculation requires
extensive numerical computation, so better numerical methods and modern computer

facilities are very important.

The phrase of the full-basis shell-model calculation will refer to a large-basis shell-
model calculation in which all possible configurations in a major shell are included.

The full-basis shell model can be considered as an exact theory within this major

shell.

However, the dominant problem in the large-basis shell-model calculations is that
the dimension of the Hamiltonian matrix increases rapidly when the single-particle
basis increases. For example, the dimension of J™ = 0% of *8Ca ground state is one
in the 1f7; shell, 14 in the full f shell ( 1f7/;,1fs5/2 ), and 347 in the full fp shell
( 1fr/2,2p3s2,1f5/2,2p12 ). In medium and heavy nuclei ( A>50 ), the dimensions
are extremely large. For example, in }3*Sng,, if we allow the 12 valence protons
to occupy 1gv7/3,2ds;2,2d3/3, 38172, 1h11/; states, and 10 valence neutrons to occupy
1hos2, 2 fr/2, 2 f5/2, 3P3s2, 3P1/2, 1413/2 states. the dimension of J™ = 0% matrix is 41,
‘654, 193, 516, 917 [Iac 87]. This is of course completely beyond current computer ca-
pability. Thus present shell-model calculations for heavy nuclei are performed within
very truncated model spaces. In the extreme limit, they may go back to the simple
shell model. Because of the difﬁculties in carrying out the large-basis shell-model
calculation, the RPA, the QRPA and the pnQRPA, which are discussed in the next

section, are frequently employed to study the properties of medium and heavy nuclei.

Another important aspect in the shell model is the effective interaction, which
can be obtained from the theoretical calculations [Rin 80] or generated by fitting the

known experimental data [Bro 88].



Most experimental data for light nuclei ( A<40 ) can be successfully explained
and even predicted by the large-basis shell-model calculations [Bru 77, Law 80]. For
example, the Gamow-Teller transition strengths of the full-basis shell-model calcula-
tions in the sd shell (1ds/;,2381/; and 1d3/,) are in good agreement with those in the

experiments [Bro 85, Bro 88].

1.3 pnQRPA Theory

In this section, we discuss the proton-neutron Quasiparticle Random Phase Approzi-
mation (pnQRPA), which is widely used for 38— and 38— decay calculations in heaver
nuclei. The method of the pnQRPA is totally different from that of the shell model.
In order to understand this theory, it is useful to understand the following theories and
their relations: the Tamm-Dancoff Approximation ( TDA ), the Random Phase Ap-
proximation ( RPA ) and the Quasiparticle Random Phase Approximation ( QRPA ).
Their mathematical derivations can be found on the textbook of many-body problem

such as [Row 70]. Here we only concentrate on the physical picture.

First, we qualitatively describe the TDA and RPA models for ¥¥Ca. The TDA
ground state is the *Ca closed shell shown in Figure 1.3 (a), and the excited states
are constructed by destroying a neutron in 1f7; closed shell, creating another one
in the empty states above 1 fz/2 shell, and forming one-particle-one-hole ( 1plh )
configurations, see Figurel.3 (c). Thus we find the TDA is the same as the simple
shell model shown in Figure 1.2 (a) and (c). In the RPA, the ground state is not
pure closed shell, but has mixtures of some types of 2p2h, 4p4h, - -, components as
shown in Figure 1.3 (b). The eﬁcitations of the RPA can be obtained by removing
one neutron from the 1f7/; to other states above 1f/, like the TDA, and also can be

constructed by destroying a neutron above fr; states and creating a neutron in f7/,



state, see Figure 1.3 (d). The RPA theory can not be simply linked to the simple

shell model or large-basis shell model.

For the even-even nuclei away from closed shells, the experimental results have
suggested that the ground state may be dominated by pairing correlations [Row 70,
Rin 80). The BCS ( Bardeen, Cooper and Schrieffer ) theory assumes all nucleons in
the ground state to be paired. ( BCS theory is discussed in more detail in Chapter
5 ). In terms of the quasiparticle concept from the Bogoliubov transformation, the
BCS ground state is a vacuum with respect to the quasiparticle. The Quasiparticle
Tamm-Dancoff Approximation ( QTDA ) suggests that the excitations are obtained
by creating two quasiparticles from theh BCS ground state. Similar to the relation
between the TDA and RPA, the QRPA assumes the ground state configuration is
the quasiparticle vacuum plus mixtures of some types of four quasiparticle, eight
quasiparticle, ---, components. Thus the exéitations in the QRPA are performed
by creating and destroying two quasiparticles from the QRPA ground state. In the
TDA, RPA and QRPA, the excitations and ground states are with respect to the

same nucleus.

Now we generalize the TDA to the pnTDA in order to study the charge-exchange
processes. Starting at the *8Ca closed shell, as an example, the excitations in the
pnTDA are constructed by transferring a neutron from the 1f7/, single-particle state
to a proton which can occupy all empty proton states including the 1f7/;. So the con-
figuration is the proton-particle neutron-hole shown in Figure 1.4. Then the transition

matrix elements of the charge-exchange operator can be calculated in the pnTDA.

One can achieve the pnQRPA model from the pnTDA, along the line TDA —
RPA — QRPA. The basic idea is that the pnQRPA excitations, which contribute to

the charge-exchange mode, are obtained by creating and destroying one quasiproton-
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ground state (close shell). (b) pnTDA excitation state.
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quasineutron pair from the even-even nucleus ground state. The quasiprotons and
quasineutrons are expressed in terms of the Bogoliubov transformations. The even-
even nucleus ground state is assumed to be a quasiparticle vacuum ( BCS ) with
the addition of mixtures of some types of four quasiparticle, eight quasiparticle, - -,

components, where the quasiparticle could be the quasiproton or quasineutron. The

transition strengths in the pnQRPA describe the charge-exchange processes.

The advantage of the TDA, RPA, QRPA, and pnQRPA is the small dimension
involved. For example, the dimension of J™ = 0% matrix in the QRPA is 4 for the fp
shell nuclei. We note that all theories discussed here are approximation models. The

accuracies of these theories should be examined.

1.4 Beyond RPA

Improvement of the QRPA and pnQRPA may be an important subject in the field
of nuclear structure theory as well as in the many-body problem. Since derivation
of the QRPA is similar to that of the RPA [Row 70, Rin 80], it is useful to review
the development of the RPA theory. The physics picture of the RPA was discussed
in section 1.3. The mathematical derivation of RPA equation can be achieved from
the equation of motion method [Row 70, Rin 80], time-dependent Hartree-Fock the-
ory [Row 70] and the Green Function method [Fet 71, Bro 71]. We will concentrate
here on the equation of motion method because it is the most appropriate for the

extensions we will develop [Row 70, Rin 80].

The equation of motion corresponds exactly to the full many-body Schrédinger
equation if and only if the ground state in the equation of motion is the true ground
state and the phonon creation operator Q! exhausts the whole Hilbert space (i.e.,

1plh, 2p2h, 3p3h, and so on). For the RPA theory, there are two important as-
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sumptions. Only one-particle-one-hole (1plh) creation and destruction operators are
used in the phonon creation operator and the Hartree-Fock (HF) ground state is em-
ployed to calculate the matrix elements in the RPA equation. The HF ground state

is obtained by the mean field.

Recently three ideas for improving RPA have been suggested [Dro 90]. One of
them is the second RPA [Yan 83], in which the phonon creation operator is expanded
up to 2p2h creation and destruction operators and the HF ground state is retained.
Several numerical calculations have been made for giant resonances in the second
RPA theory. However, the second RPA is still missing some types of correlations in
the ground state [Tak 88]. Another idea is the extended RPA which uses an improved
HF wave function to calculate the RPA matrix elements [Ada 88]. This improved HF
wave function consists of the usual HF ground state plus 2p2h correlation correc-
tions. The third idea combines these previous two and is called the extended second
RPA [Tak 88]. It not only includes the 2p2h expansions in the phonon creation op-
erator similar to the second RPA, but also uses an improved HF wave function as
a ground state. Then the extended second RPA contains all the correction terms
up to gecond—order perturbations in the two-body interaction. These second-order
corrections are important for the more precisely measured magnetic moments and
B-decay matrix elements [Ari 87, Tak 84]. Improvements for the RPA suggest the
generalization to the QRPA and pnQRPA which we will develop in Chapter 5, 6, 7.

1.5 Thesis Organization

The goals of this thesis consist of three aspects: (1) study of the 8 and 88 decay
of mass A = 48 nuclei with the large-basis shell-model calculations, (2) examina-

tions of the validity and accuracy of the pnQRPA for A+ and 8 processes, and (3)
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improvements and extensions of the pnQRPA model.

In Chapter 2, we study the 8~ and S+ Gamow-Teller transition strength with the
large-basis shell-model calculations for the nuclei *Ca and 8Ti, respectively. The
agreements between the theoretical results and the experimental data are examined.

The half life of two-neutrino double-beta decay of 4Ca is calculated as well.

Since the pnQRPA is an approximation theory as we mentioned in section 1.3, we
examine the validity and accuracy of the pnQRPA theory as a model for 8+ decay
and double-beta 38 decay in Chapter 3 and Chapter 4, where the comparison of
the pnQRPA and full-basis shell-model ;alculations ( exact model ) are made. We
conclude that there are some correlations which are important in 8 and 83 decay
but are not included in the pnQRPA. Some empirical improvements for the pnQRPA

have been suggested and tested.

In Chapter 5, the BCS theory for the proton-neutron system is reviewed. The
correlated BCS wave function is introduced by incorporating the quasiparticle cor-
relations with first-order perturbation theory. An extended BCS is derived and is

applied to study the nuclear ground state properties.

In Chapter 6, we develop an extended pnQRPA equation with the correlated BCS
ground state. The application of the extended pnQRPA is presented and compared
to the pnQRPA and shell-model calculations. Some improvements over the pnQRPA

are found.

In Chapter 7, we present the formalism for further possible improvements for
the pnQRPA equation. The second pnQRPA and the extended second pnQRPA
equations are derived. They should provide more accurate methods for studying the

transition of the charge-exchange modes.
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The summary and discussions are given in Chapter 8. We derive the QRPA
equation in Appendix A and discuss the relation between the QRPA and pnQRPA in
Appendix B. The second QRPA and coherent one-body transition density are given
in Appendix C and D, respectively. In Appendix E, the BCS and the extended BCS
theories are derived in angular momentum uncoupled space. In Appendix F, we

discuss the spurious state in the BCS and the extended BCS theories.



Chapter 2

Shell-model Calculation for

Two-neutrino Double-beta Decay
of 48Ca

2.1 Introduction

The theory and experiment of double-beta (88) have attracted greatly the elemen-
tal particle and nuclear physicists for a long time. It is an important process for
examining the character of the neutrino and for testing the theories beyond the stan-
dard weak interaction theory. On the other hand, the calculations for the 88 matrix
elements provide a strong challenge to nuclear physicists, because 3 decays which
are experimentally accessible occur in medium and heavy nuclei where we are still
not clear how to precisely take into account the ground state correlations as well as

calculate the excitations.

In order to analyse the experimental results to determine the character of the
neutrino in B8 decay, the precise calculations of the nuclear matrix elements are
required. For example, the neutrino masses and the right-handed current coupling
constants, which can be deduced from the experimental neutrinoless decay half-life,

depend decisively on the relevant nuclear matrix elements which have to be calculated

16
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theoretically [Hax 84, Doi 85, Mut 88],

However, in particular, the agreement between the expériment and theory for the
standard 2v mode is one of the prerequisites for a reliable interpretation of the more
exotic Ov mode. In this Chapter, we study the 2v38 decay of 48Ca which has the
largest double-beta decay Q-value of any nucleus and where the large basis shell-model

calculations are possible. The mass spectrum of A=48 is given in Figure 2.1.

In fact, the lowest states ( 6*,5% and 4% ) of 48Sc are located in the 8Ca’s Q-
value window [Alb 85], but these single 8 decays are highly forbidden because of the
angular momentum mismatch. Their half-lives are estimated to be about a factor of

10 times that of 2v33 decay [War 85].

There are serval difficulties with previous shell-model calculations for 2v88 decay
of ¥Ca. In cases where intermediate states in ®Sc were considered explicitly the fp
shell-model space was highly truncated [Tsu 84, BAB 85, Sko 83, Ver 86], in other
cases where the truncation was less severe the intermediate states were not calculated
and the closure approximation was used instead [Hax 84, Ver 86, Zam 82]. Also the
effective interactions used were not always well tested with regard to the nuclear
spectra. In a more recent calculation [Oga 89], a new method was used to implicitly
take into account the spectrum of the intermediate 1+ states exactly. However, we
will emphasize below Qhe importance of the testing the interactions with respect to
the explicit intermediate spectrum. In the following, we calculate the nuclear matrix
elements for 2084 decay of **Ca and the related 3~ and 8t decay in the fp shell
space with a much larger basis than previously used and with a new and more reliable

effective interaction than previously used.
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Figure 2.1: Mass spectrum for A=48 nuclei. The double-beta decay is a possible
decay mode for the *Ca ground state. See text about the single 3~ decay of 43Ca.
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2.2 Model Spaces and Effective Interactions

Because of the present computational limitations, a truncated shell-model basis is
used in our calculations. The truncated space in the fp shell is defined by the set of
partitions ff/;" (P3/2f5/2p172)". In this work, the partitions assumed for 48Ca,(O"',T=4),
8S¢(1*,T=3) and *Ti(0%,T=2) are (n < 4), (n < 5) and (n < 4), respectively. The
n < Nmay means that n = 0, -+, nmay are allowed. The corresponding J-scheme
dimensions are 133, 5599 and 3613, respectively. This is an order of magnitude‘larger
basis than has been used in previous calculatlons Our calculations were carried out
with the shell-model code OXBASH [Etc 85] on a VAX computer. The most complete
fp shell calculation should be based on the full-basis space (n < 8), but at present this
is impossible because of the large dimensions involved. For example, the J-scheme
dimension for the **Ti ground state is 10872 in the full-basis space. It is at edge of our
current computer capability. In later discussions, we will argue that our truncation

is a good approximation with respect to the full-basis space.

The model space for the intermediate nucleus (**Sc) should include all states which
can be reached by a one-body operator from the initial and final nuclei. Thus for our
initial (**Ca) and final (**Ti) states which have n < 4, we include n < 5 configurations
in the intermediate system. Then the B(GT) from the “Ti or “4Ca ground states

satisfy the sum rule,
Y " B(GT") - Y B(GT*) = 3(N - Z), (2.1)

where B(GT) = (< fllot|li >)?/(2J; + 1).
The effective interactions used in this Chapter are called MH [Mut 84] and MSOBEP

[Ric 91). The MH interaction has a long history. McGrory et al. [McG 70] started

with the renormalized Kuo-Brown interaction [Kuo 68] and changed several two-body
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matrix elements (TBME), which involved the f7/2 and/or P32 orbits. Later McGrory
et al. [McG 81] added 50 keV to the fr72 — fs/2 diagonal TBME and introduced
new single-particle energies. Based on Ref. [McG 81], Muto and Horie shifted the
monopole of the inter-shell matrix elements < Jr123|V|fspaj >T=07 (U = P32, P1/2

and f7/;) matrix elements by —0.3 MeV [Mut 84].

MSOBEP is a new effective interaction based on a modified surface (MS) one-
boson exchange potential (OBEP) [BAB 88]. Modified refers to the addition of
monopole (infinitely long range) terms to the central part of the potential, and surface
refers to an assumed density dependence which empirically is surface peaked. This
MSOBEP potential has been successful in reproducing the sd-shell energy levels in
terms of a few parameters associated with the strengths of the various OBEP chan-
nels. Richter et al. [Ric 91] have recently refit the parameters of this potential to 61
energy level data in the lower part of the fp shell, and this is the new interaction

which we employ in the present work.

2.3 Calculations and Discussions

In this section, we will discuss the results for the double-beta decay matrix element
of ¥Ca. At first we introduce the effective Gamow-Teller operator based on previous

beta decay and (p,n) reaction studies [Bro 88]
& =0.770. (2.2)

This is used because experimental B(GT) strengths are uniformly 30%~50% less than
the shell-model calculations. The missing strength can be explained by a combina-
tion of the coupling to a A-particle-N-hole configurations [Goo 81, Boh 81, Ari 87,
Tow 87], and to the admixtures of 2p-2h configurations [Ber 82, Ari 87, Tow 87].
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For purposes of discussion, we introduce the matrix element for 2v34 decay,

Em = < 0f|lat-|]1f >< 1E||6t-) |0} >
Mor(En) = Y M3y = L nZ - _m —,

(2.3)

which is a function of the 1+ excitation energy E,, in *Sc. Eg = To/24+AM, where T, o
is the Q-value for #8 decay of “*Ca and AM is the mass difference between *3Sc and
“*Ca, To=4.27 MeV and AM=—0.277 MeV [Wap 85]. The total matrix element for
2v3B is given by MZ4 = Mgr(E,, = co). The Fermi transition contribution vanishes
when isospin is conserved. An estimate of its contribution with isospin-mixed wave

functions indicates that it is small and can be neglected [BAB 85]. The half life is

given by
L gmz, (2.4)
T1/2 GTI » .

where G is related to fundamental constants and the phase space integral [Mut 88].
In fact, G depends somewhat on the GT strength distribution [Mut 88, Tsu 84] as
well. Since the strength distribution of [Tsu 84] is close to ours, we use a value of

G=1.10x10""" yr~*(MeV)? deduced from the first row in Table 2.1 of Ref. [Tsu 84].

The closure approximation employed in the earlier calculations is defined by

Em
Beors(Em) = 3 < 0fll5t 11} >< 1} |l5t7]j0f >= 3 < 07 llom-dutrt; 110} > ,(2.5)

m=1

and
BcLs
2 — -, 2
Mgr(cls) = <E,>+E, ( 6)

where Bgrs = Bers(Em = 0o). In this approximation, Bors does not depend on the

intermediate states. Estimates for the average energy < E,, > of the 1+ states in 48Sc
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Figure 2.2: Mg1(E,,) as a function of Em. The first Mgr(Ey,) is fixed at Fy=2.52
MeV. In (a), the solid line is obtained from the MSOBERP interaction, and dashed
line from the MH interaction. The truncation for both curves is (D: n<4 for 48Ca and
“®Ti, n< 5 for *8Sc). '(b) shows the results for the MSOBEP interaction at different
levels of truncation for (*Ca, “®Sc, *8Ti): A (n=0, n< 1, n=0); B (n<1, n< 2, n<1)
and C (n<£2, n< 3, n<2).
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v

were made to obtain M1 (cls) [Hax 84]. These previous estimates can be compared

with exact results, given by the comparison between MZ4 and M2 (cls)

(2.7)

The calculated matrix elements Mgt(E,,) as a function of E,, for the MH and
MSOBEP interactions are shown in Fig 2.2(a). There are about 300 eigenstates in
each curve from 2.52 MeV ~ 15 MeV. The Mg1(En) become negligibly small after
about 12 MeV even though there are still many 1+ states (over 5000) above this

energy in the calculation.

To understand the A3 matrix elements, we examine the 8~ and gt épectra. The
theoretical B(GT~) strengths vs E,, are shown in Figure 2.3. The experimental
distribution in Figure 2.3(c) represents the strength above the background line in
Figure 1 of [And 85]. There is additional strength in the background between 4.5
and 14.5 MeV not shown in Figure 2(c) but indicated in the numerical comparisons
made in Table 2.1. There may be more strength in the background above 14.5 MeV
which we will comment on latter. The experimental spectrum in Figure 2.3(c) was
obtained by the fitting the experimental cross section to a series of Gaussian peaks
and then converting the cross section in each peak into a Gamow-Teller strength
( [And 85] and B.D. Anderson, private communication). Because the experimental
measurement has a finite resolu.tion, the theoretical B(GT~) spectra are smoothed
by a Gaussian. The B(GT-) spectrum with a high resolution (FWHM=100 keV)
is shown in Figure 2.3(a) for the MSOBEP interaction. The low resolution spectra
for the MSOBEP (solid line) and MH (dashed line) interactions shown in Figure 2.3
(b) was obtained with FWHM=400 keV. One normalized factor is introduced in
Figure 2.3 to make the areas proportional to the B(GT~) strength. The B(GT-)

values extracted from the (p,n) data are compared with the theory in Table 2.1.
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Table 2.1: Summary of the B(GT~) and B(GT*) values obtained from the experi-
ments and compared to the theoretical calculations with the MSOBEP and the MH

interactions.

E, Experiment® MSOBEP MH
(MeV)
2.52—3.5 1.30 1.32 1.24
B~ | 3.5-14.5 8.61+2.86? 12.31 12.39
: 16.8(T=4) 0.45 0.42(0.62)° 0.72(0.73)°
2.52 0.07 0.07 0.15
Bt | 3.0-6.0 0.49 0.50 0.51
> 6.0 ? 0.03 0.10

2) The experimental B(GT~) and B(GT*) strengths from [And 85] and [AIf 91).

b) The B(GT) in the experimental background in the region of 4.5 <F,,<14.5MeV [And
85).

©) The first number is the strength in the single strongest T=4 state whereas number in the
bracket includes the additional strength from small states 1500 keV on either side of the
strongest state.

For the broad peak between 4.5 ~ 14.5 MeV, the minimum experimental value of
8.61 corresponds to the spectrum in Figure 2.3(c). An additional amount of 2.86 was

estimated to be in the background not shown in Figure 2.3(c) [And 85].

The theoretical and experimental shapes are qualitatively the same as well as the
B(GT‘) strength values themselves (see Table 2.1). But quantitatively there are
some interesting differences which indicate a preference for the MSOBEP over the
MH intera.ct;ion. In the pure j-j coupling model, the first 1* excited state in *Sc
can be understood as a (7 fy/5v fr/2™!) particle-hole configuration. The theoretical
calculation based on the MSOBEP interaction and the experimental data are both in
good agreement with this sixhple picture. But for the MH interaction, this particle-
hole state is the second 1+ excited state located at 3.13 MeV. The first 1+ of 48Sc

in the MH calculation has a negligibly small B(GT~) value. This state, however,
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Figure 2.3: The B(GT") spectra for *Ca—*Sc. The high resolution spectrum (100
keV) obtained with the MSOBEP interaction is shown in (a). The low resolution spec-
tra (400 keV) obtained with the MSOBEP (solid line) and MH interaction (dashed
line ) are shown in (b). The effective operator defined in Eq.(2.1) is employed in
our calculations. The experimental B(GT-) from [And 85] and B.D. Anderson (pri-
vate communication) is presented in (c). The hatched area indicates the uncertainty
resulting from subtracting the Fermi strength in the 0*(T=4) state at 6.8 MeV.
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Figure 2.4: The B(GT*) values for “Ti —4Sc. The experimental values from [Alf
91] are compared to the results obtained with the MSOBEP and MH interactions.
The effective operator defined in Eq. (2.1) is employed in our calculations.
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has a relatively large overlap with “6Ca plus a deuteron-cluster configuration, which

explains why the state comes low in energy.

The total B(GT~) strengths in T=4 states are 0.78 and 0.77 for the MSOBEP
and MH interactions, respectively. For the MSOBEP interaction, only B(GT~)=0.42
contributes to the single state at 16.1 MeV, the rest is spread between 15 ~ 20 MeV.
( see Figure 2a ). But for the MH interaction, most of the B(GT~) strength (0.72)

is in a single state at 15.4 MeV. Thus comparison with experiment again favors the

MSOBEP interaction ( see Table 2.1).

- The 3* strength distribution and total strengths for theory and experiment [Alf 91]
are compared in Figure 2.4 and in Table 2.1. There is the possibility for B(GT*)
strength above 6 MeV in the data [Alf 91] not shown in Figure 2.4. We see that
the B* spectrum and 3~ B(GT*) are strongly dependent on the effective interactions.
The spectrum for the MSOBEP interaction is in best agreement with the experiment,

especially for the first state (see Table 2.1).

The calculated M4 values are presented in Table 2.2, and compared with previ-
ous calculations. We have modified the results from previous calculation to take into
account the effective operator of Eq. (2.2). We note that the value of < E,, >=5.86
MeV assumed by Haxton is too large in agreement with the conclusion of [Tsu 84].
We also note the excellent agreement between our result with-the MH interaction and
the result obtained with the new method of Ogawa and Horie [Oga 89] who also used
the MH interaction. This new method implicitly takes into account the spectrum
of intermediate states exactly in the full basis. But it does not produce the explicit
intermediate state spectrum which was important for the B~ and B* comparisons
made above. Also we note that the results obtained with the MSOBEP and MH

interactions are not very different, indicating the relative stability of the calculation
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Table 2.2: Comparison of the nuclear matrix elements B(cls) and M2, the average
excited energy < E,, > and half life T} /2 The shell-model space configurations are
described by f78/‘2"(p3/2 fs/2P1/2)" with n=0 to ny,,. for the fp shell referring to the
initial(i), intermediate(m) and final(f) states.

Reference | Interaction Nyaz B(cls) Mé‘r’r < E,> Ty
i m f (MeV)~!  (MeV)  (10%yr)
Experiment > 3.6
present MSOBEP |4 5 4| 0.204 0.070 1.06 1.9
present MH 4 5 41 0.213 0.055 2.01 3.0
Oga89 2 MH 8 8 8 0.053 3.3
Hax84 @ KB 8 4 | 0.266 7.25(1.1°)
Tsu84 ® MH 2 2 2] 0.278 0.073 1.94 1.7
Zam82 MBZ 0 0 0.216
Sko83 KB 0 0 0.150

3) Modified by taking into account the effective operator in Eq.(2).
b) Based on an assumed < E,, >= 5.86 MeV.
°) Based on the exact < E,, >= 1.06 MeV.

with respect to reasonable variations in the interaction.

There are several reasons why MZ; in the 2v38 decay of 8Ca is relatively small.
The energy region of the strongest B(GT ") strength (6~10 MeV) is mismatched from
the region of strongest B(GT*) strength (2.52~6 MeV ). Also there is a systematic
cancellation between the MZy in the low and the high energy part (see Figure 2.2).
The qualitative reason for this behaviour can be understood as follows. In the simple
J-j coupling model where the initial and final states are pure f2/2 configurations,
the only partitions for the intermediate 1+ states which can be reached by A~ and
B* transition are A(x fap2v f,"/;), B(7 f5/2v f.;'/12) and C(7 fr/qv f5j2v f,‘/z) B~ transitions
can go to A or B and A% transitions can go to A or C. Thus the A4 transition can only

go through A. These partitions will be mixed in the physical system, and in particular
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Table 2.3: The first ten B(GT~), B(GT*) and M, values obtained with the
MSOBEP interaction

En  (<I4II6H]I0F >)? (< 14[lotH]j0} >)7  SFCNE><RETRn
2.520 1.102 0.065 0.061
2.759 0.022 0.163 -0.013
3.122 0.180 0.120 0.030
3.620 0.010 0.000 0.000
3.789 0.037 0.146 0.013
4.257 0.053 0.015 0.005
4.425 0.048 0.000 0.000
4.934 0.002 0.014 -0.001 -
5.104 0.305 0.001 -0.002
5.568 0.006 '0.006 0.001

mixing of B and C will lead to two states [1f >=a|B > +8|C > and |17 >=8|B >
—a|C >, which can both be reached by 8~ and % transitions. The numerator of
the Bf matrix element will then have the form < 0F||lot=||1} >< 1}||ot~|0} >
+ < 0fllet=|l1F >< [1F||ot-||0} >= af < 0F|lot=||C >< Bllot-||0} > —aB <
0F||ot~||C >< B||ot=||0f >. Thus we find two 88 routes each of which is nonzero
but differing in sign so that they cancel. Mixing of B and C into A is important in
modifying the 3 strength through the lowest 1* state relative to pure j-j coupling.
This aspect of the 34 strength function shows up qualitatively in all of our calculations
(see Figure 2.2). And it is remarkable in our most complete calculations with the
MSOBEP interaction that the total M matrix element(0.070) is nearly exactly

equal to the contribution from the first state alone(0.061).

We give the B(GT~), B(GT*) and Mar(E.) values for the first ten eigenstates
in Table 2.3 obtained with the MSOBEP interaction. They are the main positive
contributions to M&r. The states with small B(GT~) and B(GT*) strengths will be

missed in the experiment because of the finite resolution. Consequently some states
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will be seen in (p,n) and not (n,p) and visa versa. Nevertheless, the results given in
Table 2.3 are in excellent agreement with the analysis of [Alf 91] based entirely on

experimental data.

To study the effects of truncation, now we discuss the several cases of interest
shown in Table 2.4. The MZ; for *®Ca in more highly truncated fp-shell spaces are
presented, where only the MSOBEP interaction is used. One of them is obtained
from the truncation (nms., =2) for *Ca, **Sc and *3Ti used by Tsuboi et al with
the MH interaction. (We note that at this level of truncation the MH interaction
gives the lowest 1% state with a structure as expected in the simple picture discussed
above.) The B(GT) strengths from this space will not give the sum rule (Eq. (2.1))
because the intermediate state is incomplete. However, The M4 is changed very
little when np,,, =3 is allowed for “*Sc. This indicates that the sum rule violation
is not so important for M%;. From the Table 2.4, we find that the M2 in the
highly truncation spaces differ significantly from the one in our expanded basis. The

Mgr(E,) spectra in Figure 2.2(b) show these differences in detail.

To test the accuracy of our truncation, we compare the calculations for M3
values in the space we used and in the full-basis for 220 in the sd shell and %6Ca
in the fp shell. These comparisons indicate that the truncation we used is a good
approximation to the full space results. We may expect that the present MZ% value
of “Ca will be reduced a further 5~10% if the full-basis in the fp shell is employed.
(Compared with these more complete calculations, a previous estimate [BAB 85] of
the extrapolation from the n,,,, =2 space to the full-space value for M, is found to

be in error by about a factor of two.)

Beyond the fp shell model space there are several processes which we should

consider. The role of A-isobar admixtures have been investigated in previous work
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Table 2.4: Comparison of M%7 in different truncations. The shell-model space con-
figurations are described by f,s/‘z" (p3j2fsjap1/2)" for the fp shell and dg'/’z"(sl J2d3/2)" for
the sd shell referring to the initial(i), intermediate(m) and final(f) states with n=0
t0 Dyaz. The full-basis means ny,,,=8 in the fp shell or n,,,;=6 in the sd shell. The
MSOBEP interaction was used for “*Ca and **Ca and the interaction [Wil 84] was
used for 220.

0.124
0.143
0.049
0.086
0.088
0.070
0.134
0.127
0.077
20 5 2Ne | 4 5 0.041
Full Full Full | 0.039

4808. — 48Ti

46Ca — 9T

E b NN - O O~
S OCYOT W N N = O

1)
3
T

(M)
[ \)
NS B NN O O

[Goo 81, Boh 81, Ari 87, Tow 87], The contribution from the direct excitation of the
A-isobar nucleon-hole configuration, for which the excitation energy is about 300
MeV, is negligible [Zam 82, Gro 86] because of the cancellation between B* and B~
and because of the large energy denominator in Eq. (2.3). The A-isobar admixtures
in the low-lying states are already approximately taken into account in our calculation
in the effective operator &t of Eq. (2.2) as well as in the effective interaction. In
addition, 2p2h admixtures beyond the fp shell can lead to B(GT) strength at higher
excitation [Ber 82]. The possible strength seen experimentally in the background
above 6 MeV in 8* and 15 MeV in 8~ may be due to these 2p2h admixtures. The
effect of these 2p2h admixtures in the low-lying states are also approximately taken
account in the effective operator and effective interaction. The contribution from the

direct excitation of the 2p2h configurations may again be small because of cancellation
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and large energy denominator but should be investigated further.

2.4 Summary

In summary, we have studied the 2v33 decay of **Ca in a large basis shell-model space.
An effective Gamow-Teller operator &t is employed, which well describes B (GT-) and
B(GT*) behaviour in the energy region (2.5~15.0 MeV). Of two effective interactions
we have employed, new MSOBEP interaction seems to be a better interaction for
the A~ and @* spectra. With this interaction we predict the 2v3pB decay matrix
element of **Ca is M&7=0.070 giving a half life T} /,= 1.9%x10'°yr, which differs by
nearly a factor of two from the experimental limit [Bar 70] of T}/, >3.6x10° yr. We
believe that the most important aspect of these calculations which cannot be directly
tested by the (p,n) and (n,p) experiments is the amount of strength in the (n,p) B*
spectrum above 5 MeV in excitation. This is because there is a large uncertainty
in the amount of Gamow-Teller strength in the background above this energy. The
Gamow-Teller strength in this region may be sensitive to further refinements in the
effective interaction as well as to direct excitation of 2p2h states, and should be
studied further. In addition, we believe that it is important to confirm and improve

upon the present experimental limit.



Chapter 3

Comparison between pnQRPA
and Shell Model I: 3+ Decay

3.1 Introduction

The Gamow-Teller transitions are of interest in their own right in addition to their
role as virtual transition in 88 decay. The transition strengths of 4+ decay in heavy

nuclei are understood poorly [Wap 71, Kle 85).

In recent years, the pnQRPA theory has been employed to calculate the 3 Gamow-
Teller transitions in heavy nuclei [Cha 83, Sub 88]. In the pnQRPA, proton-neutron
correlation plays an important role. This equation contains two types of interac-
tions, particle-particle and particle-hole, buf the former was neglected in early cal-
culations [Hal 67]. Recently several authors have investigated the particle-particle
interaction term which was reintroduced by Cha [Cha 83], and found that the g+

transition matrix elements are sensitive to this term [Cha 83, Sub 88].

As mentioned in Chapter 1, the pnQRPA is an approximation model, so there may
be some correlations that could be important in 8% decay which are not included in
the pnQRPA. Therefore it is very important to examine the validity and accuracy of

the pnQRPA approach. These tests can be achieved by making a comparison of the

33
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pnQRPA and full-basis shell-model calculations in the nuclear mass regions where the
full-basis shell-model calculations are possible. The full-basis shell-model calculations
include all types of the correlations within a major shell. We believe that such a
comparison is meaningful if and only if the pnQRPA and shell-model calculations are

performed in the same model space and use the same effective interaction.

This kind of comparison has been made by Lauritzen [Lau 88] for several sd shell
nuclei, Brown and Zhao [Brz 89) for Mg and Civitarese, et.al. [Civ 91] for 2Mg.
Lauritzen and Brown and Zhao have concluded that the pnQRPA does not include
some important correlations in 4* decay and fails to reproduce the shell-model results.
Civitarese contradicts this conclusion. However, their comparisons only concentrate
on total B(GT*) and strength distributions, and relative single-particle state effects

in Gamow-Teller transitions are not considered.

In this Chapter, a self-consistent BCS-pnQRPA is developed in sections 3.2.1
and 3.2.2. In section 3.2.4, we introduce the coherent one-body transition density
(COBTD) and coherent transition matrix element (CTME), which can describe the
single-particle state effects in one-body transitions. Qur comparison between the pn-
QRPA and shell model is presented iﬁ section 3.3, where we investigate total B(GT+)
strengths, strength distributions and COBTD and CTME. In our study, *6Ti 8+ de-
cay is the example. The model space is the full fp shell and the effective interaction
used is MSOBEP [Ric 91] (see Chapter 2). We give the summary and conclusions in

section 3.4.
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’v3.2 Formalism

3.2.1 pnQRPA equations

We start with the equation of motion [Row 70, Rin 80], where the excited eigenstates

|v > are constructed from the phonon creation operator Q! which is defined by
lv >= Q!0 >, and Q,|0 >=0, for all » (3.1)

where [v > and [0 > are the excited eigenstates and the physical ground state. They

satisfy the Schrédinger equation,

Hly>=E,|lv> a;ld H|0 >= E,|0 > . (3.2)
Then one obtains the following equation of motion from the above relations;

[H,QL]I0 >= (E, — Eo)Q}j0 > . | (3.3)
Multiplying from the left with an arbitrary state of the form < 0/6Q., we get

< 01[6Qu, [H, QL1]I0 >= hw < 0[(6Q, QL1l0 >, (3.4)

where hw = E, — E,.

In order to obtain the pnQRPA equation, the phonon creation operators in the

angular momentum coupled representation are written as [Hal 67, Cha 83, Lau 88,

QUILM) = (XAl (pn, M) = Y A(pn, JM)), (3.5)
»mn
Al (pn,JM) = 3 <j,,m,.j,,m,.|JM>c}pm,c}"mn, (3.6)
Mp,Mn

Apn(pn, JIM) = (=1)7M A (pn, T - M), (3.7)
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where cJt wn) 15 the quasiproton (quasineutron) creation operator. In terms of the

spherical shell-model states, the particle and quasiparticle creation and annihilation

operators are related by the Bogoliubov transformation, e.g. for proton
c;;mp = u”a};mp + (—)jp+m’vpajr""r’ (3.8)

where u? + v2 = 1, and a}P (aj,) is the proton creation (destruction) operator for the
single-particle state. v;‘: turns out to be the occupation probability. The eigenvalue Aw
and the forward- and backward- going amplitudes X and Y are obtained by solving
the pnQRPA equation

A B X X
(4 2)(F) -~ (3).
with the closure relation

TIXIXE — YV = 6,00 (3.10)
n

The matrix elements A and B are explicitly given by [Hal 67, Cha 83, Lau 88, Sub 88]

Ay = < QRPA|[Apu(pn, JM), [H, AL, (5'n', JM)]||QRPA >

R

< BCS|[Apa(pn, JM), [H, AL, (p'n', JM)]]|BCS >

= (Ep + En)bppnn + (HES)2nprnrs (3.11)
By = < QRPA|[Ap(pn, JM), [H, Apa(p'n', JM)]||QRPA >
~ < BCS|[Apa(pn, IM),[H, Apa(p'n’, JM)])|BCS >
= ~(GC™)pnprars (3.12)
with
(Hz3' ):np’n' = gPPVp{lp’n'(uPuﬂup’“n’ + VpUR U VN)

+gph Wp{.‘plnl(upvnup'vn' + vpu"vp'un’ )’ (3. 13)
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J J
(Gpn)p'n.p’n’ = gPP‘/pnp'n’(uPu"vP'vﬂ'+vPv"uP'uﬂ')

—gpth{,p,n,(v,,unu,,:v,.: + UpUnVpitin ). (3.14)

where [QRPA > is the QRPA ground state defined in Appendix A. The relation
between the QRPA and pnQRPA is discussed in Appendix B. The quasiproton and
quasineutron energies E, and E, and occupation factors u, v are obtained by solving
the BCS equation in section 3.2.2 or Chapter 5. The matrix elements of the particle-
particle (V) and particle-hole (W) interaction are related by Pandya transformation,

Wonpm = =(=1)rtintintin 35 (0 1 4 1){ by }VJ (3.15)

J! p Jn

In order to discuss the results as a function of the strength associated with each part
of the interaction, the multiplicative factors 9gph and g, are conventionally introduced

for the particle-particle and particle-hole, respectively. They are both equal to one in

the standard pnQRPA theory.

The charge-exchange transition matrix elements of the Gamow-Teller operator

between the ground state |0} > and the excited state |1} > are given by

1
2Ji+1

B(GT) = (< 33 llet]of >)?, (3.16)

where J; = 0. We denote
M,(GT) =< I¥at||0} >, (3.17)

where o is the Pauli spin operator. The isospin operator ¢ can be the raising or
lowering operator, ¢+ or ¢~, which are corresponding to A+ and A~ Gamow-Teller
transitions. In the pnQRPA, we can obtain
M,(GT™) = Y <pllofln> (XD upvn + Y vpu,), (3.18)
- ,

M, (GT*) = - <pllo|ln > (X vpun + Y u,0y,). (3.19)
m
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- The above equations for M,(GT) in the pnQRPA can be rewritten as,
M,(GT) =) < pllo|jn > OBTD(p,n,v)qrpa, (3.20)
pn

where the OBTD(p, n, V)QRPa is a one-body transition density of the pnQRPA given
by the Eq. (3.18) or Eq. (3.19) explicitly. '

3.2.2 BCS equations

The BCS theory will be reviewed and extended in Chapter 5. Here we just present the
standard BCS formalism for the proton-neutron system. In the BCS, the quasiproton

energies E,, occupation probabilities v? and pairing gaps A, are given by

E, = \J(ep— M)+ A2, (3.21)
1 Ep— A
v = =(1- P_°T )s 3.22
’ \/(ep - ) 4+ AZ ( )
2} +1
A, = - 2 ST Vs (3.23)

where A, is the proton Fermi energy, €p and Vpp 1 are the single proton energy and
proton two-body interaction, respectively. The above equations can be solved under

the constraint for the total proton number

Ne =3 (2j, +1)3, . (3.24)
14

which determines the constant \,. A similar set of the equations can be solved for
neutrons. The single proton energies ¢, are related to the bare single-particle proton

energies €) at the closed shell by addition of the rearrangement terms I',

€p = sg + I, (3.25)
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where

r, =

1
T %‘,(1 + Sppr )02, Z(2J+ V2, o

(21 +1)Evn,z(2J+l) o o (3.26)

The first term refers to like particle correction and the second term to unlike particle
correction. The rearrangement term for €y has the same form but with the p/n indices
interchange. Eq. (3.26) can be verified by simple shell-model calculations. The BCS

equations (3.21-3.24) plus the rearrangement terms can be solved iteratively.

The Eqs. (3.9,—,3.14,3.21,~,3.26) are called the self-consistent BCS-pnQRPA equa-
tions. The self-consistent means that the input ingredients in the BCS-pnQRPA are
consistent with those in the shell model, namely, the bare single particle energies €2

at the closed shell and two-body interaction matrix elements Vidu-

3.2.3 B(GT) in shell-model calculations

In the shell-model calculation, the Gamow-Teller strength is equal to the product of
one-body transition density and single particle matrix element [Bru 77], the matrix

element M, in Eq. (3.17) is expressed by

M,(GT)=)_ <pllo|jn > OBTD(p,n, v)sm, (3.27)
m
where
olop ® ]
OBTD(p,n,v)sm =< 1 II—P—-——-—HO,- >, (3.28)

V2AJ +1

where AJ = 1. The one-body transition density describes the shell configuration

effects when a proton in j, orbit transfers to a neutron in jn orbit. In this work,
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‘OBTD(p, n,v)sm is calculated from the OXBASH shell-model code [Etc 85]. The

proton (neutron) occupation probabilities in the shell mode] are given by

< SMla} a0 |SM >
2 SM) = p(n) “p(n)
Vp(n)(SM) Tiney +1 , (3.29)

where |SM > denotes the shell-model wave function,

3.2.4 The coherent one-body transition density

The B(GT) spectrum itself lacks information about the single-particle state contri-
butions in the charge-exchange process, because we sum over all single-particle state
components p, n in Eqs.(3.18—3.20) for the pnQRPA and Eq.(3.27) for the shell model.
Therefore, we introduce two quantities which can describe such siﬁgle-particle state
effects in the Gamow-Teller transition. We define the coherent one-body transition

density (COBTD) as

COBTD(p, n) = \/E:IW % M.(GT)OBTD(p,n, ), (3.30)

where M, (GT) is given by Eq. (3.17). The OBTD is given by Eq. (3.28) and (3.20) for
the shell model and the PnQRPA, respectively. Also the coherent transition matriz
element (CTME) is defined by

CTME(p,n) =< p||o||n > COBTD(p,n). (3.31)

The COBTD and CTME are a function of the single-particle state components. All
final states(v) are summed up in Eq. (3.30). The relation between the B(GT) and
CTME is given by

{3_CTME(p,n)}* = ¥ B(GT). (3.32)

»n

In Appendix D, we will discuss the COBTD in detajl.
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Table 3.1: “*Ti: Proton and neutron: single particle energies ¢; (MeV), gap parame-
ters A; (MeV) and occupation probabilities v from BCS and the shell-model E;(SM)
and v?(SM) . The Fermi energies obtained from the BCS calculation are —12.968
MeV and —10.868 MeV for proton and neutron, respectively.

level £ A;  v]  E(BCS) E,(SM) v}(SM)
wfr2 | —12.234 1.206 0.239 1.412 1.412 0.187
7p3/z | —8.194 0.911 0.009  4.861 4.305 0.078
wfs | —5.739 1314 0.008  7.347 6.845 0.022
P12 | —5.994 0.874 0.004 7.028 6.431 0.031

viz;s | —10.809 1.447 0.480  1.448 1.414 0.404
vpase | —6.852 1.104 0.018 4.164 3.336 0.092
vis;p | —4.044 1.574 0.013  7.003 6.099 0.054
vpyz | —4.553 1.069 0.007  6.405 5.564 0.040

3.3 Calculations and Discussions

3.3.1 Comparison of pnQRPA and shell model

We have presented the self-consistent BCS-pnQRPA equations in section 3.2.1 and
3.2.2. In the BCS equation, the pairing gaps are state dependent and are self-
consistently calculated. But in practice, when the pnQRPA equation is used in heavier
nuclei or in the simple BCS calculations, the quasiparticle energies and occupation
probabilities are not obtained in this way, but rathér based on some empirical value
for the pairing gap A ( often oné which is single-particle state independent ) and on

some interpolated values for the effective single-particle energies.

The single-particle energies with addition of rearrangement terms, quasiparticle
energies, pairing gaps and occupation probabilities of “6Ti are given in Table 3.1.
The proton pairing gaps are almost 40 % less than those obtained from the empirical

formula A, = 124/, where A is total nucleon number in the nucleus [Rin 80].
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Figure 3.1: Summed Gamow-Teller strength for “*Ti —*Sc. The solid line is the
shell-model result while the dashed line is the pnQRPA result.
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Figure 3.2: Summed Gamow-Teller strength for “6Ti —Sc with various particle-
particle strength g,, where g,; = 1.
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We put these BCS parameters into the pnQRPA equation and obtain the pnQRPA
p*-decay spectrum. The full-basis shell-model calculation is carried out with the
OXBASH code. The J-dimensions are 1514 and 2042 for the *Ti ground state and
the 46Sc 1+ excitations, respectively. Figure 3.1 presents the running sum ), B(GT*)
as a function of the **Sc 1* excitation energy E, corresponding to the “6Ti ground
state. The running sum 3 B(GT*) is defined by

Y B(GT*) = §(< 1 lotH|jof >)2. (3.33)

v=1
The pnQRPA and shell-model results are shown by dashed and solid lines, respec-
tively. The Coulomb shift 7.586 MeV is taken into account [Bro 79).

We find that the pnQRPA calculation does not give sufficient suppression for the
total B(GT*). It overshoots by about 50 % compared to the shell-model result. The
shapes of the two models are also different. The energies of the first excited state in

the two models differs by about 6 MeV.

The coherent one-body transition densities and the coherent transition matrix
elements defined by section 3.2.4 are given in Table 3.2 and Table 3.3 for the pnQRPA
and shell model, (see columns (A) and (E)). There are significant difference between
the two models. For example, the COBTD and CTME values in the pnQRPA and

shell model have the opposite sign for the fr/3 — fr/2 and the f5;3 — f5/2.

Since the B(GT*) strength are more sensitive to g,, than g,s, we will set g5 = 1
and discuss the dependence on g,,. In Figure 3.2, the B(GT*) spectra with various 9op
values are presented. One can find the pnQRPA results are very sensitive to g,, values,
which is in the agreement with the previous conclusions [Cha 83, Lau 88, Sub 88].
Especially, the strengths in the low-lying states decrease rapidly around the value

9p» = 1. The total shell-model B(GT*) is reproduced by the pnQRPA with Gpp = 1.4,
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Table 3.2: Comparison of the coherent one-body transition density (COBTD) ob-
tained in the pnQRPA, modified pnQRPA and shell-model calculations of 46Ti.

(A): COBTD in the pnQRPA with BCS occupation and quasiparticle energies;
(B): COBTD in the pnQRPA with BCS occupation and SM quasiparticle energies;
(C): COBTD in the pnQRPA with SM occupation and BCS quasiparticle energies;
(D): COBTD in the pnQRPA with SM occupation and quasiparticle energies;

(E): COBTD in SM (shell-model).

ip = in A B C D E

frj2— fr72 | 0034 0.019 -0.005 -0.031 -0.096
fr2—= fsa | 0443 0.448 0310 0.315 0.386
P3j2 — pajz | 0.002 -0.001 0.075 0.072 0.006
P3j2 = fs;2 | -0.001 -0.001 -0.006 -0.010 0.017
P3j2 — piy2 | 0.005 0.003 0.087 0.088 0.060
fsj2— fra | 0.088  0.099 0.091 0.109 0.086
fsj2 = paja | 0.001 0.002 0.006 0.009 0.010
fsj2 = fsg2 | 0.001  0.003 -0.007 -0.005 -0.011
Pij2 = paj2 | 0.003  0.005 -0.012- -0.006 0.009
Pyz = pyz | -0.001  0.000 -0.012 -0.013 -0.003
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Table 3.3: Comparison of the coherent transition matrix elements (CTME) obtained
in the pnQRPA, modified pnQRPA and shell-model calculations of 46Ti. Labels (A),
(B), (C), (D) and (E) are given by Table 3.2

jp = in A B C D E
fry2 = fr2 | 0.108  0.062 -0.017 -0.099 -0.308
Jryz = fs2 | 1641 1661  1.149 1.167 1.431
P3j2 — pasz | 0.005 -0.002 0.195 0.186 0.014
p3jz2 — fsy2 | 0.000 0.000 0.000 0.000 0.000
P32 — pyy2 | 0011 0.006 0.200 0.202 0.139
Jsy2 = fr72]-0.325 -0.366 -0.338 -0.403 -0.319
fsj2 = paj2 | 0.000 0.000 0.000 0.000 0.000
fsy2 = fs572 1 -0.002 -0.005 0.014 0.010 0.024
P12 —* p3j2 | -0.006 -0.011 0.027 0.013 -0.020
P12 — piyz2 | 0.000  0.000 0.010 0.011 0.002

but the shape of the strength distributions of two models are totally different.

When g, increases up to a certain value, the lowest eigenvalue becomes the imag-
inary and the pnQRPA equation collapses. It means that the pnQRPA theory is no
longer a valid model. Around this g,,, the equation gives unrealistic large amplitudes

X and Y, and consequently presents an unphysical B(GT) strength.

3.3.2 Empirical improvements of pnQRPA

We now investigate various ways to understand and then improve the agreement be-
tween the pnQRPA and the full-basis shell model. First, we introduce shell-model
quasiparticle energies. Since the BCS quasiparticle energies can be understood as the
lowest excited energies of the odd nucleus [Row 70, Law 80], one may appropriately
analyse the odd nucleus energy spectra in the shell-model calculations, and find those
excited states which are qualitatively equivalent to the single quasiparticle E; excita-

tions. The overlap method is employed to find these states [Etc 85]. For example, the
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shell-model quasineutron energies of **Ti can be obtained as follows: the one-particle
transfer amplitudes are calculated between the 6T ground state and the 4"Ti excited
states J = 7/2~ (or 3/27, 5/2~ and 1/2~). The eigenvalue of the state which has the
largest overlap in one-particle transfer is considered as the shell-model quasineutron

energy Ey7/, (or Eyap2, Efs/z and Ep1/2)-

Possible improvements of the pnQRPA may be obtained by replacing the quasi-
particle energies and occupation probabilities of the shell model to those of the BCS in
the pnQRPA. The shell-model occupations of “éTi ground state are evaluated by Eq.
(3.29), where |[SM > is the ground state wave function. The shell-model quasiproton
and quasineutron energies are obtained by analysis of *6Ti isotopes and isotone in the
shell-médel calculations. These parameters are given in the Table 3.1. The modified

models are called “ hybrid ” pnQRPA.

The calculations for three types of “ hybrid ” pnQRPA are shown in Figure 3.3.
The dashed line is the pnQRPA with BCS occupations and shell-model quasipar-
ticle energies. The. dotted line is the pnQRPA with shell-model occupations and
BCS quasiparticle energies. The dot-dashed line is the pnQRPA with shell-model
occupations and quasiparticle energies. One finds that the total B(GT*) strength is
suppressed in the “ hybrid ” pnQRPA. That is 2.053 in the pnQRPA, 1.811 in the
“ hybrid ” pnQRPA with the shell-model quasiparticle energies and the BCS occu-
pation probabilities, 1.536 in the “ hybrid ” pnQRPA with the BCS quasiparticle
energies and the shell-model occupation probabilities, and 1.181 in the “ hybrid ” pn-
QRPA with the shell-model quasiparticle energies and the occupation probabilities.
It is close to 0.928, the total B(GT*) in the full-basis shell model.

The “ hybrid ” models have not improved the strength distribution. But com-

paring to the shape of the spectrum of the pnQRPA with gpp = 1.4 in Figure 3.2,
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- the “ hybrid ” pnQRPA with the shell-model parameters (the dot-dashed line in Fig-
ure 3.3) still keeps a reasonable shape. We know both of them almost reproduce the
shell-modél total B(GT*) value. In the “ hybrid” pnQRPA, the position of the 1+
state almost remains the same, i.e., still differs by 6 MeV to the energy from the

shell-model calculation.

The COBTD and CTME values of the “ hybrid ” pnQRPA are presented in the
columns (B), (C)and (D) of Table 3.2 and Table 3.3. The COBTD and CTME in
the column (B) are obtained by using the shell-model quasiparticle energies and the
BCS occupation probabilities in the pnQRPA. We find that the difference between
the columns (B) and (E) is decreased only for the transitions fri2 = fr2, but the

COBTD and CTME in other transitions become worse or remain the same.

The COBTD and CTME values in the column (C), using the BCS quasiparticle
energies and the shell-model occupation probabilities, and the column (D), using the
shell-model quasiparticle energies and the occupation probabilities, present similar
behaviour. The COBTD and CTME in the transition fr72 = fr/2 now have the same
sign as those in column (E). The COBTD and CTME for the transition P32 = p1j; are
and fs;; — f5/2 have been improved over those in the pnQRPA. But other COBTD

and CTME values become worse compared to those in the pnQRPA.

We compare the occupation factors between the BCS and shell-model in Table 3.1
and find in order to reproduceAshell-model occupation factors, the pairing gap in
the BCS equation should be unrealistically increased to around 4 Mev [Lau 88]. It
requires a very strong and unrealistical effective interaction. The present BCS gaps

are around 1 MeV.

We have made several similar comparisons for some nuclei in sd shell and 8Tj

in fp shell. Similar conclusions are obtained. The detailed calculations for 8T have
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been shown in ref. [Brz 90].

3.4 Summary and Conclusions

We have investigated the pnQRPA as a model to study #* decay. The Gamow-
Teller transition strength B(GT*) for *Ti —%Sc, as an example, is calculated by
the pnQRPA and full-basis shell model. The formulation of the self-consistent BCS-
pnQRPA is given in the section 3.2. The coherent one-body transition densities
(COBTD) and coherent transition matrix elements (CTME) are introduced and ap-
plied for analysis of the single-particle state contributions in 8% decay. The compar-
ison of the pnQRPA and shell model is made, including the total B(GT+), shape of
the strength distribution, COBTD and CTME values. Our comparison shows that
the pnQRPA can not reproduce the shell-model results. The large disagreements im-
ply that there are some correlations which are important to 8+ decay but have not
been taken into account in the BCS-pnQRPA equations. Our results agree with those

of [Lau 88] and [Brz 89] who made similar corﬁpa.risons for some sd shell nuclei.

We confirm that the particle-particle interactions in the pnQRPA provide the
suppression mechanism in §* decay in agreement with previous studies. The total
B(GT*) is decreased when the parameter g, is increased. But we note that the

shape of the spectra is poor when gy, is increased beyond unity.

The shell-model quasiparticle energies and occupations are defined in section 3.3.2
and Eq. (3.29). Empirical improvements for the pnQRPA, namely, the “ hybrid »
PnQRPA, have been introduced by replacing the shell-model quasiparticle energies
and/or occupation factors in the pnQRPA equation. The suppression of total B(GT+)
and some improvement in the COBTD and CTME are found in our study. The calcu-

lations show that the main suppression mechanism is from the shell-model occupation
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factors. Thus we conclude it may be possible to put together “hybrid” models of this
type that are more reliable than the conventional pnQRPA. Also we note that a

solid theoretical study is necessary to generalize the pnQRPA model, and this will be

discussed in Chapters 5 and 6.



Chapter 4

Comparison between pnQRPA
and Shell Model II: 2v33 Decay

4.1 Introduction

Study of 2v3( decay is an important test of our understanding of nuclear structure
properties since the decay process occurs within the standard weak interaction model.
But until 1986, there have been large discrepancies between the experimental results
and the simple shell model and/or other model’s predictions. The theoretical half-
lives of the double-beta decay nuclei are almost 5 ~ two orders of magnitude less
than the experimental ones, i.e., the experimental 2038 decay matrix elements are

strongly suppressed (see Eq. (2.4)) [Hax 84, Doi 85].

In recent years, the pnQRPA has been applied to calculate 38 decay matrix ele-
ments [Vol 86, Civ 87, Eng 88, Mut 89]. Several calculations indicate that 2v88 decay
matrix elements are suppressed if the particle-particle interaction term is included
in the pnQRPA equation. They decrease rapidly when parameter g,, is increased
(gpp is introduced as a multiplicative factor to the particle-particle interaction, see
Egs. (3.13,3.14)). Also previous studies have shown that the pnQRPA equation tends

to be unstable and collapse when g,, is larger than unity [Vol 86, Civ 87, Eng 88,

52
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~ Mut 89].

In Chapter 3, we concluded that the pnQRPA has not taken into account some
correlations but which are important in 4% decay. Therefore it is necessary to test
the validity of the pnQRPA in 33 decay. In 1989, Brown and Zhao [Brz 89] made a
comparison of the pnQRPA and full-basis shell-model calculations for imaginary 33
decay of Mg in the sd shell. In their work, the BCS equation was solved by assuming
a state-independent gap value which was obtained by analysing experimental data.
Later Muto et. al. [Mut 91] preseﬁted a similar comparison for the 88 decay of 4Ca.
But in their work, the model spaces of the pnQRPA and the shell model are not the
same, the former is the (sd + fp + g) shells, where the g shell means ( 1g9/2, 1g7/2), and
another is the fp shell only. Therefore the comparison may be meaningless because a
meaningful comparison requires that these two models have to perform in the same
model space. On the other hand, the state-independent gap in the BCS was used in

their work as well.

In this Chapter, the comparison of the pnQRPA and the full-basis shell-model
calculations is made for 2vff3decay of *¢Ca. The model space and effective interaction
are the fp shell and MSOBEP interaction, respectively. The self-consistent BCS-
PnQRPA equations given in Chapter 3 are used. Two types of 2v83 decay matrix
elements are discussed here, the energy dependent and the closure 83 decay matrix
elements. The first gives the exact 2088 decay matrix element, and the second relates

an approximate method, namely, the closure approximation ( see Chapter 2 ).

The energy diagram for mass A=46 is presented in Figure 4.1. It is obvious that
the 38 decay is the only decay mode for “éCa ground state because all single 8 decays

are forbidden.

In section 4.2, the formulas for 2v38 decay matrix elements are presented. The
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calculation results are given in section 4.3. The summary and conclusions are given

in the final section. Our earlier work [Brz 89] is not included in this Chapter.

4.2 Formalism of 2v33 Decay

In the shell-model calculations, the (intermediate state) energy dependent matrix
element is defined by

Mex(Ey) = % < 0f|lot~||1} >< 1% ||ot—|l0} >
61(Em) = En—E;+To/2+m.c?

m=1

(4.1)

where E,, are the 1* excitation energies of the intermediate states, E; is the intial
state energy, To/2 is Q-value of 83 decay, for 6Ca, Ty = 0.986 MeV. m.c? is electron
mass. The tofal matrix element for 2v30 is given by Mgr = Mgr(E, = 00). The
closure matrix element is defined by (see Chapter 2) |
_ En
Bos(Em) = Y < 0F|lot™||1E >< 1% ]||ot™|[0F > . (4.2)
m=1

The total matrix element is given by Bcrs = Bers(Em = 00).

In the pnQRPA calculations, the 38 formulas become more complicated because
the summation in Egs. (4.1 — 4.2) involves the product of two transition matrix
elements and each one contains the intermediate states of the intermediate nucleus.
Of course, in the shell model, the intermediate states in the two transition matrix
elements é.re the same. But in the pnQRPA, we recognize that the intermediate
states in th'e two transition matrix elements are different, they depend on which
parent nucleus is being considered. Thus a problem arises that the intermediate states
resulting from the two different pnQRPA calculations are not orthogonal. Of course,

they should be the same in physics. In order to solve such a mismatch problem, we
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Figure 4.1: Mass spectrum for A=46 nuclei, where the double-beta decay is the only
possible decay mode for the *Ca. ground state
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introduce an overlap matrix element between any two intermediate states J; and J7,

m

< Il >= 3 (XTT XprI" _ gy (4.3)
m

where m, m’ denote two states with eigenvectors (X,Y) and (X, ¥), which are con-
structed from intial and final states, respectively [Civ 87, Gro 86, Mut 89]. Obviously,
if (X,Y) and (X,Y) are identical, then we have < JZ|J%, >= &, (see Eq. (3.10)).
With the overlap matrix element, Eq. (4.1 - 4.3) can be rewritten by

< O0F|lot-|l1f >< 151t >< 1 ||ot-|oF > -

Mar(En) = ,,,,Zm, En — E; +To/2 + m.c? ’ (44)
Bows(Em) = ) <0F|lot7||1} >< 1}|1E >< 11|00} > . (4.5)

4.3 Results and Discussions

In this section, we compare the calculation results of the pnQRPA and full-basis shell
model for the 2080 of **Ca. In this case, the intial (final) nucleus has the 0 (2)

protons and 6 (4) neutrons in the fp shell.

The double-beta decay matrix elements Mgt and/or Bgrs consist of the virtual
decay routes,’ B~ and B+ decays. The B+ Gamow-Teller transition strength in the pn-
QRPA was presented and discussed in Chapter 3. Here the running sums 3 B(GT")
of the 3~ decay of “Ca are shown in Figure 4.2. The dashed line is obtained from
the BCS-pnQRPA and solid line from the full-basis shell model. The Coulomb shift
7.173 MeV is included in the calculations [Bro 79]. The matrix B in the pnQRPA is
zero because v, = 0. Then the pnQRPA reduces to the pnQTDA, the amplitudes Y
are consequently equal to zero. The 8% transition strength of “4Ca vanishes because

there are no valence protons in the fp shell. So the total B(GT™) strength is equal
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to 18 because of the sum rule Eq. (2.1). In Figure 4.2, the first 1* eigenvalue of the
pnQRPA differs by around 5 MeV to that of the shell model.

In Figure 4.3 and 4.4, we present the running sum of matrix element Mgt (En)
and Bcrs(En) as a function of the 1% excitation energies corresponding to the 46Ca
ground state. The excitation energies are obtained by the pnQRPA calculation for
*Ca —*Sc, and are employed to evaluate the energy denominator in Eq. (4.4).
Qualitatively the pnQRPA and shell-model show a similar behaviour. There is a
cancellation between the matrix elements in the low- and high-lying states. The
relative shapes qualitatively agree but quantitatively disagree with each other. We
find the pnQRPA does not provide enough suppression for total Mgt and Bcis, which
are about three times larger than those in the full-basis shell-model calculation. In
detail, the matrix elements in the low-lying states show big discrepancy between two
models, for example, the first Bors(E, ) is almost 8 times larger than the corresponding
shell-model result. On the other hand, in the pnQRPA, the first B(GT~) and B(GT+)
are dominated by the transition fr/; — fr2, but in the shell-model, this transition

contributes only about 50 %.

We present the running sum of Bcrs(E,,) with respect to various gpp Values in
Figure 4.5 to 4.7, where we keep gy, = 1. The particle-particle interaction suppresses
the total matrix elements in agreement with previous studies [Vol 86, Civ 87, Eng 88,
Mut 89]. If the particle-particle channel is shut off (g,, = 0 ), the cancellation of
Bcrs(Em) between the low- and high-lying excitations disappears as shown in Fig-
ure 4.5. However, the cancellation emerges and becomes stronger and stronger as Gop

is increased.

At gpp = 1.28 (Figure 4.7), the pnQRPA agrees with the total shell-model Borg
but fails to reproduces the relevant shape. At g,, = 1.20 (Figure 4.8) the pnQRPA
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Figure 4.2: Summed Gamow-Teller strength B(GT") of “6Ca —*6Sc. The dashed
and solid lines are the pnQRPA and shell-model results, respectively
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The pnQRPA reproduces shell-model total Boyg value.
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Table 4.1: “6Ca: Neutron s1ngle particle energies ¢; (MeV) gap parameters A; (MeV)
and occupation probabilities v} and quasineutron energies E; (MeV) from BCS, the
shell-model E;(SM), vZ(SM) deﬁned in Chapter 3. The neutron Fermi energy is
—8.712 MeV.

levl | &  Ai v E:_E(SM) v’(SM)
vl | —9.395 1.347 0.726 1.510 1.700  0.703
vps/z | — 5.507 1.042 0.025 3.370 3.343  0.049
vl | — 3.354 1.455 0.013 5.552  6.377  0.025

vpi/z | —3.107 1.026 0.008 5.698 5.830  0.016

agrees with the total shell-model Mgt but fails to reproduce the relevant shape as

well.

Encouraged by the successes of the improvements of the pnQRPA in Chapter
3, we also consider the use of “ hybrid ” models for the 43 decay matrix elements.
The shell-model quasiparticle energies and occupation probabilities for the initial and
final nuclei are given in Table 3.1 and Table 4.1. In the following, we compare the
following three curves, the dashed line is obtained by the pnQRPA, the dotﬁed line by
the “hybrid” model, and the solid line by the shell model. In Figure 4.9, one uses the
shell-model quasiparticle energies and finds that Beps is suppressed. In Figure 4.10,
one uses the shell-model occupation numbers and finds that Bcvs is unfortunately
enhanced. In Figure 4.11, one uses all shell-model parameters and finds that Bgrg
is suppressed. It indicates that the suppression mechanism in the “ hybrid ” models
is the use of the shell-model quasiparticle energy. But suppressions in Figure 4.9
and 4.11 are not enough to reproduce the shell-model results. One may conclude the

“ hybrid ” models do not work well for 2v43 decay.

Finally, we notice that there is a some arbitrariness to the choice of the energy

denominate in Eq. (4.4) for calculating Mg in the pnQRPA. This is because the
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intermediate states constructed from the initial and final states are mismatched. The
simplest way is to let E.,— E; to be the excitation energies from 46Ca —46Sc calculation
as we used before. Another approach is using the relation E,, — E; = E,, — Es +
AM and calculating E,, — Ey from “6Ti —*Sc, where AM = —0.986 MeV is mass
difference between *6Ca and “°Ti. In fact, there is no big difference between the two

methods in our calculations.

4.4 Summary and Conclusions

In this Chapter, we have made a comparison of the pnQRPA and shell-model calcula-
tions for the 2v33 decay matrix elements of 4€Ca in the fp shell. The comparison not
only gives insight into the total matrix elements as in previous studies, but also inves-
tigates the relevant matrix element distributions. The self-consistent BCS-pnQRPA
equations given in Chapter 3 are used to calculate 8~ and A+ Gamow-Teller compo-
nents involved in the 2v35 decay formulas. Since the intermediate states constructed
from the initial and final states are mismatched mathematically in the pnQRPA, the

overlap matrix is introduced and used to match 4~ and 8+ virtual decay routes.

Two types of matrix element are investigated, the energy dependent Mgr(E,,)
which is the exact 2v88 decay matrix element, and cloéure Bcrs(Er) which is re-
lated to the closure approximation. In our work, we confirm that the suppression
mechanism of the 2v38 matrix elements is due to the particle-particle interaction.
Mgt and Bgt decrease when gpp Value increases. Our calculations show the dis-
crepancies between the pnQRPA and shell-model are not only in the total Mgt and
Bcys values but also in the shape of the matrix element distribution. The disagree-
ments between the two models mainly come from the low-lying excitations, where the

pPnQRPA gives relatively large 38 matrix elements compared to the shell model.
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The 2vf3f decay matrix elements are also calculated by  hybrid ” pnQRPA
models, i.e., using the shell-model quasiparticle energies and/or occupations in the
pnQRPA. The suppressions that may be due to replacing shell-model quasiparticle

energies are found, but are not enough to reproduce the shell-model calculations.

.



Chapter 5

BCS Theory and Extension

5.1 Introduction

The BCS theory developed by Bardeen, Cooper and Schrieffer [BCS 57] has suc-
cessfully explained the superconductivity of the superconducting metals at very low
temperature. The adoption of the BCS theory into nuclear physics followed the sug-
gestions of Bohr, Mottelson and Pines and the exploratory work of Belyaev [BMP 58,
Bel 59]. The first application is to even number semi-magic nuclei, where the ground
states are considered to be constructed by paring configurations. This model is a
useful tool to explain a large variety of nuclear properties[Law 80, Rin 80]. The best
known fqrm of this theory is obtained by means of the Bogoliubov transformation
and Ritz variation principle. The BCS is an independent quasiparticle theory and
its ground state is the quasiparticle vacuum, in which some correlations due to the
particle and hole combinations are taken into account. The disadvantage of BCS is

that particle number is not conserved.

The application of the BCS theory to a prc;ton-neutron (pn) system, i.e., open
proton and neutron shells, is complicated because we have two types of interacting

particles. Of course, these particles can been rewritten as identical particles if another

71
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quantum number—isospin— is introduced. But we will not use isospin formalism here
because the pnQRPA equation is more easily derived keeping protons and neutrons
separate and it is usually applied in heavy nuclei with a large neutron excess where

the pn formalism is more appropriate.

Several theories were suggested in order to describe pn system. The simplest
method provides separate Bogoliubov transformations for protons and neutrons, re-
spectively. Thus the quasiprotons and quasineutrons are well defined, and the ground
state is the vacuum corresponding to both types of quasiparticles. In this formalism,
the BCS equations for protons and neutrons retain the same form as those obtained
from the semi-magic nuclei case, and they are just coupled through the mean field.
In this model, only pp— and nn— pairing are taken into account. Another for-
mulation that has been proposed by Lane [Lan 64] and considered by a number of
authors[Row 70, Goo 70, Goo 79] is to give up thé distinction between the protons
and neutrons by using a generalized Bogoliubov transformation that mixes protons
and neutrons to obtain two kinds of new mixed quasiparticles. BCS types of equations
can be derived. They include all kinds of pairing, i.e. pp—, nn— and pn— pairing,

where complex mean field and potentials are required.

In this Chapter, we concentrate on the first method because well defined quasipro-
tons and quasineutrons are necessary when one develops pnQRPA theory. In section
5.2, we re-derive the BCS equation in angular momentum coupling space for the
proton-neutron system. Also a correlated BCS wave function is introduced through
perturbation theory and the extended BCS equation are given in section 5.3. The
spurious states are discussed as well in this section. The summary and conclusions

are given in section 5.4.
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5.2 BCS Theory for Proton-Neutron System

5.2.1 Nuclear Hamiltonian in quasiparticle space

In the shell-model basis, the nuclear Hamiltonian with the second quantization for-

malism can be written as
H =T+V

D edata, + = Z < af|VIyé > a}a}asa,, (5.1)
o aﬁ’yS

where €3 is the single-particle energy and < af |[V|vé > is the antisymmetric two-
body interaction matrix element. The labels (a@vé) refer to the particular state
(n,1,5,m,t;) in the shell-model basis, where n is principle quantum number, [ is
orbital momentum, j and m are angular momentum and its third component, and ¢, is
isospin third component, where isospin ¢ = 1/2 for proton and neutron. For simplicity,

(n,1,j,m,t.) is denoted as (jmt,) and then the Hamiltonian can be rewritten as

Z eJtz Jmt.aJmh +

jmits

1 : . . :
Z Z < ]amatzM]bmbtzblvl]cmctzc, Jdmql.q >
JamMayjdmg
2ay'*tgd
a;tm,t“ a;!;mb‘zb ajd'md tsd ajcmc‘xc . (5 . 2)
Eq. (5.2) is called the m-scheme coupling in isospin formalism.

The above Hamiltonian can be expressed in proton-neutron formalism with the

definition of isospin of proton (t,t,) = (1/2,~1/2) and neutron (t,t:) = (1/2,1/2),

z 5 JPmPaJPmP + Z e]n JuﬂlnaJnmn

Jpmp Jnmin

- +
+ 1 2 < Jp1 Moy Jpa M |V |Gy s fpy g, > ag,,m,,l G jpympy Gipympy Ripymps
Jva JP4
mMpy mpy
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1
. . . . + + . .
+- Z < Jny My Jng Mng [V |, Mg JngMn, > Gy mny Fingmng Lingmng Lingmng

jﬂ] v"'jn‘
Tny -mng

. I3 . . + + . .
+ D < JpMpin, M, IV s My iy M, > Qjpy mpy Finy miny Cingmny Cjpymp,

Jpl -.ojn2
mpy mng

(5.3)

where p,n label proton and neutron. We are reminded that additional terms which
contain matrix elements such as < pp|V|pn >, < pn|Vinn > and < pp|V|nn > are

dropped since the nuclear interactions conserve charge numbers.

We introduce the two-proton, two-neutron and proton-neutron creation operators

defined by

< Jps MipyJpy My | I M > t

AI’P(plp%JM) = Z Jl +6 ” 7oy mpy Lipy My (5'4)

Mpy Mp, P1p2
< Jny My JingMin, |[JM >

A;rm(nln%JM) = E l \/i +25 2 a}"l""n Cjny miny (5.5)
Mny Mny ning

Al (piny, JM) = Y <o Mpfnmn |IM > al  a; (5.6)

n ’ p1/7prJny THiny JpyMpy IngMing ‘

m’lmnl

The Hermitian adjoint operators are defined by

APP (A;p)t7 (57)
(AL, | (5.8)

Apm = (A;fm)f- (5.9)

Aunn

Thus the Hamiltonian given by Eq. (5.3) can been written as

H = EE:VZ’;) +1 a}; ® &jp)J=0,M=0 + 252 /2]" + l(a;t. ® &j")J=O,M=0
P n

1
+Z 2 (1 + 6?1?2)(1 + 6?3?4)‘/13{p3p3p4A;p(p1p2v JM)APP(p3p4v JM)

P1--Ps
JM



75

1

+Z Z (1 + 6"1"2)(1 + 6113“4)‘/71{7127131“ AIm(nlnz’ JM)Am(n3n4’ JM)
ny,ng

JM

+ Y VilmmAln(pint, JM) Ay (pana, IM), (5.10)

i
where V;-;-’k, =< ij|V|kl >’ and the label p and n represent proton’s and neutron’s
(nlj). The Hamiltonian in Eq. (5.10) is called the J-scheme coupling in proton-

neutron formalism.

The quasiprotons and quasineutrons are introduced by the Bogoliubov transfor-

mations, in the spherical shell-model basis,

C;;mp = upa.;!;mp + (—l)jp+mpvPajp—mp’ (5.11)

c,-it.m" = u"a;!:tmn + (_l)jn"'mnvnaj"_m", (5.12)
with

wtvl=ul40l=1. (5.13)

Eq. (5.13) is required if the quasiparticles are assumed to be fermions[Row 70,

Law 80, Rin 80].

In order to derive the BCS equation, we relax the fixed proton and neutron number

restriction and introduce the extra terms to the Hamiltonian.
H=H-)\N,-)\N,, (5.14)

where N, and N, are proton and neutron number operators. The Lagrange multipliers
Ar and A, turn out to have the physical interpretation of proton and neutron Fermi
energies. They are chosen to ensure that mean proton and neutron numbers are

correct.
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After carrying out the Bogoliubov transformation, the Hamiltonian can be rewrit-

ten as
H = Hpcs + Hin, (5.15)
where
Hpcs = Ho+ Hif + Hi}' + (H3 + h.c) + (Hiy + h.c), (5.16)
Hiw = Hy; + HX + HER, (5.17)

where the numerical subscripts indicate the number of quasiparticle creation and
annihilation operators in each piece of the Hamiltonian. We also require that the
above equations should be normal ordered, that is, destruction operators ¢ stand to

the right of creation operators c'. Hiy, will be discussed in section 5.3.1.

5.2.2 BCS equation ( independent quasiparticle )

The BCS equations only depend on Hpcs in Eq. (5.16). The terms in Hpcs are given
by

. 1 ) 1
Hy = Z(zh +1)(ep = Ar — _Fp)”: + 2(2.711 +1)(en — A — Ern)”:

4

1 . 1 .
-9 2(2.7? + I)Ap"p”p -5 E(2Jn + 1)Anunvy, (5.18)
HiY = }:{ (65— A )(“ -0 )+ 2upv, p} CjpmpCipmps (5.19)
Pymp
11 = 2 {(eﬂ - A")(u’: - vle) + 2uﬂvﬂAn}c}”m”cjnmn7 (5.20)
n,Mmn
e 1
HEP = Zp:(—l)"’+ P{(ep — Ar)upvy — 5(": 2)Ap} Cipmp Jp-mp - (5.21)

Hyy = Y (=1)+™{(en = A, )tnvy — ;(u ~v)An}e ey (5:22)

n
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with
& = €9+T,, (5.23)
En = €2+ F,,, (5.24)
r, = (14 60 ) (2T + 100V + D(20 + 1)02 V2, ,m,], (5.25)
2]? + 1 p'J n',J
T, = 2014 8an)(2J + V)02 Vit + S(27 + D2Vl ], (5.26)
2J" + 1 n'J p'\J
2_7 +1
Ap = - Z p u,,:v,,anp ' (5.27)
23 +1
An = - E 2]"’ n lunlvnlvnnlnl, (5.28)

I, and T, the are proton and neutron single-particle energy rearrangements. A, and
An are proton and neutron gaps. The r.h.s. of the gap equations ( Eq. (5.27,5.28))
only depend on J=0 interaction matrix elements. The J # 0 terms are automatically
equal to zero due to Clebsch-Gordan coefficient coupling. So the BCS is an S-pair

theory. Also one finds only pp— or nn— paring is involved in the proton or neutron

gap equation.

In order to derive the BCS equations, we will drop quasiparticle interaction terms
Hine, and let the BCS ground state be the vacuum corresponding to quasiprotons and

quasineutrons introduced in Eqs. (5.11,5.12), i.e.,

Cipm|BCS > = 0, (5.29)

Cjpomn |BCS >

0, (5.30)
where |BCS > is the BCS ground state.

The BCS equations can be obtained from the Ritz variation principle, in which

the expectation value of H is minimized [Row 70, Rin 80, Zha 92]. It requires the
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coefficients of H35 and Hjg in Eqgs. (5.21,5.22) to be equal to zero, i.e.,

1
(€p — Ar)upv, — E(ug —v3)A, =0,

(€n = A upvy — %(ui -vHA, =0.

We introduce the quasiproton and quasineutron energies defined by

E, = \/(513 - AP+ A,

E. = /(ea—\)? + A2,

Then one solves Eqs. (5.31,5.32,5.13) and obtains

En — Ay
E, )

v = l(l-—

The BCS wave function has a trial form in the particle basis [Law 80],

IBCS > = H (up + vpaIpmpaL,mp)(un + vnaInmn Ju'mn)l >
Jpmp>0
Jnmnp >0

= H{un"exp[——’-’-5+(]p)]un"exp[_—'S+(Jn)]}I >

where

at = (- 1)J+m

23 +1
2

S+G) = Y (-1 ™alal_,,

im>0

= Y \/21+1<ij—-m|00>a1m .

jm>0

Qjoms

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

where | > is the particle vacuum, i.e., a;n| >= 0. Eqgs. (5.37,5.40) imply that the

BCS wave function has seniority-zero and consequently represent a 0+ state in an
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- even-even nucleus. Since the BCS equation is obtained by dropping quasiparticle

interaction Hin, terms, the BCS is an independent quasiparticle theory.

The BCS wave function is required to have correct mean particle numbers. Thus
the proton and neutron Fermi energies A, and ), are chosen so that the mean proton

and neutron numbers in BCS satisfy

<BCS|N,[BCS > = 3(2j, + 1)v? = N,, (5.41)
14
<BCS|N,|BCS > = 3(2j.+1)v? = N,, (5.42)

n
where N, and N, are the proton and neutron numbers in the nuclear system. At
this stage, parameters v and v2 introduced in Bogoliubov transformations turn out
to have the physical meaning of proton and neutron occupation probabilities. Con-

sequently ui and u? are proton and neutron unoccupation probabilities

Egs. (5.23-5.28,5.33-5.36,5.41,5.42) are called the BCS equation. They can be
solved iteratively. In the BCS equations, we can find that the equations for protons
and neutrons are coupled only through the proton-neutron interaction terms in the

rearrangement I', and T',,.

We reiterate that the BCS theory ceases to conserve particle numbers because of
the dropping of the Hiy, terms. The particle-number uncertainty can be calculated

as

(AN)? =< BCS|N*BCS > —N? = 37(2j + 1)udo?, (5.43)

J

The fractional uncertainty in particle number is defined by

(aN)

~ (5.44)

When v} and v? satisfy Eqs. (5.35,5.36), the BCS Hamiltonian in Eq. (5.16)
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becomes

Hges = Hy + E Epc}meijmP + Z EnC}nm"cjnmn‘ (5.45)

pymp n,mn

and the Hamiltonian in Eq. (5.15)

H= Hy + Z Epc}Pmch'me + Z E'nc}"mncj,,m,, + Hine, (5.46)

p,Mp n,mn

Then Hamiltonian given by Eq. (5.1) is expressed by
H= HBCS + Hint + AwNw + /\qu- . (547)
5.2.3 BCS energy spectrum

The BCS ground state energy is given by

Epcs = < BCS|Hpcs + A-Ny + A\, N,|BCS >

= HO + /\wNﬂ' + /\uNu

) 1 ) 1
= 2(2]1’ + 1)(ep — §Fp)”: + Z(an +1)(en — :?'Pn)”:
p n

1 . 1 :
-3 Y (25, + 1)Aupv, — 5 Y (2n + 1)Antnv,. (5.48)
4 n

The BCS excitations, sometimes called unperturbed states ( which refers to drop-
ping the Hiy,) are defined as
Ao . '
|haplen >= .=1-'|1:,1;Il Cliimip; Cinymn, |IBCS > . (5.49)
The excitation energy is
h i
Ehptan = Encs + ) Ep, + Y E,,. (5.50)
1=1 i=1
The configuration corresponding to this excitation is obtained by creating h quasipro-

tons and [ quasineutrons with respect to the ground state |IBCS >.



81

5.3 Extended BCS Theory

5.3.1 Interactions between quasiparticles

As we mentioned before, the Hiy, terms describe the interactions between the quasi-
particles, consisting of like particle interaction HE® and HP® and unlike particle in-
teraction Hiy;. Since HE} is identical with HEY if p/n labels are interchanged, we will

ive HE; here. Now the expressions of each term in Hjy,, are given b
mt

HE = HE + (HP + h.c)+ (H + h.c) (5.51)
Hie = HE + (Hi + h.c)+ (P + h.c)

+(NJ' + h.c) + PR + N&, (5.52)

where the numerical subscripts again indicate the number of quasiparticle creation

and annihilation operators in each piece of Hig.

1
-7 Z (1 + 8 )(1 + by, Juy, Upa Ups Upy V;{pzpam

i
M

PP _
H40 -

'A;P(plpz’ JM)“&;p(p3p4’ JM)a (553)

1
Hglp = _'2‘ E (1 +5mm)(1 +6P3P4)I/p{p2p3p4

P1-Pgs
JM

(um Up, Upy Vpy — Vp, Up, Upy Up, )ALp(le’ JM)ﬁ;p(Pfip‘h JM)v (5'54)

1
H = 1 2 {(1+ 6,1,,,)(1 + Gpspa ) (tpy Upy Upy tp, + vy, ”pz”psvm)V;mmm

P1°:P4,
JM

+4tp, Up, Up, Uy, Wj;lgpzpaju \/(1 + Opyp )(1 + bpspe) (1 + bpips)(1 + Spane)}
Al (p1p2, IM) AL (p3pa, IM), (5.55)

Hy = - Z ‘/p{nlpgnguPluﬂlvavﬂz‘AIm(plnl’JM)‘l;n(p?n'z’JM)’ (5.56)

n
2} Jﬁ"ﬁv

P;ln = - E ‘/p{nlpgnz {“m uﬂl vpz“m A:m(plnli JM)Pgn(p?nh JM)

P1n1Pyng
g
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+Vp, Un, Up, Un, ';qm(plnl’ JM)"Sgn(Pznz, JM)}’ (5'57)

Ngln = - 2 ‘/p{ﬂqunz {“px Uny Up, vﬂz'A'Im(pl ny, JM)NJn(p?n% JM)

P171P2n2,
JM

+Vp, Un, up,un,j;n(plnl, JM)-/VJn(P2n2, JM)}, (5.58)

pn J
H22 - Z {(“m Up, Upy Un, + Upy vmvpzvﬂz)vplnlpgnz

J
+(up1 vm um vnz + vPl uﬂl va uﬂz )Wm nipang }

A;rm(plnl, JM)Apn(mn% JM)1 (5.59)
PR =- Y V;;fnmmumvn,vpzun,'ﬁ;n(plnl,JM)’Pgn(pzng,JM), (5.60)
PinyIP2nY,
JM .
NG = - 2 Vp‘fnmnavmumumv,.,ﬂfgn(plnl,JM)NJn(pgng,JM). (5.61)
PN P22,
JM

The notations used in the above equations are defined by

< JpyMpy Jp, Mg, [T M >

Aplpipn, JM) = 3 SldntnlIM>y o e
Mpy Mpy \/ 1+ 6mm )

Dop(p1p2, JM) = Zm < Jp1 Mp, Jp Mg, | I M >C},,m,léjp,mp,’ (5.63)
Mp) Mpy

A;tm(Plnl’ JM) = E < Jp1Mpydny M, [T M > c},lm,, C},.lm,.,’ (5.64)
Mp) Mny

Pea(pin, JM) = E < JpiMpy Jny Moy [T M > E},,,m,,l Cinymny ) (5.65)
Mpy Mny

Nn(piny, M) = Y < jpmy jpma, |[IM > & o Cipy i (5.66)
mlenl

with
A(j1jz, JM) = (A (j1ja, M), (5.67)
A(jrjz, IM) = (=1)™*MA(j,j5,J — M), (5.68)

éjm = (—1)j+m6j_m. (5.69)
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W7 is particle-hole interaction defined by the Pandy transformation given in Eq.

(3.15).
5.3.2 Correlated BCS wave function

Since the quasiparticle interaction term Hiy, is dropped in the BCS, we can incorpo-
rate its effects approximately by using it to improve our lowest-order results with the
Rayleigh-Schrédinger perturbation theory. The first-order correction terms are rather
easily evaluated if we are only interested in the BCS ground state. Hs, and Hy, both
contain an annihilation operator ¢ as the rightmost operator and hence give zero when
operating on the BCS ground state (quasiparticle vacuum). Only H,o connects to the
corrections. This means that, in this order, the corrections mixed the unperturbed
four quasiparticle excitations with the quasiparticle vacuum in the ground state. The

unperturbed four quasiparticle excitations are given by section 5.2.3.

Since Hyo consists of three terms Hif, HI® and HJ;, the unperturbed quasiparticle
excitations connected to the ground state corrections contains three kinds of config-
uration, four-quasiproton, four-quasineutron and two-quasiproton two-quasineutron
doublet excitations. They are denoted as |4qp >, |4qn > and [2qpn >, and cor-
responding to (b = 4,1 = 0), (h = 0,1 = 4) and (k = 2, | = 2) in Eq. (5.49),
respectively. Therefore excitation energies are given by Eq. (5.50). The correlated

BCS ground state wave function can be represented as

< HHmlBOS >
Egcs — Ei

ICBCS > = N(|BCS>+)Y
: k

< 4qp| HP|BCS >
Epcs — Eyqp

= N(BCS>+Y ldap >
4qp

< 4qn|H3|BCS >

+ 2 EBCS - E4qn

4qn

|4qn >
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< 2qpn|H5|BCS >

+ —% | ‘“’g, |12qpn >), (5.70)
2qpn BCS — Li2qpn

where A is the normalization factor, and |k > denotes any unperturbed excitations.
However, this correction is expected to be small so that the gap properties of the

pairing solution are not destroyed.

In order to simplify our calculation, the interactions between like particle are

assumed to be relatively small and dropped. Thus Eq. (5.70), becomes

)1
CBCS >~ N(|BCS > + 3 S 2aPalHi[BCS >

2qpn >). 5.71
&~ Foos - Bopn |2qpn >) (5.71)

The word correlated implies including the quasiparticle correlation terms in Eqs.(5.70,5.71).

5.3.3 Construction of two-quasiproton two-quasineutron ex-
citations in the J-scheme

The two-proton and two-neutron doublet excitations |2qpn > are simply obtained by
choosing b = I = 2 in Eq. (5.49) in m-scheme, where one normalized factor may
be introduced. But if we are only interested in some special J values, the J-scheme
representation is useful because of rather smaller dimensions involved. For example,
only J=1 excitations are needed in Gamow-Teller transitions. Thus we define a two-

quasiproton two-quasineutron doublet creation operator in J-scheme,

Bl ju(prmapana, JM) = Np(A'(prny, JI'M') ® At(pgns, J"M"))"™
= N Y, <JIMJI'M"JM >

MIMII
XA'(P] n, J'M')-Af(Pznz, J"M”), (5-72)

where Np is the normalization factor of B*. The two-quasiproton two-quasineutron

excitations are given by

|2qpn >= B},J"(plnlpznz,JM)IBCS >. (5.73)
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However, when one constructs the |2qpn > excitations, the identical states must be

excluded in order to avoid double counting.

The normalization factor Np is determined by

<2qpn|2gpn > = < BCS|Bju(pinipang, JM)BY, ju(pynypana, JM)|BCS >

= L (5.74)

 Then we obtain as expression for Ng

. Jor Jny I’
Np* = 1+(=1ym*mti(2g +1)(2J’+1)(2J”+1)5mm{J'n, i J"}
J'J o J

oL Jny Jp J
+(=1)~ +JP2_‘""(2J +1)(2J' + 1)(2J" + 1)ényn, { Jpa Jng J” }
J" J J

+6 0 gn 6,,”,, 6,,1,,, . (5.75)

Since the BCS ground state has spin J = 0 (see Eq. (5.37)), only J = 0 two-
quasiproton two-quasineutron excitations in Eq. (5.73) contribute to the ground
state correction. Therefore we have J' = J” and M’ = —M". Then two-quasiproton

two-quasineutron excitations used in the correlated BCS wave function are restricted
to
|2¢gpn > = NBB},J,(plnipgng,OO)|BCS >
= |(pn1)” (pama)” > (5.76)
The last notation will be frequently used in later discussions.

According to perturbation theory, all unperburbed states involved in Eq. (5.71)

must form an orthogonal basis. But the excitations created by Eq. (5.73) or (5.76)
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‘are not orthogonal each other. Let’s consider any two states,
k> = |2qpn >= NpB',(pinpans, 00)|BCS > . (5.77)
| > = |2qpn’ >= Np.B}, ,.(p}n)p}n}, 00)|BCS > . (5.78)
The orthogonal condition requires < k|k' >= §is. But the overlap between them is

Xk = < BCS|Bys(pin1pana, 00)Bl, ;. (pinipyns, 00)|BCS >

= JVB]VB’{&;J”:’1 6n1n; 6p3p; nanj 6JJ'

o o
+(_1)J"’+J"2+J+J (2J + 1)(2*]' + 1) Jng jm J 5171;’5 nin] Cpapi Onynl
JJ 0
o i dn
'*'("1)'1"1 tip ¥4 (2J + 1)(2‘], +1) Joo Jng J 6?1?15"17156192?55112"{
JJ 0
+6p1p56n1n5 pap} ngniJJJ’}, (579)

where Np and Np: are the normalization factors for states |2qpn > and [2qpn’ >.

The possible nonzero x can be found only for the following cases,

A)pr=pim=nip=pyny=n,J=J
B)p=pym=nypp=piny=niJ=J
(C)P1=P'gn1=n'1p2=p'1ng=n’2J, J'

(D) pr=p nu=n} pp =pyng =nj) J, J'.

For case (A) or (B), it is easy to obtain x = 1. It indicates that states |2qpn >
and |2qpn’ > are identical. On the other hand, we can exclude all double counting
|2qpn > states through this overlap procedure. For cases (C) and (D),0 < x <1 and

it implies that two states are not orthogonal.
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We have to use the Gram-Schmidt orthogonalization procedure to obtain normal-
ized orthogonal states from the normalized nonorthogonal states |2qpn > ( in fact,

they are not linearly independent ). Finally, we obtain

|Pinypang, k >= ZaikI(Plnl)J‘(Pznz)J‘ >. (5-80)

The coefficients a are obtained from orthogonalization which relate to x. For the new

state |pynipang, k >, we have
< pinapang, k|pinipang, k' >= b, (5.81)

These states will be employed to calculate the first-order correction.

The excitation energy for state |pynypans, k > is given by
Ey = (Egcs + Ep, + Ep, + Eo, + En,). (5.82)
So the energy denominator in Eq. (5.71) is
Epcs — Ey = —(Ep, + E,, + E,, + E,,). (5.83)
5.3.4 Formalism of extended BCS theory

Based on the discussions in the last subsection, we can start to work on the formalism
of the extended BCS theory. Iﬁ this subsection, we will derive the correlated BCS
wave function expression, occupation probability and energy shift, and so on. One
inserts |pynypana, k > into Eq. (5.71) instead of [2qpn >, the correction terms become

5 < 2qpn|H%|BCS >
sam  EBos — Eaqpn

|2qpn >

< pinipang, k| Hig|BCS >
= - pinipang, k >
s B+ By & By 4 By PP
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E,‘ g < BCSlBJ‘J‘. (plnlpgng, OO)H::'BCS >
Pl"l:?"? Epl + E'nl + EP? + Eﬂ?

X Z ak:'B},-J, (p1n1p2ng, 00)|BCS >
J

- - Lk Li akickj < BCS|By, s, (p1n1pana, 00) Hig |BCS >

Pl"lj”?"Z Epl + Eﬂl + Epz + Eﬂz
X B}, ;. (p1napana, 00)|BCS > , (5.84)

where the matrix element in above equation is

< BCS|By4,(prn1pans, 00)Hig |BCS >= —Np;\/2J; + 1G%, (5.85)
with
Gi:"lm"n = V'P{iﬂlmﬂz(upl Un, UpyUny + Up, Un, Up, Un, )
—Wz;?mpznz(vm Uny UpyUny + Up, vﬂlvmung)' (5.86)

Therefore the correlated BCS wave function in Eq. (5.71) is given by

F,
CBCS >= N {1+ Pifgany B} ;. (pnypana, 00)}|BCS > ,(5.87
' I { Pl%ﬁg Epl + Eﬂ-l + Em + En2 JJJ"(pl 1p2 2 )}I ( )
where
Fonipana = Ek:ZNa.-ak.-ak,- 2 +1Gy, .. (5.88)

One finds F is a function of j where k and i are already summed over. The normal-

ization factors in Eq. (5.87) can be calculated from,

< CBCS|CBCS >=1. (5.89)
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- Then we obtain

F, nipan F’n’ anh X
N—2 — 1 Pinipane 1P Ny 5.90
Vs B ¥ B T B + BBy + By By By %)
PPy

where X is the overlap between states |(pin1)”(pan2)” > and |(pjn})% (pyns)" >,

which is presented in Eq. (5.79).

The correlated BCS wave function is required to have correct mean proton and

neutron numbers, and we have

< CBCS|N,|CBCS > = N, (5.91)
< CBCS|N,|CBCS > = N, (5.92)

where N,(N,) is the proton ( neutron ) number operator. We evaluate the left side

of these equations and obtain,

— FPlﬂlpnﬁ : 2
N1r - E(2JP+1)U +N2p11§n2(E +E'n1 +Ep+En2) ) (5‘93)

F,
N, = Y (2 +1)v2 +N? BATAPIT )2 5.94
Z( ) P1P§m( EPl + Eﬂl + Epz + Eﬂ ( )

Egs. (5.23-5.28,5.33-5.36,5.93,5.94 ) are called the extended BCS equation. They can
be solved iteratively as well. We point out that parameters v2 and v? have lost the
physical interpretations of occupation probabilities, because of the existing additional

terms in Eq. (5.93,5.94).

The correlated BCS ground state energy E..., is obtained by second-order pertur-

bation theory,

Ecors = Epcs + E® + E®), (5.95)
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where

EW = o (5.96)
k|HE®|BCS > [2
E@ = | < k|H%
Pl%ﬂz Epcs — Ex

- - ¥ (Zi okiNBiv2Ji + 1G3: 0 pony)’
plnlkpgnz EPI + Enl + Epg + Eﬂz

(5.97)
Epcs is given by Eq. (5.48).

5.4 Application

We have applied the extended BCS theory to study the ground state properties of
“6Ti. The occupation probabilities and the quasiparticle energies are calculated from
the extended BCS equation Eqgs. (5.23-5.28,5.33-5.36,5.93,5.94). They are solved
iteratively with constrained proton and neutron numbers to be 2 and 4, respectively.
In our calculation, the spurious states discussed in Appendix F are not projected out

yet.

The occupation probabilities obtained from the extended BCS < CBCSIa;'-aj |CBCS >
/(25 + 1) are given in Table 5.1 and compared to the BCS and the full-basis shell-
model calculations. We find the extended BCS calculation improves upon the BCS

occupation numbers, bring them more in line with the full-basis shell-model result.

The extended BCS parameters are presented in Table 5.2. We find that v? are
not equal to the relevant occupation probabilities given in Table 5‘.1. In the extended
BCS, the Fermi level of proton and neutron are —13.216 MeV and —10.942 MeV. In
the BCS, they are —12.968 MeV and —10.868 MeV, respectively.
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Table 5.1: **Ti: The occupation probabilities < |a}ma,-m| > /(25 + 1) for protons and
neutrons obtained from the BCS, extended BCS (EBCS) and shell-model calculations,
respectively.

level | EBCS BCS Shell model

wfre | 0.222  0.239 0.187
mp3/2 | 0.022 0.009 0.078
wfs;2 | 0.020 0.008 0.022
mp172 | 0.008 0.004 0.031

viry | 0.459 0480  0.404
vpaj2 | 0.036 0.018  0.092
vis;y | 0.027 0.013  0.054
| vpija | 0.011  0.007  0.040

Table 5.2: The extended BCS parameters, u?, v?, gap parameters A; (MeV) and
quasiparticle energies E; (MeV) for 6Ti

[ evel u? N v? A; E;

w72 | 0.817 0.183 1.203 1.556
7p3sz | 0.992 0.008 0.911 5.105
7rf5/2 0.993 0.007 1.314 7.592

7Py | 0.996 0.004 0.874 7.275

viz2 | 0.546 0.454 1.447 1.453
vpas; | 0.983 0.017 1.104 4.236
viss; 1 0.987 0.013 1.574 7.076
vpyz | 0.993 0.007 1.069 6.478

R e oot
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5.5 Summary

In this Chapter, we re-derived the BCS equations for proton-neutron systems in
an angular momentum coupling space. The correlated BCS wave function is intro-
duced through first-order perturbation theory, where the quasiparticle interactions
Hine dropped in BCS theory are incorporated approximately. In order to simplify our
calculations, we only consider the proton-neutron interaction term in Hi,, which is be-
lieved to be more important than the like particle interactions. The two-quasiproton
two-quasineutron doublet excitations in the correlated BCS ground state are intro-
duced and discussed in the J-scheme. Since the excitations may be not orthogonal
to each other, the Gram-Schmidt orthogonalization method is employed to obtain a

new orthogonal basis.

We also present the extended BCS equations based on the correlated BCS wave
function, which include how to calculate the occupation probability, ground state en-
ergy. The extended BCS equations in angular momentum coupled space is given in
Appendix E. The spurious states due to the violation of particle-.number conservation
will be discussed in Appendix F. We applied the extended BCS equation to the study
of the ground state properties of “°Ti and found that the the occupation probabili-
ties have been improved compared to the standard BCS. The correlated BCS wave
function will be employed to develop the extended pnQRPA equation in the next
Chapter.



Chapter 6

Extended pnQRPA Theory and
Applications

6.1 Introduction

In Chapter 3 and Chapter 4, we have tested the validity and accuracy of the pnQRPA
as a model to study 8+ and 88 decays. The tests are carried out by making the com-
parisons of the pnQRPA and the full-basis shell-model calculations. The comparison
consists of (1) for B+ decay: the total B(GT™) value, strength distributions, COBTD
and CTME, (2) for 2v83f decay: the energy-dependent and the closure double-beta
decay matrix elements (Mgt and BcLs), and their distributions with respect to the
excitations. We have found that the pnQRPA does not give a sufficient suppression
for transition strength and presents a large discrepancy between the pnQRPA and
shell model in the shape of the strength distributions. We conclude that maybe some
correlations which are important to 8+ and A8 decay have not been included in the
pnQRPA. The “ hybrid ” models, where the shell-model parameters are used in the
pnQRPA, improve the calculations in 3+ decay but fail in 2v33 decay. On the other
hand, the “ hybrid ” models are purely empirical improvements, which lack any solid

theoretical background. Thus it is important and may be possible to develop a new
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~ kind of equation, in which more correlations are taken into account from the theory

of many-body problem.

In Chapter 5, the correlated BCS wave function was introduced and the relevant
extended BCS equation was derived as well. In this Chapter, we will derive an
extended pnQRPA equation based on using the correlated BCS wave function to
calculate the matrix elements in the equation. In section 6.2 and 6.3, the derivations
and applications of the extended pnQRPA are presented. 8t decay of *Ti and 53
decay of *éCa are employed again as examples. In section 6.4, we give a summary

and conclusion.

6.2 Extended pnQRPA Equations

We start with the equation of motion which we discussed in Chapter 3,

< QRPA|[6Q., [H, Q}]]IQRPA >= hw < QRPA|[6Q., Q}]|QRPA > (6.1)

where hw = E, — E, and Q] is phonon creation operator,

QL M) = 3 (X2 AL (pn, TM) — Y™ Ap(pn, T M)). (6.2)

pn

The excitations are given by
|v >= Q'|QRPA > . : (6.3)

The operators .A;fm(pn, JM) are two quasiparticle creation and destruction operators
defined by Eq. (3.5) and Ay (pn, JM) is defined by Eq. (3.7). The Hamiltonian is
given by Eq. (5.45). |QRPA > is the QRPA ground state defined in Appendix A.

By choosing variation operators §Q, as Apy(pn, JM) and A{m(pn, JM), we obtain

(4 2)(3) -»(5).
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It appears the same as the pnQRPA form (Eq. (3.9)). But the matrix elements A

and B derived by using the [CBCS > rather than the [BCS > as follows are given by

A:np'n' = < QRPAI[APn(pn’ JM)’ [H’ AI)n(plnlv JM)]]IQRPA >

R

< CBCS|[Apa(pr, J M), [H, Al (s'n/, JM)}}|CBCS >

1

(E + E )6}’?'6’"" + ( 22 )pnp'n’ + (AA)P‘"P"" (65)

B)yw = < QRPA|[Ap(pn, JM),[H, Apu(p'n’, JM)]]|QRPA >

R

< CBCSI[APn(pna JM)’ [H7 Apn(p,n,a JM)]”CBCS >

2 —(GP)ppnt + (AB)prgins (6.6)
where
(H32 :np ! = gppv;{;p'n'("p“n“p'un' + VpUnVprUnr)
+gpthnp 1 (UpUnUpr Uns + VpUy Uprtiy) (6.7)
(Gpn)gnp"n' = gppr{ap'n'(“p“nvp'vn' + VpUntprtins)
oh Wit (VpUn iU + upvnvp/un:) (6.8)

In Egs. (6.5,6.6), we approximate [QRPA > to [CBCS >. ( In the pnQRPA, we
approximate |QRPA > to [BCS >, see Egs. (3.11,3.12)). |CBCS > is the correlated

BCS wave function introduced in Chapter 5. The corrections are expressed by

G, 37 +1
AA)Y, ) = 28,p6pm pinpana I pinpang '
( )P'IIPTI PP {ng'z Ep1 + E + Epg + E’nz( 2]'n + 1 )
G S 7 .
+ pr1pang Fonipana ( 2J' + 1)} (6.9)

Pz%‘z EP + E’"l + EP2 + E"? 2]? + 1

(AB) = 42\/2—.7’_{ Jp ]n J’}{ (Hpﬂjrmmpmmp’n
- jo w J' | By + En, + Ey + B,

pn
(H22 )p'npl ny 4 pinapn’

Epl + Enl + E + En’

o+ (6.10)
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‘The quasiparticle energies E and parameters u, v are obtained by solving the extended
BCS equation in subsection 5.3.4. The quantities Fj,,,p,n, are given by Eq. (5.88).
And (V) and (W) are the particle-particle and particle-hole interaction matrix ele-
ments, respectively. In AA, all off-diagonal matrix elements are equal to zero because
of Clebsch-Gordan coefficient coupling. However, they are not zeros in m-scheme or

uncoupled space. Eqs. (6.4—6.10) are called the extended pnQRPA equations.

Now we calculate the transition matrix elements between excited states and ground

state for a one-body operator O,

< v|O|QRPA > < QRPA|[Q.,O]|QRPA >

(P4

< CBCS|[Q., 0]|CBCS >

= N?{< BCS|[Q.,0]|BCS >
+ Y < 2qpn|H{'|BCS >< 2qpn’|Hiy |BCS >

2qpn _(EBCS - E2qpn)(EBCS - Equn')
2qpn’

x < 2qpn’|[Q., O]|2qpn > (6.11)
~ < BCSY|[Q.,0]|BCS > . (6.12)
In Eq. (6.12), we keep the zero-order term and drop the second-order terms. The

first-order term is zero. Therefore for Gamow-Teller operator, the transition matrix

elements are given by

B(GT")

{M,(GT™)}* = {(3_ < pllolln > (XE upvn + Y v,u,)}?  (6.13)
pn

B(CTY) = {M,(GT")Y {~3 <pllolln > (XI vpun + Y upv,)}? (6.14)

where o is the Pauli spin operator. Although above equations have the same expres-
sion as Eqs.(3.18,3.19) in Chapter 3, the amplitudes X and Y are obtained by the
extended pnQRPA rather than the pnQRPA, and u,v factors are obtained by the
extended BCS in Chapter 5 rather than the standard BCS.
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6.3 Application and Discussions

We apply the extended pnQRPA equation to study the 8+ Gamow-Teller transition
of ¥Ti —*Sc. The running sum B(GT*) in the extended pnQRPA is presented
in Figure 6.1 as a function of the excitation energy and compared with those in
the pnQRPA and shell model. We find that total B(GT*) is suppressed. It goes
about half way between the pnQRPA and shell-model results. Actually, there is a
competition between a suppression and an enhancement mechanism in our case. The
suppression mechanisms are mainly from the off-diagonal terms in AB and the new
u,v parameters. The enhancement mechanisms are due to the positive AA values
in the extended pnQRPA. In our calculation, almost all strengths are suppressed
except the first one. The relatively strong enhancement in the B(GT™) at the first
excited state arises in the AA term from the (7 Jr12v 272, 7 fr72v fr2) four quasiparticle
configuration, which corresponds to the smallest energy denominator in Eq. (69)
We know the first B(GT*) is dominated by this configuration. Our calculation shows
the enhanced strength is almost equal to the suppressed strength so that the first
B(GT*) is unchanged. The energy of the lowest state is shifted up about 0.1 MeV.
The calculation has shown that the B(GT*) strength in the second state has the

largest suppression, which decreases 30 %.

The COBTD and CTME values are given in Table 6.1 and 6.2. Comparing to the
pnQRPA and shell-model calculations, the COBTD and the CTME for frra = fsp2
is improved but the f7/; — fr72 and fsj2 — fr/2 terms become worse, and the p—op

terms are almost the same as those in the pnQRPA.

We note the sum rule in Eq. (2.1) is violated in our calculations. This is because

we have dropped the second-order terms in Eqgs. (6.13, 6.14). (There are about twenty
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Figure 6.1: Summed Gamow-Teller strength for “®Ti —*Sc. The solid line, the
dashed line and the dotted line are obtained by the shell model, pnQRPA and ex-
tended pnQRPA, respectively.
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Table 6.1: Comparison of the coherent one-body transition density (COBTD) ob-
tained for the pnQRPA, extended pnQRPA and shell model calculations of T,
The labels represent (A): COBTD in the pnQRPA ; (B): COBTD in the extended
pnQRPA ; (C): COBTD in the shell model.

Jo = in A B C
Jrj2 = fr2 | 0034 0.048 -0.096
Jrya = fs2 | 0443 0.375  0.386
P3/2 — p3jz | 0.002 0.001 0.006
P32 — fs72 [ -0.001 -0.001 0.017
P3j2 — py2 | 0.005 0.005 0.060
fsj2— fr72 | 0.088 0.081 0.086
fsj2 = p3;2 | 0.001  0.001 0.010
fs;2 = fsp2 | 0.001 -0.002 -0.011
P12 — p3y2 | 0.003  0.003 0.009
Pij2 — D12 -0.001 0.000 -OOOL

terms in the second-order corrections.) The violation is around 10 % in our example.

We now apply the extended pnQRPA to calculate the double-beta decay matrix
elements of “°Ca. Figure 6.2 and 6.3 show the running sum of the closure matrix
element Bcrs and energy dependent matrix element Mgt as the function of the
excitation energy. Suppression of the transition is found but not enough to reproduce

the shell-model result. For %6Ca, since the proton occupations are zero, we have v, = 0

and G7'

pimipang = 0, 80 consequently all the corrections are zero, the extended pnQRPA

reduces to the pnQRPA. Thus the excitation energies in the extended pnQRPA shown
in Figure 6.2 are identical to those of the pnQRPA.

6.4 Summary and Conclusions

We have derived an extended pnQRPA equation, in which the correlated BCS ground

state is used to calculate the extended pnQRPA matrix elements. The equation has
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Figure 6.2: Summed energy dependent 2v33 decay matrix element Mgr(E,) as the
function of the excitation energies, the solid line, the dashed line and the dotted line

are obtained by the shell model, pnQRPA and extended pnQRPA, respectively
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Table 6.2: Comparison of the coherent transition matrix elements (CTME) obtained
in the pnQRPA, extended pnQRPA and shell model calculations of “6Ti. Labels (A),
(B) and (C) are given by Table 6.1

i» = Jn A B. C
fr2 = fr2 | 0.108  0.155 -0.308
frj2 = fsy2 | 1.641  1.387  1.431
Psj2 — pas2 | 0.005 0.003 0.014
P3j2 — fs;2 | 0.000 0.000 0.000
psj2 — pij2 | 0.011  0.011 0.139
fsj2 = fr72 | -0.325 -0.299 -0.319
fsj2 = paj2 | 0.000 0.000 0.000
fsj2 = fsp2 | -0.002  0.003 0.024
P1/2 — p3/z | -0.006 -0.006 -0.020
P2 = piz | 0.000 0.000 0.002

the pnQRPA form but the matrix elements include additional first-order correction
terms which are due to the correlated BCS ground state. The equation is applied to
study the 8+ decay of **Ti. Around 40 % suppression of total B(GT*) has been found.
But the B(GT*) strength distribution in the extended pnQRPA still differs with the
shell-model results. We also discuss the suppression and enhancement mechanisms
in the “*Ti —*Sc transition. We find the sum rule is violated around 10 %. This is

because the second-order terms are dropped in the transition matrix element formula.

The extended pnQRPA has also been applied to calculate BB decay of 4éCa. The
suppression of the total double-beta decay matrix elements is found but not enough
to reproduce the shell-model results. Like the application of the extended pnQRPA
in 8% decay, the 88 matrix element distribution with respect to the excitations is not

yet improved.



Chapter 7

Further Improvements and
Considerations

7.1 Introduction

In Chapter 6, we derived the extended pnQRPA equation in which the correlated
BCS ground state is used. Our calculation showed that the total B(GT?) and 2088
decay matrix elements are suppressed but not enough to reproduce the shell-model
results. Also the shapes of the strength distributions are still in poor agreement with

those obtained in shell-model calculations.

In this Chapter, we explore another possible technique in theory of many-body
problem to improve the pnQRPA, namely, the second pnQRPA theory. In this model,
we concentrate on the extensions of the phonon creation operator, which will be
expanded up to four quasiparticle creation and destruction operators. But the BCS

ground state is still used to calculate the matrix elements in the equation.

Also we can combine the extended and second pnQRPA, i.e., the phonon oper-
ators include two and four quasiparticle creation and destruction operators and the
correlated BCS ground state is used to calculate the relevant matrix elements. This

extension is called the extended second pnQRPA equation.
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We will derive the second pnQRPA equation in section 7.2 and the extended second
pnQRPA in section 7.3. The derivations are both obtained in angular momentum
uncoupled space where a REDUCE [Hea 88] algebra code is used to calculate the
expression of the operator in the second quantization scheme. The summary is given

in section 7.3.

7.2 Second pnQRPA Equation

In order to include higher-order correlation terms in charge-exchange mode, we ex-
tend the phonon creation operator Q! to four quasiparticle creation and destruction

operators which can contribute to charge exchange process,

lv> = Q!SQRPA >= {E(X" tel — - Y cp)

1Cp, Cny
Py

+ Z ( V ;1 ;a ;3 1. Y2UC”ICP3CP26P1)

P1<p2<p3,m
+ Z ( c;r'u 11.2 la ;1 1/3 cPl cﬂs cﬂz c"l)

n1<nz<n3,pi

+ E (X"cf o c'f

r1<p3,m1<n3 o »
~Y{ Cny CpyCny 5, ) }SQRPA > . (1.1)
In this section, the labelson X and Y are 1 = (71m1), 2 = (p1pepami), 3 = (ninanapy),

= (p1m1pan;). The ground state is [SQRPA>, which is discussed in Appendix D.

To derive the second pnQRPA, we insert the above phonon creation operator and
appropriate variational operators c,,¢,,, cf ¢l , f ¢ et ¢! , .-, and ¢p,cn,0p,cq, into
the equation of motion (Eq. (6.1)). The BCS ground state is used when we calculate

the matrix elements in the second pnQRPA. Then the second pnQRPA is obtained



with the following matrix form,

The matrix elements are given by

A

By

Az

Ay

( All’
_R*
v

A

A31’

Bir Ay
* *®
Al 1/ - Alzl
A22’
L] *
- A21' "‘Azzl
A32’
- L]
“‘Aall hame Aszl
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Ay
%*
—Aly
Aga
»
Asa
_AL,

< SQRPA|[cu, 51, [H, ¢}, c}, ISQRPA >

< BOS|[cny &y, [H, cfy f, ]IIBCS >

(Epy + Eny)6p1p6n,, + (H53 )pynyping

~ < SQRPA[ca, &5, [H, oy e []SQRPA >

~ < BCS|(en,cpy, [H, casy IIBCS >

-(Hfg)pmw',ni - (Hfg)pinimm + (H}l’(l)l)p'lmmn’l

+(Hfg)mn'1pim

< SQRPA|[ew, ¢, [H,

t ol ol of
Cpt Cp3 Cpt, Cn

,1IISQRPA >

< B(:SI[C\",1 Cpy) [H, c;l;’l C;;C;éc;l;ll ]]IBCS >

((Xu
Yy
Xy
Yy
X
Y

\ Y )

5?1?{ A(P;’Pg)(P f}.")p;n;pgm + 5,,,,; A(p',,pg)(P lpan)p;’,ni pin

+6P1P;’; 'A(le p’l)(Plp:!n)pi nipjin

(P} <Py < p3)

< SQRPA|[cn, 5, [H, ¢}y ], ISQRPA >

< BCS|[en, &y, [H, el c:"acléc;i]“BCS >

6n1n; A(n’m nQ)(Nfé')p;n;m; + 6n1n5 A(ny, "Q)(Nf;)p{n{,pmi

+6n, nQ:A("'za ) (Vi3 )p{ﬂpm&

[ X,
Y

)
X3
Y,
X4
\ Y,

= hw

(7.3)

(7.4)

(7.5)
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A33’

A44'
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(n] < n) < ny) (7.6)
Aj; for i#j (7.7)
< SQRPA|[ca, Cpy 05y, [H, €l cf ol of TISQRPA >

< BCS|[c,.1c,,3cmcm, [H p, cp, cn,]]IBCS >

(Epy + Epy, + Epy + B ) 6519, 8p20} Sppt Oning +

Srani (0010, (H32 )pspaviey + Sping (HES Dpapsntet, + Opupy (HEE Dpapapot

+6p20, (H33 )p10s0y0} + Spapy (H33 )prpsntpy, + 6papy (H32 )prpspyo,

+8p50; (H22 )prpanyry, + Opapy (HEE )pinarynl, + Spspt (HEP ) pupapisy]

6515, Opapy (HE2 Jpsmiping, + Spapy Opsny (HES Dprnyptnt

+‘5P3P55mpi( )pzmp,n' 5p2p3 Plpl(H22 ) — 4n!

-5,,3,,;5,,,; (Hf;' )pgnlp;n; - 5p1p, Pspa(H22 )mnlplnl

=820 Opspt, (H3z Dormipyng, + Spapt Spiy (H33 pamaptnt

F6 a0, 0020, (H32 )psnaptn!

(P <p2<p3, P} <Py <p3) (7.8)
< SQRPA|[cp, cnyCnycny, [H, cn, cn, cn, cp,]]ISQRPA >

(exchange p, n label in (Aj;) ) (7.9)
< SQRPA|[cn; ¢p,en &y, [H, cfy l o, cl,]lISQRPA >

< BCS|[en;€p,Cny oy 5 [H, € ,c ,c . ,]]|BCS >

(Epy + En, + Ep, + Ep, )8p,01 6y 65 6ngns

+6n1n4 Ongng (H 2)p,m,p + Opypt Oy (H33 )n,n,u'n,

F6p19,Onung (HE )panapyng, + Spipt Engny (HER )panypymt

PP
+6mr§ 6n1n{ (H 22 )pxnzpi ng Jmp, nanj (H 22 )mnw,n'

PP
+6p1p, nang (H22 )mnwl + 6mp;6nm£(H22 )pzmpini
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+5p2p’1 6nzn'1 (ngf )mmpéné + 5?2111 6n1n; (HZI’? )pmzp;n’l
"5mp{ 6nzni (Hgg)mnwén; - 5p1pi 5nm£ (Hg;)pznzpéni
—5p1p56n2n5 (H%))pzn:pini - pw;&mni (Hg;)pznzp'lns
“5p2p1 5nzn; (H«f{ )mnw;n; = 6pzp'1 ninf (H'g'? )pxnzp;né
_6p2p; nan| (Hgg)mmp’,n; - 6?2?5 mn;(ng?)mnzp;ni

(Pl < p2, Ny < ng, P’l < P’z, "’1 < n’z) (7-10)

The operators associated with the X;, Y, in Eq. (7.1) describe states in the (N+1
» Z+1) nuclei; X;, Y; describe (N+1, Z+1,3) nuclei; X3, Ys describe (N+1,3, Z+1)
nuclei; and Xy, ¥; describe (N+0,2,4 , Z£0,2,4) nuclei. Hence, the X4, Yy amplitudes |
decouple from the others and cannot describe beta decay states. We will not consider
them in further calculations. The closure relation for the second pnQRPA becomes

XX -+ S (XeXY - vy
pn P1<p2<p3,ni1
+ Y (XX YY) =6, (7.11)

n1<nz<na,p1

Now we can rewrite Eq. (7.2) projected onto the two quasiparticle subspace,

Au/(w) B]ll Xll X]
. =4 1
(252 ) (%) =n(3) (712
with

An(w) = A + Y Apgfhw — Agy - 3 Ags(hw — Asz) ™! Agigs] ™!

2,2’ 3,3/

[A21 + Y Aza(hw — Agar) ™ Ag/]

3,3

+ Z Apslhw — Agy — E Asz(hw — Agy) "' Aga]™?

3,3 2,2

[A3r1o + Z A3:2(hw - A22I)-1A2III]. (713)

2,2
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For the one-body charge exchange operator O, the transition matrix elements

between the excited states of the second pnQRPA are

<v|O|SQRPA > = < SQRPA|[Q,,O]]|SQRPA >
~ < BCS|[Q,, F]]|BCS >

= (expressions of Eqs. (3.18 — 3.19)). (7.14)

Although Eq. (7.14) has the same form as Egs. (3.18-3.19), the coefficients X;
and Y; here are obtained by solving Eq. (7.2) or Eq. (7.12) rather than the pnQRPA.
Thus, the four quasiparticle excitations and the ground state correlations are included

in the coefficients.

7.3 Extended Second pnQRPA

The extended second pnQRPA can be obtained by replacing |[BCS > by |CBCS >
in Egs. (7.3,—,7.10). Here we are interested in the low-lying excitations where the
coefficients X; and Y; (7 > 2) are assumed to be small quantities and have the
same magnitude of the corrections in the correlated BCS wave function. Then we
drop the second-order terms and obtain the following results, (1) the matrix element
Ay and Byy in Egs. (7.3,7.4) have the correétions AA and AB, which are given by
Egs. (6.9,6.10) in angular momentum space, (2) other matrix elements have the same

forms as Egs. (7.5 — 7.10).

7.4 Summary

We have derived the second pnQRPA equation based on the extension of the phonon
operator up to four quasiparticle creation and destruction operators. In the equation,

the BCS ground state is still used. We also develop the extended second pnQRPA



109

* equation, in which the phonon operators are expanded up to four quasiparticle cre-
ation and destruction operators and the correlated BCS ground state is employed to
calculated the matrix elements. The numerical evaluation of the second pnQRPA and
the ektended pnQRPA will provide a formidable challenge and we plan to proceed

along the lines developed for the extension of the RPA [Wam 88, Dro 90].



Chapter 8

Summary and Conclusions

The nuclear shell model and the pnQRPA equation are very important nuclear struc-
ture theories for studying 8 and 38 decays. But the appro'ach of these two models
is different. Many or all types of many-body correlations are taken into account in
the large- or full-basis shell-model calculations. Thus the full-basis shell model is the
ezact calculation when it is feasible to carry out. The pnQRPA is an approximgtion
model, which includes only some special classes of the correlations. The goals of this
thesis consisted of three aspects, (1) study of # and the 38 decay of mass A = 48
nuclei with the large-basis shell-model calculations, (2) examinations of the validity
and accuracy of the pnQRPA for 8+ and §p processés, and (3) improvements and

extensions of the pnQRPA model.

In Chapter 2, the large-ba.sis shell-model calculations are employed to calculate
B~ and B* Gamow-Teller spectra of *Ca and *®Ti, and 2vB38 decay matrix element
of ¥Ca. The B(GT-) and B(GT*) behavior in the energy region (2.5~15.0 MeV)
are well described by the effective Gamow-Teller operator &t = 0.770t and a new
effective interaction MSOBEP. With this interaction and effective operator, our shell-
model calcul;ztion predicts the 2v33 decay matrix element of *8Ca to be MZ:=0.070,

giving a half life Ty/,= 1.9%10'yr, which differs by nearly a factor of two from the
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“experimental limit [Bar 70] of T} /2 >3.6x10" yr. We believe that the most important
aspect of these calculations, which cannot be directly tested by the (p,n) and (n,p)
experiments, is the amount of strength in the (n,p) 8% spectrum above 5 MeV in
the excitation. This is because there is a large uncertainty in the amount of Gamow-
Teller strength in the background above this energy. Also further refinements of the

effective interaction are necessary.

Since the pnQRPA is an approximation model, in Chapter 3 and 4 we have investi-
gated the accuracy of the pnQRPA approach to 8+ and 33 decays. The comparisons
of the pnQRPA and full-basis shell-model calculations have been made. In our study,
a self-consistent BCS-pnQRPA have been developed. “ Self-consistent ” means that
the input ingredients in the BCS-pnQRPA are the same as those in the shell model,
namely, the bare single particle energies at the closed shell and two-body interaction
matrix elements. Therefore there is no free parameter for both models in our com-
parison. The coherent one-body transition density (COBTD) and coherent transition
matrix elements (CTME) are introduced for ahalysis of the single-particle state con-
tributions in #* decay. Our comparisons have shown the pnQRPA overestimates the
total B(GT*) and 88 decay matrix elements, and there are large discrepancies in the
shapes of the strength distributions between the pnQRPA and shell-model calcula-
tions. The COBTD and CTME of the pnQRPA are also in poor agreement with those
of the shell-model. Thus we ma.y ‘conclude there must be some correlations which are

important to 8% and 88 decay but have not been included in the pnQRPA.

Empirical improvements for the pnQRPA, namely, the “ hybrid ? pnQRPA, which
are obtained by using the shell-model occupation probabilities and the shell-model
quasiparticle energies in the pnQRPA, are discussed. About 50 % suppressions are

found for the total B(GT*) strength. The shape of the B(GT+) distribution has not
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been improved but it is more reasonable than that in the pnQRPA with larger g,,
values. In Chapter 4, we find the “ hybrid ” pnQRPA does not work for BB decay.

The theoretical improvements of the pnQRPA equation start with the introduc-
tion of the correlated BCS theory. The quasiparticle interaction dropped in BCS
is incorporated by first-order perturbation theory. The extended BCS equation has
been derived based on the correlated BCS and has shown improvement over the stan-
dard BCS for the occupation probabilities. In our study, only the proton-neutron

interaction terms are considered.

We have derived an extended pnQRPA equation, in which the correlated BCS
is used to calculate the matrix elements. The equation has the pnQRPA form but
the matrix elements include additional first-order correction terms. The equation
has been applied to 4% decay and gives an additional suppression of about 40 % in
the total B(GT*). Around 10 % of the sum rule is violated because of dropping
the second-order terms. Also the suppression of double-beta decay matrix elements
is found but not enough to reproduce the shell-model result. The disagreements in
the shape of the A% and 3 spectra have not yet been improved compared to the
shell-model results. The extended BCS and pnQRPA equations were derived in the

J-scheme coupling space.

In Chapter 7, we considered the development of the second pnQRPA equation
based on the extension of phonon operator up to four quasiparticle creation and
destruction operators. In the equations, the BCS ground state is still used. We
also derived an extended second pnQRPA equation, in which not only the phonon
operators are expanded up to four quasiparticle creation and destruction operators,
but also the correlated BCS ground state is employed to calculate the matrix elements.

These equations should provide more accurate methods for studying the transition
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of one- and/or two-body charge exchange modes. The numerical evaluation of the
second pnQRPA and the extended pnQRPA will present a formidable challenge and

we plan to proceed along the lines developed for the extension of the RPA.

In Appendix A, the QRPA equations have been derived. In Appendix B, we have
discussed the relations between the QRPA and pnQRPA equations. In Appendix C,
the second QRPA equation has been derived with the phonon creation expanding to
four quasiparticle creation and destruction operators. In Appendix D, the coherent
one-body transition density and coherent transition matrix element are discussed in
detail. In Appendix E, the BCS and the extended BCS theories are derived in angular
momentum uncoupled space. Finally in Appendix F, the spurious states in the BCS

and the extended BCS are discussed.



Appendix A

QRPA equations

In this appendix, we review the derivation of the QRPA equation from the equa-
tion of motion method. In the equation of motion, the excited eigenstates |v > are

constructed from the phonon creation operator Q! which is defined by
lv>= Q!0 >, and Q,|0 >=0, for all v (A.1)

where |v > and |0 > are the excited eigenstate and the physical ground state. They

satisfy the Schrédinger equations,

Hly >=E,|v> and H|0 >= Eo|0 > . (A.2)
Then one obtains the following equation of motion from the above relations;

(8, Q10 >= (B, - Ea)Q}j0 > (A3)
Multiplying from the left with an arbitrary state of the form < 016Q,, we get

< 0/[8Q., [H, Q1]]|0 >= hw < 0|[6Q., Q}]0 > (A4)

where hw = E, — E,.
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In order to derive the usual QRPA equation, we assume that the excited states are

obtained by creating or destroying two quasiparticles from the QRPA ground state

|QRPA >,
lv >= Q}|QRPA >= Y (X¥uclel, — Yiiicwer)|QRPA > .
k<k!

The QRPA ground state is defined by

Q.|QRPA >= 0.

(A.6)

Inserting Q! into the Eq. (A.4), and choosing 6Q to be cicx and c;fcc,t,, one obtains

the QRPA equation

A B \(X)_, (X
-B* —A" J\v ) =™\v )"
The matrix elements are given by (k < ¥',1 < I')

Awar = < QRPA|[cwer, [H, clcl]]|QRPA >
~ < BCS|[cwer, [H, clch]]|BCS >
= (Ekx + Ep)buber + (Hag)rew
Biww = — < QRPA|[cwer, [H,cva]]|QRPA >
~ — < BCS|[cwex, [H,cra]]|BCS >
= (Heo)rew + (Hao)wrw — (Hao)rnr — (Hao)rwi

—(Hao)vkkt — (Hao) ke

(A.7)

(A.9)

where we approximate the QRPA ground state as the BCS state in Eqs. (A.8-A.9).



Appendix B

Relation between QRPA and
pnQRPA Equations

When we consider Eq. (A.5) including the proton and neutron components, it can

be expanded as,

Qb = Y (Xtclel - Yiuewer)
k<k’!

= Y (XPclel — YRepe,) + Y (XMchel, — Yiicuen)

r<p’ n<n!
+ (KB — Viicacy). (B.1)
n
Inserting Q} into the Eq. (A.4), and choosing the variational 6Q to be cyc,, c;c;.,

CatCn, i, encp and c}cl, one obtains,

APP BFP C | D XPP Xpp

—BPP* _APP* _D*  _C* yrp yre

F D A pm Xon Xmn
-D* —F* _pons _ Anns yma = hw yma (B2)

Aer ppn X X

___Bpn# __Apn* Ypll an

The matrix elements APP, BP?, A™ and B™ are given by Egs. (A.8,A.9), and AP®,

and BP" are given by Egs. (3.11,3.12). The matrix elements C, D and F are expressed
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Copamt = < QRPA|[cpcy, [H,clcl]]JQRPA >

~ < BCS|[epcy, [H,chel])IBCS >

= (P3)pnp'n (B.3)
Dppnne = — < QRPA|[cprcy, [H, cwrca]]|QRPA >
~ — < BCS|[cycy, [H,cncn]]|BCS >
= —(Hp)pnpn' — (Hig )pinipn
+(Hao)prmpn + (Hao)pntpn (B.4)
Fpprnnt = < QRPA|[cnreq, [H, c; cL]IQRPA >
~ < BCS|[cwen, [H,ctcl])]|BCS >

» CpCpr

= (N3 )prpn'- (B.5)

From Eq. (B.2), we can find the sub-matrix in low-right corner is the pnQRPA equa-
tion which is decoupled from the proton-proton and neutron-neutron QRPA matrix
located in up-left corner. The reason for the decoupling is that the operators asso-
ciated with XPP, YPP in Eq. (B.1) describe the states in the (N, Z %+ 0,2) nuclei;
and X™*, Y™ describe the (N £ 0,2, Z) nuclei whereas and X", YP" describe the
(N £1,Z +1) nuclei. Hence, the XP*, YP* amplitudes decouple from the others. But
XPP YPP and X™®, Y™ both can describe the (N, Z) nucleus and consequently couple

together.



Appendix C

Second QRPA Equations

In this Appendix, we will generalize the QRPA to the second QRPA equation. The
phonon creation operator is expanded up to four quasiparticle creation and annihila-

tion operators, i.e.,
lv> = Q!SQRPA >

= {3 (Xyclel - Voner)
k<k’

+ Y (X¥cele e, — Yiememewer)}ISQRPA >, (C.1)

k<k'<m<m’
where we label 1 = (kk') and 2 = (kk'mm') for simplicity. [SQRPA> is the second

QRPA’s ground state defined by
@.|SQRPA >=0. (C.2)

When Q! is put in the equation of motion, we obtain the second QRPA equations,

A By Ay X\ . Xi
—By, —Ajy —Afy Yy )£
=h C.3
Agy Az Xy “1 x, (C.3)
— A —Ajy Yy r

The matrix elements are given by

Anw = < SQRPA|[cper, [H, clch]]|SQRPA >
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< BCS|[cwer, [H, c|cl]]|BCS >= (Ex + Ex)6ubin +
(k< K, i<l
— < SQRPA|[cwcs, [H, cral]][SQRPA >
— < BCS|[exrer, [H, crrci]]|BCS >
(Hao)rrwr + (Hao)urkw — (Hao) ki — (Hao) ki
—(Hao)irknt — (Hao)ikrirr
(k<K i<l
< SQRPA|[cwcx, [H, c]chet,cl]ISQRPA >
< BCS|[cxck, [H, clchel el ]]IBCS >)
S A, )AL, D) A, 1) [ACL, ) (B
+Al, D) (Hia)kmin + A(l, m)(Hi3)kirtm)
(k<K,l<l<m<m)

.
< SQRPA|[cnicmerecr, [H, clehect el ]]|SQRPA >

< BCS|[cwer, [H, el chel et ]IIBCS >

+ (Ha2)rkrrr

(Ek + Ek' + Em + Em’)(sklsk'l'smn&n’n’ + 6k16k'l'(H22)mm'nn’

+6mn6m'n'(H22)kk'll’ + 6kn6k'n'(H22)mm'll' + 6In61’n'(H22)kk’nn’

+A(K, k) AT, D) A, m)A(n', n) A, 066 ( Haz)emin

+A(K', k)A(, D)A(n', n) 6kt Sknt (Haz ) mmein
+A(K, B)A(', ) A(m', m)bin 61 (Haz)mbnin
+A(K, E)A(m', m)A(n’, n)6mims Skns ( Haz)kmit
+A(, DA(m', m) A, 2) 8yt Sptn(Haz ) kont

(k<K <m<ml<l'<n<n)

(C.8)
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where we label 1’ = (II') and 2' = (ll'nn’) and A(p, q) is the antisymmetrizer of the

indices p and q, which is defined by

'A(p’ q)qu = qu - fqp ' (Cg)

The algebra calculations for operators in the second quantization scheme are per-

formed by a REDUCE code [Hea 88].



Appendix D

Coherent One-Body Transition
Density

In the second-quantization formalism, the one-body operator can be expressed by
F=Y <a|F|B > alas, (D.1)
af
where |a > and |§ > are the single particle states. The transition matrix element
between the initial state | > and the final state |f > is given by
My =< f|Fli >=Y_ < a|F|B >< flatagli > . (D.2)
of
< a|F|B > is called the single-particle matrix element (SPME) which is only related
to the single-particle states |a > and |8 >. < flalagli > is called the one-body
transition density (OBTD), which is the function of the initial and final states as well

as the single-particle states |a > and |§ >. Then Eq. (D.2) can be rewritten as
Mj; =) SPME(0)OBTD(o, f,i) = 3_ TME(o, f,1), (D.3)

where o represents the single-particle states.

Now we introduce a coherent state |C > which is defined by

IC >= NcFli >, (D.4)
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where Ng is the normalization factor which is determined by
<C|IC> = N <ilFtF|i>
= Nézf: <i|Ff >< f|F)i > . (D.5)
Then we have

Nec = ! .
VEr < fIFli >?

(D.6)

The transition matrix element between the coherent state and initial state is

<C|Fli> = N <ilF'Fli>

= NcY_ <i|F'|f >< f|F|i >
1

Ne Y M;iSPME(0)OBTD(o, f, i)
o,f

= 3 SPME(0)COBTD(o, )

Y CTME(o,3). (D.7)

where the COBTD and CTME are the coherent one-body transition density and co-
herent transition matriz element which are defined by
COBTD(0,i) = Nc)_ M;OBTD(o, f,i)
=
CTME(o,i) = SPME(0)COBTD(o, f,i). (D.8)

The COBTD and CTME are a function of the single-particle state and initial state.

It represents the single-particle state effects in the total transition strength.



Appendix E

BCS and Extended BCS in
Uncoupled Representation

In this Appendix, we will discuss the formalism of the BCS and the extended BCS
in angular momentum uncoupled space. The BCS equations are given by a lot of
textbooks [Row 70, Rin 80]. For the proton-neutron system, the quasiproton energies
E,, the parameters v} introduced by Bogoliubov transformation and pairing gaps A,

are given by

E, = \/(e,, = A+ A, (E.1)

oA ), (E2)

S -2+ A2

1
v = 5(1—

1
Ap = - § Z up'vp'Vpp’plp-l, (Eo3)
P'
where A, is the proton Fermi energy, €, and V},, ;/» are the single proton energy and

proton two-body interaction, respectively. The above equations can be solved under

the constraint for the total proton number
N, =) < BCS|ala|BCS >, (E.4)
)

which determines the constant A,. A similar set of the equations can be solved for

neutrons. In the BCS, v? turns out the physical meaning — the occupation probability.
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The derivation of the extended BCS equations starts with introducing the corre-

lated BCS wave function in section 5.3.2, which can be written as

Gpn

|CBCS >= N(|BCS > - Y Pifipete Vo Cpy Cny Cp Cny |BCS >),(E.5)
n2

r1<p2 EPI + Eﬂl + EP2 +

ny<ny

where the restrictions p; < p; and n, < n; are introduced in order to avoid double

. . n .
counting the states. The expression of GBI, ..., is given by
n —
(GP)pimipane = Virnypang (Upy Uny UpyUny + Vpy Uny U, Un, )

~Woinipang (vm Uny Upy Uny + Up, Un, Up, Un, )’

where Wy, n,p,n, is the particle-hole interaction to be equal to —V,,nypin, -

The normalization factor N in Eq. (E.5) can be determined by

< CBCS|CBCS >= 1.

Then we obtain

=1+ E { Gp:‘ﬂxmnz }2
rn Ep, + En, + E,, + E,,
n

The occupation probabilities of protons and neutrons are given by

(E.6)

< CBCS|ala,|CBCS > = vl + (u2 —vl)N? Y (E m Ginipana
P2

2
Enl + Epg + E‘uz)

ny<ny

< CBCS|a}aq|CBCS > = 2 + (u2 —u2)N? ¥ ( Grpinpany

)2,
s n Ep + Ew + Ep, + E,,

(E.9)
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The correlated BCS wave function is required to have the correct mean proton

and neutron numbers. Thus the constraints are

Y < CBCS|ala,|CBCS >= N, (E.10)
P

Z < CBCS|alan|CBCS >=N,. (E.11)

The set of equations Eq. (E.1,—,E.3,E.5,—, E.11) are called the extended BCS
equation. They can be solved iteratively. From Eqgs. (E.9), we find that v? is no

longer the occupation probability.

The ground state energy of the correlated BCS is given by

Ecorr = Epos + E® + E®), (E.12)
where

EM = ¢ (E.13)

E® - _ 5% = Jg:"f,}i: B (E.14)

FEgcs is given by Eq. (5.48).




Appe.ndix F

Spurious States in the BCS and
extended BCS.

In Chapter 5, we constructed the first-order corrections for the BCS ground state.
The correlated BCS ground state mixes two-quasiproton two-quasineutron excitations
with the quasiparticle vacuum. But these excitations may contain some unphysical

states — spurious states, which should be projected out in principle.

Spurious excitations can occur whenever the appfoximation used breaks the sym-
metries of the Haﬁliltonian or violates the conservation laws. Since the BCS violates
the particle-number conservation, spurious states may occur when we construct the
unperturbed excitations from the BCS ground state in subsect. 5.2.3. For example,

if we consider the two-quasiproton excitations, the state
lsp; > = Nipa(N, — N,)|BCS >
= = W’Z V2(2jp + 1)“p”pA|1>p(PPa 00)|BCS > (F.1)
)

is an excitation but it is spurious i.e., if the wave function is the eigenstate of IV, this

state does not exist because we have |sp, >= 0.

The four-quasiparticle (like particle) spurious states were discussed by several
authors before[Ott 67, Pal 67, Gmi 68] when they studied the excitations in quasi-
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particle TDA equation. Their method requires an explicit construction of the most
important spurious states to be eliminated. Following this method, we construct
the spurious states in the two-quasiproton two-quasineutron doublet configurations,
which should be removed when calculating the correlated BCS wave function. The

spurious states can be written as

lspr >= Nypx (N, — Ny) AL (nyn,,00)|BCS >, (F.2)
or
lspy >= N, (N, — N,,)A;',p(p]pl-,OO)IBCS >, (F.3)

where JV,, and N, are the proton and neutron number operators, N, and N, are the
proton and neutron mean numbers given by the nuclear system. In fact, the Egs.

(F.2,F.3) are equivalent to each other.

In order to discuss the properties of spurious state and understand the projection

procedure, we now consider a special spurious state, it is the combination of the states

in Eq. (F.2) or Eq. (F.3).
|sps >= Nop(N, — Ny )(N, — N,)|BCS >, (F.4)

where N,,, is the normalization factor. In the quasiparticle basis, it can be expressed

by

lspa> = Npd. D (-—1)j”"'""’*'j"*"""upv,unvnc;fpm,c}p_mpc}nm"c}"_m"IBCS >.

PN mpma

(F.5)

Ny, can be determined by

< spylspy >=1, (F.6)
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so we obtain

NZ2 =4 (2jp + 1)(2jn + 1)(upvpunva)’. (F.7)

pn

|sp, > may be expanded in terms of our orthogonal complete basis obtained by Eq.

(5.80),

lsps > = Z be|lpinipana, k >

P1n1P2n2
k

= Y 3 biowB} ;. (p1nipans, 00)|BCS > . (F.8)

Pl"l:z"? 1
The coefficients b, are determined by

b = < pinipeng, klspy >

= 4NBPZO‘H 2J; + lNBiumvmumvﬂx‘smm&ﬂmza (FQ)
where
<spylspy>= ), =1 | (F.10)
pinipang .k

In order to project out this spurious state, we have to use the Gram-Schmidt
orthogonalization again. The procedure is as follows. Based on the normalized
orthogonal basis |pinipans, k >, one introduces a new basis by replacing the first
vector by |sp, >. However, the new basis is no longer orthogonal anymore since
< p1ripang, k|sp, ># 0, where k > 1. We construct, with the Gram-Schmidt orthog-

onalization procedure, another basis |¥; > which are orthogonal to |sp, >.

¥ > = [spy > (F.11)

¥, > = Z nto) |pinipang, k > where i > 1. (F.12)

rimpang
P1"1,.P2"2
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" Then we have

< sp,| Vi >= by;. (F.13)

So it is easy to remove the spurious state when we calculate the first-order cor-

rections,

', < W;|HE®|BCS >
CBCS >= N(|BCS > + 20
| ( Z Egcs — Ey,

|@; >, (F.14)

where 3_; means the summation does not include [sp, >.
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